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Alkaline-silicate complexes host some of the world’s largest resources of rare-earth elements and high-field-
strength elements (REE & HFSE) and represent the most fractionated magmatic systems on our planet. 
Geochemical evidence indicates that they are mantle melts, but while various studies highlight a role for 
lithospheric mantle, we do not know the precise origin of their contained REE and HFSE, and whether enrichment 
of the mantle source for these magmas can be attributed to specific geodynamic processes or events.
We present new Nd-Hf isotope measurements (143Nd/144Nd & 176Hf/177Hf ) made by LA-MC-ICP-MS, as well 
as a compilation of existing isotopic data for a suite of alkaline igneous rocks from the Gardar Province, a 
Mesoproterozoic continental rift in southern Greenland. Neodymium and hafnium isotopes are unaffected by 
crystal fractionation and can directly fingerprint the source of REE and HFSE. The dataset covers both phases of 
Gardar magmatism (1325–1261 and 1184–1140 Ma) and incorporates mafic dyke swarms and km-scale intrusive 
complexes, including Ilimmaasaq (Ilímaussaq) and Motzfeldt, which host some of the world’s largest REE and 
HFSE deposits. The majority of Gardar complexes have a narrow range of positive median initial εNd (0 to 
+3.3) and εHf values (+0.2 to +6.0). Only two granite intrusions and the Eriksfjord basaltic lavas have crustally 
contaminated Nd-Hf isotope compositions, with the vast majority of Gardar igneous rocks preserving the isotope 
signature of their mantle source. Considering the diversity of rock types in the Gardar Province, initial εNd -
εHf compositions are remarkably homogeneous, indicating a derivation of the Gardar’s REE and HFSE from a 
laterally-extensive mantle melt source.
Several Gardar systems have low initial εHf for a given εNd (ΔεHf to -9.7), a distinctive signature as few geological 
processes decouple the Nd and Hf isotope systems. The decoupled Nd-Hf isotope signatures are consistent 
with contributions from isotopically-matured phlogopite-bearing metasomatic veins (commonly known as PIC: 
phlogopite-ilmenite-clinopyroxene) in the lithospheric mantle. The metasomatising fluids that formed these 
source rocks were introduced via Palaeoproterozoic subduction, but the Gardar isotopic signatures indicate that 
REE and HFSE enrichment of these metasomes was not derived from subducted sediment; instead it is likely that 
metals were scavenged from the mantle wedge overlying the ancient subduction zone. The Gardar Nd-Hf isotope 
evolution trends overlap with a global compilation of kimberlites through time and allow us to tie the origin of 
the PIC metasomes to the regional geodynamic history of South Greenland. We identify PIC metasomes as a key 
metal source for the Gardar and by extension perhaps other REE-mineralised igneous provinces globally.
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1. Introduction

Alkaline-silicate and associated carbonatite magmatic systems host 
large deposits of rare-earth elements (REE) and high-field-strength el-
ements (HFSE) that are critical for low-carbon technologies (Goode-
nough et al., 2018; Anenburg et al., 2021; Beard et al., 2023). While nu-
merous processes control the concentration and total amount of metal 
in alkaline systems, several studies note that the largest ore deposits are 
derived from melting of enriched mantle sources (Downes et al., 2005; 
Poletti et al., 2016; Smith et al., 2016; Song et al., 2018). However, fun-
damental questions remain regarding the exact nature of this enriched 
mantle, and the relationship between source composition and minerali-
sation. For example, some deposits preserve chemical signatures related 
to ancient subduction (Moore et al., 2015), whilst others record input 
from the deep mantle (Dauphas and Marty, 1999). An understanding of 
the mechanisms that produced and preserved the fertile mantle sources 
that generated world-class REE deposits could guide exploration toward 
regions with favourable geology for the formation of similar minerali-
sation (Wrobel-Daveau et al., 2022).

Europe’s largest REE belt is the Gardar Province, a Mesoprotero-
zoic continental rift in SW Greenland (Fig. 1). Gardar igneous rocks 
are diverse and include mafic dyke swarms, alkaline volcanic rocks 
of basalt and basanite to rhyolite and phonolite composition, and km-
scale intrusive complexes including syenite, granite, gabbro and minor 
carbonatite. Two evolved complexes, Ilimmaasaq (Ilímaussaq in older 
Greenlandic orthography) and Motzfeldt, contain some of the world’s 
largest REE-Nb-Ta-Zr deposits. The primitive melts that fed these com-
plexes have trace-element and sulphur isotope compositions similar to 
arc magmas, despite their continental rift setting (Goodenough et al., 
2000; Köhler et al., 2008; Hutchison et al., 2021). These subduction 
signatures persisted across two phases of Gardar rift magmatism span-
ning ca. 160 Myr and indicate a role for enriched lithospheric sources. 
In spite of efforts to characterise the Gardar melt source, and the key 
resource potential of the Gardar province, uncertainty remains regard-
ing:

(1) The origin of the REE and HFSE in the enriched mantle source 
for Gardar magmas. Do they derive from subducted marine sediments, 
altered oceanic crust, or deep primordial mantle (Dauphas and Marty, 
1999; Hou et al., 2015; Weng et al., 2021)? Were they transferred to the 
lithospheric mantle by fluids or melts (Moore et al., 2015; Hutchison et 
al., 2021)? Or were the REE derived from the convecting asthenospheric 
mantle (Yaxley et al., 2022)?

(2) The mineralogy of the enriched mantle source. Two end-member 
mantle lithologies have been proposed as sources for alkaline mag-
mas (Pilet et al., 2008; Rooney et al., 2017; Choi et al., 2021): mica-
amphibole-rutile-ilmenite-diopside (MARID; Dawson and Smith 1977) 
and phlogopite-ilmenite-clinopyroxene (PIC; Grégoire et al. 2002). Both 
occur as metasomatic veins in the lithospheric mantle and are cata-
logued in xenoliths suites from kimberlite fields worldwide (Nowell et 
al., 2004; Fitzpayne et al., 2019). Did primitive, asthenospheric mantle 
and depleted lithospheric mantle sources also contribute?

(3) Whether variations in source composition correlate directly to 
the presence of mineralisation in the evolved alkaline complexes, or 
are similar among mineralised and unmineralised complexes. Province-
wide interpretations of trace-element and S-isotope data (Hutchison et 
al., 2021) are mostly limited to mafic rocks, due to the extensive degree 
of crystallisation in some intrusive complexes.

