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ABSTRACT 

 

This thesis explores the intersection of financial markets and machine learning, focusing on 

financial return predictability and the imputation of missing values in financial datasets. The research 

aims to enhance our understanding of financial market dynamics through the lens of interpretable 

machine learning models. Specifically, the thesis employs advanced machine learning techniques to 

predict financial returns and address missing data issues, which are common but often overlooked in 

financial literature. 

The first chapter uses an interpretable machine learning model, LassoNet, to forecast U.S. industry 

portfolio returns. LassoNet combines a regularization mechanism with a neural network architecture 

to enforce covariate sparsity. The findings show that LassoNet outperforms linear and non-linear 

models in forecasting accuracy, with valuation ratios and individual and cross-industry lagged returns 

being the most critical covariates. The model's forecasts enable the construction of profitable industry 

ETF portfolios that outperform benchmarks in annualized returns, Sharpe ratios, and alpha values. 

The second chapter focuses on imputing missing hedge fund return data using a deep learning 

model, the bidirectional recurrent imputation network for time series (BRITS). BRITS is compared to 

other imputation methods like the cross-sectional mean and matrix completion. The results indicate 

that BRITS significantly enhances forecasting accuracy and economic performance of predictive 

models when used to impute the missing values in the data. The imputed data leads to lower out-of-

sample errors and higher investment returns, demonstrating BRITS' superiority in handling missing 

values. 

In the third chapter, the state-of-the-art neural network architecture TabNet is utilized to forecast 

the directional movements of excess returns in industry portfolios. TabNet surpasses other models in 

classification accuracy and highlights the importance of valuation ratios and lagged returns in its 

predictions. The model effectively captures seasonal effects and cross-industry economic links and 

attains the highest annualized returns and positive Sharpe ratios in trading applications. 
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INTRODUCTION 

In recent years, machine learning has become a transformative force in the financial industry, 

revolutionizing areas such as quantitative analysis, investment management, customer servicing, and 

fraud prevention. According to a 2022 survey by the Bank of England, over 72% of financial services 

firms report using or developing machine learning applications, highlighting the pervasive integration 

of this technology. The ability of machine learning algorithms to process vast amounts of data 

efficiently and extract meaningful patterns is well suited to the data-rich environments in which 

financial institutions operate. Expectedly, major market players (see J.P. Morgan, Goldman Sachs, 

Fidelity, CITADEL) have incorporated machine learning into their day-to-day operations to optimize 

their processes. The widespread integration of machine learning in algorithmic trading, investment 

management (e.g., Fidelity’s robo-advisors), automated customer service systems (e.g., chatbots), and 

fraud detection proves that these innovative algorithms have revolutionized how financial services are 

delivered.  

While the impact of machine learning on the financial industry is profound, it is essential, from a 

financial literature perspective, to assess whether these techniques can advance our understanding of 

financial markets and improve our ability to predict asset price fluctuations. Traditional econometric 

models, though well-established, often fail to capture the non-linear dependencies and complex 

patterns inherent in financial data. The difficulty of predicting financial returns has been a long-

standing focus in financial literature. Timmerman and Granger (2004) argued that the Efficient Market 

Hypothesis (Fama, 1970) presents a significant challenge for forecasters, as its most basic 

interpretation suggests that financial returns cannot be predicted. Nonetheless, several financial 

studies provide evidence that challenges the notion of market efficiency. For instance, Jacobs (2015) 

provides an overview of 100 market anomalies, and Asness et al. (2013) report consistent value and 

momentum return premia across eight diverse markets and asset classes. Indeed, Psaradellis et al. 

(2018) state that since the 1960s, academics and practitioners have claimed that predictable patterns 

exist in financial assets’ returns, which sparked a fruitful debate. However, modeling financial returns 

and extracting predictable patterns from data exhibiting non-linearities is challenging for linear 

models. 

Rasekhschaffe and Jones (2019) support that machine learning techniques may provide a better 

approach than linear models in predicting asset prices. They define machine learning as an umbrella 

term for methods that allow machines to uncover patterns without explicit programming instructions, 

and thus, modelers can supply a variety of factors that might help in forecasting future returns and use 

machine learning algorithms to learn which factors are the most informative. Gu et al. (2020) further 

validate the above claims and indicate that machine learning models offer an improved description of 
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the expected return behavior relative to traditional forecasting methods. This thesis seeks to 

contribute to the growing body of literature on the intersection of machine learning and finance by 

investigating the predictability of financial markets through interpretable machine learning models. 

Until recently, machine learning techniques were used for financial applications as “black boxes” that 

offer little to no insight into how predictions are made (see Feng et al., 2018; Bartram et al., 2020; Gu 

et al., 2020; Bussmann et al., 2021). The research is motivated by the need for models that improve 

prediction accuracy and offer transparency, enabling academic researchers and financial professionals 

to understand and trust the models generating the predictions. Furthermore, this thesis seeks to 

leverage the flexibility of machine learning techniques for tasks such as missing value imputation, an 

area often overlooked in financial literature. Many studies either fail to address missing data or handle 

it superficially, resulting in biased estimates and flawed inferences (Freyberger et al., 2021). 

The primary contribution of this thesis is threefold. First, it evaluates whether machine learning 

offers a promising alternative to traditional models in forecasting financial returns and making 

informed investment decisions. Second, it emphasizes the importance of interpretability in these 

models. Interpretable modeling frameworks are essential for forecasting financial returns, high-stakes 

decisions, and investment management. From a financial literature standpoint, it is crucial to 

investigate which variables are the most informative and best explain asset price movements. Model 

transparency is not optional but necessary to advance our understanding of financial markets. At the 

same time, the financial industry requires the adoption of high-performing yet interpretable models. 

Interpretable models highlight influential variables, helping portfolio managers make informed 

decisions aligned with their expertise and ensuring strategies follow the intended investment 

philosophy. Unlike many black-box machine learning models that sacrifice transparency for accuracy, 

this work ensures that the models used are both interpretable and high-performing. Third, the thesis 

explores applications beyond return forecasting, such as missing value imputation and directional 

return forecasting, areas that are crucial but underexplored in financial research. Missing values in 

financial datasets affect both model fit and post-estimation inference, making effective imputation 

essential for asset pricing and predictive tasks. Our research highlights the advantages of machine 

learning methods for missing value imputation. Additionally, we examine the performance of machine 

learning models in predicting directional movements of financial returns. Directional forecasting, 

which focuses on classifying the sign of the next period’s return, is an alternative to predicting return 

levels. Since machine learning models excel at classification tasks (LeCun et al., 2015), we investigate 

whether their classification accuracy holds in directional forecasting and whether these forecasts are 

profitable within a trading strategy. 
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The methodological approach adopted in this thesis spans several cutting-edge machine learning 

frameworks. The first chapter explores the prediction of U.S. industry portfolio returns using an 

interpretable deep learning framework. Specifically, we use the LassoNet neural network method of 

Lemhadri et al. (2021) to forecast U.S. industry portfolio returns by extracting information from a large-

scale dataset of multiple predictors. Our objective is to uncover the factors that lead our forecasts 

based on the Shapley additive global importance (SAGE) interpretability method (see Covert et al., 

2020; Covert & Lee, 2021). We leverage the two state-of-art approaches in a two-step process. First, 

we apply the LassoNet model, which imposes sparsity and allows only a selected subset of a large pool 

of covariate variables to drive its forecasts endogenously, thus providing more accurate predictions. 

On that level, we provide evidence that jointly optimizing for input variable selection and minimizing 

the loss function, as LassoNet performs it, generates far superior accuracy compared to using a linear 

model to select a subset of the covariates as a first step, and then input this subset into a neural 

network as a second independent step. Hence, unlike other neural network architectures, LassoNet 

can capture data non-linearities without sacrificing interpretability for performance. Second, to shed 

light on the individual predictability importance of each covariate selected by the LassoNet and make 

our model transparent, we feed our post-LassoNet findings to SAGE. The SAGE method uses a 

cooperative game theoretic framework to identify the predictors contributing most to reducing out-

of-sample (OOS) LassoNet’s error. Therefore, SAGE reveals which covariates are the most influential in 

increasing the predictability of the forecasting model. We apply the above two-step approach in 

forecasting and trading 10 U.S. industry portfolio returns based on 88 predictors over the 2000 – 2019 

OOS period. We compare our results with those obtained by linear (i.e., linear regression) and several 

non-linear machine learning models (i.e., Group Lasso, Elastic-Net, and two neural network 

specifications). Finally, we assess the economic significance of LassoNet forecasts by forming long-

short portfolios of corresponding industry ETFs based on the forecasted returns on industry portfolios.  

The main findings reveal that LassoNet attains superior OOS performance against all benchmark 

techniques employed and, therefore, exhibits superior capacity in predicting industry portfolios’ 

returns. Importantly, LassoNet achieves the smallest forecasting error compared to other powerful 

machine learning models, such as the XGBoost and standard neural networks. Multiple statistical tests 

also validate those findings. The SAGE method reveals the importance of valuation ratios and individual 

and cross-industry lagged industry returns to our predictions against other profitability, liquidity, and 

efficiency ratios covariates. The covariates belonging to these categories of predictors present the 

highest SAGE values and have higher explanatory power on industry portfolios’ returns. Thus, we 

provide new evidence that valuation ratios and individual and cross-industry lagged industry returns 

are significant determinants of expected returns of stocks and portfolios of stocks. Regarding the 
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economic significance of the proposed model, the portfolio of ETFs constructed on LassoNet’s industry 

predictions outperforms several benchmarks, attains statistically significant alphas, and its profitability 

survives transaction costs. Our modeling framework can guide portfolio construction and investment 

decisions, particularly when deciding asset allocations in specific industries. Policymakers and central 

banks can also benefit from the flexibility of our proposed framework, which can be used to effectively 

forecast any economic variable, such as inflation, unemployment, and exchange rates. The model’s 

transparent nature enhances the reliability of predictions and reveals the most pivotal variables for a 

given forecast, which can assist in making informed policy design decisions. 

