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Abstract



Sex allocation and sexual selection have been heavily studied, but rarely linked. In 

this thesis I investigated the interface between them in the gregarious parasitoid wasp 

Nasonia  vitripennis,  both  directly  and through their  interactions  with  the  mating 

system and sexual conflict. Chapter 2 investigated sexual selection and mating at the 

natal site: earlier eclosing males mated more females independently of body size. 

Nasonia follows Local Mate Competition, which describes how a female laying eggs 

alone on a patch of resources (a so-called single-foundress) should lay an extremely 

female-biased brood to minimise competition between her sons, yet ensure all her 

daughters are fertilised. Based on this I predicted that males with with fewer brothers 

would be better inseminators. Despite finding significant among-strain variation in 

(1) single-foundress sex ratio, (2) mate competitiveness when alone and (3) when in 

competition, (4) sperm resources, but not (5) sperm-depletion (Chapters 3 & 4), I did 

not find the predicted relationship. Conversely males from strains with more brothers 

had a higher mating success under competition (Chapter 3) leading to the question: 

does mating success select on sex ratio or vice versa? Either way it is a result of an  

interaction between sexual selection and sex allocation. Chapter 5 investigated the 

role of male post-copulatory courtship on female re-mating, and found that among-

strain variation in female re-mating was not associated with variation in the duration 

of  the  post-copulatory  courtship.  Chapter  6  reviewed  sexual  conflict  in  the 

Hymenoptera: their haplodiploid genetics, newly sequenced genomes and varied life-

histories provides a base for future research to build on. Finally I highlight the novel 

links between sexual selection, sex allocation, sexual conflict and the mating system 

found during my studies  that will hopefully prompt future research on this topic.
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1. Introduction



Sexual selection

The concept of sexual selection started with Darwin's attempt to explain many of the 

exaggerated traits observed in one sex of a species that could not be explained by his 

theory of natural selection  (Darwin, 1871, Darwin, 1859). He proposed that many 

traits had evolved as a result of competition not to survive, but to reproduce. Darwin 

sub-divided sexual selection into two categories: those that were due to inter-sexual 

selection,  or  mate  choice,  and  those  that  arose  due  to  intra-sexual  selection  or 

competition  between  individuals  of  one  sex  for  mates.  Today,  we  define  sexual 

selection as the non-random variation in mating success. We now think of sexual 

selection  as  a  component  of  natural  selection,  as  opposed  to  Darwin's  distinct 

processes (Kokko et al., 2006b). 

The idea of competition between members of the same sex leading to the evolution 

of weapons like the antlers of a stag, was accepted much earlier than female mate  

choice (reviewed in Andersson, 1994). Genetic models subsequently showed that if 

winning  depends  on  the  relative,  and  not  absolute  size  of  the  trait,  intra-sexual 

competition can lead to exaggeration of the trait (Maynard-Smith & Brown, 1986).

Explaining the mechanisms through which mate choice and ornaments evolve was 

the  challenge  for  the  following  decades.  The  re-discovery  of  Mendel's  work  on 

genetics in the early 20th Century, and the understanding that selection occurs at the 

level of the allele, revolutionised our approach to sexual selection during the modern 
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synthesis. During this period, a wide range of hypotheses were produced to explain 

preference  and  ornamentation,  especially  when  females  do  not  receive  any  non-

genetic  benefits  from  their  mate.  Fisher's  (1930) run-away  selection  hypothesis 

proposed  that  positive  feedback  could  explain  the  evolution  of  mate  choice 

preferences and ornaments. For instance, consider that females vary in the extent of a 

heritable trait  for preference of an ornament that has heritable variation in males. 

Those females with the higher preference will mate males with the bigger ornament, 

and so the offspring will inherit both the preference and the exaggerated ornament. 

As the preference and ornament spread in the population, a new benefit to males 

having big ornaments emerges: these males will have higher mating success because 

of the female preference. Such a benefit could maintain the ornament at values which 

may be sub-optimal from a natural selection point of view, i.e. an ornament that is 

costly in terms of survival. 

The main problem with Fisher's hypothesis is that it did not solve the problem of 

how the preference arose in the first place. Subsequent explanations have tried to 

tackle  this  by  proposing  that  the  ornaments  are  indicators  of  heritable  fitness 

(reviewed in Maynard-Smith, 1991, Kirkpatrick & Ryan, 1991, Kokko et al., 2003, 

Mead & Arnold, 2004, Andersson & Simmons, 2006, Kokko et al., 2006b). Zahavi, 

(1975 & 1977) proposed his handicap principle that the traits under mate choice are 

honest indicators of condition or genetic quality. Hamilton and Zuk (1982) proposed 

that the traits  in question may be honest signals of parasitism, and the degree of 

resistance to parasites is reflected in the secondary sex traits. The Hamilton and Zuk 
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model also deals with the issue that directional selection on a handicap-style trait will 

erode genetic variation, as the parasites provide a constantly (co-)evolving selection 

pressure. 

Our understanding of sexual selection was further revolutionised when we began to 

consider what happens after copulation. Geoffrey Parker started to think about sperm 

competition  after  observing  female  dungflies  mating  repeatedly  (Parker,  1970). 

Sperm competition occurs whenever the ejaculates of more than one male compete to 

fertilise the eggs of a female inside her reproductive tract. Once molecular techniques  

improved with the advances in PCR, widespread polyandry (a pre-requisite to sperm 

competition) was confirmed in wild populations (reviewed by  Jennions & Petrie, 

2000). From this point on, the importance of sperm competition was appreciated.  A 

major  consequence  of  sperm  competition  is  post-copulatory  sexual  selection. 

Simmons  (2001) divided  adaptations  as  a  result  of  sperm  competition  into  two 

categories: offensive and defensive. Defensive adaptations seek to avoid the risk of 

sperm competition in the first place, for example by preventing female re-mating, or 

avoiding  non-virgin  females.  On  the  other  hand,  offensive  sperm  competition 

adaptations seek to maximise a male’s success within the competition, for example 

by displacing a rival's sperm or passing a larger ejaculate. These adaptations also 

include the morphology of the sperm cells themselves (Calhim et al., 2007).
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Parker considered sperm competition as an extension of intra-sexual  competition. 

However,  we  now  know  that  females  also  influence  the  outcome  of  sperm 

competition. Females have the potential to manipulate sperm transfer, storage and its 

utilisation in fertilisation (Thornhill, 1983; and reviewed by Eberhard, 1996). In this 

way a female can bias paternity towards a favoured male. Alternatively females can 

encourage sperm competition by mating with lots of males and either selecting the 

desired sperm for fertilisation, or letting the competition between the ejaculates result 

in only the best sperm fertilising her eggs, ensuring (potentially) good genes for the 

next generation. The mechanisms through which cryptic female choice occurs are 

starting to be elucidated  (e.g.  Qazi, 2002, Rosengrave et al., 2008, Edvardsson & 

Arnqvist, 2000).

It  was also  Parker (1979) who first  made apparent  the importance of the idea of 

sexual conflict. Sexual or natural selection acts in different ways on traits in males 

and females. Whenever selection results in different trait optima for the two sexes, 

sexual conflict occurs (Parker 1979). When the trait is controlled by a single locus, 

for example human hip-width, then intra-locus conflict may occur. In the hip-width 

example, bipedalism favours narrower hips for easier movement in both sexes. For 

females, however, reduced risk of death in childbirth selects for wider hips. As a 

result, sexually selected dimorphism occurs (Rice & Chippindale, 2001). Intra-locus 

conflict is assumed to be most commonly resolved through the evolution of sexual 

dimorphism (Rice & Chippindale, 2001, Cox & Calsbek, 2009). Inter-locus conflict 

occurs when multiple loci  are involved in the expression of the traits in conflict.  
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These traits often originate through sexual selection, but not always (e.g. parental 

care is naturally selected and a source of conflict (Houston et al., 2005)). Examples 

of  inter-locus  conflicts  are  the  various  grasping traits  that  have  evolved in  male 

diving beetles  (Coleoptera:  Dytiscidae)  (Bergsten  et  al.,  2001) and water  striders 

(Gerris odontogaster) (Arnqvist, 1989). In insects, males often need to grab hold of 

the female in order to mate, which she often resists. In order to increase the number 

of matings, and hence fertilisations the male achieves, males of the diving beetles 

have  evolved  suckers  to  hold  onto  females,  and  water  striders  have  evolved 

elongated abdominal segments. These traits then select for female-counter traits in 

sexually antagonistic coevolution. The female diving beetles have rough wing covers 

which make it  harder for the suckers to stick  (Bergsten et al.,  2001), and female 

water strider's  abdominal spines to make it harder for the males to achieve genital 

contact (Arnqvist & Rowe, 1995). Sexual selection and sexual conflict are therefore 

tightly associated.

The frame-work of sexual conflict also offered a new explanation for the evolution of  

mate choice and exaggerated traits: chase-away selection. Imagine a species where 

the females eat red fruits, and so have a sensory bias to be attracted to the colour red. 

If a male developed a red secondary sexual trait,  he could attract more mates by 

exploiting her sensory bias. Males are therefore manipulating the female response to 

a signal. This may lead to chase-away selection, where females raise their threshold 

of sensitivity to the trait in order to avoid costly sub-optimal mating, which in turn 

selects for males to increase the trait expression (Holland & Rice, 1998). The current 

- 18 -



thinking is that all these processes (Fisherian, handicap, good genes and chase-away) 

work alongside each other  to  create  mating biases and ornaments (Kokko et  al., 

2003, Kokko et al., 2002).

Recently, the focus of sexual selection research has returned to the issue of sex-roles, 

as researchers such as Arnold & Duvall (1994) and Kokko et al., (2006b,) Kokko & 

Jennions, (2008) tackled some of the problems with Trivers' (1972) initial anisogamy 

argument.  Now we are  beginning to  challenge  the view of males competing and 

females choosing and investigate how sexual selection has acted on females through 

competition (Clutton-Brock, 2009, Gwynne, 1991) and on both sexes through mutual 

mate choice (Kraaijeveld et al., 2007).

Another  growing  area  of  research  is  the  role  of  environmental  heterogeneity  on 

sexual  selection  (Cornwallis  &  Uller,  2010,  Kokko  &  Heubel,  2008,  Kokko  & 

Rankin,  2006).  Environmental  heterogeneity  in  both  time  and  space  can  lead  to 

differences  in  the  strength  and  direction  of  sexual  selection  in  different 

circumstances, especially if sexual phenotypes are plastic. For example, selection on 

growth  of  the  secondary  sexually  selected  horns  in  Soay  sheep  depends  on  the 

environment throughout the life of the male (Robinson et al.,  2008). Despite this 

growing awareness, there are still very few studies that have actually considered the 

influence of environmental heterogeneity (Bussière et al., 2008).
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Sex allocation

Darwin was not as successful at his attempt in explaining sex ratios as his efforts in 

the field of sexual selection. He did, however in the first edition of his  1871 book 

tackle the issue  of unbiased sex ratios as a problem for his theories of natural and 

sexual selection, revising it for the second edition to famously state that “the whole  

problem is so intricate that it is safer to leave its solution for the future”  (Darwin, 

1874). Despite some attempts to explain the problem, it was ultimately Fisher (1930) 

re-working  earlier  work  by  Darwin  (1871)  and  Düsing  (1884), who  explained 

selection for the unbiased sex ratio. Fisher's explanation rests on the observation that 

for diploids each offspring has a mother and a father, so the total fitness of males and 

females in a population must be equal; this is known as the Fisher condition. This 

leads to negative-frequency dependent selection on the sexes produced, and stabilises 

investment into each of the sexes as equal. Sex allocation is the amount of parental 

resources invested into each sex  (Charnov, 1982). Of course there are assumptions 

associated with Fisher's model: a stable age distribution, parental control over the sex 

determination, no cooperative or competitive interactions between relatives and no 

sex-specific influence of environment on fitness, to name a few.

The consequences of breaking these assumptions to Fisher's model were investigated 

in  1960s  and  1970s.  For  instance,  Hamilton's  (1967  &  1979) Local  Mate 

Competition  (LMC)  describes  how local  mating  leads  to  competition  between  a 

mother's sons for mates. As the number of other females (foundresses) increases, the 
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proportion male of the brood should rise with it, reaching 50% sons (Figure 1.1). If 

females are  ovipositing alone on a patch of resources (as a single-foundress) she 

should  lay  a  highly  female-biased  sex  ratio,  in  order  to  minimise  competition 

between  her  sons.  This  facultative  sex  allocation  response  to  the  number  of 

foundresses on a patch has been observed in the lab and the wild in a wide range of 

organisms  (e.g.  ambrosia  beetles  (Biedermann,  2010);  parasitoid  wasps  (Werren, 

1980, Werren, 1983); protozoan parasites (Reece et al., 2008); mites (Izraylevich & 

Gerson, 1996); for a review see West (2009)).

This breaking of assumption was followed up by  Trivers and Willard (1973),  who 

showed that the environmental conditions could select for parents to adjust the sex 

ratio  of  their  offspring.  Trivers  and  Willard  describe  a  species  where  maternal 

condition  is  transmitted  to  the  offspring  through  increased  provisioning.  When 

maternal condition is good, they predict that mothers should overproduce the sex that 

benefits most from heightened condition. This has subsequently been observed in a 

range of taxa, most commonly the ungulates (Hewison & Gaillard, 1999, Sheldon & 

West, 2004). 

The next big development in the field of sex allocation was the consideration of 

genetic  conflict.  This  was  first  considered  as  conflict  over  sex  allocation  in  the 

eusocial  Hymenoptera  (Trivers  &  Hare,  1976).  Hymenoptera  have  haplodiploid 

genetics, which raises relatedness asymmetries (Figure 1.2). Using Hamilton's (1964) 
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inclusive fitness theory Trivers and Hare (1976) showed how the evolutionary stable 

strategy (ESS) sex allocation differed for the queens and workers in the eusocial 

Hymenoptera. There has since been an explosion of interest of such conflicts within 

insect societies (Ratnieks et al., 2006). 

Genetic conflict remained a theme as the discovery and exploration of sex allocation 

distorters grew. Sex allocation distorters are selfish genetic elements (either nuclear 

or cytoplasmic) that modify the sex of their host, or the sex ratio produced by the 

host,  in  order  to  increase  their  own transmission,  often  at  the  cost  of  the  host's 

transmission (Burt & Trivers, 2008). Such sex ratio distorters are now known to be 

common across plants and animals (Meiklejohn & Tao, 2010, Werren & Beukeboom, 

1998, Hurst, 2008).

The interactions between sex allocation and sexual 

selection

Just  as  the  fields  of  sexual  selection  and  sex  allocation  both  experienced  major 

developments with the consideration of sexual conflict, I think a key development in 

the coming years will be the awareness of the influence of facultative sex allocation 

and sexual  selection on each other.  In this section,  I  will  outline the interactions 

between the four key themes of my thesis: sexual selection, sex allocation, sexual 
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conflict and mating systems. The keystone of many of the relationships which link 

sex allocation and sexual selection is the sex ratio at the time of mating.

Operational sex ratio, sexual selection and sex allocation

The operational sex ratio (OSR) is the ratio of fertilisable females to sexually active 

males in the population  (Emlen, 1976). Several factors can contribute to a biased 

OSR: sex-specific mortality rates, the time spent between mating and being ready to 

reproduce again (e.g. parental care, or a post-mating refractory period), and uneven 

primary sex ratios from biased sex allocation (Parker & Simmons, 1996, Kokko & 

Jennions, 2008). To truly understand the links between OSR, sex allocation, sexual 

selection, mating systems and sexual conflict would require some serious modelling. 

However,  here I will  draw on the existing literature to begin to understand these 

relationships.

The role of OSR was first considered within the realm of mating system description 

(Emlen & Oring, 1977). The mating system of a species describes the number of 

mates each sex have during a breeding season, and how those mates are acquired. 

The mating system was thought to be defined by two key variables: the OSR and the 

environmental potential for polygamy (Emlen & Oring, 1977). The environmental 

potential for polygamy is how the spatial-temporal distribution of each sex predicts 

whether or not that sex, or a resource it needs, can be defended and monopolised 

(Thornhill & Alcock, 1983, Emlen & Oring, 1977). The various mating systems we 

- 23 -



observe predict the nature of the sexual selection acting on the sexes. Where females 

can be  defended male adaptations for male-male competition or resource defence 

will be selected. Likewise, if females cannot be defended and female choice evolves, 

that  will  select  for  ornamentation.  It  was  thought  that  as  the OSR became more 

biased, the intensity of sexual selection on the majority sex would increase (Emlen & 

Oring, 1977). 

Recent  models  of  OSR and  sexual  selection  have  demonstrated  a  feedback loop 

between  OSR  and  sexual  selection.  Kokko  and  Jennions  (2008)  thoroughly 

investigated the evolution of sex roles considering the sex ratio, parental investment 

and sexual selection while controlling for the Fisher condition. Ultimately, the Fisher 

condition  causes  frequency  dependent  selection  on  the  degree  of  competition 

experienced by the sexes: if you are unlikely to find a mate quickly when you return 

to the mating pool, stay and invest more in your current brood (Kokko & Jennions, 

2008). This has the effect of also reducing any bias in the OSR. Therefore the OSR 

does alter the intensity and direction of sexual selection, just not necessarily how we 

thought.  Indeed,  many  studies  have  found  that  at  a  biased-OSR the  intensity  of 

sexual  selection  can  decrease  for  the  over-represented  sex.  For  example,  the 

polygynandrous  common lizard Lacerta  vivipara has  stronger  selection  on  male 

body size at female-biased OSR, and this is thought to be due to the high costs of  

mating  to  females  (Fitze  &  Le  Galliard,  2008).  Similarly,  in  the  fish  Rhodeus 

sericeus, the  territories  of  males  break  down under  male-biased  OSR leading  to 

groups of  males releasing  sperm clouds when females spawn,  which results  in  a 
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lower reproductive skew (Mills & Reynolds, 2003). The reliability of OSR is also 

questioned by a study in Nephila plumipes spiders that showed that it varied greatly 

over the season, and the spatial scale used (Kasumovic et al., 2008).

Since Emlen and Oring's (1977) initial work, we now consider other factors to have 

contributed to the description of the mating system, but the idea of a measure of the 

direction  and  intensity  of  sexual  selection  has  persisted.  Other  methods  of 

quantifying the intensity of sexual selection have since been proposed. The potential 

reproductive rate of each sex (Clutton-Brock & Vincent, 1991, Ahnesjö et al., 2001) 

describes mate availability, and includes how much time each sex spends “out” of the 

mating pool, providing parental care, or experiencing a post-reproductive refractory 

phase (Parker & Simmons, 1996).  Shuster and Wade (2003)  developed their  Imates 

approach that takes into account temporal and spatial distribution of the sexes when 

measuring the intensity of sexual selection, whereas the Bateman curves developed 

by Arnold and Duvall, (1994) use the relationship between the number of mates and 

fecundity for each sex.

While we now understand the mating system to not to be solely determined by OSR, 

it does still respond to changes in the OSR. For example, both sexes can care in the  

blue tit Parus caeruleus, and so the offspring raised by pairs have a higher chance of 

fledging than those cared for by females only (Kempenaers, 1994). In some years a 

female-biased OSR occurs  due to  higher  predation of  males.  Such female-biased 
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OSR  leads  to  polygyny  as  opposed  to  social  monogamy  (Kempenaers,  1994). 

Similarly, as seen above an increase in the density of males can lead to the resource 

defence breaking down for the fish Rhodeus sericeus (Mills & Reynolds, 2003).

The OSR not only has a feedback loop with sexual selection as described by Kokko 

& Jennions  (2008),  but  also with sex allocation itself  in  some situations, mainly 

when  there  are  overlapping  generations.  It  is  often  proposed  that  frequency-

dependent Fisherian sexual selection could act on the OSR in order to reduce the 

bias, however evidence is weak and patchy. Such a response has been observed in 

some (but not all) pre-industrial populations of humans (Lummaa et al., 1998). One 

test in skinks (Eulamprus tympanum) found that the females did not alter their sex 

allocation behaviour to compensate  for the OSR (Allsop et  al.,  2006).  In another 

lizard  species  Amphibolurus  muricatus,  females  did  manipulate  the  sex  ratio  in 

response to the OSR, however they overproduced the majority sex, which the authors 

proposed  may  because  they  use  the  OSR  as  a  cue  to  sex-specific  survival 

probabilities (Warner & Shine, 2007).

Nevertheless,  while  the  debate  over  which  methods  are  best  for  calculating  the 

intensity of sexual selection continues, OSR, and the facultative sex allocation that 

can  result  in  a  biased  OSR remains  an  important  component  of  determining  the 

nature and extent of sexual selection.
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Mating system and sex allocation

Aside from this interaction between sex allocation, sexual selection and OSR that I 

described  above,  there  are  other  connections  between  sexual  selection,  mating 

system and sex allocation. For example the mating system itself can influence the 

nature of facultative sex allocation. Perhaps the most well-known example of this is 

Local Mate Competition (LMC) (Hamilton, 1967, Hamilton, 1979). The natal-site 

mating  selects  for  mothers  to  manipulate  the  sex  ratio  to  minimise  competition 

between her sons. 

The original LMC models assume that all mating occurs at the natal patch, which has 

been observed in many species when males do not disperse (for a review see West, 

2009). In the case of Bethylid parasitoid wasps, species differ in the extent to which 

males can disperse, leading to so-called partial LMC (Hardy & Mayhew, 1998). This 

family of parasitoids meets the prediction that species with higher male dispersal 

ability will have less intense local mating competition, and so sex ratios will be less 

female-biased (Hardy & Mayhew, 1998). This finding has also been confirmed in the 

non-pollinating fig wasps: where males are wingless, the sex ratio is most female 

biased, becoming less female biased in male wing-dimorphic species, and even less 

so when males are fully winged (Fellowes et al., 1999, West & Herre, 1998a).

- 27 -



Sexual selection and sex allocation

I  have  discussed  the  interactions  between  sex  allocation  and  sexual  selection 

mediated  by  OSR.  There  are  also  some  scenarios  where  sexual  selection  and 

facultative  sex  allocation  are  known to  influence  each  other,  most  commonly  in 

species showing sex allocation through Trivers-Willard effects. Trivers and Willard 

(1973) described ungulates where maternal condition is usually transmitted to the 

offspring through higher birth weight and more milk resources and condition can 

subsequently be a good predictor of the mating success of one sex. For simplicity, we 

will assume that the fitness of males depends more on condition, however this is not 

always the case. Trivers-Willard facultative sex allocation therefore depends heavily 

on the sexual selection that leads to sex-specific condition-dependence. Population 

genetic models of Trivers-Willard effects showed that sexual selection was crucial to 

the invasion of a sex allocation allele:  there must be a strong genetic covariance 

between the sex allocation allele and the mating bias of sons across all environments 

(Wade et al., 2003). Models tackling the extent of the sex allocation bias depend on 

two  key  factors:  the  strength  of  transmission  of  the  maternal  condition,  and  the 

importance  of  condition  to  a  male's  mating  success  (Leimar,  1996,  Hewison  & 

Gaillard, 1999). To understand the trade-off between these two parameters, we must 

consider that mothers are maximising not only the number, but also the reproductive 

value of their grandchildren. Of course mothers cannot know the condition of their 

offspring's mates, but can assume that they will have the mean population quality. If 

the transmission of maternal  condition to offspring is stronger,  then fewer grand-

offspring produced by good-condition daughters could have higher total reproductive 
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value than a greater number of average-condition grand-offspring produced through a 

son. Likewise, if sexual selection is strong due to a large reproductive skew among 

males heavily dependent on condition, then a good-condition son can produce many 

average-condition grandchildren. This prediction has found mixed support (Schino, 

2004, Sheldon & West, 2004), but it does demonstrate that sexual selection and sex 

allocation are linked in Trivers-Willard situations.

An extension of the Trivers-Willard hypothesis is that attractive males should sire 

more  sons  than  daughters.  This  was  first  proposed  by  Burley  (1981) following 

observations in the zebra finch. Despite this initial study having been contested (e.g. 

Rutstein et al., 2005), the idea has persisted in many species (West & Sheldon, 2002). 

This effect of over-producing sons when the father is attractive has been modelled 

successfully,  suggesting  it  is  feasible.  It  relies  on  good-gene  benefits  and  the 

heritability of male attractiveness (Fawcett et al., 2007, Pen & Weissing, 2000).

Study organism: Nasonia vitripennis

My study organism throughout this thesis is the gregarious parasitoid wasp Nasonia 

vitripennis. Nasonia vitripennis  (Hymenoptera: Chalcidoidea: Pteromalidae) is one 

of four species within the  Nasonia  genus. It is a small (approximately 2mm long) 

wasp  found  throughout  the  Northern  hemisphere  (Whiting,  1967).  Nasonia 

vitripennis  parasitise  the  pupae  of  large  dipterans,  laying  their  eggs  inside  the 

puparium, but on the outside of the fly pupa itself. The host is killed by the female's 

- 29 -



sting but necrosis is arrested by components of the venom (Rivers & Delinger, 1995). 

Hence  N.  vitripennis  is  described  as  a  gregarious  (i.e.  multiple  eggs  per  host) 

idiobiont (i.e. host has stopped development) ectoparasitoid (i.e. larvae develop on 

the outside of the host’s body) (Godfray, 1994).

Life cycle of Nasonia

Nasonia vitripennis spend around two days as eggs and then hatch into larvae, they 

feed  on the  host  tissues  for  about  nine  days  at  25°C,  until  they begin pupation. 

Pupation takes  a  further  three  days  at  25°C,  passing  through several  identifiable 

pupal stages (Whiting, 1967) which allow for the sexing of pupal wasps. Once the 

pupae eclose into adults, they chew a hole in the host puparium and exit. 

The males tend to eclose and emerge sooner than females, waiting for their virgin 

sisters  to  emerge  from the hole  in  the  host  puparium.  The courtship  and mating 

behaviour of N. vitripennis is well described (Barrass, 1960, Barrass, 1961, Whiting, 

1967). Males deposit a rectally-produced pheromone on the substrate, often on the 

host puparium's external  surface,  which is  attractive to virgin females (Steiner & 

Ruther, 2009b, Ruther et al., 2009, Ruther et al., 2007). The male mounts the female, 

orienting himself over her antennae, where he begins a series of stereotyped head 

nod cycles. On the first of each of these cycles he emits a dose of pheromone from 

his  mouth-parts  (van  den  Assem  et  al.,  1980);  the  chemical  identity  of  this 

pheromone is not yet known. When the male has successfully courted the female, she 
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drops her antennae and moves her abdomen to expose her genital pore. On receiving 

this signal, the male backs up to copulate with the female. He inserts his aedeagus 

into her reproductive tract to deposit his ejaculate. Once copulation is complete, the 

male returns to his original courtship position, where he performs more bouts of the 

head-nod cycle. This is known as post-copulatory courtship, and is thought to have a 

role in turning-off female receptivity to future matings (Leonard & Boake, 2008, van 

den Assem & Visser, 1976). Most females in the wild are singly-mated (Grillenberger 

et al., 2008), but double mating is observed in the lab and the wild (Burton-Chellew 

et al., 2007a, Grillenberger et al., 2008, Holmes, 1974, Grant et al., 1980).

One  of  the  purposes  of  mating  is  to  transfer  sperm.  A little  is  known  about 

spermatogenesis in parasitoids and  Nasonia in particular.  Nasonia males are proto-

spermatogenic, i.e. they produce all their flagellate spermatozoa as pupae, and the 

production of this is synchronous (Whiting, 1967, Clark et al., 2010, Hogge & King, 

1975, Clark et al., 2008, Pennypacker, 1958). The timing of sperm production across 

the  parasitoids  is  predicted  to  vary with  the  nature  of  their  mating  opportunities 

(Boivin et al., 2005). The haplodiploidy shared by all Hymenoptera alters the process 

of  spermatogenesis:  the  first  round of  meiosis  is  not  performed due  to  the  male 

haploidy, leaving all  spermatozoa genetically identical  (Pennypacker,  1958).   The 

spermatozoa themselves are  similar  to those of  all  Chalcidoidea:  the head of the 

spermatozoa consists of an acrosome and a spiral nucleus followed by the flagellate 

tail packed with mitochondria  (Lino-Neto et al., 2000, Lino-Neto & Dolder, 2001, 

Hogge & King, 1975). After mating the sperm are stored in the female's spermatheca 
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until she uses them for fertilising eggs. The spermatheca consists of a spermathecal 

capsule where the sperm are stored, the spermathecal gland, and a long duct which 

connects to the vagina (King, 1962). 

Mated  females  have  higher  activity  levels  than  virgins  (King  et  al.,  2000)  and 

disperse away from the patch, leaving the wingless (brachypterous) males behind. 

After dispersal females then search for new hosts to oviposit. We know little of the 

cues used for the host searching in Nasonia in the wild, but there is some evidence 

that olfactory cues of the host and the host-environment are used (Whiting, 1967, 

Schurmann et al., 2009) along with some cues of the hosts nutritional quality (Blaul 

& Ruther, 2011). Also a genetic basis for host choice has been established between 

the species of the Nasonia genus (Desjardins et al., 2010).

Before stinging a host and ovipositing, an adult female assesses if the host is suitable 

for  oviposition,  including if  it  has  previously been parasitised  by another  female 

(Whiting, 1967). Once the female has stung the host, she feeds on the haemolymph, 

gaining valuable protein which she uses for egg-maturation (Rivero & West, 2005). 

Depending on the species, size and quality of the host, the female then lays a clutch 

of eggs (typically 20-50 eggs for the  Calliphora vicina hosts  used in this  thesis) 

using a wide range of cues to determine both the size of her clutch and its sex ratio  

(see sex allocation in Nasonia section below).
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The mechanism that an ovipositing female uses to control the sex ratio is thought to 

be precise fertilisation. Their haplodiploid genetics mean that in general, a fertilised 

egg will become a daughter and unfertilised egg will become a son. Control of the 

sex ratio is distinct from sex determination itself. The molecular regulation of sex 

determination mechanism itself has recently been resolved after decades of confusion 

reviewed  by  Beukeboom et  al.,  (2007). After  assessing  the  evidence  for  various 

mechanism of sex determination,  including maternal  effects,  genomic  imprinting, 

and ploidy,  Beukeboom et al.,  (2007) proposed a model for sex determination in 

Nasonia, which relied on a combination of genomic imprinting and maternal effects. 

Recently, the molecular regulation of sex determination was established (Verhulst et 

al.,  2010),  and  it  closely  matches  the  prediction  of Beukeboom  et  al.,  (2007). 

Verhulst et al., (2010) found the transformer gene in Nasonia, that they named NVtra 

for Nasonia vitripennis transformer. They discovered that NVtra shows sex-specific 

splicing patterns and through a series of experiments using dsRNA to silence NVtra 

in adult females, they discovered that the NVtra is silenced in eggs through maternal 

imprinting.  The  eggs  are  also  provisioned with  the  maternally  produced female-

spliced mRNA of  NVtra. Unfertilised eggs develop into males because they cannot 

produce the female-specific splice forms of NVtra once the maternal provision runs 

out. In fertilised eggs, the paternally inherited NVtra locus is not imprinted, and so 

the fertilised eggs can continue to produce the female-specific splice form of NVtra 

necessary  to  develop  as  a  female.  This  is  of  course,  sensitive  to  some  of  the 

endosymbionts  that  can  feminise  or  masculinise  embryos  (see  sex  allocation  in 

Nasonia section).
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Sexual selection in Nasonia and other parasitoids

One of the hall-marks of sexual selection is the sexual dimorphism that results from 

sex-specific  selection  on  trait  values.  In  general  the  parasitoid  wasps,  like  most 

Hymenoptera, show considerable sexual dimorphism (Stubblefield & Seger, 1994). 

On the whole, females are larger than males, but body sizes do generally overlap 

(Hurlbutt, 1987b). Fighting adaptations are observed in the males of some species 

(e.g.  Melittobia acasta (Innocent et al., 2007); the fig wasp parasitoids (Hamilton, 

1979)). Female parasitoids, as aculeates, have an ovipositor which they use to sting 

the host, and also lay the eggs. Aside from sexual size dimorphism, relatively little is  

known  about  sexual  selection  in  the  parasitoid  wasps.  In  the  fatally-fighting 

Melittobia acasta development time is also under sexual selection: earlier males do 

best in competition, but if the wasps are age-matched, larger males are more likely to 

win (Innocent et al., 2007). 

The dimorphic external characters of  Nasonia vitripennis  are described in depth in 

Darling and Werren,  (1990),  and summarised here.  In general  Nasonia  males  are 

smaller than females, but their body sizes do overlap. This reduced male body size is 

thought  to  be  associated  with  the  evolution  of  receptivity  signalling  in  many 

Chalcidoidea, as males cannot detect the female opening her genital pore when they 

are in the courtship pose (van den Assem, 1976, van den Assem & Jachmann, 1982). 

The hind tibia of  Nasonia,  and many other species are elongated relative to body 
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length  in  order  to  assist  males  in  mating.  Male  and  female  Nasonia also  have 

different pigmentation patterns, however this has not been investigated in terms of its 

evolutionary function. Unsurprisingly the shape of the abdomen differs between the 

sexes,  probably  as  a  consequence  of  the  different  genitalia  within.  One  striking 

difference is that males are brachypterous, in that they have vestigial wings, while 

females have fully developed wings and can fly. This restricted male dispersal ability 

has  implications  for  the  sex  allocation  strategy of  N.  vitripennis. Males  are  also 

protandrous:  they tend to develop faster than their  sisters,  and are ready to mate 

sooner, although again there is some overlap between the sexes.

Where so few studies have investigated sexual selection in the parasitoids, Nasonia is 

one  of  the best  understood species  in  this  respect.  Larger  body size  provides no 

advantage to males in competition  (Burton-Chellew et al., 2007b), however larger 

males do have more sperm cells (Clark et al., 2010). Females are more attracted to 

males that produce larger quantities of the male rectally-produced pheromone, which 

may be an honest signal for sperm-resources (Ruther et al., 2009, Blaul & Ruther, 

2011).

Sex allocation in Nasonia and other parasitoids

In contrast to sexual selection, facultative sex allocation has been intensely studied in 

the parasitoid wasps. Two regimes of sex allocation are most common: local mate 

competition, and Trivers-Willard effects.
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For solitary parasitoid wasps that lay just one egg per host, the size of the host will  

determine the body size of the adult wasp, and hence contribute to its fitness. In most 

parasitoid wasps, body size is more important to females than males (Godfray, 1994). 

Therefore in the solitary parasitoids, it  is predicted that under the Trivers-Willard 

hypothesis (1973) female offspring should be laid on relatively larger hosts. This has 

been observed in  many parasitoid species  (West  & Sheldon,  2002).  For  example 

Lariophagus distinguendus females lay daughters in larger hosts and sons in smaller 

hosts (van den Assem, 1971). Such a sex allocation strategy is easier if the host's 

development is arrested by the sting of the parasitoid. If the wasp is a koinobiont (i.e. 

the host continues to develop once parasitised) the initial host size is not a reliable 

cue for the amount of resource available to the developing larvae.

In the gregarious parasitoids, population structure may lead to competition between 

brothers  for  mates,  resulting  in  the  sex  allocation  strategy  of  Local  Mate 

Competition. This is also possible in the quasi-gregarious parasitoids where only one 

wasp develops per host, but the hosts are clustered together to form patches. As the 

number of females ovipositing on a patch (foundresses) increases, the sex ratio a 

mother  lays  should  increase  from an  extreme female-bias  to  equality  (Hamilton, 

1967, Hamilton, 1979). This response has been observed in many parasitoid species 

(for a review see West, 2009). For the quasi-gregarious wasps, the size of the egg 

clumps will alter the intensity of LMC and hence the degree of sex ratio adjustment. 

