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Abstract We present numerical simulations of the excitation of resonant poloidal Alfvén waves. The
resulting Alfvén waves could be loosely described as “high‐m” (m is the azimuthal wave number) in as much
as the azimuthal scale of the wave is much less than the scale in the direction normal to L‐shells. Such waves
are generally excited by wave‐particle interactions. In this article we show how resonant poloidal Alfvén
waves can be excited by a fast mode (of large azimuthal scale) in a cold plasma. The key property that enables
this is a three‐dimensional equilibrium, which facilitates the process of phasemixing in the azimuthal
direction. We show that the classification of resonant Alfvén waves as high‐m and low‐m has limited
applicability in 3D inhomogeneous media and suggest an alternative classification be based on the excitation
mechanism.

Plain Language Summary The environment surrounding the Earth comprises plasma (an ionized
gas) permeated by the terrestrial magnetic field. This medium can exhibit a range of global wave‐like
oscillations. Of particular interest are waves that stand along the entire length of a field line. Traditional
modeling shows that when these waves are excited by a different (compressional) mode of oscillation, the field
line is displaced in the azimuthal direction. Here we use computer simulations to show that when this process
occurs in a 3D medium, the plasma displacement can be directed at 90° to the traditional direction. This will
allow for the wave to interact strongly with charged particles trapped in the Earth's magnetic field so has
important consequences for understanding Space Weather.

1. Introduction
Resonantly driven Alfvén waves, also known as Field Line Resonances (FLRs), are common in the Earth's
magnetosphere (see A. N. Wright et al. (2024) and references therein). Traditionally FLRs have been considered
in a 1D or 2D regime, and they are classified as either “high‐m” or “low‐m,” where m is the azimuthal wave-
number. High‐m FLRs are polarized to have the plasma displacement in a meridional plane (poloidal), whilst
low‐m FLRs have an azimuthal (toroidal) polarisation (Dungey, 1954). Low‐m FLRs are excited by resonant
coupling with the fast mode (Allan et al., 1986; Kivelson & Southwood, 1986; Lee & Lysak, 1989; South-
wood, 1974; A. N. Wright & Thompson, 1994; A. N. Wright & Rickard, 1995). High‐m FLRs are driven by wave‐
particle interactions (Chen & Hasegawa, 1991; Hughes et al., 1978; James et al., 2013; Ozeke & Mann, 2001;
Southwood, 1976; Yeoman & Wright, 2001).

“Poloidal” and “toroidal” Alfvenic wave polarizations continue to be associated with waves with transverse
plasma displacement in the radial and azimuthal directions in the magnetosphere, as would be inferred in an
axisymmetric background equilibrium. However, the nature of 3‐D wave coupling requires that these wave mode
polarizations are distorted in non‐axisymmetric plasma configurations—such that any polarisation is possible. As
we show here, this means fro example that the resulting Alfvenic waves can have a “poloidal” polarisation even
when driven by large scale “low‐m” fast mode waves.

Recently the process of resonant fast‐Alfvén wave coupling in 3D equilibria has been studied (Degeling
et al., 2018; Degeling et al., 2018; A. N. Wright & Elsden, 2016). Reviews of this topic include Elsden
et al. (2022) and A. N. Wright et al. (2024). In 3D the polarisation of the Alfvén wave is no longer strictly toroidal
and this will occur in any equilibrium that is not axisymmetric, such as when there is a partial ring current or
substorm activity. For example, if the equilibrium contains a plasmaspheric plume, simulations show the FLR
polarisation can lie between the toroidal and poloidal limits (Elsden & Wright, 2022; A. N. Wright &
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Elsden, 2020). Indeed, Sandhu et al. (2023) have confirmed this property is observed in satellite transits of plume
boundaries. The results we present in this paper go even further and show fast mode driven FLRs can have a
polarisation that is completely poloidal.

In this article we question the assumption that poloidal FLRs must be driven by wave‐particle interactions. We
present simulation results that show a 3D equilibrium can permit phasemixing in the azimuthal direction. This
leads to a poloidally polarized FLR that is driven via coupling with the fast mode, rather than via wave‐particle
interactions, and is contrary to the commonly accepted view.

