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Abstract

Over the past decades technological developments have both changed and increased

human influence on the marine environment. We now have greater potential than

ever before to introduce disturbance and deplete marine resources. Two of the issues

currently under public scrutiny are the exploitation of fish stocks worldwide and

levels of anthropogenic noise in the marine environment. The aim of this thesis is to

investigate and develop novel analyses and simulations to provide additional insight

into some of the challenges facing the marine ecosystem today. These methodologies

will improve the management of these risks to marine ecosystems.

This thesis first addresses the issue of competition between humans and grey seals

(Halichoerus grypus) for marine resources, providing compelling evidence that a sub-

stantial proportion of the sandeels consumed by grey seals in the North Sea are in fact

H. lanceolatus, which is not commercially exploited, rather than the commercially im-

portant A. marinus. In addition, we present quantitative results regarding sources of

bias when estimating the total biomass of sandeels consumed by grey seals. Secondly,

we investigate spatially adaptive 2-dimensional smoothing to improve the prediction

of both the presence and density of marine species, information that is often key in

the management of marine ecosystems. Particularly, we demonstrate the benefits of

such methods in the prediction of sandeel occurrence. Lastly this thesis provides a

quantitative assessment of the protocols for real-time monitoring of marine mammal

presence, which require that acoustic operations cease when an animal is detected

within a certain distance (i.e. the “monitoring zone”) of the sound source. We assess

monitoring zones of different sizes with regards to their effectiveness in reducing the

risks of temporary and permanent damage to the animals’ hearing, and demonstrate

that a monitoring zone of 2 km is generally recommendable.
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Chapter 1

General Introduction

1.1 Anthropogenic Impacts on the Marine Envi-

ronment

Over the past decades the challenges facing the marine environment due to human

influence have changed considerably, and predators towards the top of the food chain,

such as marine mammals, are one of the species groups that are potentially the most

at risk. The Dolphins, Whales and Porpoises: 2002-2010 Conservation Action Plan

for the World’s Cetaceans (Reeves et al., 2003) states that “cetacean diversity, like all

biodiversity worldwide, is crumbling; we are losing it at a rapid and increasing rate”.

Species such as the baiji (Lipotes vexillifer), vaquita (Phocoena sinus), and North

Atlantic right whale (Eubalaena glacialis) are near extinction and local populations

of other species have disappeared or are seriously threatened (Reeves et al., 2003).

Although most marine mammal species are now protected from direct harvesting

(for example, whaling) increasing technology has led to increased risks for the marine

ecosystem as a whole. Humans now have greater potential than ever before to deplete

marine resources and introduce new threats to the marine environment. Two of these

issues currently under public scrutiny are the exploitation of worldwide fish stocks

and increasing levels of anthropogenic noise.
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Fisheries and aquaculture provide direct employment to around 35 million people

worldwide and in 1999, fish contributed around 15.8% of animal protein consumed

by humans (FAO, 2002). However, development of more effective fishing techniques

without adequate management has led to the depletion of many fish stocks. According

to a 1997 FAO review, 6% of worldwide fisheries are classed as depleted and a further

16% are over-exploited (Botsford et al., 1997).

The decline in many wild fish stocks has increased the demand for farmed fish

and caused the aquaculture industry to grow more rapidly than any other sources of

animal production (FAO, 2002). In 2002, farmed fish comprised around one third of

all fish directly consumed by humans (FAO, 2002). However, the methods currently

used to farm carnivorous fish, such as salmon, require large quantities of fishmeal

and/or fish oil. Even with increasing efficiency, around 2.6 kg of raw fish are required

to produce 1 kg of farmed salmon (Mente et al., 2006).

In Europe, the fish used in the production of the fishmeal and fish oil required

for aquaculture are smaller species for which there is no demand for direct human

consumption. Such fish include sandeels (Ammodytidae sp., mostly Ammodytes mar-

inus), capelin (Mallotus villosus), Norway pout (Trisopterus esmarkii), blue whiting

(Micromesistius poutassou), sprat (Sprattus sprattus), horse mackerel (Trachurus tra-

churus) and herring (Clupea harengus) (Mente et al., 2006). Over-fishing these species

has the potential to have devastating effects on marine diversity because many marine

species, including larger and commercially important fish species, various species of

sea bird and marine mammals, rely on these fish. Myers and Worm (2005) concluded

that “industrial fisheries have changed marine ecosystems in fundamental ways”, and

Pauly et al. (2003, 2005) suggested that, if current fishing trends continue, this in-

dustry is likely to collapse in the next decades, and take the supporting ecosystems



3

with it.

A second threat to the marine environment that has also been the source of in-

creasing public attention is increasing levels of anthropogenic noise (Southall et al.,

2007). This is also, in part, linked with the increasing aquaculture industry, because

acoustic deterrent devices are deployed to deter marine mammals from predation on

farmed fish (Booth, 2010). In addition, there are many other forms of acoustic pol-

lution in operation. Increasing levels of sonar are being used in our oceans and seas,

both to locate ever-decreasing fish stocks, and also for various military and scientific

applications (Hildebrand, 2004). A number of marine mammal stranding events are

suspected to be associated with marine noise (Frantzis, 1998; D’Amico et al., 2009),

and this has led to increased concern over the potential consequences of anthropogenic

noise for marine mammals. However, as yet, the full extent of such consequences, as

well as the effectiveness of current management measures, is far from understood and

more research is urgently required (Southall et al., 2007; Dolman et al., 2009).

1.2 Management of the Marine Environment

The term “environmental management” refers to the process by which we aim to

supervise or control human activities that may affect the natural environment. With

regard to marine ecosystems the objectives of our management processes may have

different priorities for different people. One objective may be that of conservation,

for example, maintaining the diversity of species. Another may be an economic ob-

jective concerned with the sustainable yield of fish and other marine resources. One

thing is certain: the management of our marine environment is becoming increasingly

challenging as we struggle to better understand the complexities of that environment

as well as balance human requirements and desires with the need for economic sus-

tainability and the conservation of the environment. To address such challenges it
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is important to develop better biological understanding of the interactions between

anthropogenic activities and the species which exist in this environment. One of the

key techniques for increasing that understanding is through the implementation of

statistical analyses and simulations. However, there are often a number of technical

challenges that may be encountered when attempting such analyses. For example,

the data may not lend themselves to traditional off-the-shelf analyses or there simply

may be no existing technique to deal with the question of interest. The main aim

of this thesis is to develop a number of statistical techniques whose application has

important consequences for the management of the marine environment.

The concerns over maintaining the diversity of the marine environment has led to

large quantities of literature on threatened and endangered species, particularly ma-

rine mammals, sea birds and marine turtles (Larkin, 1996). In addition, the National

implementations of EU Council Directive 92/43/EEC on the conservation of natural

habitats and of wild fauna and flora (generally known as the Habitats Directive) now

provides a level of protection for all cetaceans in its waters. However, such species

were not considered in the single species stock assessments carried out to try to man-

age the anthropogenic effects of the fisheries. Therefore, to better assess the potential

impacts of human activity on the ecosystem as a whole, increasing attention has been

placed on the consideration of multispecies models rather than these simpler single

species stock assessments (Larkin, 1996). Such models not only consider the species

being subjected to exploitation but also the predators and other species which may

be affected by that exploitation. This is an important step towards ensuring that the

exploitation of fish stocks does not endanger other species, as well as the economic

sustainability of the industry. However, if management measures based on such mod-

els are to be successful, it is essential that we have an in depth knowledge of the

interactions between species within the ecosystem and try to minimise the number of



5

caveats in our knowledge.

One example of where such knowledge is lacking is the level of competition between

the sandeel fisheries, particularly those directed at the lesser sandeel, Ammodytes

marinus, and the grey seal (Halichoerus grypus, Fabricius). Currently, there is debate

about the inclusion of predation by seals on A. marinus in North Sea multispecies

fisheries models because there is an uncertainty as to how many of the sandeels

consumed by the grey seals are in fact this species. There are a further four species

of sandeel thought to inhabit the North Sea, although only the largest - Hyperoplus

lanceolatus - is thought to make up a substantial proportion of the total sandeel

biomass. Chapter 2 of this thesis presents a novel method for improving both the

estimation of the total biomass of sandeels consumed by grey seals and the proportions

of A. marinus in the grey seal diet. By doing this, it is now possible to ensure that

seal predation on A. marinus, one of the key prey species in the North Sea, is included

in multispecies fisheries models.

Another commonly implemented conservation technique involves the designation

of protected areas, for example permanent marine reserves where all activities are

restricted (Larkin, 1996; Myers and Worm, 2005; Booth, 2010) or spatial or temporal

closure of areas to commercial fishing - so called “no-take” zones (Myers and Worm,

2005; Greenstreet et al., 2006). Such methods allow populations within areas of im-

portance (e.g. breeding ground or biodiversity hotspots) to recover from the negative

impacts of human activities. Pauly et al. (2005) suggests that no-take zones must be

viewed as a “legitimate and obvious management tool” to protect species that are

now in danger of becoming extinct. However, the reliable implementation of such

management techniques requires an accurate understanding of the distribution of the

species that is being protected and the factors that determine this.
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Spatial modelling is an area of statistics that has been developing rapidly and is

helping us to understand and predict the distributions of species. In this thesis we

present a novel technique that aims to improve the modelling of species distributions,

particularly when the underlying spatial distribution of the species is more variable

in some parts of the species’ distribution than others. Firstly, we use this technique

to investigate the distribution of sandeels off the east coast of Scotland between 1997

and 2002. The results are of particular interest as they can be used to assess the

effects of the closure of the sandeel fishery in this region in 2000. Secondly, we use

this technique to investigate the distribution of harbour porpoise off the west coast of

the United Kingdom. Harbour porpoise (Phocoena phocoena) are one of the species of

interest in the Environmental Risk Management Capability (ERMC) (Mollett et al.,

2009), which is used by the Royal Navy to assess the risks that sonar poses to marine

mammals. One of the components of this system is a set of estimates of the density of

all marine mammal species in different parts of the world. These estimates are used

to aid the selection of test sites so that, whenever possible, sonar operations may be

conducted in areas with relatively low densities of marine mammals. It is therefore

important that such systems have reliable estimates of animal density through space.

Ideally, sonar operations should avoid areas where there is a high density of marine

mammals but, inevitably, there are limitations to our ability to predict animal density.

Indeed, marine mammal distribution may vary seasonally, or shift from year to year.

In addition, national priorities may make it necessary to operate in areas where marine

mammals are abundant. Chapter 4 of this thesis therefore modifies and uses part of

the ERMC system to to investigate the effectiveness of monitoring zones in reducing

the risks of hearing damage to marine mammals in the vicinity of sonar operations.

Monitoring zones are designated areas around the sound source in which observers

search for marine mammals, either visually or acoustically, and implement specified



7

protocols when animals are detected. Although monitoring zones are commonly used

to mitigate the effects of anthropogenically generated sound, this is the first detailed

evaluation of their effectiveness.

1.3 Computer Intensive Methodology in Statistics

In addition to the development of analytical techniques that are particularly appli-

cable to management of the marine environment, a further theme which permeates

this thesis is the use of computer intensive methodologies. The invention of the

computer has revolutionised the statistical analysis of biological data. Analyses that

would previously have been impossible because they were very time consuming now

take a matter of milliseconds on a personal computer.

Since computers came into existence there has been, and continues to be, a rapid

development in processing power. Personal computers have increasingly greater pro-

cessing speed, more processing cores and have much greater capacity for data storage.

In addition, it is becoming common place to run complex or time consuming analyses

and simulations in parallel across a number of cores or different processors. With

these developments comes the ability to explore scenarios and reveal insights into

biological problems which were, until now, too complex to consider.

Roff (2006) defines computer intensive methods as those which implement some

kind of iterative procedure, and are therefore only possible with the aid of a com-

puter. One of the most widely implemented computer intensive statistical techniques

is that of maximum likelihood estimation. In addition, other computer intensive

methods, which are often implemented when analysing biological data, include boot-

straps (both parametric and non-parametric), cross-validation, smoothing techniques

within generalised additive models and Bayesian methods (Roff, 2006).



8

Such computer intensive statistics have also been widely applied in the context

of marine management (for example, Harwood and Stokes (2003); Essington et al.

(2006)) and also in environmental risk assessment methodology (for example, Mollett

et al. (2009)). The development of such techniques has allowed the management of

marine ecosystems to be based on more thorough and scientific methodology (Har-

wood and Stokes, 2003). One way in which computationally intensive statistics help

achieve this is through the incorporation of uncertainty.

This thesis utilises computationally intensive methodology to provide additional

insight into some of the challenges facing the marine ecosystem today. It is hoped

that these methods will contribute to more successful and sustainable management

of marine ecosystems.

In Chapter 2 we investigate the predation of sandeels by grey seals using maximum

likelihood techniques to estimate the parameters associated with a novel model repre-

senting the process by which otoliths ingested by the seals are digested. We then use

a parametric bootstrap to estimate the uncertainty associated with these parameter

estimates. These methods not only allow us to quantify sources of potential bias in

estimates of the total biomass of sandeels consumed by the seals in comparison with

existing methods, but also to quantify what proportion of the sandeels in their diet

belong to the commercially important species A. marinus.

In Chapter 3 we exploit computational power to apply a branch and bound optimi-

sation routine for selecting specific areas of flexibility across a 2- dimensional surface.

Further, we implement cross validation techniques to assess the predictive power of

our resulting models and compare them to existing methodologies in the context of

predicting the distribution of both sandeels and harbour porpoise.
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Finally, in Chapter 4 we use computationally intensive simulations, implemented

using parallel processing techniques, to assess the effectiveness of monitoring zones.

By simulating the movements of hundreds of thousands of animals through time, we

produce a robust analysis of the effectiveness of different sized monitoring zones at

reducing the risks of sonar to marine mammal hearing.
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Chapter 2

Grey Seal (Halichoerus grypus)
consumption of the Lesser Sandeel
(Ammodytes marinus) in the
North Sea

2.1 Introduction

The lesser sandeel (Ammodytes marinus, Raitt) is the focus of increasing attention.

Not only did it, until recently, constitute the greatest landed weight of any single

species fishery in the North Sea (Wright et al., 2000; Holland et al., 2005) but it is

also a crucial component of the North Sea’s food web (Greenstreet et al., 2006; ICES,

2008). Sandeels (Ammodytidae), of which there are thought to be five species in the

North Sea (Macer, 1966), are an important prey for various marine mammals (Santos

et al., 2004; Hammond and Grellier, 2006), seabirds (Furness, 2002; Frederiksen et al.,

2006) and fish, including mackerel, cod, haddock, whiting and saithe (Bromley et al.,

1997; Greenstreet et al., 1998; Engelhard et al., 2008) all of which are valuable to

North Sea fisheries (Harwood and Croxall, 1988). Sandeels, therefore, are not only

important in sustaining the North Sea ecosystem from a conservation perspective, but

their success also has significant economic implications. Despite their importance,

13
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relatively little is known about the ecological consequences of the fisheries that target

such large quantities of sandeels (ICES, 2008).

Sandeels are caught for industrial purposes rather than direct human consumption.

Historical catches in the North Sea peaked at over 1.1 million t in 1997 (ICES, 2009);

between 1973 and 2008, European fisheries caught 24.9 million t of sandeel in the

North Sea. Atlantic herring constitute the second heaviest catch in the North Sea,

with only 10.3 million t landed in the same time period (ICES, 2009). However, from

2003 onwards sandeel landings have decreased to between 0.2 and 0.4 million t per

annum (ICES, 2009), and the spawning biomass of sandeels has been in decline over

the past 15 years (ICES, 2008). However, as sandeel recruitment is density-dependent

the reasons for such declines are apparently not related to the fisheries (van Deurs

et al., 2009). Instead the decline in sandeel recruitment, and therefore numbers, has

been associated with climatic changes which have altered the distribution of their

prey, e.g. Calanus finmarchicus (van Deurs et al., 2009). Although the decline in

sandeel numbers has not been associated with over-fishing, such decreases may result

in sandeel abundance crossing a critical limit. Once sandeel numbers have fallen be-

low this point, despite their density-dependent recruitment, additional pressure from

fishing may cause further reductions in the spawning stock and therefore recruit-

ment. This leaves the sandeel population more vulnerable to environmental changes

(Brander, 2005) and therefore with increased potential for a population crash. The

result of such a crash would be devastating to the North Sea ecosystem. For this

reason in 2000, concern over decreasing sandeel catches and reduced breeding success

in seabirds led to the closure of the sandeel fisheries off the east coast of Scotland

(Greenstreet et al., 2006).
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Sandeels, with such complex interactions within the food web, demonstrate the

importance of considering sustainability from an ecosystem perspective rather than

a single species stock assessment. In addition, ecosystem and multispecies modelling

techniques allow predation rates on sandeels to be updated using time dependent

information on their predators’ population dynamics. van Deurs et al. (2009) noted

a discrepancy between the higher model predictions and the lower observed sandeel

recruitment in 2002 which they suggested may be attributed to “unusually high pre-

dation pressure” from herring. Such suspicions must lead us to not only monitor the

fishing pressure on this species but also the pressures from its predators. However,

such multispecies models, which can account for these predation pressures, have an

increased complexity and therefore increased risks; that the misspecification of one

species’ population parameters may not only invalidate results for that species but

potentially every other species in the model which interacts with it (Vinther, 2001).

The success of using multispecies modelling to aid management decision making (e.g.

fishing restrictions) therefore relies on accurate knowledge of the interactions between

species.

The interaction that forms the subject of this study is between the sandeel and the

grey seal (Halichoerus grypus, Fabricius). Grey seal populations increased threefold

between 1985 and 2002, incurring a similar increase in their estimated annual con-

sumption of sandeels (Hammond and Grellier, 2006). It is estimated that during 2002

sandeels made up the largest proportion of the grey seal’s diet with around 69,000

t being consumed annually in the North Sea, the second most common prey species

was cod with an estimated consumption of 8,300 t (Hammond and Grellier, 2006).

Although sandeels undoubtedly make up a large proportion of the grey seal diet, the

importance of commercial species is a matter of debate (Prime and Hammond, 1990;

Hammond et al., 1994a,b). A. marinus is the most abundant species of sandeel in
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the North Sea and the most accessible to the fisheries due to its preference for sandy

substrates. It therefore makes up over 90% of the commercial catch (Jensen et al.,

2003). However, some of the sandeels consumed by grey seals are too large to have

been A. marinus (Prime and Hammond, 1990; Hammond et al., 1994a,b). In addi-

tion, there is evidence of bimodality in the size distribution of sandeel otoliths, and

therefore the sandeels, consumed by grey seals. Two hypotheses have been proposed

to explain this bimodality in size distribution: the sandeels consumed were from two

or more distinct species (Prime and Hammond, 1990; Hammond et al., 1994a,b); or

the sandeels consumed by grey seals may represent two distinct age groups of A. mar-

inus (Macer, 1966; CEFAS, 2007). One objective of this study is to investigate these

hypotheses and try to quantify the levels of consumption of A. marinus, the species

of interest to commercial fisheries, compared to the consumption of other species of

sandeel. In doing so it will then be possible to consider the fishing and predation

pressures which A. marinus is subjected to independently of other species of sandeel.

This is vital as such a large proportion of the fisheries catch is A. marinus.

In addition to A. marinus there are another four species of sandeel that are thought

to occur in the North Sea: A. tobianus (Raitt), Gymnammodytes semisquamatus

(Jourdain), Hyperoplus lanceolatus (Le Sauvage) and H. immaculatus (Corbin). How-

ever, the data available on the geographical distribution and size ranges of these

species is limited. A. marinus is widely accepted as the most abundant species of

sandeel in the North Sea (Macer, 1966) with the second most abundant thought to be

H. lanceolatus (Pearson, 1968; Rijnsdorp et al., 1996). Although the presence of A.

tobianus (Pearson, 1968), and G. semisquamatus (Macer, 1966) has also been docu-

mented in the North Sea we do not consider these species in this chapter as there is

no evidence to suggest that they make up any more than a very small proportion of

the sandeels in the North Sea.



17

It is thought that A. marinus may reach a maximum length of 25 cm (Macer,

1966; Froese and Pauly, 2009); this is consistent with data from the Danish fishery.

H. lanceolatus, otherwise known as the greater sandeel, can reach a length of up to 40

cm, but is more commonly around 20 cm (Froese and Pauly, 2009). It is especially

important for this study to obtain an estimate of the plausible size range for A.

marinus and, more specifically, a plausible size range for the otoliths belonging to A.

marinus, which are used to identify the presence of this species in the grey seal diet.

Previous diet studies have relied on comparing estimated fish length with historical

data on observed lengths of A. marinus. However, these estimated fish lengths are

based on otolith dimensions which are, in fact, only estimates of original dimensions

based on partly digested otoliths. Therefore, there are two sources of potential error

involved in these comparisons. Here we compare measurements of the lengths of

otoliths from over 2000 specimens of A. marinus. These are compared with the

estimated undigested sizes of otoliths recovered from the grey seal scats throughout

the North Sea.

Although the analysis of hard parts recovered from scats is probably the best single

method of diet analysis for grey seals (Prime and Hammond, 1990; Hammond et al.,

1994a), it presents some challenges. Estimating the actual number and biomass of

prey consumed is difficult, because not all otoliths ingested by the seals are recovered

in the scats (Bowen, 2000; Grellier and Hammond, 2006) and the consumed biomass

needs to be estimated from the sizes of the recovered otoliths. A number correction

factor (NCF) can be used to predict the number of otoliths ingested from the number

recovered in the scats. The estimated NCF for A. marinus is approximately 3 (Grel-

lier and Hammond, 2006). However, Grellier and Hammond (2006) observed that

the proportions of consumed sandeel otoliths that were subsequently recovered varied
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from 0.11 to 0.51. Some of this variation could be explained by difference in NCF be-

tween otoliths of different size. Ignoring this factor could lead to an under-estimation

of the number of smaller otoliths (most likely belonging to A. marinus) ingested by

the seals. This study therefore includes the estimation of a size-dependent NCF that

accounts for the loss of completely digested otoliths and more accurately predicts the

size distribution of otoliths ingested.

An estimate of the biomass of prey consumed is more useful for comparing diet

composition than an estimate of the number of prey. This biomass, can be estimated

using the relation between fish mass and otolith size. In some cases a direct power

relation between these variables has been used (Hammond and Grellier, 2006), but

otolith size has also been used to predict the length of the fish consumed and this

length has then been used to predict their mass (Lewis et al., 2003). A concern with

the North Sea scat data is that the wrong relations may be used in these calculations if

all the otoliths are treated as if they are from A. marinus, when the seals are actually

consuming a range of sandeel species. Calculating A. marinus biomass from otoliths

of fish that are outside the expected range for this species could cause severe bias.

This study therefore compares the fish mass to otolith size relations for A. marinus

and H. lanceolatus and highlights the importance of choosing the correct relation.

2.1.1 Chapter Objectives

In summary, the objectives of this chapter are:

• To quantify the amount of A. marinus consumed by grey seals so that this

species can be considered by itself in multispecies models. This is important as

this species alone makes up most of the fisheries catch and it is therefore vital

to consider its management separately to the management of other species of

sandeel.
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• To more accurately quantify the total biomass of all sandeels consumed by the

grey seal and investigate potential sources of bias. This is important to assess

the impact of the grey seal on on its various prey species. The grey seal is not

only a major predator in the North Sea but its population size, and therefore

potential impact on the ecosystem, is also increasing.

2.2 Data

2.2.1 North Sea Scat Analysis

Hammond and Grellier (2006) sampled grey seal scats from various haul-out sites

throughout the North Sea in 2002 to study grey seal diet composition. The haul-

out sites were grouped into five locations: Orkney, Shetland, Moray Firth, Donna

Nook and central North Sea (which encompasses haul-out sites on the UK east coast

between Abertay and the Farnes). The Orkney, Donna Nook and the central North

Sea locations were visited quarterly throughout the year; however, the second quarter

was missed at Shetland and only the third quarter was sampled at the Moray Firth.

The data of particular interest in this study are the length measurements of the

sandeel otoliths recovered from these scats. The otoliths were measured and graded to

indicate the extent of digestion: 1 - pristine, 2 - moderately digested, 3 - considerably

digested. The data analysed here come solely from grade 2 and 3 otoliths; no otoliths

recovered from the feeding experiments in Grellier and Hammond (2006) or those

recovered from the North Sea were in pristine condition. To obtain the estimated

lengths of the otoliths recovered from the North Sea prior to partial digestion, values

which henceforth shall be referred to as x1, the lengths of the otoliths recovered

from the North Sea were multiplied by grade specific digestion coefficients (DC) from

Grellier and Hammond (2006) (Table 2.1).



20

Table 2.1: Grade specific digestion coefficients for grade 2 and 3 otoliths (Grellier
and Hammond, 2006). The standard errors of the digestion coefficient estimates are
given in parenthesis.

Grade Otolith Width DC (se) Otolith Length DC (se)
2 1.22 (0.046) 1.25 (0.041)
3 1.68 (0.030) 1.58 (0.034)

All 1.65 (0.030) 1.56 (0.033)

2.2.2 Otolith Recovery Rates

Grellier and Hammond (2006) and Tollit et al. (1997) performed a series of exper-

iments to estimate the probability of recovering an ingested otolith in a seal scat.

Grellier and Hammond (2006) recorded the proportion of otoliths recovered from

sandeels which were fed to five captive grey seals (Table 2.2). However, these exper-

iments were not designed to look at how recovery rates varied with sandeel otolith

size, and the individual meals fed to each of the seals had very similar mean otolith

dimensions. This made it difficult to estimate a recovery function from these data

alone. Tollit et al. (1997) carried out a similar feeding experiment with harbour seals

(Phoca vitulin), in this case the experiment was specifically designed to test for vary-

ing recovery probability based on otolith size (Table 2.3). The estimated proportions

from these data, from both sets of feeding experiments, are henceforth referred to

as x2. We present the standard errors of these estimated proportions but did not

incorporate them into the analyses for reasons discussed in section 2.5.5. Although

there is some debate as to whether or not feeding experiments on harbour seals can

be extrapolated to grey seals, Bowen (2000) found no significant differences in the

recovery rates of otoliths from Atlantic and Pacific herring for these two seal species.
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Table 2.2: Proportion of sandeel otoliths recovered and their mean length and width
(Grellier and Hammond, 2006). Standard errors of the proportion estimates are given
in parenthesis.

Seal Undigested Undigested Proportion
Name Mean Length (mm) Mean Width (mm) Recovered (se)
Lola 2.24 1.18 0.42 (0.017)
Q 2.21 1.18 0.27 (0.016)
Tess 2.22 1.18 0.51 (0.022)
Ulrika 2.18 1.17 0.11 (0.014)
Vera 2.78 1.40 0.44 (0.020)

Table 2.3: Proportion of sandeel otoliths recovered and their mean length and width
(Tollit et al., 1997). Standard errors of the proportion estimates are given in paren-
thesis.