This was found to be true across 31 species of the scelionid wasps where the size of 
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host egg masses  and the degree  of dispersal opportunities for males and females 

varied (Waage, 1982).  The Scelionidae are not the only group where the biology 

deviates  from  the  assumptions  of  Hamilton's  original  LMC  models.  Numerous 

extensions have been proposed, and tested in many parasitoid species where some 

mating occurs away from the patch, or the clutch sizes of females vary, or even the 

timing of the oviposition. These extensions, and the evidence for them have been 

recently reviewed by West (2009).

Non-facultative changes in the sex ratio are also observed in some parasitoid species. 

Aside from those caused by selfish genetic elements and endosymbionts, frequency 

dependent selection can also play a role. Due to their haplodiploidy, virgin parasitic 

wasps can lay all-male broods. These virgin, or sperm-depleted, females ovipositing 

are  called  constrained  females.  If  the  incidence  of  constrained  females  in  the 

population  is  large,  this  can  lead  to  an  excess  of  males,  consequently  selecting 

females  that are  not  constrained to  lay slightly more females  through frequency-

dependent selection (Godfray, 1990, Ode et al., 1997). This effect has been observed 

in many parasitoid species  (for a review see West, 2009) but is not thought to be 

important  for  Nasonia vitripennis as  the  incidence  of  constrained females  is  low 

(Beukeboom & Werren, 2000, Grillenberger et al., 2008, King & D'Souza, 2004).

Sex  allocation  in  Nasonia  follows  LMC  (Hamilton,  1967).  Females  assess  the 

number of foundresses on the patch through several cues including the parasitised 
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status of the host (King & Skinner, 1991, Werren, 1980, Shuker & West, 2004); the 

presence of other females in the patch (Flanagan et al., 1998, Werren, 1983, Shuker 

& West, 2004); and olfactory cues (Shuker et al., 2007b). The age of the brood a 

female is about to super-parasitise is also important: female adjust the sex ratio based 

on  the  probability  that  the  males  from the  previous  brood  will  still  be  alive  to 

compete with her sons (Shuker et al., 2005, Shuker et al., 2006a). Despite predictions 

that female  N. vitripennis should alter their sex allocation behaviour dependent on 

the relatedness of the females in the patch, there is no evidence to suggest they do 

this (Reece et al., 2004, Shuker et al., 2004, Shuker et al., 2006b). Nasonia females 

can discriminate between species within the genus: females are more likely to reject 

a host previously parasitised by another species, but if they do accept the host they 

do not alter the sex ratio as predicted (Ivens et al., 2009). The assumptions of many 

LMC models and extensions have been tested, and confirmed in wild populations 

(Grillenberger et al., 2008, Molbo & Parker Jr, 1996, Burton-Chellew et al., 2008). 

Factors  other  than LMC cues can also influence  the  sex allocation behaviour  of 

Nasonia females.  Several  studies  have  demonstrated  heritable  variation  in  sex 

allocation behaviours. The narrow sense heritability of single-foundress sex ratio has 

been measured to be between 0.05-0.15 (Orzack & Gladstone, 1994) and 0.09-0.15 

(Parker Jr & Orzack, 1985), while the broad-sense heritability measured at 0.02-0.17 

(Pannebakker et al., 2008). Between-strain variation in single-foundress sex ratio has 

also been established (Orzack et al., 1991, Orzack & Parker Jr, 1990, Orzack, 1990). 

Artificial  selection experiments have also proved successful (Parker Jr & Orzack, 
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1985)  and  the  mutability  of  sex  ratio  was  found  to  be  0.001-0.002,  which  is 

consistent with life-history traits  in other insects (Pannebakker et  al.,  2008).  This 

body of evidence for a genetic basis to the sex ratio culminated in the discovery of a 

Quantitative  Trait  Locus  (QTL)  for  sex  ratio  variation  on  chromosome  two 

(Pannebakker et al., 2011). 

Nasonia vitripennis also suffers from infections of selfish sex ratio distorters which 

skew the sex ratio to benefit  their own transmission. Paternal Sex Ratio (PSR) B 

chromosomes cause  the  paternal  chromosomes to  condense  just  after  fertilisation 

(itself  surviving),  resulting in  all-male broods (Beukeboom, 1994, Beukeboom & 

Werren, 1993, Beukeboom & Werren, 2000, Dobson & Tanouye, 1996, McAllister & 

Werren, 1997, Werren & Stouthamer, 2003). The endosymbiont Wolbachia is wide-

spread in Nasonia wasps, and causes cytoplasmic incompatibility, which can result in 

all-male broods if  Wolbachia-free eggs are fertilised by  Wolbachia-bearing sperm 

(Bordenstein et  al.,  2001,  Bordenstein et  al.,  2003,  Bordenstein & Werren,  1998, 

Breeuwer & Werren, 1995, Perrot-Minnot et al., 1996). The bacterium Arsenophonus 

nasoniae  produces all-female wasp broods: it prevents the production of maternal 

centromeres that  are  necessary for  haploid male production (Ferree et  al.,  2008). 

These selfish genetic elements can therefore greatly influence the sex ratio of a brood 

laid by a mother.
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Thesis aims

In this thesis I studied the links between sexual selection, sexual conflict,  mating 

systems and sex allocation in the gregarious parasitoid wasp Nasonia vitripennis. My 

primary focus was sexual selection in this species, asking what makes a good son in 

N. vitripennis, and how does that impact on sex allocation?

Some of these associations have already been established. The link between mating 

system and sex allocation is well known for the gregarious parasitoid wasp Nasonia 

vitripennis. Hamilton's (1967 & 1979) Local Mate Competition describes how local 

mating leads to competition between a mother's sons for mates. 

The  link  between  sex  allocation  and  sexual  conflict  has  also  been  previously 

investigated in Nasonia vitripennis. As a result of their haplodiploidy, the optimum 

sex  ratio  for  Nasonia mothers  and  fathers  differs  (Figure  1.2).  The  mothers  are 

selected to follow the predictions of LMC, however the father should favour all the 

eggs  to  be  fertilised  with  his  sperm,  leading to  all-female  broods irrespective  of 

environmental conditions (Shuker et al., 2009). This leads to the prediction that male 

N. vitripennis will have adaptations to increase the fertilisation, and oviposition rate 

of their mates. Some evidence for such adaptations has been found as the sex ratio a 

female laid was partly attributable to the strain of her mate, however the proportion 

of variance explained was small (Shuker et al., 2006c).
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Other forms of sexual conflict have been initially explored in the  Nasonia genus, 

using comparisons of con- and heterospecific matings. The four species of Nasonia 

are  cross-fertile  once  they  are  cured  of  endosymbionts  such  as  the  intra-cellular 

bacteria  Wolbachia (Bordenstein et  al.,  2001).  Geuverink et  al.,  (2009) compared 

females from three of these species mated to con- and heterospecific males. For only 

one of the species testes (N. giraulti)  the largely monandrous females were more 

likely to re-mate if they first mated a heterospecific male and were then presented 

with  a  con-specific  male  than  any  other  combination.  This  may suggest  that  N. 

giraulti  males are better at preventing re-mating in their con-specific females, than 

males of other Nasonia species. The extent to which this demonstrates sexual conflict 

is also unclear, as no cost to mating was established for the females. 

In this thesis, I have built on these existing studies, to further understand the links 

between the four themes I have introduced: sex allocation, sexual selection, sexual 

conflict and the mating system. First I investigated the importance of mating system 

and sexual selection, through a competition experiment between sons to test how the 

relationship between body size and development time influenced fitness (Chapter 2). 

Next,  I  investigated  the  direct  effects  of  sexual  selection  and  sex  allocation,  by 

investigating the association between mate competitiveness and the single-foundress 

sex ratio (Chapter 3). I then extended these ideas by examining the among-strain 

variance in sperm resources and sperm-limitation (Chapter 4). Finally, I investigated 

the links between sexual conflict and mating system by screening variation in female 

re-mating rate, and looking for male-adaptations to reduce the re-mating propensity 
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of their mates (Chapter 5). These studies, along with a review into sexual conflict in 

the  Hymenoptera  (Chapter  6),  have  linked  together  many  of  the  relationships 

between  sexual  selection  and sex  allocation,  through mating  systems  and sexual 

conflict. 
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Figure 1.1: The relationship between sex ratio and foundress number under Local Mate Competition 
(LMC).  As  the  number  of  foundresses  increases,  optimal  sex  ratio  predicted  by  Local  Mate 
Competition increases the proportion male. The line follows the equation for haplodiploids, s*=[(n-1)
(2n-1)]/[n(4n-1)] where s* is the optimal sex ratio, and n is the number of females ovipositing on the  
patch, called foundresses.
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Father Mother Son Daughter Brother Sister

Female 0.5 0.5 0.5 0.5 0.25 0.75

Male 0 1 0 1 0.5 0.5

Figure 1.2: The relatedness asymmetries created by haplodiploidy. Females are diploid, developing 
from fertilised eggs.  Males  are haploid,  developing from unfertilised eggs.  Double-headed arrows 
indicate that the relatedness is equal in both directions. Where the relatedness differs from each parties 
stand-point, single-headed arrows are used. The table demonstrates the relatedness of siblings to each 
other also.
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2. Sexual selection on male development time in the 
parasitoid wasp Nasonia vitripennis

This chapter can be found in Appendix 2 in its published form as:  Moynihan, A.M. & Shuker D.M. 

(2011)  Sexual  selection  on  male  development  time  in  the  parasitoid  wasp  Nasonia  vitripennis,  

Journal of Evolutionary Biology 24: 2002–2013



Abstract

Mating systems are shaped by a species’ ecology, which sets the stage for sexual 

selection. Males of the gregarious parasitoid wasp  Nasonia vitripennis compete to 

mate virgin females at the natal site, before females disperse. Males could increase 

their  fitness  by  being  larger  and  monopolising  female  emergence  sites,  or  by 

emerging earlier pre-empting access to females. I consider sexual selection on male 

body size and development time in  Nasonia, and a potential trade-off between the 

two traits. I explored sex-specific patterns of larval and pupal development, finding 

that  smaller  wasps  developed  slower  than  their  host-mates.  Using  competition 

experiments between brothers I found that earlier eclosing males mated more females  

independently  of  absolute  and  relative  body  size.  My  data  explain  the  lack  of 

relationship  between  fitness  and  body  size  in  male  Nasonia,  and  reinforce  the 

importance of protandry in mating systems where access to mates is time-limited. 

Keywords: mating success, body size, development time, protandry, trade-off, sexual 

selection
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Introduction

Sexual selection is expected to have acted on male traits that make them good at 

finding and inseminating females, and then having their sperm used to fertilise eggs 

(Darwin, 1871, Andersson, 1994). The way in which males achieve this fitness will 

be  shaped  by  the  mating  system,  which  describes  the  spatial  and  temporal 

predictability  of  females  and  the  extent  to  which  males  can  gain  or  monopolise 

access to females  (Emlen & Oring, 1977). If females can be defended, then sexual 

selection is predicted to have resulted in adaptations, such as weapons or large body 

size, which increase the chance that a particular male will be successful. If females 

cannot be defended, this will lead to a different suite of adaptations, to increase a 

male’s chance of locating and courting a female (Andersson, 1994).

Females  are  easiest  to  defend if  they are  clustered  together  in  space  or  time.  If  

females are clustered together in time, then the life history and development times of 

males and females may be under sexual selection to ensure that individuals enter the 

mating  population  at  the  appropriate  time.  Development time is  known to  be an 

important component of fitness in many organisms, such as butterflies (Fagerström & 

Wiklund,  1982),  damselflies  (Plaistow  &  Siva-Jothy,  1999),  mayflies  (Rowe  & 

Ludwig,  1991),  mosquitoes  (Holzapfel  &  Bradshaw,  2002) and  salamanders 

(Semlitsch et al., 1988). The importance of development time to fitness is apparent in 

species where one sex is selected to be ready to mate before the other  (Morbey & 

Ydenberg, 2001).  Morbey & Ydenberg (2001) categorise the hypotheses to explain 
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one sex’s readiness to mate before the other into two groups (Table 2.1). First, there 

are those hypotheses in which selection influences the arrival time of each sex into 

the mating population, but not the relative arrival time of each sex (i.e. the difference 

between the sexes – the extent of protandry or protogyny – is an indirect outcome of 

selection). Second, there are those hypotheses that consider selection directly on the 

relative arrival times of each of the sexes to the mating population. For the latter, the 

earlier  sex  (usually  males)  either  gains  an  advantage  through  increased  mate 

opportunities,  or  the  later  sex  minimises  the  time  spent  waiting  for  potential  or 

suitable mates, or can chose a higher quality mate from those that have been in the 

mating pool for longer. The mating system of a species will play a key role in the 

selection for either protandry or protogyny, and the seven hypotheses need not be 

mutually exclusive.

Obtaining  and  monopolising  mates  when  females  are  clustered  spatially  or 

temporally  may  therefore  involve  contest  traits  (such  as  body  size)  as  well  as 

developmental traits. Traits like body size and development time may well also trade-

off with one another (Stearns, 1992), and it has been shown in a number of species 

that as development  time becomes critical,  for example as the end of the season 

approaches, individuals sacrifice the proposed benefits of a large body size in order 

to become reproductively mature sooner (model (Rowe & Ludwig, 1991), empirical 

tests  (Semlitsch et al., 1988, Plaistow & Siva-Jothy, 1999)). Many of these studies 

assume that large body size confers fitness benefits to males and females: this has not 

always  been  found  to  be  true  when  tested  though  (McLachlan  &  Allen,  1987, 
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Klingenberg & Spence, 2003, Burton-Chellew et al., 2007b). In any case, the extent 

to which contest or development time traits are favoured by sexual selection is likely 

to depend on details of the ecology or mating system of any given species. 

For the gregarious parasitoid wasp  Nasonia vitripennis,  the mating system is best 

described as a mix of scramble competition and defence of the female emergence 

site. Female  Nasonia  lay a large clutch of eggs on dipteran pupae within the host 

puparium. Once hatched, the larvae feed on the host tissues, before pupating and then  

eclosing into adults  (Whiting,  1967). Males emerge from the host puparium first, 

waiting near the exit hole they chewed for newly-eclosed females to emerge; such 

defence tends to break down if many males are present, with males scrambling to 

find virgin females. If the patch contains multiple hosts, males may explore other 

hosts, and can detect if these hosts also contain female pupae soon to eclose (Shuker 

et  al.,  2005).  As  with  many  parasitoids,  N.  vitripennis  has  highly  structured 

populations, with sib-mating commonly occurring at the natal site. This can result in 

so-called Local Mate Competition (LMC) between related males, which selects for 

female-biased sex ratios  (Hamilton, 1967, Werren, 1983, West, 2009). Despite the 

female-biased  sex  ratios  arising  from  LMC,  males  usually  have  at  least  one 

competitor  in  both  the  wild  and  the  lab  (Grillenberger  et  al.,  2008).  However, 

although we know a lot about some of the consequences of the mating system in 

parasitoid wasps like  Nasonia in terms of things like sex ratio selection, we know 

rather less about the sexual selection that arises under such mating systems (Godfray, 

1994).
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This mating system combined with the mating behaviour of the wasps allows us to 

make predictions about the relative importance of body size and development time to 

male fitness. Most females emerge from the host puparium as virgins (99% Drapeau 

& Werren, 1999) and then males mount them and begin courtship; most females mate 

the first male they encounter, and become unreceptive to further matings for several 

hours  (Shuker et  al., 2007a, Leonard & Boake, 2008). On the rare occasions that 

polyandry does occur, there is first-male sperm precedence (Holmes, 1974, Leonard 

& Boake, 2008). After mating, females disperse away from the patch, to search for 

oviposition  sites  leaving  the  shorter-winged  (brachypterous)  males  behind  (King, 

1993). The  N. vitripennis mating system therefore appears to favour protandry in 

many aspects: access to females is temporally limited  (Thornhill & Alcock, 1983) 

and  females  disperse  after  typically  mating  just  once,  with  first-male  sperm 

precedence (Holmes, 1974, Fagerström & Wiklund, 1982, Leonard & Boake, 2008).

Just as we expect mating system to shape selection on development time, it will also 

impact on other traits, including body size. The contribution of body size to fitness in 

this wasp has been investigated for both sexes. Bigger females have higher fecundity 

in N. vitripennis (van den Assem & Jachmann, 1982, West et al., 2001). For males, 

size could confer an advantage in intra-sex competition to control the emergence site. 

Anecdotally, the largest male N. vitripennis successfully defends the emergence hole 

in the host puparium and consequently monopolises the females emerging (van den 

Assem & Vernel, 1979). However, no size advantage has been found in competitive 
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environments  in  previous  experiments  (Burton-Chellew  et  al.,  2007a),  although 

larger  males  have higher sperm resources on eclosion which could confer  fitness 

advantages  (Clark et al., 2010). In summary, both body size and development time 

could contribute towards male fitness in N. vitripennis.

In this study I did two things. First, I tested for a relationship between body size and 

development time in  N. vitripennis. I performed three experiments in order to test 

this relationship at pupation, adult eclosion and emergence from the host puparium. 

The time spent feeding will be a crucial component to any body-size development-

time relationship.  Observing the timescale of pupation within the context of both 

eclosion and emergence from the puparium allowed us to see if larger individuals 

spent more time feeding, and if larval feeding time differed between the sexes. In 

many parasitoids, including Nasonia, there is evidence of adults spending time inside 

the host puparium and even mating before they emerge (Drapeau & Werren, 1999). 

To disentangle the relationships between body size and eclosion and emergence time, 

I  opened hosts  and removed the pupae  to  observe the  eclosion  times  for  natural 

clutches of wasps. Second, I tested the fitness benefits of being larger or emerging 

from the host earlier in a competitive mating situation that mimics the natural mating 

system. The mating system of N. vitripennis led us to predict that earlier males will 

have more matings  than  their  later  competitors,  and that this  will  have a  greater 

impact on fitness than differences in body size. If this is true, and there is a trade-off 

between body size  and development  time,  I  would  expect  large  body size  to  be 

sacrificed for development time.
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Materials and Methods

Wasps

The experiment used two lab strains of Nasonia vitripennis: AsymC and STDR-TET. 

Both strains are antibiotic-treated and free from Wolbachia and other endosymbionts. 

The strains differ in the allele at the eye-colour locus S within the R-locus (Whiting, 

1961). The AsymC line is homozygous for a black, wild-type eye colour allele; these 

are referred to here as the wild-type wasps. The STDR-TET wasps are homozygous 

for a recessive scarlet eye colour allele at the same locus; these are referred to here as 

red-eye wasps. I kept the wasps under controlled conditions in incubators at 25°C 

and under a cycle of sixteen hours of light with eight hours of darkness throughout 

experiments and culture. Under these conditions the generation time is approximately 

14 days (also see Results). In both experiments and culture conditions, the hosts used 

were the pupae of the large dipteran Calliphora vicina.

What is the relationship between body size and development time?

To  control  for  maternal  effects,  I  initiated  grand-parental  generations  for  my 

experiments.  I  took  mated  two-day-old  females  from  stock  tubes  to  be  the 

grandmothers of the experimental generation and put them through a pre-treatment 

process. Females are synovigenic: they are born with some immature oocytes, and 

must host-feed to gain protein for egg maturation (Rivero & West, 2005). To allow 
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this, I started the pre-treatment process with the females on a host for 24 hours. I then 

removed the host and gave the females a piece of filter paper soaked in honey-water 

for 24 hours, before a second host is provided for oviposition. The female had this 

host to oviposit on for 24 hours before she was removed and the parasitised host 

incubated.

Once the offspring of these grandmothers emerged from the hosts they were allowed 

to mate with their siblings for 24 hours. I used one mated female from each tube to  

be  an  experimental  mother.  I  put  these  females  through  the  same  pre-treatment 

regime as the grandmothers with one difference: mothers had their second host to 

oviposit on for only six hours. All females received their host within 45 minutes, and 

were removed in the same order at the same rate. This short window ensured that any 

within-brood  differences  in  development  time  of  more  than  6  hours  cannot  be 

attributed  to  differences  in  laying  order  alone.  After  oviposition,  I  removed  the 

females and allocated the parasitised hosts randomly to an experiment and incubated 

them. In order to test the relationship between body size and development time, I 

assayed development at three transitions: larvae to pupae; pupae to adults; and adults 

leaving the host puparium. This allowed us to  see whether  relationships between 

development  time  and  body  size  are  due  to  differences  in  time  spent  feeding, 

pupating or leaving the host puparium. 
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Experiment One: Pupation time

To investigate the relationship between body size and the onset of pupation, I scored 

the numbers of wasp larvae and pupae within hosts across a series of time points. I 

opened 15 hosts of each strain per day from days three to six post-oviposition and 

counted the number of larvae. As the wasps began to pupate, I scored developmental 

stage  more  frequently:  on day seven post-oviposition  I  scored  36 hosts  over  3.5 

hours, then after a two-hour gap, another 45 hosts were scored in a further 2.5 hour 

session. On day eight I scored 24 hosts over two hours. The sample size for each 

strain is therefore n=110, or n=115. Any pupae were carefully removed and kept at 

25°C until they eclosed as adults. Individuals were considered pupae once legs and 

wings were clearly visible under a dissecting microscope, corresponding to the white 

pupa stage (sensu Whiting, 1967). A single observer (AMM) carried out this stage to 

standardise  any  subjectivity.  Once  individuals  had  eclosed  as  adults,  I  used  an 

Olympus  microscope  and  digital  camera  set-up,  using  the  Olympus  proprietary 

software Cell^D to measure the hind tibia length of the wasps to 0.0031746μm. Hind 

tibia length is a common measure of body size in parasitoids (Godfray, 1994). Male 

N. vitripennis are often smaller than their female conspecifics, but have longer tibia 

lengths due to differing allometries (Whiting, 1967, Sykes et al., 2007).

Experiment Two: Eclosion time

In order to observe eclosion, I removed the wasp pupae from their host. To control 

for any potential  impact  of this manipulation on development  time,  I  opened the 
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hosts at two points: the yellow eye stage on day nine post-oviposition, and the half-

melanised  stage  on  day  eleven  post-oviposition  (Whiting,  1967).  I  counted  any 

diapause or dead larvae in with the pupae and included this in the final clutch size. 

The 33 hosts that contained more than five diapausing larvae were excluded from the 

analysis, as their effect on the development of their siblings is unknown. After the 

pupae had been removed from the host, they were returned to a glass vial and kept as 

a sibling-group. I set up and observed n=72 replicates for each strain at each of the 

two pupal stages, at randomised positions within the incubator.

Adult  wasps  typically  emerge  around lights-on in  the  incubator  (Bertossa  et  al., 

2010), which was 07:00 hours. I commenced observations at 10:30 on day thirteen 

post-oviposition prior to what I expected to be the commencement of emergence on 

day fourteen. I then started observations at 05:00 hours on days fourteen and fifteen 

after oviposition. Observations continued until 15:00 hours, by which time very few 

wasps per hour were eclosing. A total of 26 scans were performed across all three 

days. The times between scans varied from 23 to 231 minutes, with a mean of 77.07 

(SE = 13.06) minutes; this variation was due to differing numbers of tubes requiring 

handling in each scan, with a desire to maximise the number of scans performed. 

When adult wasps were found in a tube, I removed and kept them for measuring, 

recording the replicate number, date and time they were collected. I followed the 

tibia  measuring  procedure  described  for  Experiment  One.  I  also  measured  and 

recorded any individuals that did not eclose or emerge during the observation period 

(constituting a 27th time-point).
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Experiment Three: Emergence from the host.

Emergence occurs when the adult wasps leave the host puparium, therefore in this 

experiment  I  did  not  manipulate  the  hosts  after  oviposition.  For  each  strain  I 

observed n=72 hosts. These hosts were observed, collected and measured under the 

same conditions, and in the same scans for adult wasps as Experiment Two. Again, 

the replicates were arranged in a random order in the incubator.

Is there sexual selection on body size and development time? 

To test  the  prediction  that  males  benefit  from eclosing  earlier  and to  assess  the 

relative importance of body size and degree of protandry, I observed the eclosion 

time of groups of two virgin brothers together with ten virgin females and tracked the 

fitness of each male using a genetic eye-colour marker. For all experimental wasps I 

controlled maternal effects as before, giving the experimental mothers six hours to 

oviposit. In order to reduce variation between the competitor males due to factors 

other than body size and eclosion time (for example those differences in the genetic 

background  of  the  STDR-TET and  AsymC strains,  or  those  from different  host 

environments) I used brothers that differed by genetically-marked eye-colour. Using 

brothers also allowed me to observe natural,  realistic levels  of variation between 

competitors, who in the wild will most commonly be brothers (Grillenberger et al., 

2008). To generate these males I mated red-eyed females to black-eye males, so their 

daughters are heterozygous for the black and scarlet alleles at the eye colour locus. 
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Half of these females’ eggs will carry the scarlet allele and half the black allele due to  

the  random  assortment  of  chromosomes.  Nasonia, like  all  Hymenoptera,  are 

haplodiploid:  males  develop  from  unfertilised  haploid  eggs,  and  females  from 

fertilised  eggs.  The  male  pupae  in  the  resulting  mixed-sex  broods  are  the 

experimental  males.  These  males  shared  a  host  environment,  and  have  normal 

relatedness  between  brothers,  but  different  eye  colours.  At  day  eleven  post-

oviposition, the eye-colour of the pupae can be discriminated. I therefore took one 

pair  of brothers that  differed from each other in  eye colour from each host.  The 

experimental females were red-eye pupae removed from their hosts on days eight 

and nine after oviposition, and kept in groups of virgin females with nine other non-

sisters. Once all the pupae had been collected, the 60 replicates were assembled in 75 

× 10mm glass tubes bunged with cotton wool, with each replicate containing two 

male pupae and ten female pupae. This set up is close to natural mating conditions: 

males have a competitor and two males with ten females gives a sex ratio close to 

those assayed under single-foundress conditions (0.163 proportion male Chapter 3).

I recorded the number of males and females eclosed in each of the tubes every hour 

for 28 hours. After 28 hours, I removed any individuals that had not yet eclosed and 

excluded any replicates which did not contain two males and at least eight eclosed 

females. The remaining (n = 56) replicates had 24 hours to mate. I then put each 

female on a host for 24 hours, to test which males had inseminated them. Because the 

scarlet eye colour allele is recessive to the black, the eye colour of the daughters 
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indicates which males, if any, inseminated the female. The hind tibia length of all 

individuals was recorded using the method previously described for Experiment One.

The use of brothers proved successful in that I removed any strain effects found in 

the previous experiments, whilst retaining the two eye-colour phenotypes. There was 

no difference in body size between the eye-colours (mean red-eye male hind tibia 

length  =  1913  microns  (SE  =  23.02),  mean  black-eye  hind  tibia  length  =  1930 

microns (SE = 22.90)). In 19 of the 53 pairs of brothers both males eclosed in the 

same observation interval. Of the remaining pairs the black-eyed brother eclosed first 

21 times and the red-eyed brother 13 times. The overall proportion of females sired 

by different eye-colours did differ: 39.3% of females laid only red-eye daughters, 

whereas 51.9% of females laid only black-eyed daughters with the remaining 8.8% 

of females laying daughters of both eye colours. 

Statistical analysis

All  statistics  were  performed  in  R  (R  Development  Core  Team,  2008,  Ihaka  & 

Gentelman, 1996). Full, unsimplified, models are reported throughout. 

For Experiment  One I  wanted to analyse the relationship between body size and 

development. There was a negative relationship between clutch size and wasp body 
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size for both sexes (LM: Male Tibia t1,59 = -2.32 p = 0.02; Female Tibia t1,59 = -3.04 p 

= 0.004), so to avoid problems associated with co-linearity I analysed body size and 

clutch size in separate models. I analysed the effect of clutch size and the time of 

observation on the proportion of the brood pupated, using a generalised linear model 

with a quasi-binomial error structure. The significance of each term was ascertained 

using a likelihood ratio test. Due to the destructive sampling for this experiment, I  

only knew the tibia lengths of those individuals that had already pupated by the given  

sampling point, and were measured after they had eclosed into adults days later. I 

therefore analysed the relationship between the body size of those that had pupated 

and  the  proportion  of  the  brood  that  had  pupated  within  each  of  the  hosts.  A 

generalised  linear  mixed  effects  model  (GLMM)  was  used  to  investigate  the 

relationship between pupation times and log tibia length, using only the 81 hosts that 

contained pupae, with Host ID fitted as a random effect. Sex was fitted as a fixed 

effect in this model, because males and females have different tibia lengths, and the 

allometry between body size and tibia length differs between the sexes. 

There was also a relationship between clutch size and sex ratio (LM t1,78 = -2.76, p = 

0.00727),  so  again  I  analysed  sex  ratio  and  development  time  separately.  The 

relationship between proportion of the brood pupated and sex ratio appeared to be 

non-linear in data exploration, therefore I used a generalized additive model (GAM) 

with a quasi-binomial error family (Crawley, 2005). Sex ratio was a smoothed term, 

with strain as a parametric term.

- 59 -



For  experiments  two  and  three,  the  between-host  comparisons  of  eclosion  and 

emergence using clutch size were performed using survival analysis. A Mixed Effect 

Cox’s Proportional Hazards (MECPH) test was used within the R package “coxme” 

with true time to eclosion of each individual as measured in minutes since midnight 

on 8th March 2009. Due to the co-linearity between body size, sex ratio of the brood 

and clutch size, I did not include sex as a fixed effect on eclosion or emergence time. 

MECPH was also used to analyse the relationship between the time to eclosion or 

emergence relative to the first eclosed/emerged individual in the host, and the body 

size and sex of the wasps, with Host fitted as a random effect.

For the competition experiment,  I  used a Generalised Linear  Model  (GLM) with 

quasi-binomial error structure to analyse the proportion of the females inseminated 

by the wild-type male as a measure of his mating success. This includes any females 

that  were  inseminated  by  both  males  (i.e.  polyandrous  females),  and  the  total 

includes any females that laid no daughters and are presumed virgins. The difference 

between the hind-tibia length of the wild-type and red-eye males was used as the 

measure  of  relative  body  size  in  the  full  linear  model.  The  limited  variation  in 

number of females available (8-10) was not associated with male success and not 

included in the analyses presented below. The significance of each term was tested 

using  a  Chi  Squared  test  of  the  full  model  compared  to  a  model  with  the  term 

removed.
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Results

What is the relationship between body size and development time?

Experiment One: Pupation time

I opened a total of 225 hosts, of which 81 contained at least one pupa. From those 81 

hosts I scored a total of 1736 pupae and 654 larvae. The mean clutch size was 29.88 

(SE = 0.77).  The  remaining 144 hosts  contained  only  larvae,  21  of  which  were 

opened on days when other hosts did contain pupae. The time window between the 

first pupae and last larvae being observed was more than 25 hours, far longer than 

the six-hour oviposition window (i.e. variation beyond that which could be attributed 

to variation in time available for oviposition). 

At a given point in time, a greater proportion of the brood from clutches with more 

individuals (i.e. larger clutch sizes) had pupated (Chi Squared test  p = 0.005) and 

there was no effect of strain on this relationship (Chi Squared test p = 0.89). Larger 

individuals pupated first: I found that the body size of the measured individuals was 

greater  when  a  smaller  proportion  of  their  brood  had  pupated  (Figure  2.1  & 

Likelihood Ratio test, LR = 8.70, p = 0.013) when controlling for clutch size. There 

was no effect of strain on this relationship (LR = 2.66,  p = 0.26), nor was there a 

significant interaction (LR = 0.80, p = 0.37). Males pupated before females since as 

the proportion of the brood that had pupated increased,  so the sex ratio of those 

individuals that had pupated became less male-biased (Figure 2.2 & GAM smooth 
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terms, Estimated d.f. = 1.54, F = 11.24, p < 0.0001) and there was no effect of strain 

(parametric coefficient t1,80 = -1.49, p = 0.14).

Experiment Two: Eclosion time

Over three days I observed a total of 255 hosts, which produced a mean of 27.4 (SE 

= 0.5) adult wasps each. Of the broods in which all individuals eclosed within the 

observed period, the mean range of eclosion time was 17 hours 38 minutes. In 44 

hosts the entire brood eclosed between two observation points. The least synchronous 

host took 46 hours and 21 minutes for all individuals to eclose. Thirty wasps eclosed 

after observations were completed, and these were entered as censored data into the 

analysis.

Wasps from larger clutch sizes eclosed sooner (MECPH Z = 3.73,  p < 0.0001). The 

wild-type wasps eclosed later than the red-eye broods (Z = -7.26,  p < 0.0001), and 

broods that were removed from the host on day 9 post-oviposition eclosed later than 

those removed on day 11 post-oviposition (Z = -5.28,  p < 0.0001). This shows that 

opening the host earlier causes the whole brood to decelerate pupation somewhat. 

The clutch size effect was exaggerated for wild-type wasps (Z = 3.92,  p < 0.0001).

Within hosts, larger individuals of both sexes eclosed earlier (MECPH Z = 13.26, p < 

0.0001). Males were protandrous, eclosing earlier than females controlling for tibia 

length (Z = 4.57  p < 0.0001).  Males eclosed within a smaller time window than 
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females (Figure 2.3 & 2.4), and there was no significant interaction between body 

size and sex on eclosion time (Z = -0.57, p = 0.64). The bi-modal pattern of eclosion 

observed (Figure 2.4) is likely to be a result of eclosion peaking around lights-on in 

the incubator. Strain and the stage at which the wasp pupae were isolated had no 

significant  effect  on  eclosion  time  within  broods  (Strain  Z  =  1.53,  p =  0.13; 

Treatment Z = 0.70, p = 0.48).

Experiment Three: Emergence from the host

A total of 144 hosts were observed, of which 134 contained wasps, producing a mean 

of 28.13 (SE = 0.89) adult wasps each. When I opened the host puparia after the 

observation period had ended, I found 83 wasps that had not emerged and these were 

again included as censored data. Of those broods from which all individuals emerged 

within the observation period, the maximum range of emergence time was 39 hours, 

31 minutes. Two broods emerged entirely between two observation points. The mean 

range of emergence times was eleven hours and nineteen minutes (Figure 2.3).

Individuals from larger clutches emerged sooner (MECPH Z = 4.57,  p < 0.0001). 

There is no effect of strain (Z = -1.255, p = 0.25), nor an interaction of clutch size 

with strain (Z = -1.31,  p  = 0.19).  Larger individuals of both sexes also emerged 

sooner (Z = 8.49,  p < 0.0001). Males of a given size were protandrous, emerging 

before females (Z = 3.48,  p  = 0.0005),  and there was no difference between the 
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strains in emergence time (Z = -1.23, p = 0.22). The relationship between body size 

and emergence time did not differ between the sexes (Z = -1.89, p = 0.058).

Is there sexual selection on body size and development time?

The earlier a male eclosed relative to his competitor the higher his mating success 

(Table 2.2 and Figure 2.5). The mating success of a male was not affected by the 

eclosion time of the females (Table 2.2). The difference in male size did not predict 

male fitness in this competitive environment (Table 2.2). This finding is robust: if I 

remove the minutes until the red-eye competitor male ecloses from the model, none 

of the effects are significant. Also, if I used the actual tibia lengths of both males 

instead of the difference, there was still no influence of body size on mating success 

(GLM F2,10.5  = 0.77, p = 0.46). If I just fit the difference in tibia to the proportion of 

females inseminated, I find that body size still has no significant effect (GLM,  F1,13.9 = 

0.58,  p = 0.45). I also found no significant quadratic term for the relative eclosion 

time squared (F1,10.34 = 1.57, p = 0.22) or the difference in body size (F1,10.08 = 0.19, p = 

0.66) on male mating success. A wild-type male inseminated 55.7% of the females 

that laid daughters.