2. Simulation Details and Key 3D FLR Concepts
The numerical model is described in detail in A. N. Wright and Elsden (2020), but we summarize the key features
here for convenience. The simulation uses a dipole equilibrium magnetic field on which a field aligned coordinate
system is based. The time‐dependent linearized cold plasma equations are solved for the magnetic field and
velocity perturbations. The plasma density (and hence Alfvén speed) is a general function of position, so the
solutions represent wave propagation and coupling in a 3D equilibrium. The simulation starts with no pertur-
bations present, and is then driven by applying a magnetic pressure perturbation on the magnetopause. For
simplicity, we take the magnetopause to be given by the L = 10 magnetic surface. (L is the L‐shell parameter).

For numerical convenience we take the Alfvén speed to be constant along a field line, but it can be an arbitrary
function of L and magnetic local time (MLT). To illustrate the 3D nature of the solutions we introduce a density
enhancement in the afternoon which mimics the presence of a plasmaspheric plume. This leads to a local lowering
of the Alfvén speed and Alfvén frequencies. The resulting variation of toroidal ( fAT) and poloidal ( fAP) Alfvén
frequencies are displayed in the equatorial plane in the afternoon quadrant in Figures 1a and 1b. The Alfvén
frequencies are calculated by solving the toroidal and poloidal eigenfrequency equations (see, for example,
Equations 3 and 4 of Elsden et al. (2022)). These equations are solved using the shooting method for perfectly
conducting ionospheres.

The Alfvén speed variation is taken to be axisymmetric away from the plume, which is centered on 15 hr MLT and
has a width of 2 hr in MLT. Figure 1c shows the variation of toroidal and poloidal Alfvén frequencies with L away
from the plume (e.g., at noon and dusk), whilst Figure 1d shows their dependence on L at 15 MLT through the
center of the plume. Panel (e) shows the frequency variation with MLT on L = 7.75.

It is well known that in a dipole field the toroidal and poloidal Alfvén frequencies are different (Dungey, 1954;
Radoski, 1967). (Here, the Alfvén wave polarisation corresponds to the direction of the Alfvén wave plasma
displacement in the equatorial plane). Toroidal and poloidal polarizations are two possible limiting values, but in
3D equilibria any intermediate polarisation could occur. In a dipole equilibrium the maximum Alfvén frequency
on a given field line is always the toroidal frequency and the minimum is the poloidal frequency. A. N. Wright and
Elsden (2016) show how an Alfvén wave with a polarisation between toroidal and poloidal will have an Alfvén
frequency between the toroidal and poloidal frequencies. They also introduced the concept of a Resonant Zone,
which corresponds to the region where it is possible to find a polarisation such that the Alfvén frequency matches
a given driving frequency, that is, where it is possible for an FLR to occur.

For example, if the equilibrium is driven at a frequency of fd = 2 mHz the horizontal black lines in Figures 1c, 1d,
and 1e can be used to identify the Resonant Zone. At 15 MLT panel (d) shows that fAP < fd < fAT for any
L > 5.4. At noon and dusk panel (c) shows that fAP < fd < fAT for 5.4 < L < 6.5 and for L > 9.0. Importantly,
for 6.5 < L < 9.0 it is not possible for the Alfvén frequency (for any polarisation) to match fd, so this region
forms part of the Non‐Resonant Zone. On the L = 7.75 surface panel (e) shows that 14 <MLT< 16 will be in the
Resonant Zone, whilst other MLTs will contain non‐resonant field lines. Repeating this analysis for all L and
MLT allows us to plot the Resonant Zone boundaries shown in panel (f). The Resonant Zone is the region
centered on (X,Y) = (6,6) and bounded by the magnetopause and the red lines (which correspond to where
fAP = fd). We note that for this particular equilibrium and choice of fd it is not possible to satisfy fAT = fd (the
black and blue lines in Figures 1c, 1d, and 1e do not intersect).

The simulation is driven by applying a magnetic pressure perturbation on the magnetopause (see Section 3). For
computational efficiency, we focus on the afternoon quadrant. The simulation domain extends a little before 12
MLT and a little after 18 MLT where buffer zones cause dissipation (via a drag term) of any waves arriving
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Figure 1. Variation of the (a) toroidal and (b) poloidal Alfvén frequencies in the equatorial plane in the afternoon quadrant.
The dashed line is at L = 7.75. (c) Variation of the frequencies (blue‐toroidal, and red‐poloidal) with L at noon and/or dusk
and (d) through the center of the plume at 15 hr MLT. (e) Frequency variation with MLT through the center of plume (L= 7.75).
(f) Resonant Zone Boundaries for a driving freq of 2 mHz where fAP = fd (red) and simulation boundaries (blue) in the equatorial
plane.
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there. This mimics the loss of waves across noon to the dawn flank and also into the tail via the dusk flank. The
inner boundary at L = 5 is perfectly reflecting.