Nd-Hf isotopes (143Nd/144Nd & 176Hf/177Hf ) are well-established 
tracers of mantle source composition, and are suited for application to 
highly-evolved alkaline rocks because they are robust during fractional 
crystallisation (Vervoort and Blichert-Toft, 1999). In the case of REE-
HFSE deposits, they also provide direct information on the origin of the 
metals of interest, with Nd acting as a proxy for REE and Hf tracking 
the source of other HFSE such as Nb and Ta. Mantle source Nd-Hf iso-
tope compositions can, however, be obscured during magma ascent via 
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assimilation of continental crust (Cox and Hawkesworth, 1985; Arndt 
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et al., 1993; Pearce et al., 2021). Age-correction of measured Nd-Hf iso-
tope compositions may also be compromised where the Lu/Hf or Sm/Nd 
ratios have been modified by post-magmatic geological processes (Po-
letti et al., 2016; Borst et al., 2019). To date, we know of no study that 
has analysed Nd-Hf isotope compositions across a full lithological suite 
of a rift-related alkaline igneous province, rigorously assessed the po-
tential influence of crustal assimilation, and fingerprinted the specific 
mantle source lithologies linked with mineralisation, tying their origin 
to the regional geodynamic history.

The Mesoproterozoic Gardar Province in South Greenland is one of 
the largest and best-characterised alkaline provinces on the planet (Up-
ton, 2013; Hutchison et al., 2021), thus an ideal location for this study. 
We present a detailed Nd-Hf investigation of all major magmatic suites, 
including alkaline intrusive complexes and mafic dyke swarms spanning 
both phases of Gardar rifting (Fig. 1). New in-situ Nd and Hf isotope 
measurements are made on zircon, baddeleyite, apatite, and the Hf-
rich phases wöhlerite and eudialyte group minerals, the chemistry of 
which remained robust during post-magmatic alteration (Appendix A). 
The isotopic data constrain the origin of REE and HFSE for mineralised 
and unmineralised Gardar intrusions. They link the origin of Gardar’s 
lithospheric mantle source rocks to the regional geodynamic history of 
South Greenland, and shed light on processes critical for the formation 
of world-class alkaline-silicate REE-HFSE mineralisation.

2. Geological setting

The South Greenland crust is divided into four geological terranes, 
which resulted from northward subduction in the Palaeoproterozoic 
(present day coordinates; Fig. 1b; Garde et al. 2002a; Upton et al. 
2003). (1) The North Atlantic craton comprises gneisses of Archean 
age (3200–2600 Ma; Garde et al. 2002b), which were part of the 
Columbia supercontinent (Ernst et al., 2008). (2) The Ketilidian bor-
der zone comprises greenschist-facies Palaeoproterozoic metavolcanic 
and metasedimentary rocks deposited unconformably on the Archean 
basement (Fig. 1c; Patchett and Bridgwater 1984; Chadwick and Garde 
1996; Bagas et al. 2020). (3) The Julianehåb batholith is a belt of high-K 
calc-alkaline I-type granitoids created as part of a continental magmatic 
arc. It was emplaced in two pulses: a volumetrically-minor event at 
around 1850 Ma, and a dominant pulse at 1810–1790 Ma (Kalsbeek 
and Taylor 1985; Garde et al. 2002a; Vestergaard et al. 2024). (4) 
The pelite and psammite zones on Greenland’s southern tip are vari-
ably migmatised clastic sedimentary rocks, subordinate volcanic rocks, 
and schists interpreted as part of the Ketilidian forearc (Garde et al., 
2002a). The Ketilidian event resulted in subduction metasomatism of 
the South Greenland lithospheric mantle, enriching it in alkalies and 
volatile elements (Goodenough et al., 2002; Köhler et al., 2009; Bartels 
et al., 2015; Hutchison et al., 2021).

At around 1320 Ma the breakup of the supercontinent Columbia 
produced a transcontinental rift system that today spans > 5000 km 
from the Gulf of Bothnia in Southwestern Finland to Northern On-
tario, Canada. (Söderlund et al., 2005; Ernst et al., 2008; Siegel et al., 
2017). In South Greenland, rifting was active in two cycles, between 
1325–1261 Ma and 1184–1140 Ma, known as ‘Early’ and ‘Late’ respec-
tively (Fig. 1; Upton et al. 2003; Upton 2013). The products of rifting 
are termed “The Gardar Province” and form a suite of nepheline syen-
ite, quartz syenite, granite, gabbro and anorthosite complexes and mafic 
dyke swarms. Extrusive components including lavas and volcanic tuffs 
are interbedded with sandstones and termed together the Eriksfjord 
formation (Upton, 2013). Small volumes of lamprophyre and carbon-
atite were also erupted throughout the Gardar and are represented 
by clusters of diatremes and intrusive plugs (Coulson et al., 2003). A 
lamprophyre dyke on Illutalik island (Igdlutalik in older Greenlandic or-
thography), close to the centre of the Gardar province (Fig. 1), contains 
metasomatised lithospheric mantle xenoliths of phlogopite-bearing py-
roxenite (Upton, 1991), which we assess as a potential source for Gardar 

melts. World-class mineral deposits of REEs, zirconium, niobium and 
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Fig. 1. Geology of the Gardar Alkaline Province. (a) Map of Greenland showing location of the Gardar Province; (b) Terrane map of South Greenland; (c) Province-
scale map showing intrusions of the Gardar Province coloured by their age of emplacement (modified after Sørensen et al. 2006; Steenfelt et al. 2016); (d) 
Geochronology of the Gardar Province (data compilation in Appendix B).
cryolite resulted from Gardar magmatism (Borst et al., 2016; Marks and 
Markl, 2017).