Discussion

Highly structured populations in which mating and competition for mates commonly 

occurs  between  kin  have  been  studied  in  detail  in  terms  of  traits  such  as  sex 
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allocation,  but  much  less  so  in  terms  of  the  sexual  selection  arising  from  this 

competition (Hardy et al., 2005b, Hardy et al., 2005a). In Nasonia vitripennis, mating 

populations  are  not  only  highly  spatially  structured,  but  reproductively  receptive 

females  are  also  extremely  clumped  temporally,  following  emergence  from their 

host. Using an experiment that mimics these mating conditions, I have found that the 

time  a  male  enters  the  mating  population  is  under  sexual  selection,  resulting  in 

selection for protandry (Table 2.2, Figure 2.5). I propose that male  N. vitripennis  

prioritise early arrival to the mating pool over body size, beginning pupation as soon 

as their host-mates do. The contribution of protandry to male fitness has been under-

appreciated in previous parasitoid studies, where body size has been the focus (e.g. 

Burton-Chellew et  al.,  2007b, & Reece et  al.,  2007).  An exception to  this  is  the 

parasitoid wasp Melittobia acasta, where eclosion order predicts winning the lethal 

male-male fights typical of this species to a greater extent than being the larger male 

(Innocent et al., 2007). When males were age-matched post-eclosion, size played a 

more important role  (Innocent et al., 2007). My study is perhaps the first to clarify 

that  it  is  the  early  development,  not  the  body  size,  that  confers  the  competitive 

advantage  to  males,  when males  emerge both  earlier  and larger  under  controlled 

laboratory conditions.

In theoretical models, reduced male dispersal and female monandry, such as we see 

in N. vitripennis, contributes to the evolution of protandry (Fagerström & Wiklund, 

1982). Males can benefit from protandry through many routes (Morbey & Ydenberg, 

2001); the relative weight of these benefits will be a product of the mating system. 
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As discussed above, these benefits fall into two broad groups: those where the arrival 

of each sex into the breeding pool is under selection independently, and those where 

the arrival  time of  one sex relative to  the other is  under  selection.  Of the  seven 

hypotheses reviewed by Morbey and Ydenberg (2001), my experiment is less able to 

explore the effects  of relative emergence times between the two sexes central  to 

hypotheses 1-4 (Table 2.1), because I restricted female dispersal. In my experiment, 

once females had eclosed they spent an average of 35.5 hours with males, which is 

much higher than I would expect from an observed dispersal rate of one female every  

180 seconds from more realistic artificial patches (C.J. Doughty and D.M. Shuker, 

unpublished observations). This restriction would have removed any disadvantage to 

males eclosing later than females; the females were unable to disperse un-mated, and 

as  such  I  found  no  effect  of  female  eclosion  time  on  male  fitness  (Table  2.2). 

Although I have not considered these possibilities here, there is evidence that such 

direct selection on the relative arrival time of the sexes occurs in species of migratory  

birds (Coppack et al., 2006).

That said, of the direct selection hypotheses I can perhaps rule out three of them for 

other reasons. Since N. vitripennis commonly mates with siblings as a result of LMC 

(Grillenberger  et  al.,  2008),  in-breeding avoidance  (H4,  Table 2.1) is  an unlikely 

hypothesis  to  explain  protandry.  Mate-choice  (H3,  Table  2.1)  is  another  unlikely 

explanation of protandry in N. vitripennis as females usually mate with the first male 

they encounter (Chapter 5), although there is some suggestion of assortative mating 

by eye-colour (Figueredo & Sage, 2007). Waiting costs for females (H2, Table 2.1) 
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are also unlikely to explain protandry, not least as female  Nasonia do not need to 

spend time in a comparatively risky breeding environment in order to gain a mating, 

as  they  can  gain  some  fitness  as  virgins  (Steiner  &  Ruther,  2009a).  Also  some 

females eclose before males (Figure 2.3). The mating opportunity hypothesis (H1, 

Table  2.1)  proposes  that  protandry  allows  males  to  maximise  their  mating 

opportunity and this is consistent with the mating system of N. vitripennis, as earlier 

males  will  have  more  females  to  mate  with.  Evidence  for  the  mate  opportunity 

hypothesis has been found in other species, including Waved Albatross (Phoebastria  

irrorata) (Huyvaert et al., 2006).

Of the three remaining (indirect selection) hypotheses, the constraint hypothesis (H7, 

Table 2.1) can be discounted. If this were explaining protandry in  N. vitripennis  I 

would expect  to  have  found that  later  eclosing females  were larger,  however  the 

opposite  relationship  was  found.  The susceptibility  hypothesis  (H6,  Table 2.1)  is 

harder to reject, but is not compelling either: female Nasonia disperse soon after their 

first  mating,  and so poor conditions in the mating pool  are  unlikely to influence 

emergence timing. The rank advantage hypothesis (H5, Table 2.1), which has had the 

greatest  support  from migratory  bird  studies  (Kokko et  al.,  2006a,  Sergio  et  al., 

2007), is the most supported by the data presented here. The earlier males will win 

contests  for  the  best  territories.  Males  emerge  and  defend  a  hole  in  the  host 

puparium, with territory “quality” being determined by gaining access to the earliest 

females that eclose. Earlier females of N. vitripennis and other parasitoid wasps are 

typically  larger  and have  more  oocytes,  and therefore  represent  a  more  valuable 
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resource for males (van den Assem & Jachmann, 1982, West et al., 2001). Moreover, 

the first male has sperm precedence on the rare occasions when females mate more 

than once (Holmes, 1974, Leonard & Boake, 2008), compounding the advantages for 

an early male. Mechanistically, early-eclosing males will be fully sclerotised with a 

full complement of pheromones to attract females before they appear (Ruther et al., 

2009). The male’s rectally-produced female-attract and -arrest pheromone is likely to 

be  important  in  mate-acquisition  (Steiner  & Ruther,  2009b), and  an  earlier  male 

could potentially have more opportunities to deposit pheromone and attract females. 

Protandry in N. vitripennis is therefore favoured by both mate opportunities (H1) and 

rank advantage (H5) (Table 2.1).

While  my  data  indicate  a  larger  role  of  development  time  than  previously 

appreciated,  selection is  still  likely to have influenced male body size.  My assay 

detected no advantage to larger body size within the naturally generated range of 

sizes observed (Table 2.2), consistent with previous studies  (Burton-Chellew et al., 

2007b). Selection on male body size may therefore be stabilising, with a lower limit 

due to the need to produce enough sperm, and few benefits to being very large. 

Sperm depletion is potentially an important constraint for  Nasonia  male fitness as 

they do not produce spermatozoa as adults (Hogge & King, 1975, Clark et al., 2010), 

and  can  have  very  high  numbers  of  females  available  to  mate  with  in  the  wild 

(Werren, 1983, Grillenberger et al., 2008). This can be problematic for females too 

because males could continue to mate after they are sperm depleted, as is the case for 

the parasitoid  Trichogramma evanescens (Damiens & Boivin, 2006). Whilst mated 
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females  with  little  or  no  sperm  can  gain  some  fitness  in  haplodiploids,  sperm 

limitation is nonetheless costly. Male body size may also be influenced by selection 

on female body size through correlated selection  (Lande & Arnold, 1983). Males 

have a smaller body size overall compared to females, but they can overlap to some 

extent. The dimorphism between male and female N. vitripennis is otherwise large: 

females are fully-winged so they can disperse to find new hosts, whilst males are 

brachypterous with vestigial wings that prevent flight  (Whiting, 1967). This sexual 

dimorphism, with different allometries for different body parts, suggests that males 

and females have evolved in response to different selective pressures on components 

of body size.

I found a negative relationship between body size and time spent in development for 

both sexes. This is contrary to the findings of two other parasitoid studies:  larger 

individuals take longer to develop for Microplitis demolitor and Apanteles carpatus 

(Harvey et al., 2000) and Muscidifurax raptorellus (Harvey & Gols, 1998). However, 

in  other  invertebrate  orders,  a  negative  relationship  like  that  found  here  for  N. 

vitripennis, has  been  observed  (Gebhardt  &  Stearns,  1993,  Blanckenhorn  & 

Fairbairn,  1995,  Castillo  & Nunez-Farfan,  1999,  Maklakov  et  al.,  2004).  Larger 

individuals were developing faster at all three of the transitions I measured: larvae to 

pupae, pupae to eclosed adult, and the emergence of adults from the host. This shows 

that  the  relationship  I  have  observed  here  starts  with  differences  in  time  spent 

feeding, and then follows through the rest of the developmental schedule.
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While  my  data  could  support  the  idea  that  the  body  size-development  time 

relationship is under selection in N. vitripennis, I cannot rule out several alternative 

explanations.  Differences in  individual-  or resource-quality could generate  such a 

negative relationship between body size and time spent in development. It has been 

shown that differences in resource availability during development can result in an 

absence of predicted trade-offs between life-history traits (van Noordwijk & de Jong, 

1986).  Such differences  in  resource  quality  can arise  through several  routes.  For 

instance,  differing  growth  rates  continuing  through  size-triggered  moult-period 

results in larger individuals reaching the final instar sooner (Klingenberg & Spence, 

2003).  Alternatively the resources  available  for  growth can differ:  for  parasitoids 

clutch sizes can differ on equal-sized hosts due to differences in the mother’s body 

size and egg availability, or the presence of a previous female’s eggs  (Hardy et al., 

1992, Flanagan et al., 1998). Indeed when we look at relationships between broods I 

found that individuals from larger clutches are both smaller in body size, and the 

whole clutch develops faster than smaller  broods.  This is  in  stark contrast  to the 

within-clutch relationships where individuals are sharing resources and I found that 

the larger individuals are the faster developers.

These  mechanisms  for  creating  negative  relationships  between  life-history  traits 

might explain the disagreement between my study and those from other parasitoid 

studies. I propose that small N. vitripennis males sacrifice the greater sperm reserves 

associated with larger body size (Clark et al., 2010), in order to arrive in the mating 

pool at the same time as their competitors, because early development confers more 
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advantages  in  competition  between  host-mates  than  body  size  (Table  2.2).  The 

aforementioned  Microplitis demolitor  and Apanteles carpatus study  (Harvey et al., 

2000) looked at  solitary parasitoids:  such individuals do not share host resources 

hence I would not expect males to trade-off body size in favour of development time 

as there are no males to compete against in the host patch. Similarly, the between-

host comparisons of Harvey & Gols (1998) with Muscidifurax raptorellus would also 

not show such a trade-off.

Two other studies have measured protandry, body size and fitness. In the grasshopper 

Sphenarium purpurascens, there was a negative relationship between body size and 

becoming  an  adult  (Castillo  &  Nunez-Farfan,  1999).  For  the  grasshopper,  male 

fitness  depended  on  both  early  arrival  and large  body size,  leading  Castillo  and 

Nunez-Farfan to suggest that the correlation between development time and body 

size is under selection. For the spider Stegodyphus lineatus larger males were found 

to  reach  maturity  later:  the  opposite  relationship  to  that  found  here  in  Nasonia 

(Maklakov et al., 2004). Stegodyphus lineatus males benefited from early maturity as 

virgin females are less choosy than previously mated females. Mated females then 

choose larger males for second mates, leading to benefits in being large. Maklakov et 

al., (2004) suggest that being early is most important, and if a male cannot be early, 

he  should  at  least  be  large  to  gain  fitness  as  a  second  male.  The  spider  and 

grasshopper  studies  assayed  the  body  size-development  time  relationship  under 

ambient conditions and as such they could not control for lay-date or temperature 

effects,  and  consequently  could  not  rule-out  artefacts  of  different  growth-rates 
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explaining the relationships they observe between body size and development time, 

unlike my study under laboratory-conditions. These two previous studies, and my 

work here with N. vitripennis, represent different outcomes of selection acting on the 

links between body size, time taken to develop and fitness for males. The spiders 

either  develop early or  compensate  by spending longer in  developing to  become 

larger, whereas the negative relationship between body size and development time I 

found in Nasonia rules out this sort of compensation that could have masked body-

size benefits in previous studies that did not control for age. The grasshoppers also 

appear to be selected to be early and large. 

Finally,  if  development  time is  so crucial  for  male  fitness,  can  larvae  alter  their 

developmental schedules depending on the developmental stages of other larvae in 

the host puparium? Although we do not know the mechanism, there is some evidence 

that individuals can modulate their developmental rate. When more than one female 

parasitises a host (superparasitism), if the second brood is laid within 48 hours of the 

first,  the two broods will  eclose more or less synchronously  (Werren, 1980). The 

cuticular  hydrocarbon profile  of  a  wasp (Vespula  germanica)  has  been shown to 

change  on  pupation  (Brown  et  al.,  1991) suggesting  a  possible  mechanism  for 

detection. Experiments that manipulate larval developmental plasticity, and explore 

how it is controlled, are therefore an obvious next step.
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In  summary,  my  experiments  have  shown  that  within  the  size  range  tested, 

development  time  is  more  important  to  male  fitness  than  body  size.  My  study 

highlights  the  importance  of  considering  details  of  the  mating  system  when 

investigating  the  effects  of  sexual  selection:  despite  a  number  of  previous 

experiments focusing on body size in parasitoids, it has proved to be less important 

than development time when variation in an important aspect of the mating system, 

protandry, varies among males. As such, I suggest that development time rather than 

body size is under sexual selection in  Nasonia vitripennis  males. Moreover,  male 

mating  behaviour  and  the  selection  arising from variation  in  that  behaviour  also 

influences sex allocation in species such as  Nasonia. When LMC is extreme (i.e. 

females lay eggs alone) the number of males produced is expected to be influenced 

by the ability of a given male to fertilise a given number of its sisters before they 

disperse  (Godfray,  1994).  However,  selection  for  success  in  competitive  mate 

acquisition may not be the same as selection for efficient mating of females when 

mate competition is reduced (under female-biased sex ratios). The extent to which 

sexual selection and sex allocation therefore interact in  Nasonia is currently being 

explored.
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Table 2.1: The seven hypotheses for the evolution of protandry reviewed in Morbey & Ydenberg, 
(2001). The hypotheses are grouped in terms of direct or indirect selection on the difference between 
the sexes in development time.

Hypothesis Direct/Indirect Summary

1 Mate Opportunity Direct Direct selection on the relative arrival of the sexes to 
maximise the mating opportunities of the earlier sex

2 Waiting cost Direct Selection on the relative arrival of the sexes in order to 
minimise the time spent un-mated by the later sex.

3 Mate choice Direct Selection on the choosing sex to arrive later in order to 
have a wider pool to chose from.

4 Out-breeding Direct Selection  on  the  relative  arrival  of  the  sexes  so  that 
related individuals avoid mating.

5 Rank Advantage Indirect Selection on the territorial sex to be earlier than their 
competitors.

6 Susceptibility Indirect Selection on the later sex to avoid risky conditions they 
would be exposed to earlier, for example bad conditions 
in the mating area.

7 Constraint Indirect Stronger selection on a trait correlating with late arrival 
in one sex, such as prolonged feeding for larger body 
size.
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Table 2.2: The relationship between wild-type male success, body size and eclosion time. The full 
model is shown here. The significance of each term was calculated using model comparison

Coefficient Standard 
Error 

p

Intercept 6.659 5.235

Minutes until the red-eye male ecloses 1.752 x10-03 5.905 x 10-04 0.001829

Minutes until first female ecloses -2.655 x 10-05 8.220 x 10-04  0.9742

Minutes until the last female ecloses 1.232 x 10-04 8.684 x 10-04 0.8799

Minutes until median female ecloses -1.726 x 10-04 8.461 x 10-04 0.8383

Mean Female Tibia Length -1.236 x 10-04 8.688 x 10-05 0.1900

Difference in tibia length between the black and red eye 
male

1.709 x 10-05 1.977 x 10-05 0.3865
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Figure 2.1: Larger individuals pupate earlier  generating a negative relationship between body size 
(measured  as  hind  tibia  length)  and  proportion  of  the  brood  pupated  when sampled.  Strains  are 
combined. Females are represented by open circles, and males by closed circles. The lines shown are 
the model fits. The fitted line for males is solid, and the fitted line for female is dashed (Male Tibia  
Length = 661.6462 + (Proportion pupated × -27.8158; Female Tibia Length = 640.8391 + (Proportion 
pupated × -27.8158)).
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Figure 2.2: Male Nasonia vitripennis pupate before females. As the proportion of the brood pupated 
increased, the sex ratio (measured as proportion male) of those that have pupated becomes less male-
biased.  The line shown is the model fit  from the general  additive model (GAM) with the strains  
pooled. Note that complete brood sex ratios are female-biased.
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Figure  2.3:  Box and whisker  plot  showing the pattern  of  eclosion  and  emergence  from the  host 
puparium over true time. The box shows the range of the first and third quartile, with the median  
marked as a bar. The ends of the whiskers represent the full range of the observations.
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Figure 2.4: Male Nasonia vitripennis eclose before females. The black line represents male eclosion 
(in  terms  of  proportion  still  pupae),  and  the  grey  line  female  eclosion.  Time is  measured  as  the 
minutes since the first observation of an experimental host.
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Figure 2.5: Protandry is under sexual selection in Nasonia vitripennis. There is a positive relationship 
between the difference in emergence time of focal and competitor males and the mating success of the  
focal (wild-type) male. The line shown is the model fit from a GLM with a quasi-binomial structure  
(Proportion of females inseminated by the focal male = 0.4937+0.0003808 × Minutes until competitor 
male ecloses).
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3. Sex allocation and the competitiveness of sons for 
mates 

A version of this chapter is being prepared for submission to Behavioural Ecology. The authors will  

be:  Anna M. Moynihan, Stephen A. Spencer, Taehyun J. Park, Christopher J.  Doughty, David M. 

Shuker. 

SAS and TJP were  undergraduate  students  who assisted  helped  perform and collect  the  data  for 

experiment four. CJD was an undergraduate who designed and performed experiment two.



Abstract

Hamilton's theory of Local Mate Competition predicts females ovipositing alone on a 

resource  patch  (termed  single-foundresses)  will  lay  broods  consisting  of  only 

daughters. We call this prediction “Hamilton's zero”. This has been interpreted as 

selecting for the production of the minimum number of sons required, after allowing 

for developmental mortality and the ability of sons to successfully transfer sufficient 

sperm and so females usually lay several sons. If this were true, we would expect a 

negative correlation between the competitiveness of sons for mates (including their 

insemination capacity) and the sex ratio  (proportion male) of the brood a female 

produces. I tested this in the gregarious parasitoid wasp Nasonia vitripennis, using 18 

iso-female lines from the same population. I first established among-line variation in 

single-foundress sex ratios. I then found no evidence that sons from low sex ratio 

strains  were  better  inseminators  when  alone  or  in  competition,  contradicting  my 

prediction. Instead, sons from high proportion male strains were better competitors. 

My findings question the current interpretation of Hamilton's zero and suggest under-

appreciated links between sex allocation and sexual selection.

Keywords:  Local  mate  competition,  fertility  insurance,  sexual  selection,  single-

foundress sex ratio, insemination capacity.

- 82 -



Introduction

The amount of investment parents allocate to offspring of each sex (sex allocation) 

has profound effects on the biology of a species. For many species the sex ratio at the 

brood- and population-levels coincide at the equal sex ratio of 0.5 proportion male. 

There are however, many scenarios in which individuals may be selected to make 

facultative changes to the sex ratio of the offspring they produce, which may lead to 

biased primary sex ratios at fertilisation (West, 2009). Such biased sex allocation can 

lead to uneven relative abundances of each sex at the time of mating (operational sex 

ratio,  OSR:  Emlen,  1976)  (Kokko & Jennions,  2008).  The OSR is  one of  many 

indicators of the direction and intensity of sexual selection in a species (see also 

Clutton-Brock & Vincent,  1991,  Ahnesjö  et  al.,  2001,  Parker  & Simmons,  1996, 

Shuster & Wade, 2003, Arnold & Duvall, 1994). Indeed Kokko & Jennions (2008) 

showed that the OSR plays a key role on the evolution of sex roles and hence sexual 

selection. Experimental studies have also demonstrated the importance of OSR. In 

some cases  biasing the  OSR towards  the  choosing sex increases  the  intensity  of 

sexual selection on the competing sex as predicted: for example female-choice in 

guppies (Jirotkul,  2000) and male choice in sex-role reversed pipefish (Berglund, 

1994). However, this is not always the case: a decrease in the intensity of sexual 

selection at biased OSR has been observed (e.g. the lizard Lacerta vivipara (Fitze & 

Le Galliard, 2008); the fish Rhodeus sericeus (Mills & Reynolds, 2003)). Either way, 

the  importance  of  sex  allocation,  through  the  operational  sex  ratio,  on  sexual 

selection is clear.
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Aside from the influence of sex allocation on sexual selection mediated by OSR, the 

interaction between sex allocation and sexual selection is most frequently studied in 

the context of Trivers-Willard effects. Trivers and Willard (1973) proposed that when 

mothers are in good condition, they should bias sex allocation in favour of the sex 

whose  fitness depends most  heavily  on condition,  and this  has  been observed in 

many ungulate species (Hewison & Gaillard, 1999, Sheldon & West, 2004). In order 

for a Trivers-Willard sex allocation allele to invade, there must be a strong genetic 

covariance between the degree of mating bias of sons and the sex allocation allele 

across all environments (Wade et al., 2003). The sex allocation therefore relies on a 

large skew in mating success across males, which causes strong sexual selection.

In this study I investigated the interaction between sexual selection and Local Mate 

Competition (LMC), another set  of conditions that may select  for facultative sex 

allocation.  Hamilton (1967 & 1979) described how competition for mates between 

brothers in a structured population can select for female-biased sex allocation. As the 

number of other mothers laying eggs on that resource patch (foundresses) increases, 

the sex allocation favoured by LMC become less female-biased (Figure 1.1). This is 

favoured by the inclusive fitness benefits that arise from the reduction of competition 

between sons for mates and the increase in the number of sisters for them to mate 

(Taylor, 1981). 
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Hamilton (1967) modelled the precise way in which the unbeatable sex ratio  for 

diploids (s*) would vary with the number of foundresses (n), such that s*=(n-1)/2n 

(Figure 1.1). This model predicts that when there is a single foundress (n=1), the 

optimal  sex  ratio  is  0  proportion  male.  This  zero  (i.e.  all  female)  sex  ratio  is  a 

mathematical  outcome  of  the  model  that  has  limited  biological  applicability,  as 

typically at least one son is needed in order to inseminate the female brood. Instead, 

this zero sex ratio, which I term here “Hamilton’s zero”, is usually interpreted as 

representing the minimum number of males required to successfully inseminate all 

the females on the patch, under extreme LMC where females are exclusively at the 

natal  patch  (Godfray,  1994,  Waage  & Sook  Ming,  1984,  Hardy  & Cook,  1995, 

Heimpel, 1994). This overproduction of sons to ensure that all a mother's daughters 

are  inseminated  is  known  as  fertility  insurance,  and  is  thought  of  mainly  as  a 

combination of developmental mortality and limited insemination capacity (Dijkstra, 

1986,  Hardy  &  Cook,  1995).  Sex-specific  developmental  mortality  has  been 

demonstrated to influence the Evolutionary Stable Strategy single-foundress sex ratio 

for parasitoid wasps (Green et al., 1982, Hartl, 1971, Hardy, 1994, Hardy & Cook, 

1995) and fig wasps (West & Herre, 1998b). If the probability of a son dying before 

adulthood is high, his mother should lay extra sons to make sure that enough survive 

to  adulthood to inseminate all  the daughters.  Fertility insurance is  not  limited  to 

single foundress situations however;  it  has been suggested to explain higher than 

initially predicted sex ratios in a range of organisms, including Plasmodium parasites 

(Gardner et al., 2003, West et al., 2002) and fig wasps (West & Herre, 1998b).
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The logic underpinning Hamilton’s zero suggests that the competitiveness of sons for 

mates, which is under sexual selection, will be correlated with single-foundress sex 

ratio. In other words, the better able a son is to inseminate his sisters before they 

disperse, the fewer sons his mother should produce, leading to a genetic correlation 

between male inseminating capacity and sex ratio. If this were true, I would expect 

males from genetic backgrounds producing high sex ratios to be worse at mating and 

inseminating their sisters efficiently. In some gregarious parasitoid species, one male 

is  sufficient  to  inseminate  all  his  sisters  (Goniozus  legneri  (Hardy  et  al.,  2000); 

Goniozus nephantidis (Hardy et al., 1999)), however in other species insemination 

capacity is lower than the typical number of females in a brood (Table 3.1).

My study species is the gregarious parasitoid wasp Nasonia vitripennis,  whose sex 

allocation behaviour under LMC has been well-studied (e.g. Burton-Chellew et al., 

2008, Flanagan et al., 1998, Shuker et al., 2005, Shuker & West, 2004, Werren, 1980, 

Werren, 1983). Single-foundress sex ratios have been assayed numerous times in the 

lab and the wild, and multiple males are usually produced in single-foundress broods 

(Table 3.2). Females most commonly oviposit alone in the wild (Molbo & Parker Jr, 

1996, Grillenberger et al., 2008), therefore single-foundress sex ratios are expected to 

be under the strongest selection (West & Herre, 1998b). Given heritable variation in 

single-foundress sex ratios in N. vitripennis (Orzack & Gladstone, 1994, Parker Jr & 

Orzack, 1985, Pannebakker et al., 2011), we would expect that the single-foundress 

sex ratio is under natural selection. 
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The mating capacity of N. vitripennis males has been tested before (Table 3.1: Grant 

et al., 1980), however just one strain was used. Here, I test the predicted relationship 

between mate competitiveness and single-foundress sex ratio across eighteen strains 

of N. vitripennis collected as iso-female lines from the same population. As such, my 

study is  the first  to  look at  within-population variation.  In my first  experiment  I 

screened the eighteen strains for their  single-foundress sex ratios. For two of the 

strains I made behavioural observations to describe mate acquisition and processing 

in  more  detail  when  males  are  alone  and  in  competition.  Next  I  looked  at  the 

successful insemination of females by males from each of these strains when males 

were either alone, or in competition. 

Materials and Methods 

Wasps and experimental conditions

Nasonia  vitripennis is  a  gregarious  parasitoid  wasp  that  lays  its  eggs  on  large 

dipteran pupae. These experiments used eighteen strains that originated as iso-female 

lines collected from the same population in Cornell, New York, USA by Prof Leo 

Beukeboom in 2007. These eighteen strains will here be referred to as the Cornell  

strains. Throughout culture and experiments, I kept the wasps in incubators at 25°C 

under 16h-8h light-dark cycle and reared them on the pupae of Calliphora vicina as 

hosts. In order to mitigate against any unknown host or maternal effects, and to allow 

host-feeding to mature eggs (Rivero & West, 2005), I routinely pre-treated females 

before experiments. Pre-treatment started with isolating mated females and giving 
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them each  a  host  for  24  hours  on  which  to  feed.  I  then  removed  this  host  and 

replaced it with a piece of honey-water-soaked filter paper for a further 24 hours. 

Finally the female was given a host on which to oviposit for a maximum of 24 hours 

before I removed the female and incubated the host. Vial positions were always fully 

randomised inside the incubator.

Like all Hymenoptera  Nasonia vitripennis are haplodiploid. Daughters are diploid 

and develop from a fertilised egg, whereas sons are haploid and develop from an 

unfertilised egg. This genetic system is useful because it  allows us to distinguish 

between mated and un-mated females based on the sex ratio of their brood: all-male 

broods are laid by virgins, and the presence at least one daughter means the mother 

was inseminated.

In  addition  to  the  focal  Cornell  strains,  for  the  competition  experiment  and 

behavioural observations I also used genetically-marked wasps from the STDR-TET 

strain. The STDR-TET strain is homozygous for the scarlet allele at the eye colour 

locus  S within  the  R-locus,  which  is  recessive  to  the  wild-type  black-eye  allele 

(Whiting,  1961),  giving the wasps red eyes.  I refer to the STDR-TET as red-eye 

wasps from here. The Cornell strains are homozygous for the dominant black-eye 

allele at the S locus. The red-eye individuals are also cured of Wolbachia infection by 

tetracycline  treatment  (J.H.  Werren  personal  communication).  Wolbachia is  an 

endosymbiotic  bacterium  common  to  many  insects.  In  Nasonia,  if  eggs  do  not 

- 88 -



contain Wolbachia they can only be successfully inseminated by sperm that are also 

free from Wolbachia (Breeuwer & Werren, 1995). The wild-type Cornell strains do 

have Wolbachia infections. The result of a Cornell male mating with an STDR-TET 

female is therefore a brood entirely consisting of red-eye males. I used this fact to 

assign  parentage  in  the  mating  competition  experiment.  If  the  Wolbachia marker 

were to fail,  black-eye daughters would be produced, providing a second level of 

assurance when scoring paternity (Table 3.3).

The mating  behaviour  of  N. vitripennis  has also been described  (Barrass,  1961). 

Males approach and mount females before beginning a series of stereotyped head 

nod cycles. On the first nod of each cycle he emits a pheromone from his mouth-

parts (van den Assem et al., 1980). The female signals receptivity to the male by 

lowering her  antennae and bending her  abdomen to expose  her  genital  pore.  On 

receiving this signal, the male backs up the female, makes genital contact and the 

pair  copulate.  The  male  performs  a  short  bout  of  head  nod  cycles  again  after 

copulation (post-copulatory courtship) then dismounts. Females disperse soon after 

mating, leaving the wingless males behind.

Experiment One: Single-foundress sex ratio screen

In this experiment I allow females to oviposit alone in order to look for variation in 

single-foundress sex ratio between the eighteen Cornell strains.
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Wasps

This  experiment  used  all  eighteen  Cornell  strains  described  above,  with  the 

experimental  grandmothers  coming  from  the  seventh  generation  reared  in  the 

laboratory.  In  order  to  generate  the  animals  for  the  experiment  I  took 30 mated 

females from stock tubes of each of the eighteen Cornell strains and pre-treated them 

as described above in glass vials that are 75 × 10mm. I gave these females two hosts 

on  which  to  oviposit  in  order  to  generate  experimental  females. I  allowed  the 

resulting offspring to mate and then isolated a single daughter from each vial for the 

test-oviposition.

Test oviposition

I pre-treated the mated experimental females as described above, however on the day 

of test oviposition two hours after a single host was provided I added escape tubes to 

the vials. The escape tubes allowed the female to disperse from the host patch and 

limited  superparasitism  (Werren,  1983,  Shuker  et  al.,  2005,  Pannebakker  et  al., 

2011).  After  24  hours  I  removed  any  females  still  in  the  host  chamber.  The 

parasitised  hosts  were  incubated,  and I  scored  the  sex  ratio  of  the  offspring  the 

females had laid once they emerged and died.
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Statistical analysis

Analysis for this and all other experiments present in this chapter was performed in R 

(R Development Core Team, 2008, Ihaka & Gentelman, 1996). 

Seventy-eight  mothers  did  not  lay any offspring,  therefore  no sex ratio  could be 

counted. All male broods were excluded where the female is assumed a virgin (9 

broods). This left a total of 343 sex ratios to be analysed, a mean of 19.06 (SE = 

6.73) replicates per strain. One strain, COR10, produced only one mixed sex brood, 

due to a high number of virgins and non-oviposition in this strain. I repeated the 

analyses with strain COR10 excluded to ensure this did not skew the results.

I fitted a generalised linear model (GLM) using a quasi-binomial error structure to 

test for among-strain variation in sex ratio. A linear model (LM) was used to analyse 

the relationship between sex ratio, clutch size and strain. The significance of terms 

was tested using Likelihood Ratio tests comparing the full model to that with the 

term of interest removed.

Experiment Two: Male behaviour observations 

In this experiment I observed groups of wasps mating, in order to learn more about 

how  any  differences  in  the  competitiveness  of  males  for  mates  might  affect 

Hamilton's zero.
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Wasps

Two strains, COR10 and COR29 were chosen for the behavioural observations, and 

red-eye wasps used as competitor males.  I  took experimental  individuals directly 

from mass-culture hosts  as pupae as before to ensure virginity,  and kept them in 

isolation in the incubator until they eclosed. All experiments used one-day-old wasps.

Mating observations

A biologically  reasonable  situation  was  created  with  one  or  two males  with  ten 

females, generating sex ratios of 0.091 or 0.167 proportion male, which is within the 

range of single-foundress sex ratios (see Table 3.2 & Figure 3.1). We also know that 

clutches  of  wasp  eclose  synchronously  leading  to  a  short  window during  which 

mating  can  occur  (Chapter  2;  Appendix  2: Moynihan  &  Shuker,  2011) and  so 

observing mating over a short time is reasonable.

For each treatment, I set up eleven (n = 11) sets of ten females in mating arenas of  

70mm diameter × 10mm. There were three treatments: “same strain” which consisted 

of a focal male with ten females of the same strain, “competitor” which consisted of 

a focal male with ten females of the same strain and a red-eye competitor male, and 

“different strain” which consisted of a focal male with ten females of the other strain. 

Each wasp only experienced one treatment.  For each mating trial,  I  observed the 
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focal  male  for  10  minutes  through  a  dissecting  microscope,  recording  when  he 

mounted, copulated and dismounted females. If a mating was in progress at the end 

of the ten minutes it was allowed to finish. Each male-female contact was called an 

encounter. Encounters were counted, and scored as successful if the pair mated, and 

unsuccessful if they did not. The time the male spends courting and mating a female 

is referred to as his female handling time. 

Statistical analysis

The total number of mounts, the number of which successfully resulted in mating, 

and  the  proportion  that  were  successful  was  calculated  for  each  male  and  then 

compared  using  an  ANOVA,  with  strain  and  treatment  as  fixed  factors.  For 

proportion successful, I used a generalised linear model with a quasi-binomial error 

structure.  The  handling  time  for  successful  encounters  was  compared  between 

treatments and strains using the subset of successful encounters, with male ID as a 

random effect. The significance of each term was calculated using F tests to compare 

the full model to that with the term of interest removed for the number of mounts, the 

number of matings, and the proportion of success.  For handling time,  Likelihood 

Ratio tests were used to compare the full  model to one with the term of interest 

removed.
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Experiment Three: Mating capacity

I constructed groups of ten virgin females and one virgin male of the same strain to 

test his mating capacity, under a time constraint. The measure of mating capacity is 

the probability that a single, focal, female is inseminated in that time. Note that this 

is not strictly a measure of insemination capacity as the males were under a time 

constraint.

Virgin production

I  needed  to  generate  a  large  number  of  virgin  male  and  female  wasps,  for  this 

experiment. To generate the virgin males I took 48 female pupae from each of the 

eighteen Cornell strains from the mass culture tubes at laboratory generation twelve, 

at days seven to nine post-oviposition. I put the pupae into individual glass vials with 

a cotton plug. Once the pupae eclosed, I gave the three-day-old adult females three 

hosts. Males tend to eclose before females (Chapter 2;  Appendix 2:  Moynihan & 

Shuker, 2011) and so the delay between  between eclosion and oviposition ensured 

that the virgin males would ensure emergence synchronously with the virgin females.

To produce the virgin females, I took 42 mated females from each strain from mass-

culture at laboratory generation twelve and placed them in individual glass vials with 

three hosts to oviposit on for four days. Seven days after oviposition I opened the 

host puparium and removed female wasp pupae. A maximum of twenty sister pupae 

were kept together in a vial until they eclosed.
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The virgin male and female wasps were kept for up to four days, and were provided 

with a piece of honey-water soaked filter paper on days zero, two and four after 

emergence.