3. Simulation Results
To stress that it is possible for poloidal Alfvén waves to be driven by a low azimuthal wave number (m) fast mode
wave, we apply an m = 0 magnetic pressure driver on the magnetopause corresponding to a compressional
magnetic field of 5 nT in the equatorial plane which oscillates monochromatically with a frequency of 2 mHz. The
driver decreases to zero symmetrically away from the equatorial plane along the field lines on the magnetopause
with a length scale of 5.5 RE. Figure 2a shows the variation of the compressional magnetic field at L = 7.5 and 15
MLT (equivalent to X = Y = 5.3). The 2 mHz driving frequency is evident. Panel (b) shows the field‐aligned
vorticity (ω‖) in the equatorial plane at the point (X,Y) = (6.7,3.9) (or L = 7.75 and MLT = 14 hr). We note
that b‖ is zero in an Alfvén wave but nonzero in a fast wave. In contrast the field‐aligned vorticity ω‖ = (∇ × u)‖
is zero in a fast wave but nonzero in an Alfven wave (u is the plasma velocity). Thus b‖ andω‖ allow us to identify
where the fast and Alfvén waves are located.

Figure 2a shows how the fast mode has strong transients over the first hour, but settles down to a steady oscillation
after 2 hours due to dissipation in the buffer zones. The vorticity takes longer to saturate. This is because once the
fast mode has settled down to providing a monochromatic driver the FLR needs to grow to an amplitude where the
energy absorbed from the fast mode is balanced by resistive dissipation in the FLR. This is achieved by having a
small value of resistivity present (A. N. Wright & Elsden, 2020) which determines the width and amplitude of the
Alfvén wave (A. N. Wright & Allan, 1996).

Although the behavior of waves in the Earth's magnetosphere is generally dynamic and will exhibit significant
transient characteristics, a sound mathematical understanding and much physical insight can be gained from
normal mode solutions (i.e., waves with a steady monochromatic oscillatory nature). For this reason we focus on
the waves near the end of the simulation run. Elsden and Wright (2018) show how two simulation snapshots taken
a quarter of a cycle apart can correspond to the real and imaginary parts of a complex normal mode (i.e., all wave
fields vary proportional to exp ( i2πfdt)). Such snapshots are shown in Figure 3. Panels (a) and (b) show the
structure of the fast normal mode in the equatorial plane (b‖), whilst (c) and (d) show the structure of the FLR via
the field‐aligned vorticity (ω‖). The fast mode extends over the entire domain. In contrast, the FLR is mainly
excited on two specific surfaces of resonant field lines that extend from the magnetopause deep into the
magnetosphere. The spatial structure of the fast mode shown in Figures 3a and 3b is particularly important as the

Figure 2. (a) The variation of b‖ with time in the equatorial plane at (5.3,5.3), and (b) ω‖ versus time at (6.7,3.9).
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Figure 3. Normal mode structure for a frequency of 2 mHz: The variation in the equatorial plane of the real (a) and imaginary
(b) parts of b‖ (nT). The real (c) and imaginary (d) parts of ω‖ ( s− 1). Real (e) and imaginary (f) parts of ω‖ versus
MLT (L = 7.75).
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force that drives the Alfvén wave equation is the fast mode magnetic pressure gradient, which is proportional to b‖
(Elsden & Wright, 2017).

The FLR fields are highly localized perpendicular to the resonant surfaces. This can be seen clearly in panels (e)
and (f) which show the variation of ω‖ with MLT on the L = 7.75 shell in the equatorial plane. Evidently the
Alfvén waves are centered on ∼14 and ∼16 hr MLT. A. N. Wright and Elsden (2016) show that the FLR plasma
velocity is tangential to the resonant surfaces that are evident in panels (c) and (d). (It is the derivative of this
velocity across the resonant surface that produces ω‖). Hence, the FLRs produced have a polarisation that is
predominantly poloidal.