3. Materials and methods

We determined 143Nd/144Nd and 176Hf/177Hf for a suite of sev-
enteen intrusive complexes across the Gardar Province (see Appendix 
A for detailed descriptions and notes on rock preparation). Analysed 
specimens were specifically chosen to test for spatial and temporal 
variations in source compositional signatures across the Gardar Alka-
line Province. They cover a suite of polyphase alkaline-silicate intru-
sive complexes and gabbroic to syenitic giant dykes, some of which 
were previously studied for trace-element and S isotope geochemistry 
(Hutchison et al., 2021). In most cases the internal parts of intrusive 
complexes were selected to minimise possibility of contamination by 
local country rocks, or the inheritance of xenocrysts from intrusion 
walls. Lithologies were selected based on their content of Nd- or Hf-
rich phases, usually apatite or zircon but also baddeleyite, eudialyte 
and wöhlerite, avoiding hydrothermal alteration. Material from the 
Ivittuut complex (Ivigtût in older Greenlandic orthography; Pauly and 
Bailey 1999; Goodenough et al. 2000), a fluorine-rich granite hosted 
by Archean gneiss, was included to test the maximum effect of crustal 
contamination on Nd-Hf isotope compositions (see discussion below).

Rock specimens were cleaned, crushed and processed at the Uni-
versity of St. Andrews. Most of the investigated rocks contained a 
low modal abundance of the target phases, which were therefore con-
centrated via magnetic and dense liquid separation techniques, with 
individual grains being hand-picked and mounted in epoxy for mi-
croanalysis. Most textural information is unfortunately erased by this 
procedure, although the specimens studied were in every case linked to 
petrographic analysis of thin sections. To inform targeting of the laser 
3

ablation analyses, growth zoning patterns within the mounted grains 
were imaged via BSE and SEM-CL techniques at the National Environ-
mental Isotope Facility, British Geological Survey, Keyworth, UK, or at 
the University of St. Andrews (Appendix C).

Neodymium isotope compositions of apatite and zircon were anal-
ysed with an ESI NewWave UP193UC Excimer laser ablation system 
coupled to a Thermo Scientific Neptune Plus MC-ICP-MS instrument at 
the Geochronology and Tracers Facility, British Geological Survey, Key-
worth, UK. Analytical uncertainties for unknowns were propagated by 
quadratic addition to include the standard error of the mean of the anal-
ysis and the reproducibility of the Durango apatite primary reference 
material. Accuracy was determined from analyses of the secondary stan-
dard glasses NIST-610, JNd-i, and JNd-i-LREE (Appendix B). Measured 
143Nd/144Nd ratios were adjusted for post-magmatic ingrowth of 143Nd
using intrusion crystallisation ages (Table 1) and the 147Sm/144Nd ratio 
as determined during the laser ablation analyses.

Hafnium isotopic compositions of zircon, baddeleyite, eudialyte, and 
wöhlerite were determined using a Cetax LSX-213 G2+ laser ablation 
system coupled to a Nu Plasma HR multi-collector ICP-MS instrument at 
the Department of Geosciences, University of Oslo. Analytical protocols 
followed Elburg et al. (2013). Accuracy was determined from analyses 
of the Mudtank zircon and LV-11 zircon reference materials (Appendix 
B). Measured 176Hf/177Hf ratios were adjusted for post-magmatic in-
growth of 176Hf using intrusion crystallisation ages and the 176Lu/177Hf
ratio as determined during the laser ablation analyses.

We compiled whole-rock and mineral separate Nd and Hf isotope de-
terminations for intrusive and volcanic rocks across the Gardar Province 
(Appendix B). Literature data were selected based on absence of post-
magmatic alteration, and all data, including our new analyses, were 
filtered based on analytical precision. The full data compilation method-
ology and Python code used for data processing are described in the 

supplementary information (Appendix A).
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Fig. 2. Nd & Hf isotope evolution of the Gardar Province. a), c) show isotopic determinations of individual grains, with analytical uncertainty (2σ). Panels b), d) 
additionally show median average initial 143Nd/144Nd or 176Hf/177Hf values per Gardar centre, with error bars showing the spread of isotopic compositions at 5% 
and 95% levels. Ages were determined via a variety of techniques (Appendix B) with age uncertainty shown at 2σ level. Published Nd isotope measurements were 
made on whole-rocks and mineral separates (references in Appendix B). Intrusive relationships observed in the field bracket the age of the North Qooroq intrusion 
between that of Motzfeldt and North Motzfeldt (1275.2–1272 Ma). Low-precision 143Nd/144Nd isotope determinations for Narsarsuaq and Paatusoq were made by 
us via LA-ICP-MS on zircon grains (b).
4. Results

4.1. Neodymium and hafnium isotope compositions

Gardar Nd-Hf isotope compositions are presented in Figs. 2–3, Ta-
ble 1, and Appendix A. Our compilation includes new in-situ LA-ICP-
MS Nd-Hf isotope measurements, and published mineral separate and 
whole-rock compositions for evolved alkaline and primitive mafic intru-
sions (Appendix B). All ranges of isotope compositions presented below 
are the 5–95% range of measured or age-corrected values per centre, or 
group of centres.

The majority of Early Gardar complexes are characterised by a nar-
row range of initial εNd intermediate between CHUR(t) and DM(t)(+1.5 
to +4.5), with the initial εNd values overlapping between complexes, 
and narrow variance in Nd isotope composition within individual com-
plexes (5–95% range < 1 ε unit). This includes basaltic dykes (Goode-
nough et al. 2002, termed Brown dykes or BD0 dykes in Gardar litera-
4

ture), the Grønnedal-Ikka (Grønnedal Íka) syenite-carbonatite complex 
(Halama et al., 2005), and numerous syenite complexes hosted by both 
Archean gneisses and the Julianehåb granitoids (Fig. 1). Three Early 
Gardar systems have Nd isotope compositions outside the range defined 
by the other complexes: Ivittuut, a small (520 × 450 m, Pauly and Bai-
ley 1999) F-rich granite, which was included to test the magnitude of 
possible crustal contamination effects and has εNd(𝑖) -3.0 to +0.7 (Good-
enough et al., 2000); the Eriksfjord basaltic lavas, which have εNd(𝑖)
-2.9 to +1.9; and alkaline to ultramafic lamprophyre dykes, which have 
higher εNd(𝑖) than the other complexes (+4.3 to +7.2, Goodenough et 
al. 2002).

The hafnium isotope record of Early Gardar magmatism is broadly 
consistent with that for neodymium. Intrusive complexes have median 
εHf(𝑖) around +5, showing a spread of values between -6.2 and +11.9. 
The Grønnedal-Ikka syenite-carbonatite, the oldest exposed complex, 
has near a chondritic median εHf(𝑖) value of +0.8, whereas the crustally-
contaminated Ivittuut granite has a median εHf(𝑖) value of -3.8.