Mating test

I created groups of ten non-sister virgin females of the same strain on the day of the 

mating trial. In order to avoid female age effects, I used a mix of one- to four-day 

post-eclosion females,  recording mean female age.  The virgin female groups had 

between one and two hours to acclimatise to bench conditions before the trial began. 

A single two- or three-day-old virgin male of the same strain was introduced to the 

ten virgin females. I ended each trial after fifteen minutes, interrupting any matings 

and mixing the  females  in  the  vial  by  gentle  tapping.  A single  female  was  then 

removed pseudo-randomly and designated the focal female. The male was left with 

the other nine females in the test vial.  The focal female was given three hosts to 

oviposit on for 24 hours at incubator conditions, after which she was removed and 

discarded, and the hosts incubated until the brood emerged and the sex ratio of their 

brood could be scored. The remaining nine females were left together for a further 24 

hours to see if the male was able to inseminate any of the females. 

After 24 hours I removed the male, killed him by freezing, and measured the length 

of the right hind tibia using a stereo dissection microscope at ×100 magnification and 

- 95 -



an eyepiece micrometer. Hind tibia length is a standard measure of body size in many 

insects,  including  parasitoid  wasps  (Godfray,  1994 and  see  Experiment  Four 

Statistical Analyses). I kept the nine females together and gave them four hosts to 

oviposit on for 24 hours, after which I removed the females and incubated the hosts. 

Once the adults had emerged from these hosts, I scored the presence or absence of 

daughters.  The  presence  of  daughters  indicates  that  at  least  one  female  was 

inseminated and able to fertilise an egg and produce a daughter.

Statistical analysis

I tested 212 males, and excluded three because the male was lost or damaged after 

mating. I excluded a further sixteen replicates because the focal female did not lay a 

clutch, preventing us from ascertaining her mated status. The total number of males 

analysed was therefore 193, with a mean of 10.72 (SE = 0.54) replicates per strain.

Following the methods of Zuur et al., (2010) I checked for collinearity between the 

proposed independent variables of male age, mean female age, male size. I found 

that mean female age was positively associated with male age (F1,186  = 7.69,  p  = 

0.006), and therefore excluded female age from the analysis, as I am more interested 

in male effects.  The mated status of each focal female was analysed as a Linear 

Mixed Effect (LME) model with binomial errors and strain as a random factor. The 

mean strain single-foundress sex ratios from experiment one were fitted, as well as 

male body size and male age. I tested the significance terms by comparing the full 
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model  to  a  model  with  the  term  of  interest  removed  in  a  Chi  Squared  model 

comparison test.

Experiment Four: Male competitive ability

In this experiment I tested male inseminating ability when the Cornell males are in 

competition with a red-eye male to mate ten virgin females in fifteen minutes. The 

measure of the focal (Cornell)  male's  success in  this  experiment  is  his  ability to 

reduce  the  number  of  red-eye  daughters  his  competitor  produces.  The  more 

fertilisations the focal Cornell male gains, the fewer his competitor achieves. 

Wasps

I used the eighteen Cornell strains and the red-eye wasps as the competitor strain. If 

the focal, Cornell, male inseminated a red-eye female, only male red-eye offspring 

would be laid. If the  Wolbachia transmission failed, the eye colour marker ensures 

that  any daughters  will  be conspicuous with black eyes.  However,  if  the red-eye 

competitor male inseminates the virgin red-eye females, the female will lay red eye 

daughters and sons. The outcomes of different matings are summarised in Table 3.3.

Virgin production

In order to produce virgins for testing I took mated females from stock tubes and put 

them through  the  pre-treatment  process  previously  described.  I  then  allowed  the 
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resulting offspring to mate in the tubes for two days before taking one female per 

tube and putting them through the pre-treatment process. The broods these females 

laid  were  the  experimental  individuals.  I  opened  hosts  between  days  seven  and 

twelve post-oviposition to sex pupae and remove virgins. I took two males from each 

mother, keeping them together, and only using one male from each tube, to avoid 

using brothers yet have a spare male available.

Test mating

The day of eclosion was recorded, and females were grouped into tens and put into 

large glass vials (75 × 25 mm). I used one-day-old wasps throughout. The ten virgin 

females were not sisters, nor were they a sibling to the competitor red-eye male. The 

wasps had an hour to acclimatise to bench conditions before I put a red-eye male and 

a Cornell male into the tube of virgin females for fifteen minutes. I then removed the 

males, keeping them for measuring later. Each replicate group of females was given 

ten hosts  to  parasitise  for  24 hours.  After  the  females  had oviposited,  they were 

removed  and  the  parasitised  hosts  incubated  until  the  brood emerged.  Once  any 

offspring had emerged, I counted the sex and eye-colour of the resulting brood. I also 

estimated body size for both males, recording their hind tibia length, head capsule 

width and wing length using a digital camera mounted to a dissecting microscope 

and Cell^D image-analysis software (Olympus). In total 358 focal males across 18 

strains were tested.

- 98 -



Statistical analysis

As is common in parasitoids I found significant positive allometries between all three  

measures of body size (Wing & Tibia Length r = 0.36, t1,699 = 10.05, p < 0.001; Head 

Width & Tibia Length r = 0.52, t1,699 = 16.23, p < 0.001; Head Width & Wing Length 

r = 0.58, t1,699  = 18.89, p  < 0.001). Therefore I focused on hind tibia length for the 

subsequent analyses as is common practise in parasitoids.

Any replicates where there were no red eye females were excluded, also if I could 

not  measure  the  leg  length  of  both  of  the  males.  In  total,  344  replicates  were 

analysed, with a mean of 19.11 (SE = 3.93) replicates per strain. A total of 520 black 

eyed daughters were observed in 67 of 344 replicates. 

I used a Linear Mixed Effects model to analyse the relationship between the fitness 

of  the  red-eye  males  (the  number  of  daughters  he  sires)  and  the  strain  single-

foundress sex ratio of the competitor Cornell male, with the difference in hind tibia 

length between the Cornell  male and the red-eye competitor.  The model included 

random effects of day of testing (n = 3), strain (n = 18), and the experimenter (n = 2). 

The  strain  sex  ratio  used  is  the  single-foundress  sex  ratio  from  the  screen  in 

experiment two. The significance of each fixed term was tested using Likelihood 

Ratio tests between models fitted using Maximum Likelihood. Parameter estimates 

were gained from models fitted using Restricted Maximum Likelihood.
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Results 

Experiment One: Single-foundress sex ratio screen

Across all the strains the mean sex ratio was 0.163 (SE = 0.039) proportion male 

(Figure 3.1), and the mean clutch size was 34.68 (SE=12.16). There was significant 

variation among strains in sex ratio (GLM F17,21.73  = 2.27, p = 0.003). The mean sex 

ratio did not equal one male per clutch: across all strains the mean number of males 

was 5.61 (SE = 0.21). For one of the strains (COR10), only one mixed sex brood was 

produced,  if  I  remove  strain  10  from  the  analysis,  the  effect  of  strain  is  still 

significant (GLM F16,21.73 = 2.37, p = 0.002). 

There was also among-strain variation in clutch size (Chi Sq = -3.04,  p  = 0.001), 

which  was  also  unaffected  by  the  exclusion  of  strain  10  from  the  analysis 

(significance of strain in model when strain 10 is  excluded, Chi Sq = -2.99,  p = 

0.0007). I found no relationship between clutch size and sex ratio when controlling 

for strain (Chi Sq = -0.19, p = 0.104).

Experiment Two: Behavioural observations

Across all strains and treatment groups, the focal males mounted a mean of 10.9 (SE 

= 2.9) females, of which a mean of 5.9 (SE = 1.5) successfully resulted in a mating. 

The average time a male spent courting and copulating a female (the handling time) 

was 48 (SE = 10.5) seconds.
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Observations  showed  that  there  were  differences  in  male  mating  behaviour 

depending on his strain, or the treatment (Table 3.4). The two strains differed in both 

handling time and the number of mounts. The effect of the treatment group was more 

pronounced when comparing  males  in  competition  than those  where  males  were 

paired with females of a different strain. While males in competition mounted more 

females, a smaller proportion of their mounts were successful and when they were 

successful the handling time was more variable compared to males alone (Table 3.4). 

The number of successful matings was not predicted by strain or treatment despite 

these differences in behaviour.

Experiment Three: Mating capacity

Across  all  strains,  55.44% of  focal  females  were  inseminated.  The average male 

mating capacity when given a fixed number of 10 females is therefore 5.54 females 

across all strains. Strain single-foundress sex ratio did not predict  mating success 

(4.76 ± 4.55, Chi Sq = 1.05, p = 0.30) (Figure 3.2). Males in trials on the second day 

post-adult eclosion were more likely to inseminate a focal female than males in trials 

on the third day (-1.39 ± 0.7, Chi Sq = 4.00, p = 0.045), however, as male age and 

female age were correlated, this could be an effect of female age. Body size was not 

significantly associated with mating success (-0.0145 ± 0.0126Chi Sq test = 1.32, p = 

0.25). Variance component analysis showed that strain explained 20.32% of variance 

in the full model. 
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For the analysis above, I have assumed that a randomly chosen focal female that laid 

at least one daughter was fully inseminated. Males may become sperm-limited as 

they  mate  successive  females  (Chapter  4  and  references  therein).  If  this  were 

occurring,  I  would  expect  to  see  intermediate  sex  ratios  (i.e.  more  sons  than 

expected) laid by sperm-limited females. The mean sex ratio of the focal females that 

produced  at  least  one  daughter  was  calculated  for  each  strain.  A paired  t-test 

compared this sex ratio with the strain average obtained from experiment one, and 

found that the inseminated focal female sex ratios were less female-biased than the 

strain sex ratios (F1,17  = 2.33, p = 0.032). This post-hoc analysis of sperm limitation 

was somewhat limited.

Experiment Four: Male competitive ability

When males are in competition, the sex ratio of the strain the Cornell male comes 

from significantly predicts the number of daughters sired by his competitor: males 

from  strains  with  high  sex  ratios  are  better  competitors  (b  =  -169.4  ±  54.85, 

Likelihood Ratio test = 8.86,  p = 0.003) (Figure 3.3). There is no evidence for an 

effect  of  body size measured as  the  difference in  tibia  length between the  males 

(0.00405 ± 0.00724, L.Ratio = 0.32, p = 0.57), and no interaction between body size 

and strain sex ratio (-0.0229 ± 0.0440, L.Ratio = 0.27, p = 0.60). The random effect 

of strain was not significant associated with of the number of daughters the red-eye 

male sires in the full model (L.Ratio < 0.01, p > 0.99).

- 102 -



Discussion 

This study is the first to investigate within-species variation in mate competitiveness 

alongside variation in the single-foundress sex ratio in a parasitoid wasp. I found 

among-strain variation in single-foundress clutch size and sex ratio, which would 

suggest differences in mate competitiveness under our interpretation of Hamilton's 

zero. This was supported by the different handling times and mounting rates of the 

two strains whose mating behaviour I observed, and the large portion of variance in 

mating capacity  explained by strain.  Despite  this,  I  did not  find that  males  from 

strains with lower sex ratios (fewer sons) were better inseminators either when males 

were alone or when in competition (Figures 3.2 & 3.3). The usual interpretation of 

Hamilton's  zero  does  not  therefore  explain  the  among-strain  variation  in  single-

foundress  sex  ratio  in  N.  vitripennis.  Instead,  I  found  that  under  competitive 

conditions, males from higher sex ratio strains were better competitors.

Support for the fertility insurance interpretation of Hamilton's zero has been found in 

other species exhibiting LMC. Broods of the Ambrosia beetle Xyleborinus saxesenii,  

usually contain just one son who successfully mates up to 80 sisters, suggesting that 

other  factors  must  constrain  sex ratio  in  this  species  (e.g.  maximum clutch  size) 

(Biedermann, 2010). Similarly, the number of gametes a male gametocyte of malarial 

blood parasites produces was found to significantly influence the maximum degree 

of female-bias in the gametocyte sex ratio (Gardner et al., 2003, West et al., 2002). 
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Among the gregarious parasitoid wasps however, when insemination capacity has 

been studied it is usually more than the number of sisters per male, but lower than the 

total  number  of  sisters  in  the  average  brood  (Table  3.1  species:  Lariophagus 

distinguendus, Nasonia vitripennis, and  Trichogramma evanescens). The parasitoid 

studies in Table 3.1 measure how many females were inseminated, and did not take 

into account the potential for females to not receive enough sperm. Although my data 

were  not  collected  with  sperm-limitation  in  mind,  I  did  find  some  preliminary 

evidence  for  sperm limitation.  This  requires  further  investigation,  as  the  fertility 

insurance interpretations of Hamilton's zero would extend to include providing the 

copulated females with full fertility.

Despite  this  body  of  work  supporting  the  fertility  insurance  interpretation  of 

Hamilton's zero, I have found the opposite correlation in  Nasonia vitripennis when 

looking  at  a  different  component  of  fertility  insurance:  females  with  more 

competitive sons lay a higher sex ratio (Figure 3.3).  The increased proportion of 

males mothers lay when their sons are good competitors is reminiscent of Trivers-

Willard sex allocation effects. Trivers & Willard (1973) hypothesised that females in 

a good environment with high resource availability will favour the production of the 

sex where fitness is most dependent on resource allocation. This has been extended 

to consider that females mating attractive fathers would lay more sons, first proposed 

by Burley (1981). While Burley's initial evidence for this in zebra finches has since 

been contested (Rutstein et  al.,  2005), the idea has persisted,  finding evidence in 

other  species  (West  & Sheldon,  2002).  Evolutionary stable  strategy models  have 
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demonstrated that when the male's attractiveness or mate competitiveness is heritable 

and due to good-genes processes, that mothers with attractive mates should produce 

even sex ratios, and those with unattractive mates female-biased sex ratios, resulting 

in attractive males siring relatively more sons, however these effects are thought to 

be weak (Fawcett et al., 2007, Pen & Weissing, 2000). The models of Fawcett et al., 

(2007) and Pen & Weissing, (2000) rest on the assumption that  sons inherit  their 

father's attractiveness of viability advantage.  Nasonia are haplodiploid, and so sons 

develop from unfertilised eggs: they therefore do not have fathers, only mothers. This 

abolishes the proposed advantage to producing more sons. For a mother to benefit 

from her mate's good genes, she should lay more daughters, and have more attractive 

grandsons.

Neither  Hamilton's  zero,  nor  sexually  successful  fathers  having  more  sons  can 

explain my finding that males from high sex ratio strains are better competitors. My 

data are correlative, leaving us an issue of causation: do higher sex ratios select for 

better competitor males, or do better competitor males select for higher sex ratios? 

Either way, I have no evidence for good competitors being associated with low sex 

ratios as predicted (Figures 3.2 & 3.3). The heritable variation in single-foundress 

sex ratio in  N. vitripennis  (Orzack & Gladstone, 1994, Parker Jr & Orzack, 1985, 

Pannebakker et al., 2011, & Figure 3.1) would suggest that higher sex ratios could 

simply have selected for better competitor males. This could be tested with selection 

experiments with four treatment groups: higher sex ratio or no sex ratio selection, 

crossed with mating under natural competitive environment, or between a male and 
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female in isolation.  After  a number of generations of selection,  the sex ratio and 

competitive ability of males should then be tested. If males from the strain selected 

for  higher  sex  ratios  become more  competitive,  this  would  suggest  that  the  less 

female-biased operational sex ratio has increased the intensity on male competitive 

ability.  This  could  come  about  rapidly  through  non-genetic  changes  if  there  is 

phenotypic plasticity. Males that have more brothers may be able to detect the sex 

ratio of their host-mates and shift their development accordingly to become better 

competitors, for example by developing faster to gain first-male advantages (Chapter 

2; Appendix 2: Moynihan & Shuker, 2011). This is easily tested by comparing males 

of the same strain from unmated mothers, and hence all male broods, to those that 

developed with sisters.

This experiment has shed light on other forms of selection in  Nasonia vitripennis  

aside from that on sex allocation.  Neither of the measures of mate competitiveness 

depend on his body size nor that of his rival. This supports previous findings from N, 

vitripennis (Chapter 2; Appendix 2: Moynihan & Shuker, 2011, Burton-Chellew et 

al.,  2007b),  but  is  in  contrast  to  Colpoclypeus  florus where  body size  positively 

correlates with male insemination capacity (Dijkstra, 1986). 

In this study I have investigated the relationship between sexual selection and sex 

allocation  in  Nasonia  vitripennis.  I  did  not  find  the  expected  relationship  I  had 

predicted from our interpretation of Hamilton's zero, however, I did find a positive 
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relationship between male competitiveness and the single-foundress sex ratio. While 

the direction of causation remains to be established, the relationship is a product of 

the interaction between sex allocation and sexual selection.
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Table 3.1: Summary of previous studies into insemination capacity in parasitoid males where the insemination status of females is  monitored. Sex Ratio is  
measured as proportion male. The total number of sisters is calculated as (1-sex ratio)*Clutch Size. Females per male is calculated as the reciprocal of the sex ratio.

Species Local mating Number of 
mates before 
limitation

Total number 
available to 
mate

Polyandry Sex Ratio Clutch Size Sisters in brood Sisters per 
male

Colpoclypeus florus Partial, both sexes disperse 
after local mating.b

6.2a 15a Not data Lab = 0.132
field = 0.23 b

Lab = 11.8
Field = 13.6 b

Lab = 10.24
Field = 10.47

Lab=7.57
Field =4.3

Cotesia glomerata Partial, both sexes can 
disperse before mating.c

14.13d 20d Noe 0.328f 25.91f 17.41 3.05

Lariophagus distinguendus Yesg 13g 20g Yesh 0.35i Mean number 
per cluster =49i

Total females 
in cluster =31.8

2.86

Nasonia vitripennis Yes 5.54j

6.795k
10j

10k
Nol 0.162j 19.05j 15.9 6.17

Spalangia cameroni Solitarym 36m 4 per day, 13 
daysm

No data solitarym solitarym

Spalangia drosophilidae Solitaryn 6n 13n No data solitaryn solitaryn

Trichogramma evanescens Yeso 18o

18p
90o

20p
Yeso 0.17q 12q 9.96 5.88

Uscana semifumipennis No, outbreedingr 6s 6S No data 0.33S 24.9S 16.69 3.03 
a (Dijkstra, 1986); b (Hardy et al., 1998); c (Gu & Dorn, 2003); d (Tagawa, 2002); e (Tagawa & Hidaka, 1982); f (Tagawa, 2000); g (Steiner et al., 2007); h (Ruther et 
al., 2000); i (van den Assem, 1971); j this study; k (Grant et al., 1980); l(Grillenberger et al., 2008); m(King, 2000); n (Simmonds, 1953); o(Jacob & Boivin, 2004); p 

(Damiens & Boivin, 2005); q (Waage & Lane, 1984); r (Henter, 2003); s (Henter, 2004).



Table  3.2: Summary  of  the  single-foundress  sex  ratios  reported  from  other  studies  of  Nasonia 
vitripennis. I conducted a literature search for studies that measured the single-foundress sex ratio in 
Nasonia vitripennis. The criteria for inclusion were: the wasp strains were not treated with antibiotics; 
the sex ratio and clutch size are reported; sex ratios were measured over single bouts of oviposition, 
not  life-time measures.  Sex ratios  are the proportion male.  Mean number of  males  was therefore 
calculated as the product of Sex Ratio and Clutch Size.

Sex 
Ratio Error

Clutch 
Size

Mean 
Number of 
Males Reference Population

Place 
of 
testing

0.198 0.242 36.9 7.3 (Balas et al., 1996) US, NY Lab

0.273 0.408 54.0 14.7 (Burton-Chellew et al., 2008) Netherlands Wild

0.144 0.016 78.6 11.3 (Drapeau & Werren, 1999) US, NY Lab

0.31 0.02 15.4 4.8 (Flanagan et al., 1998) US, NY Lab

0.04 0.004 14.3 0.6 (Grillenberger et al., 2009) US, NY Wild

0.16 0.0255 32.0 5.1 (King & Skinner, 1991) US, OH Lab

0.218 0.229 22.4 4.9 (Molbo & Parker Jr, 1996) Sweden Wild

0.183 0.006 33.7 6.2 (Pannebakker et al., 2008) Netherlands Lab

0.185 0.0175 10.4 1.9 (Rivero & West, 2005) US, NY Lab

0.14 0.17 19.3 2.7 (Sykes et al., 2007) Netherlands Lab

0.1851 0.1138 31.7 5.95 GRAND MEAN
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Table 3.3: Possible outcomes of the matings in Experiment Four. 

Parents Offspring

Black-eye Wolbachia positive male (COR)
x 
Red-eye Wolbachia negative female (STDR-TET)

Red-eyed sons only

Black-eye Wolbachia negative male (COR)
x 
Red-eye Wolbachia negative female (STDR-TET)

Red-eyed sons and Black-eyed daughters

Red-eyed Wolbachia negative male (STDR-TET)
x
Red-eye Wolbachia negative female (STDR-TET)

Red-eyed sons and Red-eyed daughters.
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Table 3.4: Male behaviour in the trials depends on their strain, and also the treatment. The test statistic 
reported for number of encounter, number of matings, and proportion success, is the F test comparing 
the full model to that with the term of interest removed. The test statistic reported for handling time is  
the Likelihood Ratio from comparing the full model to that with the term of interest removed. The  
factor levels are reported when significant, as the mean ± one standard error of the mean.

Trait

Number of 
encounters

Number of 
matings

Proportion 
success

Handling time 
(seconds)

Strain
Test statistic 9.94 0.0067 3.08 6.07
 p 0.0025 0.94 0.084 0.014

10 11.85 ± 3.04 49.6 ± 11.42

29 9.94 ± 1.71 46.4 ± 9.3

Treatment
Test statistic 7.52 2.97 4.01 6.54
p 0.0012 0.059 0.023 0.038

Same strain 9.31 ± 2.28 0.63 ± 0.25 45.95 ± 8.80

Different strain 11.23 ± 2.50 0.60 ± 0.14 47.82 ± 9.66

Competition 12.14 ± 2.34 0.48 ± 0.15 50.28 ± 12.53

Interaction
test statistic 0.35 0.50 0.26 0.38

p 0.70 0.61 0.77 0.83
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Figure 3.1: Mean single-foundress sex ratio, measured as proportion male for each strain. Error bars 
are standard error of the mean.
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Figure 3.2: There is no correlation between strain sex ratio and the probability a lone son inseminates  
a focal female. Single-foundress sex ratios from the sex ratio screen are used. Sex ratio is measured as 
proportion male.
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Figure 3.3: Sons from high sex ratio strains are better competitors. As the strain sex ratio of the focal 
male increases, the mating success of his competitor decreases. Error bars show the standard error on  
the number of daughters the competitor male sires. Strain sex ratios are the means from the single-
foundress sex ratio screen. Sex ratio is proportion male.
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4. Sperm resource levels and risk of sperm limitation 
is not associated with single-foundress sex ratio for a 
gregarious parasitoid wasp

A version of this chapter is being prepared for submission. The authors will be Anna 

M. Moynihan and David M. Shuker



Abstract

Hamilton's theory of Local Mate Competition (LMC) predicts that when females are 

laying eggs alone (as a so-called single-foundress), and their offspring will emerge 

and mate locally amongst themselves, they should lay a female-biased sex ratio. In 

fact, the mathematical solution for the optimum sex ratio is to lay only females, but 

all-female broods are not commonly observed among species known to exhibit LMC 

in the wild, and there is often more than one son in each brood. An over-abundance 

of males in single-foundress broods is usually explained through fertility insurance: 

foundresses lay more sons to ensure that enough reach adulthood to inseminate all 

their  daughters.  I  extend  this  fertility  insurance  idea  to  include  the  potential  for 

sperm-depleted sons that do not have enough sperm to provide full-fertility to their 

sisters. Using eighteen iso-female strains of the gregarious parasitoid wasp Nasonia 

vitripennis I performed the first study of within-species variation in sperm-resources 

and sperm-limitation  in  parasitoids.  I  found that  seminal  vesicle  volume differed 

between strains, but did not correlate with single-foundress sex ratio, contrary to the 

fertility-insurance  hypothesis.  I  also  found evidence  of  sperm limitation  in  later-

mated  females,  but  this  did  not  vary  with  strain.  Therefore  sperm-limitation  is 

unlikely to be a common occurrence in wild N. vitripennis. 

Keywords:  male  insemination  capacity,  local  mate  competition,  sperm-depletion, 

Nasonia vitripennis, body size, seminal vesicle volume, fertility insurance.
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Introduction

One of the best-studied forms of facultative sex allocation is Local Mate Competition  

(LMC; Hamilton, 1967) which is displayed by a wide-range of organisms including 

aphids, mites, spiders, barnacles, malaria blood parasites, snakes and fish and most 

famously  the  parasitoid  wasps  (see  West,  2009 for  a  review).  Hamilton  (1967) 

described the optimal sex ratio a mother should lay if mating occurs locally on a 

patch of resource and only one sex disperses. Under LMC mothers should adjust the 

sex ratio of a brood (measured as the proportion male) in response to the number of 

other females laying eggs (foundresses) on the oviposition patch. As the number of 

foundresses (n) increases, the degree of local  mating decreases, which makes the 

production of sons more favourable (Figure 1.1). Hamilton modelled the rise in the 

unbeatable sex ratio for diploids (s*) with increasing foundress number (n) such that 

s*=(n-1)/2n.  When  a  female  oviposits  alone  (n=1)  the  LMC  equation  solves  to 

predict all female broods. Son-free broods are, however rarely observed in nature 

(Hamilton, 1967). The few sons that are laid have historically been interpreted as the 

minimum number of sons required to ensure the fertility of a mother's daughters 

under extreme LMC, as females will not find alternative mates away from the natal 

patch (Charnov, 1982, Godfray, 1994, Waage & Sook Ming, 1984, Hardy & Cook, 

1995, Heimpel, 1994, Chapter 3). Virgin females can gain some fitness by laying all-

male broods: if the virgin female oviposits on a patch with other, mated, females, her 

sons will have mates available.
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Previous  attempts  to  explain  higher  than  predicted  sex  ratios  have  focussed  on 

fertility insurance through developmental mortality and male insemination capacity. 

Models that assumed zero fitness for virgin females have shown that the unbeatable 

sex ratio a mother should lay increases with the rising probability of male death 

before  mating  (Nagelkerke  & Hardy,  1994).  The number of  sons  surviving  after 

developmental  mortality must  be enough to inseminate the brood, which may be 

more than one if males have a finite insemination capacity that is smaller than the 

average clutch size (Dijkstra, 1986, Hardy & Cook, 1995). Insemination capacity has 

found some support in explaining additional sons in single-foundress broods in some 

parasitoid  wasps  (reviewed  in  Chapter  3).  The  relative  importance  of  male 

insemination capacity and developmental mortality was compared by Hardy et al. 

(1998) in three species of parasitoid.  In the parasitoid wasp  Colpoclypeus florus, 

males can inseminate fifteen females before dispersal, and so the presence of more 

than one son at clutch sizes less than sixteen is explained by the high developmental 

mortality in this species. Whereas limited male insemination capacity is more likely 

as an explanation of additional males in  Goniozus nigrifemu  and Goniozus legneri 

where  developmental  mortality  is  low (Hardy  et  al.,  1998).  Models  of  LMC in 

malaria and other blood parasites have shown that the number of gametes a male 

gametocyte  produces  has  an  impact  on  the  sex  ratio  observed:  fewer  potential 

gametes per gametocyte leads to higher sex ratios (Gardner et al., 2003, West et al., 

2002). 
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Many of the parasitoid studies discussed in Chapter 3, and my own assay of male 

mating ability in Chapter 3, used the presence or absence of female progeny as the 

measure  of  insemination capacity.  A male  could  however,  pass  an  ejaculate  to  a 

female that is not enough to give her full  fertility over her reproductive lifespan. 

Here, I extend my consideration of fertility insurance and the single-foundress sex 

ratio, by looking at variation in sperm resources as a different component of male 

fertility.

Sperm limitation is is a potentially serious problem for parasitoid wasps. Parasitoid 

wasps,  as  Hymenoptera,  are  haplodiploid,  meaning  that  females  develop  from 

fertilised eggs and males from unfertilised eggs. Consequently, a virgin female can 

lay a  brood of  sons,  but  must  be  mated  to  produce  daughters.  In  many species, 

including  N. vitripennis, males are proto-spermatogenic: they eclose as adults with 

all their sperm and do not continue spermatogenesis after this point  (Clark et al., 

2010, Hogge & King, 1975). This fits their extremely local mating pattern. Males are 

therefore under strong pressure to allocate their sperm resources wisely to maximise 

their number of offspring (Dewsbury, 1982). Sub-optimal sperm allocation can mean 

males run out of sperm and yet still have mating opportunities (Wedell et al., 2002). 

There is much evidence in parasitoid wasps of males continuing to mate once sperm-

depleted, passing no sperm to their mates (Dinarmus basalis (Bressac et al., 2008); 

Trichogramma  evanescens (Jacob  &  Boivin,  2004,  Damiens  &  Boivin,  2006); 

Spalangia drosophilae  (Simmonds, 1953);  Nasonia vitripennis  (van den Assem & 

Visser, 1976, Grant et al., 1980); Pachycrepoideus vindemiae (Nadel & Luck, 1985) 
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and  Spalangia  cameroni (King,  2000)).  Of  the  females  that  do  receive  a  full 

ejaculate,  we  know  this  is  not  always  enough  for  full-lifetime  fertility,  as  the 

proportion of sons in a female's brood has been shown to increase over her lifespan 

(Bressac & Chevrier, 1998, Geuverink et al., 2009, Jacob & Boivin, 2005). Females 

can also be partially inseminated, which can be observed either through: (a) counting 

the  spermatozoa in  her  spermatheca  (Nadel  & Luck,  1985,  Bressac  et  al.,  2008, 

Dijkstra,  1986,  Geuverink  et  al.,  2009);  (b)  observing  an  increase  in  the  total 

offspring sex ratio a female produces the later she is in a sequence of mates for a 

given male (Ruther et al., 2009, Hurlbutt, 1987a, Sekhar, 1957, Nadel & Luck, 1985, 

Vevai, 1942, Sandanayaka et al., 2011, Perez-Lachaud, 2010, King & Fischer, 2010, 

Henter, 2004); (c) observing a change in how an individual female's sex ratio varies 

across her lifespan with respect to her position in a sequence of matings with a given 

male (Chevrier & Bressac,  2002, Steiner et  al.,  2007).  The probability of sperm-

limited females is compounded by the fact that most parasitoid females mate just 

once (Ridley, 1993, Gordh & DeBach, 1978, Quicke, 1997) and that they often mate 

with  a  male  who  has  probably  already  mated  several  other  females  due  to  the 

typically female-biased sex ratio.  A female's receptivity to further matings can be 

turned  off  by  sperm-depleted  males  in  some  species  through  post-copulatory 

interactions (i.e. without actual sperm transfer:  Nasonia vitripennis (Barrass, 1964, 

van  den  Assem  &  Visser,  1976);  Spalangia  endius  (King  &  Fischer,  2010); 

Lariophagus distinguendus (Steiner et al., 2007), but not Trichogramma evanescens 

(Damiens & Boivin, 2006)). This leaves females unlikely to mate again when they 

run out of sperm (Do Thi Khanh et al., 2005, van den Assem et al., 1984). Females of 
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Trichogramma evanescens run out of sperm over their lifetime, irrespective of how 

many times they copulated, suggesting that either they can only store a fixed volume 

of sperm, or their ability to fertilise eggs declines with age (Jacob & Boivin, 2005). 

All of these factors contribute to the incidence of females in the wild that have no 

sperm  reserves  and  are  effectively  virgin  (termed  “constrained  females”  in  the 

parasitoid literature (Godfray, 1990, Ode et al., 1997)).

Here I will connect the well-researched fields of sperm-depletion in parasitoids with 

fertility insurance interpretations of Hamilton's zero. I will look at within-population 

variation in sperm resources and sperm-limitation, in order to test the prediction that 

males from strains with lower single-foundress sex ratios will  have higher sperm 

reserves  than  those  with  more  brothers.  Consequently,  males  from low  sperm-

resource strains are predicted to become sperm-depleted faster. If this is true, then 

foundresses with sons that  are  less  able to  inseminate all  their  sisters,  might lay 

additional sons in order to ensure the fertility of her daughters. A preliminary test of 

focal female sex ratios from the insemination capacity experiment indicated some 

evidence of sperm limitation (Chapter 3) which I will pursue here. Previous studies 

have rarely investigated within-species variation in parasitoid sperm resource level 

and sperm-limitation.  Total  sperm counts  were found to  differ  for  two strains of 

Anisopteromalus calandrae   (Bressac et al., 2009, Do Thi Khanh et al., 2005), but 

body size was not controlled for. Also the identity of the male a female mated with 

explained some variance in  the sex ratio  of the resulting brood in both  Nasonia 

vitripennis  (Shuker et  al., 2006c) and  Uscana semifumipennis  (Henter, 2004), but 
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these  studies  did  not  rigorously  investigate  sperm-limitation  as  a  potential 

mechanism.

I  assayed  sperm  resources  across  18  strains  of  the  gregarious  parasitoid  wasp 

Nasonia vitripennis from the same population. My measure of sperm resource was 

seminal vesicle volume. Sperm is stored here once produced, and seminal vesicle 

volume  has  proved  a  successful  assay  of  sperm  number  for  Trichogramma 

euproctidis (Martel et al., 2011) and  Spalangia cameroni  (King & King, 1994), a 

member of the same family as  Nasonia (Pteromalidae).  I then took four of these 

strains that captured the range of variance in seminal vesicle volume and tested them 

for sperm limitation. To do this I mated males with 12 females sequentially, putting 

the first, fourth, eighth, tenth and twelfth females on hosts to count the number of 

offspring the male sired. As the wasps are haplodiploid, sons have no fathers and 

daughters  result  from  fertilised  eggs.  Therefore  the  number  of  daughters  is  the 

measure of male fertilisation success.

Materials and Methods

Experiment One: Variation in seminal vesicle volume across strains

In this experiment I investigated the allometry between body size and seminal vesicle  

volume across eighteen strains of Nasonia vitripennis from the same population.
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Wasps and pre-treatment

The  wasps  used  for  this  experiment  are  the  eighteen  Cornell  strains  of  Nasonia 

vitripennis used in Chapter 3. The host used throughout culture and experimental 

conditions  were  pupae  of  the  large  dipteran  Calliphora vicina.  Unless  otherwise 

stated, I kept wasps in the incubator at 25°C, with a 16hrs light to 8hrs darkness light 

cycle.

The experiment was performed in three blocks. For each block males were of the 

same generation and eclosed on the same day. Their mothers were collected from 

stock tubes and put through the pre-treatment process described in Chapter 2 in order 

to prepare the mothers for oviposition. Pre-treatment begins with an initial host for 

24 hours, which the mothers use for host-feeding to gain protein which they use for 

oocyte-maturation (Rivero & West, 2005). This host was then replaced with honey-

water  soaked  filter-paper  for  a  further  24  hours.  Finally  the  oviposition  host  is 

provided for 24 hours. The parasitised hosts were then incubated until day 11 post-

oviposition, when I opened the hosts and removed the male wasp pupae inside. Male 

pupae were then isolated in glass vials  of 75  × 25 mm and incubated until  they 

eclosed. Upon eclosion,  they were put into an incubator at 6°C with 24 hours of 

darkness, where they were kept until they were measured. For block A 72 males were 

measured, 28 for block B and 109 for block C. The total number of replicates for 

each strain varied from 7 to 18, with the average at 12 males per strain. The range of  
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ages on the day of measurement for each block was as follows: A 10-28; B 8-19; C 3-

17 days post-eclosion.