Undigested Undigested Proportion
Mean Length (mm) Mean Width (mm) Recovered (se)

1.70 0.90 0.14 (0.033)
2.59 1.29 0.15 (0.020)
2.93 1.43 0.34 (0.029)
3.26 2.58 0.28 (0.026)

2.2.3 Relation between body size and otolith size for A. mar-
inus

Engelhard et al. (2008) sampled A. marinus from the Dogger Bank region in the North

Sea during April and May of 2004, 2005 and 2006, July 2004, and September/October

2005 and 2006 (CEFAS, 2007). Dredge tows were used to collect the sandeels during

the night when they were buried in the sediment. The lengths of the fish were recorded

to the nearest 0.5cm and their otoliths were extracted to establish the age of the fish.

Fish were chosen to provide similar sample sizes across the range of observed fish

lengths. The length and width of 2169 of these otoliths, one from each fish, were

measured to the nearest 0.01 mm using an image analysis microscope.
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2.3 Methods

2.3.1 Modelling the Consumption of Sandeels

A mixture model combined with a size-related probability of recovery was used to

predict the distribution of otoliths ingested by the seals using the sizes of otoliths

recovered from the scats. It was hoped that this mixture of distributions would make

it easier to classify the otoliths to either the smaller A. marinus, or the larger H.

lanceolatus. The distribution of otolith sizes recovered from the scats appeared to be

right-skewed, suggesting that lognormal distributions would be appropriate to model

these data. Lognormal distributions are commonly used to represent biological data

and are especially useful when modelling size distributions (Limpert et al., 2001).

In addition, whereas the size distribution of fish and therefore the size distribution

of otoliths for different age classes tend to be normally distributed (Fournier et al.,

1998; Rindorf and Lewy, 2001), the sum of these normal distributions across the

age classes in the population often gives rise to log-normal distributions. Therefore,

this approach is more appropriate for the identification of different species of sandeel

rather than different age groups within species. A mixing parameter allowed different

weights to be allocated to each log-normal distribution describing the proportion of

otoliths thought to have come from each distribution.

Various functions were considered to model the probability of recovery. Given the

sparse nature of the data to which the curve was fitted it was especially important

to choose a function which was biologically plausible. The first requirement was that

the function should approach zero as the otolith size approaches zero. This is due to

the belief that the smaller the ingested otolith the less the likelihood of recovery, a

phenomenon which has been observed across species (Tollit et al., 1997; Bowen, 2000;

Grellier and Hammond, 2006). In addition, the methods used to extract the otoliths
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from the scats/tank rely on using a mesh which sieves them out of the scats/water,

this means that any otolith which could fit through this mesh would stand very

little chance of being recovered. The second requirement was that the curve should

approach an upper asymptote between 0 and 1 as otolith size increases. The Gompertz

curve meets these criteria and is less restrictive in shape than the logistic because it

does not enforce 180 ◦ symmetry around the point of inflexion. This meant that while

the Gompertz curve predicted an upper asymptote which was consistent with what

was expected based on assuming a constant probability of recovery, the logistic curve

predicted what appeared to be unrealistically high probabilities of recovery for the

larger otoliths. Fitting this curve at the same time as the mixture model improves

the estimation of the curve’s parameters as the observed otolith sizes in the scats

provide additional information regarding the shape of the curve. For example, if 100

otoliths recovered from the scats were observed as having a length of 1.8 mm, it is

highly unlikely that the probability of recovery is close to zero for otoliths of this size.

Based on the aforementioned considerations, this method makes the following as-

sumptions:

1. The distribution of ingested otolith sizes is well approximated by a mixture

of two lognormal distributions. Violation of this assumption would lead to

incorrect prediction of the size distribution of otoliths ingested as well as poten-

tially introducing bias in both the estimates of total biomass and the predicted

biomass in each of the distributions.

2. The size-related probability of recovery can be well approximated by the Gom-

pertz curve. Violation of this assumption would also lead to an incorrect pre-

diction of the distribution of otoliths ingested and therefore also affect biomass

estimates. An idea of the effects of violating this assumption can be seen by
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comparing the traditional analyses, which assume a constant NCF across otolith

size, with the results presented here which allow the NCF to be size dependent.

3. There is independence between all data points. This assumption seems valid for

the x2 data as each set of trials were carried out on a different seal. However,

there may be spatial dependence in the x1 data as it is highly likely that the

otoliths from each seal scat were the result of the seal foraging in a specific area.

In addition, there may be effects of prey selection (e.g. for the largest sandeels).

Violation of this assumption would mean that the shape of the distribution of

ingested otoliths would be different to what is expected - a mixture of lognormal

distributions - which would have the same implications as the previous two

assumptions.

2.3.1.1 Likelihood Specification

2.3.1.1.1 Lognormal Mixture Model

The probability density function (pdf) for a lognormal distribution of recovered

otolith measurements x1j for j = 1, ..., n otoliths is shown in equation 2.1; µ and σ

are the mean and standard deviation on the log scale for this distribution.

Pr (X = x1j ; µ, σ) =
1

x1jσ
√

2π
exp

[
−(ln (x1j)− µ)2

2σ2

]
(2.1)

Mixture models combine a number of distributions through summation; they are

scaled using mixing parameters to ensure the whole distribution integrates to 1. To

create a mixture model for the recovered otolith sizes from two lognormal distribu-

tions the lognormal pdfs are summed and scaled using a mixing parameter wr, where

0 ≤ wr ≤ 1. Fitting this mixture model to just the data from the North Sea, with-

out considering the recovery rate curve or the feeding experiment data, implies the
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mixing parameter, wr, represents the proportion of recovered otoliths, as opposed

to the proportion of ingested otoliths, in the first lognormal distribution. As the

observations are assumed to be independent, a likelihood function LLM (equation 2.2)

can be constructed as the product of the pdfs for each data point.

LLM =
n∏

j=1

[wr Pr (X = x1j ; µ1, σ1) + (1− wr) Pr (X = x1j ; µ2, σ2)] (2.2)

To ensure only one maximum is found during the optimisation µ2 was modelled as

µ1 + µadd. Choosing to maximise the log likelihood lLM (equation 2.3), makes the

optimisation computationally easier.

lLM = ln (LLM)

=
n∑

j=1

ln [wr Pr (X = x1j ; θ1) + (1− wr) Pr (X = x1j ; θ2)] (2.3)

θ1 = {µ1, σ1}

θ2 = {µ1, µadd, σ2}

2.3.1.1.2 Binomial Likelihood

A binomial probability mass function (pmf) - equation 2.4 - was used to incorporate

the recovery rate data from the feeding experiments. The observations mi and ri

are the number of otoliths fed and recovered respectively for the ith seal, p is the

probability of recovery.

Pr (R = ri) =

(
mi

ri

)
pri (1− p)mi−ri (2.4)

This pmf was modified (equation 2.5) to allow p to be a function of an explanatory

variable (Welch and Foucher, 1988) x2i, representing the mean size of the otoliths fed

to the ith seal.
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Pr (R = ri) =

(
mi

ri

)
f (x2i ; θ3)

ri (1− f (x2i ; θ3))
mi−ri (2.5)

θ3 = {α, δ, λ}

Size-related recovery (equation 2.6) was modelled using a Gompertz curve, where α

represents the upper asymptote, and δ and λ influence the steepness and location

of the inflexion. δ and λ were restricted to be positive to ensure the probability of

recovery increases with otolith size.

p = f (x2i; θ3) = α exp−exp
δ−λx2i (2.6)

Because we assumed that our observations are independent, we again constructed a

likelihood function LRR (equation 2.7) as the product of the pmfs for i = 1, ..., K

seals.

LRR =
K∏
i=1

Pr (R = ri)

=
K∏
i=1

(
mi

ri

)
f (x2i; θ3)

ri (1− f (x2i; θ3))
mi−ri (2.7)

To simplify optimisation we again chose to maximise the log likelihood, lRR (equation

2.8). In addition, we ignored the constant
∑K

i=1 ln
(
mi

ri

)
because its value does not

depend on the parameters of the Gompertz curve and it therefore does not affect the

location of the maximum.

lRR = ln(L) =
K∑
i=1

riln (f (x2i; θ3)) + (mi − ri) ln (1− f (x2i; θ3)) (2.8)
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2.3.1.1.3 Combined Model

Rather than just fitting a mixture model to the recovered otolith sizes, we can model

the process which results in the observed size distribution of recovered otoliths. The

process which gives rise to an observed otolith of size x1j in the scats is assumed to be

a multiplication of the probability that an otolith of size x1j was ingested, multiplied

by the probability that it was recovered given that it was ingested and of size x1j.

The first of these processes can be described by a lognormal mixture model similar to

that in equation 2.2, except now we define the mixing parameter as we rather than

wr. This is because we are now fitting a model which describes the whole process

which led to an otolith of size x1j being recovered in a scat rather than just fitting a

mixture model to the recovered otoliths. The second process can be described using

the size dependent recovery curve given in equation 2.6, which gives the probability of

recovering an otolith dependent on its size given that it was ingested. This combined

process is defined in equation 2.9.

P (X = x1j) = [we Pr (X = x1j ; θ1) + (1− we) Pr (X = x1j ; θ2)] f (x1j; θ3) (2.9)

The pdf of this process is then this combined function divided by its integral, and

the likelihood and log-likelihood are therefore defined as shown in equations 2.10 and

2.11, respectively.

LLMRR =
n∏

j=1

P (X = x1j)∫
∞
0 P (X = x1j)dx

(2.10)

lLMRR =
n∑

j=1

ln

[
P (X = x1j)∫
∞
0 P (X = x1j)dx

]
(2.11)
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The two sets of otolith sizes, x1 and x2, are assumed to be independent of each

other, and the combined (LLMRR) and binomial (LRR) likelihoods share common

parameters. Therefore, we can construct a single likelihood (equation 2.12) as the

product of these two likelihoods. Similarly, the overall log-likelihood (equation 2.13)

is simply the sum of the two log-likelihood functions.

Lfull = LLMRR LRR (2.12)

lfull = lLMRR + lRR (2.13)

2.3.1.2 Model Estimation

A separate model was fitted for each location and each season in the North Sea

scat analysis dataset. The parameters associated with these models were estimated

using maximum likelihood techniques. Although in theory all eight parameters could

be estimated simultaneously, in practice to obtain convergence and improve model

stability, the parameter λ had to be fixed within the model as a function of δ (equation

2.14). This relation was estimated from the binomial model by fitting solely to the

experimental data, and seemed a reasonable approach as the parameter estimates for

λ and δ had a correlation of 0.99.

λ = 0.132 + 0.574 ∗ δ (2.14)

The parameters associated with these models were estimated by optimising the

likelihoods using the optim routine in the stats R library. The variance-covariance

matrix was obtained by inverting the Hessian matrix. The L-BFGS-B method (Bryrd

et al., 1995) was chosen because it allows upper and lower bounds of the parameters

to be specified. It was important to restrict the mixing parameter and the asymptote

of the recovery function so they could only take values between 0 and 1. Bounds for
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the other parameters were chosen to ensure that the function was finite within their

ranges and wide enough so that neither boundary was chosen as a solution.

The standard deviations associated with the lognormal distributions were estimated

using the log scale, thereby limiting these parameters to positive values. The esti-

mated values of the shape parameter, δ, were larger than the other parameters and it

was therefore also estimated on the log scale to ensure a biologically plausible solution

and a valid variance-covariance matrix. Estimating parameters that are too dissimi-

lar in scale can cause negative variances to be obtained when the Hessian matrix is

inverted.

The full likelihood approach (equation 2.13) provided unstable and highly variable

results for some of the models. Therefore, the mixture model part of the likelihood

(equation 2.3) was fitted by itself to the North Sea data. This is henceforth termed

the mixture model approach. Due to what was suspected to be artificially reduced

variability in the Gompertz parameters estimated assuming λ was a function of δ,

these parameters were estimated independently in this approach. Although this ap-

proach does not allow information from the North Sea data to influence the estimation

of the Gompertz parameters, it gives more stable parameter estimates. However, in

this approach the mixing parameter is not the proportion of ingested otoliths in one

distribution compared with the other (we) as desired, it is the proportion of recovered

otoliths in one distribution compared to the other (wr). We therefore need a method

of calculating we based on our estimate of wr, Section 2.3.1.3.

2.3.1.3 Estimation of we for the Mixture Model Approach

The mixing parameter wr estimated from fitting only the mixture model to the re-

covered otoliths (equation 2.3) refers to the proportion of otoliths estimated to be in
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the first distribution of those otoliths recovered in the seal scats. As the two lognor-

mal distributions contain otoliths of different lengths and the probability of recovery

varies with otolith length, the proportion of otoliths ingested from each distribution

will be slightly different to those recovered. Specifically, the probability an otolith

was in the first lognormal distribution given that it was ingested (we) is different to

the probability an otolith was in the first lognormal distribution given that it was

recovered (wr). However, we can use the probabilities that an otolith was recovered

given that it was either in the first or second lognormal distribution to rescale wr to

give we. Each of these probabilities are obtained by calculating the integral of each

lognormal distribution multiplied by the recovery rate curve. After rescaling both wr

and (1−wr) to get the correct ratio of P (dist1 | ingest) : P (dist2 | ingest) we must

then rescale these values so that they sum to 1, and therefore give us we. This process

is described in equation 2.15.

ŵe = P (dist1 | ingest) =
φ1

φ1 + φ2

(2.15)

φ1 =
P (dist1 | rec)
P (rec | dist1)

=
ŵr∫∞

0
Pr
(
X = x ; θ̂1

)
f
(
x ; θ̂3

)
dx

φ2 =
P (dist2 | rec)
P (rec | dist2)

=
1− ŵr∫∞

0
Pr
(
X = x ; θ̂2

)
f
(
x ; θ̂3

)
dx

2.3.1.4 Estimation of the Number of Otoliths Consumed

The methodology described thus far, only predicts the distribution of otoliths

ingested by the seals. Further calculations are required to obtain an estimate of the

number of otoliths ingested. This unknown value will be termed N . The estimates

of the number of otoliths from each of the two distributions, N1 and N2, can be

estimated as N × we and N × (1− we), respectively.
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Two methods were considered for estimating N . The first is based on the standard

Horvitz-Thomson estimator (Horvitz and Thompson, 1952; Buckland et al., 2004),

which will henceforth be termed the HT standard estimator. If we define P̂j as

the estimated probability of recovery for the jth otolith x1j, each of these probabil-

ities is obtained using the estimated size-dependent probability of recovery function

(equation 2.16). The sum of the inverse of these proportions gives an estimate of N

(equation 2.17).

P̂j = α̂ exp−exp
δ̂−λ̂x1j

(2.16)

N̂ =
n∑

j=1

1

P̂j

(2.17)

An alternative approach uses the integral of the entire process, rather than the indi-

vidual probabilities from the recovery function. By definition, the lognormal mixture

model integrates to 1. However, when it is multiplied by the proportional recovery

function we are multiplying the whole distribution by values less than 1; the integral

is therefore reduced and is equal to the proportion of otoliths ingested and subse-

quently recovered in the seal scats. The inverse of this proportion multiplied by the

number of otoliths recovered in the scats gives an alternative Horvitz-Thompson-like

estimator (equation 2.18), which will henceforth be termed the HT integral estimator.

N̂ =
n∫

∞
0 P (X = x1j)dx

(2.18)

2.3.1.5 Variance Estimation

A parametric bootstrap was used to quantify the variability in the estimated num-

ber of ingested otoliths and the corresponding sandeel biomass. A multivariate normal

distribution was used to resample the model parameters based on the estimated values
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and the variance-covariance matrix. Ninety-five percent confidence intervals where

then obtained by extracting the 2.5 and 97.5 percentiles.

2.3.2 Simulation

Simulated data were used to evaluate the effectiveness and robustness of the meth-

ods proposed in section 2.3.1. Otolith lengths were randomly drawn from two log-

normal distributions to represent the ingested otoliths, some of these otoliths were

then selected as recovered using a binomial distribution. The probability of recov-

ery was chosen based on the Gompertz curve fitted to the experimental data. The

distributions of otolith lengths in the simulations were located with respect to the

probability of recovery as determined by the Gompertz curve. The distribution of

ingested otolith lengths in the first set of simulations (A) was chosen so that the whole

range of otolith sizes had enough probability of recovery that the entire distribution

of otolith lengths was represented in the simulated recovered data (i.e. although the

recovery rate varied across the range of otolith sizes, no part of the distribution was

lost entirely). In a second set of simulations (B) the distribution of otolith lengths was

chosen so that the smallest otoliths had almost no probability of recovery, causing the

lower end of the distribution of ingested otoliths to be lost. The simulations involved

randomly generating 9999 datasets from each of the two sets of parameters and using

both the full likelihood (FL) and mixture model (MM) approach to estimate the two

sets of lognormal parameters, as well as the number and biomass of ingested sandeels.

The true biomass and biomass estimates were calculated based on the fish mass to

otolith length relation from Leopold et al. (2001).

Note that in these simulations we do not reduce the size of the recovered otoliths

as if they had been partially digested. This is because the otolith dimensions in the

North Sea scat analysis data are corrected for the effects of digestion prior to analysis.
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2.3.3 Modelling the relations between otolith dimensions and
fish length

The specimens of A. marinus collected from the Dogger Bank were used to deter-

mine the relation between otolith size and fish length. Otolith lengths and widths

were modelled as a function of fish size and age. Generalised additive models (GAMs)

were used to test for non linearities and generalised least squares models were used in

the case of non-constant variance. The best model was chosen based on the minimum

Bayesian information criterion (BIC) (Schwarz, 1978). These models were also com-

pared to previously published relations (Tollit et al., 1997; Grellier and Hammond,

2006).

2.4 Results

2.4.1 Simulation Results

Both the FL and the MM approach produce an accurate fit to the data for both

simulation A and simulation B. The fit of the model to the simulated data is indicated

by a comparison of the fitted model to a histogram of the simulated data in Figures

2.1-2.4(a).

The Q-Q plots (Figs. 2.1-2.4(b)) allow us to compare data generated from the

hypothesized process with that which was observed. In the case of the FL approach

this is the fitted model, because the recovery curve is estimated at the same time as the

mixture model. However, in the case of the MM approach the hypothesized process

combines the fitted mixture model with the adjusted weighting parameter, we, and

the separately estimated recovery curve to generate the theoretical quantiles. Based

on these Q-Q plots it appears that both approaches provide plausible processes which

may have given rise to the simulated data in both simulations; only the MM approach
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appears to over-estimate the sizes of a few of the largest otoliths in simulation B 2.3(b).

Both approaches are able to accurately predict the shape of the distribution of

ingested otoliths for simulation A (Figs 2.1(c) and 2.2(c)). The mean parameter

estimates in Table 2.4 confirm this observation. However, the histogram of the mean

parameter estimates show that there is some bias in the estimates of µ1 and σ1 for

the MM approach (Figs. 2.5(a) and 2.5(b)). The FL approach provides less biased

estimates of µ1 and σ1 for simulation A (Figs. 2.6(a) and 2.6(b)). Both approaches

produce unbiased estimates of µ2 and σ2 (Figs. 2.5-2.6, (c) and (d)).

The largest discrepancies between truth and prediction for simulation B are in the

distribution of smaller otoliths (Figs. 2.3(c) and 2.4(c)). The MM approach over-

estimates µ1 and under-estimates σ1, whereas the FL approach under-estimates µ1

(Table 2.4). More serious problems with the FL approach are seen in the confidence

intervals and the histograms of the parameter estimates for µ1 and σ1 (Figs. 2.8(a)

and 2.8(b)). Although, on average, the mean estimates of µ1 and σ1 are less biased for

the FL approach than the MM approach, the estimates have a skewed distribution. In

contrast, although the estimates of µ1 and σ1 from the MM approach are biased they

have a symmetric distribution (Figs. 2.7(a) and 2.7(b)). Despite these problems, the

estimates of µ2 and σ2 for both approaches provide unbiased and consistent estimates

of the true parameters (Table 2.4, Figs. 2.7 and 2.8, (c) and (d)).

The Gompertz curve, estimated using only the recovery rate data obtained from

the feeding experiments, is shown in Figures 2.1(d) and 2.3(d). Figures 2.2(d) and

2.4(d) show the Gompertz curve estimated simultaneously from the simulated data

and the recovery rate data. The associated parameter estimates are given in Table

2.5, where λ for the FL approach is estimated as a function of δ (equation 2.14).

The FL approach provides accurate estimates of the Gompertz curve parameters.
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However, the variability associated with these parameter estimates is smaller than

the variability estimated using only the binomial likelihood (Table 2.5).

Table 2.4: A comparison of the true parameters used to generate the data and the
parameter estimates from both the mixture model (MM) and the full likelihood (FL)
approach. The 2.5 and 97.5 percentiles of the parameter estimates from the 9999
repetitions are given in parenthesis.

µ1 σ1 µ2 σ2

Truth A 0.90 0.12 1.30 0.15
MM Estimates 0.90 (0.89,0.92) 0.11 (0.11,0.12) 1.30 (1.27,1.32) 0.15 (0.14,0.16)
FL Estimates 0.90 (0.89,0.91) 0.12 (0.11,0.13) 1.30 (1.28,1.32) 0.15 (0.14,0.16)
Truth B 0.50 0.12 1.12 0.20
MM Estimates 0.58 (0.58,0.60) 0.09 (0.08,0.10) 1.12 (1.10,1.13) 0.20 (0.19,0.21)
FL Estimates 0.49 (0.36,0.53) 0.12 (0.10,0.17) 1.12 (1.10,1.14) 0.20 (0.19,0.21)
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Figures 2.1 to 2.4: (a) The fitted model plotted over a histogram of the simulated data,
(b) Quantile-Quantile plot of the simulated otoliths lengths versus points generated
from the hypothesized process, (c) The mean (thick dashed line) and 95% confidence
interval (dotted line) of the predicted distribution of ingested otoliths compared with
truth (solid line); a histogram of recovered otoliths is given for reference, (d) The
binomial recovery curve, the crosses represent the experimental data (Tables 2.2 and
2.3), with the distribution of recovered otoliths for reference.

(a) Fitted Model (b) Q-Q Process Plot

(c) Truth versus Predicted Ingested (d) Binomial Recovery Component

Figure 2.1: Example results for simulation A using the mixture model approach.

(a) Fitted Model (b) Q-Q Process Plot

(c) Truth versus Predicted Ingested (d) Binomial Recovery Component

Figure 2.2: Example results for simulation A using the full likelihood approach.
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(a) Fitted Model (b) Q-Q Plot

(c) Truth versus Predicted Ingested (d) Binomial Recovery Component

Figure 2.3: Example results for simulation B using the mixture model approach.

(a) Fitted Model (b) Q-Q Plot

(c) Truth versus Predicted Ingested (d) Binomial Recovery Component

Figure 2.4: Example results for simulation B using the full likelihood approach.



38

F
re

qu
en

cy

0.89 0.90 0.91 0.92

0
40

80

(a) Mean estimates of µ1

F
re

qu
en

cy

0.105 0.115 0.125

0
10

0
20

0

(b) Mean estimates of σ1

F
re

qu
en

cy

1.27 1.29 1.31

0
50

15
0

(c) Mean estimates of µ2
F

re
qu

en
cy

0.13 0.14 0.15 0.16 0.17

0
40

10
0

(d) Mean estimates of σ2

Figure 2.5: Mean parameter estimates for the 9999 replicates of simulation A esti-
mated using the mixture model approach. Truth is indicated by the dashed line.
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Figure 2.6: Mean parameter estimates for the 9999 replicates of simulation A esti-
mated using the full likelihood approach. Truth is indicated by the dashed line.
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Figure 2.7: Mean parameter estimates for the 9999 replicates of simulation B esti-
mated using the mixture model approach. Truth is indicated by the dashed line.
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Figure 2.8: Mean parameter estimates for the 9999 replicates of simulation B esti-
mated using the full likelihood approach. Truth is indicated by the dashed line.
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Table 2.5: A comparison of the Gompertz curve parameters used to generate the
simulated data (those estimated using the binomial likelihood) and those estimated in
the full likelihood (FL) approach for simulations A and B. The 2.5 and 97.5 percentiles
of the parameter estimates from the 9999 repetitions are given in parenthesis.

α δ λ
Binomial Likelihood 0.35 (0.32,0.37) 8.12 (4.47,11.82) 4.79 (2.74,6.87)
FL estimates (Sim A) 0.35 (0.34,0.35) 8.16 (7.40,9.07) 4.81 (4.38,5.34)
FL estimates (Sim B) 0.35 (0.34,0.36) 8.23 (6.81,10.19) 4.86 (4.04,5.98)

The results for simulation A in Table 2.6 suggest that both the HT integral and

the HT standard methods provide accurate estimates of N , N1 and N2, for both

the MM and the FL approach. In addition, the 95% percentile intervals for all four

sets of estimates are largely comparable with one another (Table 2.6) and display a

symmetric distribution of estimates (Figs. 2.9 and 2.10). However, the histograms

of the parameter estimates indicate that the MM approach for both HT estimators

slightly under-estimates N1 (Figs. 2.9(b), 2.9(e)).

The estimates of N , N1 and N2 for simulation B are less accurate and less consis-

tent. The HT standard estimator provides the most accurate estimates of N ; there

was little difference between the MM and the FL approach (Table 2.6). However,

Figures 2.11 and 2.12 indicate that there are some problems with the HT standard

estimator because the distributions of the estimates are severely skewed. In the ex-

treme cases, this method provides estimates of N at around 50,000, in the case of the

MM approach, and 22,000, with the FL approach (Figs. 2.11(d) and 2.12(d)). The

same problem is seen in the HT integral estimates of N for the FL approach (Fig.

12(a)). Only the HT integral estimates of N for the MM approach have a symmetric

distribution, but they under-estimate N (Fig. 2.11(a)).



41

Estimation of N1 is especially problematic for simulation B. While the HT standard

method with the FL approach provides a relatively unbiased mean estimate of N1, the

distribution of the estimates is severely skewed (Table 2.6, Fig. 2.12(e)). In contrast,

the HT integral estimates from the MM approach provide a symmetric but biased

distribution of estimates (Fig. 2.11(b)).

The HT integral method with the FL approach gives the most accurate estimates

of N2; there is no sign of bias and the estimates have a symmetric distribution (Fig.

2.12(c)).