In the second chapter, we focus on the issue of missing values and use a deep learning model that 

considers both time-series and cross-sectional properties to impute missing entries. We apply the 

BRITS neural network architecture (Cao et al., 2018) to recover missing entries of hedge fund returns 

and a large pool of hedge fund predictors. Hedge fund datasets possess a large number of missing 

values and are, therefore, the ideal data setting to assess the efficacy of the adopted imputation model. 

Naturally, the issue of missing values is a common problem affecting most financial datasets. Four 

fundamental properties distinguish BRITS from other techniques that can be used to recover missing 

observations. First, BRITS imputes a missing value for month t by accounting for both the past as well 

as future values of the time series. Second, BRITS uses information from the entire cross-section when 

imputing missing values for each hedge fund. Third, a novel component of the neural network 

architecture enables BRITS to account for the decaying importance of past information since recent 

past observations should have more effect on future values than those of the far past. Fourth, since 

BRITS is a neural network architecture, it can effectively model data characterized by non-linearities, 

as is often the case with financial datasets. We examine 3,800 hedge funds from January 1994 to 

November 2021 to conduct our analysis. Our dataset consists of time series for the hedge fund returns, 

while we also construct a large dataset of 23 fund predictors. To assess imputation performance, we 

develop a simulation study in which we artificially drop 10% and 20% of observed data. We then 

measure the error between the observed values, their imputations generated by BRITS, and the 

benchmarks to evaluate each method’s imputation fidelity. As benchmark techniques for the 

simulation study, we include the cross-sectional mean, the time series mean, and a matrix completion 

method, singular value thresholding for nuclear norm minimization. We also include a forecasting and 

trading application to quantify the utility of imputing missing values. We train several machine-learning 

models on the fully recovered datasets generated by BRITS and the second-best performing 

imputation technique. The forecasts are then used to create a trading strategy in which we form long, 

equally-weighted portfolios for the top decile of hedge funds according to the models’ predictions. 
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Our findings highlight that the BRITS method attains the highest imputation performance against 

all other techniques, including the cross-sectional mean. BRITS achieves the lowest imputation error 

for the hedge fund returns dataset and most of the predictors’ datasets. Furthermore, we observe 

higher OOS forecasting accuracy across the machine learning models estimated on predictors’ datasets 

imputed by BRITS, contrary to forecasts using cross-sectional imputations of predictors as inputs. We 

highlight that this result is consistent across all machine learning techniques. The insights we gain from 

the trading application, again, favor BRITS. In more detail, the forecasts of the machine learning 

models, which were trained on BRITS imputed datasets, are associated with more profitable trading 

decisions as measured by higher portfolio annualized returns, Sharpe ratios, and alphas. We can 

conclude that an effective imputation method, such as BRITS, can provide an information advantage 

and assist models in producing more accurate and profitable predictions. Academic researchers, 

financial practitioners, and policymakers can benefit from BRITS effectiveness in recovering missing 

entries from financial datasets and, therefore, assist their forecasting models in making more accurate 

and economically meaningful predictions. 

In the third chapter, we use TabNet (Arik and Pfister, 2021), a state-of-the-art, interpretable neural 

network, to predict the directional movements of industries' excess returns. Directional movement 

prediction is a classification task, focusing on the sign (positive or negative) of the next period’s return. 

TabNet has three key advantages over traditional models like logistic regression: First, it allows for 

sparse covariate selection and quantifies the importance of each covariate, making it a “white box” 

model that addresses the typical lack of transparency in neural networks. Second, it is parameter-

efficient, focusing learning capacity on the most relevant covariates. Third, TabNet performs non-linear 

transformations and extracts meaningful data patterns without imposing assumptions on data 

distribution or structure, making it ideal for financial applications that require interpretable and 

performance-driven models. We apply our modeling framework to forecast the directional movements 

for 49 U.S. industry portfolio excess returns for the 2013-2022 OOS period. We utilize a rich set of 127 

covariates for our predictive task and evaluate the model’s accuracy against other benchmark models 

using multiple performance metrics and statistical tests. We also construct a trading application to 

evaluate the profitability of TabNet’s predictions. Based on TabNet’s predictions, we form the trading 

positions and shift wealth between the industries’ portfolios and a risk-free investment (i.e., the one-

month Treasury Bill). 

Our main findings reveal that TabNet achieves the highest out-of-sample (OOS) predictive accuracy 

across all performance metrics compared to other linear and non-linear machine learning models. The 

statistical tests employed further validate these results. The forecasting application demonstrates that 

TabNet's classification accuracy is considerably higher than that of the second best-performing model, 
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logistic regression. Additionally, we establish the profitability of TabNet’s directional forecasts through 

the trading application results. The strategy formed based on TabNet’s predictions achieves the highest 

annualized return, Sharpe ratio, and statistically significant positive alpha values compared to the four- 

and five-factor models. Notably, the portfolio constructed using TabNet’s forecasts also exhibits the 

lowest volatility and maximum drawdown values. The trading strategy based on the proposed model 

continues to outperform all other benchmarks, even after accounting for monthly transaction costs. 

These findings provide financial professionals and portfolio managers with a powerful tool, offering 

superior predictive accuracy and risk-adjusted performance that can enhance trading strategies. For 

academic researchers, the results offer a validated framework for further exploring the application of 

interpretable machine learning models in finance, particularly in areas like directional prediction, 

which have received less attention in the literature. 

In the context of the thesis, interpretability refers to how models explain or provide insights into 

the relationships between inputs (i.e., covariates) and outputs (i.e., predictions). Compared to 

traditional econometric and asset pricing models, machine learning approaches like LassoNet-SAGE 

can identify non-linear patterns and interactions between variables. White-box models (e.g., LassoNet-

SAGE, TabNet) maintain a level of transparency by selecting a subset of features, offering insights into 

what drives predictions. On the other hand, in traditional econometric models, interpretability often 

comes directly from model coefficients, giving clear causal interpretations. However, traditional 

approaches may oversimplify complex data patterns by adopting linear model dynamics. For instance, 

in LassoNet, the deep learning component captures non-linearities, while the covariate selection 

component retains interpretability by identifying key covariates. Post-estimation methods like SAGE 

provide additional insights into how different covariates contribute to the prediction. This hybrid 

approach allows for more flexible and potentially more accurate forecasts than traditional methods, 

but it also introduces some limitations in interpretability. While SAGE identifies covariate importance, 

it is a method not directly derived from economic theory and does not provide the same level of direct 

interpretability as simpler linear models. 

This thesis employs a comprehensive set of Python libraries and R packages to analyze the data and 

implement machine learning models. The research uses Numpy (Harris et al., 2020) and pandas 

(McKinney, 2010) for data handling and preprocessing purposes. The modeling framework of the first 

chapter is developed using the lassonet (Lemhadri et al., 2021) and sage-importance (Covert et al., 

2020) Python libraries. For the second chapter, we utilize the code associated with the paper that 

introduced BRITS (Cao et al., 2018), which is available as GitHub repository, and the pypots (Du, 2023) 

library. The pytorch (Paszke et al., 2019), along with pytorch_tabnet (DreamQuark-ai., 2023) libraries 

are used to implement TabNet in the third chapter. Several Python libraries, including lightgbm (Ke et 
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al., 2017), xgboost (Chen & Guestrin, 2016), catboost (Prokhorenkova et al., 2018), tensorflow/keras 

(Abadi et al., 2016), asgl (Mendez-Civieta et al., 2021) and scikit-learn (Pedregosa et al., 2011) have 

been being applied for various machine learning tasks and benchmark model implementations. 

Furthermore, the filling (Fuchs et al., 2021) R package is used to estimate the matrix completion 

benchmark in the second chapter. To ensure the reproducibility of results, we take the necessary steps 

to ensure a consistent and verifiable workflow across estimations. The randomness inherent in many 

machine learning algorithms, such as random initialization of weights, is controlled by using a 

technique known as fixing the model's random seed. Additionally, the models are serialized using the 

Python pickle library. Serialization refers to saving a trained model's state (including its parameters, 

weights, and specification) to disk, enabling it to be reloaded and used afterward without the need for 

re-estimation. This step further enhances the reproducibility by allowing the exact same model, in the 

same state, to be reused for further analysis, or comparisons with benchmarks.  

While the findings of this research demonstrate the efficacy of interpretable machine learning 

models such as TabNet, LassoNet, and BRITS in financial forecasting, several promising directions for 

future research remain. One potential area involves extending the application of these models to a 

broader set of asset classes, such as bonds, real estate, and alternative investments like 

cryptocurrencies, to assess their performance across diverse financial instruments. Moreover, further 

research could also explore integrating machine learning methods with traditional asset pricing 

frameworks, such as the Capital Asset Pricing Model (CAPM) or multi-factor models, to better 

understand how these approaches can complement each other and enhance prediction accuracy. 

Moreover, incorporating unstructured data sources, such as corporate filings, news sentiment, or 

sector-specific data, may offer new insights and improve forecasting performance. Another avenue is 

the adaptation of these models for real-time, high-frequency trading environments, where rapid 

decision-making is crucial. Finally, future work could aim to make these models more computationally 

efficient, allowing for greater accessibility and usability for smaller financial institutions and individual 

researchers. 