Dissection protocol

Males were dissected in pools of TBST buffer (50mM Tris, 150 mM NaCl, 0.1% 

Tween, 0.05% NaN3, pH 7.5), following the protocol of (Clark et al., 2010). Under a 

stereomicroscope  the  reproductive  tract  was  removed,  and  the  seminal  vesicles 

measured. I took three measurements of both the longitudinal and lateral dimensions 

of  both  seminal  vesicles  at  ×126  in  Cell^D  software  (Olympus)  using  the 

stereomicroscope (see Figure 4.1). If one seminal vesicle was damaged, I used the 

remaining intact  seminal  vesicle.  The age  of  the male in  days  post-eclosion  was 

recorded,  along  with  his  hind  tibia  length  measured  at  ×20  using  photographs 

through a microscope and in Cell^D imagine software as before.

Analysis

The  volume  of  the  seminal  vesicle  was  estimated  as  an  oblate  spheroid  using 

(4πab2)/3, where a = mean longitudinal seminal vesicle dimension (microns), and b = 

mean latitudinal seminal vesicle dimension (microns).

Statistical analysis was performed using R (R Development Core Team, 2008, Ihaka 

& Gentelman,  1996).  Initial  exploration  of  the  data  showed a  cubic  relationship 

between body size and seminal vesicle volume, and so hind tibia length cubed was 
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used. A linear mixed effect model (LME) was used for analysis, with a random effect 

structure of  strain nested within block, with the fixed effects  of male age,  strain 

single-foundress sex ratio and body size, and the interaction between body size and 

strain  single-foundress  sex  ratio.  Single-foundress  sex  ratio  data  were  the  strain 

means measured in Chapter 3. 

The significance of both fixed and random effects was tested using Likelihood Ratio 

tests, comparing a full model and the model with the term of interest removed. The 

models used in Likelihood Ratio tests were fitted using Maximum Likelihood (ML), 

whereas  the  parameter  estimates  were  taken  from  the  full  model  fitted  with 

Restricted Maximum Likelihood (REML).

To investigate possible different allometries of seminal vesicle volume on body size 

between the strains, independent of strain sex ratio, I performed a second analysis 

where strain is included in a second model as both a factor and a random effect, 

following Crawley (2007). In this LME model, a random effect structure of strain 

nested  within  block  was  used,  with  male  age,  hind  tibia  length,  strain  and  the 

interaction  between  strain  and  hind  tibia  length  as  fixed  effects.  Again  the 

significance of model terms was tested using Likelihood Ratio tests.

Experiment Two: Sperm Limitation

In this experiment I tested four strains of  Nasonia vitripennis for sperm limitation. 

Males  were  mated  to  twelve  females  sequentially.  A  previous  study  on  mate 
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competitiveness  in  this  population had shown some evidence of  sperm-limitation 

occurring when males had mated a mean of 5.6 females under strict time constraints 

(Chapter 3). A subset from these twelve females were then given hosts to oviposit on, 

to count the number of daughters they lay.

Wasps

I used the Cornell strains with the biggest (strains 6 & 23) and smallest (strains 18 & 

28) seminal vesicle volumes controlling for body size and age as determined from 

experiment one. 

I set up a grand-parental generation to allow us to create staggered blocks and control  

for maternal effects. I kept females at 18°C with 16hrs of light and 8hrs of darkness 

with honey-water soaked filter paper every day, then took six from each strain each 

day and put them through the pre-treatment process described in experiment one on 

the appropriate  day.  The pre-treatment from this point was conducted at  standard 

incubator conditions described in experiment one.  The females from the resulting 

broods were allowed to mate and then were pre-treated, this time with two hosts for 

oviposition. 

These hosts were opened on day ten post-oviposition for each of the five blocks. I 

took at least twelve sister pupae from one host. Two male pupae were collected from 
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another host. This meant that females were groups of sisters, and the male that mates 

them is from the same strain, but is not their brother.

Mating day

On mating day wasps were allowed to acclimatise for an hour on the bench before 

matings. Experiment one showed an effect of age on seminal vesicle volume, and so 

all males were tested at age one day after eclosion. Each mating occurred in a clean 

tube of dimensions 50 × 10mm. 

The male was added to the arena followed by the female for each mating. I observed 

the matings under a ×10 binocular microscope to ensure genital contact. I recorded 

the time the female was added to the mating tube, the time of mating and also the 

time the female is removed after the male had dismounted. After mating the female 

was removed, isolated in a fresh vial and returned to the incubator. The next female 

was then added until a male had been observed mating all twelve females. I then kept 

the  male  to  measure  his  hind  tibia  length  following  the  protocol  described  for 

experiment one. The average time pairs spent together in a tube was 124.3 (SE = 

62.63) seconds, and the lag to the next mating was 32.44 (SE = 44.73) seconds.

In each of  the  five  blocks,  four  males  from each strain were  tested with  twelve 

females. On block four, only three males for strain 23, and three males for strain 28 

were tested, the lost males were due to death before mating. The total number of 
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males tested per strain is therefore n = 20 for strains 6 and 18, and n = 19 for strains 

23 and 28.

One day after mating the first, fourth, eight, tenth and twelfth females (according to 

mating sequence) were each given four hosts in an isolated vial.  I  changed these 

hosts every second day for six days, so a female received three batches of four hosts 

over her lifetime, referred to as the three oviposition bouts. Due to the extremely 

adverse weather conditions in the UK at the time, I was unable to reach the lab one 

of the experimental days. As a result, Block 3 females had their third group of hosts 

for three days, and block 5 females had their second group of hosts for three days and 

did not receive a third group of hosts. Each set of hosts was allocated a random ID in 

order for the sex ratios to be counted blind, therefore each oviposition bout occurred 

at a random position within the incubator, and the parasitised hosts were incubated at 

a random position within the incubator. All hosts were incubated until the offspring 

emerged and died.

Once the clutches had eclosed and died, the number of sons, daughters, dead larvae 

and diapausing individuals in each tube was counted.

Analysis

I  stated  in  the  methods  that  there  was  one  day  in  which  I  was  prevented  from 

accessing the lab due to snow. I suspected that females ovipositing in those bouts 

may have behaved unusually, perhaps with increased levels of self-superparasitism 
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and I therefore repeated the analyses with those oviposition bouts removed from the 

dataset. Model results were significantly different when the bad weather broods were 

included; I therefore only present analysis of the reduced dataset.

Females have been predicted to optimise sex ratio and clutch size together  (King, 

1987, Nagelkerke & Hardy, 1994), so females with the same sex ratio but wildly 

different clutch size will  have used different numbers of sperm cells.  Also males 

could influence clutch size and sex ratio allocation by seminal fluid effects (Shuker 

et al., 2006c). I therefore analysed the number of females and clutch size rather than 

the sex ratio.

All  analyses  were  performed  in  R  (R  Development  Core  Team,  2008,  Ihaka  & 

Gentelman, 1996). The number of females in each group of hosts was analysed in a 

LME, with male nested within strain, nested within block as random effects. The 

fixed effects of male hind tibia length (in microns), the mother's mating sequence 

number (1, 4, 8, 10, 12), the interaction between male body size and the mother's 

mating sequence number, and the oviposition bout (1, 2, 3) within female sequence 

number were  included in  the  model.  The significance  of  terms was  tested using 

Likelihood Ratio tests comparing the full model to a model with the term of interest 

removed, both fitted using ML methods. Parameter estimates are reported from the 

full model fitted using REML.
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The same analysis was performed for the total number of offspring: the clutch size. 

The  random  effect  of  strain  (within  block)  on  both  clutch  size  and  number  of 

daughters in these models was tested using a likelihood ratio test. In order to avoid 

pseudoreplication, a new random factor was created giving each strain within a block 

a new, different level, so instead of 4 strains each replicated within 5 blocks, there are 

now 20 levels designated A-T. The model with the random effect of male, within 

strain within block was compared against a model with the random effect of male 

within strain-block. A Variance Components Analysis from the full model was also 

used to described what proportion of variance is explained by the random effect of 

strain for clutch size and number of daughters, using the REML estimates.

The relationship between male hind tibia length and the total number of daughters 

sired was then investigated. Using an LME I fitted the mean number of daughters per 

oviposition bout, by all females inseminated by the same male, with male hind tibia 

length (microns) as a fixed effect, and strain nested within block as random effects 

using maximum likelihood methods.  The effect  of  tibia  length was tested with a 

Likelihood Ratio test.
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Results

Experiment One: Variation in seminal vesicle volume across strains

A total of 219 males were measured across three blocks. The mean hind tibia length 

was 151.2  microns  (SE = 19.0).  The mean volume of  each seminal  vesicle  was 

2.27×10-2 microlitres (SE = 9.53×10-3) cubic microns.

Across the strains, larger males had a higher seminal vesicle volume (LR test, Tibia 

(Microns) Cubed,  b= 3.49 ± 1.72, L.Ratio = 33.52,  p = 0.040) (Figure 4.5), as did 

older males (b = 1.02×109 ± 8.17×108, L.Ratio = 33.52, p < 0.0001). Seminal vesicle 

volume was not however associated with strain sex ratio when controlling for male 

body size and age (b = 6.22×109 ± 2.71×1010, L.Ratio = 0.008, p = 0.93) (Figure 4.2) 

nor was there an interaction between hind tibia length and strain sex ratio (b = -0.692 

± 10.0 L.Ratio = 0.006, p = 0.94).

There was also no evidence for different allometries of hind tibia length with seminal 

vesicle volume across the strains. When strain was fitted as a fixed effect, it was not 

significant as main effect (LR test, L. Ratio = 10.79,  p = 0.87), or interacting with 

hind tibia length (L. Ratio = 14.36, p = 0.64). 
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Experiment Two: Sperm limitation 

Across all females the mean clutch size was 270.0 (SE = 7.52) and the mean sex ratio 

(proportion male) was 0.25 (SE = 0.21). The 78 males tested copulated with twelve 

females each. Five females per male (the first, fourth, eighth tenth and twelfth) were 

kept to measure the number of daughters they produce, however five females died 

before  oviposition,  so  the  total  number  of  females  analysed  was  therefore  385. 

Twelve of those females laid no daughters on any oviposition bout and are therefore 

considered constrained females. One constrained female occurred in strain 6; she was 

the first mated by her male. Three constrained females were found in strain 18; the 

fourth, eighth and tenth mated by their males. Just one constrained female was found 

in strain 23; the fourth mated by her male. Seven constrained females were found in 

strain 28, a first,  eighth, tenth and four twelfth mated females.  There is evidence 

from other parasitoid studies that males can mate, but not inseminate one female, but 

then  go  on to  successfully  inseminate  a  subsequent  female  (Spalangia  cameroni 

(King, 2000); Spalangia drosophilae (Simmonds, 1953)). I therefore did not exclude 

males that had a failed copulation with one female but later successful copulations. 

Number of daughters

There  was  evidence  for  sperm limitation:  females  who  were  mated  later  in  the 

sequence laid fewer daughters, however the effect is not very strong (b = 7.03 ± 3.03, 

LR Test, L. Ratio = 5.39, p = 0.02) (Figure 4.3). This sperm limitation was not seen 

across a female's three oviposition bouts though (b = 0.026 ± 0.068, L. Ratio = 0.15, 
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p = 0.70) so it does not appear that females are running out of sperm as they lay more  

eggs. Male body size did not influence the number of daughters a female laid (b = 

0.063 ± 0.035, L. Ratio = 3.34,  p  = 0.068), but it did interact with female mating 

sequence number so that females mated earlier in the sequence by larger males laid 

more daughters (b = -0.008 ± 0.003, L. Ratio = 6.80, p = 0.009) (Figure 4.4). Strain 

explained 7.74% of variance in daughter number, however this was not significant 

(L. Ratio = 1.46×10-6, p = 0.999).

Larger males do not have a higher fitness overall: the total number of daughters a 

male sired is not predicted by his body size (b = 0.0038 ± 0.027, L.Ratio = 0.13, p = 

0.72) when controlling for the number of oviposition bouts the females he mated 

with survived to perform. 

Clutch Size

There was no effect of sperm limitation on the total number of offspring laid. The 

clutch size was not affected by male body size (b = 0.0098 ± 0.0.26, LR Test, L.Ratio 

= 0.14, p = 0.70), female mating sequence number (b = -0.41 ± 2.64, L.Ratio = 0.02, 

p = 0.88) or their interaction (b = -7.2x10-4 ± 0.0026, L.Ratio = 0.07, p = 0.79). There 

was, however a significant effect of oviposition bout within female mating sequence 

number (b  = 0.45 ± 0.06, L.Ratio = 57.44,  p  < 0.0001) (Figure 4.5): females laid 

larger clutches on their second and third oviposition bouts.
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The random effect of strain explained 2.60% of variance in clutch size, and the effect 

was not significant in model comparison (L.Ratio = 1.37×10-6, p = 0.9991).

Discussion

This study is the first to investigate the relationship between within-species variation 

in  sperm resources  and  sperm-limitation,  and differences  in  single-foundress  sex 

ratio. I predicted that males from strains with a higher sex ratio (proportion male) 

would  have  lower  sperm  resources,  and  would  therefore  become  sperm-limited 

faster. I found no evidence that males from strains with higher sex ratios had lower 

sperm resources (Figure 4.2), as measured by the volume of their seminal vesicles. 

My findings here support those of my previous study (Chapter 3) that the differences 

in the minimum number of males required to inseminate all the females in the brood 

is unlikely to explain between-strain heritable variation in single-foundress sex ratio 

in Nasonia vitripennis.

The females in this experiment did become sperm limited: those mated later in the 

sequence laid fewer daughters (Figure 4.3). While sperm limitation did occur, there 

were  very  few  constrained  females  laying  all-male  broods,  indicating  that  when 

Nasonia vitripennis males are provided females sequentially they are able to (at least 

partially) inseminate more females than previously thought (see Grant et al., 1980). 

The females  who laid  fewer  daughters  did  not  produce a  pattern consistent  with 

running out of sperm over successive oviposition bouts. It is possible that the females  
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can assess their sperm resources and produce fewer daughters over a given number 

of hosts, as there is no indication they reduce clutch size (Figure 4.5). The strong 

selection on single-foundress sex ratios relative to multi-foundress scenarios (West & 

Herre, 1998b, Shuker et al., 2005), could result in females saving sperm to produce 

the  best  possible  single-foundress  sex  ratio  in  case  they  later  encounter  an 

unparasitised host alone. Grillenberger et al., (2008) found that in the wild six of 49 

females  oviposited  on  more  than  one  patch  of  hosts,  so  multiple  oviposition 

opportunities exist in nature. This hypothesis that females could conserve sperm for 

future  oviposition  events,  would  benefit  greatly  from  a  theoretical  treatment,  in 

which female mortality should also be included.

Larger males did not overall sire more daughters, however the females earlier in the 

mating sequence (first to eighth) mated by a larger male did produce more daughters 

(Figure 4.4). Seminal vesicle volume, my assay of sperm resources, did significantly 

differ between strains when controlling for age and body size, however the strains 

did  not  differ  in  their  allometries.  Despite  choosing four  strains  to  represent  the 

greatest variance in seminal vesicle volume for the sperm-limitation study, I did not 

find an effect of strain on sperm limitation. I had predicted that strains with a higher 

single-foundress  sex  ratio  would  have  lower  sperm resources  and become sperm 

limited faster, analogous to the relationship between the sex ratio in malaria blood 

parasites and the number of gametes a male gametocyte can produce (Gardner et al., 

2003).

- 135 -



The influence of a male on the sex ratio his mate produces is proposed to be through 

the number of spermatozoa he transfers to her in his ejaculate. Ejaculates are not just 

spermatozoa; they consist of other factors that are known to increase oviposition rate 

in other insects (Eberhard, 1996, Chapman, 2001). If seminal fluid becomes depleted 

along with sperm numbers, I would expect to observe a reduction in their effect too. I 

found no main effect of female mating sequence number or male body size on clutch 

size, suggesting that this seminal-fluid depletion is not occurring. It is possible that a 

seminal fluid component could increase fertilisation rate rather than oviposition rate. 

If such a component existed in a limited quantity, the depletion of such a resource 

could be an alternative explanation to the decline in the number of daughters laid 

with mating sequence number I observed (Figure 4.3), and also the lack of decline in 

daughter number across host bouts. I note though that the presence of such ejaculate 

components remain speculative. Strain had no significant effect on clutch size here, 

despite clutch size showing significant among-strain variation in the single-foundress 

sex ratio screen of Chapter 3. A previous study of male influence on sex ratio in 

Nasonia vitripennis also did not find an effect of male influence on the clutch size his 

mates  laid  (Shuker  et  al.,  2006c).  Instead,  females  lay  larger  clutch  sizes  with 

successive oviposition bouts (Figure 4.5), perhaps due to the ongoing host-feeding 

and egg maturation that limits the size of the first clutch (Rivero & West, 2005).

While larger N. vitripennis males did not sire more daughters in total, they did have 

higher seminal  vesicle volumes (Figure 4.6),  and sired more daughters with their 

earlier mates (Figure 4.4). Previous studies in N. vitripennis have found no advantage 
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to  increased male body size when males are  alone or in competition (Chapter  3, 

Chapter 2; Appendix 2:  Moynihan & Shuker, 2011,  Burton-Chellew et al., 2007b). 

Here I have confirmed the previous findings of (Grant et al., 1980, Clark et al., 2010) 

that  larger  N.  vitripennis males  have  larger  sperm  resources.  This  supports  my 

proposed  lower limit to male body size outlined in Chapter 2. A recent N. vitripennis  

study has  shown that  sperm limitation  might  be  higher  when males  are  in  poor 

nutritional condition  (Blaul & Ruther, 2011). Very few of the papers investigating 

sperm  limitation  of  male  insemination  capacity  have  taken  male  body  size  into 

consideration,  although  the  positive  relationship  between  body  size  and  sperm 

resources  found  here  is  consistent  with  studies  in  Colpoclypeus  florus  (Dijkstra, 

1986);  Uscana semifumipennis  (Henter, 2004);  Dinarmus basalis (Lacoume et al., 

2006) and Spalangia cameroni (King & King, 1994).

The interaction between male body size and female mating sequence number on the 

number of daughters a female lays, could be due to sperm allocation differences. 

While  individual  spermatozoa  are  considered  to  be  relatively  cheap,  a  whole 

ejaculate may represent a significant proportion of a limited resource  (Dewsbury, 

1982),  leading to  the  prediction  that  males  should  allocate  their  sperm-resources 

strategically.  Across  insects,  males  of  different  body  sizes,  have  been  shown  to 

employ  different  strategies  for  ejaculate  allocation,  particularly  when  body  size 

predicts mating frequency (reviewed in Wedell et al., 2002). Some of the best studied 

cues  for  strategic  allocation  are  perceived  risk  of  sperm competition  and  female 

quality (e.g. Gage & Barnard, 1996 and Bretman et al., 2009). While I controlled for 
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the perceived risk of sperm competition by keeping males in isolation before mating 

and preventing access to other males during matings, I did not measure female body 

size, the best predictor of female condition. It would be reasonable to predict that 

males should allocate a larger ejaculate to big female, because the females have a 

higher fecundity as they lay more eggs  (van den Assem & Jachmann, 1982), and 

could also  store more  sperm. However,  as  females  were  both sisters  and chosen 

randomly for the place in the mating sequence, it is unlikely that larger females were 

consistently placed earlier in the mating sequence.

Nasonia  vitripennis males  are  known  to  be  proto-spermatogenic:  they  do  not 

continue to synthesise sperm as adults  (Hogge & King, 1975, Clark et al., 2010). 

They are wingless and do not disperse far from the patch, so once the females at their 

patch are mated, future matings are unlikely, and so it seems beneficial to have as 

much sperm ready as soon as possible (Boivin et al., 2005). Despite this, I found a 

positive correlation between age and seminal vesicle volume. This would suggest 

that  either  sperm  continue  to  migrate  to  the  seminal  vesicles  in  the  days  after 

eclosion, or the seminal vesicles swell with some other, non-spermatozoa factor. As I 

did not count the number of spermatozoa in the seminal vesicles, I am unable to 

distinguish between these explanations without further experimentation. This finding 

contrasts with the negative effect of age on insemination capacity found in Chapter 3, 

which could be due to other age-associated factors. For instance, male age correlated 

with female age in that experiment, and so the pattern observed in Chapter 3 could be  

due to female age. The increasing seminal vesicle volume with age is probably of 
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little importance in the wild, as males are unlikely to survive past a few days, and 

most of their matings will occur in the first 48 hours after eclosion. Note that in the 

sperm limitation experiment described here, male age was controlled to a 24 hour 

window to minimise the influence of this effect. Increasing sperm supplies with age 

have been found in  Anisopteromalus calandrae (Bressac et al., 2009).  This species 

does exhibit LMC along with a strong host-quality effect (Nishimura & Jahn, 1996), 

however the extent of male dispersal is unknown. If males could disperse to find 

other mates after mating their sisters at the natal patch, continued sperm production 

would be beneficial. 

The importance of sperm-limitation to females in the wild falls into two categories. 

There are those females that have some but not enough sperm, and those that are 

constrained  and  have  no  sperm.  Females  could  end  up  with  no  sperm  reserves 

through failed copulations, like the twelve (out of 385) females observed here. Failed 

copulations could be caused by the genitals not engaging properly, female rejection 

of sperm, or males not having the sperm ready to ejaculate. Whichever the route, 

failed copulations are probably more common than is usually appreciated (Eberhard, 

1996). There  has  been  considerable  discussion  in  the  parasitoid  literature  about 

females with no sperm reserves, the so-called constrained females. Most of this has 

focussed on the prediction that foundresses should lay a more female-biased sex ratio 

when  there  are  constrained  females  in  their  population  (who produce  only  male 

offspring),  through  negative  frequency-dependent  selection  (Godfray,  1990). 

Populations of N. vitripennis have been found to have a low incidence of constrained 
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females  (Beukeboom  & Werren,  2000,  Grillenberger  et  al.,  2008),  which  would 

predict a sex ratio shift of less than 0.01 towards fewer sons  (Godfray, 1990). The 

low reported incidence of constrained females combined with the small shifts on sex 

ratio observed in unconstrained females  (King & D'Souza,  2004),  means that the 

predictions of constrained sex allocation theory, if met, will have a small effect on 

the observed sex ratio in Nasonia. Consequently, constrained females will have low 

fitness, but will not exert a strong selection pressure on the rest of the population. 

The partial-insemination which I have seen in this study is unlikely to occur very 

often  in  the  wild.  We  are  seeing  the  first  signs  of  sperm  limitation  through  a 

reduction in the number of daughters a foundress lays when her mate had 11 previous 

copulations. Wild estimates of N. vitripennis clutch size vary greatly, but the sex ratio 

is around 0.2-0.3 proportion male (Chapter 3). Even under the extremely female-

biased sex ratios, a male is unlikely to receive more than 11 mating opportunities 

from these generally monandrous females (Holmes, 1974), unless the clutch sizes are 

very large.

This is the first study to investigate within-population differences in sperm resources 

and sperm-limitation and associate this with differences in the single-foundress sex 

ratio through fertility insurance. While I did find between-strain differences in sperm 

resource,  measured through seminal  vesicle volume,  I  did not  find differences in 

sperm-limitation due to strain. My data further reinforces previous studies suggesting 
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differences  in  single-foundress  sex  ratio  are  not  due  to  differences  in  male 

insemination capacity. Instead, I did find more evidence of a body-size advantage in 

the form of higher seminal vesicle volume, and also more daughters sired from early-

mated females. 
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Figure 4.1 The dissected Nasonia vitripennis male reproductive tract. 1a) One half of the reproductive 
tract. 1b) The complete tract with aedeagus. 1c) Both sides of the reproductive tract with the aedeagus 
removed. The white line on the left hand-side shows the position of the longitudinal measurement, and  
the line on the right hand side seminal vesicle shows the latitudinal measurement. In all images white 
scale bar in the bottom left hand side is 250μm, and the following labels apply (t) testes, (v) spheroid 
seminal vesicles, (g) accessory gland and (a) aedeagus.
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Figure 4.2: There is no relationship between seminal vesicle volume and the strain single-foundress 
sex ratio. The strain single-foundress sex ratios were established in the screen in Chapter 3, and are 
measured as  proportion male.  The mean seminal  vesicle  volume residual  ×10-7 for  each  strain is 
presented. The residuals were calculated from a linear mixed effects model, of seminal vesicle volume 
explained by the fixed effects of hind tibia length cubed and male age in days after eclosion, and the  
random effect of block.
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Figure 4.3: The number of daughters laid by a female decreases as the number of mates her male has 
previously inseminated increases. Sums across all hosts are shown. Error bars are one standard error 
of the mean.
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Figure 4.4: The number of daughters a female lays depends on both the size of the male who mated 
her, and the previous number of females he copulated. This graph shows the interaction between male 
body size and the female mating sequence number categorised as early (1st, 4th and 8th females) in 
black lines and data points, and late (10th and 12th females ) in grey lines and data points. This early-
late division is purely for graphical purposes, the data was analysed with female mating sequence 
number as a covariate. The y-axis shows the mean number of daughters laid by the females mated by 
that male within the female mating sequence category.
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Figure 4.5: Clutch size increases with host oviposition bout, and female mating sequence number.  
Black bars are for the first host bout, the second host bout is in grey, and the third in white bars. Error  
bars are one standard error of the mean.
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Figure 4.6: Seminal vesicle volume increases with the cube of body size. The measure of body size is  
hind tibia length measured in microns.
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5. Variation in post-copulatory courtship is not 
associated with female re-mating rate in the 
parasitoid wasp Nasonia vitripennis

A version of this chapter is being prepared for submission to the Journal of Insect Behaviour. The 

authors will be: Rebekah Watt, Anna M. Moynihan, Taehyun J. Park, and David M. Shuker. 

I designed and performed the experiment with RW, we contributed equally. TJP assisted in performing 

the experiment. The analysis and interpretation shown here was performed independently from RW.



Abstract

If there is any chance that a female will mate more than one male, selection will have 

acted on males traits to reduce the probability that females will re-mate, in order to 

protect their paternity. In the gregarious parasitoid wasp Nasonia vitripennis a second 

bout of courtship performed by the male after mating is thought to prevent female re-

mating by switching off her receptivity. Here, I investigated how variation in this 

post-copulatory  courtship  and  other  courtship  components  was  associated  with 

female re-mating across nine strains of  Nasonia from the same population. I found 

significant among-strain variation in female re-mating probability, but this was not 

associated with post-copulatory  courtship duration.  Instead,  females  that  received 

more pre-copulatory courtship on their  first  mating were less likely to re-mate.  I 

interpret this as females having an overall level of receptivity, and those with low 

receptivity require more courtship in the first mating, and then are unlikely to re-

mate on the second trial. Rather than the duration of post-copulatory courtship being 

key, instead there could be a threshold amount of post-copulatory courtship required 

to reduce receptivity, perhaps related to the release of male pheromones.

Keywords:  receptivity,  post-copulatory  courtship,  polyandry,  sexual  conflict, 

parasitoid wasp.
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Introduction

Sexual  and  natural  selection  have  acted  on  the  ability  of  each  of  the  sexes  to 

maximise the number and quality  of  their  offspring,  leading to  many differences 

between the two sexes, beginning with anisogamy  (Trivers, 1972). This has often 

given rise to different trait optima for males and females, resulting in sexual conflict 

(Parker, 1979, Chapman et al., 2003). The two sexes are in conflict over a wide-range 

of  traits  including  mating  duration,  sex  allocation,  parental  investment,  and  the 

number of mates (reviewed by Arnqvist & Rowe, 2005).

If the balance of costs and benefits to additional mates is different for the two sexes,  

they will “disagree” in evolutionary terms on the optimal number of mates. Females 

can incur costs to mating through lost opportunities for feeding, energetic costs or 

damage during mating itself (Chapman et al., 1995, Daly, 1978, Bell & Koufopanou, 

1985, Fowler & Partridge, 1989, Arnqvist & Nilsson, 2000). Females are thought to 

increase their  fitness from multiple matings through direct benefits  like access to 

resources,  or  indirect  benefits  like genetically  fitter  offspring (good-genes),  more 

genetically attractive offspring (Fisherian sexual selection) or through a genetically 

diverse or compatible brood (Thornhill & Alcock, 1983, Andersson, 1994, Colegrave 

et al., 2002). For males however, providing the risks to mating are not large, and 

there is no paternal care, each additional mating could lead to a gain in paternity 

(Bateman, 1948). If there is any chance that a female may re-mate and reduce the 
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fitness  of  her  original  mate,  selection  will  favour  traits  to  protect  his  paternity 

(Simmons, 2001).

Sperm competition occurs whenever the ejaculates of more than one male compete to 

fertilise a female's eggs (Parker, 1970). Male adaptations to improve their chance of 

success  in  this  competition  fall  into  two  categories:  offensive  and  defensive. 

Offensive adaptations are concerned with reducing the success of males that have 

previously inseminated the female a male copulates, for example sperm displacement 

(Arnqvist,  1988),  or  damaging  a  rival  male’s  sperm  (den  Boer  et  al.,  2010). 

Defensive  adaptations  aim  to  prevent  females  re-mating  or  using  sperm  from 

subsequent  males,  and examples  include  mate  guarding  (Arnqvist,  1988),  mating 

plugs (Baer et al., 2001) and physiological effects on female receptivity (Chapman, 

2001). 

Females may also have adaptations to manipulate the outcome of sperm competition 

to  maximise  their  fitness  (Eberhard,  1996).  One method thought  to  be especially 

powerful is cryptic female choice where females can bias which sperm fertilises their 

eggs  (Eberhard,  1996,  Thornhill,  1983).  The  mechanisms  through  which  this  is 

achieved are rarely elucidated despite a wide range of taxa where cryptic female 

choice  has  been  proposed  (Eberhard,  1996,  Rosengrave  et  al.,  2008,  Pizzari  & 

Birkhead, 2000, Qazi, 2002). An exception to this is the red flour beetle  Tribolium 

castaneum: during copulation males rub the female's elytra with the tarsi of his legs, 
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which influences his success in sperm competition (Edvardsson & Arnqvist, 2000). 

Edvardsson and Arnqvist (2000) removed the tarsi of some males and showed that 

while this manipulation did not influence the number of sperm transferred, it  did 

reduce the fertilisation success of the males. Moreover, they found that the rate of 

leg-rubbing  increased  fertilisation  success  for  the  unmanipulated  males  only, 

therefore this male copulatory behaviour is used by females as a cue to bias paternity.

Here,  I  have  investigated female  re-mating  rate  and male  adaptations  to  prevent 

female re-mating in the wasp  Nasonia vitripennis,  a gregarious parasitoid of large 

dipteran fly pupae. When a brood of wasps emerge as adults, they mate at the natal  

patch before the females disperse, leaving the wingless males behind. The population 

and patch sex ratios are usually female biased in the wild (0.2 - 0.3 proportion male, 

Burton-Chellew et al., 2008, Grillenberger et al., 2008, Molbo & Parker Jr, 1996, 

Chapter 3) as a result of facultative sex allocation under Local Mate Competition 

(LMC)  (Hamilton,  1967).  Like  many  parasitoid  wasps,  N.  vitripennis is  mostly 

monandrous (Ridley, 1993, Gordh & DeBach, 1978), but double matings have been 

recorded in the wild (4% Grillenberger et al., 2008) and the lab (3% Grant et al., 

1980; 53% Holmes, 1974; 8.8% Chapter 2) resulting in mixed-paternity broods. It 

has  also  been  shown  that  polyandry  will  evolve  under  lab  conditions  (Burton-

Chellew et al., 2007a), and has a heritable genetic component (Shuker et al., 2007a).
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While the existence of polyandry in N. vitripennis is well established, the costs and 

benefits to males and females of polyandry are less well  investigated. Female  N. 

vitripennis could benefit from multiple matings by increasing their sperm resources. 

Sperm-limitation is known to be a problem in many parasitoid species including N. 

vitripennis (Chapter  4,  Beukeboom & Werren,  2000,  Grillenberger  et  al.,  2008), 

however there is no evidence that females with low sperm resources are more likely 

to mate again, since sperm-depleted males successfully switch-off female receptivity 

(van  den  Assem  &  Visser,  1976,  Barrass,  1964).  Alternatively,  the  multiple 

cytoplasmic factors that can cause incompatibility between males and females in N. 

vitripennis add  to  the  potential  benefits  of  multiple  mates  (Breeuwer  & Werren, 

1995, Bordenstein et al., 2001, Beukeboom & Werren, 1993). In terms of costs of re-

mating, a preliminary investigation into sexual conflict in Nasonia species failed to 

find a survival cost to mating (Geuverink et al., 2009). While female re-mating is at a 

low frequency in  N. vitripennis, males nonetheless have some incentive to protect 

their paternity, and as such we might expect to find adaptations in males to reduce 

female re-mating. The pattern we see may be the result of successful and pervasive 

male defensive sperm competition adaptations.

Adaptations  for the prevention  of female re-mating have been observed in  many 

hymenopteran  species  (reviewed in  Chapter  6  &  Kraaijeveld,  2009).  In  Nasonia 

vitripennis,  males  initially  court  females  after  mounting,  performing  a  series  of 

“head-nod” displays while positioned over the female's head and antennae, releasing 

pheromones from their mouthparts (van den Assem et al., 1981, van den Assem et al., 
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1980).  After  successfully  copulating,  the  male  N.  vitripennis moves  back to  this 

initial courtship position over the female's antennae and performs another series of 

head-nod  cycles  (Whiting,  1967,  Barrass,  1960).  Behavioural  observations  and 

experiments that prevent it have suggested that this post-copulatory courtship is key 

to males preventing female re-mating and protecting paternity in Nasonia vitripennis 

(van  den  Assem  &  Visser,  1976).  Post-copulatory  courtship  has  also  been 

demonstrated to reduce female receptivity in several other parasitoid wasp species 

(King & Fischer, 2005, Gordh & DeBach, 1978, Allen et al., 1994, King & Fischer, 

2010) and the bee  Centris pallida (Alcock & Buchmann, 1985). Moreover, sperm-

depleted N. vitripennis males can successfully prevent females they have copulated 

with from re-mating,  suggesting that the presence of sperm is  unlikely to be the 

signal (van den Assem & Visser, 1976, Barrass, 1964), although we know little about 

depletion or otherwise of other ejaculate components in Nasonia that may influence 

receptivity  (Gillott,  2003).  The  reduction  of  post-mating  receptivity  has  some 

species-specificity  within  the  Nasonia genus:  conspecific  males  were  better  at 

preventing female re-mating than heterospecific males for  N. giraulti females, but 

males  of  both  species  reduced  receptivity  with  equal  success  in  N.  vitripennis  

females (Geuverink et al., 2009).

In order to investigate the influence of differing durations of courtship components 

on the probability of a female re-mating, I screened nine genotypes of N. vitripennis 

for variation in female re-mating rate and recorded the natural courtship patterns of 

the first and second males with each female. Following previous work on the role of 
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post-copulatory courtship in Nasonia and other insects, I predict that the longer the 

post-copulatory courtship a female receives from her first mating, the less likely she 

is to take a second mate. Understanding the influence of courtship behaviours on 

female re-mating probability may shed light on the strategies employed by male N. 

vitripennis to gain and protect paternity.

Methods

Wasps and pre-treatment

My study species is Nasonia vitripennis (Hymenoptera: Pteromalidae), a gregarious 

parasitoid  of  large  dipteran  pupae  such  as  the  Calliphoridae  and  Sarcophagidae 

(Whiting,  1967).  The  host  species  for  stock  rearing  and  the  experiment  are 

Calliphora vicina pupae.  The wasps  were  cultured  at  25°C in  incubators  with  a 

16L:8D cycle throughout stock maintenance and experiments.