Table 2.6: A comparison of the true number of otoliths ingested along with the
estimated numbers from both the mixture model (MM) and the full likelihood (FL)
model. The two methods of estimation presented in section 2.3.1.4 are also compared;
HT standard and HT integral. The 2.5 and 97.5 percentiles of the estimates are given
in parenthesis.

Estimator N N1 N2

Truth A 9000 5000 4000

MM Estimates
HT Integral 8964 (8714,9244) 4886 (4524,5245) 4078 (3727,4426)
HT Standard 8993 (8745,9270) 4901 (4540,5266) 4091 (3739,4436)

FL Estimates
HT Integral 8983 (8717,9257) 4993 (4598,5354) 3991 (3638,4370)
HT Standard 8982 (8720,9254) 4992 (4598,5353) 3990 (3637,4368)

Truth B 11000 6500 4500

MM Estimates
HT Integral 8565 (8205,8949) 3976 (3674,4295) 4589 (4377,4803)
HT Standard 11046 (9965,13305) 5129 (4462,6279) 5917 (5352,7137)

FL Estimates
HT Integral 12097 (9557,20752) 7606 (5097,16176) 4491 (4267,4704)
HT Standard 11135 (9600,14912) 6843 (5133,11602) 4292 (2962,4863)

The results of the estimation of ingested biomass are directly related to the number

and size of the ingested otoliths. Both approaches, as well as both HT estimators,

provide accurate estimates of ingested biomass for simulation A (Table 2.7). The

results for simulation B are more interesting. Although the estimates of N from the

MM approach combined with the HT integral estimator are biased, the estimates of

B are less biased and have a symmetric distribution (Fig. 2.13(a)). In fact, the 97.5
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percentile corresponds to the true value (Table 2.7). However, there is still a large

amount of bias in the estimates of B1 (Fig. 2.13(b)). The HT standard estimator

using the MM approach provides less biased estimates of B1, however, these are

severely skewed (Fig. 2.13(e)). The HT standard estimator using the FL approach

provides the best estimation of B1 (Fig. 2.14(e)), although there is still some bias and

skew in the distribution of estimates. Of the other FL estimates of B, B1 and B2, only

the HT integral estimates of B2 appear unbiased and without a skewed distribution

(Fig 2.14).

Table 2.7: A comparison of the true biomass of sandeels in kg ingested along with the
estimated biomass from both the mixture model (MM) and the full likelihood (FL)
model. The two methods of estimation presented in section 2.3.1.4 are also compared;
HT standard and HT integral. The 2.5 and 97.5 percentiles of the estimates are given
in parenthesis.

Estimation Btotal B1 B2

Truth A 65.6 (64.9,66.5) 20.2 (20.0,20.4) 45.5 (44.7,46.2)

MM Estimates
HT Integral 65.8 (63.3,68.4) 19.9 (17.8,22.0) 45.9 (42.9,48.9)
HT Standard 66.1 (63.6,68.7) 20.0 (17.9,22.2) 46.1 (43.2,49.2)

FL Estimates
HT Integral 65.5 (62.9,68.2) 20.2 (18.1,22.3) 45.3 (42.2,48.4)
HT Standard 65.5 (63.1,68.1) 20.2 (18.0,22.4) 45.3 (42.3,48.2)

Truth B 43.9 (43.2,44.7) 9.6 (9.5,9.7) 34.3 (33.6,35.1)

MM Estimates
HT Integral 42.0 (40.0,43.9) 7.1 (6.5,7.7) 34.9 (33.0,36.8)
HT Standard 54.2 (48.8,65.5) 9.2 (8.0,11.3) 45.0 (40.3,54.7)

FL Estimates
HT Integral 44.7 (41.1,53.0) 10.4 (8.0,17.5) 34.3 (32.4,36.3)
HT Standard 42.4 (34.5,47.9) 9.7 (8.0,12.6) 32.8 (22.9,37.2)
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Figure 2.9: Mixture model mean estimates of N , N1 and N2 from the HT integral
(panels (a), (b) and (c)) and HT standard methods (panels (d), (e) and (f)) for
simulation A. Truth is indicated by the dashed line.
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Figure 2.10: Full likelihood mean estimates of N , N1 and N2 from the HT integral
(panels (a), (b) and (c)) and HT standard methods (panels (d), (e) and (f)) for
simulation A. Truth is indicated by the dashed line.
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Figure 2.11: Mixture model mean estimates of N , N1 and N2 from the HT integral
(panels (a), (b) and (c)) and HT standard methods (panels (d), (e) and (f)) for
simulation B. Truth is indicated by the dashed line.
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Figure 2.12: Full likelihood mean estimates of N , N1 and N2 from the HT integral
(panels (a), (b) and (c)) and HT standard methods (panels (d), (e) and (f)) for
simulation B. Truth is indicated by the dashed line.
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Figure 2.13: Mixture model mean estimates of B, B1 and B2 from the HT integral
(panels (a), (b) and (c)) and HT standard methods (panels (d), (e) and (f)) for
simulation B. Truth is indicated by the dashed line.
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Figure 2.14: Full likelihood mean estimates of B, B1 and B2 from the HT integral
(panels (a), (b) and (c)) and HT standard methods (panels (d), (e) and (f)) for
simulation B. Truth is indicated by the dashed line.
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2.4.1.1 Simulation Summary

The following summary can be used to aid interpretation of the results for the

North Sea data; the discussion of the simulation results is found in section 2.5.1.

Both the MM and FL approach recover the distribution of ingested otoliths accu-

rately, provided the number of small otoliths with almost no probability of recovery

is relatively low. The same is true for the estimates of the number of otoliths and

biomass of sandeels. On the other hand, there is little hope of accurately predict-

ing the total number of ingested otoliths or sandeel biomass if many of the otoliths

are from the size range where the probability of recovery is small. While the MM

approach gives more consistent but biased estimates, the FL approach is less biased

but produces inconsistent results with high variability. However, by applying and

comparing the results from these different approaches and estimators, it is possible to

make judgments about the reliability of the estimates of the parameters of interest.

2.4.2 Data Results

2.4.2.1 Size Dependent Probability of Recovery

The FL approach for both HT estimators, as well as the MM approach with the HT

standard estimator, gives higher (sometimes implausibly so) estimates of N than the

MM HT integral method (Table 2.8). These results are consistent with those from

the simulation study (Table 2.6). However, from the simulation results in section

2.4.1, we know that while the MM HT integral estimates are consistent they tend to

be negatively biased. In contrast, both of the FL estimates as well as the MM HT

standard estimates have the potential to provide more accurate predictions. We can

therefore use the comparison between these approaches and estimators to assess the

accuracy of the predictions for the North Sea data.
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Modelling the probability of recovery as a function of otolith size led to an increase

in all mean estimates of the total number of ingested otoliths (N) and almost all mean

estimates of total consumed biomass (B) (Tables 2.8 and 2.9) compared with the mean

estimates calculated assuming a constant recovery rate (CRR) of 0.35 (Grellier and

Hammond, 2006). The largest increase in the estimated number of ingested otoliths

was seen in the central North Sea region, quarter 3 (Table 2.8), and this was also where

there was the largest increase in estimated consumed biomass (Table 2.9). In general,

the confidence intervals for the estimates of total number of consumed otoliths suggest

significant increases in estimates of N for the models fitted to the central North Sea,

Moray Firth and Orkney regions (Table 2.8). However, the confidence intervals for

the estimates of total biomass of consumed sandeels only suggest significant increases

for the models fitted to the central North Sea and Moray Firth regions (Table 2.9). In

addition, the confidence intervals for the estimates of B are less consistent between the

different approaches and estimators, and this makes it difficult to identify significant

increases in the estimates of B.
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Table 2.8: Estimates of N , calculated using a constant recovery rate (CRR) of 0.35
compared with the HT integral and HT standard estimators for both the mixture
model (MM) and full likelihood (FL) approach. The comparison is indicated as a
percentage difference compared with the CRR estimate. 95% confidence intervals are
given in parenthesis.

Percentage Difference (%)

Region Quarter CRR N̂ Method HT Integral HT Standard

CNS

1 6694
MM 8.22 (3.72,14.5) 8.24e+04 (22.2,5.24e+35)
FL 16.4 (6.54,27.3) 23.8 (11.1,236)

2 2517
MM 10.1 (4.57,19.1) 331 (13.9,1.80e+14)
FL 39.0 (4.41,283) 70.2 (18.6,2.40e+04)

3 3543
MM 78.8 (49.3,147) 344 (79.4,2.37e+09)
FL 498 (57.4,2030) 289 (145,638)

4 6849
MM 7.55 (2.96,14.3) 20.6 (7.34,3.84e+04)
FL 35.0 (1.43,105) 17.9 (9.59,53.5)

DN

1 803
MM 3.61 (-1.74,12) 13.8 (3.49,1560)
FL 2.86 (-1.99,9.22) 7.47 (0.87,26.5)

2 1874
MM 3.09 (-1.55,9.55) 6.14 (5.92,46.7)
FL 2.56 (-0.80,6.35) 3.84 (0.48,7.68)

3 1057
MM 1.23 (-4.16,8.51) 2.37 (-3.03,15.6)
FL 0.76 (-4.35,7.28) 1.61 (-3.88,9.18)

4 814
MM 1.11 (-4.42,8.35) 1.47 (-3.81,8.60)
FL 1.72 (-3.69,8.35) 1.60 (-3.56,8.11)

MF 3 1406
MM 10.7 (6.19,17.1) 18.1 (11.1,92.1)
FL 28.4 (1.49,50.7) 19.7 (14.3,47.2)

ORK

1 15400
MM 10.5 (5.73,17.0) 7.73e+08 (71.2,3.01e+74)
FL 18.7 (11.3,27.3) 22.1 (13.6,42.9)

2 429
MM 5.83 (0.70,12.6) 35.0 (9.32,4.26e+04)
FL 42.0 (0.00,599) 22.6 (10.0,163)

3 331
MM 10.9 (4.83,20.8) 135 (19.3,1.53e+07)
FL 43.8 (5.14,113) 53.8 (21.1,574)

4 17040
MM 8.32 (3.62,15.0) 3.02e+04 (12.8,8.45e+32)
FL 29.7 (12.5,50.6) 119 (23.5,3.67e+03)

SHET

1 13543
MM 1.15 (-4.58,8.39) 2.79 (-3.34,1.19e+03)
FL 0.98 (-4.42,7.32) 0.90 (-4.22,9.45)

3 814
MM 0.61 (-5.41,8.11) 0.74 (-5.28,8.23)
FL 0.86 (-4.91,7.99) 0.74 (-4.91,7.74)

4 4580
MM 1.97 (-3.82,9.59) 799 (6.29,4.24e+17)
FL 12.7 (-7.40,73.8) 4.76 (-3.56,41.5)
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Table 2.9: Estimates of B in kg, calculated using a constant recovery rate (CRR) of
0.35 and assuming the fish mass to otolith length relation of Leopold et al. (2001).
The differences in the estimates of B for the HT integral and HT standard estimators
for both the mixture model (MM) and full likelihood (FL) approach are indicated as
a percentage difference compared with the CRR estimate. 95% confidence intervals
are given in parenthesis. The MM HT standard estimates are omitted due to the
somtimes exceptionally high predicted values of N

Percentage Difference (%)

Region Quarter CRR B̂ Method HT Integral HT Standard

CNS

1 35.1
MM 6.90 (2.31,14.56)
FL 2.04 (-2.80,8.95) 8.52 (-0.31,186)

2 12.7
MM 6.76 (1.03,14.6)
FL 7.61 (1.18,1.62e+06) 31.9 (-11.9,3.42e+06)

3 13.6
MM 34.9 (21.4,64.2)
FL 113 (14.5,309) 38.4 (2.79,91.3)

4 38.7
MM 4.24 (-0.66,11.2)
FL 6.14 (1.03,16.4) -7.57 (-26.5,24.3)

DN

1 6.2
MM 3.42 (-19.3,82.8)
FL 0.80 (-9.77,13.6) 5.06 (-7.47,27.3)

2 15.6
MM 2.16 (-6.72,12.8)
FL -0.45 (-7.05,6.20) 0.93 (-6.04,7.68)

3 9.3
MM 0.83 (-9.05,11.9)
FL 0.55 (-10.1,11.9) 1.20 (-9.79,13.64)

4 6.2
MM 1.47 (-6.71,15.0)
FL 1.05 (-7.41,13.3) 0.69 (-7.62,13.2)

MF 3 5.6
MM 10.5 (4.38,19.3)
FL 11.4 (4.32,50.8) 4.14 (-4.97,78.4)

ORK

1 90.9
MM 8.85 (3.87,15.9)
FL -0.97 (-5.70,4.65) 1.70 (-4.24,16.5)

2 2.2
MM 6.07 (-4.51,21.9)
FL 6.94 (-2.71,928) -8.49 (-67.6,260)

3 2.3
MM 3.36 (-9.49,21.9)
FL 5.39 (-9.67,43.0) 13.5 (-24.4,380)

4 108.7
MM 3.94 (-1.00,10.8)
FL 3.51 (-1.18,9.69) 82.0 (7.90,2670)

SHET

1 110.7
MM 0.99 (-4.75,8.59)
FL -0.59 (-5.61,6.03) -0.66 (-5.76,7.84)

3 7.0
MM 0.84 (-6.20,11.7)
FL 0.44 (-5.57,15.7) 0.58 (-5.76,15.0)

4 40.3
MM 1.70 (-4.48,9.95)
FL -3.64 (-8.85,9.99) -10.7 (-31.8,13.3)
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The Gompertz curve fitted to the experimental data (Figure 2.15) indicates that the

probability of recovery may vary substantially over the range of data used by Grellier

and Hammond (2006) to calculate the digestion coefficients. Based on this relation,

which is estimated solely from the experimental data, we conclude that there is a

negative bias in the overall estimated digestion coefficient (Table 2.1) of 1.6%. The

digestion coefficient is calculated as the mean otolith length fed to the seals divided

by the mean otolith length recovered in the scats (Grellier and Hammond, 2005). To

obtain an unbiased estimate, each ingested otolith must have an equal probability of

being recovered. If the probability of recovery is higher for larger otoliths, the mean

length of the recovered otoliths is more representative of these larger ones, and the

mean size of the otoliths recovered is therefore over-estimated, causing the digestion

coefficient to be under-estimated.

Figure 2.15: Size dependent probability of recovery in sandeel otoliths consumed
by grey / harbour seals. 95% confidence intervals are represented by the dashed
lines. The vertical dot-dash lines represent the size range of otoliths included in
the experiments by Grellier and Hammond (2006). The data are represented by the
crosses and open cirlces.
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The parameter estimates for the Gompertz curve representing the size dependent

probability of recovery are given in Table 2.10. While λ and δ were estimated indepen-

dently in the binomial model fitted to only the experimental data, the FL approach

only estimated δ and assumed a fixed relation between λ and δ. When estimated

within the FL approach, we observed some variability in the mean parameter esti-

mates for the Gompertz curve (Table 2.10). The estimates of α from the FL approach

are higher on average than those from the binomial model and they are negatively

correlated with δ (correlation = -0.96). In addition, the variability associated with

the estimates tended to be lower for the FL models than the binomial model.

Table 2.10: Parameter estimates for the Gompertz probability of recovery curve
(equation 2.6). The parameter estimates from the binomial model fitted only to
the experimental data are compared with the estimates from the FL models for each
location and season in the North Sea scat data. 95% confidence intervals are given
in parenthesis.

Region Quarter α δ λ
Experimental Data Only 0.35 (0.32,0.37) 8.12 (4.47,11.82) 4.79 (2.74,6.87)

CNS

1 0.37 (0.35,0.39) 5.16 (4.04,6.56) 3.09 (2.45,3.90)
2 0.35 (0.33,0.37) 7.23 (5.74,9.69) 4.28 (3.43,5.69)
3 0.35 (0.33,0.37) 7.86 (6.41,8.82) 4.65 (3.81,5.20)
4 0.35 (0.33,0.37) 7.76 (6.17,9.78) 4.58 (3.68,5.74)

DN

1 0.36 (0.33,0.38) 6.62 (4.64,9.45) 3.93 (2.80,5.55)
2 0.36 (0.35,0.37) 6.63 (6.49,6.78) 3.94 (3.85,4.02)
3 0.35 (0.33,0.38) 7.55 (5.02,11.22) 4.47 (3.01,6.57)
4 0.35 (0.33,0.37) 8.16 (5.24,12.79) 4.81 (3.14,7.47)

MF 3 0.34 (0.32,0.36) 9.28 (6.23,14.01) 5.46 (3.71,8.17)

ORK

1 0.39 (0.37,0.41) 4.00 (3.42,4.69) 2.43 (2.10,2.82)
2 0.35 (0.33,0.37) 7.29 (5.3,10.17) 4.31 (3.17,5.97)
3 0.36 (0.33,0.38) 6.98 (5.18,9.35) 4.14 (3.10,5.50)
4 0.36 (0.34,0.37) 6.67 (5.84,7.66) 3.96 (3.49,4.53)

SHET

1 0.35 (0.33,0.37) 7.16 (5.31,9.66) 4.24 (3.18,5.68)
3 0.35 (0.33,0.37) 8.15 (5.24,12.77) 4.81 (3.14,7.46)
4 0.37 (0.35,0.39) 5.17 (4.15,6.57) 3.10 (2.52,3.90)
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2.4.2.2 A. marinus Otolith Sizes and their Relation with Fish Length

The A. marinus specimens from the Dogger Bank (Section 2.2.3) ranged from 7.0

to 21.0 cm in length; the longest otolith extracted from them was 3.53 mm whilst the

widest measured 1.69 mm across. The regression between otolith length (OL) and fish

length (FL) (equation 2.19) estimated a smaller slope parameter than previous studies

(Fig. 2.16(a)). Although the multiple regression between otolith width (OW) and fish

length included age as a factor variable, (equation 2.20), the age factor parameters

(Table 2.11) suggest only small differences between age groups. The relation between

otolith width and fish length showed a similar slope parameter to that in Grellier

and Hammond (2006). However, both parameter values are smaller than the relation

presented in Tollit et al. (1997) (Fig. 2.16(b))

Using the regression given in equation 2.19, a mean otolith length of 3.89 mm was

predicted for a sandeel of length 25 cm, the largest recorded specimen of A. marinus.

We used this as an estimate of the largest otolith size which we would expect to

belong to A. marinus, and investigated the proportion of otoliths predicted to be

greater than this value in Section 2.4.2.3.

OL = 0.277 + 0.145FL (2.19)

OWi = 0.270 + 0.063FL+ Ai (2.20)

where Ai is the parameter estimate associated with a fish of age i = 1...6, Table 2.11.



53

Table 2.11: Parameter estimates for the age factor variable categories Ai for fish aged
i = 0...6, in the relation between otolith width and fish length.

Age Category Estimate
A0 0.000
A1 0.000
A2 0.019
A3 0.039
A4 0.041
A5 -0.034
A6 0.036

(a) Regression of otolith length and fish length
compared with Grellier and Hammond (2005)
and Tollit et al. (1997)

(b) Multiple regression of otolith width and fish
length compared with Grellier and Hammond
(2006) and Tollit et al. (1997)

Figure 2.16: A comparison of the regressions fitted to the A. marinus specimens from
the Dogger Bank (equations 2.19 and 2.20) and previously published relations.

2.4.2.3 Otolith Lengths from the North Sea

Leopold et al. (2001) suggested that any otolith greater than 4.00 mm in length

would always belong to H. lanceolatus. The estimated maximum undigested otolith

lengths of the North Sea scat data are greater than 4.00 mm in all regions for all

quarters (Table 2.12). These otolith lengths, summarised in Table 2.12, are corrected

for the effects of digestion using the digestion coefficients in Table 2.1. The Donna
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Nook region had the highest proportions of otoliths estimated to have been longer

than 3.89 mm, especially during the first three quarters (Table 2.12). Shetland also

showed fairly high proportions of large otoliths, especially in quarters 1 and 4. The

lowest proportions of large otoliths were seen in the central North Sea and the Moray

Firth regions. There did not appear to be any consistent seasonal variation with

respect to the size ranges and the proportions of large otoliths observed.

Table 2.12: North Sea otolith lengths corrected for effects of digestion. The range of
the otolith sizes and the proportion greater than 3.89 mm. The number of otoliths
sampled from each of the location is given in the final column

Region Quarter Range % Otoliths > 3.89mm n

CNS

1 (1.14,5.73) 1.7% 2,343
2 (1.26,4.64) 1.2% 881
3 (1.31,6.07) 2.3% 1,240
4 (1.39,6.88) 2.0% 2,397

DN

1 (1.46,5.29) 13.9% 281
2 (1.53,7.49) 16.2% 656
3 (1.58,6.70) 17.0% 370
4 (1.88,5.36) 8.1% 285

MF 3 (1.54,4.72) 1.0% 492

ORK

1 (1.03,6.93) 4.6% 5,390
2 (1.42,4.60) 4.6% 150
3 (1.36,6.73) 1.3% 116
4 (1.14,7.68) 5.7% 5,964

SHET
1 (1.42,6.18) 10.1% 4,740
3 (1.99,4.63) 6.3% 285
4 (1.23,6.63) 10.7% 1,603

2.4.2.4 Mixture Models

The MM approach provided results which were more robust to different starting

values than the FL approach. For the FL approach, the starting values which esti-

mated the larger mean for the lognormal distribution of smaller otoliths were chosen.

The simulations indicated that erroneous results obtained from the FL approach were
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associated with small estimates of this parameter, this implied that the distribution of

smaller otoliths was located in a region with very low probabilities of recovery. Model

instability was also seen in the estimates of the mixing parameter we, for example the

FL approach 95% confidence intervals in the central North Sea, quarter 2, Orkney,

quarter 2 and Moray Firth results range from ∼3% to ∼95% (Table 2.13).

The models from both the FL and the MM approach provide a satisfactory fit to

the North Sea data (panel (a) of Figures 2.17-2.48). The Q-Q plots in panel (b) of

Figures 2.17-2.48 indicate that, in general, the hypothesized process estimated using

the FL approach provides a better explanation of the origin of the data than the MM

approach. This is especially apparent in Figures 2.35, 2.36, 2.47 and 2.48, where we

can see that the theoretical quantiles for the smaller otoliths are greater than those

which were observed. However, in the case of the central North Sea, quarter 3 the

MM approach appears to provide a better explanation of the origin of the data than

the FL approach (Figs. 2.21 and 2.22).

Although these methods provide a good fit to the data and, in most instances, a

plausible explanation as to the origin of the data, their ability to distinguish between

the larger otoliths, thought to belong to H. lanceolatus, and the smaller otoliths,

thought to belong mainly to A. marinus, is limited. The results for Orkney, quarter

2 and Shetland, for both the MM and the FL approach, show that the range of one

lognormal distribution is entirely contained within the range of the other (Table 2.13,

Figs. 2.37, 2.38, 2.43-2.48). This phenomenon was also observed in the MM results

for Orkney, quarter 1, and the FL results for Donna Nook, quarters 3 and 4, and

Moray Firth and Orkney, quarter 3 (Table 2.13, Figs. 2.35, 2.30, 2.32, 2.34 and 2.40).

Furthermore, the results for Donna Nook from both approaches predict lognormal

distributions all of which contain otoliths too large to be consistent with A. marinus
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(Table 2.13, Figs. 2.25-2.32).

The central North Sea results, for both approaches, predict one lognormal distribu-

tion which is consistent with A. marinus and another distribution of larger otoliths

that is more consistent with the expected sizes of H. lanceolatus (Table 2.13, Figs.

2.17-2.24). However, the upper limits of the larger distribution for quarters 1, 2 and

4 are not entirely inconsistent with otolith sizes for A. marinus. Only the upper limit

of the larger distribution of otoliths for quarter 3 provides convincing evidence for

the presence of H. lanceolatus. The MM results for Orkney data, quarters 2 and 4

as well as the FL results for Orkney, quarters 1 and 4, also predict one lognormal

distribution which is consistent with A. marinus and another more consistent with H.

lanceolatus (Table 2.13, Figs. 2.37, 2.41, 2.36 and 2.42). Finally, although the Moray

Firth results for the MM approach predict a smaller distribution consistent with A.

marinus and another larger distribution consistent with H. lanceolatus, 99-100% of

the otoliths are predicted to have come from the distribution of smaller sized otoliths.

Of the central North Sea results, where both the MM and the FL approach select

one lognormal distribution which is consistent with A. marinus and another more

consistent with H. lanceolatus, there is consistency between each pair of parameter

estimates associated with the distribution of larger otoliths (Table 2.13). In contrast,

the FL parameter estimates associated with the distribution of smaller otoliths tends

to be smaller than the MM estimates for each of these models. A larger weighting of

biomass was also attributed to this distribution of smaller otoliths in the case of the

FL approach in comparison with the MM approach (Table 2.14).
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Table 2.13: Means along with 2.5 and 97.5 percentiles for each lognormal distribution
fitted to the North Sea data. The mixing parameter, we, represents the proportion of
ingested otoliths predicted to be in the first distribution; a 95% confidence interval
is given in parenthesis. The latter four values are omitted in the case that the model
would only converge using a single lognormal distribution.