Late Gardar magmatism is characterised by lower initial εNd val-

ues than the majority of Early Gardar complexes with median εNd(𝑖) for 
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Table 1

Summary of the geochronology and Nd-Hf isotopic composition of Gardar complexes. The full compilation is in Appendix B.

System Rock units investigated Age[Ma] 2σ initial εNd initial εHf

Early Gardar 5% median 95% 5% median 95%

Grønnedal Ikka Foyaite, sodalite syenite 1325 6 2.98 3.43 4.45 -1.72 0.76 2.31
Narsarsuaq Syenite 1284 7.3 1.57 2.31 3.35 4.02 4.99 6.54
Motzfeldt Alkali granite pegmatite, Ne syenite 1275.3 1.1 1.91 2.54 2.97 -1.15 1.26 6.68
North Motzfeldt Nepheline syenite 1272 13 1.76 3.04 3.48 2.05 3.74 5.54
Ivittuut Alkali granite pegmatite, granophyre 1264 8 -3.05 -1.61 0.70 -6.24 -3.82 -1.74

Late Gardar

Illerfissalik Sl4 syenite 1169.5 4.5 0.62 1.43 1.99 -0.83 0.22 1.53
Ilimmaasaq (Layered suite) Kakortorkite, layer 0 1156.6 6.9 -1.96 -0.74 0.05 -5.67 -3.71 -1.29
Ilimmaasaq (Granite) Alkali granite 1163 7 -3.08 -2.09 -0.88
Tuttutooq YGD Syenite, quartz syenite 1165.7 1.2 -2.33 -1.53 -0.78 -1.23 -0.03 6.82
Paatusoq Syenite 1140.9 1.3 -3.07 0.02 4.00 -1.08 1.36 4.56
each complex between -2.1 and +1.5. Late Gardar complexes also show 
greater internal variance in their initial εNd(𝑖) (-3.9 to +4.0) relative 
to Early Gardar complexes. The hafnium isotope composition of most 
Late Gardar intrusions occupies a narrow range of initial 176Hf/177Hf
between εHf(𝑖) -1.2 and +6.3, with no systematic age progression in 
Hf isotope compositions relative to CHUR (Fig. 2d). The Ilimmaasaq 
complex extends to less radiogenic initial εNd and εHf when compared 
with the rest of the late Gardar intrusions. It has the broadest range 
of initial 143Nd/144Nd and 176Hf/177Hf of any Gardar intrusion, ex-
tending from εNd -3.9 to +0.5 and εHf -5.7 to -1.3. The Ilimmaasaq 
data set includes published Nd isotope determinations from the Ilim-
maasaq granite, augite syenite, and layered suite (kakortorkite floor 
cumulates; Appendix B). The granite has the least radiogenic Nd com-
position, with a median εNd(𝑖) of -2.1, and based on its major-element 
and S-isotope composition, has incorporated local Eriksfjord formation 
sandstone (Hutchison et al., 2021). The augite syenite has the highest 
initial εNd within Ilimmaasaq (approximately chondritic), whereas the 
layered suite, which contains the bulk of the orthomagmatic REE-HFSE 
mineralisation, is intermediate between the two.

On an initial εNd vs. εHf diagram (Fig. 3), the Gardar complexes plot 
on, or below the terrestrial array of Vervoort et al. (2011), extending 
to a ΔεHf value of -9.8. Several complexes plot below the terrestrial 
array, including Grønnedal-Ikka, Ivittuut, Motzfeldt, and Ilimmaasaq. 
These complexes comprise a diversity of compositions — including a 
carbonatite-syenite complex, a granite, and two nepheline syenite com-
plexes — and include both Early and Late Gardar complexes hosted by 
both Archean rocks and Ketilidian granitoids. Notably, the Ilimmaasaq 
layered suite, which contains the Kringlerne (Ta-)Nb-REE-Zr (Tanbreez) 
deposit, has median ΔεHf of -3.8.

5. Discussion

It has been suggested that the melting of enriched mantle sources is 
critical for the formation of REE–HFSE magmatic ore deposits and that 
subduction imparts a continental-scale control on REE-HFSE prospec-
tivity (Hou et al., 2015; Hutchison et al., 2021; Weng et al., 2021; 
Beard et al., 2023). Previous authors have hypothesised that the arc-
like geochemical signatures in Gardar rocks were introduced to the 
mantle lithosphere underlying West Greenland during northward Keti-
lidian subduction, about 550 Myr prior to Gardar magmatism (Fig. 1, 
Upton and Emeleus 1987; Goodenough et al. 2002; Köhler et al. 2009; 
Hutchison et al. 2021). We here examine and discuss constraints on the 
sources for Gardar magmas, how the relative contributions from the var-
ious source components changed during the development of the Gardar 
Province, and implications for mineral exploration.

5.1. Crustal contamination of alkaline magmas

The diversity of rock types in the Gardar Province result in part from 
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variations in the extent of interaction between mantle-derived magmas 
and continental crust. Did a significant fraction of Gardar REE and HFSE 
mineralisation derive via melting or assimilation of continental crust? 
Upton et al. (2003) showed that many granitic and syenitic Gardar sys-
tems have higher initial 87Sr/86Sr than less-differentiated Gardar mafic 
dykes, suggesting that evolved Gardar rocks assimilated greater quan-
tities of continental crustal material. Furthermore, they showed that 
the initial Pb isotope compositions of Gardar complexes define mix-
ing trends toward their country rocks — the Archean North Atlantic 
craton or Proterozoic Julianehåb granitoid country rocks — indicating 
assimilation of local crust by the evolved Gardar magmas. Because the 
majority of mafic Gardar rocks (>4 wt.% MgO) contain similar or lower 
concentrations of Sr and Pb to upper continental crust (Rudnick and Gao 
2003, Appendix A), and because these elements are highly mobile in al-
kaline magmatic systems (e.g., Borst et al. 2019) the Sr and Pb isotope 
systems are sensitive tracers for crustal assimilation. The Nd and Hf iso-
tope systems appear to be relatively insensitive to crustal contamination 
due to lower mobility of these elements (e.g., Borst et al. 2019).