I used nine strains from the Cornell group used in Chapters 3 & 4, that were collected 

as iso-female lines from nest boxes in Cornell by Professor Leo Beukeboom, NY: 3, 

8, 12, 18, 19, 22, 23, 24 and 28. The experiment was performed in five blocks, to 

ensure  that  age  of  experimental  subjects  could  be  reliably  controlled.  Previous 

experiments have shown that polyandry can evolve in the lab (Burton-Chellew et al., 

2007a) and so in order to control for generation effects  within in each block, all 

wasps from all nine strains were drawn from the same lab generation (24, 28 and 30).
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To control for any maternal or host effects, I put the wasps through a preparatory 

generation. I took females that had spent two-days mating in a stock tube after adult 

emergence and isolated them in a 75×10mm glass tubes with cotton wool bungs. The 

isolated females were given a single host for 24 hours, which they feed on to gain 

protein to mature their eggs (Rivero & West, 2005). The host was replaced with a 

small piece of filter paper soaked in honey-water for the next 24 hours. I then gave 

the females one host to oviposit on for six hours. The female was removed from the 

tube and the parasitised hosts incubated for ten days.

In order to acquire virgins for the experiment I opened the hosts after these ten days 

and removed the  wasp pupae.  Two males  and two females  from each host  were 

isolated in fresh vials and I recorded the ID of their natal host in order to avoid 

brother-sister matings, and the use of two males or females from the same brood. The 

sexed wasp pupae were returned to the incubator until they eclosed as virgin adults 

four days later.

Behavioural Observations

Wasps had an hour on the lab bench to acclimatise before testing. Pairs were set up 

so that one-day-old virgin females were paired with a one-day-old virgin non-brother 

male from the same strain. The male and female were observed in a mating arena of 

a glass tube 50×10mm under a binocular dissecting microscope at ×20 magnification. 
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A clean glass tube and cotton wool bung was used for each observation. The pairs 

were  observed  until  they  had  copulated  and  the  male  dismounted,  or  until  ten 

minutes had passed. Genital contact was observed through the binocular dissecting 

microscope to confirm copulation. If a courtship was in progress at the end of the ten 

minutes, I allowed it to continue until the male had dismounted.

The  courtship  and  mating  behaviour  of  N.  vitripennis has  been  well  described 

(Barrass, 1961, van den Assem & Visser, 1976, van den Assem et al., 1981, van den 

Assem & Werren,  1994,  van  den  Assem & Vernel,  1979,  Jachmann & van  den 

Assem,  1996).  After  approaching  and  mounting  a  female,  the  male  begins  his 

courtship positioned over her antennae. He performs a series of stereotyped head nod 

cycles, each of which begins with a pheromone emission from his mouth-parts (van 

den Assem et al.,  1980, Ruther et  al.,  2010). The female drops her antennae and 

opens her abdomen to expose her genital pore, which is the signal of her receptivity 

to  the  male.  The  male  backs  up  the  female,  makes  genital  contact  and  the  pair 

copulate as he transfers his ejaculate. After copulation the male returns to his initial 

position over the female's antennae to perform another bout of courtship: the post-

copulatory courtship. The female will drop her antennae to signal receptivity again, 

only this time the male dismounts.
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While females of Nasonia are more likely to signal receptivity to con-specific than a 

male from another (Bordenstein et al., 2000), there is no evidence for pre-copulatory 

female choice within species (e.g. Shuker et al., 2006c, & see results).

I recorded the time that the following events occurred in seconds after the male and 

female were introduced into the mating arena: mounting; the beginning of courtship; 

the beginning of copulation; the beginning of post-copulatory courtship; dismounting 

(Figure 5.1). Mounting and the onset of courtship occurred within 1s of each other, 

therefore I used a single time point. Courtship duration was used as a proxy for the 

number of head nod cycles a male performs (van den Assem & Visser, 1976, van den 

Assem et al., 1981). If a courtship bout was in progress at the end of the ten minutes,  

I observed them until the male dismounted. Repeated bouts of courtship not resulting 

in copulation were allowed and recorded. 

The females that mated on day one were given another male 24 hours later, for the 

second test. The second male is a two-day-old virgin male that is neither the brother 

of  the  female  nor  her  previous  mate.  On the  second test  I  carried  out  the  same 

observation protocol as the previous day.

A total of 256 females were tested over five blocks, by three experimenters. Each 

experimenter had a random sub-sample of the wasps for testing that block. Each 
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female wasp was observed by the same experimenter for both tests. The number of 

replicates per strain tested ranged from 19 to 36, with a mean of 31.67 (SE = 7.91). 

Of the 256 females tested, only 200 were included in the analysis. Nine females died 

between the first and second trial. Eighteen females did not mate on the first trial:  

thirteen of which were courted but never signalled receptivity, the remaining five 

were never courted by a male.  This shows the low pre-copulation rejection rate of N. 

vitripennis females. Two females were injured during transfer into the trial arena on 

the second day. Twenty-seven females were not courted by the male on the second 

trial. The number of females included in the analysis per strain ranged from 9 to 36, 

with a mean of 22.22 (SE = 7.71) females per strain.

Analysis

The behavioural observations allowed us to calculate the following traits of interest 

across  the two trials:  latency to  mount  (s);  pre-copulatory courtship duration (s); 

copulation  duration  (s);  post-copulatory  courtship  duration  (s);  and  number  of 

courtship bouts (see Figure 5.1).

Initial inspection of the data detected one female (from strain COR19 in the fifth 

block) as a potential outlier as she received 114 seconds of pre-copulatory courtship 

on trial one. When all the analyses described below were repeated with the potential 
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outlier removed, the significance of none of the terms in none of the models was 

altered. Therefore, the analyses presented here include this data point.

On the second day males often mounted, courted and dismounted females several 

times without her signalling receptivity. Females also sometimes required more than 

one courtship bout before signalling receptivity.  As a result  of this,  the courtship 

measures  for  the  second  trial  are  pooled  into  a  “total  courtship”  measure  across 

multiple mounts. For both trials the variable “handling time” was also created as a 

measure of the total time it takes for a male to process a female in terms of the sum 

of pre-copulatory courtship, copulation, and post-copulatory courtship.

Differences between the duration of courtship components between the two trials 

were  investigated.  For  the  pre-copulatory  components  latency  to  mount,  pre-

copulatory courtship duration and bout number I used all the females in the analysis. 

Latency to mount was analysed in a Linear Mixed Effects (LME) model fitted using 

Maximum Likelihood (ML) methods after a square-root transformation. The fixed 

effects of trial (1 or 2) and if the female mated on the second trial (re-mating) were  

included  in  the  model,  along  with  the  random  effects  of  female  nested  within 

experimenter nested within strain nested within block. This same model was used for 

courtship duration, however courtship duration required a natural log transformation. 

The significance of each term was tested by Likelihood Ratio tests, comparing the 

full model to a model with the term of interest removed. The full model, fitted using 
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Restricted Maximum Likelihood methods (REML) was used for reporting parameter 

estimates. The number of courtship bouts used a generalised mixed effects model, 

with a poisson distribution. The fixed and random effects were the same as those 

described for the latency to mount and courtship duration models. The significance 

of model terms was tested using Chi Square tests on the change in deviance between 

the full model and one with the term of interest removed.

The difference in copulation duration and post-copulatory courtship between the two 

trials  was  analysed  using  only  the  111  females  that  mated  on  both  days.  The 

difference in copulation duration between trials was modelled using an LME with 

ML methods,  after  a  square-root  transformation.  The  fixed  effect  of  trial  was 

included in the model along with the same random effects as above. The same model 

was  fitted  for  post-copulatory  courtship  duration,  which  required  a  log-

transformation.  The significance  of  terms of  interest  and the parameter  estimates 

were calculated using the likelihood ratio test.

To test the variation in courtship components due to differences between the strains, I 

fitted models that contained just the random effects of female within experimenter 

within strain within block to each of the courtship components, using the subsets of 

data and transformations described above. In order to test  for the effect of strain 

without pseudoreplication I created a new random effect, strain-block, that generated 

a new factor level for each strain-block combination. Likelihood ratio tests or Chi 
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Square tests were then used to compare the model with the fully  nested random 

effects and that containing strain-block, as appropriate.

Whether or not a female re-mated, was modelled as a binomial trait in a generalised 

linear mixed effects model. The random effects of experimenter within strain within 

block were  included in  the  model,  along with  the  fixed effects  of  the  following 

courtship  components:  latency  to  mount  trial  one;  courtship  duration  trial  one; 

copulation duration trial one; post-copulatory courtship duration trial one; latency to 

mount trial two; courtship duration trial two. The significance of the random effect of 

strain  was  tested  using  the  creation  of  a  new  random  effect,  strain-block  as 

previously described.

Subsequent analyses generated new fixed effects. In order to test for the potential 

effect of the total courtship received on trial one, the sum of trial one courtship and 

post-copulatory  courtship  duration  was  fitted  instead  of  their  separate  effects. 

Handling time was also investigated, in this case the sum of courtship, copulation 

duration and post-copulatory courtship on the first day was fitted in place of their 

separate  effects.  The  same  random  effects  were  modelled  as  before,  and  the 

significance of terms of interest was tested using Chi-squared tests on the change in 

deviance  as  described  previously  on  ML  models.  All  statistical  analysis  was 

performed in R (Ihaka & Gentelman, 1996, R Development Core Team, 2008).
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Results

The average male took 83.3 (SE = 6.85) seconds to mount the female on her first 

trial.  After  14.46  (SE =  0.81)  seconds  of  courtship in  1.01  (SE = 0.007)  bouts, 

copulation occurred and took 15.83 (SE = 0.51) seconds and was followed by 16.36 

(SE =  0.72)  seconds  of  post-copulatory  courtship.  On  the  second  trial  the  male 

mounted the female after 113.34 (SE = 7.23) seconds, and performed 89.73 (SE = 

5.84) seconds of courtship in 2.03 (SE = 0.12) bouts. Overall 55.45% of females 

mated again on the second trial. Of those that did mate, the mean copulation duration 

was 16.04 (SE = 0.33) seconds, and the post-copulatory courtship duration was 20.66 

(SE = 4.19) seconds.

There were a number of differences in courtship and copulation behaviour between 

the two trials. First, males took longer to mount females in the second trial (Latency 

to mount on trial one = 83.34 (SE = 6.85) seconds, trial two = 113.34 (SE = 7.23) 

seconds; LR test, L.Ratio = 12.09, p = 0.0005). Whether or not a female re-mated in 

trial two was not associated with latency to mount (L.Ratio = 0.76,  p  = 0.38), and 

this did not differ across the two trials (L.Ratio = 1.48, p = 0.22).

Second, pre-copulatory courtship duration was significantly longer in the second trial 

(LR test, L.Ratio = 339.3,  p < 0.0001). Females that re-mated in trial two received 

less pre-copulation courtship in both trials than those that did not re-mate (L.Ratio = 

9.92, p = 0.0016) (Figure 5.2). There was a significant interaction between re-mating 
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and trial:  the increase in pre-copulatory courtship on trial two was higher for the 

females that did not re-mate (L.Ratio = 55.58, p < 0.0001) (Figure 5.2).

Similarly, there were fewer bouts of pre-copulatory courtship on the first trial (Chi 

Sq test = 104.3, p < 0.0001) and for females that re-mated in trial two (Chi Sq test = 

11.45, p = 0.0007). All females regardless of re-mating received similar number of 

courtship  bouts  during  trial  one  (Figure  5.3),  leading  to  significant  interaction 

between re-mating status and trial (Chi Sq test = 34.99, p < 0.0001). Therefore both 

the duration of pre-copulatory courtship and the number of bouts varied primarily 

due to female willingness to mate in trial two.

In contrast, copulation duration and post-copulatory courtship duration did not vary 

across trials one and two (Copulation duration: LR test, L.Ratio = 3.66,  p = 0.056; 

Post-copulatory courtship: L.Ratio = 0.006, p = 0.94).

Generally the nine strains did not differ much in their courtship behaviour. There was 

no significant variation among strains in latency to mount (LR test, L.Ratio = 2.4, p 

= 0.12), pre-copulatory courtship duration (L.Ratio < 0.001, p > 0.99), the number of 

courtship bouts (Chi Sq test < 0.001 p > 0.99) or post-copulatory courtship duration 

(LR test, L.Ratio = 1.83,  p  = 0.18). However the strains did significantly vary in 

terms of copulation duration (L.Ratio = 4.98, p = 0.03) (Figure 5.4). 
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Contrary to my prediction, female re-mating in trial two was not associated with the 

duration of post-copulatory in trial one (b = 0.01 ± 0.03, Chi Sq test = 0.16,  p = 

0.69). Similarly female re-mating was not associated with latency to mount on day 

one (b = 0.005 ± 0.003, Chi Sq test = 1.86, p = 0.17) or copulation duration in trial 

one  (b = -0.07 ± 0.06,  Chi  Sq test  = 1.57,  p =  0.21).  First,  the  longer  the  pre-

copulatory courtship in trial one and in trial two the less likely a female was re-mate 

(trial one: b = -0.13 ± 0.05, Chi Sq test  = 9.71, p = 0.0018; trial two b = -0.064 ± 

0.011, Chi Sq test  = 98.61,  p <  0.0001) (Figure 5.5).  The pattern in trial  two is 

probably due to males continuing to mount unreceptive females for longer in this 

trial. Second, females that re-mated were mounted more rapidly in trial two (latency 

to mount in trial two: b = -0.014 ± 0.004, Chi Sq test = 16.61, p < 0.0001) (Figure 

5.6). There was also significant among-strain variance in polyandry (ranging from 

less that 10% to 100% of females re-mating; Chi Sq test = 12.26, p = 0.0004) (Figure 

5.7).

Using the sum of courtship from trial one paints a similar picture. The sum of pre- 

and post-copulatory courtship a female received on the first trial was significantly 

associated with female re-mating in the second trial: the less courtship needed in the 

first trial, the more likely a female was to be polyandrous (b = -0.051 ± 0.020, Chi Sq 

test  =  9.66, p  = 0.0019) (Figure 5.8). In this model, latency to mount in trial two 

remained significant (b = -0.010 ± 0.0028, Chi Sq test = 16.85, p < 0.0001), as did 

pre-copulatory courtship duration in the second trial (b = -0.049 ± 0.008, Chi Sq test 

= 98.97, p < 0.0001). Latency to mount and copulation duration in the first trial were 
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again not significantly associated with female re-mating (Latency to mount Chi Sq 

test = 1.82, p = 0.18; Copulation duration Chi Sq test = 1.47 p = 0.23).

Handling time was not associated with female re-mating however  (Chi  Sq test  = 

3.39, p = 0.065). As with previous analyses, the latency to mount on the first trial was 

not significant (Chi Sq test = 1.24, p = 0.28), but the latency to mount on the second 

trial (b = -0.011 ± 0.003, Chi Sq test = 12.17,  p = 0.0005) and the pre-copulation 

courtship on the second trial were significantly associated with re-mating (b = -0.057 

± 0.010, Chi Sq test = 99.59, p < 0.0001).

Discussion

Males  in  many species  influence the  patterns  of  future female  receptivity  during 

mating, either through their behaviour or the production of pheromones or molecules 

in their  ejaculates  (Gillott,  2003, Eberhard, 1996, Chapman et al.,  1995, Wolfner, 

2002, Moore et  al.,  2003). In  Nasonia vitripennis previous studies suggested that 

male  post-copulatory  courtship  is  a  signal  associated  with  female  moving  from 

receptivity (van den Assem & Visser, 1976). Here I explored whether variation in the 

duration  of  post-copulatory  courtship  was  associated  with  female  re-mating  rate, 

using nine iso-female strains of wasps from the same Cornell population. I found 

among-strain  variation  in  the  proportion  of  females  re-mating.  This  confirms 

previous evidence for genetic variation in this trait in what is a mostly monandrous 

species  (Shuker et al., 2007a, Burton-Chellew et al., 2007a). The amount of post-
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copulatory courtship a female received after her first mating did not influence the 

probability  of  her  mating  again,  contrary  to  my  prediction.  Other  courtship 

components did correlate with female re-mating: females that signalled receptivity 

earlier in their first trial were also more likely to mate in their second trial. Similarly,  

the females that were mounted and courted more rapidly in their second trial were 

also the females more likely to be receptive and re-mate. These observations suggest 

two  things.  First,  initial  receptivity  may be  correlated  with  the  propensity  to  be 

polyandrous,  perhaps  through an  overall  higher  level  of  receptivity,  suggesting  a 

shared underlying mechanism. Second, unreceptive females may be less attractive, or 

better at avoiding males in subsequent encounters, leading to a longer latency to be 

mounted and courted. Unsurprisingly, pre-copulatory courtship in the second trial is 

associated with re-mating by females, as males fruitlessly keep courting unreceptive 

females for longer than males able to mate with their polyandrous partners. 

Although post-copulatory courtship has previously been shown to switch-off female 

receptivity in  Nasonia vitripennis  (van den Assem & Visser, 1976), my study was 

unable to link the length of that post-copulatory courtship with female polyandry. 

There is, however an important difference between my study and that of (van den 

Assem & Visser, 1976): I measured variation in post-copulatory courtship, where as 

van den Assem & Visser (1976) prevented post-copulatory courtship by removing the 

male as soon as genital contact was broken. Therefore, it might be that the presence 

of some small amount of post-copulatory courtship is crucial, and most of the males 

in  my study provided that  threshold  amount  and so  successfully  reduced female 
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receptivity. This does leave unanswered questions as to why males provide more than 

some  threshold  level  of  post-copulatory  courtship.  It  might  be  that  given  the 

generally  low  levels  of  polyandry  in  the  wild  (perhaps  associated  with  limited 

encounters with males once females have dispersed from the natal patch) there is 

rather weak selection on male post-copulatory courtship. However, it may be that 

duration per se does not capture the important aspects of this interaction: males may 

remain with a female not necessarily because they need more courtship to become 

unreceptive, but instead stay with females until that behavioural switch has taken 

place (signalled by females with their second lowering of their antennae). In this way 

it  may represent  post-copulatory guarding.  As such the length of  post-copulatory 

courtship may be as much driven by females as males. The timings and changes in 

female gene expression associated with the switch from receptivity to unreceptivity 

are currently under investigation.

My data on latency to  mount and court  in  the second trial  suggests that perhaps 

females on the second trial are less attractive because they are one day older or no 

longer virgins, supporting previous studies with N. vitripennis (Jachmann & van den 

Assem, 1996, Leonard & Boake, 2008). Contact with a male can render a female 

unattractive through changes in her odour in several other insect species (King & 

Fischer, 2005, Ayasse et al., 2001). If such a pheromonal tag exists, it could build up 

with time spent  in  contact  with a  male,  in  which case those females  courted for 

longer should smell less attractive, and so the male would take longer to mount the 

female.  The  female  sex  pheromone  is  already  characterised  and  known  to  be 
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attractive to males (Steiner et al., 2006). Olfactory experiments could test this, using 

a  bioassay to  compare the attractiveness of females that have been courted only, 

courted and copulated, and those that were courted, copulated, and received post-

copulatory courtship.

In my experiment, even the females that did re-mate in their second trial required 

more  pre-copulatory  courtship  than  virgin  females  through  both  increased  bout 

numbers and bout durations (Figures 5.2 & 5.3), in line with the findings of Leonard 

& Boake (2008). This result is contrary to that of van den Assem & Visser (1976) 

who found that N. vitripennis males spent less time courting non-virgin females. This 

suggests that females do experience a drop in receptivity after mating, even those 

that do re-mate. My finding here is consistent with patterns found in other parasitoid 

wasps.  For  instance,  mated female  Dinarmus basalis  required  more  courtship on 

their second mating (Chevrier & Bressac, 2002), and males of the parasitoid wasp 

Aphytis melinus will persistently court a mated un-receptive female, suggesting that 

he cannot detect her mated status (Allen et al., 1994).

While the associations between latency to mount and pre-copulatory courtship in the 

second trial and re-mating appears to be a consequence of female reduced receptivity,  

the influence of pre-copulatory courtship during the first trial could affect female re-

mating rate. The longer a female is courted on the first trial the less likely she is to  

re-mate (Figure 5.5), consistent with previous findings in N. vitripennis (Leonard & 

- 169 -



Boake,  2008).  Leonard  and  Boake  (2008) hypothesised  that  the  increased  pre-

copulatory courtship of the first male increases the amount of time the second male 

has to court  to induce receptivity.  While  I  cannot determine the causality of this 

relationship from my experiment, there are several hints that this may not be case. 

We know that females who have been courted but not copulated are still receptive to 

mating more than 24 hours later, suggesting pre-copulatory courtship does not play a 

role  in  switching-off  receptivity  (van den Assem & Visser,  1976).  Pre-copulatory 

courtship  does  influence  some  post-mating  responses,  for  instance  by  reducing 

female attraction to the male sex-attractant pheromone  (Ruther et al.,  2010). It  is 

possible  that  longer  courtship reduces  the  probability  of  a  female  re-mating,  but 

perhaps it is most likely that females who are less likely to re-mate the second day 

(i.e. generally have lower receptivity) require more courtship on the first day, as I 

observed (Figure 5.2).

In addition to among-strain variance in polyandry, I also observed significant among-

strain variation in copulation duration. This finding may be relevant to insemination 

ability and sperm limitation because copulation duration has been used as an assay 

for  the  amount  of  sperm a  female  receives  in  several  species,  but  has  yet  to  be 

explicitly tested in parasitoids. Copulation duration and ejaculate transfer may not 

simply correlate with the number of sperm, but also the amount of seminal fluid. 

Seminal fluid has been suggested to be associated with other potential manipulations 

of  female physiology and behaviour  as well  receptivity  (Gillott,  2003, Chapman, 

2001). For instance, Nasonia vitripennis is predicted to be in sexual conflict over sex 
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allocation: females are selected to follow the predictions of Local Mate Competition, 

whereas due to their haplodiploidy, males are only related to the daughters, not the 

sons in the brood and so gain more fitness from an all-female brood (Appendix 1: 

Shuker et al., 2009). Male N. vitripennis have been shown to influence sex allocation 

behaviour of the female they mate and one possible (although currently untested) 

mechanism is through components of the ejaculate (Shuker et al., 2006c).

In this study I have found further evidence of genetic variation in the probability that 

a female will re-mate. Variation in the amount of post-copulatory courtship was not 

associated with re-mating, despite previous studies which prevented post-copulatory 

courtship  suggesting  it  was  key  to  switching off  female-receptivity.  Here  I  have 

proposed that females have different overall receptivities, and that those that have 

lower  receptivity  in  general  require  more  pre-copulatory  courtship  on  their  first 

mating,  and  are  then  less  likely  to  re-mate.  This  suggests  that  post-copulatory 

courtship may still be a defensive adaptation to sperm-competition, however my data 

provide no explanation for the variance in this trait. My data also hint that males can 

discriminate between virgin and mated females using olfactory cues which warrant 

further study.  The mechanisms of the receptivity-switch in  Nasonia are  currently 

being  studied  at  the  gene-expression  level  (R.  Watt  and  D.M.  Shuker  personal 

communication), which may provide more insights into the role of post-copulatory 

courtship as a defensive adaptation against sperm-competition.
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Figure 5.1: The pathway of copulation components in Nasonia vitripennis. The grey boxes show the 
courtship components measured in the experiments. Arrows pointing up from this time line show the 
criteria  used  to  break  the  copulation  into  the  four  components.  Arrows  pointing  downwards 
demonstrate how there can be several bouts of courtship before copulation, or indeed no copulation at 
all.
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Figure 5.2: The interaction between courtship duration by trial day and re-mating on the second trial. 
Error bars are ± one standard error. Polyandrous females who mated on the second day are white bars, 
whereas those females that did not mate on the second day are in the grey bars.
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Figure 5.3: Number of courtship bouts varies across the two trials and whether or not the females re-
mates. Error bars are ± one standard error. Grey bars represent females that did not mate on the second  
trial, whereas white bars represent those females that did mate on the second trial. 
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Figure 5.4: The variation in copulation duration from the first trial between the nine iso-female strains.  
Error bars are ± one standard error of the mean.
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Figure 5.5: The length of pre-copulatory courtship a female receives during the first trial decreases her  
probability of mating on the second trial. The line is the logistic regression. The box and whisker plots 
show  the  distribution  of  the  data  points  for  females  that  did  re-mate  on  the  second  trial
(upper plot) and those that did not (lower plot). The box shows the range of the first and third quartile, 
with the median marked as a bar. The ends of the whiskers represent the full range of observations, 
excluding the female that received 114s of courtship.
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Figure  5.6: Polyandrous  females  are  mounted  sooner  in  the  second trial.  The  line  is  the  logistic  
regression. The box and whisker plots show the distribution of the data points for females that did re-
mate on the second trial (upper plot) and those that did not (lower plot). The box shows the range of 
the first and third quartile, with the median marked as a bar. The ends of the whiskers represent the  
full range of observations.
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Figure 5.7: There is significant among strain variation in polyandry.
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Figure 5.8: Polyandrous females receive less pre- and post-copulatory courtship in total than females 
that do not re-mate. The line is the logistic regression. The box and whisker plots show the distribution 
of the data points for females that did re-mate on the second trial (upper plot) and those that did not  
(lower plot). The box shows the range of the first and third quartile, with the median marked as a bar.  
The ends of the whiskers represent the full range of observations, excluding the female that received 
114s of courtship.
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6. Sexual conflict in the Hymenoptera: an order of 
haplodiploid insects

A version of this chapter is being prepared for submission to Biological Reviews. The authorship will 

be Anna M. Moynihan and David M. Shuker.



Abstract

Sexual  conflict  arises from differences  in  the evolutionary interests  of males and 

females, and therefore characterises reproductive interactions between the two sexes. 

The genetics of sexual conflict are usually modelled in diploid organisms, but in this 

review,  I  focus  on  sexual  conflict  in  the  Hymenoptera,  an  order  of  insects  with 

haplodiploid  genetics  containing  the  ants,  bees  and  wasps.  In  species  with 

haplodiploidy, diploid females develop from fertilised eggs and haploid males from 

unfertilised  eggs.  Although  haplodiploidy  does  not  predict  more  or  less  conflict 

overall  then diploidy,  the  literature  suggests that  genetic  details  do matter  to  the 

precise predictions of sexual conflict models. I examine this literature in the present 

review. Future research should continue to exploit this extensive knowledge of the 

reproductive biology of Hymenoptera and the newly sequenced genomes to extend 

our understanding of sexually antagonistic coevolution by parameterising and testing 

the predictions of the population genetic models.

Keywords: haplodiploidy, sexual conflict, arrhenotoky, sperm competition, mating, 

sexual dimorphism, sex allocation.
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Sexual Conflict

Sexual conflict arises when females and males have different optima for one or more 

traits  (Parker, 1979, Chapman et al., 2003). This is predicted to occur frequently as 

natural and sexual selection have acted on males and females to maximise their own 

individual fitness, which can come at the expense of their mate's fitness, especially if 

they are unrelated. The sexes can be in conflict over any trait, from morphologies 

such  as  limb  length  to  more  derived  traits  like  offspring  sex  ratio  and  genital 

morphology. While  it  is  now  widely  recognised  as  a  phenomenon  that  can 

potentially  affect  any  trait,  research  on  sexual  conflict  usually  focuses  on 

reproductive behaviours and decisions. As a result of this research, sexual conflict is 

thought  to  be  an  important  component  of  reproductive  behaviour  in  sexually 

reproducing species (Arnqvist & Rowe, 2005).

Sexual  conflict  can  drive  evolutionary  change  through  sexually  antagonistic 

coevolution  (Arnqvist  &  Rowe,  2005).  It  arises  from  conflicting  sex-specific 

selection  pressures  on  each  sex  for  a  particular  trait.  If  an  allele  in  one  sex  is 

successful in this, that sex moves the value of the trait in conflict further away from 

the optimum of the other sex. This leads to an arms race between the sexes through 

sexually antagonistic coevolution. One of the biggest impacts on the extent to which 

traits  are  able  to  evolve along sex-specific  trajectories  in  such arms races  is  the 

genetic  basis  of  the  trait.  This  is  encapsulated  in  the  literature  as  the  distinction 
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between intra- and inter-locus sexual conflict, on traits that are based at single- or 

multiple loci respectively.

Intra-locus conflicts occur when males and females have different optima for a trait 

they both express, whereas inter-locus conflicts occur when the traits involved in the 

conflict are controlled by many loci. Of course, most traits will  be influenced by 

many loci, but this device is still useful. Intra-locus conflict include those over shared 

morphological traits, for example hip-width in humans (Rice & Chippindale, 2001). 

Narrower hips are advantageous for increased bipedal mobility, whereas the risk of 

death in childbirth selects for wider hips in females (Rice & Chippindale, 2001). In 

contrast  inter-locus conflicts include the grasping traits  males in the water strider 

genus  Gerris  need  in  order  to  grab  hold  of  females,  and the  anti-grasping traits 

females have to limit this (Arnqvist & Rowe, 2002). Males in some Gerris  species 

have  evolved grasping adaptations  that  include  the  elongation  of  the  genital  and 

pregenital segments of the abdomen to assist them in grabbing a female to copulate, 

whereas females have evolve erect abdominal spines and a genital tip that makes the 

females less accessible (Arnqvist, 1989, Arnqvist & Rowe, 1995, Arnqvist & Rowe, 

2002).  Intra-  and  inter-locus  conflict  are  resolved  at  the  genetic  level  through 

different mechanisms. It is important to note that resolution does not mean that the 

potential for sexual conflict is necessarily removed, simply that the expression of the 

conflict is reduced (see Chapman, 2006).
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Intra-locus conflict over the value of a trait at a single locus can be resolved through 

several  routes:  a  mutation that  leads  to  duplication and sex-limited expression,  a 

modifier  that  alters  the  effect  of  the  allele  in  each  sex,  or  sex-linkage  (Rice  & 

Chippindale, 2001). It is through these mechanisms of sexual conflict resolution that 

the sexual-dimorphism in many animals and plants is thought to have evolved (Cox 

& Calsbek, 2009). Until the conflict is resolved at the genomic level in this way, 

polymorphism at the loci under conflict will be maintained, leading to a persistence 

of the conflict itself (Rice & Chippindale, 2001).

Inter-locus  conflicts  can  be  resolved  by  a  mutation  at  a  different  locus  to  those 

causing conflict (Chapman, 2006). For example, a mutation could make a female less 

sensitive to  a  signal  trait  expressed  by males  to  manipulate  her  into sub-optimal 

mating  (Rowe et  al.,  2005).  Alternatively,  under  monogamous  conditions,  males 

could evolve to harm their  mates less (Holland & Rice,  1999),  or females could 

evolve resistance to the mating costs imposed by males (Wigby & Chapman, 2004). 

In order for a new trait to resolve the conflict in this way, linkage disequilibrium 

must evolve with the alleles at the other loci involved in the conflict (Chapman et al.,  

2003, Cameron et al., 2003).

In this review I consider sexually antagonistic evolution in the Hymenoptera. I take 

the Hymenoptera as a case study for four main reasons. First, the asymmetric genetic 

system of haplodiploidy (also called arrhenotoky) possessed by all Hymenoptera has 
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created the basis for many new conflicts. Indeed, there has been recent interest in 

how genetic system and ecological circumstances interact to affect genetic conflict 

(Appendix 1: Shuker et al., 2009, Ross et al., 2010). Second, the Hymenoptera have a 

wide range of life-histories and ecologies, which have inspired much empirical work. 

Third, the wealth of sexual dimorphism and sexual conflict already identified and 

studied across  the Hymenoptera,  in  particular the intensive  study of  the  eusocial 

Hymenoptera, provides an ample resource for study. Finally, the key limitation of 

nearly all studies of sexual conflict is the lack of empirical evidence for the shape of 

the fitness surfaces of a given trait for males and females. I also suffer from this 

problem. However, the biology of the Hymenoptera do suggest some novel costs and 

benefits underlying otherwise familiar sexual conflicts that may facilitate progress on 

the more general issues. 

Now that I have outlined the basics of sexual conflict theory, in the rest of this review 

I  will  describe the biology of the Hymenoptera.  I  will  discuss how their  genetic 

system  of  haplodiploidy  is  predicted  to  alter  the  genetics  of  sexual  conflict 

resolution, and with those predictions in mind,  I will review the evidence for sexual 

conflicts  in  the  Hymenoptera  by  following  the  life-cycle.  Finally  I  will  discuss 

promising areas for future research.
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The Hymenoptera

The Hymenoptera are an insect order consisting of the Symphyta (the sawflies) and 

the Apocrita (the ants, bees and wasps). With over 100,000 described species, the 

Hymenoptera is one of the larger insect orders (Stubblefield & Seger, 1994). Among 

this diversity are economically important insects, including the sawfly pests, and the 

ants  which  are  major  drivers  of  ecological  community  function.  The  value  of 

pollinating bees including domesticated bees is estimated to be worth $17.67 billion 

to the USA alone (Losey & Vaughan, 2006, Morse & Calerdone, 2000), and native 

parasitic  wasps,  which control  population densities of  many insect pests  have an 

estimated value $13.6 billion to the USA (Losey & Vaughan, 2006). Another study 

found that  $20 billion of crop loss  is  prevented in the USA by parasitoid wasps 

(Gadau et al., 2008).

The economic impact  of  the  Hymenoptera  has  inspired  much research.  The vast 

sexual dimorphism observed in the Hymenoptera suggests an evolutionary past rich 

in sexually antagonistic evolution. Male and female Hymenoptera lead very different 

lives,  especially  as  adults  (reviewed  by  Stubblefield  &  Seger,  1994).  Generally, 

females mate in early adult life and then find food resources for themselves and their 

offspring,  either  laying  eggs  on  that  resource,  or  retrieving  it  to  a  nest  they 

constructed.  This  nest  may  be  a  social  environment.  Indeed,  many  of  the  most 

famous hymenopterans are social, ranging from colonial nesters to the eusocial ants, 

bees and wasps with sterile castes of female workers. In contrast to these long, often 
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complex lives of adult females, males typically lead shorter adult lives. Males often 

compete with other males for matings often under extreme violence, and then play no  

role in parental care. 

Despite  being  able  to  draw  a  general  picture  of  the  lives  of  male  and  female 

Hymenoptera, there are a wide-range of life-histories and ecologies represented in 

this  group.  The  most  obvious  division  is  that  between the  social  and non-social 

species, however there is great diversity even within those groups. The social species 

vary  from communal  nesters  through to  the  eusocial  species  with  sterile  worker 

castes.  Social  species  include  herbivorous  bees  collecting  nectar  and  pollen, 

carnivorous wasps, and ants which farm aphids or even fungus. Within the non-social 

species there are the solitary pollinating bees, parasitoid wasps which lay their eggs 

on other arthropods, and mason wasps which are solitary nest builders. 

The  Hymenoptera  may  differ  greatly  between  species  in  life-history,  and  within 

species across castes and sexes, but they are unified by the final important aspect of 

their  biology:  their  haplodiploidy.  The  typical  pattern  of  haplodiploidy  in  the 

Hymenoptera is that females develop from fertilised eggs as diploids, and males from 

unfertilised  eggs  as  haploids.  This  has  impacts  the  biology  of  the  species,  most 

clearly through the relatedness asymmetries that arise (Figure 1.2), but also through 

changes in the nature of selection. 
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In the next section I will discuss the implication of haplodiploidy for sexual conflict 

resolution,  before continuing on to explore the evidence for such conflicts in the 

Hymenoptera.