Reg. Q. Method
mean1 lower1 upper1 mean2 lower2 upper2 Mixing
(mm) (mm) (mm) (mm) (mm) (mm) Parameter (we)

CNS

1
MM 2.43 1.57 3.60 2.92 2.16 3.86 0.49 (0.30,0.67)
FULL 2.05 1.16 3.34 2.84 2.05 3.83 0.41 (0.30,0.52)

2
MM 1.78 1.42 2.20 2.71 1.89 3.77 0.10 (0.02,0.17)
FULL 1.47 0.87 2.35 2.71 1.89 3.77 0.32 (0.03,0.96)

3
MM 1.71 1.40 2.06 2.82 1.84 4.16 0.70 (0.62,0.78)
FULL 1.37 0.98 1.87 2.85 1.87 4.16 0.92 (0.76,0.99)

4
MM 1.90 1.49 2.40 2.87 2.07 3.87 0.13 (0.09,0.17)
FULL 1.72 0.75 3.41 2.89 2.14 3.82 0.41 (0.24,0.58)

DN

1
MM 2.79 1.73 4.26 3.31 2.17 4.84 0.39 (0.03,0.98)
FULL 3.06 1.83 4.81 NA NA NA NA

2
MM 2.86 1.95 4.04 4.85 3.43 6.66 0.86 (0.81,0.92)
FULL 2.84 1.87 4.14 4.96 3.59 6.69 0.88 (0.87,0.90)

3
MM 3.16 2.23 4.36 4.91 3.74 6.34 0.93 (0.82,0.99)
FULL 3.03 2.32 3.90 3.52 2.10 5.54 0.49 (0.15,0.84)

4
MM 3.14 2.29 4.20 4.94 4.33 5.62 0.99 (0.97,1.00)
FULL 3.08 1.92 4.68 3.17 2.49 3.98 0.35 (0.04,0.76)

MF 3
MM 2.43 1.74 3.30 4.26 3.69 4.89 0.99 (0.99,1.00)
FULL 2.08 1.18 3.40 2.47 1.84 3.25 0.51 (0.04,0.96)

ORK

1
MM 2.59 1.52 4.14 3.24 2.53 4.08 0.72 (0.66,0.77)
FULL 2.22 1.15 3.88 3.16 2.38 4.13 0.66 (0.61,0.72)

2
MM 2.69 2.06 3.45 2.63 1.52 4.24 0.72 (0.35,0.97)
FULL 1.54 0.49 3.71 2.69 2.04 3.49 0.40 (0.03,0.94)

3
MM 2.13 1.54 2.86 3.39 2.36 4.73 0.41 (0.24,0.57)
FULL 2.20 0.87 4.64 3.42 2.94 3.96 0.78 (0.67,0.89)

4
MM 1.94 1.47 2.51 3.04 2.12 4.21 0.18 (0.14,0.21)
FULL 1.90 0.84 3.71 3.08 2.23 4.15 0.46 (0.41,0.50)

SHET

1
MM 2.96 1.75 4.70 3.29 2.49 4.25 0.10 (0.05,0.14)
FULL 2.51 1.20 4.65 3.28 2.47 4.26 0.07 (0.05,0.09)

3
MM 3.11 1.97 4.67 3.37 2.83 4.00 0.08 (0.01,0.23)
FULL 2.97 1.76 4.71 3.37 2.81 4.01 0.06 (0.01,0.18)

4
MM 2.95 1.41 5.48 3.41 2.76 4.15 0.12 (0.09,0.16)
FULL 1.52 0.35 4.36 3.40 2.74 4.18 0.23 (0.03,0.48)
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The mean proportion of consumed biomass predicted to be in the distribution of

otolith lengths, consistent with A. marinus varies from 0.04 to 0.68, (Table 2.14).

Assuming these do represent the proportion of A. marinus consumed, many of these

models predict the consumed biomass of H. lanceolatus to be greater than that of A.

marinus(Table 2.14). In addition, these results were calculated using the same otolith

length to fish mass relation for both distributions of otoliths. Section 2.4.2.5 suggests

that choosing a relation that is specific to H. lanceolatus would result in even smaller

estimates of the proportion of biomass attributed to A. marinus. However, for some

models the variability in these estimates is high. This is particularly the case for FL

estimates for the central North Sea, quarters 2 and 3 as well as the MM estimate for

Orkney, quarter 2, (Table 2.14).

Table 2.14: Percentage of biomass attributed to the distribution of smaller otoliths
for the models where one distribution of otoliths was consistent with sizes of A. mar-
inus and the other was more consistent with H. lanceolatus. Biomass was calculated
assuming the fish mass to otolith length relation of Leopold et al. (2001).

Biomass Weighting between distributions
Region Quarter Mixture Model Full Likelihood

CNS

1 0.39 (0.20,0.60) 0.25 (0.14,0.40)
2 0.04 (0.01,0.09) 0.10 (0.01,1.00)
3 0.38 (0.30,0.49) 0.63 (0.49,0.94)
4 0.05 (0.03,0.08) 0.19 (0.14,0.28)

ORK

1 0.48 (0.40,0.56)
2 0.68 (0.34,0.97)
4 0.06 (0.05,0.08) 0.24 (0.19,0.29)
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Figures 2.17 to 2.48: (a) The fitted model plotted over a histogram of the estimated
undigested lengths of the recovered otoliths. (b) Quantile-Quantile plot of the esti-
mated undigested lengths of the recovered otolith versus points generated from the
hypothesized process. (c) The mean (solid line) and a 95% confidence interval (short-
dash) of the predicted distribution of ingested otoliths, the two lognormal components
are shown as long-dash lines and a histogram of the estimated undigested lengths is
given for reference, (d) The binomial recovery curve (solid line) with 95% confidence
interval (dashed line), the crosses represent the experimental data (Tables 2.2 and
2.3); the distribution of estimated undigested lengths is also shown for reference.

(a) Fitted model. (b) Q-Q plot.

(c) Predicted distribution of ingested
otoliths.

(d) Gompertz probability of recovery curve.

Figure 2.17: Mixture Model Approach: central North Sea, Quarter 1

(a) Fitted model. (b) Q-Q plot.

(c) Predicted distribution of ingested
otoliths.

(d) Gompertz probability of recovery curve.

Figure 2.18: Full Likelihood Approach: central North Sea, Quarter 1
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(a) Fitted model. (b) Q-Q plot.

(c) Predicted distribution of ingested
otoliths.

(d) Gompertz probability of recovery curve.

Figure 2.19: Mixture Model Approach: central North Sea, Quarter 2

(a) Fitted model. (b) Q-Q plot.

(c) Predicted distribution of ingested
otoliths.

(d) Gompertz probability of recovery curve.

Figure 2.20: Full Likelihood Approach: central North Sea, Quarter 2
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(a) Fitted model. (b) Q-Q plot.

(c) Predicted distribution of ingested
otoliths.

(d) Gompertz probability of recovery curve.

Figure 2.21: Mixture Model Approach: central North Sea, Quarter 3

(a) Fitted model. (b) Q-Q plot.

(c) Predicted distribution of ingested
otoliths.

(d) Gompertz probability of recovery curve.

Figure 2.22: Full Likelihood Approach: central North Sea, Quarter 3
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(a) Fitted model. (b) Q-Q plot.

(c) Predicted distribution of ingested
otoliths.

(d) Gompertz probability of recovery curve.

Figure 2.23: Mixture Model Approach: central North Sea, Quarter 4

(a) Fitted model. (b) Q-Q plot.

(c) Predicted distribution of ingested
otoliths.

(d) Gompertz probability of recovery curve.

Figure 2.24: Full Likelihood Approach: central North Sea, Quarter 4
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(a) Fitted model. (b) Q-Q plot.

(c) Predicted distribution of ingested
otoliths.

(d) Gompertz probability of recovery curve.

Figure 2.25: Mixture Model Approach: Donna Nook, quarter 1

(a) Fitted model. (b) Q-Q plot.

(c) Predicted distribution of ingested
otoliths.

(d) Gompertz probability of recovery curve.

Figure 2.26: Full Likelihood Approach: Donna Nook, quarter 1
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(a) Fitted model. (b) Q-Q plot.

(c) Predicted distribution of ingested
otoliths.

(d) Gompertz probability of recovery curve.

Figure 2.27: Mixture Model Approach: Donna Nook, quarter 2

(a) Fitted model. (b) Q-Q plot.

(c) Predicted distribution of ingested
otoliths.

(d) Gompertz probability of recovery curve.

Figure 2.28: Full Likelihood Approach: Donna Nook, quarter 2
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(a) Fitted model. (b) Q-Q plot.

(c) Predicted distribution of ingested
otoliths.

(d) Gompertz probability of recovery curve.

Figure 2.29: Mixture Model Approach: Donna Nook, quarter 3

(a) Fitted model. (b) Q-Q plot.

(c) Predicted distribution of ingested
otoliths.

(d) Gompertz probability of recovery curve.

Figure 2.30: Full Likelihood Approach: Donna Nook, quarter 3
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(a) Fitted model. (b) Q-Q plot.

(c) Predicted distribution of ingested
otoliths.

(d) Gompertz probability of recovery curve.

Figure 2.31: Mixture Model Approach: Donna Nook, quarter 4

(a) Fitted model. (b) Q-Q plot.

(c) Predicted distribution of ingested
otoliths.

(d) Gompertz probability of recovery curve.

Figure 2.32: Full Likelihood Approach: Donna Nook, quarter 4
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(a) Fitted model. (b) Q-Q plot.

(c) Predicted distribution of ingested
otoliths.

(d) Gompertz probability of recovery curve.

Figure 2.33: Mixture Model Approach: Moray Firth, quarter 3

(a) Fitted model. (b) Q-Q plot.

(c) Predicted distribution of ingested
otoliths.

(d) Gompertz probability of recovery curve.

Figure 2.34: Full Likelihood Approach: Moray Firth, quarter 3
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(a) Fitted model. (b) Q-Q plot.

(c) Predicted distribution of ingested
otoliths.

(d) Gompertz probability of recovery curve.

Figure 2.35: Mixture Model Approach: Orkney, quarter 1

(a) Fitted model. (b) Q-Q plot.

(c) Predicted distribution of ingested
otoliths.

(d) Gompertz probability of recovery curve.

Figure 2.36: Full Likelihood Approach: Orkney, quarter 1
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(a) Fitted model. (b) Q-Q plot.

(c) Predicted distribution of ingested
otoliths.

(d) Gompertz probability of recovery curve.

Figure 2.37: Mixture Model Approach: Orkney, quarter 2

(a) Fitted model. (b) Q-Q plot.

(c) Predicted distribution of ingested
otoliths.

(d) Gompertz probability of recovery curve.

Figure 2.38: Full Likelihood Approach: Orkney, quarter 2
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(a) Fitted model. (b) Q-Q plot.

(c) Predicted distribution of ingested
otoliths.

(d) Gompertz probability of recovery curve.

Figure 2.39: Mixture Model Approach: Orkney, quarter 3

(a) Fitted model. (b) Q-Q plot.

(c) Predicted distribution of ingested
otoliths.

(d) Gompertz probability of recovery curve.

Figure 2.40: Full Likelihood Approach: Orkney, quarter 3
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(a) Fitted model. (b) Q-Q plot.

(c) Predicted distribution of ingested
otoliths.

(d) Gompertz probability of recovery curve.

Figure 2.41: Mixture Model Approach: Orkney, quarter 4

(a) Fitted model. (b) Q-Q plot.

(c) Predicted distribution of ingested
otoliths.

(d) Gompertz probability of recovery curve.

Figure 2.42: Full Likelihood Approach: Orkney, quarter 4
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(a) Fitted model. (b) Q-Q plot.

(c) Predicted distribution of ingested
otoliths.

(d) Gompertz probability of recovery curve.

Figure 2.43: Mixture Model Approach: Shetland, quarter 1

(a) Fitted model. (b) Q-Q plot.

(c) Predicted distribution of ingested
otoliths.

(d) Gompertz probability of recovery curve.

Figure 2.44: Full Likelihood Approach: Shetland, quarter 1
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(a) Fitted model. (b) Q-Q plot.

(c) Predicted distribution of ingested
otoliths.

(d) Gompertz probability of recovery curve.

Figure 2.45: Mixture Model Approach: Shetland, quarter 2

(a) Fitted model. (b) Q-Q plot.

(c) Predicted distribution of ingested
otoliths.

(d) Gompertz probability of recovery curve.

Figure 2.46: Full Likelihood Approach: Shetland, quarter 2



74

(a) Fitted model. (b) Q-Q plot.

(c) Predicted distribution of ingested
otoliths.

(d) Gompertz probability of recovery curve.

Figure 2.47: Mixture Model Approach: Shetland, quarter 4

(a) Fitted model. (b) Q-Q plot.

(c) Predicted distribution of ingested
otoliths.

(d) Gompertz probability of recovery curve.

Figure 2.48: Full Likelihood Approach: Shetland, quarter 4
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2.4.2.5 Variability in Relations between Fish Mass, Fish Length and
Otolith Length for A. marinus and H. lanceolatus

The two relations between otolith length and fish length for H. lanceolatus are

similar to those observed for A. marinus. However, the variability in the relations

within species is large (Fig. 2.49(a)). The mis-identification of an otolith as being

from A. marinus, when in fact it is H. lanceolatus, would probably have no greater

impact on estimating fish length than choosing an incorrect relation from the selection

available for A. marinus.

A large amount of variability was also found in the relations between fish mass and

otolith length, both within and between species (Fig. 2.49(b)). On average, these

relations predict a greater mass for H. lanceolatus than A. marinus for otoliths longer

than around 2.6 mm (Fig. 2.49(b)). The misidentification of a H. lanceolatus otolith

as one from A. marinus would most likely lead to an under-estimation of consumed

biomass. For example, Hammond and Grellier (2006) analysed the otoliths in the

North Sea scat data as if they were all A. marinus using only Leopold et al. (2001)’s

otolith length to fish mass relation. If we assume that all otoliths in the North Sea

data greater than 3.89 mm in length were in fact from H. lanceolatus, and use the

species-specific relations of Leopold et al. (2001), we get a 5.9% increase in estimated

consumed biomass. However, if we assume that all otoliths are A. marinus and choose

the relations used in Lewis et al. (2003) rather than that of Leopold et al. (2001), the

increase in estimated consumed biomass is 14.9%.
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(a) Linear relation between otolith length and
fish length.

(b) Power relation between fish mass and
otolith length.

Figure 2.49: Comparison of otolith length to fish length and fish mass to otolith length
from previously published sources. a As presented in section 2.4.2.2, b Grellier and
Hammond (2005), c Leopold et al. (2001), d Tollit et al. (1997), e Härkönen (1986) in
Lewis et al. (2003), f Macer (1966), g Pierce et al. (2007), h Harris and Hislop (1978)
in Lewis et al. (2003)

2.5 Discussion

Understanding the predatory relationship between grey seals and sandeels is an

important step towards sustainable management of the North Sea ecosystem; such

information is essential in the application of effective multispecies modelling. While

A. marinus is a commercially important species, sandeels are also an important com-

ponent of the diet of grey seals as well as a number of internationally important

seabird colonies. This study provides compelling evidence that a significant propor-

tion of the sandeels consumed by the grey seals are in fact H. lanceolatus, which is not

commercially exploited, rather than the commercially important A. marinus. This

result will have significant impacts on the multispecies model of the North Sea and

therefore the management of the sandeel fisheries in this area. In addition, it gives

quantitative insight into potential sources of bias when estimating the total biomass of

sandeels consumed by grey seals using otoliths retrieved from scats. Specifically, there
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is bias associated with the chosen forms of the relations between fish mass and otolith

length and the effects of otolith size on the probability of recovery. Such sources of

bias, if not accounted for, may also lead to mis-management of this precious resource.

2.5.1 Simulation

This chapter not only proposed and implemented a novel method for assessing the

quantity of sandeels consumed by grey seals in the North Sea using a size dependent

probability of recovery but it also tested the robustness of this method through the

use of simulations.

The ingested otolith sizes used in the simulations were drawn from a mixture of

lognormal distributions and the probability of recovery was chosen from a Gompertz

curve, as assumed in the model. However, it proved difficult to recover the original

parameters and therefore the original distribution of otoliths when the probability of

recovering smaller otoliths was low. The greater the number of small otoliths ingested,

the more of the lower end of the distribution is lost to digestion and the greater the

bias when trying to estimate this part of the distribution of otolith sizes. As more

of the smallest otoliths are lost to digestion, the MM approach over-estimates the

mean of this lower distribution and it appears narrower than it actually is, resulting

in under-estimation of the standard deviation. In contrast, as more of the smallest

otoliths are lost to digestion the FL approach under-estimates the mean of the lower

distribution and the distribution therefore appears wider, resulting in over-estimation

of the standard deviation. In addition, the FL approach suffers from high levels of

variability and skewed distributions of parameter estimates, which indicate that it is

likely to give inconsistent results.

The estimation of the number of otoliths, as well as the biomass of sandeels, ingested

is also problematic and less reliable for small otoliths. As more small otoliths are lost,
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the HT integral estimator used with the MM approach consistently under-estimates

the total number of otoliths ingested whereas the HT standard method can often get

closer to the true value (Table 2.6). However, the problem with the MM HT standard

estimator is apparent when we consider the spread of the estimates, these are skewed

and therefore sometimes are vast over-estimates. The MM HT standard estimator

relies solely on the form of the Gompertz curve estimated from the feeding experiment

data. Therefore, as otolith size gets smaller and this function approaches zero, any

otoliths recovered in this lower tail have extreme implications for the estimates of

N and B. This method is, therefore, especially sensitive to mis-specification of the

parameters of the recovery function when the otoliths ingested are small. The HT

integral estimates are based on the whole process, and are therefore less influenced

by the rare recoveries of small otoliths. Because of this, the HT integral method is

preferred for estimating the total number of otoliths ingested for the MM approach.

The FL approach re-estimates the Gompertz recovery curve for each set of recovered

otoliths, and can therefore adjust its shape if, by chance, small otoliths are recovered,

or if the parameters of the recovery curve differ across seasons or locations. However,

the simultaneous estimation of the Gompertz curve and the mixture model can lead

to model instability, indicated by the skewed distributions of estimates for N and

B. In contrast to the MM approach, the FL approach can choose very low estimates

of µ1, moving the distribution of smaller otoliths into the region where very few are

recovered. This can happen because the FL approach is looking for a combination

of a mixture model and recovery curve which explain the distribution of recovered

otoliths whereas the MM approach first fits the lognormal mixture to the recovered

otoliths and later corrects the mixing parameter, wr in order to obtain we, based on

the recovery curve.
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2.5.2 Presence of H. lanceolatus in Grey Seal Diet

The central North Sea results from the MM approach provided the most plausible

predictions for distinguishing between otoliths from A. marinus and H. lanceolatus.

The MM results for the central North Sea region, quarters 2, 3 and 4 all suggested a

distribution of smaller otoliths ranging from around 1.8 to around 2.2 mm in length,

which are potentially from A. marinus, and a distribution of larger otoliths ranging

from around 1.9 to around 4.0mm in length, which are potentially from H. lanceolatus.

This consistency across seasons, as well as the clear bimodal distribution observed

in quarter 3 suggests that the models are distinguishing between these two species.

Assuming these models are accurate then they suggest that only a small proportion

of the biomass of sandeels consumed by grey seals in this region is A. marinus. For

quarters 2 and 4 this is predicted to be around 4-5% and for quarter 3 around 38%.

However, based on the simulation results these figures are likely to have some negative

bias. In addition, the central North Sea region was one of the regions with the lowest

percentage of large otoliths (Table 2.12). It is concerning that for the Donna Nook

and Shetland areas, which had the largest proportion of otoliths greater than 3.89

mm in length (Table 2.12), the lognormal distributions fitted to the data did not

differentiate between A. marinus and H. lanceolatus.

Previous studies have indicated that A. marinus is by far the most abundant species

of sandeel in the North Sea (Macer, 1966; Nævdal and Thorkildsen, 2002). In addition,

other studies investigating the diet of anglerfish (Laurenson and Priede, 2005) and

Northern Gannets (Lewis et al., 2003; Hamer et al., 2007) suggest that A. marinus is

the predominant sandeel in the diet of these species. However, Pearson (1968) found

that although H. lanceolatus was scarce in the diet of terns and gulls, they were more

frequently found in the diet of auks.
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Table 2.12 indicated that many of the otoliths present in the grey seal scats are

too large to belong to A. marinus and are more likely to belong to H. lanceolatus.

However, the true proportion of H. lanceolatus in the grey seal diet is difficult to

estimate. In addition, it must be remembered that there are three other species of

sandeel, about which very little is know, in the North Sea (Macer, 1966). Other than

the fact that otolith longer than 3.89mm are almost certain to have come from H.

lanceolatus, the overlap of the otolith sizes of the different species of sandeel make it

extremely difficult, if not impossible, to identify otoliths to species based on length

alone.

2.5.3 Fish Mass to Otolith Length Relations

This study found that the largest potential source of bias in the estimation of the

biomass of sandeels consumed is introduced by the choice of relation used to predict

fish mass based on otolith length. Pierce et al. (2007) found that sandeels increased

in importance in the diet of harbour porpoises when they used an alternative relation

between fish mass and otolith length. They suggest that the chosen relation should

be appropriate to the fish in the specific region of interest. This may be especially

relevant in the case of A. marinus, as recent studies have indicated that the North Sea

sandeel stock is likely comprised of several discrete populations (Pedersen et al., 1999;

Greenstreet et al., 2006). In addition, more general studies suggest that variation in

these relations may not only be regional but also seasonal or annual, depending on

environmental conditions, and this can lead to differences in predicted fish mass of

200% or more (Froese, 2006).

Although the presence of H. lanceolatus in the diet of grey seals has been previ-

ously documented (Prime and Hammond, 1990; Hammond et al., 1994a,b), the effects

of using a potentially incorrect fish mass to otolith length relation has not, to our
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knowledge, been investigated. Although, it was not possible to confidently quantify

the numbers of otoliths which were likely to have come from H. lanceolatus, it is

clear that identifying which otoliths belong to this species is only half the problem.

There is also a requirement for an accurate relation between otolith size and fish

mass, and this may need to be specific to region, season and year. Based on the re-

lations presented in Figure 2.49(b) it appears more likely that the identification and

specific treatment of H. lanceolatus will result in increased estimates of the biomass

of sandeels consumed by grey seals. The largest potential biases will most likely be

seen in the Donna Nook and Shetland regions, where the large proportions of otoliths

greater than 3.89 mm suggest that H. lanceolatus is an important component of the

seals’ diet. In addition, the estimates of undigested otolith length are based on diges-

tion coefficients calculated for A. marinus, but the relation for H. lanceolatus may be

different.

2.5.4 Size Dependent Probability of Recovery

The fact that prey species with larger otoliths tend to have higher otolith recovery

rates has led to the implementation of species specific number correction factors

(NCF) (Tollit et al., 1997; Bowen, 2000; Grellier and Hammond, 2006). However,

despite observations of similar trends within species (Tollit et al., 1997; Bowen, 2000),

no one, as far as we are aware, has yet implemented a size dependent NCF function.

We incorporated this function by using a Gompertz curve to describe the probability

of recovering an otolith, given that it was eaten and of a certain size. Based on this

study, we predict that previous estimates of the biomass of sandeels consumed by

grey seals are likely to be under-estimates, due to the omission of this size dependent

probability of recovery.
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The function used here to estimate size-dependent recovery can affect biomass

estimates both directly, due to changes in the predicted number of ingested otoliths,

and indirectly, through its effects on the digestion coefficient. The most striking

increase in estimated biomass due to direct effects (∼36%, based on the MM HT

integral and FL HT standard estimates) was seen in the central North Sea model,

quarter 3. This estimated increase has implications when assessing seasonal and

regional variations in diet. The indirect effects stem from an estimated increase

of 1.6% in the digestion coefficient; by itself this would lead to a 4.1% increase in

biomass estimates. However, an increase in the digestion coefficient affects all the

otolith lengths used to fit the model and, therefore, has other implications. Firstly,

it may affect the number of otoliths whose lengths are consistent with H. lanceolatus.

Secondly, the location of the estimated undigested otolith lengths in relation to the

point of inflection in the recovery function will change, which will directly influence

the biomass estimates. Finally, the Gompertz curve parameter estimates for the FL

approach are based on both the experimental data and the estimated undigested

otolith lengths from the North Sea data. As the shape parameter estimates from

the FL approach δ (and therefore λ) are significantly correlated with the estimated

undigested size of the smallest otolith recovered from the scats (correlation 0.69,

p-value 0.003), these are likely to be affected.

Tollit et al. (1997) found that the degree of digestion (and therefore the digestion

coefficient) for sandeels was positively related to otolith size. Although we have

not explicitly investigated the effects of this, we can use our results to predict its

implications. As the digestion coefficients used in this study are an average over

most otolith sizes, we would expect size-specific digestion corrections to lead to an

increase in the estimated undigested lengths of the largest otoliths. This would lead to

increased biomass estimates and also the suggestion of higher levels of H. lanceolatus
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in the diet. In addition, the estimated undigested lengths of the smaller otoliths

would likely become even smaller and this would influence the parameter estimates

of the recovery function for the FL approach.

2.5.5 Reliability of Results

The validity of the experimental data is questionable as it was partially based on

feeding trials with a different seal species, the harbour seal, while the North Sea scat

data is specific to grey seals. Although Bowen (2000) found no significant difference in

recovery rates between harbour seals and grey seals fed Atlantic cod (Gadus morhua)

and Atlantic and Pacific herring (Clupea harengus/pallasii), the same may not be

true in the case of sandeels. The probability of recovery is highly variable for Atlantic

and Pacific herring (Bowen, 2000; Grellier and Hammond, 2006) making differences

hard to detect. The recovery rates for Atlantic cod are generally higher and more

consistent but their increased robustness compounded with the high variability in

experimental conditions, including, seal age, meal sizes and feeding method (Bowen,

2000) would also make differences difficult to detect.

The upper asymptote of the size dependent probability of recovery function is

estimated at between 0.34 and 0.39, which is very similar to the constant recovery

rate of 0.35 reported in Grellier and Hammond (2006). However, due to the high

uncertainty in the estimates of the shape parameters λ and δ, we conclude that the

quantity and quality of experimental data is insufficient to evaluate whether or not

the Gompertz curve is an adequate function for modelling the recovering rate. This

high level of uncertainty surrounding these parameter estimates, along with the FL

model instability, led to the decision not to include any additional uncertainty from

the estimated proportions of the feeding experiment data. It is suggested that if

better data on the otolith recovery rates become available then these uncertainties
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may be incorporated using a bootstrap which resamples the proportion estimates for

each set of trials. Doing this would result in greater uncertainty in the estimation

of the Gompertz curve parameters which would lead to greater uncertainty in the

estimates of consumed biomass of sandeels. In addition, we should be cautious of the

lower uncertainty in the parameter estimates from the FL approach compared with

the binomial model. This is most likely an artifact of the fixed relation between λ and

δ specified in the FL approach, in contrast the binomial model in the MM approach

allowed these two parameters to be estimated independently of one another. In

addition, a more appropriate likelihood for combining these recovery rate data may

be an overdispersed binomial distribution due to the variability between the trials

which were carried out on different seals. It was not possible to test for overdispersion

in the feeding experiment data due to time constraints but again this could be an

additional source of variability which has not been accounted for.

The reliability of the FL and MM approaches for predicting the number and biomass

of consumed sandeels is difficult to assess. Based on the simulations, when the four

estimates of N and B (given by the HT standard and HT integral estimators from

the FL and MM approaches) agree with each other, we can have more confidence in

the estimates. However, this is not often the case and when it is, it only leads to

small, non-significant increases in N and B, for example Shetland, quarter 1, Table

2.9.

The prediction of 3.89 mm as the largest expected mean otolith length for A.

marinus, for a fish of 25 cm, was based on data from fish with lengths between 7 and

21 cm. This prediction is, therefore, an extrapolation outside the range of the data.