The remainder of the thesis is structured as follows. Chapter 1 presents the methodology and 

empirical evidence of modeling and forecasting 10 US industry portfolios using the LassoNet-SAGE 

framework. Chapter 2 describes the application of the BRITS model to impute hedge fund datasets and 

the forecasting and trading exercise in which we use the imputed datasets to generate OOS predictions 

and create portfolios. Chapter 3 presents our modeling framework based on TabNet, which we 

leverage to predict the directional movements and trade 49 US industry portfolios. Finally, Chapter 4 

provides the concluding remarks of the thesis. 
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CHAPTER 1 

Industry Return Prediction via Interpretable Deep Learning 

 

1.1. Introduction 

There is a significant strand of literature showing that traditional asset pricing factor models do not 

perform well, or at least as well as initially advertised, in explaining the cross-section of stock returns 

or stock return predictability (Ferson and Harvey, 1991; Ferson and Korajczyk, 1995; Ferson and Harvey, 

1999; Avramov, 2004, Lewellen, et al., 2010). Hence, the return predictability they evinced could result 

from asset pricing misspecifications. Scientific remedies suggest constructing efficient aggregate 

portfolios, such as industry portfolios. However, even these solutions still need to improve the 

explanatory power of linear asset pricing models (see Lewellen et al., 2010). For that reason, recent 

studies investigate stock return predictability via machine learning techniques better suited to uncover 

nonlinear patterns and cross-sectional relationships among firm and fund characteristics (see among 

others, Krauss et al., 2017; Fischer and Krauss, 2018; Gu et al., 2020; DeMiguel et al., 2023). Those 

techniques can also address issues arising from many irrelevant or highly correlated predictors while 

minimizing the risk of overfitting, contrary to widely used linear methods. Moreover, sparse literature 

investigates the aggregate stock return predictability at the industry portfolio level. Most of the studies 

mainly focus on applying linear methodologies, such as the Ordinary Least Squares (OLS) and Lasso to 

industry returns, and they often rely on a relatively small number of predictors (see Cohen and Frazzini, 

2008; Menzly and Ozbas, 2010; Rapach et al., 2015, 2019). Besides the aggregate market return 

predictability, the increasing popularity of industry exchange-traded funds (ETFs) and efficient capital 

allocation across industries make industry-sorted portfolios’ predictability an interesting topic for 

academics and practitioners.  

Given the growing applications of machine learning techniques, it has become even more 

interesting and essential to provide insights into how these methods capture precisely the 

relationships between predictors and forecasts. Interpretability is an essential tool in empirical asset 

pricing applications as we can understand which input variables affect the output the most and better 

identify the problem (see Brigo et al., 2021); likewise, a human who can consistently predict the result 

of a model and explain the logic behind the result (see, Kim et al., 2016). Existing literature using linear 

asset pricing models has shown that profitability (see Fama and French, 2015 and Ball et al., 2016), 

liquidity (see Pastor and Stambaugh, 2003) and industry interdependencies (see Rapach et al., 2015) 

are some of the most significant factors in determining expected returns of stocks and industry 
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portfolios of stocks. Thus, it is worth revising those empirical findings under the prism of a nonlinear 

investigation.  

     This study uses a deep learning framework to predict industry portfolio returns. Specifically, we 

apply the LassoNet method of Lemhadri et al. (2021) to forecast U.S. industry portfolio returns by 

extracting information from a large-scale dataset of multiple predictors. The framework uniquely can 

unveil the underlying structure between forecasts and predictors in a nonlinear environment. This is 

achieved by jointly selecting a subset from a large class of input variables and minimizing the objective 

loss function of a neural network in a mathematically elegant way. As a result, the set of the selected 

covariates drives the model's forecasts endogenously, thus providing more accurate predictions. In 

other words, LassoNet captures data nonlinearities via a deep learning mechanism while it performs 

feature selection due to its Lasso-type component, unlike standard neural network architectures. 

However, LassoNet is only partially interpretable because it performs feature selection rather than 

quantifying the selected features' importance on the model’s performance. To assess how much each 

feature contributes to LassoNet’s performance overall and so to uncover the factors leading our 

forecasts precisely, we use post-LassoNet, the SAGE method of Covert et al. (2020), which is an additive 

global importance interpretability method relying on Shapley values. We input the features selected 

by LassoNet to SAGE to shed more light on the importance of each selected covariate on industry 

portfolio predictability. The advantage of SAGE lies in using a cooperative game theoretic framework 

to identify the predictors that contribute the most to reducing the out-of-sample (OOS) error or 

increasing the models’ predictability. SAGE achieves this by considering all possible interactions across 

the dataset of the LassoNet selected predictors in optimizing the model’s performance. Such a feature 

contrasts with other commonly used interpretability methods, such as the partial derivatives or regular 

SHAP method, which deal with the issue only by identifying the variables causing the most significant 

variation in the model output or how much each feature contributes to a single prediction.1 This is the 

first time LassoNet and SAGE methods have been applied to a financial study, either separately or 

jointly. Overall, the above two-step approach is employed in forecasting and trading 10 U.S. industry 

portfolio returns over the 2010 – 2019 period based on a large universe of 88 predictors. In this way, 

we provide a detailed exercise of LassoNet and SAGE on financial time series forecasting. We compare 

our results with those obtained by linear (i.e., linear regression, Group Lasso, Elastic-Net) and several 

nonlinear machine learning models (i.e., XGBoost and two neural network specifications) as proposed 

 
1  We are aware that other methods, such as deep learning-based Granger causality applications, are well suited 
for causal relationships in time series data. However, they can indicate only whether a variable helps forecast 
another. At the same time, SAGE can elucidate how individual components of that variable category contribute 
to the model’s prediction and to lower the LassoNet’s loss function. 
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by the previous literature. Finally, we assess the economic significance of LassoNet forecasts by 

forming long-short portfolios of corresponding industry ETFs based on the highest-lowest forecasted 

returns on industry portfolios. In this way we also evaluate LassoNet’s ability on capital allocation of 

aggregate portfolios.  

   Our findings indicate that LassoNet outperforms OOS in all benchmark methodologies employed 

across the ten industries examined, so it better predicts industry portfolios’ returns. For instance, 

LassoNet achieves the smallest forecasting error compared to other powerful machine learning 

models, such as the XGBoost and standard neural networks. Those findings are justified by pairwise 

statistical significance tests for predictability, such as those of Diebold Mariano (1995) and Giacomini 

and White (2006), as well as tests for statistical inferences of multiple benchmark forecasts at the same 

time and while accounting for alpha-level inflation such as those of Hansen (2005) and Hansen et al. 

(2011). The SAGE method reveals the importance of valuation ratios and individual and cross-industry 

lagged industry returns to our predictions against other covariates belonging to profitability, liquidity 

and efficiency ratios. The covariates belonging to these categories of predictors present the highest 

SAGE values, and so have higher explanatory power on industry portfolios’ returns. Thus, we provide 

new evidence that valuation ratios, individual and cross-industry lagged industry returns are significant 

determinants of expected returns of stocks and portfolios of stocks. We improve on recent findings in 

the linear asset pricing literature, which shows that profitability (see Fama and French, 2015 and Ball 

et al., 2016) and liquidity (see Pastor and Stambaugh, 2003) are some of the most significant factors. 

Regarding the economic significance of the proposed model, the portfolio of ETFs constructed on 

LassoNet’s industry predictions outperforms several benchmarks in terms of a battery of performance 

measures as well as statistically significant alphas. For example, the most profitable long-short ETF 

portfolio generates a post-transaction costs Sharpe ratio of 2.04 and statistically significant four and 

five-factor alphas of 20.35% and 20% per annum, respectively.  

The remainder of this chapter is structured as follows. Section 1.2 provides a literature review. 

Section 1.3 presents our methodology and modelling framework. Section 1.4 describes our dataset 

and experimental design. Section 1.5 covers the main empirical results. Finally, section 1.6 concludes. 

1.2. Literature review 

Our work is linked to the emerging operations research literature of machine learning methods 

applications on forecasting equity returns, either as single stocks or industry portfolios of stocks (see 

among others, Rapach et al., 2015; Krauss et al., 2017; Fischer and Krauss, 2018; Rapach et al., 2019; 

Gu et al., 2020; Bianchi and McAlinn, 2021). Krauss et al., (2017) use DNNs, gradient-boosted-trees, 

and random forests to predict the probability of each of the S&P 500 constituents’ daily returns to 
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outperform the market cross-sectionally for 1992 – 2015. The authors construct long-short portfolios 

based on those predictions while they use different lagged returns of each stock as covariates. The 

method generating the highest return is an equally weighted machine learning approach ensemble. In 

a follow-up paper, Fischer and Krauss (2018) assess the predictive power of a state-of-the-art long 

short-term memory neural network (LSTM) on classifying the same universe of stocks based on the 

cross-sectional median. The LSTM method outperforms all benchmark models (i.e., random forest, 

neural network, and logistic regression) in statistical and economic terms. Gu et al. (2020) perform a 

large-scale comparative analysis of the most popular machine learning algorithms (e.g., penalized 

regressions, principal component analysis, regression trees, neural networks) in predicting 30 

thousand U.S. stocks from March 1957 to December 2016. The study uses 94 stock-level characteristics 

as predictors in the forecasting experiment of stock returns in a panel data format. It concludes that 

these models offer an improved description of the expected return behaviour relative to traditional 

forecast methods. DNNs were the best specification in forecasting and trading tasks, generating the 

highest R-squared and Sharpe ratios, respectively. 

Concerning the industry portfolios’ return predictability via machine learning, Rapach et al. (2015) 

examine the predictability of the adaptive Lasso model of Zou (2006) for shrinkage and optimal 

variable selection on 30 industry portfolios while using as predictors monthly lagged returns of 

different industries for the period 1960 – 2014. Their findings report significant evidence of cross-

industry returns predictability, with at least four lagged industry returns being significant predictors. 