Sexual conflict resolution in haplodiploids

Most of the theoretical work on sexually antagonistic coevolution is modelled in a 

diploid system, where each individual has two copies of the same chromosome, one 

inherited from each parent (e.g.  Rice & Chippindale, 2001, Chapman et al., 2003). 

Haplodiploidy is characterised by haploid males developing from unfertilised eggs, 

and diploid  females  developing from fertilised eggs.  However,  depending on the 

species,  the sex determination mechanism itself  can be based on zygosity,  or the 

ploidy of one or more sex-determining loci (single, or multi-loci Complimentary Sex 

Determination) (Cook & Crozier, 1995). Haplodiploidy itself may be a consequence 

of past sexual conflict. Sex determination mechanisms are thought to have evolved 

under  conflict  between  entities:  cyto-nuclear  conflict,  sexual  conflict,  parent-

offspring  conflict,  sex  chromosome  and  B-chromosome  drive  (Werren  & 

Beukeboom,  1998).  Genetic  conflict  is  the  main  culprit  for  the  evolution  of 

haplodiploidy  (Normark, 2004 & 2006). Paternal genome elimination is thought to 

be a precursor to haplodiploidy (Brown, 1964, Bull, 1979). Brown (1964) and Bull 

(1979) showed that maternal  genes which eliminate  the paternal  genome gain an 

advantage through increased transmission in the next generation because there is no 

reduction  in  meiosis  through  their  haploid  sons.  This  maternal  advantage  of  the 

- 189 -



elimination of the paternal genome only holds if the fitness of a haploid son is at 

least half that of a diploid son. 

Not only is haplodiploidy a consequence of past sexual conflict, but it also alters the 

circumstances under which sexual selection and sexually antagonistic coevolution 

will occur. The study of the genetics of sex conflict in haplodiploids can draw on the 

literature considering diploids if we think of all haploid chromosomes as analogous 

to  the  X-chromosome  in  diploids  with  male  heterogameity  (Kraaijeveld,  2009). 

Diploid heterogametic males have only one copy of the X-chromosome which does 

not recombine with the Y so they are hemizygous for the X, just  as haplodiploid 

males are hemizygous for all chromosomes. Several studies have modelled the fate 

of X-linked loci in diploids, and so can be interpreted as models for haplodiploids too 

(for example see Hartl, 1971, Hedrick & Parker, 1997, Crow & Kimura, 1970, Hartl, 

1972,  Brückner,  1978,  Lester  & Selander,  1979,  Pamilo,  1979,  Curtsinger,  1980, 

Avery,  1984,  Owen,  1986,  Werren  &  Beukeboom,  1993,  Liu  &  Smith,  2000, 

Hedrick, 2007). 

Population  genetic  models  of  the  resolution  of  sexual  conflict  have  to  take  into 

account  several  changes when considering haplodiploids.  First,  as  a  result  of the 

male hemizygosity, all expressed alleles are effectively dominant in males. Second, 

alleles  do  not  spend  an  equal  amount  of  time  in  male  and  female  genetic 

backgrounds: at a population sex ratio of 0.5, an allele spends two-thirds of its time 
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in  females,  and  a  third  in  males.  This  has  important  consequences  for  effective 

population size.  Third,  a  gene involved in  male  function always finds itself  in  a 

female  in  the  next  generation.  This  is  in  contrast  to  diploid  systems,  where  sex 

chromosomes are a common method of sex determination. As a result, genes that 

have  sex-specific  function  in  diploids  can  lie  on  a  sex  chromosome  in  the 

heterogametic sex, but this is not possible for haplodiploids. 

These consequences of haplodiploidy to population genetic models of the resolution 

of sexually antagonistic coevolution apply to both intra- and inter-locus conflicts. 

Inter-locus conflicts are modelled through multi-loci population genetics, although 

there have been few attempts for haplodiploids so far (but see Owen, 1988, and Liu 

& Smith, 2000).  An allele in a male that reduces the fitness of his mate can go to 

fixation faster in haplodiploids than a diploid autosome, because it spends less time 

exposed to selection in the haploid males (Andrés & Morrow, 2003). Further, the 

epistasis  required  to  maintain  linkage  disequilibrium between  two  alleles  is  less 

likely to occur in haplodiploids, due in part to the lack of recombination in haploid 

males  (Owen,  1988,  Andrés  &  Morrow,  2003,  Hedrick  &  Parker,  1997).  Such 

epistasis and linkage disequilibrium is needed to reduce the expression of a conflict 

(Chapman et  al.,  2003,  Cameron et  al.,  2003).  Therefore  resolution  is  slower  to 

evolve  for  inter-locus  conflicts  on  haplodiploid  chromosomes  than  diploid 

autosomes.
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Models  of  the  genetic  resolution  of  intra-locus  conflicts  for  haplodiploids  must 

compensate for the haploidy of the males. The mean fitness of males and females in a 

population  with  a  mean  sex  ratio  of  0.5  will  be  equal.  Therefore  we  have  to 

compensate for the fitness of hemizygous males expressing the same phenotype as 

heterozygous  females  (Hartl,  1972).  Depending  on  the  extent  of  this  dosage 

compensation,  there  could  be  less  scope  for  the  maintenance  of  polymorphisms 

(Lester & Selander, 1979), leading to a greater probability that a given intra-locus 

conflict will be resolved  (Curtsinger,  1980). One mechanism through which these 

intra-locus  conflicts  could  be  resolved  is  sex-limited  expression,  such  as  that 

observed in the wasp Vespula squamosa (Hoffman & Goodisman, 2007). There were 

52  expressed sequence tags (EST) that differed in expression level between sexes, 

castes and developmental stages in  V. squamosa, of which 4 out of 40 of the sex-

specific ESTs were expressed only in males (Hoffman & Goodisman, 2007). Haploid 

males can evolve faster then their diploid sisters due to the increased exposure of 

alleles to selection (Hartl, 1972). This has been supported by the finding that genes 

expressed only in males were less similar to known sequences than those expressed 

only in female Vespula squamosa (Hoffman & Goodisman, 2007). 

While there has been little modelling of haplodiploid population genetics, we can 

infer  that  intra-locus  sexual  conflict  will  be  resolved  quickly,  perhaps  favouring 

sexual dimorphism. Conversely, inter-locus sexual conflict will be resolved slower 

than for a diploid species, resulting in the maintenance of the conflict  for longer. 
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With  these  predictions  in  mind,  I  will  now  proceed  to  review  the  evidence  for 

expressed conflicts in the Hymenoptera.

Evidence for the expression of sexual conflict in the 

Hymenoptera

In my review of the evidence for the expression of sexual conflict, I will follow the 

life-cycle  of  the individuals,  to  show how pervasive  sexual  conflict  is.  Where to 

place the conflict in the life-cycle is of course somewhat arbitrary in many cases, 

however I hope to have made informative and helpful decisions in this regard. As I 

mentioned earlier, any trait can be the basis of sexual conflict if males and females 

have different optima, but there is a study bias towards traits involved in reproductive 

behaviours and decisions, which is reflected in the examples below.

Development 

There is great potential for sexual conflict over traits expressed during the pre-adult 

phase of an insect. Before they are adults, insects spend most of their time feeding to 

grow and develop, it is during this time that many life-history sexual conflicts arise. 

Life-history traits are a product of the allocation of resources to survival, growth and 

reproduction,  which  captures  the  basis  of  many  sexual  conflicts:  how  much 

individuals  invest  in  current  reproduction  compared  to  future  reproduction  with 

(potentially) a different mate  (Wedell et al., 2006). It is during the pre-adult period 
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that  the  sexual  dimorphism I  previously  mentioned will  develop,  resulting in  the 

myriad of differences between males and females we observe (Stubblefield & Seger, 

1994, Starr, 1984). 

Sex-specific morphological adaptations in females are observed for female-specific 

roles like nest building and provisioning. Nest building specialisations include the 

foretarsal rakes and pygidial plates found in some digger wasps to move the soil or 

sand (e.g.  the  solitary wasp  Tachysphex inconspicuus (Kurczewski  et  al.,  2010)). 

Prey capture and transport adaptations are also seen in many species of wasp (Evans, 

1962), and the pollen carrying hairs, called scopa, found on Megachilid bees are only 

found on females,  who use  them to  aid  nest  provisioning (Neff,  2008).  Another 

obvious difference between males and females is the presence of the ovipositor and 

the venom associated with it. The ovipositor has in some species diverged further and 

become a specialised sting in female Aculeates, where eggs no longer travel down 

the ovipositor but are deposited at the base (Stubblefield & Seger, 1994). 

In  contrast  to  female  nesting  and  provisioning  adaptations,  male  adaptations  are 

focused on acquiring mates. Solitary bees of the genus Nomia have expanded tibia to 

hold on to females during matings  (Wcislo et al., 1992), whereas the expansion of 

tibia in many Apoidea are thought to be sexually selected displays (Low & Wcislo, 

1992). Fighting adaptations are also present in many wasp species, for example the 

fig wasps, where males fight to the death for the privilege of mating the females 
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(Hamilton, 1979, Cook et al., 1997). The fig wasps have, like many Hymenoptera, 

also evolved winglessness in one of the sexes (Cook et al., 1997). 

Even after the growth and development of sex-specific adaptations are completed, 

the  timing  of  the  transition  to  adulthood  is  also  commonly  sexually  dimorphic. 

Protandry,  where  males  arrive  at  the  mating  arena  before  the  females,  is  most 

commonly recorded. This has been frequently observed in the parasitoid wasps and 

solitary bees (see “locating mates” below and Chapter 2) as well  as many social 

species (Bulmer, 1983). Protandry is not the rule however; protogyny (where females 

are ready to mate first) is also documented in social species, usually when the female 

reproductives  are  produced first  as  part  of  a  sex allocation strategy  (Strassmann, 

1984, Tsuchida & Suzuki, 2006, Beekman & van Stratum, 1998, Suzuki, 1986, Bull 

& Schwartz, 2001).

This short tour of sex differences in the Hymenoptera shows that there has been sex-

specific selection in evolutionary past of the Hymenoptera. The constraints imposed 

by  sharing  a  genome  have  not  prevented  the  evolution  of  these  very  different 

morphologies, life-histories and behaviours.

Mate location

Once adult, the focus is no longer on investing resources in growth and development, 

but  instead  spending  those  resources  on  reproduction  and  survival.  In  order  to 
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reproduce in the internally fertilising Hymenoptera you must first find a mate. 

In gregarious species, potential mates can be located at the natal site, and so mating 

at the emergence site is therefore commonly observed. This is especially common in 

gregarious parasitoid wasps, where the females will typically mate once and then 

disperse, possibly taking a second mate at a different location (reviewed by Ridley, 

1990). This can become quite extreme in some species where mating occurs within 

the host  puparium (Trichogramma papilionis  (Suzuki  & Hiehata,  1985);  Nasonia 

longicornis  & Nasonia giraulti  (Drapeau & Werren, 1999)). Males of the braconid 

wasp  Alabagrus texanus are solitary, and so do not become adults at  a natal  site 

surrounded by potential mates. However, A. texanus males can detect pupae that are 

about to emerge, but cannot discriminate the sex of the pupae. A swarm of males will 

locate  the  pupae  about  to  emerge  and  if  it  is  female  there  will  be  scramble 

competition  to  mate  with  it.  Females  disperse  soon afterwards,  having generally 

mated just once (Goh & Morse, 2010). While there is little information on the costs 

and benefits to each sex of searching for mates at emergence, it could pose a cost as 

it can remove the potential for female choice before copulation.

If the emergence time and location cannot be reliably predicted, it  may be that a 

resource needed by females can be located and defended. Some solitary bees are 

known to enter into convenience polyandry in order to gain access to a food source. 

Male Anthophora plumipes defend the food source of comfrey flowers (Symphytum 

orientale) with such vigour that females are forced into sub-optimal foraging in order 
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to avoid harassment (Stone, 1995). Similarly, Anthidium maculosum females receive 

enough sperm for full fertility from a single copulation, yet accept further matings 

after vigorous resistance in order to gain access to a food source (Alcock et al., 1977, 

Severinghaus  et  al.,  1981).  Females  of  the  alfalfa  leaf-cutting  bee  Megachile  

rotundata will  resist  mating with the males that harass them on the food source, 

despite this harassment resulting in a loss of female fecundity (Rossi et al., 2010). 

Similarly Osmia rufa bees also mate at the food source (Seidelmann, 1999), creating 

the potential for resource defence polygyny and the associated conflict over mating.

In contrast to the food-resource defence observed in the solitary bees, the males of 

many species form leks by aggregating on or over  an area that does not  contain 

essential  resources  for  females.  Inside  the  lek,  there  will  either  be  male-male 

aggression, or courtship of females  (Shelly & Whittier, 1997). There are four main 

hypotheses for the evolution of lekking, reviewed in Field et al., (2002) and Shelly & 

Whittier  (1997).  Predation  avoidance  capitalises  on  the  reduction  in  per  capita 

predation risk in a group. The hotspot hypothesis proposes that males cluster in areas 

where females are at higher density, but do not defend any resource a female needs. 

On the other hand, males are proposed to benefit from clustering around a super-

attractive male in the hotshot hypothesis. Finally, females could also prefer males in 

leks as it increased her opportunity to compare males. 
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Lekking has been observed in all of the major life-history groups of Hymenoptera: 

ants (e.g. Hölldobler, 1976); eusocial bees (e.g. O'Neill et al., 1991); eusocial wasps 

(e.g. Beani et al., 1992); non-social bees (e.g. Kimsey, 1980, Watmough, 1974); and 

non-social wasps (e.g. Kroiss et al., 2010, Alcock, 1975). The airborne mating flights 

of  Apis  mellifera (Strang,  1970,  Michener,  1974)  are  perhaps  the  best  known 

example of lekking in the Hymenoptera, and the ant Acromyrmex versicolor shows a 

lekking mating system where females  have been observed to  re-enter  the mating 

swarm to take additional mates (Reichardt & Wheeler, 1996). Males in the substrate-

based leks of the ant Nemka viduata can pick up wingless females and fly them to a 

secluded location for mating, suggesting there is little scope for female choice before 

mating (Tormos et al., 2010). Nevertheless, female N. viduata can still exert control 

in this situation, as they must exude their sting in order for mating to occur. 

Lekking may be so common in the social insects because it is the interest of the 

workers for their queen to mate only once. A worker in a colony with a singly-mated 

queen will have a higher average relatedness to the reproductives they raise (see the 

sperm usage section for further discussion). Workers have therefore been selected to 

reduce  the  number  of  mating  opportunities  for  their  queen,  which  has  perhaps 

contributed to the evolution of the short-mating window common to many eusocial 

hymenopterans (Couvillon et al., 2010, Boomsma, 2007, Strassmann, 2001). This is 

supported by observations in some ants that the workers control the timing of the 

mating-flights  for  their  queens  (Markl  et  al.,  1977,  Marikovsky,  1961).  Such  a 
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worker-enforced short mating time would enhance the advantages to lekking for a 

eusocial queen. 

In summary, the process of mate location therefore offers many opportunities for 

females to  enter  into sub-optimal  mating and therefore conflict,  by removing her 

opportunities for female choice.

Mating

The focus of research on sexual  conflict  is  often the mating interaction  itself,  in 

particular the number of mates each sex has. As such investigating the costs and 

benefits to multiple mating has been a major research focus.

The  costs  and  benefits  to  multiple  mating  are  well  investigated  in  the  eusocial 

Hymenoptera. There has been considerable interest in the benefits associated with 

greater colony genetic diversity through reduced parasite load and improved colony 

productivity (Table 6.1) (Keller & Reeve, 1994, Schmid-Hempel, 1994, Sherman et 

al., 1988, Kraus & Page, 1998). Notably, polyandry reduces the relatedness between 

colony  members,  which  has  important  fitness  consequences  for  the  queens  (see 

sperm usage section), so she benefits from multiple mating through many routes.
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As such, it  has been predicted that the costs  associated with multiple  mating are 

lower in the social insects (Bourke & Franks, 1995, Parker et al., 1993, Ratnieks, 

1990, Ratnieks & Boomsma, 1995). Despite this, longevity costs to polyandry and 

mating  have  been  observed  in  social  insects  (Table  6.2).  Another  form of  cost, 

sexually transmitted disease, is however unlikely to contribute to the costs of mating 

in social insects due to their long generation time, short copulation window and long-

term sperm-storage requirements (Boomsma et al., 2004). 

A significant component  of the cost to mating can be the duration of the mating 

encounter itself as males and females are more exposed to predation and unable to 

forage or perform other activities during this time. The short copulation window is 

also thought to reduce direct costs to mating, such as increased predation risk and 

lost foraging opportunities in social insects (Strassmann, 2001). In contrast to this 

generalisation, the bumble bee Bombus terrestris has a copulation duration of up to 

40  minutes  (Brown & Baer,  2005).  In  the  course  of  this  long  copulation  sperm 

transfer  is  relatively  quick,  but  30  minutes  are  needed  to  form  a  mating  plug 

(Duvoisin et  al.,  1999),  which generally  prevents further matings  in this  species. 

Additionally, the shorter the duration of a queen's first copulation, the more likely she 

is  to  re-mate  (Brown  et  al.,  2002).  This  could  be  due  to  two  factors:  shorter  

copulations could reflect fewer sperm cells being transferred and so females re-mate 

to top-up their sperm supply, or a shorter copulation could reflect a smaller dose of 

the  ejaculate  compounds known to  reduce  female  receptivity  (Baer et  al.,  2001). 

However,  there is  a positive relationship between copulation duration and female 
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mating frequency across four species of Bombus bees (Foster, 1992), which may be 

due to increased investment into mating plug transfer in the polyandrous species. 

This is directly against the prediction of Brown and Baer (2005) that mate guarding 

is  ineffective in polyandrous species,  so males should be selected to reduce their 

investment in individual matings.

Of the non-social species, there are fewer studies investigating the costs and benefits 

of  mating.  There  was  no  evidence  for  a  cost  to  polyandry  in  the  parasitoid 

Trichogramma evanescens; in  the  presence  of  hosts  females  with  multiple  mates 

lived longer (Jacob & Boivin, 2005). This is in contrast to species of parasitoid where 

mated, or multiply mated females have a shorter lifespan (Pteromalus cerealellae 

(Onagbola  et  al.,  2006);  Bathyplectes  curculionis  (Jacob  &  Evans,  2000); 

Trichogramma minutum (Li et al., 1993)). 

One of the sex determination mechanisms used by the Hymenoptera may contribute 

to the advantages of polyandry and indeed mate choice: many hymenopterans use 

single-locus  Complementary  Sex  Determination  (sl-CSD).  Here  individuals 

heterozygous at the locus become female, whereas individuals hemi- or homozygous 

at the locus become males. If a female and her mate share a CSD allele, only half of 

the subsequent fertilised eggs will become daughters; the other half will develop as 

sterile diploid males. This can introduce a huge cost to mating, especially for males 

(Cook & Crozier, 1995). As a result, reducing diploid male production is one of the 

hypothesised benefits to multiple matings for both males and females (Tarpy & Page, 
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2002). Despite this, there is little evidence that diploid male production poses a large 

cost to social species (Ratnieks, 1990, Pearcy et al., 2009). For the solitary wasp 

Cotesia glomerata however, which shows sl-CSD, polyandry may be the mechanism 

for avoiding inbreeding costs. Although female  C. glomerata do not avoid mating 

with  males  that  share  CSD  alleles,  disassortative  mating  arises  through  female 

dispersal and/or multiple mating instead, reducing the consequences of inbreeding 

(Ruf et al., 2010).

Similarly, the various endosymbionts documented in some species would also confer 

advantages  to  multiple  mating.  Endosymbionts,  such  as  Wolbachia can  lead  to 

cytoplasmic  incompatibility,  and  are  found  in  many  Hymenoptera  species  (see 

Heimpel & de Boer, 2008 and references therein). If both sexes mate more than once, 

they can increase the probability that they find cytoplasmically compatible gametes 

(Bordenstein et al., 2001).

Given these various benefits to polyandry, we would expect that females sometimes 

mate multiply, which in turn can give rise to new conflicts. Whenever females mate 

more  than  once,  males  will  be  selected  to  prevent  this  in  order  to  protect  their 

paternity. Mating has been shown to successfully reduce female receptivity in several 

species (Aphytis lingnanensis  (Gordh & DeBach, 1976);  Aphytis melinus (Allen et 

al., 1994); Bracon hebetor (Ode et al., 1997); Nasonia vitripennis (van den Assem & 

Jachmann,  1999);  Anisopteromalus  calandrae  (Do  Thi  Khanh  et  al.,  2005); 
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Lariophagus distinguendus  (Steiner et al., 2007); multiple parasitoid wasp species 

(Ridley, 1993); Bombus terrestris  (Baer, 2003, Sauter et al., 2001);  Centris pallida 

(Alcock & Buchmann, 1985)). 

As we saw above, in some social  insect species,  female re-mating is  reduced by 

males producing a “mating plug”, which attempts to block the female's reproductive 

tract.  These  plugs  are  produced mainly  from accessory gland secretions,  and are 

successful  at  preventing  female  re-mating  in  some  species  (Solenopsis  invicta 

(Mikheyev, 2003); fungus-growing ants (Mikheyev, 2004);  Bombus terrestris  (Baer 

et al., 2001)) but not others (Bombus hypnorum (Brown et al., 2002); Carebara vidua 

(Robertson,  1995)). The  mechanism  of  preventing  re-mating  is  not  necessarily 

mechanical;  a  specific  fatty  acid  in  the  mating  plug  is  known to  reduce  female 

receptivity in the bumblebee (Baer et al., 2001). In some species the mating plug 

includes the male's external genitalia, resulting in his death (Atta sp. (Hölldobler & 

Wilson,  1990);  Pogonomyrmex  formicidae  (Markl  et  al.,  1977);  Formica  rufa 

(Marikovsky, 1961); stingless bees (Sakagami, 1982, Paxton, 2005);  Apis mellifera 

(Koeniger, 1984)). 

Male accessory gland secretions can influence female re-mating through mechanisms 

other  than the  production  of  the  mating  plug  though.  While  there is  little  direct 

evidence of accessory gland secretions altering the female's physiology to reduce her 

re-mating  rate  (Baer,  2003,  Boomsma et  al.,  2005),  it  is  generally  assumed  that 
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ejaculate  components have been selected to  alter  female behaviour  to  benefit  the 

male (Gillott, 2003, Avila et al., 2011). Two studies have looked at the links between 

male reproductive traits and polyandry in the fungus-growing ants. Mikheyev (2004) 

found a negative relationship between mating rate and accessory gland size across a 

phylogeny  of  fungus-growing  ants,  contrary  to  what  they  expected.  Mikheyev 

proposed that  this  findings could be explained by the benefits  of their  daughters 

coming  from  genetically  diverse  colonies  (Table  6.1)  overcoming  the  loss  of 

paternity to each male from polyandry, however this seems unlikely. On the other 

hand, Baer  and Boomsma (2004)  found an increase in testes investment  in more 

polyandrous species of fungus-growing ants. 

Aside from the physiological and physical mechanisms previously described, there 

are  also other mechanisms through which males  reduce  female re-mating.  Mated 

females of Lasioglossum malachurum (Ayasse, 1994) and Centris adani (Frankie et 

al.,  1980)  are  marked with anti-aphrodisiacs once mated  (Ayasse et  al.,  2001)  in 

order to make the female less attractive and thus reduce her probability of re-mating. 

There  is,  however,  no  evidence  of  such  an  effect  in  other  species  (Nasonia 

vitripennis (Ruther  et  al.,  2010);  Chapter  5).  Behavioural  processes  reduce 

receptivity  in  other  species.  After  copulation,  the  males  of  several  species  are 

observed to return to their original courtship position over the female's antennae to 

perform another round of courtship which reduces female re-mating rate (Spalangia 

endius (King & Fischer, 2005, King & Fischer, 2010); Aphytis melinus (Allen et al., 

1994));  Nasonia  vitripennis (van  den Assem & Visser,  1976,  Leonard  & Boake, 
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2008)  (Chapter  5);  Aphytis  lingnanensis (Gordh  & DeBach,  1978);  and  the  bee 

Centris pallida (Alcock & Buchmann, 1985)).

Despite  the  many  outbreeding  advantages  associated  with  polyandry,  many 

parasitoids  show extreme  inbreeding  for  many  generations  (Godfray,  1994).  The 

high, but asymmetric relatedness between mates in this situation (Figure 1.2) begs 

the question of how much a male should harm his sister. It is important to remember 

that males and females cannot “win” sexual conflict. Each offspring has two parents, 

so all else being equal, the sexes must have equal total fitnesses. “Winning” can only 

occur at the level of the allele: a new invasive allele can “win” sexual conflict by 

spreading and reducing the fitness of another allele. This distinction is particularly 

important  in  the  following  scenario.  In  such  unusual  circumstances  with  strong 

inbreeding, we would predict that in order to maximise its inclusive fitness, a new 

mutation causing female-harm in a male should be selected to harm their sisters less 

than an unrelated female. However, due to the common presence of multiple females 

ovipositing on a patch of host resources, parasitoid males will also often mate with 

non-sisters.  High-relatedness  between  individuals  in  a  local-mating  scenario  has 

influenced  the  outcome  of  several  models,  including  those  of  another  form  of 

conflict: parent-offspring conflict over sex allocation (Werren & Hatcher, 2000, Pen, 

2006). There is however, a lack of evidence to suggest that parasitoids can detect 

relatedness (Reece et al., 2004). In support of this brothers are known to reduce the 

fitness of their sisters during development in the parasitoid wasp Nasonia vitripennis 
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through asymmetric larval competition: at large clutch sizes the number of brothers 

in the clutch reduces female body size, and consequently fitness (Sykes et al., 2007). 

There is plenty of evidence for the expression of sexual conflict over mating, often 

arising from female re-mating and male adaptations to prevent it. It is important to 

note however, that forced copulations are improbable in the Hymenoptera because 

the female must move her sting before copulation can begin (Page, 1986). So while 

females can be coerced into more copulations than required (e.g. copulating with 

sub-optimal males) or prevented from additional copulations, they often cannot be 

physically forced into mating.

Sperm usage 

Once  the  male  has  transferred  his  ejaculate  and  it  is  stored  in  the  female's 

spermatheca, there is still potential for conflict. Females are under natural selection 

to use this sperm resource to lay the optimum clutch size and sex ratio for their  

particular  set  of  conditions.  However,  males  are  under  selection  to  persuade  the 

female to use as much of their sperm as possible in order to maximise the male's 

fitness. These two optimal strategies may differ in that females may be selected to 

leave some eggs unfertilised to produce sons, whereas the optimal strategy for males 

will be to fertilise as many eggs as possible. This difference in optimal sperm use is 

exacerbated if the female mated several males, because the ejaculates of those males 

will be experiencing sperm competition. Polyandry, and therefore sperm competition 
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is widespread in nature (reviewed by Jennions & Petrie, 2000 and Simmons, 2001). 

Males and females will therefore both be selected to have adaptations to achieve their  

sex-specific optimal sperm use strategy.

Sperm competition will select for two broad categories of male adaptation: those that 

prevent female re-mating, and those that improve his success in competition against 

her previous mates. Many of the male adaptations that prevent female re-mating in 

the  first  place  have  been previously discussed in  the  mating  section;  here  I  will 

discuss the adaptations focused on increasing his fertilisation success in competition 

against  the  female's  previous  mates.  Sperm  displacement  resulting  in  last  male 

precedence in sperm competition is a common adaptation in other insects  (Walker, 

1980), but has not yet been found in the Hymenoptera  (Page, 1986, Quicke, 1997, 

Simmons, 2001, Damiens & Boivin, 2006, King, 1962, Allen et al., 1994, Franck et 

al., 2002, Holmes, 1974, Wilkes, 1965, Wilkes, 1966, Lopes et al., 2003, El Algoze et  

al., 1995, Metcalf & Whitt, 1977). This may be due to the fine control females have 

over the release of sperm from the spermatheca for fertilisation preventing a large 

outflow of sperm. Another potential mechanism for males reducing the success of 

other ejaculates is through damaging the rival spermatozoa directly. Non-self seminal 

fluid  has  a  detrimental  effect  on  sperm  survival  in  the  polyandrous  eusocial 

hymenopterans Apis mellifera, Acromyrmex echinatior and Atta colombica (den Boer 

et al., 2010).  The female cannot top-up her sperm supplies and in some species it 

must survive for many years to produce a successful colony, and so destruction of 

sperm by males is not in the evolutionary interest of the female. 

- 207 -



Many of the observed advantages to polyandry focus on the benefits of a genetically 

diverse brood (Table 6.1).  In  order  for females to  reap these  benefits,  they must 

preserve the variation in the multiple ejaculates they store. Adaptations to maintain 

this variation have been observed in many species. Female spermathecal secretions 

reduce  the  effect  of  sperm  destruction  observed  in  Apis  mellifera,  Acromyrmex 

echinatior  and Atta colombica  as  noted above  (den Boer  et  al.,  2010).  Similarly, 

females are proposed to mix the sperm within the spermatheca of several species to 

ensure  they  have  a  diverse  colony at  every  stage  (El  Algoze  et  al.,  1995).  Apis  

mellifera queens  store  only  5%  of  the  sperm  they  receive,  ensuring  a  mix  of 

ejaculates are retained (Franck et al., 2002).

Conflict over sperm usage goes further than sperm competition in the Hymenoptera 

due  to  the  link  between  fertilisation  and  sex  determination.  The  relatedness 

asymmetries generated by haplodiploidy set up the potential for sexual conflict over 

sex allocation: mothers are equally related to their sons and daughters, but fathers are 

only related to daughters (Figure 1.2)  (Trivers & Hare,  1976).  We would predict 

therefore that males will be under selection to increase the proportion female of the 

brood laid by their mate (Appendix 1: Shuker et al., 2009, Wild & West, 2009, West, 

2009, Ratnieks et al., 2006). The sex allocation strategy of the female is, however, 

predicted by other factors (for a review see  West,  2009): many of the inbreeding 

parasitoids experience Local Mate Competition (Hamilton,  1967, Charnov, 1982), 

and split sex ratios can evolve in the social species (Meunier et al., 2008), whereas 
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other  species  without  such  inbreeding  are  predicted  to  use  a  more  equal  sex 

allocation.

Despite being predicted on a number of occasions, male manipulation of the sex ratio 

has been rarely tested. In several parasitoid wasps the sex ratio a female produced 

was significantly affected by the identity of the male that inseminated her (Dinarmus 

basalis (Chevrier & Bressac, 2002); Uscana semifumipennis (Henter, 2004); Nasonia 

vitripennis  (Shuker  et  al.,  2006c)),  however  sperm-limitation  effects  cannot  be 

definitively excluded from these studies. This suggests that males have adaptations to 

manipulate female sex allocation behaviour, perhaps via accessory gland proteins. In 

a study of double and single mated parasitoid wasps Dinarmus basalis, doubly mated 

females laid more daughters (Chevrier & Bressac, 2002). This would be expected if 

each male’s seminal fluid manipulated females to lay more daughters. However this 

study does not allow us to rule out additional matings simply reducing the potential 

for sperm limitation. Adaptations in males to increase the usage of their sperm, by 

the female laying more daughters, are also seen in the mud-daubing wasps. Males of 

the mud-daubing wasp Trypoxylon politum  sometimes guard the active nest of the 

female they copulated with against usurpation (Brockmann & Grafen, 1989). This 

nest-guarding  behaviour  allows  the  females  more  time  to  collect  the  larger 

provisioning  items  needed  to  rear  daughters.  Nests  that  are  guarded  by  males 

therefore have more daughters, causing a guarding male to increase the use of his 

sperm and therefore his fitness (Brockmann & Grafen, 1989). Observations in the 

closely related Trypoxylon lactitarse found males always guarded the nest, however, 
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and no effect on the sex ratio of the resulting offspring was observed (Buschini, 

2007).

Sexual conflict over sex allocation in the social Hymenoptera is a more complicated 

matter. The queen and workers often have different optimal sex ratios, due to the 

relatedness asymmetries set up by haplodiploidy (Figure 1.2) (Tsuji, 1996, Ratnieks 

et al., 2006). The queen controls the sex ratio at fertilisation, but the sex ratio of the 

adult  reproductives  is  under  worker  control  because  they  can  selectively  kill 

offspring  of  the  less  desirable  sex  (Moritz,  1985,  Ratnieks  &  Boomsma,  1995, 

Boomsma, 1996).  The extent  of the conflict  for the fathers,  queens,  and workers 

depends  on  the  number  of  times  the  queen  mated,  as  this  alters  the  relatedness 

between  her  offspring.  When a  queen  has  mated  once,  her  optimal  sex  ratio  of 

reproductives is 0.5 proportion male, whereas for the workers it is 0.25 proportion 

male,  and  for  the  father  all  female-reproductives  is  optimal  to  ensure  maximum 

usage of his sperm. As the female becomes increasingly polyandrous, the queen's 

optimal sex ratio remains the same, and the worker's rises to meet hers as the mean 

relatedness  between  a  randomly-sired  worker  and  a  randomly-sired  female 

reproductive  falls  (Boomsma,  2007).  As  a  result,  conflict  over  sex  ratio  in  the 

eusocial Hymenoptera is closely linked to conflict over the number of mates a queen 

has (Tsuji, 1996, Werren & Beukeboom, 1998).
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Worker-control of the sex ratio therefore adds to the advantages of multiple mating 

for eusocial Hymenoptera queens, because the sex ratio of reproductives is closer to 

her evolutionary stable strategy (ESS) sex ratio. For the males that inseminate these 

queens, each additional mate she takes not only reduces the proportion of the female 

reproductives  that  he  sires,  but  also  the  total  number  as  a  product  of  worker-

manipulation of the sex ratio. This leads to a non-linear loss in paternity, which is  

unlikely  to  be  compensated  by  the  benefits  of  having  his  daughters  raised  in  a 

genetically diverse colony (Table 6.1) (Strassmann, 2001). In light of this we would 

expect strong selection for adaptations to  reduce re-mating in social  insect males 

(Boomsma & Ratnieks, 1996).

Beyond  the  adaptations  to  prevent  female  re-mating  already  discussed,  post-

copulatory  tactics  will  also play a  crucial  role.  If  queens are  multiply-mated  the 

ejaculates of each male shares an interest in clumping into sire-specific groups within  

the spermatheca. Clumping is favoured to keep the relatedness asymmetry and hence 

daughter production high (Boomsma, 1996). Hymenopteran males are haploid, so 

there is no recombination before gametes are formed, resulting in clonal sperm so 

cooperation between a male's spermatozoa should be strong. Evidence for sperm-

clumping is  mixed,  finding support  in  some species  (Formica sp.  (Sundstrom & 

Boomsma, 2000);  Apis mellifera (Page & Metcalf,  1982);  Pogonomyrmex badius  

(Rheindt  et  al.,  2004))  but  not  others  (Apis  mellifera (Franck  et  al.,  2002); 

Paravespula maculifrons & Vespula squamosa (Ross, 1986); Acromyrmex versicolor  

(Reichardt & Wheeler, 1996)). Overall, the importance of sperm clumping has been 
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downplayed (Cole, 1983, Crozier & Brückner, 1981). Female counter adaptations to 

sperm clumping would include the sperm mixing previously discussed. 

In summary, sexual conflict can arise from sperm competition adaptations (Stockley, 

1997). The scope for conflict over sperm usage in the hymenopterans is exacerbated 

by the coinciding conflict  over sex allocation. But not all interactions need to be 

agonistic, indeed seminal fluid is known to prolong female lifespan in some long-

lived eusocial species (Schrempf & Heinze, 2008, Schrempf et al., 2005). 