Fig. 3. Initial εNd vs. εHf diagram for Gardar complexes with median values 
for initial εNd & εHf per-complex, with error bars showing the spread of com-
positions in each complex at 5 and 95 percentile levels. The Terrestrial Array 
is from Vervoort et al. (2011). MORB-OIB data; Mantle end-members, and rift, 
post-collisional, and intraplate alkaline-silicate and carbonatite compositions 
from Yaxley et al. (2022) and our own literature compilation (data and refer-

ences in Appendix B).
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We included the Ivittuut complex in our analysis to test for the 
maximum effect of crustal contamination on the Nd-Hf isotope composi-
tion of mantle-derived Gardar magmas. Ivittuut is a small granite stock 
hosted by the North Atlantic craton, and has initial εNd and εHf iso-
tope compositions ca. 4 and 8 epsilon units lower than the other Early 
Gardar systems (Fig. 2, Goodenough et al. 2000). Similarly, the Ilim-
maasaq granite (Stevenson et al., 1997) has lower initial εNd than other 
Ilimmaasaq lithologies, which together with S isotope mixing models 
(Hutchison et al., 2021) suggest that crustal assimilation influenced 
their Nd isotope composition. A simple Nd isotope bulk mixing model 
(Appendix B) requires addition of 30% North Atlantic craton gneiss to 
a BD0 Brown dyke to generate the median Ivittuut Nd isotope compo-
sition of εNd(𝑖) = -1.6. The Eriksfjord basaltic lavas also have initial 
εNd consistent with a greater degree of crustal contamination than the 
majority of Gardar intrusive rocks (Fig. 2). Igneous provinces in con-
tinental rifts may show a greater degree of crustal contamination in 
their volcanic sequences as with the Eriksfjord (e.g., Deccan traps; Cox 
and Hawkesworth 1985) or alternatively their intrusive systems (e.g., 
Franklin large igneous province; Beard et al. 2017).

Despite variations in the dominant country rock type across the 
Province, the majority of Early Gardar complexes — including mafic 
dykes, highly-evolved syenite and carbonatite — are characterised by a 
narrow range of εNd(𝑖) between and within individual intrusions (< 3 ε 
units; Figs. 1, 2; cf. Deccan Traps εNd(𝑖) -15 to +2, Cox and Hawkesworth 
1985). Similarly, the Late Gardar complexes, excluding Ilimmaasaq, 
have a narrow range of median εHf(𝑖) values (< 4 ε units). These ob-
servations are consistent with crustal contamination having a relatively 
small effect on initial Nd-Hf isotope composition of most Gardar com-
plexes, compared with Pb-Sr isotopes. The limited influence of contami-
nation by local crust on Gardar Nd-Hf isotope compositions is consistent 
with a mantle source for their contained REE and HFSE.

5.2. Linking the mafic dykes and the intrusive complexes

Many intrusive complexes from both the Early and Late Gardar have 
undergone extensive fractional crystallisation (e.g., Marks and Markl, 
2017), which has obscured the trace-element signature of their melt 
source. Several lines of evidence suggest that the mafic dykes and sills 
share source components with the evolved central complexes and there-
fore record information about the origin of mineralisation: First, the 
initial εNd of Early Gardar Brown dykes (mafic dykes in Goodenough 
et al. 2002) overlaps with the narrow range of compositions defined 
by the relatively uncontaminated Early Gardar complexes (Fig. 2). Sec-
ond, evolved Late Gardar complexes have initial εNd & εHf that overlap 
with that of the gabbroic Tugtutooq Central Complex, and Younger Gi-
ant Dyke complex (Fig. 2). Third, the S-isotope composition and Zr/Nb 
of the Late Gardar mafic dykes, and of Early Gardar dykes adjacent 
to alkaline intrusions, overlaps with that of the Motzfeldt, Ilimmaasaq 
and Ivittuut complexes (δ34S +0.6 to +2.8, Zr/Nb 3–6; Hutchison et al. 
2021). It can thus be demonstrated that mafic dykes and sills of both 
Early and Late Gardar age tapped similar mantle sources to the evolved 
central complexes of their respective ages.

Gardar lamprophyres, which occur in both Early and Late Gar-
dar events, have elevated initial 143Nd/144Nd, Nb/Yb and middle 
REE/heavy REE relative to the Early and Late Gardar dykes, and the 
Eriksfjord basalts (Figs. 2, 4, Appendix A; Goodenough et al. 2002). 
We interpret the lamprophyres as melting products from a separate and 
distinct mixture of more enriched source components relative to the 
volumetrically-dominant basaltic portions of the Gardar Province, and 
the central complexes that represent their fractionation products. Con-
sequently, the lamprophyres are not discussed further.

5.3. Source components for Gardar magmatism

Gardar mafic rocks have major- and trace-element signatures that in-
6

dicate contributions from subduction metasomatised lithospheric man-
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tle; Specifically, their high LILE and halogen concentrations, and their 
negative primitive mantle normalised Nb anomalies overlap with the 
composition of continental- and oceanic arc basalts (Goodenough et al., 
2002; Köhler et al., 2009; Bartels et al., 2015; Hutchison et al., 2021). 
But the Gardar Province is associated with continental rifting. Where 
did these arc-like enriched source signatures come from, and were they 
important for mineralisation?

Tectonic classification diagrams using trace-element ratios of mafic 
Gardar units (MgO >4 wt.%, Fig. 4) suggest that the Early Gardar melts 
were derived from an enriched mantle source similar to that for mod-
ern E-MORB, and that they assimilated small but variable proportions of 
continental materials (Fig. 4a; Pearce 2008), significantly less than most 
continental flood basalts (Pearce et al., 2021). The Early Gardar Brown 
dykes and their Eastern Greenland equivalents, the Timiarmiit dykes 
(Bartels et al., 2015, 2016), define near-vertical trends on a Nb/Yb vs. 
Th/Yb diagram (Fig. 4a), indicative of variable degrees of assimilation 
of continental crust. Later Gardar dyke swarms and gabbroic giant dykes 
derive from a distinct and more enriched source than the Early Gar-
dar magmas, as inferred from their separate and higher Nb/Yb ratios 
(Fig. 4a), an interpretation supported by Nb/Zr, Ba/La ratios and S iso-
tope compositions (Hutchison et al., 2021). The Pearce (2008) diagram 
(Fig. 4) suggests a Late Gardar source intermediate between that typical 
for modern E-MORB and OIB. While the Late Gardar giant dykes define 
vertical trends in Nb/Yb vs. Th/Yb space, their Th/Yb ratios are simi-
lar to the MORB-OIB array, indicating a lower degree of magma-crust 
interaction relative to the Early Gardar dykes. Most Eriksfjord basalts 
plot in compositional fields defined by the Early Gardar Brown dykes 
(Fig. 4).