These results are also verified by principal component and partial least squares methods by extracting 

the latent factors of industry returns. In a similar setting and for the same dataset, Rapach et al. (2019) 

use a Lasso model for dimensionality reduction of lagged industry returns predictors while applying an 

OLS post-Lasso regression to estimate predictor coefficients and so better forecast industry returns 

accurately. They also employ a multiple-hypothesis testing framework to assess the statistical 

significance of the selected predictors. The findings align with those of Rapach et al. (2015) while being 

statistically significant. The authors also test the economic significance of the above predictability by 

constructing industry spread portfolios, which generate higher performance than naïve benchmarks. 

Recently, Bianchi and McAlinn (2021) propose an ensemble of linear predictive regressions for industry 

portfolio returns, considering the correlation structure of 75 covariates, especially when highly 

correlated. Even though their proposed method does not belong to the class of nonlinear methods, 

they compare its performance with that of conventional machine learning techniques. They conclude 

that financial ratios provide valuable information for forecasting stock returns at the industry and 

aggregate market levels.  
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In addition, we relate our study to the recent literature attempting to interpret the machine 

learning black box properties in financial applications. Seminal studies implementing different 

techniques that assign importance measures to the individual financial covariates include those of Gu 

et al. (2020) and Kim et al. (2020). Gu et al. (2020) mainly use two standard techniques for feature 

importance. The first one evaluates the reduction in the R-squared of the predictive regression by 

setting each covariate to zero while keeping the rest of the predictors unmodified. The second 

approach assesses the sensitivity of the forecasting model fit to changes in a covariate by measuring 

the sum squared partial derivatives of the model to each predictor. Such an approach is assumed 

conventional in machine learning literature (see also Dimopoulos et al., 1995). Recently, Kim et al. 

(2020) use a DNN to forecast the profitability of retail investors in spread trading while considering 

different feature groups related to investors (e.g., past performance, preferences in markets and 

channels, demographics, etc). They employ the information-fusion-based sensitivity analysis (IFBSA) 

of Delen et al. (2007) as their primary feature importance method to obtain the most informative 

predictors. IFBSA tests the marginal impact of a predictor on the error of a model without a specific 

covariate concerning the model, which includes that covariate. At the same time, the procedure is 

repeated for all covariates. 

Our study extends the above literature in four ways. First, we show the ability of state-of-the-art 

machine learning approaches to better capture nonlinear patterns and interactions in a data-rich 

environment of covariates and accurately predict aggregate portfolio returns, specifically industry 

portfolios, than standard machine learning and linear methods. For that purpose, we apply the 

LassoNet, an interpretable neural network imposing sparsity and allowing only a subset of the 

covariates to drive its forecasts, even if some covariates are correlated (e.g., valuation ratios). On the 

same note, we expand the previous literature showing the outperformance of Lasso-type 

methodologies in predicting industry portfolios’ returns (see Rapach et al., 2015; 2019). We prove that 

applying an interpretable deep learning method based on Lasso, which performs feature selection and 

deep learning in a nonlinear environment, significantly improves forecasting performance. Second, a 

key distinguishing feature of our work is the focus on model interpretability associated with which 

covariates are instrumental for the forecasts and crucial for the model's overall predictive 

performance. We use SAGE, a cooperative game theory approach, to quantify the importance of the 

LassoNet selected features in explaining industry portfolio returns globally. Third, we assess the ability 

of LassoNet to allocate capital efficiently across industries and so the economic significance of its 

forecasts. We construct spread portfolios of industries based on their returns forecasts and show their 

superiority against buy-and-hold strategies on market benchmarks. Finally, we create and use a large-

scale set of 88 predictors, consisting of 10 distinct categories of financial ratios, past returns and 
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macroeconomic variables, by bringing together and expanding predictors used from the past literature 

for industry return predictability (e.g., Rapach et al. 2019; Bianchi and McAlinn, 2021). Thus, we 

expand the universe of the covariates under study compared to the existing literature and offer new 

insights into their significance in the predictability and profitability of industry returns. Overall, our 

study can be of great interest to researchers and policymakers to efficiently predict financial market 

movements and make informed decisions about optimal trading execution and capital allocation. 

1.3. Methodology  

In this section, we discuss the proposed deep learning framework. In the first subsection, we start 

with a detailed description of the LassoNet model and its main advantages. In the following subsection, 

we discuss the model’s hyper-parameterization. The last subsection provides a discussion of the game-

theoretic framework of Shapley Additive Global importancE (SAGE) (Covert et al., 2020), which is used 

to assign importance scores to the selected covariates. To adequately assess LassoNet's predictive 

ability, we also compare its forecasting performance against several benchmark models, which are 

presented in the Appendix 1.A. The benchmark model set includes linear regression, Group Lasso, 

Elastic-Net, two Neural Network models, a simple MLP and Lasso combined with an MLP (Lasso-MLP), 

and XGBoost. The hyperparameters for all models are tuned in-sample (IS). Following the common 

practice, we employ the early stopping and sensitivity analysis procedure for the neural networks (see 

Krauss et al., 2017; Fischer and Krauss, 2018; Gu et al., 2020) and cross-validation for all other machine 

learning models. Using this extensive benchmark model set enables us to compare the LassoNet with 

models that perform covariate selection (group lasso regression, elastic net regression, Lasso-MLP) as 

well as models that use the full covariate set for their forecasts (linear regression, MLP, XGBoost). The 

description of the benchmark models, as well as their optimization hyperparameters, are reported in 

Appendix 1.A. 

We employ several Python libraries for data analysis and machine learning model implementation. 

Numpy (Harris et al., 2020) and pandas (McKinney, 2010) are used for data preprocessing tasks. The 

LassoNet-SAGE modeling framework is developed using the lassonet (Lemhadri et al., 2021) and sage-

importance (Covert et al., 2020) libraries. The asgl (Mendez-Civieta et al., 2021) library is applied for 

penalized regression models, while the MLP neural networks and XGBoost are estimated using 

tensorflow/keras (Abadi et al., 2016) and xgboost (Chen & Guestrin, 2016) Python libraries, 

respectively. To ensure reproducibility, we fix the random seed to control randomness in the model 

training process and serialize the trained models using the pickle library, allowing for consistent reuse 

and analysis of the models. 
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1.3.1. LassoNet 

 We define an asset’s excess return as the sum of its conditional expected return and the prediction 

error component. The conditional expected return of an industry portfolio 𝑖 at time t+1 can be 

represented as a function of covariates that maximizes the OOS prediction of the realized return, 𝑟𝑖,𝑡+1, 

in a nonlinear setting (see also Gu et al., 2020): 

𝑟𝑖,𝑡+1  = 𝔼 (𝑟𝑖,𝑡+1) +  𝑒𝑖,𝑡+1 =   𝑔(𝕏𝑖,𝑡) + 𝑒𝑖,𝑡+1 (1.1)  

where the conditional expected return 𝑔() term represents a nonlinear flexible function that a 

machine learning model parameterizes, 𝕏𝑖,𝑡 is a D-dimensional vector of covariates and 𝑒𝑖,𝑡+1 is the 

error term. In our case, we use a balanced panel dataset {(𝕏𝑖,𝑡 , 𝑟𝑖,𝑡+1)}
1≤𝑖≤𝑛

 spanning across the 

covariate set for the ten industries and the period examined in our study. We denote with 𝑟𝑖,𝑡+1 the 

industry returns, the target variable in our forecasting task. To construct the mapping 𝑔: 𝕏𝑖,𝑡  ↦ 𝑟𝑖,𝑡+1 

for each industry, the LassoNet method extends the traditional linear regularized regression models 

by simply adding a nonlinear component (see Lemhadri et al., 2021). In essence, the added term is the 

nonlinear transformation of the input variables as they propagate forward through the layers of a 

neural network with activation functions. Mathematically, the LassoNet for each industry is formulated 

as follows: 

𝑔 ≡ 𝑔𝜃,𝑊: 𝕏𝑖,𝑡 ↦ 𝜃𝑇𝕏𝑖,𝑡 + 𝐻𝑊(𝕏𝑖,𝑡) (1.2) 

where 𝑔is a class of residual feed-forward neural networks of arbitrary width and depth.2 The 

network is parameterized by weights {(𝜃, 𝑊)}, where 𝜃 denotes the vector of weights in the residual 

layer (i.e., skip-connection), and 𝑊  denotes the vector of weights in the hidden layer of a fully 

connected feed-forward network 𝐻𝑤. Hence, 𝜃𝑇𝕏𝑖,𝑡 corresponds to the linear component, and 

𝐻𝑊(𝕏𝑖,𝑡) corresponds to the nonlinear component of the neural network architecture. Following 

Lemhadri et al. (2021), the objective function for each industry’s prediction takes the form of: 

min
𝜃,𝑊

𝐿(𝜃, 𝑊) + 𝜆‖𝜃‖1 (1.3) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ‖𝑊𝑝
(1)‖

∞
≤ M|𝜃𝑝|, 𝑝 = 1, 2, … , 𝐷 (1.4)  

 
2 The exact LassoNet architecture is different for each industry after hyperparameter optimization since we train 
the model separately for each industry. 
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where 𝐿(𝜃, 𝑊) is the loss function,  𝜆 denotes the feature sparsity penalty parameter, 𝑊𝑝
(1) indicates 

the weights for covariate 𝑝  in the first hidden layer, and M is a hierarchy coefficient.3 The key features 

of LassoNet are introducing a penalty term in the loss function, which enforces covariate selection, 

and the so-called hierarchy coefficient M, which controls the relative strength of linear and nonlinear 

components of the model. The residual and the first hidden layer are jointly optimized. 