Figure 3 shows the narrow saturated width of the FLR in MLT. At earlier times the width is broader and may be
estimated from the azimuthal phasemixing scale of the poloidal Alfvén wave, Lph ∝ 1/ t (Mann et al., 1995). In the
Supporting Information S1 we include a movie of b‖ and ω‖ as well as two snapshots of the azimuthal variation of
ω‖ from which it is clear that the FLR narrows in width and grows in amplitude until it reaches the saturated
normal mode structure in Figure 3.

4. Discussion and Concluding Remarks
The Resonant Zone boundaries, shown in Figure 1f are reproduced in Figure 4a as the red lines. The black lines
represent the intersection of possible FLR resonant surfaces with the equatorial plane: the FLRs would have their
plasma displacement tangential to the black lines, and for this polarisation the Alfvén frequency will match fd
(A. N. Wright & Elsden, 2016), hence these lines are referred to as resonant paths. It is evident that where the
resonant paths intersect the red lines, they have a poloidal orientation, which is to be expected as the red lines were
defined to be the points where fAP = fd. As the resonant paths move away from the red boundaries their orien-
tation turns to adopt a polarisation that lies between the poloidal and toroidal directions. It is interesting to note
that the resonant paths have also been derived from a theoretical standpoint by Leonovich and Mazur (1993) and
Klimushkin et al. (1995) who showed the paths are contours of asymptotic phase. They also noted that the
perpendicular group velocity of the Alfvén waves is directed along these paths—a property which has been
observed in the simulations of Elsden and Wright (2020).

It is clear from Figure 4a that there are an infinite number of possible resonant paths (only representative ones are
shown here), and it is equally clear from Figures 3c and 3d that two particular resonant paths dominate the FLR

Figure 4. (a) The Resonance Map for fd = 2 mHz. Blue lines indicate the simulation boundaries. Red lines are the Resonant
Zone Boundaries, and black lines the permissible resonant paths. (b) A comparison of the FLR structure (|ω‖|/s− 1) with the
Resonance Map. The white dots indicate points where the Tangential Alignment condition is satisfied, and the dashed black
lines are the resonant paths through these points.
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response. The magnitude of FLR vorticity in Figures 3c and 3d is shown in Figure 4b along with the simulation
boundaries (blue), the Resonant Zone boundaries (red) and the two favored resonant paths (black dash). A. Wright
et al. (2022) note these paths can be determined using the Tangential Alignment Condition: identify the points on
the Resonant Zone boundary where the resonant paths are tangential to the boundary (see the white dots in
Figure 4b). Such locations are referred to as Tangential Alignment Points, and it is the resonant paths passing
through these points that are favored. A. N. Wright (2023) showed these points can also be determined from a
minimization principle.

Whilst the Tangential Alignment Condition works well for our results, it should be noted that some details are not
accounted for. For example, the Tangential Alignment Point at 14 hr MLT (or (X,Y) = (6.7,3.9)) has an FLR on
the path that turns toward noon as it approaches the magnetopause. However, the Resonance Map in Figure 4a
shows there is another resonant path through this point that turns toward dusk as it approaches the magnetopause,
yet there is no FLR present on this path. It is not clear why one path is favored over the other. Elsden and
Wright (2017) show how the amplitude of an FLR is governed by the magnetic pressure gradient along the
resonant path, so this might provide some explanation. The question is certainly worthy of more study.

The traditional classification of FLRs has been in terms of azimuthal wavenumber,m: low‐m FLRs have a toroidal
polarisation and are driven by magnetic pressure gradients of the fast mode; high‐m FLRs have a poloidal
polarisation and are driven by wave‐particle interactions. Limitations of these classifications have become
highlighted by studies in 3D which show that FLRs can have a polarisation that is intermediate to the toroidal and
poloidal limits (Degeling et al., 2018; Elsden et al., 2022; A. N. Wright & Elsden, 2016, 2024). The results we
report in this article highlight a further limitation of the traditional classification, namely that poloidal FLRs can
be driven by fast mode pressure gradients. We suggest FLRs should be classified solely by their generation
mechanism since there is considerable variablility over permissible polarizations. Hence, we refer to the FLRs
reported here as “fast mode‐driven” FLRs which, in this instance, have a poloidal polarisation. (In a different
equilibrium, the polarisation could change). The other type of FLR can be termed “particle‐driven.” We note that
for FLRs with intermediate values of m either driving mechanism may operate: particle‐driven FLRs have been
reported by Yeoman et al. (2010) (m= 13), and by Mager et al. (2019) (m= − 10). Yet similar wavenumber FLRs
(m = 14) can be driven by MHD waves associated with an interplanetary shock (Hao et al., 2014).