On a TiO2/Yb vs. Nb/Yb diagram (Fig. 4b), the Early Gardar Brown 
dykes and Timiarmiit dykes plot in the tholeiitic field and are tran-
sitional between the MORB and OIB arrays. Late Gardar dykes have 
higher TiO2/Yb consistent with retention of HREE by residual garnet, 
an indicator of partial melting of relatively deeper mantle source ma-
terial, a signature also manifested in their elevated middle REE/heavy 
REE ratios (Appendix A). The Late Gardar dykes straddle the tholeiitic-
alkalic boundary on the Pearce (2008) diagram.

Initial εNd and εHf values for the Gardar complexes are broadly simi-
lar to CHUR (Fig. 2), indicating that the Gardar source rocks had similar 
time-integrated Sm/Nd and Lu/Hf ratios to the convecting astheno-
spheric mantle. However, as noted above, trace-element systematics of 
mafic Gardar rocks that are comparable to modern arcs persist over ca. 
160 Myr of Gardar magmatism. The trace-element systematics there-
fore require input from enriched mantle sources that were preserved 
during mantle convection, and must accordingly derive from the litho-
sphere. The exceptionally narrow range of initial εNd between +1.5 and 
+4.7 of the uncontaminated Early Gardar intrusions results from a melt 
source that is near-homogeneous over a lateral extent of at least 200 km 
(Figs. 1, 2). A similar narrow range of εHf(𝑖) from -1.2 to +6.8 is seen be-
tween Late Gardar complexes, suggesting a role for laterally extensive 
metasomatism of the North Atlantic craton lithospheric mantle (Fig. 2).

The Ilimmaasaq complex, which hosts the world-class Kvanefjeld U-
REE-Zn and Kringlerne Ta-Nb-REE-Zr deposits (Marks and Markl, 2015; 
Borst et al., 2018) has low initial εNd and εHf compared with other Late 
Gardar complexes. While such isotope signatures are consistent with in-
corporation of continental crust by the Ilimmaasaq magmas, the silica 
undersaturated nature of the mineralised (kakortorkite and lujavrite) 
syenite units precludes that mechanism. Rather the low initial εNd and 
εHf signature must derive from the mantle melt source. Similarities be-
tween the Zr/Nb, Ce/Y and δ34S of Ilimmaasaq and Late Gardar mafic 
rocks indicate that some melt source components are shared among all 
late Gardar complexes. Ilimmaasaq’s distinct and lower initial εNd and 
εHf indicate that its REE and HFSE derive, at least in part, from mantle 
source components with higher time-integrated enrichment in incom-
patible trace elements. This observation suggests that Ilimmaasaq was 
predisposed to form its contained world-class REE-HFSE deposits due 

to enrichment of the lithospheric mantle source over a lateral length 
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Fig. 4. Trace element ratio diagrams for whole-rocks of mafic Gardar intrusions 
and Eriksfjord formation lavas (MgO >4 wt.%) used to evaluate crustal input, 
melting depth, and source composition (Pearce, 2008). (a) Early Gardar sam-
ples plot on and slightly above the MORB-OIB array of Pearce (2008) and are 
consistent with the incorporation of a small proportion of continental materi-
als, significantly less than most continental flood basalts (Pearce et al., 2021). 
Late Gardar compositions suggest a more enriched source with limited to no in-
put of continental material. (b) Early Gardar rocks are tholeiites and straddle 
the boundary between the MORB and OIB array. Late Gardar rocks have higher 
TiO2/Yb as a result of retention of HREE by garnet in their relatively deeper 
melt source. They are tholeiitic to alkalic in composition. Abbreviations: DMM 
– depleted MORB mantle; N-MORB—normal mid-ocean ridge basalt; E-MORB—
enriched mid-ocean ridge basalt; OIB – ocean island basalt (DMM, N-MORB, 
E-MORB, OIB from Pearce 2008); LC – lower continental crust; MC – middle 
continental crust; UC – upper continental crust (compositions from Rudnick and 
Gao 2003). OGDC & YGDC - Tuttutooq Older & Younger giant dyke complexes.

scale of ca. 20 km; the approximate distance between Gardar intrusive 
centres. The presence of REE-HFSE deposits in other Gardar intrusive 
centres, such as Motzfeldt Sø, indicates that the enrichment of the man-
tle source at Ilimmaasaq was not a requirement for mineralisation, 
rather a compounding factor that amplified the size of its contained 
7

mineral deposits.
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As noted above, several complexes plot below the terrestrial array on 
an initial Nd-Hf isotope diagram (Fig. 3). This Nd-Hf isotope decoupling 
is not correlated with the lithology of the igneous complexes, the degree 
of crustal contamination, or the type of country rock, so we infer that 
decoupled isotope signatures were present in the mantle source for both 
Early and Late Gardar melts.