The main innovation of the model lies in the constraint ‖𝑊𝑝
(1)‖

∞
≤ M|𝜃𝑝|, which indicates that a 

covariate 𝑝 is not involved in the feed-forward network (i.e. 𝑊𝑝
(1)=0) if the residual layer weight is zero 

(i.e., 𝜃𝑝 = 0). In other words, the constraint conditions the level of participation of a covariate 𝑝  in the 

nonlinear operations of the model (i.e., first and subsequent layers) based on its relative importance, 

which is achieved by tying every covariate to the single coefficient, 𝜃, of the linear component (i.e., 

skip-connection). In this way, the linear component is used to guide feature sparsity in the nonlinear 

component (i.e., feed-forward neural network), and both components are fitted simultaneously to 

capture nonlinear patterns in the dataset via the neural network. Moreover, a closer inspection of the 

objective function reveals that the LassoNet nests the linear Lasso and the standard feed-forward 

neural network in cases where the hierarchy coefficient, M, takes the extreme values of zero and 

infinity, respectively.    

The estimation of LassoNet includes a standard backpropagation process, which is initially applied 

to all model parameters, and a proximal operator is applied on the input layer’s set of weights (i.e., 

{𝜃, 𝑊(1)} ). Specifically, we use gradient descent with Adam optimizer to update the LassoNet set of 

weights as a first step. A hierarchical proximal operator is applied exclusively to the skip-connection 

weights, 𝜃, and the neural network weights connecting the covariates to the first hidden layer, 𝑊(1), 

as a second step.4 To fit our dataset optimally, we examine deep neural network architectures with 

multiple hidden layers to ensure that LassoNet can better capture all possible nonlinearities in our 

financial dataset. We also implemented the hyperbolic tangent ( tanh () ) as the activation function 

and the Mean Squared Error (MSE) as the loss function for our LassoNet implementation.5 The exact 

hyperparameter tuning is described in the following section. 

 

 

 
3 Penalization of the weights is only required for the neurons' first hidden layer because of the feed-forward 
architecture of the network, while the λ penalty term in the objective function operates in the same way as in 
the standard linear Lasso model. 
4 The detailed optimization steps can also be found in Lemhadri et al. (2021). 
5 This is 𝐿(𝜃𝑖 , 𝑊𝑖) =  

1

𝑛
∑ (𝑟𝑖𝜏 − 𝑟̂𝑖𝜏)2𝑡+𝑛

𝜏=𝑡+1  
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1.3.2. LassoNet’s hyperparameters 

In this section, we present the LassoNet’s hyperparameters optimization process. We optimize 

LassoNet by using early stopping and sensitivity analysis in the I.S. To conduct early stopping, we use 

a validation dataset, which is constructed by splitting the I.S. into training and validation sub-samples. 

We use the first 18 years (i.e., 1985 – 2002) as the training dataset and the last seven years (i.e., 2003 

– 2009) as the validation dataset (see also Granger, 1993; Dunis et al., 2011; Gu et al., 2020). Sensitivity 

analysis in conjunction with early stopping results in the optimal combination of hyperparameters, 

achieving the lowest mean squared error in the validation sub-sample. We keep this network as the 

optimal LassoNet architecture for generating the OOS forecasts. More specifically, we optimize the 

number of hidden layers, hidden neurons, and hyperparameters M and 𝜆  with early stopping and 

sensitivity analysis. 

Regarding LassoNet's nonlinear component specification, we follow Gu et al. (2020) and decide on 

the optimal LassoNet specification from a fixed candidate model set. We avoid shallow neural network 

architectures with a single hidden layer in the candidate model set because of possible nonlinearities 

in our dataset (i.e., a vast set of covariates). It has also been shown that deeper architectures with 

multiple hidden layers outperform shallower ones with a single hidden layer due to the higher-order 

nonlinear interactions between the covariates (see Mhaskar et al., 2016). However, given that industry 

portfolios’ monthly data frequency limits the number of samples available for the model’s estimation, 

we do not explore architectures with more than three hidden layers to avoid model overfitting. Similar 

to other studies, we explore architectures with a higher number of neurons in the first layer(s) followed 

by a layer(s) with a smaller number of neurons (see Gu et al., 2020). Based on the above reasoning, 

we explore two LassoNet architectures with two hidden layers (i.e., (16 4), (16, 8)) and two 

architectures with three hidden Layers (i.e., (16, 8, 4), (16, 16, 4)). To determine the number of neurons 

for the first hidden layer, we follow again the relevant literature (see Gu et al., 2020; Filippou et al., 

2022) and a common rule of thumb (i.e., the number of neurons equals the square root of the number 

of covariates).  

For the hierarchy coefficient M, we investigate four values (i.e., 0.005, 0.05, 0.5, 5) and choose the 

optimal one via early stopping and sensitivity analysis procedures. To obtain the optimal value of 𝑡ℎ𝑒 𝜆 

hyperparameter, we follow Lemhadri et al. (2021) and adopt a heuristic mechanism based on a 

sequence of 𝜆  values. The initial value of 𝜆 equals the generated MSE of a conventional MLP estimated 

with the selected covariates on the validation data. The exact MLP architecture is defined above (e.g., 

16, 4). The initial value of 𝜆 is used to run the LassoNet algorithm as described in Section 1.3.1. Then, 

the estimation of the following λ hyperparameters is given based on a regularization path multiplier 
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of 1.05. For instance, the algorithm is re-estimated every time the 𝜆  is increased based on that 

multiplier. The procedure continues until the 𝜆  reaches a value that imposes a regularization powerful 

enough that the LassoNet selects no covariate. Table 1.1 presents the different hyperparameter 

configurations of the LassoNet model. We examine all possible combinations of 4 different hidden 

layer architectures and four different M values for 16 candidate configurations.  

Table 1.1. Hyperparameter search space for the LassoNet model. 

This table reports the hyperparameter search space for the LassoNet model. We use the validation dataset to 
choose the set that generates the lowest mean squared error metric. 

Architectures 
[(16, 4), (16, 8), (16, 8, 4), (16, 16, 4)] 

M parameter 
[0.005, 0.05,0.5, 5] 

Regularization Path multiplier 
[1.05] 

 

For LassoNet’s iterative estimation algorithm, we keep the number of training iterations, known as 

epochs, at 200. We also use a batch size of 72 observations. To retain the temporal ordering of the 

data, we enforce that batch construction follows the time sequence of the observations and that the 

data are not shuffled before feeding them to LassoNet’s training algorithm. Finally, we use 50 model 

training iterations for the early stopping mechanism to avoid model overfitting. The final optimized 

LassoNet provides transparency regarding which covariates drive its forecasts. Moreover, it provides 

an input variable selection mechanism to handle high-dimensional asset pricing datasets and 

regularize a large pool of covariates. However, even though LassoNet can effectively perform covariate 

selection, the model lacks the ability to determine the importance of each individual covariate.  

1.3.3. Estimating covariates' importance  

For many years, the financial literature criticised standard machine learning approaches for their 

black-box properties, or in other words, not providing the importance of financial and economic factors 

on target forecasts as economic and asset pricing theory would expect. We apply an extra step on top 

of LassoNet's feature selection property to identify the covariates that drive our model's forecasts. As 

described above, the optimized LassoNet selects specific covariates through its penalized regression 

component in nonlinear environments. However, it does not perform feature importance in ranking 

covariates based on the extent to which the model depends on each of them overall. For that reason, 

we employ a cooperative game-theoretic method based on Shapley values to measure the importance 

of each selected covariate. The SAGE method of Covert et al. (2020) provides the Shapley values, which 

quantify the ranking in the importance of each covariate or group of covariates. To avoid confusion, 
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we call the Shapley values estimated by SAGE as SAGE values. The significant contribution of SAGE, 

contrary to the commonly used SHapley Additive exPlanations (SHAP) method of (Lundberg and Lee, 

2017), is that it represents a global interpretability method which provides feature importance by 

considering the behaviour of the model across the whole dataset and not how much each feature 

contributes to an individual prediction (i.e., every month). Also, the approach fundamentally differs 

from other interpretability methods (e.g., partial derivatives), which only measure importance in a way 

that finds which covariates cause the most considerable variation in the model output. Influencing the 

model output does not necessarily indicate a covariate as informative, so it is more insightful to identify 

which covariates drive the forecasts and, at the same time, consider whether these covariates enhance 

the model's predictive accuracy.  

In our study, the SAGE method assigns credit to the covariates based on their contribution to 

lowering the LassoNet’s loss OOS (i.e.,  𝐿( 𝔼[𝑔(𝕏𝑖,𝑡)] , 𝑟𝑖,𝑡+1 )). This contrasts with the SHAP method, 

which only assigns each feature a value representing whether it pushes the prediction higher or lower. 

Additionally, we acknowledge that covariates contribute different information when inputted into a 

model together with other covariates versus being in isolation (see Covert et al., 2020). To properly 

account for variable interaction effects and synergies, we consider all possible subsets of our selected 

covariate set and then measure the degree of increase of the model's error without a specific 

covariate. This process is repeated by focusing on a different covariate each time. Implementing this 

method involves constructing a cooperative game 𝑣𝑓 that represents the model’s overall performance 

and is defined as follows: 

𝑣𝑓(𝑆) =  −𝔼 [ 𝐿( 𝔼 [ 𝑔(𝕏𝑖,𝑡)| 𝕏𝑖,𝑡
𝑆  

], 𝑟𝑖,𝑡+1 )] (1.5) 

where 𝑔 represents the optimized LassoNet, 𝑆 indexes a subset of the total number of covariates 

(i.e.,𝑆 ≤ 𝐷), 𝑣𝑓 quantitatively represents the model’s performance given the subset 𝕏𝑖,𝑡
S  of covariates. 