To our knowledge, there are no published relations or observations of otolith lengths

for fish greater than 21 cm. As we have already observed, these relations are highly



85

variable and all other relations presented in this study would lead to predictions

greater than 3.89 mm. However, our value is consistent with the maximum otolith

length of 4.00 mm given in Leopold et al. (2001). Because 3.89 mm is an estimate

of the mean it implies that there will be some variability around this value, so the

observation of slightly larger otoliths is not surprising.
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2.6 Conclusions

The simulations showed that provided the number of small otoliths with almost

no probability of recovery is relatively low the estimates of the number of otoliths

and biomass of sandeels consumed can be predicted accurately. However, if there are

many otoliths ingested which are in the size ranges of those with little probability of

recovery then we cannot hope to be able to accurately predict the quantity consumed.

Although we found that the largest source of bias in the estimation of the biomass

of sandeels consumed by grey seals is associated with the choice of relation used

to predict fish mass from otolith length, we did not consider all sources of bias.

Hammond and Grellier (2006) suggested that the largest potential source of bias is

the estimation of seal population size. Choosing a different model to predict seal

population size led to an increase of 40% in the estimated consumed biomass in the

North Sea.

To improve the estimation of the total biomass of sandeels consumed by grey seals,

effort is probably better spent obtaining accurate fish mass to otolith length relations

for A. marinus than identifying H. lanceolatus otoliths. These relations should, as far

as possible be specific to the sandeels in the study, and conform to the recommenda-

tions in Froese (2006). An alternative approach, given the scale of this data, would be

to incorporate more variability into the model by using a range of fish mass/otolith

length relations.

Estimation of the probability of recovery function would greatly benefit from im-

proved experimental data. We therefore recommend further experiments, specific to

grey seals, which would assess the effects of otolith size on both the probability of
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recovery and the degree of digestion. This would allow more accurate and precise es-

timation of the digestion coefficient as well as improving the estimates of the biomass

of sandeels consumed by the grey seal.

There may be potential to try to identify sandeel otoliths recovered from seals

scats using multivariate shape analysis techniques (Stransky et al., 2008). However,

Leopold et al. (2001) indicate that the otolith shapes for these two species are very

similar. Nævdal and Thorkildsen (2002) have identified genetic markers which suc-

cessfully differentiate between different species of sandeel. DNA testing of faecal

samples may therefore provide a promising alternative to hard part analysis, when

trying to quantify the importance of these species in the grey seals diet (Deagle and

Tollit, 2007; Deagle et al., 2009).

There is a lack of up-to-date information in the literature on the abundance and

distribution of H. lanceolatus and other species of sandeel in the North Sea. Such

information is vital in assessing the prevalence of H. lanceolatus in grey seal diet

and whether or not more than a negligible amount of other sandeel species, which

were not considered in this chapter, are also being consumed. Given the number of

species for which H. lanceolatus is a prey item, this information would also be valuable

for understanding the North Sea ecosystem and ensuring sustainable management of

sandeel stocks.
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Chapter 3

Spatially Adaptive
Multidimensional Smoothing:
investigating knot placement using
a branch and bound algorithm

3.1 Introduction

Spatial modelling describes methods which recognises spatial dependence between

data points. This dependence may either be explicitly modelled through the use

of spatial coordinates or through the use of explanatory variables which themselves

vary across space. In this chapter we investigate a two-dimensional spatially adaptive

smoothing technique for modelling species distributions. Understanding where species

occur and why they occur in particular places is of great ecological importance and

the prediction of the occurrence of species is fundamental for conservation biology

and wildlife management (Williams et al., 2009). In a world where the distribution of

the human race is expanding and our effects even more so, modelling the distribution

of species is of increasing importance.

This chapter presents two case studies which illustrate how spatial modelling may

be used to aid the management of the marine environment. We develop a novel

94



95

spatial modelling technique which attempts to address some of the limitations of

existing techniques. The methods in this chapter, unlike many existing methods, can

be employed in any modelling framework in which linear explanatory terms can be

incorporated. The first case study uses these methods to investigate the distribution

of both the density and presence of sandeels off the east coast of Scotland. These

data were collected over six years, the first three years were collected while the fishery

was still in operation and the latter three years were collected following the closure

of the sandeel fishery, they can therefore be used to assess the impacts of closing

this region to the sandeel fisheries. This case study is particularly useful from a

statistical viewpoint as it illustrates how these methods can be implemented both

within a logistic regression, to assess the spatial distribution of sandeel presence, and

within a zero-inflated model framework, to assess the spatial distribution of sandeel

density. It is hoped that such knowledge will lead to a better understanding of sandeel

distribution and help ensure that the fisheries do not contribute to any further decline

of this key species. The second case study applies these novel techniques within a

Poisson count model to investigate the density of Harbour Porpoise off the west coast

of Scotland. The aim of modelling marine mammal distributions, such as Harbour

Porpoise, is so that naval exercises involving sonar may attempt to avoid the areas

where animal density is predicted to be highest.

Although there has been much development recently in the spatial modelling field

there still remains room for further development. Of the variety of techniques avail-

able, the parametric generalised linear models (GLM) and the semi-parametric gen-

eralised additive models (GAM) (Hastie and Tibshirani, 1990; Wood, 2006) are the

most widely used for species distribution modelling (Guisan et al., 2002; Rushton

et al., 2004). The development of the GAM was an important step allowing the as-

sumptions of linearity associated with the GLM to be relaxed. However, controlling
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these flexible relations to capture the underlying function whilst not modelling the

noise can prove challenging. The most commonly used implementation of the GAM

lies within the MGCV package in R (Wood, 2006). MGCV by default uses penalized regres-

sion splines, a form of thin plate regression spline whereby the degree of smoothing

can be selected using various criteria or alternatively supplied by the user. However,

there is concern that these methods can over-fit to the data in some situations (Baker,

2008).

A further concern and topic of current research is the ability of existing semi-

parametric models to be able to accommodate surfaces with varying levels of smooth-

ness. For example, it may be the case that the underlying distribution of a species

varies a great deal more in one area of a survey region than another. In this situation

we would like some areas of the surface to be more flexible than others to accommo-

date these features. The ability to accommodate this local flexibility is dictated by

the method used to smooth the surface. Most current spline-based methods, such as

the penalized thin plate regression splines implemented in MGCV, smooth the whole

surface to the same degree (Wood, 2006). Specifically, this method does not require

the user to define knot positions explicitly and instead uses a penalty term to control

the “wiggliness” of the surface (Wood, 2006). In contrast, pure regression splines con-

trol the flexibility of a surface solely using the number and location of knots, which

are often chosen according to a regular grid or using space filling algorithms (Ruppert

et al., 2003; Royle and Nychka, 1998). However, carefully positioning knots across a

surface can be a valuable tool in controlling the flexibility of a surface. Increasingly,

spatially adaptive smoothing techniques based on knot selection routines are being

investigated to achieve improved fit and prediction (Mammen and van de Geer, 1997;

Zhou and Shen, 2001). More recently, Walker et al. (2010) published a spatially adap-

tive local smoothing algorithm (SALSA) based on iteratively adding, removing and
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relocating knot positions in an attempt to reduce the largest residual. In addition,

Cox (2008) demonstrated the potential of a branch and bound (global optimisation)

algorithm (section 3.2.3) to find optimal knot locations for modelling missing data

from acoustic krill surveys. This chapter further investigates the potential of the

branch and bound algorithm for knot placement in the context of modelling species

distributions.

Pure regression splines, with requisite knot locations, return basis functions which

decay with distance from the knot location. There are a variety of basis functions

available; one of the most commonly implemented is the thin plate spline (TPS) basis.

However, the TPS basis has three drawbacks, it is not scale invariant (Wood, 2006),

it is global in its effects (Wood, 2006) and its shape is such that it can predict very

large values just outside the range of the data (Austin and Meyers, 1996). Its global

nature can be especially problematic for spatially adaptive modelling as the bases

have an effect on all points across a surface. Therefore, in additions to TPS bases

we also investigate local Gaussian spline (LGS) bases which are effectively local since

they tend to a zero as distance from the knot position increases, thus reducing the

risk of predicting very large values outside the range of the data. In addition, the

rate of decay of these bases can be chosen to be specific for each dataset by altering

the value of the parameter r.

One final consideration addressed in this chapter is the ongoing debate about

whether to include spatial coordinates (e.g. latitude and longitude) in a model with

environmental covariates (Austin, 2002). One potential downside of including both

spatial and environmental covariates in a model is the collinearity that can result

due to overlap between the information contained in the spatial location and envi-

ronmental variables. This collinearity can result in very large estimates of precision



98

for some model parameters (Graham, 2003) and correspondingly large p-values. This

can be exacerbated when local changes in the flexibility of a spatial surface happen

to coincide with one or more of the environmental covariates. Even when the overlap

between the spatial co-ordinates and environmental covariates is not prohibitively

severe, fitting them together in a model may still cause incorrect conclusions to be

drawn about the relation between the response and environmental covariates. For

example, it is suspected that in some circumstances performing model selection while

considering both spatial coordinates and environmental covariates simultaneously will

cause important environmental covariates to be excluded from the model. For this

reason, many biologists resist including spatial coordinates in their models.

Despite these concerns, modelling species distribution using spatial co-ordinates is

often valuable. Typically many environmental factors which affect species distribu-

tion are not measured and spatial variability remains, which can be captured using

models which include spatial coordinates. We therefore follow a three stage modelling

approach. Firstly, a model is fitted to the environmental variables alone. Secondly,

the residuals from this model are modelled using spatial co-ordinates and a spatially

adaptive smoothing technique. Finally, the spatial basis functions associated with

the knot positions identified in stage 2 are included alongside the important environ-

mental covariates identified in stage 1.

This chapter assesses the above methods using two case studies. We compare the

branch and bound algorithm for knot placement using both the thin plate spline and

the local Gaussian spline basis functions with the industry standard, penalised thin

plate regression splines implemented in MGCV. Although the case studies presented

here involve modelling species distributions, the methods proposed are applicable in

a range of other situations (e.g. image analysis, spatial epidemiology) and could in
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theory be extended to modelling in higher dimensions.

3.2 Methods

This section includes an overview of the general method we propose for fitting a 2-

dimensional smooth, followed by details of pure regression splines and the branch and

bound algorithm which are generic across case studies. Those parts of the procedure

which need to be customised dependent on the dataset, as well as standard statistical

modelling decisions such as testing for collinearity and non-linearity, are detailed

separately for each case study in sections 3.3.3 and 3.4.3.

3.2.1 Overview

This chapter demonstrates a novel method for selecting and including a 2-dimensional

spatial smooth in a variety of modelling frameworks. Although the zero-inflated and

generalised additive models, both logistic and Poisson, are used in this chapter as

examples, these methods may be implemented in any modelling framework that al-

lows the inclusion of linear explanatory terms. The main stages in implementing this

method are as follows:

1. Choose a modelling framework suitable for your data, e.g. generalised lin-

ear model, generalised additive model, generalised estimating equations, zero-

inflated model etc.

2. Perform model selection on any covariates you wish to include in the model but

excluding the 2-dimensional spatial coordinates. We shall refer to this model as

the “environmental covariate” model.

3. Extract the most Normally distributed residuals from your environmental co-

variate model. These by definition should be the deviance residuals but some
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modelling frameworks (e.g. zero-inflated models) may not provide deviance

residuals. In this case you should consider other types of residual, e.g. Pear-

son or response residuals. These residuals will be used to try to find the 2-

dimensional spatial smooth which best explains the remaining variability in the

data.

4. Select all data points you would like to consider as candidate knot locations for

the pure regression splines (Section 3.2.2). If you have data which are sparsely

distributed throughout the spatial range of the data, and not too many data

points, then you may wish to consider all data points as candidate knot loca-

tions. If you have data over several years implying that some of the data points

have the same spatial coordinates, or if the data are too densely distributed

within the spatial range you may need to choose a subset of the data. Can-

didate knot locations which are too close together may cause problems in the

branch and bound routine. The candidate knot locations should be chosen us-

ing the spatial coordinates in the dataset (so that knots may only be located

where there is a data point) and should give as even a coverage of the study

region as possible.

5. Divide the candidate knot locations into starting groups of no more than 30

(due to computational restrictions). Each group of candidate knot locations

should give as even a coverage of the survey region as possible. Other methods,

such as dividing the candidate knots into groups that were close together in

space were tested but led to less optimal models.

6. Construct basis functions for each of the candidate knot locations (Section

3.2.2). In this chapter we consider two basis functions, those associated with the

thin plate regression spline and the local Gaussian regression spline. These are

discussed and compared for each case study in Sections 3.3.5.4, 3.4.5.1 and 3.5.2.
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If you are uncertain of which to use, cross validation techniques are advised for

spline selection.

7. Use the branch and bound algorithm (section 3.2.3) to perform an exhaustive

search on the set of basis functions associated with each starting group of knots.

The regsubsets routine in the leaps R library (Lumley, 2009) is used in the

analyses presented in this chapter. This routine takes in a response variable (the

residuals from the environmental covariate model) and a number of explanatory

variables (the basis functions associated with the candidate knot locations).

This routine returns the best possible subset of explanatory variables (basis

functions) for each size of subset and provides a selection of criteria for choosing

between them. To choose the best number of basis functions to model the

residuals we recommend the BIC criterion (Schwarz, 1978), see Section 3.5.1 for

further discussion.

8. Group the resulting selections of basis functions for each starting group with

another set of selected basis functions. This was done by grouping the basis

functions chosen from the first and second groups, third and fourth groups etc.

Steps 7 and 8 are then repeated until only one group of selected basis functions

remains.

9. Add the 2-dimensional smooth associated with this final selection of basis func-

tions to the environmental covariate model to form the “full model”. This

is done by simply including the selected basis functions in the environmental

covariate model as linear terms.

Note that the requirement for steps 5 and 8 occurs due to computational limitations.

Ideally we would simply supply the regsubsets routine with all candidate knots at

once and perform an exhaustive search over the entire set.
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3.2.2 Pure Regression Splines

Generalised additive models are an extension of generalised linear models which

relax the assumption of linear relations between the response and the explanatory

covariates on the link scale (Hastie and Tibshirani, 1990; Wood, 2006). One of the

ways this can be done is through the use of splines; these replace the previously lin-

ear relations with data-driven non-linear functions. The implementation of the pure

regression spline essentially involves creating additional covariates (i.e. additional

columns in the model design matrix), usually one for each knot location in the co-

variate space. The values of these “covariates” are calculated as some type of smooth

basis function (f (d)) across the range of the explanatory variable. The coefficients

are then estimated in the same way as those associated with linear terms, since the

function is linear in its parameters. The addition of these basis functions multiplied

by their respective parameter estimates leads to a non-linear smooth function repre-

senting the relation between the explanatory and response. The general form of this

model is seen in equation 3.1.

E [Yi] = β0 + β1x1i + ...+ βmxmi +
K∑
k=1

βk+mf (dik) (3.1)

where Yi ∼ some exponential family distribution.

Yi is the i-th observation, the xi’s are the m linear explanatory covariates, f (dik) is

some basis function of the Euclidean distance d to knot location k for k in 1,...K

knots and the β’s are the regression coefficients. In the case of a two dimensional

smooth across latitude (lat) and longitude (lon) this distance would be calculated as

d2ik = ‖xi − x∗k‖ = (lati − lat∗k)2 + (loni − lon∗k)2 (3.2)

where xi = [lati, loni]
T is the i-th coordinate vector and x∗k = [lat∗k, lon

∗
k] is the

k-th knot position vector (Hastie et al., 2001).
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Thin Plate Regression Splines (TPRS)

Thin plate regression splines (TPRS) are constructed using the thin plate spline

(TPS) basis function, equation 3.3 (Harder and Desmarais, 1972). They are one of

the most well known basis functions (Buhmann, 2000) and are commonly used in

species distribution modelling, for example shorebirds (Granadeiro et al., 2004) and

marine mammals (Panigada et al., 2008). However, despite their popularity there is

some debate as to their optimality. It can be seen from equation 3.3 that the value

of the TPS basis function increases with distance d (where d > 1) from the knot

location and these splines are therefore global in their effects.

f (dik) = d2iklog (dik) (3.3)

Figure 3.1 provides an illustration of a 2-dimensional smooth using TPRS.

Local Gaussian Regression Splines (LGRS)

Local Gaussian splines (LGS) are less commonly associated with GAMs, however

they have some useful properties which may improve the modelling of species distri-

butions. As their basis functions are constructed using a Gaussian decay (equation

3.4) they tend to a flat plane with increasing distance d from the knot position.

f (dik) = exp

(
−d2ik
r2

)
(3.4)

In contrast to the global nature of the TPS, the LGS can be more local in its effects

with the basis function decaying to effectively zero beyond 3r. In addition, how fast

they approach zero can be controlled based on the value of r which can be chosen

specifically for each dataset. The smaller the value of r the more local the effects

of the basis function. Figure 3.2 provides an illustration of a 2-dimensional smooth
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(a) TPS Basis function (b) TPS Basis function

(c) TPS Basis function (d) Additive function

Figure 3.1: Thin plate regression spline example. The basis functions are colour
coded from blue for low values to red for high values. Panels (a) to (c) show three
basis functions which have been multiplied by their respective coefficients. Note that
the inverted shape of panel (b) indicates a negative coefficient. Panel (d) shows the
resulting function based on the summation of these three basis functions.

using LGS.

3.2.3 Branch and Bound Algorithm

Through the implementation of pure regression splines we have turned the prob-

lem of smoothing into one of variable selection. The same as we would choose from a

number of explanatory covariates we can now perform variable selection on a number

of spline basis functions each associated with a different knot location. Currently the

only method of variable selection which ensures a global optimum is reached, rather

than the local optimums which may be reached using methods such as stepwise selec-

tion, is an exhaustive search (Miller, 2002). The branch and bound is an algorithm

which can be used to perform this exhaustive search and find this global optimal
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(a) LGRS Basis function (b) LGRS Basis function

(c) LGRS Basis function (d) Additive function

Figure 3.2: Local Gaussian regression spline example. The basis functions are colour
coded from blue for low values to red for high values. Panels (a) to (c) show three
basis functions which have been multiplied by their respective coefficients. Note that
the inverted shape of panel (b) indicates a negative coefficient. Panel (d) shows the
resulting function based on the summation of these three basis functions.

solution without actually calculating all possible outcomes. One of the earliest im-

plementations of this algorithm for the purposes of variable selection can be found in

Furnival and Wilson (1974). In this chapter, we apply the regsubsets function in

the R library leaps (Lumley, 2009).

The branch and bound works by trying to minimise the residual sums of squares

(RSS). It does this by iteratively dividing explanatory variables (or in our case basis

functions) into two or more smaller sets, which depending on the implementation may

or may not overlap. The recursive application of this procedure creates a tree struc-

ture, sometimes termed the ’search tree’, with each of the subsets of basis functions

as the nodes. The minimum RSS is then simply the smallest RSS over all possible
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subsets / child nodes. The bounding part of the algorithm involves calculating these

upper and lower bounds for the minimum RSS for a given subset. When comparing

these bounds, if a lower bound of one subset is higher than upper bound of another

subset the former subset may be safely removed from the search tree, a process known

as pruning. The branch and bound terminates when either the current set of basis

functions only contains one element or alternatively when the upper bound of the

current candidate set matches the lower bound.

3.3 Case Study 1: Sandeel distribution in the Firth

of Forth and Wee Bankie region

3.3.1 Introduction

The lesser sandeel (Ammodytes marinus), introduced in Chapter 2, is a vital com-

ponent of the North Sea’s food web (Greenstreet et al., 2006). Not only is it an

important food source for many seabirds (Furness, 2002; Frederiksen et al., 2006)

and marine mammals (Santos et al., 2004; Hammond and Grellier, 2006), it is also

predated by many commercial fish species (Bromley et al., 1997; Greenstreet et al.,

1998; Engelhard et al., 2008) and, in addition, is itself subject to large-scale indus-

trial fishing. However, the dramatic drop in sandeel landings from over 1.1 million t

in 1997 to less than 0.5 million t per annum since 2003 (ICES, 2009) has triggered

concern over the ability of sandeel stocks to withstand this intense exploitation. In

2000, this concern, coupled with reduced breeding success of seabirds led to the clo-

sure of the sandeel fisheries off the east coast of Scotland in the Firth of Forth and

Wee Bankie region (Greenstreet et al., 2006). The data in this study were collected

between 1997 and 2002 and therefore allow us to assess the impacts of this closure on

the distribution of sandeels in the region.
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Being such an important species, both ecologically and economically, sustainable

management of A. marinus is a priority. To achieve this, we must be able to ac-

curately assess the population size of the sandeel stock and understand the factors

which affect its distribution. In addition, Matthiopoulos et al. (2008) highlights the

importance of understanding the spatial availability of prey so that this can be related

to predator consumption. Although there have been a number of studies relating to

sandeels in the North Sea looking at population dynamics (Arnott et al., 2002), stock

assessment (Pedersen et al., 1999), habitat preference (Wright et al., 2000) and eval-

uation of management strategies (Greenstreet et al., 2006), there are still caveats in

our knowledge. For example, Wright et al. (2000) suggests that sandeel aggregations

could contract and expand around preferred sediment type, a behaviour which may

result in fisheries maintaining high catch levels even when the stock has become de-

pleted. In addition, Pedersen et al. (1999) discuss the importance of choosing the

correct stock assessment regions for the North Sea based on evidence which suggests

the existence of a number of smaller self-sustained sub stocks which need to be as-

sessed individually. They also point out that there is a lack of information on the

abundance of sandeels outside the fishing grounds. This study uses novel spatially

adaptive modelling techniques to provide valuable insights into some of the issues

associated with assessing the distribution of the sandeel stock.

The acoustic data reported in Greenstreet et al. (2006) presents two main chal-

lenges; they contains a large number of zero’s and they have a patchy distribution.

Firstly, this study investigates the potential of spatially adaptive modelling to bet-

ter predict the patchy distribution of the sandeels’ presence and absence. Secondly,

we demonstrate how our spatially adaptive smoothing can be implemented within a

zero-inflated framework, something which to our knowledge has not previously been
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achieved. We also consider whether including the additional spatial covariate infor-

mation in this model affects the interpretation of the relations between the response

variate and the environmental covariates and whether a three stage modelling ap-

proach reduces the associated problems of collinearity. Finally, we assess if the more

local Gaussian spline basis functions are superior to the globally acting thin plate

spline for modelling the patchy distribution of the sandeel.

3.3.2 Data

The survey region (Figure 3.3) covers an area off the east coast of Scotland from the

Firth of Forth to the Tay estuary (56;0N to 56;30N, 03;0W to 01;0W) and includes the

main fishing grounds in the area, the Wee Bankie, Marr Bank, and Berwick’s Bank

(Greenstreet et al., 2006). The data were collected using acoustic sampling techniques

over 3 to 8 consecutive days in either June or July of each year from 1997 to 2002.

From 1997 to 1999 the sandeel fishery in the area was active, but was closed from

2000 onwards. There were some changes to sampling effort: in 1998 the two most

northerly transects were omitted from the survey due to adverse weather conditions,

while in 2000 and 2001 additional effort was expended across the major sandbanks

and around the Isle of May where a major seabird colony breeds.

Acoustic surveys can detect sandeels in the water column but cannot detect those

which are buried in the sediment. For this reason, the surveys were carried out be-

tween 03:00 and 15:00 hours, when the majority of sandeels emerge from the sediment

to feed. These acoustic measurements had been processed prior to analysis and con-

verted into measurements of sandeel density (g/m2) (Greenstreet et al., 2006). The

transects were divided into between 40 and 126 segments and the sandeel density

was integrated over each segment to give a single value. The midpoint coordinates of
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each segment, along with the date and time, were also recorded. The spatial coor-

dinates were converted from latitude and longitude to east and north nautical miles

to ensure equivalent scales in both dimensions. In addition, various environmental

covariates were recorded, including depth, salinity, density, temperature, and various

measures relating to sediment type. Further information on survey methods and data

processing can be found in Greenstreet et al. (2006).

Figure 3.3: Survey region off the east coast of Scotland. The depth (m) of the seabed
is indicated by the blue shading and the main sand banks / fishing grounds (Wee
Bankie, Marr Bank, Berwick’s Bank) are labelled. The planned main survey effort is
indicated by the red dashed lines.

3.3.3 Modelling Methods

3.3.3.1 Zero-Inflated Model

A common problem when modelling species distributions, and one which is present

in this dataset, is an excess of zero observations. Specifically, the data contain a larger

proportion of zeros than expected given the distribution that would typically have

been used to model them. Failure to model these zeros correctly can lead to biased

estimation of ecological effects and their variability, which would result in incorrect
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model inference and prediction (Martin et al., 2005). Therefore, we must use models

specifically designed for this type of data. Two commonly used types of model for this

situation, are the hurdle model (Cragg, 1971; Mullahy, 1986) and the zero-inflated

model (Lambert, 1992).

Zero observations in the context of modelling species distributions are usually clas-

sified as either true or false zeros. True zeros, also termed structural zeros, arise when

the species never occupies a site. False zeros are the random zeros which occur by

chance, even though the species does occupy the site. False zeros can either arise due

to the species not being present at the time of the survey, or the species is present

but the observer fails to detect it. The difference between the hurdle model and the

zero-inflated model is their approach to the zeros. The hurdle model makes no dis-

tinction between true and false zeros; firstly, it uses a binomial model and associated

probability “hurdle” to determine whether a data point will have a zero outcome or

a positive realisation. If a data point has a probability of presence greater than the

hurdle value (which is not necessarily zero) its fitted value is determined by the condi-

tional distribution, generally a count distribution truncated at zero. In comparison,

the zero-inflated model approaches the problem using a mixture model, consisting

of a count component and a point mass at zero component. The difference being,

zeros could now either have arisen from the point mass at zero or from the count

component. This specification means that the point mass at zero component, is now

only modelling the probability of a true (or structural) zero.

This distinction is an important one when modelling species distributions, however

if the aim is to simply quantify the instantaneous distribution of a species (e.g. as a

part of biomass estimation) then the distinction between the different types of zero

can be ignored. If the aim is to model habitat preference then the difference between
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a true zero and a false zero is important. In addition, Martin et al. (2005) points out

the importance of considering which zeros are the cause of the zero-inflation problem

when choosing a modelling technique. While the zero-inflated model can be used for

an excess of true or false zeros, the hurdle model generally only has a satisfactory

application when the excess of zeros are true zeros. It should be noted, however,

that there is currently very little literature which discusses preferred methods when

the excess zeros are both true and false. The source of the zeros in this dataset

is up for debate. While many of the zeros could be false zeros as sandeels form

highly aggregated groups when they are in the water column and therefore have a

patchy distribution throughout the range of the habitat they occupy, there is also

an argument that many of the zeros could be true zeros. Sandeels have very specific

sediment preferences and therefore some of the habitat within the range of the survey

region would be unsuitable for the sandeels to bury themselves in at night (Wright

et al., 2000). Such sediment preferences may also limit the spatial distribution of the

sandeel in the water column during the day.