5.4. Origin of the Gardar decoupled Nd-Hf isotope signature

5.4.1. Slab sediment input?

Few geological processes decouple the Nd and Hf isotope sys-
tems, resulting in the majority of igneous rocks defining a positively-
correlated Terrestrial Array (Vervoort et al., 2011). In terrestrial sedi-
mentary systems, zircon is chemically and physically resistant to weath-
ering, thus becomes concentrated in clastic sediments (Vervoort et al., 
2011). Zircon has low Lu/Hf and high Sm/Nd relative to equilibrium 
silicate melts (Rubatto and Hermann, 2007), thus with time zircon-rich 
clastic sediments can develop low εHf. Corresponding zircon-poor detri-
tal sediments are Hf-poor, with high Lu/Hf ratios, hence incubate higher 
εHf (Fig. 5). Terrestrial sediment might have been introduced to the 
source region for Gardar magmas during Ketilidian subduction (Fig. 1). 
Indeed, sediment subduction has been proposed as a key ingredient for 
the formation of the Mianning-Dechang REE deposits associated with 
the Himalayan orogen (Hou et al., 2015; Weng et al., 2021). A sed-
iment melt origin for Gardar source enrichment, however, is difficult 
to justify as modern arc systems, such as the Trans-Mexican volcanic 
belt, show systematic along-strike Nd-Hf isotopic variability of ca. 5 
epsilon units over 200 km, variability that follows the composition of lo-
cally subducting sediments (Straub et al., 2020). Conversely, the narrow 
range of median εNd(𝑖) of +2.1 to +3.4 of the Early Gardar complexes 
across 200 lateral km (diagonal to the Ketilidian subduction front, ex-
cluding Ivittuut) differs from the systematic compositional and isotopic 
diversity seen across modern arcs. On a εNd vs. εHf diagram the vast ma-
jority of modern subducting sediments, including volcaniclastic, clay, 
hydrothermal and hydrogenetic sediments, plot above the terrestrial 
array (Vervoort et al. 2011; positive ΔεHf), a signature that has been 
inherited by sediment-influenced volcanic arcs globally (Straub et al. 
2020, Fig. 5). By contrast, Gardar complexes plot on or below the terres-
trial array. Turbidites are the only marine sediments that have negative 
ΔεHf compositions (Vervoort et al., 2011). However, these clastic detrita 
are relatively poor in incompatible trace elements, halogens and alkalis 
and therefore unsuited for the generation of REE mineralising alkaline-
silicate magmatic systems. Further, the low Th content of mafic Gardar 
magmas (and thus Th/Yb ratio, Fig. 4a) suggests a limited influence 
of sediment-derived melts (Plank, 2005), with their high Ba/La consis-
tent with a strong slab fluid contribution (Hutchison et al., 2021). It is 
unlikely that sediment input to the sub-Gardar mantle could directly re-
sult in the source enrichment recorded in the geochemistry of Gardar 
complexes, without later homogenisation and processing.

5.4.2. Metasomatism of the lithospheric mantle

A second possibility is that the mantle source for the Gardar 
Province was modified by metasomatism, and this metasomatism de-
coupled the Nd and Hf isotope systems. Mafic Gardar rocks preserve 
trace-element signatures similar to those of modern arc systems, sug-
gesting that incompatible elements (LILE, halogens) were added to the 
sub-Gardar mantle during continental collision. Numerous authors have 
proposed that the sub-Gardar mantle was metasomatised during the ca. 
1.8 Ga Ketilidian orogeny (Upton and Emeleus, 1987; Goodenough et 
al., 2002; Köhler et al., 2009; Hutchison et al., 2021). However, nega-
tive ΔεHf signatures appear to be a pervasive feature of south Greenland 
mantle-derived rocks since the Archean (Rizo et al., 2011; Nutman et 
al., 2013). Perhaps slab-derived fluids, released during the Ketilidian — 
or indeed an earlier orogenic event — scavenged REE and HFSE from 
the mantle wedge, then reacted with the lithospheric mantle root of the 

North Atlantic craton to form metasomatic veins?
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Fig. 5. Initial εNd vs. εHf diagram for Gardar complexes with median values for initial εNd & εHf per-complex, with error bars showing the spread of compositions in 
each complex at 5 and 95 percentile levels. The terrestrial array is from Vervoort et al. (2011). The black vertical arrow indicates a schematic incubation trend for 
zircon-free detrital sediments (Patchett et al., 1984). The global compilation of arc compositions is from the GEOROC database, which plot on or above the Terrestrial 
Array. Open red symbols are whole-rock compositions from Jurassic-age kimberlite and monogenetic carbonatite complexes emplaced into the North Atlantic craton 
ca. 300 km north of the Gardar Province (Tappe et al., 2017), which have a similar narrow range of εNd for a given range of εHf to the Early Gardar complexes. 
Open blue and green symbols are mineral separate isotope compositions from PIC and MARID veins of the South African subcontinental lithospheric mantle, carried 
to the surface by kimberlites (Fitzpayne et al., 2019). Isotopic models use a modern arc starting composition (yellow star) and incubate it over 750 Myr using the 
Sm/Nd and Lu/Hf ratios determined from the PIC and MARID-derived xenocrysts (Fitzpayne et al., 2019). Labelled tick marks show model compositions at 250 Myr 

intervals.

Diatremes of kimberlite, lamprophyre, and carbonatite provide an 
opportunity to study lithospheric mantle rocks, as their energetic erup-
tions can be sourced from >150 km depth and carry fragments of 
mantle material (Giuliani and Pearson, 2019). Two major families of 
metasomatised mantle xenoliths are catalogued globally: MARID, con-
taining mica, amphibole, rutile, ilmenite, and diopside (Dawson and 
Smith, 1977); and PIC, containing phlogopite, ilmenite, and clinopy-
roxene (Grégoire et al., 2002). Both have been proposed as source 
rocks for alkaline-silicate and carbonatite magmas (Downes et al., 2005; 
Rooney et al., 2017; Choi et al., 2021), and have Nd-Hf isotope com-
positions that consistently plot below the Nd-Hf terrestrial array, with 
MARID typically defined by negative εNd(𝑖) (ΔεHf from -13.0 to -2.4) 
and PIC by positive εNd(𝑖) values (Fig. 5; ΔεHf ca. -5, Fitzpayne et al. 
2019). These metasomatic assemblages may result from reaction be-
tween highly-mobile incipient carbonate or carbonated silicate melts 
and mantle or crustal rocks (cf. Ezad et al. 2024). Their elevated con-
centration of volatile species, base- and precious metals, and possibly 
REE, represent fertile regions that are a first-order control on the loca-
tion of mineralisation in the overlying continental crust.

Melting experiments on natural amphibole-rich veins from the meta-
somatised lithospheric mantle reproduce the broad major- and trace-
element systematics of alkali-normative basalts (Pilet et al., 2008). REE-
rich alkaline magmas are therefore likely to originate as higher-fraction 
melts of volumetrically-minor mantle components that are abundant at 
rift and craton margins, as opposed to lower-fraction melts of peridotite.