The minus sign in front of the loss indicates that a lower loss increases the value of 𝑣𝑓(𝑆). 

 According to the above framework, a specific Shapley value, 𝜑𝑝(𝑣𝑓), is attributed to each covariate 

𝑝 to quantify the contribution to lowering the model’s prediction error. Only the covariates with 

positive values 𝜑𝑝(𝑣𝑓) > 0 are essential for the forecast and instrumental in increasing the model's 

statistical accuracy and improving its forecasting performance. The estimated Shapley values represent 

importance scores for the corresponding covariates when they are estimated for cooperative games 

in the form of 𝑣𝑓(𝑆). Finally, we identify covariate importance on an aggregated category level. To 

arrive at this estimation, we sum the SAGE values for all covariates that were selected by the LassoNet 

and belong to the same category of variables. 
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1.4. Data and experimental design 

We forecast 10 U.S. industry portfolio returns as given by Kenneth French’s website for the period 

1985 to 2019 in a rolling-window format, using January 2010 to December 2019 as the OOS. 

Specifically, we refit all models yearly and use IS data to produce forecasts for the following year (i.e., 

12 months) (see Gu et al., 2020; Chen et al., 2023; DeMiguel et al., 2023). The forecasting horizon is 

one month ahead. The ten industry sectors we examine in this study are: Consumer Durables (DURBL), 

Energy (ENRGY), High-Technology (HITEC), Health (HLTH), Manufacturing (MANUF), Consumer 

Nondurables (NODUR), Shops (SHOPS), Telecommunications (TELCM), Utilities (UTILS), and the other 

remaining industry sectors merged (OTHER)6. Accordingly, the industry returns correspond to the 

value-weighted average of their constituent stocks. 

For our prediction task, we construct a set consisting of 88 covariates. To construct our dataset, we 

use the Compustat database from the Wharton Research Data Services (WRDS) platform and precisely 

63 industry financial ratios, which belong to capitalization, efficiency, financial soundness, solvency, 

liquidity, profitability, and valuation categories. Capitalization ratios measure the debt component of a 

firm's total capital structure; efficiency ratios capture the effectiveness of the firm's usage of assets 

and liability; financial soundness and solvency ratios capture the firm's ability to meet long-term 

obligations; liquidity ratios measure a firm's ability to meet its short-term obligations; profitability 

ratios measure the ability of a firm to generate profit; valuation ratios estimate the attractiveness of a 

firm's stock. To aggregate financial ratios at the industry level, we take the median value from the 

companies belonging to the specific industry. The covariates set is on a monthly frequency. In case of 

only quarterly or annual data for some ratios, the most recently available observation item is carried 

forward to fill each month. All observations are lagged by two months to avoid look-ahead bias issues 

and ensure that the information was publicly announced at a given timestamp in our dataset. 

Following the findings of Rapach et al. (2015), which provide evidence of industry interdependencies 

and cross-industry return predictability, we also decided to include other industries’ lagged returns to 

extend our dataset of covariates further. Thus, for each U.S. industry portfolio, we also include up to 

12-month excess lagged returns and the 1-month value-weighted lagged returns of all other nine 

industries as extra covariates.7. Our dataset also includes four macroeconomic variables downloaded 

from the FRED database, namely the Chicago Fed National Financial Conditions Index (NFCI), Chicago 

Fed National Activity Index (CFNAI), Chicago Fed National Activity Index: Production and Income 

 
6The industry definitions are available on Kenneth French's website: 
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/det_10_ind_port.html.  
7 We use the 3-Month Treasury Bill to calculate excess returns. The data were downloaded from the FRED 
database: https://fred.stlouisfed.org/ 

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/det_10_ind_port.html
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(PANDI), and the Consumer Price Index (CPI). The NFCI index captures U.S. financial conditions in 

money, debt, and equity markets and the traditional and shadow banking systems. The PANDI index 

provides information regarding the national economy’s expansion with respect to its historical trend 

rate of growth. The CFNAI index captures overall economic activity and the related inflationary 

pressure, while the CPI is used as an inflation index. In the trading application, we use ETFs prices from 

the CRSP Stocks and Mutual Funds datasets. We select all traded index-funds identified by share code 

73, with style stated as Equity, Domestic and Sectorial. Then, we keep the ETFs which include in their 

name the industry classification closest to the Fama-French industries and with the longest time 

series.8 

Regarding the experimental design, our full sample ranges from January 1985 until December 2019. 

We use 2010 – 2019 as the OOS period and the previous 25 years of monthly data (i.e., 300 months/ 

data points) as I.S. in a rolling-window structure. Our partition corresponds to the 70%-30% split 

commonly employed in the related literature (see also Harvey and Liu, 2015). Figure 1.1 presents the 

separation of the full sample in IS and OOS periods.  

Figure 1.1 In-sample and out-of-sample partition of monthly observations. 

 

 

We also generate forecasts and evaluate LassoNet’s predictive ability and covariates importance on 

four OOS subperiods (i.e., 2000-2006, 2007-2009, 2010-2014, 2015-2019) for robustness purposes. 

This way, we examine how the model’s performance varies across time and business cycles. The 

relevant results of the subperiod analysis are available in the Appendix 1.C and confirm the superiority 

of LassoNet in predicting industry portfolios across the four different subperiods.  

 

 

 
8 We present all the employed covariates for our predictive task, their corresponding categories, and the ETF 
details used for our trading simulation in Appendix 1.B. We have also trained LassoNet with a broader set of 98 
covariates, including more macroeconomic and volatility predictors than those followed by the relevant 
literature. More specifically, we added in the covariates set the 3-Month Treasury Bill, the Implied Volatility 
Index (VIX), the dividend yield of the S&P Global index, the momentum factor, three commodities (silver, gold, 
crude oil), and three exchange rates (EUR/USD, GPB/USD, YEN/USD). We find that the LassoNet's performance 
remains the same by including additional covariates, so they did not comprise additional information beyond 
the initial set of 88 covariates. The relevant results are available upon request. 
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1.5. Empirical results 

1.5.1 Forecasting accuracy 

We conduct a forecasting evaluation of the LassoNet and benchmark models’ forecasts by computing 

the root mean squared error (RMSE) and the mean absolute error (MAE) metrics. Table 1.2 presents 

the OOS error metrics across the ten industries from 2010 to 2019.  

The results indicate that the LassoNet consistently outperforms all the other benchmark models 

across most industries by generating the lowest prediction error metrics under the RSME and MAE 

criteria. Consequently, the optimization process in LassoNet is superior to simply optimizing a standard 

regularization linear model or feed-forward neural networks. The outperformance stems from 

LassoNet's algorithm, which jointly optimizes linear and nonlinear components, enabling LassoNet to 

retain the advantages of both components without retaining any limitations.  We show that covariate 

selection enhances a model’s forecasting ability OOS, which can provide additional reasoning on why 

LassoNet outperforms a standard neural network trained on the complete set of covariates. Table 1.2 

also reports that the XGBoost, Group Lasso and Elastic Net are the second, third and fourth-best 

models, with the remaining models (OLS, MLP and Lasso-MLP) showing far worse performance. For 

instance, XGBoost generates better forecasting performance than LassoNet for utilities industry 

portfolios. Table 1.2 also presents the spread between the minimum and maximum values of the error 

metrics across all industries. A wider spread denotes that a specific model performs well for certain 

industries and poorly for others, while less variation for the error metrics represents consistent 

performance across industries, which is desirable. 

We report such an error metric range in panel B of the same table for that purpose. The range is 

calculated by the difference between the highest and the lowest values of each model’s generated 

error (i.e., RMSE, MAE) across all industries. Again, LassoNet presents the lowest dispersion across 

error metrics' minimum and maximum values. Therefore, we can infer that the LassoNet has the most 

consistent performance across the ten industries, with its forecasting ability not being industry or data-

dependent.  
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Table 1.2. OOS statistical performance for the LassoNet and the employed benchmark models. 

The table reports the OOS statistical performance over the 2010 – 2019 period. For each industry, we compare the performance of the LassoNet model against the employed benchmarks (i.e., 

OLS-Regression, Group-Lasso, Elastic-Net, MLP-NN, Lasso-ANN-MLP, and XGBOOST). We report the root mean squared error (RMSE) and the mean absolute Error (MAE) as error metrics. In 

Panel B, we also present the range for the RMSE and MAE metrics, which are calculated by the difference between each error metric's highest and lowest values. The lowest values are reported 

in bold.  