The aim of this investigation was to assess if including a spatial smooth gave a

better description of the the underlying spatial distribution of sandeels. Our interest

in predicting sandeel density as well as how the environmental covariates are related

to sandeel distribution meant the treatment of zeros was important. For this reason,

and considering that many of zeros were suspected to be false zeros, a zero-inflated

model was implemented.

The zero-inflated models were fitted using the zeroinfl routine in the pscl library

within R (Zeileis et al., 2008). The zero-inflated model implemented within pscl,

unlike the gamlss (Stasinopoulos and Rigby, 2007) and VGAM (Yee, 2008), allow dif-

ferent sets of regressors for the zero component to the count component. Although
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generalised additive modelling techniques have been previously implemented within

a zero-inflated framework (e.g. Barry and Welsh (2002); Yee (2008)), to our knowl-

edge no one has yet implemented spatially adaptive generalised additive modelling

techniques within a zero-inflated modelling framework.

The available data comprise of measurements of sandeel density, collected via acous-

tic sampling. However, the distributions implemented in pscl for the non-zero part

of the model are the Poisson and Negative Binomial, and therefore the response vari-

able must be integer values. As the majority of the densities were less than 1, they

were multiplied by 100 to preserve the information which was recorded to 2 decimal

places. The predictions were then back-transformed later to the original scale.

3.3.3.2 Presence / Absence Models

When the probability of a species being present is of interest rather than its abun-

dance or density, logistic regression is commonly used. This study also considered

the use of the branch and bound method, in the context of a Binomial Generalized

Additive Model used to predict the sites where sandeels are most likely to occur.

3.3.3.3 Environmental Covariate Selection

Throughout this case study, for ease of description, we refer to all covariates which

are not spatial coordinates (i.e. North and East) as environmental covariates, and

the models which are fitted to these alone, as environmental covariate models. Under

this definition we include temperature, salinity, density, depth, time of day, year and

substrate measures RoxAnn e1 and e2. The year factor variable was transformed

into a two level factor variable relating to those years before the closure of the fishery

(1997-1999) and those years after the closure of the fishery (2000-2002). Those models

which include spatial coordinates in addition to the environmental covariates, will

henceforth be referred to as the full models.
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Variance inflation factors (VIFs) were used to assess collinearity (Fox, 1997) since

including a number of collinear variables in a model may result in incorrect inference

with regard to those covariates. Generalized additive models (GAM) were fitted

using the default options in the MGCV library (Wood, 2006) to assess whether the

relations between the response and the environmental covariates were significantly

non-linear. These were assessed based on the associated p-values and verified by a

visual assessment of the partial regression plots. This process was carried out for

both the presence/absence data using a binomial distribution, and for the count

data using a Poisson distribution. Any non-linear relations were included in the

zero-inflated model or binomial GAM through the implementation of cubic B-splines

with a knot placed at the median value (Hastie and Tibshirani, 1990). A forward

stepwise procedure was used to select the environmental covariates because including

all environmental covariates in the zero-inflated model resulted in non-convergence of

the model. For the zero-inflated model, forwards stepwise selection was performed on

the binomial component first and then the count component. The final models were

selected based on the minimum Bayesian information criterion (BIC, equation 3.5)

(Schwarz, 1978).

BIC = −2lnL+ θlog(n) (3.5)

where lnL is the log-likelihood of the model, θ represents the number of parameters

in the model and n is the number of data points used to fit the model.

3.3.3.4 Including Spatial Coordinates

Residuals from the environmental covariate models were used to select the specific

knot locations for the 2-dimensional spline basis functions across the spatial covariates

(East and North). As the branch and bound attempts to find the “best” subset of

knot locations based on minimising the residual sum of squares, ideally, we would
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like residuals which are normally distributed. In the case of the binomial model,

the deviance residuals were used since these are approximately normal (Pierce and

Schafer, 1986). The zero-inflated model only provides Pearson and response residuals.

On inspection, the response residuals were more normally distributed and were used

to govern the branch and bound algorithm.

Due to a large number of (almost identical) spatial co-ordinates in the data set, a

subset of these were used as candidate knot locations. A grid was created over the

range of the spatial coordinates to ensure the selected locations were evenly spaced

throughout the range of the data, and the data points with coordinates closest to the

centre of each grid cell were used as the candidate locations (Figure 3.4(a)). The grid

scale was selected so that it was fine enough to give good spatial coverage but not

too fine as to make the fitting process unacceptably time consuming.

In theory, the branch and bound has no limit on the number of candidate knot

locations. However, in practice with current computing power, the branch and bound

algorithm implemented here can only deal with up to approximately 30 candidate

knots. Manually, limiting the candidate knot locations to 30 runs the risk of poor

spatial coverage. To reduce this risk, an iterative routine was used to allow all can-

didate knot locations indicated in Figure 3.4 an opportunity to be selected. This

method therefore distinguishes itself from Cox (2008) in that it allows more than

30 candidate knot locations to be considered. Initially, the candidate knot locations

were divided up into groups of 30 coordinates, which were chosen so that each sub-

set maintained good spatial coverage. This was done by moving along the transects

and assigning the first candidate knot location to the first group, the second to the

second etc. until the last group had been assigned a knot location and then the next

knot location along the transect was assigned to the first group and so on. This was
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repeated until all the candidate knot locations had been assigned starting groups. An

example of these starting groups, each represented by a different colour, is shown in

Figure 3.4(b).

(a) Candidate Knot Selection (b) Groups for Initial Selection

Figure 3.4: Initial selection process of candidate knot locations. (a) Indicates the
grid laid across all data points. The points closest to the centre of each grid cell are
selected and coloured red; the unselected data points are blue. (b) Indicates only
the selected candidate knots. These are colour coded to indicate the initial grouping.
Note that due to the number of knots sets, some colours for adjacent points only
differ slightly in shade.

The branch and bound knot selection process is carried out by the regsubsets

routine provided by the leaps library in R. The regsubsets routine returns the best

possible subset of basis functions, for all possible sizes of subset. In addition, it

provides various criteria for choosing between these; again the BIC was used to choose

the best sized subset of knot locations. Initially, the best subsets from each of the start

groups are obtained (Figure 3.5(a)) and each group of knots selected at iteration 1 is

then combined with an adjacent group of selected knots, and this process is repeated

until only one set of selected knots remain. This process is illustrated in Figure 3.5.
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The final set of knot locations are then used to generate the spatial basis functions

which are included in the environmental covariate models to give the full models.

3.3.3.5 Model Assessment

The application of the branch and bound iterative knot selection technique was

explored in a number of ways. Firstly, its ability to model the spatial variability

remaining in the residuals, once the environmental covariates were accounted for, was

investigated for both the presence/absence GAM as well as the zero-inflated model.

Secondly, the full GAM and zero-inflated models, which included both the spatial

information and the environmental covariates, were compared with environmental

covariate models. In addition, the models of the residuals were compared to intercept

only models and GAMs using the penalised thin plate regression splines implemented

in MGCV. Finally, the full presence/absence GAM constructed using the branch and

bound was compared with a full presence/absence GAM using the penalized thin

plate regression splines in MGCV.

The predictive power of the models to data unseen by the model was assessed using

10 fold cross validation (Kohavi, 1995). The data were first divided into independent

blocks based on the autocorrelation detected in the auto-correlation function plots

(Venables and Ripley, 2002) of the residuals. Next, these blocks were divided into

10 non-overlapping subsets of equal size. Each of these 10% subsets were removed

in turn and the remaining 90% of the data was used to fit the respective models.

These models were then used to make predictions to the 10% of the data which were

removed before model fitting. The ability of the model to predict this unseen data is

measured using the mean square error (MSE) (equation 3.6), where nv is the number

of data points removed.
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MSE =

∑
(predicted− observed)2

nv

(3.6)

The fit to the data was also assessed using a pseudo R2 score (equation 3.7), as

there are no comparable R2 values across these different modelling techniques. AIC

and BIC statistics were also assessed for their consistency with the MSE results.

pseudoR2 = (correlation(fitted, observed))2 (3.7)
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(f) Iteration 6

Figure 3.5: Iterative knot selection process: Open circles represent candidate knot
locations, closed circles represent selected knot locations and the colours allow each of
the groups to be distinguished. At each iteration the circles correspond to the closed
circles of the previous iteration.
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3.3.4 Results

3.3.4.1 Model Selection

High levels of collinearity were detected between salinity and water density (VIF

values of 21 and 27, respectively.) and salinity, rather than water density, was re-

tained as a possible explanatory covariate based on the highest pseudo R2 values.

Collinearity was also evident between year, day of year and temperature. While year

and temperature were retained as potential explanatory covariates, day of year was

not found to be significant at the 5% level once all other covariates were included, and

was omitted from the models. The final models considered the following as candidate

covariates, salinity, year, temperature, depth, time of day and substrate measures

RoxAnn e1 and RoxAnn e2, as well as a factor representing pre and post closure of

the fishery.

Presence / Absence Model

Time of day, temperature, RoxAnn e1 and RoxAnn e2 were significant predictors of

sandeel presence in the environmental covariate model (Table 3.1). While the relations

between sandeel presence and both time of day and RoxAnn e1 were significantly non-

linear at the 5% level (based on the MGCV p-values), the relations between sandeel

presence, and temperature and RoxAnn e2 were not found to be significantly non-

linear. There was also a significant relation (at the 5% level) between sandeel presence

and the pre/post closure factor variable

The branch and bound method selected seven local Gaussian spline (LGS) basis

functions to model the remaining spatial variability found in the residuals of the

environmental covariate model (Table 3.1). These seven basis functions, as well as

linear terms for North and East, formed the spatial smooth which was found to be

a highly significant predictor of sandeel presence (Table 3.1). Despite the additional
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coefficients the BIC decreased from 2878 to 2822 when the LGS branch and bound

spatial smooth was included in the model. In contrast, the BIC increased to 2907

when the global MGCV smooth was used (df = 11.2). In addition, the pseudo R2

increased from 0.16 to 0.21 when the LGS branch and bound spatial smooth was

included in the model, but only increased to 0.18 when the global MGCV smooth

was used.

Table 3.1: Presence/Absence model selection results. The degrees of freedom (df)
used for each covariate are indicated in the second column. The significance of the
relation with each covariate is indicated by the p-values, for both the environmental
covariate (EC) model and the full model. The p-values for the linear terms are taken
from the model summary while those for the smooths are calculated using likelihood
ratio tests. The full model was fitted using local Gaussian splines with an r value of
10.

Covariate df p-value (EC model) p-value (Full model)
s(Time of Day) 4 < 2.2e-16 *** 3.616e-14 ***
Temperature 1 1.332e-11 *** 4.191e-07 ***
Pre/Post Closure 1 0.0009248 *** 1.656e-05 ***
s(RoxAnn e1) 4 2.417e-08 *** 0.002462 **
RoxAnn e2 1 0.0109324 * 0.173971
s(North, East) 9 < 2.2e-16 ***

Including the branch and bound-based 2-dimensional smooth had consequences

for the RoxAnn e2 covariate (Table 3.1); this term was no longer significant at the

5% level In addition, model selection based on the minimum BIC would no longer

choose to retain this covariate in the branch and bound based model. This change in

significance (and BIC-related selection) was also apparent when the global MGCV-

based smooth was fitted.

Apart from the change in interpretation regarding RoxAnn e2, the inclusion of the

branch and bound spatial smooth has not vastly changed the interpretation of the



121

model regarding the relations between the other environmental covariates and sandeel

presence. In both the environmental covariate model and the full model, the sandeels

are more likely to be present in the water column at around 8 or 9 am and then

later at around 7pm (Figs. 3.6(a) and 3.6(b)). There also appears to be a higher

probability of sandeel presence for values of the RoxAnn e1 sediment between 0.5

and 1.1 (Figs. 3.6(c) and 3.6(d)). These similarities are due to no substantial (or

statistically significant) differences in the parameter estimates for the full model and

the environmental covariate model. These consistencies were also observed when the

global MGCV smoothing approach was used (Fig. 3.7).

Such consistencies are also seen in the liner relations between the environmental

covariates and sandeel presence (table 3.2). Under the EC model, the probability

of sandeel presence is predicted to decrease linearly with increasing temperature (be-

tween 7.5 and 11.5 degrees Celsius) and increase linearly with the RoxAnn e2 sediment

measure (between 0.5 and 1.9). In addition, all models indicate that the probability

of sandeel presence is significantly higher post-closure of the sandeel fisheries than

pre-closure.

Table 3.2: Linear parameter estimates from the presence/absence models on the scale
of the link function. Results are presented for the environmental covariate (EC) model
and the full models fitted using both the branch and bound (B&B) and MGCV. The
standard errors of the estimates are given in parenthesis

Covariate EC Model Full Model (B&B) Full Model (MGCV)
Temperature -0.60 (0.09) -0.49 (0.10) -0.54 (0.09)
Pre Closure -0.53 (0.16) -0.74 (0.17) -0.62 (0.17)
RoxAnn e2 0.60 (0.24) 0.48 (0.35) 0.48 (0.35)
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(a) Partial residual plot for the time of
day covariate in the environmental covari-
ate model
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(b) Partial residual plot for the time of
day covariate in the full model
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(c) Partial residual plot for the RoxAnn
e1 covariate in the environmental covari-
ate model
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(d) Partial residual plot for the RoxAnn
e1 covariate in the full model

Figure 3.6: Comparison of the partial residual plots for the environmental covariate
model and the branch and bound LGS GAM modelling sandeel presence/absence.
Panels (a) and (c) show the relations between sandeel presence and the covariates in
the environmental covariate model. Panels (b) and (d) show the relations between
sandeel presence and the covariates in the full model.
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(a) Partial residual plot for the time of
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(b) Partial residual plot for the time of
day covariate in the full model
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(c) Partial residual plot for the RoxAnn
e1 covariate in the environmental covari-
ate model
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(d) Partial residual plot for the RoxAnn
e1 covariate in the full model

Figure 3.7: Comparison of the partial residual plots for the environmental covariate
model and the MGCV GAM modelling sandeel presence/absence. Panels (a) and (c)
show the relations between sandeel presence and the covariates in the environmental
covariate model. Panels (b) and (d) show the relations between sandeel presence and
the covariates in the full model.
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3.3.4.2 Modelling Sandeel Density

A Negative Binomial distribution was selected to model the count component of

the zero-inflated model, based on the model with the minimum BIC, and a significant

value for the scale parameter (θ) associated with the Negative Binomial distribution

(p-value: < 0.0001). The same set of environmental covariates were selected by the

BIC to predict sandeel presence in the zero mass component of the zero-inflated model

as the binomial model; Time of day, temperature, pre/post closure, RoxAnn e1 and

RoxAnn e2. In addition, time of day and year were selected to model the count

component of the zero-inflated model.

The branch and bound method selected four local Gaussian spline (LGS) basis

functions to model the remaining spatial variability found in the residuals of the envi-

ronmental covariate model. The spatial smooth was included in the count component

of the zero-inflated model, in order to evaluate the branch and bounds’ potential for

improving the estimation of the density surface. This smooth consisted of four basis

functions, as well as East and North, and was found to be a highly significant pre-

dictor of sandeel density (Table 3.3). The BIC decreased from 18191 to 18132 when

the spatial smooth chosen by the branch and bound was included in the model, and

the pseudo R2 value increased from 0.032 to 0.055. However, it is apparent from the

pseudo R2 value and Figure 3.8 that some observations are severely under-estimated.

There was negligible change in the parameter estimates (and associated p-values)

for the zero mass component of the model when the spatial smooth was included.

Unlike the binomial model, the RoxAnn e2 covariate was still significant at the 5%

level (Table 3.3).
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Table 3.3: Zero Inflated Model model selection results. The degrees of freedom (df)
used for each covariate are indicated in the second column. The significance of the
relation with each covariate is indicated by the p-values, for both the environmental
covariate (EC) model and the full model. The p-values for the linear terms are taken
from the model summary while those for the smooths are calculated using likelihood
ratio tests. The full model was fitted using local Gaussian splines with an r value of
15

Zero Mass Component df p-value (EC model) p-value (Full model)
s(Time of Day) 4 < 2.2e-16*** < 2.2e-16***
Temperature 1 2.66e-11 *** 2.70e-11 ***
Pre/Post Closure 1 0.001113 ** 0.001025 **
s(RoxAnn e1) 4 2.635e-08*** 2.635e-08***
RoxAnn e2 1 0.011690 * 0.011457 *

Neg Bin Component df P-value (EC model) P-value (Full model)
s(Time of Day) 4 1.488e-08*** 0.004426 **
Year 5 < 2.2e-16*** < 2.2e-16***
s(North, East) 6 < 2.2e-16***

There were some changes, in the the time of day covariate for the negative binomial

count component of the zero-inflated model. The p-value associated with time of day

increased from < 0.0001 to 0.0044 (Table 3.3) and the BIC-based selection would no

longer retain this covariate. The year covariate still remained highly significant (Table

3.3). Interestingly, the shape of the predicted smooth across time of day appears to

have only changed slightly (Fig. 3.9(a)). More pronounced changes can be seen in

the predicted differences between years. The biggest difference is associated with the

1998 parameter estimate (Fig. 3.9(b)). The second largest difference is seen in 2000,

while other parameter estimates appear largely unchanged.
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Figure 3.8: Fitted values plotted against the observed values for the full zero-inflated
model, including both environmental covariates and the spatial smooth.

(a) Partial relation between sandeel
density and time of day.

(b) Partial relation between sandeel density and year

Figure 3.9: Zero-inflated model partial relations with time of day and year. The
relations predicted by the full model are shown in black and those predicted by
the environmental covariate model are shown in red. These relations are based on
parameters on the log scale.
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3.3.4.3 Cross Validation

Presence/Absence Residual Model

The branch and bound method performed well to data unseen by the model. On

average, the best (i.e. lowest) cross-validation based mean squared error (MSE),

corresponds to the branch and bound model using local Gaussian splines (LGS) with

an r value of between 6 to 8 (Table 3.4). However, the median MSE score might

suggest that an r value of 4 would typically perform better.

The branch and bound outperforms MGCV with respect to the mean MSE scores

in 6 of the 8 models presented. The intercept only model (i.e. no covariates) performs

worst on average with respect to the mean MSE score, closely followed by the branch

and bound LGS model with an r value of approximately 2.

Table 3.4: Cross validation results for the residuals from the presence/absence en-
vironmental covariate model. The branch and bound results are compared with an
intercept only model and an MGVC GAM. r is the parameter associated with the local
Gaussian splines and the standard deviation of the MSE score is given in parenthesis.
All values are averages across the cross-validation folds.

Method Spline r Pseudo R2 MSE scores
AIC BIC Knots

mean median (sd)
Intercept NA NA NA 1.016 1.03 (0.012) 6961 6972 NA
B&B LGS 2 0.075 1.015 1.02 (0.127) 6793 6874 9.9
B&B LGS 4 0.065 0.993 0.99 (0.124) 6817 6884 7.5
B&B LGS 6 0.055 0.991 1.01 (0.129) 6841 6902 6.5
B&B LGS 8 0.050 0.991 1.02 (0.117) 6853 6911 6.1
B&B LGS 10 0.046 0.995 1.01 (0.121) 6862 6920 5.9
B&B LGS 15 0.039 1.008 1.02 (0.127) 6881 6941 6.3
B&B LGS 20 0.030 1.013 1.03 (0.127) 6901 6955 5.4
B&B TPS NA 0.057 0.999 1.02 (0.114) 6839 6916 9.3
MGCV TPS NA 0.023 1.010 1.05 (0.129) 6926 6997 10.3
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The fit to the data (indicated by the pseudo R2; Table 3.4) is higher for all branch

and bound models compared with MGCV. Unsurprisingly, the branch and bound

LGS model with the smallest r value trialled (r = 2) provides the best fit to the

data, but overfits to the data and provides poor prediction of the data unseen by

the model. No pseudo R2 is available for the intercept only model since all predicted

values are equal to the mean of the data and therefore cannot have a correlation with

the observations.

The lowest AIC and BIC values are also associated with the branch and bound LGS

model with an r value of 2, which is expected when you consider that r is not reflected

in the model degrees of freedom. Under this scheme, there is no penalty incurred by

the extra flexibility in the model surface that is possible when r decreases. One of the

consequences of considering smaller r values however, is that more knots tend to be

required which was also the case here (Table 3.4), and this is reflected in the model

df . The branch and bound model with thin plate splines (TPS) and MGCV also use

a larger number of degrees of freedom to fit the smooth than most of the LGS models

and despite this incur a worse fit to the data and worse prediction of data unseen by

the model.

Presence / Absence Model

The cross validation based MSE results for the presence/absence models, presented

in Table 3.5, are similar to the results from the presence/absence residual models. The

best MSE scores are again found using the branch and bound LGS model with r values

of between 4 and 10. In addition, the branch and bound TPS model also provides a

low mean MSE score based on cross-validation results.

Consistent with the presence/absence residual model results for the branch and

bound LGS models, the smaller the value of r the better the fit for reasons stated
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Table 3.5: Cross validation results for the the presence/absence models. The branch
and bound full model results are compared with the environmental covariate model
and an MGVC GAM. r is the parameter associated with the local Gaussian splines
and the standard deviation of the MSE score is given in parenthesis. All values are
averages across the cross-validation folds.

Method Spline r Pseudo R2 MSE scores
AIC BIC Knots

mean median (sd)
Env. Cov NA NA 0.164 0.173 0.18 (0.020) 2526 2596 NA
B&B LGS 2 0.236 0.171 0.17 (0.020) 2379 2518 9.9
B&B LGS 4 0.225 0.168 0.17 (0.022) 2401 2524 7.5
B&B LGS 6 0.219 0.169 0.17 (0.022) 2415 2538 6.5
B&B LGS 8 0.211 0.168 0.18 (0.020) 2431 2545 6.1
B&B LGS 10 0.210 0.168 0.17 (0.020) 2434 2551 5.9
B&B LGS 15 0.201 0.172 0.18 (0.022) 2453 2570 6.3
B&B LGS 20 0.193 0.173 0.18 (0.021) 2474 2586 5.4
B&B TPS NA 0.219 0.169 0.18 (0.019) 2417 2552 9.3
MGCV TPS NA 0.184 0.172 0.18 (0.022) 2500 2625 9.6

earlier. In addition, the branch and bound TPS method improves the fit in comparison

with penalized thin plate splines implemented in MGCV.

The following observations are also consistent with the results from the presence/

absence residual models: firstly, the lowest AIC and BIC values are associated with

the branch and bound LGS model with an r value of 2, secondly the smaller the

value or r for the LGS models, the higher the number of knots selected and, lastly,

the branch and bound and MGCV also use a relatively high number of degrees of

freedom to fit the spatial smooth in comparison with many of the LGS models.

Zero-Inflated Residual Model

In contrast to model results obtained thus far, the zero-inflated residual model

results indicate that a more global smoothing approach to the model is appropri-

ate. The best cross-validation based MSE scores are associated with the branch and

bound LGS model with an r value of 15, the intercept only model and the globally
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operating MGCV model (Table 3.6). There is however, great uncertainty about the

CV-based MSE scores; the standard deviations are invariably larger than the MSE

score themselves.

Table 3.6: Cross validation results for the residuals from the zero-inflated environmen-
tal covariate model. The branch and bound results are compared with an intercept
only model and an MGVC GAM. r is the parameter associated with the local Gaus-
sian splines and the standard deviation of the MSE score is given in parenthesis. All
values are averages across the cross-validation folds.

Method Spline r Pseudo R2 MSE scores
AIC BIC Knots

mean median (sd)
Intercept NA NA NA 274 99.3 (406) 31803 31815 NA
B&B LGS 2 0.104 306 146.8 (389) 31550 31611 6.5
B&B LGS 4 0.047 279 101.3 (399) 31700 31750 4.6
B&B LGS 6 0.026 276 101.9 (402) 31747 31785 2.5
B&B LGS 10 0.019 275 100.4 (402) 31766 31804 2.5
B&B LGS 15 0.016 274 99.8 (402) 31774 31817 3.4
B&B LGS 20 0.011 275 100.5 (402) 31784 31822 2.5
B&B TPS NA 0.045 282 106.2 (401) 31710 31774 7.0
MGCV TPS NA 0.011 274 99.9 (405) 31795 31860 9.1

Consistent with previous analyses, the smaller the value of r the better the fit and

the branch and bound LGS based model with r = 2 provides the best fit to the data.

In addition, the AIC and BIC also both select the branch and bound LGS model with

the smallest r value trialled.

Zero-Inflated Model

The cross validation results for the zero-inflated models also suggest a more global

smoothing approach is preferable (Table 3.7); on average, the best MSE score is found

using the branch and bound LGS model with r = 15. However, the mean MSE score

for the environmental covariate model (without a spatial surface) is also low, and the

median MSE score indicates that typically this model would be expected to perform

better. As in Table 3.6, there is great uncertainty about the CV-based MSE scores.
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Table 3.7: Cross validation results for the the zero-inflated models. The branch and
bound full model results are compared with the environmental covariate model. r is
the parameter associated with the local Gaussian splines and the standard deviation
of the MSE score is given in parenthesis. All values are averages across the cross-
validation folds.

Method Spline r Pseudo R2 MSE scores
AIC BIC Knots

mean median (sd)
Env. Cov NA NA 0.033 276 100.0 (408) 16249 16382 NA
B&B LGS 2 0.105 299 148.9 (393) 16141 16323 6.5
B&B LGS 4 0.077 280 106.6 (397) 16142 16313 4.6
B&B LGS 6 0.059 278 105.6 (404) 16167 16326 2.5
B&B LGS 10 0.055 276 103.3 (404) 16166 16325 2.5
B&B LGS 15 0.056 275 104.2 (402) 16167 16331 3.4
B&B LGS 20 0.045 277 109.0 (400) 16182 16341 2.5
B&B TPS NA 0.070 279 108.4 (406) 16141 16325 7.0

Consistent with all the previous results for the branch and bound LGS models, the

smaller the value of r the better the fit and the branch and bound LGS model with

r = 2 provides the best fit to the data. However, in contrast, the BIC selects the

branch and bound LGS model with r = 4. The lowest AIC value is now found in both

the branch and bound LGS model with an r value of 2 and the branch and bound

TPS model.
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3.3.4.4 Prediction

We can use the predictions from our models to better assess the benefits of including

the spatially adaptive smooth for assessing the effects of the sandeel fishery closure

for both the presence and density of sandeels throughout the survey region.