To test whether PIC or MARID-type lithospheric mantle veins could 
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incubate Gardar-like isotopic compositions over timescales consistent 
with the known geodynamic history we generated a series of Nd-Hf 
isotopic maturation models (Fig. 5). No local xenolith isotope deter-
minations are available, however a suitable maturation trajectory was 
produced using PIC clinopyroxene from the Bultfontein kimberlite in 
South Africa (Fitzpayne et al., 2019). Using this composition, εNd -εHf
values similar to the majority of Early and Late Gardar complexes can 
be incubated from a typical arc-like source (yellow star) in ca. 550 and 
ca. 710 Myr respectively, consistent with the ages of Gardar magma-
tism relative to 1.8 Ga Ketilidian subduction. Note that global variation 
in the Sm/Nd and Lu/Hf ratio of PIC metasome assemblages would pro-
duce variation in the rate of isotopic incubation, but the incubation 
trajectory should be broadly consistent. Several Gardar complexes have 
median εNd(𝑖) -εHf(𝑖) compositions that lie on the Terrestrial Array. None 
of these contain mineral deposits with resource estimates or reserves, 
suggesting smaller contributions from metasomatised lithospheric man-
tle sources.

Difficulties with invoking MARID sources are numerous: 1) most 
South African MARID-type K-richterite and clinopyroxene have more 
negative εNd(𝑖) and εHf(𝑖) values than any Gardar complexes. 2) None 
of these individual MARID mineral measurements intersect incubation 
model trajectories when projected from a typical arc-like source (yellow 
star). Isotopic incubation models generate compositions with positive 
ΔεHf, whereas most natural MARID minerals have negative ΔεHf. 3) 
Model isotopic incubation timescales for MARID assemblages are not 
consistent with the known geodynamic history of Southern Greenland. 
4) If maturation trajectories are projected back from the measured 

MARID xenocryst compositions, the MARID-forming melt or fluid must 
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derive from a source with strongly negative ΔεHf (Appendix A). The 
Nd-Hf isotope composition and model isotopic evolution trajectories ap-
pear to discount major involvement of MARID-type assemblages in the 
source for Gardar magmas.

5.5. Tectonic interpretation

Isotope and trace-element systematics suggest that Gardar magmas 
were generated via decompression melting of PIC-type phlogopite-
bearing metasomatic veins in the roots of the North Atlantic craton, 
with no more than minor contributions from MARID assemblages. The 
strongly-depleted nature of the North Atlantic craton mantle lithosphere 
(Pearson and Wittig, 2014) probably resulted in lower degrees of melt-
ing during Gardar rifting, preferentially focused toward the more fusible 
metasomatic rocks. Importantly, PIC-type xenoliths (glimmerites) are 
reported from a lamprophyre dyke on Illutalik island, close to the centre 
of the Gardar Province (Upton, 1991). Our isotope models (see above) 
used PIC material from South Africa, because no local xenolith isotope 
determinations were found. However, the North Atlantic craton in West 
Greenland contains several kimberlite dyke swarms of Neoproterozoic 
and Mesozoic age, some of which are associated with intrusive carbon-
atite complexes (Tappe et al. 2017; Fig. 5). At Tikiusaaq, Qaqarssuk and 
Faeringehavn, ca. 300 km to the north of the Gardar Province, 160 Ma 
carbonatite, kimberlite and aillikite magmatism is characterised by an 
exceptionally narrow range of εNd(𝑖) between +2.5 and +5.4 and slightly 
more variable εHf(𝑖) between -1.4 and +7.4 (Tappe et al., 2017). These 
rocks have a similar narrow range of initial εNd to the Early Gardar com-
plexes, with slightly more variable initial εHf (Fig. 5), suggesting that 
Ketilidian-age metasomatism of the North Atlantic craton lithospheric 
mantle extended at least 300 km north of the northernmost Gardar com-
plexes and was also accessed by much later (Jurassic) magmatism.

6. Summary and implications for mineralisation in 
alkaline-silicate provinces

Our new Nd-Hf isotope analyses and a compilation of trace-element 
data provide insight into the character and origin of lithospheric man-
tle sources for alkaline magmas associated with the Gardar rift, South 
Greenland; Europe’s largest REE and HFSE province. Our data demon-
strate that Gardar REE and HFSE derive from two main source com-
ponents: one that plots on the Nd-Hf Terrestrial Array, and an enriched 
component with negative ΔεHf matching the composition of phlogopite-
bearing PIC-type metasomatised mantle (Figs. 3 & 5). Model PIC veins 
formed via Palaeoproterozoic Ketilidian subduction can incubate Nd-Hf 
isotope compositions appropriate for Early and Late Gardar complexes 
over storage timescales consistent with the local geodynamic history 
(550 and 710 Myr for Early and Late Gardar, respectively; Fig. 5). What 
is most striking is that the commercially significant intrusions in the 
province, including Ilimmaasaq and Motzfeldt, preferentially accessed 
the PIC component and therefore tapped a distinct HFSE and REE source 
to the unmineralised majority of the province. Furthermore, analysis of 
trace-element systematics of the Gardar mafic rocks reveals only limited 
signals of crustal assimilation (Fig. 4a). They show a stepwise deepening 
of the source between Early and Late Gardar rifting, and a correspond-
ing shift toward more enriched source material or a decrease in the 
degree of mantle melting (Fig. 4b). Gardar trace-element and Nd-Hf 
isotope systematics discount a major role for subducted sediment in the 
enrichment of the mantle source with REE and HFSE (Figs. 3 & 4a).

The present study demonstrates that subduction metasomatised 
lithospheric mantle sources contributed the bulk of the REE and HFSE 
hosted within mineralised Gardar intrusions. It ties the metasomatic 
enrichment of these source rocks to the regional geodynamic history 
of South Greenland (Fig. 1), thereby providing a conceptual basis to 
explain the presence or absence of mineralisation in particular global 
regions and during particular periods of Earth history. A crucial find-
9

ing is that subducted sediment is not required as a primary metal 
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source for the formation of world-class REE mineralisation. Instead, 
we find that Gardar’s melt source was ‘pre-enriched’ in the Palaeo-
proterozoic when subduction-derived fluids mobilised metals from the 
asthenospheric mantle wedge. The metals were trapped via metasoma-
tism of the lithospheric mantle, forming phlogopite-bearing PIC-type 
veins. Mesoproterozoic continental rifting melted this metasomatised 
lithospheric mantle, forming the Gardar Province and contributing the 
majority of the metal contained within the largest Gardar REE and HFSE 
deposits. Further work on alkaline igneous provinces globally will re-
veal the diversity of geodynamic histories and mantle sources that are 
capable of generating world-class REE and HFSE mineralisation.
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