Panel A: 
Loss Criteria 

LASSONET OLS GROUP 
LASSO 

ELASTIC 
NET 

MLP LASSO-
MLP 

XGBOOST   LASSONET OLS GROUP 
LASSO 

ELASTIC 
NET 

MLP LASSO -
MLP 

XGBOOST 

  DURBL   ENRGY 

RMSE 0.0618 0.0821 0.0630 0.0640 0.2369 0.0658 0.0674   0.0534 0.1060 0.0808 0.0879 0.2300 0.1581 0.0589 

MAE 0.0467 0.0630 0.0508 0.0527 0.1610 0.0489 0.0500   0.0421 0.0816 0.0643 0.0692 0.1692 0.1252 0.0474 

                              

  HLTH   NODUR 

RMSE 0.0356 0.1240 0.0415 0.0409 0.1692 0.0780 0.0439   0.0328 0.0640 0.0424 0.0406 0.1327 0.1115 0.0361 

MAE 0.0281 0.0869 0.0348 0.0341 0.1257 0.0576 0.0330   0.0259 0.0482 0.0330 0.0316 0.1100 0.0884 0.0287 

                        

  TELCM   UTILS 

RMSE 0.0353 0.1280 0.0420 0.0390 0.1392 0.1502 0.0410   0.0364 0.0841 0.0512 0.0587 0.1996 0.1643 0.0331 

MAE 0.0287 0.0778 0.0320 0.0312 0.1159 0.1102 0.0337   0.0287 0.0681 0.0404 0.0463 0.1308 0.1360 0.0263 

                              

  MANUF   HITEC 

RMSE 0.0348 0.0700 0.0410 0.0438 0.1538 0.1291 0.0502   0.0341 0.1785 0.0762 0.0786 0.1782 0.1051 0.0467 

MAE 0.0269 0.0557 0.0325 0.0336 0.1223 0.1030 0.0379   0.0269 0.1421 0.0618 0.0631 0.1465 0.1376 0.0370 

                              

  SHOPS   OTHER 

RMSE 0.0334 0.0935 0.0566 0.0529 0.2673 0.2569 0.0400  0.0384 0.0849 0.0480 0.0511 0.1819 0.1726 0.0464 

MAE 0.0269 0.0713 0.0422 0.0401 0.1756 0.1637 0.0312  0.0277 0.0609 0.0381 0.0400 0.1270 0.1303 0.0359 
      

 
        

 

Panel B: Error 
Metric Range 

LASSONET OLS GROUP 
LASSO 

ELASTIC 
NET 

MLP LASSO - 
MLP 

XGBOOST 

RMSE Range 0.0290 0.1710 0.0398 0.0489 0.1346 0.1911 0.0343 

MAE Range 0.0208 0.0938 0.0323 0.0380 0.0656 0.1148 0.0237 
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To examine the statistical significance of the performance of the LassoNet, we first perform the 

Diebold and Mariano (1995) (D.M.)  test and the Giacomini and White (2006) (G.W.) test based on the 

forecasts'  squared error loss functions.9 We use these tests to compare the OOS performance of the 

LassoNet against each one-off implemented benchmark. The D.M. tests the null that two forecasts 

have equal predictive ability based on the difference of the loss functions of two forecasts against the 

alternative that the loss differential is different from zero. A negative and significant t-statistic rejects 

the null hypothesis, and it reports the superiority of LassoNet against the benchmark (i.e., lower loss). 

Table 1.3 reports the generated t-statistics from the D.M. test and their corresponding p-values in 

parenthesis for all industries under study. D.M. test results show that the LassoNet has superior 

predictive ability against most benchmarks and across industries (i.e., corresponding p-values are 

below the significance thresholds, and t-statistics are negative). There are only two industries, namely 

durables and utilities, in which LassoNet shows equivalent performance with the XGBoost, Group Lasso 

and Elastic Net and XGBoost models, respectively. For the remaining industries, LassoNet generates 

significantly better performance. 

Table 1.3. Diebold Mariano test results for the LassoNet against benchmark models. 

The table displays the t-statistics and p-values of the D.M. (1995) test for LassoNet against each benchmark 
pairwise across industries for the 2010-2019 OOS period. The null hypothesis tests that LassoNet and the 
benchmark forecast have equal predictive ability. Bold p-values and t-statistics indicate that we reject the null 
hypothesis of the two forecasts' equivalence and show the superiority of LassoNet against the benchmark.  

  D.M. test: t-statistic (p-value)  
DURBL ENRGY HITEC HLTH MANUF NODUR OTHER SHOPS TELCM UTILS 

OLS -2.84 
(0.003) 

-5.06 
(0.000) 

-7.17 
(0.000) 

-4.09 
(0.000) 

-6.03 
(0.000) 

-5.00 
(0.000) 

-4.56 
(0.000) 

-5.92 
(0.000) 

-3.90 
(0.000) 

-6.40 
(0.000) 

GROUP LASSO -0.38 
(0.752) 

-4.00 
(0.000) 

-6.25 
(0.000) 

-2.89 
(0.002) 

-1.76 
(0.089) 

-3.00 
(0.002) 

-2.16 
(0.024) 

-3.71 
(0.000) 

-2.49 
(0.012) 

-3.54 
(0.000) 

ELASTIC NET -0.64 
(0.583) 

-4.41 
(0.000) 

-6.32 
(0.000) 

-2.59 
(0.009) 

-2.49 
(0.011) 

-2.57 
(0.012) 

-2.57 
(0.010) 

-3.54 
(0.000) 

-2.44 
(0.014) 

-4.46 
(0.000) 

MLP -5.03 
(0.000) 

-6.02 
(0.000) 

-8.27 
(0.000) 

-5.40 
(0.000) 

-6.78 
(0.000) 

-8.92 
(0.000) 

-4.75 
(0.000) 

-4.92 
(0.000) 

-8.42 
(0.000) 

-4.28 
(0.000) 

LASSO-MLP -2.13 
(0.037) 

-6.74 
(0.000) 

-7.04 
(0.000) 

-5.00 
(0.000) 

-8.00 
(0.000) 

-7.04 
(0.000) 

-6.68 
(0.000) 

-3.82 
(0.000) 

-5.66 
(0.000) 

-8.70 
(0.000) 

XGBOOST  -1.37 
(0.157) 

-2.20 
(0.026) 

-3.91 
(0.000) 

-3.03 
(0.000) 

-3.51 
(0.000) 

-2.28 
(0.022) 

-1.92 
(0.081) 

-2.37 
(0.019) 

-2.81 
(0.004) 

1.46 
(0.147) 

 

 

 
9 We also implement Giacomini and Rossi's (2010) (GR) fluctuation test, which measures the relative local 
forecasting performance of the LassoNet model compared to one benchmark over time given changing 
conditions. The relevant results show the outperformance of LassoNet against the benchmarks and are 
presented in Appendix 1.D 
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The G.W. conditional predictive ability test assesses the null of equal predictive ability between two 

models (i.e., pairwise comparison) when the forecasting model (i.e., LassoNet) may be miss-specified. 

G.W. test complements D.M. in terms of reflecting the effect of estimation uncertainty and permitting 

a unified treatment of nested and non-nested models. The latter feature is essential for our experiment 

as LassoNet includes both Lasso and neural network components. Also, the G.W. test uses available 

information to predict which forecast will be more accurate for a specific future date (i.e., one month 

ahead in our case), conditional on given information. This property improves D.M. test which evaluates 

which forecast was more accurate, on average, in the past. The alternative hypothesis of G.W. suggests 

which forecast performs better by producing a lower average loss than the competing model. 

Table 1.4 presents the p-values generated by the G.W. test by performing a pairwise comparison of 

LassoNet against each benchmark for all industries examined. A p-value rejecting the null indicates 

that LassoNet performs better than the benchmark. Again, our findings show that LassoNet is a better 

forecaster than all benchmarks for most industry portfolios. Only in the case of DURBL industry, we 

observe that LassoNet does not generate more accurate predictions. 

Table 1.4. Giacomini and White (2006) test results for the LassoNet against benchmark models. 

The table reports the Giacomini and White (2006) test p-values for the LassoNet against each benchmark across all 
industries over the 2010 – 2019 OOS period. The null hypothesis is the equal predictive ability between two models 
when the forecasting model (i.e., LassoNet) may be misspecified. Significant p-values indicate the superiority of 
LassoNet against the benchmark.  *, **, *** denote significance at the 10%, 5% and 1% level, respectively. 

  G.W. test: p-value  
DURBL ENRGY HITEC HLTH MANUF NODUR OTHER SHOPS TELCM UTILS 

OLS 0.024** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 

GROUP LASSO 0.756 0.000*** 0.000*** 0.012** 0.056* 0.014** 0.056* 0.016** 0.045** 0.002*** 

ELASTIC NET 0.829 0.000*** 0.000*** 0.041** 0.016** 0.041** 0.032** 0.003*** 0.056* 0.000*** 

MLP 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 

LASSO-MLP 0.106 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 

XGBOOST  0.161 0.023** 0.002*** 0.009*** 0.004*** 0.081* 0.065* 0.033** 0.029** 0.086* 

 

The LassoNet’s predictive performance is further assessed using the unconditional Superior 

Predictive Ability (SPA) procedure of Hansen (2005)  and the Model Confidence Set (MCS) procedure 

of Hansen et al. (2011) with a 10% test size. Those tests simultaneously perform an OOS statistical 

inference of many forecasts while controlling for data snooping (i.e., alpha-level inflation problem). 

The SPA test assesses the relative forecasting performance of LassoNet, as the point of the reference 

model, against the complete set of benchmark forecasts. The null hypothesis of the SPA test is that the 

LassoNet forecast is not inferior to the best alternative model’s forecast based on a given loss function. 

Table 1.5 reports that the SPA test generated p-values under the RMSE and MAE criteria. The SPA test 
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results show that the corresponding p-values of LassoNet against the benchmarks are high enough 

(i.e., fail to reject the null hypothesis) to conclude that LassoNet is not inferior to the benchmarks 

under both the RMSE and MAE criteria and across all industry portfolios.  

Table 1.5. SPA test results for the LassoNet and the employed benchmark models. 

The table displays the p-values for the SPA test of Hansen (2005) over the 2010 – 2019 OOS period. The test 
provides insights regarding the relative performance of LassoNet against the employed benchmarks (OLS-
Regression, Group Lasso, Elastic-Net, MLP, Lasso-MLP, and XGBOOST). Bold p-values indicate a failure to reject 
the null hypothesis that LassoNet is not inferior to the benchmarks. 