Predictions were made from both the environmental covariate models and the full

models detailed in Tables 3.1 and 3.3. Predictions for each year from 1997 to 2002

were computed using year-specific temperature values. The time of day was fixed

across predictions as the median value in the dataset (9.125). In addition, predictions

were made using the models of the residuals from both the presence / absence and

zero-inflated environmental covariate models. These aided the assessment of the

spatially adaptive smooth at picking up residual spatial variation once the effects of

the environmental covariates had been modelled.

Presence/Absence Model

Both the environmental covariate models and the full models suggest an increase in

probability of sandeel presence after the closure of the fishery (Figs. 3.10 and 3.11),

with the highest predicted probabilities of sandeel presence seen in 2001 (Figs. 3.11(c)

and 3.11(d)). For example, the environmental covariate model predicts an average

probability of sandeel presence of between 0.15 and 0.28 (with 95% confidence) in

1997 - 1999 when the fishery was open, compared with between 0.23 and 0.40 (with

95% confidence) in 2000-2002 when the fishery was closed. These predictions are

based on the median values of time of day, temperature and substrate measures.

Including the spatially adaptive smooth in the model, led to increases in the pre-

dictions for the probability of sandeel presence around two of the three main fishing
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areas (Marr Bank and Berwick’s Bank) in comparison with the environmental covari-

ate model. The full model also predicts a higher probability of sandeel presence in

the area around the Isle of May, where sandeels are thought to be an important com-

ponent of the sea birds’ diet. In addition, these differences appear to be supported

by the data, particularly in the years following the closure of the sandeel fishery (Fig.

3.11).

Further differences between the environmental covariate and full models, which are

also supported by the data, are higher predictions to the north east of the Marr Bank

and lower predictions running roughly north-south between around -70 and -80 East

nautical miles. However, although the data in to the north east of the Marr Bank

indicate a large number of presences (mostly in the years post closure), the highest

predictions in this area are out with the range of the data (extrapolation) and give

some cause for concern.
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(a) 1997, environmental covariate model
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(b) 1997, full model
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(c) 1998, environmental covariate model3

−100 −80 −60 −40

33
60

33
70

33
80

33
90

East (nmi)

N
or

th
 (

nm
i)

0.0

0.2

0.4

0.6

0.8

1.0

(d) 1998, full model
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(e) 1999, environmental covariate model
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(f) 1999, full model

Figure 3.10: Predicted probability of sandeel presence in the years when the sandeel
fishery was active. The observations are shown by black squares for an absence and
white squares for a presence.



135

−100 −80 −60 −40

33
60

33
70

33
80

33
90

East (nmi)

N
or

th
 (

nm
i)

0.0

0.2

0.4

0.6

0.8

1.0

(a) 2000, environmental covariate model
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(b) 2000, full model
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(c) 2001, environmental covariate model
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(d) 2001, full model
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(e) 2002, environmental covariate model
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(f) 2002, full model

Figure 3.11: Predicted probability of sandeel presence in the years after the sandeel
fishery was closed. The observations are shown by black squares for an absence and
white squares for a presence.
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Presence / Absence Residuals Model

The model fitted to the residuals of the environmental covariate presence / absence

model indicates evidence of remaining spatial pattern after all environmental covari-

ates (as selected by the BIC) had been included in the model. The fit of the spatially

adaptive smooth to the residuals gave a pseudo R2 value of 0.049.

Similar patterns to those detected in the differences between the environmental

covariate and full models are also seen in the model fitted to the residuals (Figure

3.12). These include higher predictions around the Marr Bank, Berwick’s Bank and

the Isle of May, as well as slightly lower predictions running north-south between

around -70 and -80 East nautical miles.
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(a) Observed Residuals
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(b) Predictions

Figure 3.12: Observed and predicted values for the residuals from the environmental
covariate presence/absence model. Predictions were made from a model fitted using
the branch and bound LGS method with an r values of 10.

In addition, the prediction plot of the residuals allows us to more easily assess

the differences between the environmental covariate models and the full models. It

becomes more apparent that there are lower predictions in the Firth of Forth and to

the east of Berwick’s Bank than would be made by the environmental covariate model
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(Figs. 3.10-3.12). There is also another area of slightly higher predicted values to

the west of Berwick’s Bank. The latter two observations appear to be more strongly

supported by the data than the former. In addition, there was very little survey effort

within the Firth of Forth.

Zero-Inflated Model

The largest predicted values for the full models were much higher than the envi-

ronmental covariate models. In addition, the scale on the plots from 2000-2002 (Fig.

3.14) have a much greater range of predicted densities than 1997 to 1999 (Fig. 3.13).

The differences were so great for the predictions from the full models for 2000 to 2002

that only those values below 200 were plotted to allow comparisons with the environ-

mental covariate predictions. The greatest predicted density for the full model was

in 2001 at a value of almost 500.

In general, both the environmental covariate models and the full models suggest an

increase in average sandeel density after the closure of the fishery, with 2001 having

the highest sandeel densities predicted. The lowest sandeel densities were predicted

in 1999. Naturally, those models that include spatial terms capture local changes in

sandeel densities and more adequately represent the “hot-spots” in these areas.

The differences between the environmental covariate models and the full models

are largely in the same locations as for the binomial models. The full models predict

sometimes dramatically higher sandeel densities in the Berwick’s Bank and Marr Bank

regions. In addition, there are small increases observed in the Isle of May region and

also lower sandeel densities running roughly North-South between around -70 and -80

East nautical miles.
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There are some differences between the environmental covariate model and the full

model which give some cause for concern. Although there are fewer problems of high

values in the top right corner (as seen in the full presence / absence models), the

predicted hot spot near the Berwick’s Bank region is centred quite far outside the

range of the data.
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(a) 1997 environmental covariate model
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(b) 1997 full model
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(c) 1998 environmental covariate model
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(d) 1998 full model
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(e) 1999 environmental covariate model
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(f) 1999 full model

Figure 3.13: Predicted density of sandeels in the years when the sandeel fishery was
active. The observed sandeel densities are indicated by the white circles, the bigger
the circle the higher the observed density. The zero observations are shown by black
squares.
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(a) 2000 environmental covariate model
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(b) 2000 full model
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(c) 2001 environmental covariate model
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(d) 2001 full model
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(e) 2002 environmental covariate model
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(f) 2002 full model

Figure 3.14: Predicted density of sandeels in the years after the sandeel fishery was
closed. The observed sandeel densities are indicated by the white circles, the bigger
the circle the higher the observed density. The zero observations are shown by black
squares. Only predicted values <= 200 are displayed to allow comparison between
the models.
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Zero-Inflated Residual Model

Spatial variability was also found in the residuals from the zero-inflated model.

However, the spatially adapted smooth fitted to these residuals only had a pseudo R2

value of 0.017.

The residuals from the zero inflated model are characterised by a few very high

values, indicating that the environmental covariate model vastly under-predicted these

values (Figures 3.8 and 3.15(a)).

These predictions highlight the same patterns as the differences between the envi-

ronmental covariate and full zero-inflated models. The most dramatic hotspots are

indicated in the Berwick’s Bank and Marr Bank regions (Figure 3.15(b)).
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Figure 3.15: Observed and predicted values for the residuals from the environmental
covariate zero-inflated model. Predictions were made from a model fitted using the
branch and bound LGS method with an r values of 15.
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3.3.5 Discussion

Understanding the distribution of the sandeel stocks and how it changes in relation

to fishing pressure is a necessary tool in the sustainable management of this valuable

resource. This study has demonstrated the potential of a novel spatially adaptive

smoothing method both within a binomial generalised additive model to improve the

prediction of sandeel presence, as well as within a zero-inflated model.

This study also provides an assessment of the implications of including a spatial

smooth as well as environmental covariates in a single model. For the first time a

three stage modelling technique was investigated, and for the binomial data, was also

compared with including a more flexible thin plate spline using MGCV.

3.3.5.1 Three Stage Modelling Approach

Presence/Absence Model

The results from the three stage modelling approach for including the spatially

adaptive smooth were largely comparable to including the MGCV penalised thin plate

regression splines, for this dataset. In fact, if anything the MGCV spatial smooth had

a slightly lower impact on model interpretation than the branch and bound method.

The differences in parameter estimates in Table 2 between the environmental covariate

model and MGCV are smaller than those with the branch and bound model. This

is an unexpected result as the surface fitted by MGCV had the potential to be more

flexible than that of the branch and bound method. While the MGCV smooth could

take on any shape within the full model, the branch and bound smooth should have

been more restricted due to the specific choice of knot locations based on the spatial

variability remaining in the residuals once the environmental covariates had been

accounted for.
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Overall the impact on model interpretation from including the spatial smooth was

not extreme; only the interpretation of the significance of the RoxAnn e2 covariate

changed. However, the shape of the predicted relations did not change substantially.

The covariate RoxAnn e2 which was no longer significant at the 5% level after the

inclusion of the smooth had a p-value of 0.011 prior to its inclusion and was not

therefore highly significant initially. As is generally the case with the inclusion of

any additional covariates, the variability of the parameter estimates for the existing

covariates increases. This could explain some of the reduction in significance. In

addition, because RoxAnn e2 was only significant at the 5% level it is possible that

it was acting as a proxy for another unmeasured covariate.

Zero-Inflated Model

Small changes in model interpretation were also observed when the spatially adap-

tive smooth was included in the zero-inflated model. However, while time of day

would no longer be retained in the model as chosen by the BIC, this covariate was

still significant at the 0.5% level consistent with the environmental covariate model.

Perhaps this gives us concern that the BIC may not provide a good model selection

criterion for negative binomial zero-inflated models.

3.3.5.2 Selecting the Appropriate Spatial Smooth

The AIC and the BIC are two commonly used criteria for model selection (Johnson

and Omland, 2004; Kuha, 2004). However, although the best subset of knots was

selected within the iterative branch and bound using the BIC, neither this nor the

AIC statistic appear to be useful when assessing which spatial smooth to use. Both

the AIC and the BIC almost always select the branch and bound LGS method with

an r value of 2, however, the MSE scores suggested that these models over-fit to the

data. It is likely that this happens as the data are very peaked and have a few very
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high values. The LGS models with smaller r values allow a much better fit to these

data points which in turn dramatically reduces the loglikelihood value associated

with the model. Although there are generally more knot positions (and therefore

more parameter) selected for these models the loglikelihood is improved sufficiently

that the AIC and BIC almost always select these models.

3.3.5.3 Predicting Sandeel Presence and Density

Models of the Residuals

The fitting of a spatial smooth to the residuals from an environmental covariate

model is a valuable exercise for improving the understanding of the distribution of

the species of interest, and potentially in the design of future surveys. These models

tell us where there is a higher probability of presence or density of sandeels observed

than was predicted based on the environmental covariate models. It is possible that

such spatial patterns may point to additional previously unmeasured covariates which

could then be recorded in subsequent surveys and included used to improve model

predictive power. Alternatively, it is possible that autocorrelation is down to some

other spatial process such as extinction, speciation, dispersal etc. Identifying the

source of such spatial correlation, can also be a useful tool for management purposes.

Sandeel Presence

A better fit to the data, as well as improved prediction power to unseen data,

was achieved by including the branch and bound spatial smooth in the presence /

absence model. Cox (2008) also found that the branch and bound performed well for

modelling missing pings in acoustic krill data, particularly for complex highly variable

surfaces.

The predictions from these models also highlighted areas which are known fishing

ground for sandeels. This suggests that these are locations with higher levels of
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sandeel presence which were not fully predicted based on the environmental covariates

alone.

These differences in predicted sandeel presence between the environmental covariate

model and the full model provide insights which may aid the management of the

sandeel stocks in this region. Pedersen et al. (1999) discussed the importance of

choosing the correct division of sandeel stocks for management purposes as there is

evidence that sandeels exist in smaller self-contained stocks. The full models predict a

lower probability of sandeel presence running north-south between around -70 and -80

East nautical miles. This suggests that there is some geographic separation between

the sandeels around the Isle of May region, which are an important food source for

the seabirds, and those around two of the main fishery areas, the Berwick’s Bank and

Marr Bank. This separation is less distinctive in the years following the closure of the

sandeel fishery which may also support the theory of Wright et al. (2000), that the

distribution of sandeels expand and contract around their preferred habitat. However,

the full models fitted in this chapter assume the same form of spatial smooth across

years. To investigate these hypotheses further, models should be fitted to subsets of

the data, either pre and post closure or every year individually.

Sandeel Density

Including the spatial smooth in the zero inflated models did not improve the predic-

tive power over the environmental covariate model. The reason for this is likely due

to the extreme right skewed distribution of the response (sandeel densities). Sandeels

form aggregations in the water column and therefore may only appear in one or two

adjacent segments of a transect. In addition, it appears that some of these aggrega-

tions were of particularly high density (Figure 3.8). This was also exhibited in the low

pseudo R2 values. As these aggregations only appear in very few of the consecutive
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data points, the cross validation MSE scores are very sensitive to which data points

are removed. Therefore, it is likely that the spatial smooths will overfit to the data

and have worse MSE scores than the environmental covariate model.

However, the differences generated by the inclusion of the spatial smooth appear

to provide genuine improvements in the prediction of where high densities of sandeels

occur. Similar to the presence / absence results, the enhanced hotspots (by the in-

clusion of the spatial smooth) largely coincide with the sandbanks where the fisheries

operate. Similar implications for management are indicated to those found for the

presence / absence models; a potential division in the sandeel stocks around the Isle of

May and those in the Berwick’s Bank and Marr Bank region and potentially expand-

ing and contracting distributions. Again further investigations specific to subsets of

this dataset would be advised, either by pre and post closure or individual year.

3.3.5.4 Comparison of Splines

The LGS models provide a better fit as well as improved predictive power for the

presence / absence models. In contrast, due to the severly right skewed distribution of

the sandeel density variate, a more global smooth was preferred for the zero-inflated

models.

Although it was hoped that the LGS models would provide more stable results at

the edges of the survey region and not predict high values just outside the range of

the data (as can be the case with TPS), this was not found to be the case. In both the

presence / absence models and the zero-inflated models the LGS models predicted

hotspots which were centered out with the range of the data. This was because two

knot positions were selected which were relatively close to one another as well as

the edge of the survey region. The knot closer to the centre of the region had a

negative parameter estimate while the knot close to the edge of the survey region
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had a positive parameter estimate. The sum of these two basis functions, which must

have provided a better fit to the observed data points, then resulted in the prediction

of a peak whose centre lay outwith the spatial range of the data and was therefore

unsupported by the data. If such predictions are believed to be unrealistic, it may be

possible to lessen these effects by implementing a buffer zone around the edge of the

data in which candidate knot locations cannot be selected. However, as this dataset

is collected along transects, this would result in many candidate knot locations being

excluded.

3.3.5.5 Concluding Remarks and Future Investigations

The inclusion of the LGS branch and bound smooth in the presence / absence

model enhances the prediction of where sandeels are likely to occur. These results

suggested that further investigations of the Marr Bank and Berwick’s Bank regions

may reveal additional information about habitat preference in sandeels. In addition,

insight into the variations in sandeel presence pre and post closure may be found by

fitting individual models to separate subsets of the data.

These investigations have not dealt with any remaining temporal or spatial auto-

correlation. Although the zero-inflated models do not provide any options to account

for such problems, it would be possible to fit a presence / absence model which al-

lows for temporal autocorrelation using generalised estimating equations (Hardin and

Hilbe, 2003).



148

3.4 Case Study 2: Harbour Porpoise distribution

off the west coast of the UK

3.4.1 Introduction

In section 3.3 we investigated the potential of the branch and bound algorithm

to select optimal knot locations in order to implement a spatially adaptive smooth

to better model both the presence and density of sandeels in space. The sandeel

data provided two main challenges including an excess of zeros and a response which

changed on more local scale in some areas than others. In this case study, we investi-

gate the same spatially adaptive smoothing technique for modelling the distribution

of harbour porpoise (Phocoena phocoena). These data are different to the sandeel

data in that their spatial variability is more uniform across the surface and the areas

of high density are less peaked.

Harbour porpoises are the most common species of cetacean along the West coast

of Scotland (Evans, 2003). In addition to all species of dolphin, porpoise and whale,

harbour porpoise are named in the European protected species list in Schedule 2 of

The Conservation of Habitats and Species Regulations 20101. There have been a

number of studies carried out to predict the abundance and / or distribution of these

animals, for example SCANS /SCANS II (Burt et al., 2006), Embling et al. (2010),

Booth (2010), as monitoring the abundance of and understanding the spatial extent

of this species is vital in its conservation.

Increasing levels of anthropogenic noise in the marine environment is of concern

along the west coast of the United Kingdom. The sources of such noise include

military sonar activities (Parsons et al., 2000), seismic exploration (Stone and Tasker,

2006) and acoustic deterrent devices used by fish farms (Booth, 2010). The effects of

1http://www.legislation.gov.uk/uksi/2010/490/contents/made
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acoustic pollution and disturbance can have a number of potential implications for

marine mammals and as awareness of these risks increases, so does the pressure on

the organisations responsible to implement better management practices.

One such response to these pressures is the Environmental Risk Management Ca-

pability (ERMC) (Mollett et al., 2009). The ERMC project provides a quantitative

risk assessment system for assessing the impact of sonar on marine mammal hear-

ing. One component of this system involves density maps which describe the spatial

distribution of the various species of marine mammal. Carrying out operations in

areas which are least used by marine mammals is one obvious technique to try to

minimise the risk to the animals’ hearing and disturbance effects. Such techniques

are long standing and have been widely implemented in the form of marine reserves

e.g. Larkin (1996); Myers and Worm (2005); Booth (2010).

However, the effectiveness of these marine reserves and the predictive power of risk

assessment systems such as ERMC, are limited by the quality of the models describing

the spatial density of the species of interest. Here we investigate the potential of the

branch and bound smoothing algorithm to model the instantaneous distribution of

harbour porpoise in comparison with the off-the-shelf standard penalised thin plate

spline methods implemented in MGCV. Consistent with section 3.3, we compare the

use of both local Gaussian spline basis functions as well as those of the thin plate

spline. Such models of the instantaneous distribution of harbour porpoise may then

be used to validate the beliefs of existing management measures and risk assessment

systems such as ERMC about the spatial distributions of the species of interest.
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3.4.2 Data

Line transect surveys were undertaken throughout European waters as part of

the second Small Cetaceans in the European Atlantic and North Sea and Adjacent

waters survey (SCANS II) (Burt et al., 2006). Here we consider the data collected in

those strata to the west and north of the United Kingdom. The effort and sightings

of harbour porpoise groups are displayed in Figure 3.20. Strata P, Q and T were

surveyed using ships, while strata J, N1 and R were surveyed using light aircraft.

Further information on data collection can be found in (Burt et al., 2006).

(a) SCANS-II strata
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(b) Harbour porpoise sightings and surveyed tran-
sects.

Figure 3.16: (a)SCANS-II survey strata (P, Q, T, J, N1 and R) to the west and north
of the UK. (b) Effort is displayed by the blue line while sightings of harbour porpoise
schools are indicated by the black points, the coastline is given in grey.

Consistent with the scale of the density estimates in the ERMC system, the data

were divided into half degree grid cells which were referenced by their centre coordi-

nates. The latitude and longitude of each sighting was calculated based on the vessels
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heading, along with the angle and radial distance associated with each sighting. The

ships heading was calculated using the end points of each transect and assumed the

ship followed a ”rhumb line” or loxodrome; meaning that the ship would be following

a constant bearing. The code used to perform these calculations, was adapted from

equations obtained from http://www.movable-type.co.uk/scripts/LatLong.html. Once

the locations of the sightings were established the number in each cell were counted

and recorded.

Each of the zigs or zags of the survey are classified as distinct transects, and in

distance sampling are assumed to be independent of one another. In the situation

more than one transect intersected the half degree two or more separate entries were

included in the data.

3.4.3 Modelling Methods

3.4.3.1 Estimation of Effective Effort

The effort associated with each cell was calculated as the length of transect within

the cell multiplied by twice the effective strip half width. Line transect surveys differ

from strip transects in that not all animals are counted within a certain distance of

the transect. Instead, the distances to the sightings are recorded. A function is then

fitted to these distances which describes the probability of observing an animal or

group of animals given their distance from the transect. Assuming that the transects

are randomly located throughout the survey regions means that on average the same

number of animals are available for detection at each distance from the transect. The

effective strip half width (µ) is then the distance at which as many animals are thought

to be missed between distance 0 and µ as are observed beyond distance µ, Figure 3.17.

This distance give us an effective strip (half) width, i.e. the equivalent width of a

strip transect which would have generated the same number of sightings if we were to
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have counted everything within this distance of the transect. In order to estimate the

effective strip widths, detection functions were fitted to the perpendicular distances

from both the ship and aerial surveys.

0 200 400 600 800 1000

0.
2

0.
4

0.
6

0.
8

1.
0

Perpendicular Distance (m)

P
ro

ba
bi

lit
y 

of
 D

et
ec

tio
n A

B

Figure 3.17: Half normal detection function, describing the probability of detecting
an animal or group of animals given perpendicular distance from the transect. The
dashed grey line represents the effective strip half width (µ) calculated as the distance
at which area A is equal to area B.

3.4.3.2 General Model

A Poisson generalised additive model was used to model the instantaneous distri-

bution of harbour porpoise. The counts of harbour porpoise sightings in each cell

were offset by the effort in each cell (equation 3.8).

log (yi/ei) = β0 +
K∑
k=1

βkf (dik) + εi (3.8)

where εi ∼ Poisson(λ)

yi and ei denotes the count and effort associated with the ith cell, respectively. β0

represents the intercept term, f(dik) the value of the spline basis function for the ith

cell and kth knot location and βk represents the corresponding coefficient. εi represents

the error term associated with the ith cell.
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3.4.3.3 Knot Selection

All data points were considered as candidate knot locations. Consistent with the

sandeel case study, the candidate knot locations were divided into starting groups

which were evenly spaced throughout the survey region, Figure 3.18. As these data

were in a grid format is was possible to choose each subset based on a grid with a wider

spacing. For example, if we consider the starting group of candidate knot locations

coloured yellow then it can be seen that there are two candidate knot locations of other

colours (belonging to other starting groups) between each yellow point in both the

horizontal and vertical directions. The same iterative process as described in Section

3.3.3, (Figure 3.5) was used to select the final set of knot locations. Also consistent

with the sandeel case study, the BIC statistic from the regsubsets routine was used

to select the optimum size of subset at each iteration.

Figure 3.18: Candidate knot sets for the branch and bound method. The different
colours represent the different starting sets.
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3.4.3.4 Model Assessment

The harbour porpoise sightings were modelled using both local Gaussian splines

and thin plate regression splines with the branch and bound method used for knot

selection. In addition, penalised thin plate spline methods within MGCV were used

for comparison. This model was restricted to use 15 degrees of freedom or less to

model this surface.

The predictive power of the models to data unseen by the model was assessed

using cross validation. Distance sampling assumes independence between transects,

therefore, each validation test was carried out by removing an individual transect

from the dataset. The model was then fitted to the remaining data and used to

predict the data points which were removed before fitting. The ability of the model

to predict this unseen data is measured using the mean square error (MSE) (equation

3.9), where nv is the number of data points removed.

MSE =

∑
(predicted− observed)2

nv

(3.9)

Consistent with the sandeel case study, the fit to the data was assessed using a

pseudo R2 score (equation 3.10) and additional statistics for model selection, including

the AIC, BIC were recorded.

pseudoR2 = (correlation(fitted, observed))2 (3.10)

The data used to fit the final models were ordered through time and the residuals

were checked for temporal autocorrelation using both a Wald-Wolfowitz (runs.test)

in the lawstat library, as well as the acf function in R.
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3.4.4 Results

3.4.4.1 Effective Strip Half-Widths

The effective strip (half) widths were assumed to be 400 m and 190 m for the

shipboard and aerial surveys, respectively. The detection functions used to estimate

these values are provided in Figure 3.19.
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Figure 3.19: Detection functions fitted to the perpendicular sighting distances from
the SCANS II surveys. The effective strip (half) widths are indicated by vertical the
dashed line. (a) Half normal detection function fitted to the shipboard sightings from
strata T, Q and P. (b) Hazard rate detection fitted to all aerial sightings.

3.4.4.2 Cross Validation

On average, the thin plate spline (TPS) basis functions provide better predictive

power to unseen data as well as a better fit to the observed data than the local

Gaussian splines (LGS). Not only are the cross validation MSE scores lower on average

for the TPS models than the LGS models, the mean pseudo R2 values are also higher

(Table 3.8).

There is no clear choice of modelling technique when comparing the MGCV method

and the branch and bound method for choosing the spatial smoothing fitted using
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Table 3.8: Harbour porpoise cross validation results for the branch and bound method
with various splines compared with MGCV.

Method Spline r Pseudo R2 MSE scores
AIC BIC Knots

mean median (sd)
B&B LGS 1 0.081 6.52 0.97 (15.22) 1101 1135 5.0
B&B LGS 2 0.097 7.14 0.81 (15.94) 1066 1101 5.1
B&B LGS 3 0.060 6.99 1.18 (15.40) 1068 1101 4.8
B&B LGS 4 0.025 7.15 1.20 (15.74) 1147 1168 2.0
B&B LGS 5 0.026 7.08 1.39 (15.58) 1145 1167 2.4
B&B TPS NA 0.164 6.38 0.86 (14.69) 958 992 5.0
MGCV TPS NA 0.172 6.23 1.02 (14.89) 951 1013 13.8

thin plate splines. However, the results do appear to slightly favour MGCV. The

pseudo R2 values indicate that MGCV provides a better fit to the data than the

branch and bound on average. In addition, while the median MSE scores indicate

that we would typically expect the branch and bound to do slightly better, the mean

MSE scores indicate that on average we would expect MGCV to provide the better

MSE score. Also, when the MSE scores are compared in a pair wise manner across

these two methods MGCV has the lower MSE score 51% of the time. However,

comparing the worst MSE scores (98.04 and 86.57 for MGCV and the branch and

bound, respectively) we see than in the worst case scenario the branch and bound

outperforms MGCV.

Although the branch and bound LGS method with an r value of 2 also looks like

it may provide promising predictive power based on the lowest median MSE score,

MGCV has lower MSE scores 61% of the time, and the branch and bound TPS models

have lower MSE scores 62% of the time.

Reassuringly, the AIC and BIC scores are roughly consistent with the MSE results.

On average, the AIC would select the MGCV model and the BIC would select the
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branch and bound model with TPS.

3.4.4.3 Prediction

The predictions from the MGCV model were compared with those from the branch

and bound TPS model. Predictions were also obtained from the branch and bound

model with LGS (r = 2), Figure 3.20.