Offspring care

Many species in the Hymenoptera engage in some form of provisioning or parental 

care either before or after mating. This includes the social  species with elaborate 

parental or worker provided care, and the provisioning of nests with prey or pollen in 

some wasps and bees, along with the parasitoid mothers stinging and laying their 

eggs on or in their host.

In many species there is sexual conflict over offspring care (reviewed by Houston et 

al., 2005). If there is investment beyond the gametes we would predict that each sex 

is selected to exploit the other into investing more, while they reduce their own level 

of  investment  (Trivers,  1972).  As a  generalisation,  the sexes  will  therefore be in 

conflict over the amount of parental investment each provides. 
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In haplodiploids, where fathers are unrelated to any males in the brood, this conflict 

over parental care could be even stronger. An allele promoting caring behaviour in 

males  will  only  spread if  the  male  cares  for  individuals  it  is  related  to.  At  first 

appearance, haplodiploidy reduces the benefits to caring. However, if the brood has 

an equal sex ratio and there is only one sire, the mean relatedness for males to the 

brood is the same if they are diploid or haplodiploid (see Figure 1.2). That said, the 

mean relatedness of a father to the brood increases with the proportion of daughters 

in the brood, and will decrease with the number of patrilines in the brood. Therefore 

haplodiploidy itself is not a barrier to the evolution of paternal care, as illustrated by 

the  haplodiploid  thrips,  where  paternal  care  has  evolved in  a  number  of  species 

(Kudô et al., 1992, Tallamy, 2001).

The  best  known  examples  of  parental  care  occur  in  the  colonies  of  the  social 

Hymenoptera. The eusocial male often dies after the brief nuptial flight living on as 

only sperm in a queen’s spermatheca, so they are unable to partake in care as fathers.  

There is consequently no exclusive paternal care in the eusocial Hymenoptera (Zeh 

& Smith, 1985, Tallamy, 2001). There is the possibility of drones caring for their 

siblings in a number of social wasp species, and observations are biased to those 

species  where  behaviour  is  open to  view (Polistes ferreri  (Sinzato  et  al.,  2003); 

Polistes jadwigae  (Makino, 1993);  Polistes metricus & Polistes fuscatus  (Hunt & 

Noonan,  1979);  Mischocyttarus  mastigophora  (O'Donnell,  1999);  Ropalidia  

marginata (Sen & Gadagkar, 2006)). Male are therefore capable, but perhaps lacking 

- 213 -



in  opportunities  for  offspring  care.  The  evolutionary  consequences  (for  males, 

females and workers) of these instances of male parental  care remain to be fully 

explored.

Amongst the non-social hymenopterans,  social care is sometimes observed in the 

mud-daubing wasps.  As discussed  earlier,  males  of  the  wasp  Trypoxylon politum 

guard the active nest against usurpation, allowing females more time to collect the 

larger provisioning items needed to rear daughters (Brockmann & Grafen, 1989). 

Observations  in  the  closely  related  Trypoxylon  lactitarse found  males  always 

guarded the nest (Buschini,  2007). The mud-daubing wasp  Oxybelus shows some 

nest-guarding by males,  which results  in  less  kleptoparasitism of  prey from flies 

(Peckham, 1977). These adaptations are usually interpreted as males providing care 

to manipulate the sex ratio a female lays, especially in T. politum where this strategy 

is successful.

Sexual conflict can arise during offspring care over reasons other than the parental 

investment. Just as we saw males defending female feeding sites in order to force 

females into convenience polyandry, similar harassment can occur if males defend 

nesting  or  oviposition  sites.  Males  of  the  beewolf  Philanthus  bicinctus set  up 

territories around female nest sites at the onset of nesting. As there are usually more 

males than there are nesting sites, unreceptive females are commonly harassed by 

males (Gwynne, 1978, Gwynne, 1980). The females of Abispa ephippium show little 
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resistance to males that catch and mate them as they build their mud nests (Thornhill 

& Alcock, 1983). The cost and benefits to such polyandry for  A. ephippium is not 

known, however, the mud is a crucial resource for nest-building and so the avoidance 

costs would be high, potentially favouring convenience polyandry.

Sexual conflict over offspring provisioning is atypical in the Hymenoptera as a result 

of their lifestyles and haplodiploidy. If the brood sex ratio is male-biased, the payoff 

to caring for a father can be lower than that for diploid males at the same degree of 

polyandry. Care by males is observed in some Hymenoptera, and in the non-social 

species studied to date is associated with sex allocation manipulation. 

Future directions

I  have  reviewed  the  evidence  for  sexual  conflict  in  the  Hymenoptera,  and  the 

consequences  of  haplodiploidy  on  the  genetic  mechanisms  of  resolution.  In  this 

section I will review the directions for future research. 

Genetics of conflict resolution

Future research should aim to test the predictions of population genetic models of 

sexually antagonistic coevolution at  X-linked loci in diploid species  (Kraaijeveld, 

2009). Overall, my review of the implications of haplodiploidy showed that intra-

locus conflicts are more likely to be resolved relatively faster, whereas inter-locus 
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conflicts would be more likely to be resolved relatively slower, when compared to a 

diploid system.

Intra-locus  conflict  is  usually  resolved  through  sex-limited  expression  (Rice  & 

Chippindale, 2001), resulting in sexual dimorphism (Cox & Calsbek, 2009), so we 

would  predict  more  dimorphism.  Strong  sexual  dimorphism  has  been  observed 

across the Hymenoptera (Stubblefield & Seger, 1994, Starr, 1984), and the growing 

number  of  Hymenoptera  genome  sequences  should  encourage  more  expression 

studies like that of Vespula squamosa to identify sex-limited expression (Hoffman & 

Goodisman, 2007). Ultimately, a comparison of the proportion of genes expressed 

only in one sex in diploid and haplodiploid insects would be informative. Similarly, a 

comparison  of  the  divergence  of  male-expressed  and  female-expressed  genes 

compared to genes expressed in both sexes will test the prediction that sex-specific 

expressed  genes  in  haploid  males  evolve  faster  than  their  diploid  sisters  (Hartl, 

1972).

Sex-limited  expression could  come  about  in  haplodiploids  through  genomic 

imprinting, which is the differential methylation of genes based on their parent of 

origin. Haig was the first to predict that the haplodiploid genetic system predisposes 

a species to genomic-imprinting-mediated conflicts, in line with his kinship theory of 

imprinting  (Haig,  1992,  Haig,  2000).  Models  have  demonstrated  that  conflict 

between  alleles  inherited  from  each  parent  (matrigenes  and  patrigenes)  would 
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pervade the females in eusocial hymenopteran societies (Queller, 2003, Kronauer, 

2008, Wild & West, 2009, Day & Bonduriansky, 2004). 

The parent of origin genomic imprinting these models suggest could only be found in 

female  hymenopterans,  as  the  haploid  males  have  only  one  parent.  Males  could 

however  label  their  own  gametes  with  parent  of  origin  information,  and  also 

experience  within  generation  methylation  of  alleles.  For  example,  it  would  be 

beneficial  for  males  to  imprint  loci  that  would  encourage  their  sterile  worker 

daughters to manipulate the sex ratio in their father's favour and produce sons of their  

own.  As  Queller,  (2003) points  out,  females  would have  to  wait  for  selection to 

balance the risk between imprinting alleles to improve the fitness of the matrigenes 

in sons and the potential of reducing the fitness of the same matrigene in a daughter.

While there are few known loci where parent-of-origin genomic imprinting occurs in 

hymenopterans,  there  is  evidence  that  differential  methylation  occurs.  The  full 

complement of imprinting genetic machinery has been found in Apis mellifera (Wang 

et al., 2006) and also  Nasonia vitripennis  (The  Nasonia Genome Working Group, 

2010). When Dnmt3, a locus associated with imprinting is silenced using RNAi in 

honeybee larvae, the developmental pathway is changed and almost three times as 

many larvae develop into fully fertile queens than controls (Kucharski et al., 2008). 

Methylation  has  also  been  demonstrated  in  eleven  other  social  hymenopterans 

(Kronforst  et  al.,  2008).  Genomic  imprinting  is  known  to  be  crucial  to  the 

mechanism of sex determination in the parasitoid  Nasonia vitripennis (Dobson & 
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Tanouye, 1998, Trent et al., 2006, Verhulst et al., 2010). In addition, two studies have 

demonstrated  grand-paternal  effects  (hypothesised  to  be  caused  by  genomic 

imprinting  (Beukeboom & van den  Assem,  2001,  Guzman-Novoa et  al.,  2005)). 

Males  could  manipulate  the  use  of  genomic  imprinting  in  sex-  and  caste-

determination to ensure that his sperm are used to fertilise eggs that will  become 

reproductives  (new  queens)  and  not  sterile  workers,  and  future  research  should 

investigate the role of parent-of-origin imprinted loci in caste development to test 

these ideas.

Further to my proposed investigation of intra-locus conflict resolution, future models 

of sexually antagonistic coevolution in haplodiploids should also consider multi-loci 

conflicts, as there is a relative paucity of theory in this area. Quantitative trait loci 

(QTL) studies are now commonplace in Hymenoptera (e.g.  Packer & Owen, 1990, 

Volny & Gordon, 2002, Packer & Owen, 1994, Jensen et al., 2002, Pannebakker et 

al.,  2011,  Rütten  et  al.,  2004), which  should  encourage  further  research  into 

quantitative genetic models. These same molecular ecological techniques will allow 

future researchers to  quantify many of the sensitive parameters in the population 

genetic models, such as measures of polymorphism, effective population size, and 

the level of dosage compensation for fitness in males and the population sex ratio 

(Lester & Selander, 1979). 
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The  inter-locus  conflict  models  for  haplodiploids  predict  that  resolution  will  be 

slower than for diploid autosomes, as the linkage equilibrium necessary is less likely 

to occur (Owen, 1988, Andrés & Morrow, 2003, Hedrick & Parker, 1997). Linkage 

disequilibrium has been successfully identified in several hymenopteran species (e.g. 

Packer & Owen, 1990, Volny & Gordon, 2002, Packer & Owen, 1994, Jensen et al.,  

2002), however not for traits  known to be involved in currently-expressed sexual 

conflicts.

Evidence of the expression of conflict

The  Hymenoptera  exhibit  a  range  of  life-histories,  providing  different  situations 

where males and females are in control of mating frequency. Despite this there are 

few scenarios where the actual costs and benefits are shown. Here, I suggest areas for 

future research to build on this existing knowledge. 

The costs and benefits to additional matings have been researched in the eusocial 

insects, yet despite many promising observations, they are lacking in the non-social 

species. The non-social bees where males guard food resources provide a particularly 

tractable example of an area where the costs and benefits to multiple mating can be 

calculated. The parasitoid wasps are another group where there is patchy evidence of 

costs to mating, and some observations of male-adaptations to prevent female re-

mating.
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The  accessory  gland  proteins  are  particularly  promising  as  a  target  for  future 

research, following up the sexually antagonistic coevolution unearthed in the diploid 

Drosophila melanogaster (Fricke et al., 2009, Chapman, 2001, Wigby & Chapman, 

2004, Wigby & Chapman, 2005, Wigby et al., 2009, Yapici et al., 2007). Indeed the 

seminal  fluid  proteins  of  honey  bees  have  been  sequenced  and  their  functions 

predicted, however no attempt has been made to compare honeybee seminal fluid 

proteins with known female-manipulating proteins (Collins et al., 2006, Collins et 

al.,  2004). Tantalisingly,  despite the sex-peptide receptor that is widely conserved 

across the insects (Yapici et al., 2007), it has not been found in the Apis or Nasonia 

sequenced genomes (The Nasonia Genome Working Group, 2010), nor was the sex 

peptide itself found (Hauser et al., 2010). Sex-peptide is not the only component of 

the  Drosophila ejaculate to alter a female's behaviour after mating though. Future 

researchers  should  characterise  the  ejaculate  proteome  to  search  for  suitable 

candidates.  The  increasing  number  of  genomes  sequenced  in  the  Hymenoptera 

provide us with an excellent opportunity to do this in many species (The Honeybee 

Genome  Sequencing  Consortium,  2006,  The  Nasonia Genome  Working  Group, 

2010, Smith et al., 2011a, Suen et al., 2011, Bonasio et al., 2010, Wurm et al., 2011, 

Smith et al., 2011b). RNAi knock-out techniques have been developed for each of 

the major groups of hymenopterans: wasps (e.g. Lynch & Desplan, 2006), bees (e.g. 

Belles, 2010), sawflies (e.g.  Sumitani,  2005) and ants (e.g. Lu et  al., 2009). This 

technique could then be used to  test  the function of  the knocked-down ejaculate 

components in these species.  This could be followed up with studies like that of 
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Kocher et al., (2008 & 2010)  comparing the change in transcription of queens that 

were mated by wild-type and knock-down males.

Summary

This  review  has  drawn  together  the  varied  research  on  sexual  conflict  in  the 

Hymenoptera for the first  time. I have summarised the genetic  theory of conflict 

resolution in haplodiploids, finding that intra-locus conflicts may become resolved 

faster in the haplodiploids, whereas inter-locus conflicts could be slower to resolve at 

the genetic level. In some cases, haplodiploidy itself creates new conflicts as a result 

of  the  relatedness  asymmetry.  By  combining  the  wealth  of  research  about  the 

reproductive biology of the Hymenoptera with the new genomic techniques, we can 

extend our understanding of the nature of sexual conflict. 
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Table 6.1: Benefits to polyandry in three species of eusocial Hymenoptera

Species (Source) Benefit

Bombus terrestris

(Baer & Schmid-Hempel, 1999) Parasite load is lower in colonies that have higher number 
of sperm donors.

(Baer & Schmid-Hempel, 2001) Intermediate level of relatedness in a colony (>1 patriline) 
associated with lower parasitism.

(Shykoff & Schmid-Hempel, 1991) Parasite transmission was more likely between more 
closely related individuals.

(Liersch & Schmid-Hempel, 1998) Genetically heterogeneous colonies had lower parasite 
prevalence, species richness and load.

Pogonomyrmex occidentalis

(Cole & Wiernasz, 1999) Polyandrous queens had larger colonies, with higher 
reproductive output.

Apis mellifera

(Tarpy, 2003) More genetically diverse colonies, grew faster with less 
disease.

(Jones et al., 2004) More diverse colonies are better at keeping the hive 
temperature constant.

(Tarpy & Page, 2002) Colonies with increased diversity (measured as the 
number of sex determining alleles in the drones) have 
reduced worker infection.

(Fuchs & Schade, 1994) Single patriline colonies had a lower reproductive output 
and food source collection.

- 222 -



Table 6.2: Examples of costs to multiple mating in the eusocial Hymenoptera

Species (Source) Cost

Pogonomyrmex formicidae

(Markl et al., 1977) Harassment during mating flights leads to females produce 
distress calls to workers.

Atta colombica

(Baer et al., 2006) Queens that had a higher number of sperm cells stored, from 
a greater number of sires, invested less in their immune 
response.

Apis mellifera

(Ruttner, 1980) 15-30% queen mortality on mating flight

(Ratnieks, 1990) Mark-recapture during mating flight showed 4% mortality.

Bombus terrestris

(Baer & Schmid-Hempel, 2005) Negative correlation between the number of mates and the 
queen’s survival during hibernation.

(Greeff & Schmid-Hempel, 2008) Presence of sperm reduces female longevity controlling for 
body size.
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7. General Discussion



Sexual selection and sex allocation

My thesis aim was to establish what makes a “good son” for an N. vitripennis mother 

by studying sexual selection in this species, and to establish how this influences her 

sex allocation behaviour. Males will gain fitness by developing earlier  (Chapter 2; 

Appendix  2:  Moynihan & Shuker,  2011),  where  larger  body size  is  not  a  direct 

advantage in pre-copulatory competition (Chapters 2 & 3; Appendix 2: Moynihan & 

Shuker, 2011), but larger body size did result in more sperm reserves and a higher 

number of daughters from their earlier mates (Chapter 4). Variation in the courtship 

routine of a male did not influence the probability of his losing fitness through a 

female he copulated re-mating (Chapter 5). 

The patterns of sexual selection I observed are often a product of the local mating 

environment which also selects for the facultative sex allocation in  N. vitripennis. 

Local Mate Competition (LMC), predicts an extremely female biased broods when a 

female is laying eggs alone on a patch (as a single-foundress) and so her sons are 

competing only with each other (Hamilton, 1967, Hamilton, 1979). In such a single-

foundress situation, females are predicted to lay as few sons as possible to inseminate  

all  her  daughters,  ensuring  their  fertility  (Heimpel,  1994,  Hardy  & Cook,  1995, 

Waage & Sook Ming, 1984). Mechanisms to explain why there is often more than a 

single son include developmental mortality and limited male insemination capacity 

(Hardy  &  Cook,  1995,  Hardy  et  al.,  1998,  Nagelkerke  &  Hardy,  1994).  The 

extremely female biased sex ratios produced under  LMC creates  strong selection 
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pressures on males to able to inseminate large numbers of females. If males are not 

able to inseminate all the females in their brood, then I predicted that mothers would 

lay more sons to ensure the fertility of their brood. In this way, the single-foundress 

sex ratio  is  a product  of sexual  selection on males to be good inseminators,  and 

natural selection on females to lay the optimal sex ratio. Sexual selection and sex 

allocation should therefore be linked, and I would predict  the build-up of linkage 

disequilibria between sex allocation and mating ability genes.

I  screened the single-foundress sex ratio of eighteen strains of  N. vitripennis and 

found significant between-strain variation in sex ratio, which was not explained by 

differences in the mating ability of sons (Chapter 3), or their total sperm resource 

(Chapter  4).  There  were  no  differences  between  strains  in  the  sperm-limitation 

experienced by females who were inseminated by males that had copulated a number 

of times before (Chapter 4). This sequential presentation of females demonstrated 

that male  N. vitripennis are capable of mating many more females than found in 

Chapter 3, and Grant et al. (1980) where strict time constraints were in place. These 

experiments did not show the effects of sexual selection on sex allocation that I had 

predicted.

I did nevertheless find evidence of sexual selection and sex allocation interacting: 

males from strains where broods are less female-biased (i.e. more males in the brood) 

were better competitors (Chapter 3). The causality of this remains to be established: 
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males  from  strains  with  higher  sex  ratios  could  have  more  experience  with 

competitors and thus have been under stronger selection to be a good competitor, 

alternatively  females  could  lay  more  sons  when  they will  be  better  competitors. 

Either explanation is a result of the relationship between sex allocation and sexual 

selection.

Sexual conflict in Nasonia vitripennis

Mating frequency and subsequent female re-mating is a source of sexual conflict in 

many  species  (see  Chapter  6  for  a  review  in  the  Hymenoptera).  Many  factors 

influence the expression of conflict over this trait, however in most species there is 

the potential for conflict to occur  (Arnqvist & Rowe, 2005). There has been little 

investigation into the costs and benefits of multiple mating in N. vitripennis. Despite 

this some aspects of N. vitripennis biology allows us to predict that such a conflict 

could arise. We know that there is first-male precedence in sperm-competition, but 

also that second males to mate do gain some paternity (Holmes, 1974). Hence males 

could lose fitness if a female they inseminated accepts a second mate. Females may 

benefit  from  second  matings  through  increased  sperm  reserves,  especially  since 

sperm-limitation can be a problem in N. vitripennis (Chapters 3 & 4); alternatively, 

the  problem of  cytoplasmic  incompatibilities  may lead  to  advantages  to  multiple 

mating (Beukeboom & Werren, 1993, Bordenstein et al., 2001, Breeuwer & Werren, 

1995). A small study did show a strain-specific benefit to higher fecundity in double-

mated N. vitripennis females (Burton-Chellew, 2007). In an initial study no survival 
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cost  to mating was demonstrated for females in heterospecific  crosses within the 

Nasonia genus (Geuverink et al., 2009), however further investigation is required.

There  was  significant  between  strain  variation  in  female  re-mating  rate  in  N. 

vitripennis  (Chapter  5).  I  recorded the duration  of  several  courtship components, 

predicting that  the post-copulatory courtship  duration would influence  female  re-

mating rate, based on the prior observations of van den Assem & Visser (1976) and 

Leonard & Boake (2008). However, the probability that a female re-mates was not 

associated with the duration of the post-copulatory courtship she received from her 

first mate (Chapter 5). Instead, females who needed more courtship before signalling 

receptivity on the first trial were less likely to mate on the second trial, suggesting 

that re-mating propensity is related to some form of overall “receptivity” and so is a 

property of the female. As such, although male post-copulatory courtship does appear 

to limit re-mating, the effects appear qualitative and not quantitative.

Sexual  conflict  over  female  re-mating  rate  in  N.  vitripennis warrants  further 

investigation. Once the costs and benefits to multiple mating for females have been 

established, the mechanisms of male and female counter-adaptations predicted by 

sexually antagonistic coevolution can be investigated. The gene expression changes 

associated with the switching-off of receptivity are being studied in Nasonia (R. Watt 

& D.M. Shuker personal communication). To study the male adaptations in Nasonia 

we  could  utilise  the  newly  sequenced  Nasonia  genome  (The  Nasonia Genome 
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Working Group, 2010) to begin to characterise possible components of the ejaculate 

that may influence female physiology (Chapter 6). The effects of seminal fluid could 

be tested by comparing the sex ratio and clutch size produced by females that mated 

once, and twice. Sperm-depleted males could be included in such an experiment to 

disentangle the effects of additional doses of sperm, and doses of just seminal fluid. 

The  consequences  of  double  mating  with  non-depleted  males  was  tested  in 

Trichogramma evanescens  (Jacob & Boivin, 2005) and Anisopteromalus calandrae 

(Do Thi Khanh et al., 2005), and no difference in sex ratio with singly and doubly 

mated females, suggesting that the effect of seminal fluid components may not be 

particularly strong in those species. 

Genetic variation and selection

Throughout this thesis I have found significant among-strain variation in a number of 

traits:  single-foundress  sex  ratio,  single-foundress  clutch  size,  mating  capacity 

(Chapter 3); seminal vesicle volume (Chapter 4);  and copulation duration and re-

mating probability (Chapter 5). This suggests heritable variation in these traits, and in 

the case of single-foundress sex ratio and clutch size gene regions associated with 

such variation have been identified (Pannebakker  et  al.,  2011).  By demonstrating 

such  between-strain  variation  in  nine  or  more  strains  collected  from  the  same 

population at the same time, we can begin to ask questions about the evolution of 

these  traits.  Between  nine  and  eighteen  strains  is  not  a  large  amount  of  genetic 

variation, certainly it is insufficient by quantitative genetic standards, however it is 
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an  improvement  compared  to  so  many  studies  that  use  just  one  or  two  strains. 

Heritable  variation  is  the  substrate  of  evolution,  and  is  therefore  crucial  to  our 

interpretation of these findings. We cannot draw conclusions about sexual selection if 

we cannot demonstrate heritable variation. 

Males and the sex ratio

Most sex allocation theory focuses on female sex allocation behaviour, because the 

mother, or in the case of social insects the female workers, are usually in control 

(Wild & West,  2009).  Little  thought  has  been given to  the role  of  males  in  this 

process. In this thesis I have considered two ways in which males can influence the 

sex allocation behaviour of a female: as both sons and fathers.

Fathers

The role of males in sex allocation is rarely thought of, as sex allocation is usually 

under female control in most taxa (Wild & West, 2009). Where male influence in sex 

allocation is considered, it is usually as his role of father in sexual conflict over sex 

allocation. The relatedness asymmetry set up by haplodiploidy (Figure 1.2) results in 

Nasonia  mothers  favouring  the  sex  ratio  predicted  by  LMC  and  fathers  always 

preferring a more female-biased sex ratio. This leads to a sexual conflict over sex 

allocation (Chapter 6) (Appendix 1: Shuker et al., 2009). This is because fathers have 

only daughters and no sons, and sons have no fathers, only mothers (Figure 1.2). 
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This  conflict  predicts  that  males  will  have  adaptations  and  females  counter-

adaptations to move the brood sex ratio closer to their own sex-specific optimum. 

The sex ratio female N. vitripennis lay was significantly (but weakly) affected by the 

strain of the male who mated her (Shuker et al., 2006c), suggesting that males can 

manipulate the sex allocation behaviour of females. One potential mechanism for this 

is through components of the ejaculate manipulating female fertilisation rate.

A male can also affect the sex allocation behaviour of his mate by not providing her 

with enough sperm. Here, males are acting very directly as a constraint on adaptive 

sex allocation by females. Female Hymenoptera can lay broods of all-sons when they 

have no sperm; as we have seen such females with no sperm reserves are known as 

constrained  females  (Godfray,  1990).  These  constrained  females  are  unable  to 

produce daughters, and so lay all-male broods. The sons in these all-male broods can 

find mates if another, mated, female lays daughters on the same patch. If there is a 

high enough proportion of constrained females in the population there will  be an 

excess  of  males,  and models  predict  that  negative  frequency-dependent  sex  ratio 

selection  will  favour  females  laying  more  daughters  if  they  are  mated  (Godfray, 

1990). This is not thought to be especially important in  N. vitripennis, because the 

incidence of virgin females appears low in the wild (Beukeboom & Werren, 2000, 

Grillenberger et al., 2008).

Constrained-females  could lack  sperm for  two reasons:  either  because  they were 

- 231 -



never copulated, or they were copulated but not enough sperm was passed in order 

for them to have full  fertility.  Such females will  also be constrained in  their  sex 

allocation behaviour by their mates.

I  found  significant  variation  in  sperm  resources  between  eighteen  strains  of  N. 

vitripennis (Chapter  4).  This  suggests  that  the  probability  of  a  female  becoming 

constrained  after  receiving  a  small  ejaculate  could  depend  on  the  strain  (i.e. 

genotype) of the male that mated her. However in my experiment (Chapter 4), that 

did not lead to differences in sperm-limitation between the strains. It is still feasible 

that we would observe strain differences in sperm-limitation and the probability a 

female will become constrained, if the males had more than twelve sequential mates.

Seminal vesicle volume has been used as a measure of sperm resource in parasitoids 

such as  Trichogramma euproctidis (Martel  et  al.,  2011)  and  Spalangia cameroni  

(King & King,  1994).  However  the  exact  relationship  between sperm count  and 

seminal  vesicle  volume  should  also  be  established  for  N.  vitripennis.  Individual 

sperm cells are often thought of as relatively cheap, however an entire ejaculate can 

be costly  (Dewsbury,  1982), leading to the prediction that males should use their 

sperm resource  prudently and perform strategic  ejaculation  in  response  to  sperm 

competition and female quality cues (reviewed by Kelly & Jennions, 2011). Strategic 

ejaculation has been observed in another parasitoid wasp in response to the threat of 

sperm competition: fewer sperm were transferred to females when males were kept 
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in groups with other males prior to mating in the polyandrous wasp Trichogramma 

turkestanica (Martel et al., 2008). The potential for such strategic ejaculation should 

be investigated in  Nasonia.  For example,  males from strains with a smaller  total 

resource could be more prudent  with their  sperm, providing a  greater number of 

females  with  full  fertility  than  a  male  with  a  larger  sperm resource  that  is  less 

prudent. 

Just as males may use strategic ejaculation to reduce the risk of sperm competition, 

males could have adaptations to encourage a female to use his sperm during sperm 

competition.  In  haplodiploids  these  adaptations  may  also  be  co-adaptations  for 

manipulating his mate’s sex allocation behaviour. A male that can encourage a female  

to use his sperm over another male’s sperm may also be successful in persuading a 

female to use his sperm over no sperm to produce daughters rather than sons. This 

could be tested by repeating the experimental design of  Shuker et al. (2006c) with 

several of the Cornell strains against a females from a “standard” where the mean sex  

ratio is closest to average the for all strains. The sperm precedence of males from 

these strains when first or second to mate a standard female strain could also be 

tested. If adaptations for sperm-competition are co-adaptations for manipulating sex 

allocation, I would predict a correlation between strain sex ratio manipulation and 

sperm-competition success.

This is  reminiscent of the relationship between sex allocation conflict  and sperm 
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competition traits I discussed in the social insects in Chapter 6. There, males lose 

fitness  in  a  non-linear  manner  when  worker-control  of  the  sex  ratio  reduces  the 

female-bias in the sex ratio as the queen has more mates (Strassmann, 2001, Ratnieks 

et al., 2006). This leads to strong selection on males to prevent queens re-mating, and 

also on success in sperm competition.

Sons

Sons could alter the sex allocation behaviour of their mothers if variation in their 

competitive ability influences how good they will be at inseminating her daughters. 

When  females  are  laying  eggs  alone  on  a  patch  of  resources,  Hamilton’s  LMC 

equation solves to predict all-female broods (Hamilton, 1967, Hamilton, 1979). This 

has usually been interpreted as meaning the minimum number of sons required to 

ensure the fertility of all the daughters in the brood (Heimpel, 1994, Hardy & Cook, 

1995,  Waage  &  Sook  Ming,  1984).  If  a  mother’s  sons  are  not  very  good  at 

inseminating  her  daughters,  I  should  expect  that  she  will  have  to  lay  a  higher 

proportion of sons to ensure that her daughters are all sufficiently inseminated. 

My single-foundress sex ratio screen showed no relationship between clutch size and 

sex ratio  (Chapter 3) demonstrating that one male is  not  enough to inseminate a 

whole brood, and therefore multiple males are required. If one males was enough to 

inseminate  a  brood  of  any  size,  I  would  expect  to  see  a  reciprocal  relationship 

between sex ratio and clutch size. In this way, sons are affecting the sex allocation 
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behaviour of their mothers. However, I found no evidence for males from strains 

with higher proportion male sex ratios having a lower mating capacity (Chapter 3), 

or a lower total sperm resource (Chapter 4) as predicted by the fertility insurance 

interpretations  of  the  single-foundress  sex ratio.  This suggests  that  differences in 

male mating capacity is not explaining between-strain variation in single-foundress 

sex ratio. 

Throughout this thesis,  I have measured and discussed the sex ratio of the brood 

when they reach adulthood, the secondary sex ratio. Sex allocation behaviour  occurs 

at the primary sex ratio. The outcome of this in terms of fitness benefits is influenced 

by sex-specific  developmental  mortality  to  reach the  secondary  (adult)  sex  ratio. 

Much of the work on sex-specific developmental mortality has been to address the 

fertility  insurance explanations  of  a  mother  laying more  than one  son per  brood 

(Green et al., 1982, Nagelkerke & Hardy, 1994), but such patterns of mortality can 

also influence sex allocation more generally, for instance through asymmetric larval 

competition. Asymmetric  larval  competition  has  been  detected  in  N.  vitripennis, 

however models suggest that the effect it  will  have on sex ratio  optima is  small 

(Sykes et al., 2007). There is little evidence to date for larval mortality when the 

preferred host species (calliphorid or sarcophagid fly pupae) are used (Werren, 1984, 

Velthuis et al., 1965, Walker, 1967, Werren, 1980).

A screen of the primary and secondary clutch size and sex ratio of several strains of 

N. vitripennis would  maybe contribute further  to  our  understanding of  how sons 
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influence sex allocation behaviour, although the effects are probably limited. Such a 

screen would require techniques such as flow cytometry to sex the eggs or very early 

embryos, such as those developed for the ants (De Menten et al., 2003). A higher 

developmental mortality in either (or even both) sexes in a particular strain, would 

act  as  an  influence  on  the  foundress’ sex  allocation  behaviour,  in  that  she  must 

allocate more eggs as sons in order to ensure there are enough sons to fertilise all her  

daughters.  Those extra sons are  eggs which then cannot  be fertilised and laid as 

daughters. In this way, developmental mortality is another route through which sons, 

more so than their sisters, can influence the sex allocation of their mother. 

Another  route  through  which  sons  could  potentially  influence  the  sex  allocation 

behaviour of their mother is parent-offspring conflict over sex allocation. This is best 

described in social insects, where the offspring (workers) can control the secondary 

sex ratio (Ratnieks et al., 2006). Queens can combat worker control by laying male 

offspring before female reproductives in order to force the workers to raise more 

brothers than is optimal for them, as seen in bumble bees (Bourke, 1997, Bourke & 

Ratnieks, 2001). Sex allocation is usually interpreted from the point of view of the 

parents: however any situation resulting in biased sex ratios in a non-social species 

will lead to conflict between parents and offspring over the sex ratio. At its simplest, 

offspring  should  always  rather  be  the  rarer  sex,  as  this  sex  will  have  a  higher 

reproductive value (Werren & Beukeboom, 1998).

In  species  exhibiting  LMC,  which  so often results  in  female-biased  sex ratios,  I 
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would expect the offspring’s optimal sex ratio to be less biased than that of their 

mother.  When  modelled,  the  structured  population,  female-biased  dispersal  and 

inbreeding lead to the prediction that offspring actually favour a more female-biased 

sex ratio than their mother in models of diploid species (Werren & Hatcher, 2000, 

Pen, 2006). In particular, the probability of a mother's offspring competing with their 

siblings,  and paternal-half  siblings leads to  a  more female-biased sex  ratio being 

favoured.  This  problem  is  yet  to  be  modelled  in  haplodiploids.  However  the 

relatedness asymmetries generated by haplodiploidy (Figure 1.2) are likely to extend 

the  inclusive  fitness  benefits  to  offspring  of  being  part  of  a  more  female-biased 

brood. Existing models assume that both the parents and the offspring have some 

influence  over  sex  allocation,  however  there  is  little  evidence  for  this  in  N. 

vitripennis (Verhulst et al., 2010). Sex determination mechanisms are thought to have 

evolved  under  conflict  over  sex  allocation,  so  perhaps  in  the  evolutionary  past 

offspring had a greater role in their sex determination than they do today (Werren & 

Beukeboom, 1998, Werren & Hatcher, 2000).

Conclusions

In this thesis I have studied sexual selection in  N. vitripennis, establishing sexual 

selection on several traits that have not previously been investigated (Figure 7.1). 

While I did not find the evidence for a role of sexual selection in sex allocation that I 

had expected, I did find that sex allocation may have influenced sexual selection, as 

males from high sex-ratio strains were better competitors (Chapter 3). My findings 
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have  complemented  existing  work  in  N.  vitripennis to  provide  a  more  complete 

picture of sexual selection in this species so commonly studied for its sex allocation 

behaviour. I used multiple genotypes in Chapters 3-5, testing and finding between-

strain variation in a number of traits. Demonstrating heritable variation in a trait is 

key to discussing selection acting on that trait,  and builds the contribution of this 

thesis towards the work investigating how sexual selection and sex allocation interact 

as a species evolves. As a result of these investigations into sexual selection and sex 

allocation, I found evidence for new routes through which males can contribute to 

the sex allocation behaviour of females:  as  fathers through providing insufficient 

sperm, or through manipulating the sex ratio their mate lays. The role of males in sex 

allocation  is  a  field  which  requires  further  exploration.  The  body  of  work  here 

establishes the role  of sexual selection,  which is often closely linked with sexual 

conflict.  Future  work  should  focus  on  sexual  conflict  in  Nasonia  vitripennis, 

particularly  over  sex  allocation,  to  balance  the  huge body  of  work  investigating 

conflict over sex allocation in social Hymenoptera (Chapter 6).
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Figure 7.1: The links between sexual selection and sex allocation involve mating system and sexual 
conflict in Nasonia vitripennis. Numbers in bold refer to chapters. Letters are references to external 
sources: a) (Hamilton, 1967, Werren, 1980, Werren, 1983); b) (Shuker et al., 2009); c) (Shuker et al.,  
2006c); d) (Burton-Chellew et al., 2007b, Blaul & Ruther, 2011, Ruther et al., 2009); e) (Geuverink et 
al., 2009).
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