It is interesting to consider how the traditional classification came into existence, and why it is no longer
considered to be accurate. For particle driven FLRs, the value of m is determined by a bounce/drift resonance
condition (Dai et al., 2013; Southwood et al., 1969; Southwood & Kivelson, 1981, 1982; Takahashi et al., 2013),
and for typical parameters at Earth the resulting value of m is high. A high‐m FLR will naturally have a poloidal
polarisation—hence the identification between particle‐driven, high‐m and poloidal polarisation. Of course, if
particle drift frequencies and Alfvén frequencies were to change, it could be possible to have lower m particle‐
driven FLRs, and the polarisation would no longer be poloidal.

The FLRs driven by fast mode waves have been modeled extensively in 1D and 2D axisymmetric equilibria where
it is permissible to consider azimuthal Fourier modes (m) independently. The matching of fast and Alfvén fre-
quencies occurs in the evanescent tail of the fast mode (Southwood, 1974; A. N. Wright, 1994). Asm increases the
fast mode becomes more evanescent, and the energy coupled to the resonant FLR becomes negligible. Hence, it is
not thought to be possible to drive a high‐m FLR by the fast mode. The optimum coupling between the fast mode
and an FLR occurs for a low value of m (Kivelson & Southwood, 1986): when m is low, the FLR lies just a little
way into the evanescent tail of the fast mode, so the fast mode has not decayed significantly. Also, a non‐zero
value of m means there will be pressure gradients in the azimuthal direction to drive the FLR. Indeed, theory
confirms that such FLRs will have a toroidal polarisation (Southwood, 1974; A. N. Wright & Thompson, 1994),
hence the correlation between fast mode driving, low‐m values and toroidal polarisation.

The reason the above traditional classification does not suit the FLRs we report here is because our equilibrium is
not axisymmetric. A consequence of this is that we cannot consider the azimuthal Fourier modes (m) to be
decoupled from one another, so we cannot consider one value of m to be a reasonable approximation to a physical
solution. The 3D nature of our equilibrium means that Alfvén frequencies will vary with local time (e.g.,
Figure 1e) which leads to behavior that is not possible in an axisymmetric equilibrium. From a time‐dependent
perspective, an initial nudge of the field lines may give rise to phasemixing in the toroidal direction. Adapting the
traditional formula for the ideal phasemixing length in the poloidal direction (Mann et al., 1995) we find the
toroidal phasemixing length is
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Lph =
1

( eϕ ⋅ ∇fAP) t
, (1)

where eϕ is the unit vector in the azimuthal direction.

As the azimuthal phasemixing length becomes smaller than the radial extent of the FLR, the phasemixing Alfvén
waves will naturally adopt a poloidal polarisation. For suitable frequency gradients and FLR lifetimes (governed
by dissipation) it is possible to drive these poloidal Alfvén waves resonantly by fast mode pressure gradients, as
we see in our simulation. If our equilibrium did not vary in azimuth, phasemixing in the azimuthal direction would
not occur, and we could not drive a poloidal FLR by this mechanism.

In summary, the traditional classification of high‐m and low‐m FLRs and their properties are based on normal
modes in axisymmetric equilibria. In 3D, these modes have limited applicability and cannot describe the more
general behavior that is possible in a 3D equilibrium. We suggest it is more accurate to simply classify the
possible FLRs as “fast mode‐driven” and “particle‐driven.” Additional properties, such as polarisation, vary
considerably from one instance to another, so polarisation is not a reliable indicator of the physics operating.

Our results highlight the importance of realistic modeling of wave properties in 3D equilibria. Fast mode waves
can couple to FLRs with unusual properties, and our results show these may have a poloidal polarisation and small
scale in the azimuthal direction. Such FLRs are known to interact strongly with trapped particles. Indeed, the
commonly accepted view is that such FLRs are excited at the expense of energy in unstable particle distributions.
Here we raise the possibility that the FLRs can derive their energy from the fast mode. Once established we would
anticipate a strong interaction with trapped particles, probably energizing them and causing diffusion across L
shells.

Data Availability Statement
Data used to make the simulation figures in this paper can be found in (A. N. Wright, 2025).
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