Consistent with the cross validation results, the MGCV model provided a slightly

better fit to the data than the branch and bound TPS model, Table 3.9. Interestingly,

the branch and bound LGS model also gave a pseudo R2 value of 0.17 , matching the

fit of MGCV.

In contrast to the cross validation results, the AIC and the BIC would both select

the branch and bound LGS model. Second choice of the AIC would be the MGCV

model, while more consistent with the cross validation results, the BIC would select

the branch and bound TPS model, Table 3.9.

Table 3.9: Comparison of final model statistics for the MGCV GAM as well as the
branch and bound models with TPS and LGS with an r value of 2.

Method Spline r pseudo R2 AIC BIC df
B&B LGS 2 0.17 954 987 5
B&B TPS NA 0.16 963 996 5
MGCV TPS NA 0.17 958 1021 13.83

Although the autocorrelation plots didn’t suggest any problems of remaining tem-

poral correlation in the residuals, the Wald-Wolfowitz tests indicated significant corre-

lation for the MGCV and branch and bound LGS models (p-values 0.001 and <0.001,

respectively). In contrast the Wald-Wolfowitz test on the residuals from the branch

and bound TPS model showed no significant temporal autocorrelation (p-value 0.789).
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It is difficult to assess the accuracy of the predicted values. While all models predict

hot spots (which are also observed in the data) to the west of Scotland and the south

west of Ireland they differ slightly in their predictions of the extent of these hot spots,

Figure 3.20. Generally, the two branch and bound models are more consistent with

each other in their predictions than the MGCV model. The branch and bound models

appear to better predict the high data points to the south west of Scotland / north

of Ireland than the MGCV model. However, the MGCV model appears to better

predict the band of higher densities (which look to be apparent in the dataset) from

the north Scotland up to Shetland and beyond. Finally, the MGCV model predicts

a higher density of harbour porpoise further up the west coast of Ireland than the

branch and bound models, however it is difficult to tell from the data if this is a more

accurate representation of the data or not.
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(a) Observed Data (b) MGCV

(c) Branch and Bound TPS (d) Branch and Bound LGS

Figure 3.20: Predicted number of harbour porpoise sightings per unit effort compared
with the data. (a) Observed values: The average number of sightings per unit effort
is indicated by the colour scale. The transects surveyed are show in pink and the
sightings as black circles. (b) Predicted surface from the MGCV model using thin
plate spline basis functions. (c) Predictions from the branch and bound model using
thin plate spline basis functions. (d) Predictions from the branch and bound model
using local Gaussian spline basis functions.
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3.4.5 Discussion

In agreement with the findings of Cox (2008), the branch and bound method ap-

pears less effective in modelling more uniformly complex data. The distribution of

harbour porpoise is more homogeneous in its variability and less peaked than the

sandeel data.

However, while on average the MGCV GAM method appears to provide marginally

better predictive power, the median value indicates that typically the branch and

bound TPS model may be preferred and in the worst case scenario the branch and

bound out performs MGCV. In addition, the almost 50:50 “win” rate when the MSE

scores are compared pair-wise, make it very difficult to choose one model over the

other.

3.4.5.1 Model Selection

In contrast to the sandeel case study, the cross validation results indicate that the

AIC and BIC provided a reasonable criterion for the selection of the spatial smooth

for the harbour porpoise data. This is thought to be related to higher levels of

homogeneity in spatial variability across the surface. The LGS model with small r

was no longer required to provide a much better fit (and therefore small loglikelihood).

However, strangely the LGS model with an r value of 2 had the lowest AIC and BIC

values when fitted to the entire dataset.

3.4.5.2 Accuracy of Predictions

The accuracy of the predictions from the different models is difficult to assess.

Previous studies indicate that there is a high density of harbour porpoise to the west

of Scotland (Booth, 2010). In addition, Booth (2010) found that the distribution of

harbour porpoise appeared to be more northerly in 2005 (the year of this survey) than
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in other years which may be more consistent with the MGCV predictions. However,

the differing scales of this analysis with that of Booth (2010) make comparisons

difficult.

3.4.5.3 Concluding remarks and Future Directions

Dependent on which modelling technique is implemented there may or may not

be temporal autocorrelation in the residuals. However, the branch and bound spa-

tially adaptive smoothing technique could easily be implemented within a generalised

estimating equations framework to relax the assumption of independence.

Due to the difficulties associated with model selection in this instance a possible

solution would be to average model predictions across models, in line with AIC or

BIC weights (or similar) (e.g. Hjort and Claeskens (2003)). Alternatively, predictions

from all models could be used to incorporate model uncertainty; this is an important

consideration if management decisions are to be based on such results.
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3.5 General Discussion and Conclusions

This chapter has investigated the potential of the branch and bound algorithm

for implementing a spatially adaptive smooth. We have demonstrated the improved

predictive power to unseen data achieved by including the branch and bound smooth

in the presence / absence models. We have also demonstrated how this technique

can be used within a zero-inflated framework. In addition, we have shown that this

method performs similarly to the global off-the-shelf method (MGCV) for modelling

the more spatially homogeneous distribution of harbour porpoise.

3.5.1 Model Selection Criteria

BIC versus Cp mallows

In contrast to the study of Cox (2008) these investigations found that the Cp

mallows (similar to the AIC statistic) led to severe problems of over-fitting to the

data. The results of the cross validation indicated that the predictive power of the

resulting models for the branch and bound method, were vastly improved when the

BIC was used to select the size of the appropriate subset of knots.

AIC and BIC in Smoothing Selection

These results suggest that the AIC or BIC may be acceptable for the purposes of

spline selection for more uniformly variable surfaces but are less effective at selecting

splines for peaked data and heterogeneously variable data. There was reassuring

agreement between the AIC, BIC and cross validation MSE scores for the harbour

porpoise data but this was not the case for the sandeel data.

3.5.2 Comparison of Splines

These investigations demonstrated that the choice of spline can affect the fit and

thus the predictive power of a model. While the local Gaussian splines are more
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suited to highly peaked and spatially variable data, the thin plate splines appear to

be preferred when modelling more uniformly variable data.

In addition, these investigations found that the local Gaussian and thin plate splines

splines suffer similarly from predicting high values just outside the range of the data.

Both the full sandeel presence / absence model as well as the full zero-inflated model

predicted peaks out with the spatial range of the data.

3.5.3 Future Directions

Developments in computing power and the efficiency of algorithms will make this

method more practical in the future. Given that there are no statistics which can

be used to consistently and easily choose between splines, cross validation is recom-

mended as the most appropriate method for smooth selection. However, this branch

and bound can take a large amount of time to perform knot selection (∼10 minutes)

which makes cross validation time consuming.

It is likely that in the near future the number of potential knot locations which

the branch and bound algorithm will be able to practically consider will no longer

be restricted to 30. Such developments should lead to improved results from this

method. Although the method presented in this chapter attempts to work around this

restriction by choosing a large number of potential knot locations and implementing

an iterative algorithm, we do not achieve the “all possible subsets” ideal. However,

the more knots the branch and bound algorithm can consider, the closer we will get

to this ideal

Given the successful results of the LGS models, it would be interesting to investigate

other locally acting basis functions. In addition, fitting LGS surfaces using difference

r values within the same model may improve the ability of the model to capture
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variability at different scales. However, this latter idea would lead to a very large

number of potential basis functions for the branch and bound to consider.

Generally when you include interactions within a model you should also include

the main (linear) terms. Based on this idea, linear terms for both north and east

were included in the model as well as the spatial smooth. The effects of doing this

were not investigated but may have contributed to the problems observed in the top

right corner of the presence / absence predictions for the sandeel data. It would be

worth investigating the effects of excluding these main terms from the models.

In this chapter, we assessed the ability of the models to predict to data unseen via

cross validation techniques. However, the true assessment of any modelling technique

is with reference to the true underlying function. In order to assess this we require

an appropriate suite of benchmark functions so that methods such as these can be

compared across these standard functions. As yet there are a very limited number

of such functions available and none of which are realistic enough to require spatially

adaptive modelling techniques to best capture the underlying function. This is an

area which requires urgent development.



Bibliography

S. Arnott, G. Ruxton, and E. Poloczanska. Stochastic dynamic population model of

North Sea sandeels, and its application to precautionary management procedures.

Marine Ecology Progress Series, 235:223–234, 2002.

M. Austin. Spatial prediction of species distribution: an interface between ecological

theory and statistical modelling. Ecological Modelling, 157:101–118, 2002.

M. Austin and J. Meyers. Current approaches to modelling the environmental niche

of eucalypts: implications for management of forest biodiversity. Forest Ecology

and Management, 85:95–106, 1996.

J. D. Baker. Variation in the relationship between offspring size and survival pro-

vides insight into causes of mortality in Hawaiian monk seals. Endangered Species

Research, 5:55–64, 2008.

S. Barry and A. Welsh. Generalized additive modelling and zero inflated count data.

Ecological Modelling, 157:179–188, 2002.

C. Booth. Variation in habitat preference and distribution of harbour porpoises west

of Scotland. PhD thesis, School of Biology, University of St. Andrews, 2010.

P. Bromley, T. Watson, and J. Hislop. Diel feeding partterns and the development of

food webs in pelagic 0-group cod (Gadus morhua L.), haddock (Melanogrammus

aeglefinus L.), whiting (Merlangius merlangus L.), saithe (Pollachius virens L.),

165



166

and Norway pout (Trisopterus esmarkii Nilsson) in the northern North Sea. ICES

Journal of Marine Science, 54:846–853, 1997.

M. Buhmann. Radial basis functions. Acta Numerica, pages 1–38, 2000.

M. Burt, D. Borchers, F. Samarra, and Others. Preliminary abundance estimates

from SCANS II. To be published 2007, 2006.

M. Cox. Acoustic and ecological investigations into predator-prey interactions between

Antarctic krill ( Euphausia superba) and seal and bird predators. PhD thesis, Bi-

ology / Mathematics and Statistics, 2008.

J. Cragg. Some statistical models for limited dependent variables with application to

the demand for durable goods. Econometrica, 39:829–844, 1971.

C. Embling, P. Gillibrand, J. Gordon, J. Shrimpton, P. Stevick, and P. Hammond. Us-

ing habitat models to identify suitable sites for marine protected areas for harbour

porpoises (Phocena phocena). Biological Conservation, 143:267–279, 2010.

G. Engelhard, J. van der Kooij, E. Bell, J. Pinnegar, J. Blanchard, D. Mackinson,

and D. Righton. Fishing mortality versus natural predation on diurnally migrating

sandeels Ammodytes marinus. Marine Ecology Progress Series, 369:213–227, 2008.

P. Evans. Shipping as a possible source of disturbance to cetaceans. Technical report,

ASCOBANS, 2003.

J. Fox. Applied Regression, Linear Models, and Related Methods. Sage, 1997.

M. Frederiksen, M. Edwards, A. Richardson, N. Halliday, and S. Wanless. From

plankton to top predators: bottom-up control of a marine food web across four

trophic levels. Journal of Animal Ecology, 75:1259–1268, 2006.



167

R. Furness. Management implications of interactions between fisheries and sandeel-

dependent seabirds and seals in the North Sea. ICES Journal of Marine Science,

59:261–269, 2002.

G. Furnival and R. Wilson. Regressions by leaps and bounds. Technometrics, 16:

499–511, 1974.

M. Graham. Confronting multicollinearity in ecological multiple regression. Ecology,

84:2809–2815, 2003.

J. Granadeiro, J. Andrade, and J. Palmeirim. Modelling the distribution of shorebirds

in estuarine areas using generalised additive models. Journal of Sea Research, 52:

227–240, 2004.

S. Greenstreet, J. McMillan, and E. Armstrong. Seasonal variation in the importance

of pelagic fish in the diet of piscivorous fish in the Moray Firth, NE Scotland: a

response to variation in prey abundance? ICES Journal of Marine Science, 55:

121–133, 1998.

S. Greenstreet, E. Armstrong, H. Mosegaard, H. Jensen, I. Gibb, H. Fraser, B. Scott,

G. Holland, and J. Sharples. Variation in the abundance of sandeels Ammodytes

marinus off southeast Scotland: an evaluation of area-closure fisheries management

and stock abundance assessment methods. Journal of Marine Science, 63:1530–

1550, 2006.

A. Guisan, J. Edwards, and T. Hastie. Generalized linear and generalized additive

models in studies of species distributions: setting the scene. Ecological Modelling,

157:89–100, 2002.

P. Hammond and K. Grellier. Grey seal diet composition and prey consumption in



168

the North Sea. Technical report, Executive Summary project MF0319, SMRU,

University of St. Andrews, 2006.

R. Harder and R. Desmarais. Interpolation using surface splines. Journal of Aircraft

9, 1972.

J. Hardin and J. Hilbe. Generalized Estimating Equations. Chapman and Hall/CRC,

2003.

T. Hastie and R. Tibshirani. Generalized Additive Models. Chapman and Hall, 1990.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning.

Springer Series in Statistics. Springer-Verlag, New York., 2001.

N. Hjort and G. Claeskens. Frequentist model average estimators. J. Am. Stat.

Assoc., 98:879–899, 2003.

ICES. Ices catch by species, area and year (1973-2008). Eurostat/ICES database on

catch statistics - ICES 2007, 2009.

J. Johnson and K. Omland. Model selection in ecology and evolution. TRENDS in

Ecology and Evolution, 19:101–108, 2004.

R. Kohavi. A study of cross-validation and bootstrap for accuracy estimation and

model selection. In International Joint Conference on Artificial Intelligence, 1995.

J. Kuha. AIC and BIC comparisons of assumptions and performance. Sociological

Methods and Research, 33:188–229, 2004.

D. Lambert. Zero-inflated poisson regression, with an application to defects in man-

ufacturing. Technometrics, 34:1–14, 1992.

P. Larkin. Concepts and issues in marine ecosystem management. Reviews in Fish

Biology and Fisheries, 6:139–164, 1996.



169

T. Lumley. Regression subset selection including exhaustive search, version 2.9. 2009.

E. Mammen and S. van de Geer. Locally adaptive regression splines. The Annals of

Statistics, 25:387–413, 1997.

T. Martin, B. Wintle, J. Rhodes, P. Kuhnert, S. Field, S. Low-Choy, A. Tyre, and

H. Possingham. Zero tolerance ecology: improving ecological inference by modelling

the source of zero observations. Ecology Letters, 8:1235–1246, 2005.

J. Matthiopoulos, S. Smout, A. Winship, D. Thompson, I. L. Boyd, and J. Harwood.

Getting beneath the surface of marine mammal - fisheries competition. Mammal

Review, 38(2&3):167–188, 2008.

A. Miller. Subset selection in regression. Chapman and Hall, 2002.

A. Mollett, C. Schofield, I. Miller, J. Harwood, C. Harris, and C. Donovan. Envi-

ronmental risk management capability: Advice on minimising the impact of both

sonar and seismic offshore operations on marine mammals. Technical report, SPE

Offshore Europe Oil & Gas Conference & Exhibition held in Aberdeen, UK, 8th to

11th September, 2009.

J. Mullahy. Specification and testing of some modified count data models. Journal

of Econometrics, 33:341–365, 1986.

R. Myers and B. Worm. Extinction, survival or recovery of large predatory fishes.

Philosophical Transactions of the Royal Society, 360:13–20, 2005.

S. Panigada, M. Zanardelli, M. MacKenzie, C. Donovan, F. Mélin, and P. Hammond.
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Chapter 5

General Discussion

5.1 General Conclusions

This thesis has developed a number of statistical techniques whose application has

important implications for the management of the marine environment. It has ad-

dressed two key concerns in the North Sea at present: the fishing and predation

pressure on sandeels, a key prey species, and the management of acoustic noise in

the marine environment. To do this we have utilised computationally intensive meth-

ods in the development of novel analyses and simulations. While Chapters 2 and 4

have developed techniques to deal with specific management issues which were not

addressed in existing analyses or simulations, Chapter 3 developed a novel spatial

modelling technique which is widely applicable in any 2-dimensional modelling con-

text.

5.1.1 Management of North Sea Sandeels

Firstly, this thesis provided compelling evidence that a substantial proportion of

the sandeels consumed by grey seals are H. lanceolatus, a species which is not commer-

cially exploited, rather than the commercially important A. marinus. Previous anal-

yses documented the suspected presence of H. lanceolatus in addition to A. marinus

but did not attempt to quantify the biomass of each of these species of sandeel (Prime
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and Hammond, 1990; Hammond et al., 1994a,b). The novel methods in Chapter 1

of this thesis attempt to estimate the consumed biomass of these species separately

to allow seal predation specifically on A. marinus, one of the key prey species in the

North Sea, to be included in multispecies fisheries models. Not only did this model

attempt to identify two separate distributions of otoliths sizes thought to belong to

each of these species using a mixture model, it also implemented a size dependent

number correction factor (NCF). Although species specific NCF values have been

used in previous hard part diet analyses, a NCF function dependent otolith size has

never before been implemented within species. The inclusion of this was important

as not only does it allow more accurate predictions of the total consumed biomass of

sandeels but also what quantity may be A. marinus. A general trend of increasing

probability of recovery with increasing otolith size has been observed both within

and across species (Tollit et al., 1997; Bowen, 2000; Grellier and Hammond, 2006),

therefore it is likely that more of the smaller otoliths belonging to A. marinus will

be lost to digestion in comparison with the larger otoliths thought to belong to H.

lanceolatus.

Chapter 1 also presented quantitative results regarding a number of sources of bias

in the estimation of the total biomass of sandeels consumed by grey seals. Accounting

for the size dependent NCF, a consideration which was not included in previous

analyses, suggested that the total biomass of sandeels may have been previously

underestimated. In addition, we also considered the implications of using the wrong

relation for estimating sandeel mass from otolith dimension. In previous analyses

of the North Sea data, the total biomass was calculated assuming a fish mass to

otolith dimension relation based solely on A. marinus, we found that accounting for

the presence of H. lanceolatus and using species specific relations would most likely

lead to an increase in the estimated total biomass consumed. However, it is likely



252

that the variability in relations within species would have even more influence on

the estimates of consumed biomass than the variability between species, similar to

findings by Pierce et al. (2007) and Froese (2006).

In addition to investigating the predatory pressures of grey seals on sandeels, par-

ticularly A. marinus, in Chapter 3 we also investigated the effects of the closure of

the sandeel fishery on the distribution of sandeels in the Firth of Forth and Wee

Bankie region off the east coast of Scotland. To do this we developed a novel spatial

modelling technique to investigate both the spatial distribution of sandeel presence

and density. Unlike many existing models our technique allows the 2-dimensional

spatial smooth to vary more in some regions of the surface than others. Although a

few other techniques apply the same idea (Mammen and van de Geer, 1997; Zhou and

Shen, 2001), none, as far as we know, have been implemented within a zero-inflated

model. In addition, our technique is easy to implement in any model which allows the

inclusion of linear terms. In contrast, the other methods often require more complex

methods and are less generic across different types of model (Mammen and van de

Geer, 1997; Zhou and Shen, 2001).

Applying the spatial modelling technique developed in Chapter 3, improved both

the fit and the predictive power of the model describing sandeel presence in com-

parison with both the commonly used MGCV package and also the model where no

spatial information was used (the “environmental covariate” model). Although the

fit of the model to sandeel density was improved by applying this technique there

were less clear results regarding the predictive power. However, the addition of our

spatially adaptive smooth in both the presence / absence and animal density models

suggest that there may be more of a division between the sandeels around the Isle of

May region, which is an important feeding ground for seabirds, and the sandeels in
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the main fishing areas, Berwick’s Bank and Marr Bank, than would be suggested by

the environmental covariate models. In addition, our models suggest higher proba-

bilities of presence and higher densities of sandeel in the Berwick’s Bank and Marr

Bank regions than the environmental covariate models. Such observations lead us

to consider whether the sandeels around the Isle of May, and therefore the seabirds

which feed on them, may be less affected by fisheries operating on Berwick’s Bank

and Marr Bank than previously thought. There also appears to be something which

makes the Berwick’s Bank and Marr Bank especially appealing to sandeels which is

not currently included in the environmental covariate models, further investigations

into what these factors are will aid understanding of sandeel distribution. Our mod-

els also support the theory that the distribution of sandeels contracts and expands

around areas of preferred habitat (Wright et al., 2000), therefore it is important to be

aware that although fisheries catches may not decrease the sandeel population may

well be in decline.

5.1.2 Management of Acoustic Noise in the Marine Environ-
ment

When the Royal Navy operates sonar, one consideration is where can they do so

with minimal disturbance to marine mammals. Such concerns led to the development

of the Environmental Risk Management Capability (ERMC) (Mollett et al., 2009),

which amongst other things, uses the predicted densities of various species of marine

mammal to try to choose locations which are less likely to have high densities of

animals. It is therefore important that the predicted densities of marine mammals

in different regions is accurate. In Chapter 3, we apply the same novel spatially

adaptive smoothing technique to model the distribution of harbour porpoise to the

west of the United Kingdom. The cross validation results suggested that a number

of different models fitted using our spatially adaptive smoothing, as well as an MGCV
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model, performed equally well for predicting the distribution of this species. However,

the predictions from each of these models differed somewhat, an uncertainty that as

yet is not accounted for in these risk assessment methods. Such results suggest that

in such instances we must move to methods which incorporate predictions from a

range of models rather than just relying on a single model, perhaps using techniques

such as model averaging.

Such sources of uncertainty in our prediction of where species are likely to occur at

a given time, as well as operational priorities, mean that sonar may be operated in

areas with higher abundance of marine mammals. This has led to the implementation

of additional management measures such as monitoring zones, however, currently the

size of these zones is chosen arbitrarily (Compton et al., 2008). Chapter 4 of this

thesis, incorporated parts of the ERMC software to create sophisticated simulations

which provided the first scientific evaluation into the effectiveness of monitoring zones.

We have shown that for cetacean species, a monitoring zone of at least 2 km is

generally advisable for reducing the risk of TTS and PTS for any animal sighted from

the vessel. However, in contrast, monitoring for pinniped presence did not appear to

be successful in reducing the risks of TTS and PTS due to the higher sensitivity in the

hearing of these animals and the fact that they are harder to detect; a demonstration

of the importance of improving our ability to detect marine mammals if this technique

is to be effective. A further consideration highlighted in this chapter, is the rapid rate

of increase in cumulative sound exposure level at the beginning of the simulation for

any animal in the vicinity of the vessel, such observations indicate the importance of

monitoring for marine mammal presence for a period of time prior to the operation

of the sonar.
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5.2 Making the Most of Computer Intensive Method-

ology

The application of all methods in this thesis has relied on computer intensive

methodology. In Chapter 2, we implemented maximum likelihood techniques to gen-

erate parameter estimates as well as a bootstrap to estimate uncertainty. Chapter 3,

relied on the computationally intensive branch and bound algorithm to attempt to

find the optimal spatial smooth and the simulations in Chapter 4 pushed even the

most up-to-date personal computer at the time to its limits. However, one point that

became obvious, particularly when working on the sandeel recovery data in Chapter

2, is that no amount of computing power will compensate for a lack of data or knowl-

edge. In this instance, we simply did not have enough information to accurately

quantify the biomass of A. marinus consumed by grey seals, when they were also

consuming other species of sandeel. Although increased computational power allows

us to more easily test the assumptions and sensitivity of our models to uncertainty,

the accuracy and precision of our results ultimately relies on the quality of the data.

Computer intensive methodology can provide assistance in the collection of good

quality data. Currently, software such as WiSP (Zucchini et al., 2007) and the au-

tomated survey design engine within DISTANCE, versions 6.0 (Thomas et al., 2010)

provide methodologies that aid survey design. This software uses computationally

intensive methodologies to assess the effectiveness of different survey designs and

sampling protocols prior to commencing the survey. As part of this process, it is pos-

sible to test the robustness of different techniques under various scenarios and choose

the one that performs the best, e.g. the one that will give results with the least bias

or lowest variance.
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Such testing of survey or experimental methods via intensive computational meth-

ods prior to commencing data collection can also be used to generate more cost effec-

tive surveys, as well as providing better quality data . The cost of running computer

simulations is vastly lower than the costs of data collection. In addition, Roff (2006)

points out that, where possible, experiments or surveys should be designed so that

traditional analyses may be applied. It is only when such methods are not applicable

that we must resort to analyses that can better address the challenges encountered.

Traditional analyses have the advantages that they have been well tested, possess

well studied properties and have a large number of associated diagnostic techniques.

5.3 Future Directions

This thesis has investigated a variety of data and computer intensive methodolo-

gies. However, within each chapter there is still potential for future research and

methodological development.

Firstly, we believe that one of the most promising techniques for accurately quan-

tifying the biomass of A. marinus consumed by grey seals would be DNA analysis of

faecal samples. Indeed, during seal scat sampling in 2010 samples were collected for

DNA analysis in addition to the collection of hard parts (Hammond pers. comm.).

However, DNA analysis is expensive, and the required amounts of funding is one of

the limitations of this technique. Although there is some potential to use sophisti-

cated shape analysis techniques to distinguish the otoliths of A. marinus from those

of H. lanceolatus, they are difficult to differentiate even prior to digestion.

A further consideration of the otolith analyses is ensuring that the total consumed

biomass of sandeels is estimated accurately. This requires further studies to investi-

gate the relation between fish mass and otolith length for both A. marinus and H.
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lanceolatus. In addition, further feeding experiments are required to more accurately

determine the relationship between otolith size and the probability of recovery.

The most important development for furthering spatial modelling methodology

would be to create a suite of 2-dimensional benchmark functions. The only currently-

available 2-dimensional benchmark function that we are aware of is the horseshoe

(e.g. Wood et al. (2008)), which lacks a realistic complexity. Such functions can be

used to assess the effectiveness of spatial modelling techniques, such as the spatially

adaptive smoothing considered in Chapter 3, by assessing the fit to the underlying

function, rather than relying on cross validation techniques where the true function

is unknown. These benchmark functions can also be used to assess the effectiveness

of the modelling techniques under different scenarios, e.g. different levels of observa-

tional error.

Finally, there is potential for the monitoring range simulations to be applied to other

scenarios, e.g. different species and locations, and different sound characteristics (fre-

quencies, source strength, duty cycle, duration). In addition, the collection of more

accurate data on marine mammal response to sound would allow the effectiveness of

“soft starts” to be assessed. However, before such investigations are undertaken it

is essential to develop more efficient code for the simulations. Currently, the simula-

tions for one species, based on a single detection function, take around two weeks to

complete.

5.4 Concluding Remarks

With increasing technology has come increasing risks for the marine environment.

However, this thesis has demonstrated a number of ways in which technological and

statistical developments can also be used to aid more environmentally sustainable, and
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potentially more economically productive, management of these valuable resources.

We must therefore ensure that our management techniques keep pace with the rapidly

advancing technology of our society.
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