    2010-2019 

    DURBL ENRGY HITEC HLTH MANUF NODUR OTHER SHOPS TELCM UTILS 

P
-V

A
LU

E 

          
  

MSE 0.405 0.871 0.950 0.894 0.824 0.999 0.774 0.859 0.882 0.348 

           

MAE 0.427 0.815 0.990 0.998 0.838 0.990 0.716 0.991 0.895 0.361 

 

Implementing and making robust conclusions about predictive ability with the SPA test is 

challenging when there is no natural model as a reference point or when more than one model is 

considered. The MCS procedure of Hansen et al. (2011) addresses such an issue by bypassing point-of-

reference models. The MCS aims to find a superior set of models indistinguishable from the best, 

including the best model. It consists of a sequence of tests which permits the construction of a set of 

superior models, where the null hypothesis of equal predictive ability is not rejected at a certain 

confidence level. The test requires two procedures: an equivalence test, determining whether models 

are equal according to their loss and an elimination rule, which dictates which model to eliminate if 

the equivalence test reveals that two models are not equivalent (i.e., there is one with a larger loss). 

The output of the MCS is a model set containing the true set of best models with a probability weakly 

larger than 1 − 𝑎, where 𝑎 is the significance level. Also, if only one best model exists, the test will find 

it asymptotically. As a rule of thumb, a low (high) p-value is associated with a model that is unlikely 

(likely) to belong to the set of the best models. Therefore, p-values that exceed the nominal 

significance levels advocate that the tested model belongs to the confidence set of best models 

(Psaradellis and Sermpinis, 2016; Grønborg et al., 2021). However, The MCS p-value is not a statement 

about the probability that a model is the best. 

 Table 1.6 presents the relevant results based on a 10% significance level. In particular, the table 

reports the MCS p-values for each model. We present the p-values of the models belonging to the 

confidence set in bold. We observe that LassoNet always belongs to the confidence set of best models, 

while for most of the cases, it is the model with the lowest loss (i.e., p-value = 1), except for the case 

of the utilities industry. Interestingly, LassoNet is the only model in the true set for half of the industries 
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examined (i.e., ENERGY, HITECH, HLTH, SHOPS and TELCM). We can conclude that no models are 

indistinguishable from the best (LassoNet).  

Table 1.6. MCS test results for the LassoNet and the employed benchmark models. 

The table reports p-values for Hansen et al.'s (2011) MCS procedure over the 2010 -2019 OOS period and each industry at a 
10% confidence level. A sequence of significance tests is performed to find model forecasts that are not inferior to others. P-
values that exceed the nominal significance levels (i.e., 1%, 5%, and 10%) show that the model belongs to the MCS. The models 
belonging to the confidence set at the 10% significance level are reported in bold.  

  MCS test: p-value  
DURBL ENRGY HITEC HLTH MANUF NODUR OTHER SHOPS TELCM UTILS 

OLS 0.019 0.000 0.000 0.016 0.008 0.029 0.142 0.020 0.003 0.008 

GROUP LASSO 0.814 0.079 0.000 0.025 0.108 0.193 0.142 0.060 0.056 0.127 

ELASTICNET 0.814 0.079 0.000 0.016 0.098 0.193 0.142 0.060 0.056 0.014 

MLP 0.019 0.000 0.000 0.014 0.000 0.000 0.093 0.020 0.000 0.008 

LASSO-MLP 0.487 0.000 0.000 0.016 0.000 0.000 0.004 0.020 0.003 0.000 

XGBOOST  0.487 0.079 0.000 0.016 0.098 0.193 0.142 0.060 0.056 1.000 

LASSONET 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.485 

 

1.5.2 Covariates’ importance 

1.5.2.1 SAGE value estimation 

After establishing that the LassoNet outperforms all other benchmark models, it is crucial to 

investigate the covariates driving its forecasts. Figure 1.2 presents the three covariates with the 

highest SAGE values OOS for every industry separately, along with 95% confidence intervals around 

the mean SAGE value of each covariate across the rolling windows.10  

We arrive at three significant conclusions. First, the valuation ratios, followed by the individual 

industry's lagged returns and the cross-industry one-month lagged returns, are the most pivotal 

categories for the model's predictive performance. Second, this result is generally consistent across 

the different industries. Third, we witness greater variability and less consistency regarding the 

participation of other covariate categories in the three highest SAGE value positions. The above 

results are consistent with a body of literature that examines the predictive relationship between 

valuation ratios and asset returns. Notable examples include the work of Keim and Stambaugh 

(1986), Fama and French (1988), and Campbell and Shiller (1988). More recent studies outlining that 

valuation ratios can effectively predict stock returns include the work of Campbell and Yogo (2006) 

and Campbell and Thompson (2008). 

 
10 We obtain the OOS SAGE values per covariate by aggregating their values for each rolling window estimation 
while we calculated the 95% confidence intervals around the mean of SAGE values across all rolling windows. 
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Figure 1.2. SAGE values bar plots. 

The figure displays the three covariates with the highest SAGE values for every industry across the 2010 – 2019 OOS 
period. We restrict our results to the three covariates with the highest SAGE values to investigate the most significant 
variables (and the categories they belong to). The bar graphs also include 95% confidence intervals around the mean 
SAGE value of each covariate. 

 

  

  

Additionally, our framework reveals significant interdependencies and gradual information diffusion 

across the industries, given that individual and cross-industry lagged returns are the second and third 

most crucial covariate categories, respectively. In this direction, Rapach et al. (2015) note that links 

between industries can be established not just with customer-supplier relationships but even more 

broadly via technology spillovers and production chain interactions. 

We also calculate the selection rate of each variable's category based on the highest SAGE values 

generated across the ten industries examined and rolling windows. To define a category's selection 

rate, we consider the appearance of its corresponding covariates within the top three highest SAGE 

values OOS across the ten industries and window estimations. Then, for each category, we calculate 

the fraction of the covariates with the highest SAGE values across all industries. Figure 1.3 presents 

the estimated selection rates for the different covariates’ categories.  
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Figure 1.3. Selection rates for the covariates’ categories. 

The figure displays the selection rate that each category's covariates appear within the three highest 
positions regarding their corresponding SAGE values across the 2010 – 2019 OOS period and ten 
industries. 

 

Consistent with the findings of Figure 1.2, we evidence that the valuation ratios have the highest 

aggregate presence, as indicated by a selection rate of up to 70%. In second and third place come each 

industry’s lagged returns and other-industry lagged returns with selection rates of around 20% and 

10%, respectively. While these rates are lower than the valuation ratios, they still report the 

importance of each industry’s lagged and cross-industry lagged returns.  

1.5.2.2 Statistical significance of SAGE values  

     According to the SAGE value of a specific variable, we can measure its positive contribution to the 

overall LassoNet performance. By summing all variables belonging to a specific category across 

industries and forecast windows, we can obtain an aggregate measure of a category's overall positive 

contribution to the model's performance. We employ pairwise hypothesis tests between the 

covariates' categories to evaluate any differences in positive contribution OOS statistically. We 

effectively create a set of 10 category aggregate SAGE values. Finally, we employ pairwise two-tailed t-

tests between the aggregate SAGE of covariate categories. In Table 1.7, we report the t-statistics and 

their corresponding p-values of the cross-category hypothesis tests and the corresponding p-values 

controlling for p-value correction under the Hommel (1988) criterion, which are reported in brackets. 

The pairwise tests compare the mean of the column covariate against the mean of every other 
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covariate category presented in each row. Hence, a positive t-statistic with a low p-value indicates that 

the column category has a statistically significant higher positive contribution than the row category.  

The findings presented in Table 1.7 quantitatively validate the results of the categories’ selection 

rates, as presented in Figure 1.2. For example, they report that the mean of the valuation ratios against 

the mean of every other covariate category is positive and statistically significant at the 1% level for 

almost all cases. In addition, the t-statistics and their p-values also reveal a favourable and statistically 

significant outcome for the mean positive contribution of the lagged returns category compared to 

most of the covariate categories at 1%, except to those of other-industry lagged returns and valuation 

ratios. The results for the other-industry lagged returns are similar to the lagged returns category and 

are at a statistical significance level of 1%. Also, macroeconomic variables categories and financial 

soundness show positive significance against specific covariates such as solvency, capitalization, 

liquidity and efficiency ratios.  

Controlling for p-value correction under the Hommel (1988) criterion, the corresponding p-values 

in brackets reveal a similar picture mainly for valuation ratios, lagged and other-industry lagged returns 

and financial soundness ratios, which retain their positive and statistical significance against the rest 

of the categories. The above findings can help quantitative fund managers experiment beyond 

conventional statistical models and effectively guide decisions concerning asset allocations while 

attaining model transparency via the SAGE. Policymakers can also benefit from such an interpretable 

learning framework when designing economic policies by forecasting the movements of industry 

sectors and identifying the most critical covariates governing the underlying price dynamics. 
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Table 1.7. SAGE values pairwise hypothesis tests between the covariates' categories. 

We sum the SAGE values of all covariates belonging to the same category for each of the ten industries over the 2010 – 2019 OOS period and the forecasting windows examined. For all covariate 
categories, we create a set of aggregate SAGE values. We then employ pairwise t-tests between the covariates' categories to evaluate differences in the positive contribution statistically. We 
present the t-statistics and the corresponding p-values for the hypothesis tests in parenthesis. We additionally report the corresponding p-values under the Hommel (1988) criterion for p-value 
correction in brackets. The t-statistics and p-values of the column category with a statistically significant higher positive contribution than row one are presented in bold. *, **, *** denote 
significance at the 10%, 5% and 1% level, respectively. 

 
Valuation 

Ratios 
Lagged 
Returns 

Other-
industry 
Lagged 
Returns 

Macroeconomic 
Variables 

Financial 
Soundness 

Ratios 

Solvency 
Ratios 

Profitability 
Ratios 

Capitalization 
Ratios 

Liquidity 
Ratios 

Efficiency 
Ratios 

 
 
 
 
 

Valuation Ratios - - - - - - - - - - 

Lagged Returns 
1.833 

(0.086*) 
[0.086*] 

- - - - - - - - - 

Other-industry Lagged 
Returns 

3.118 
(0.009***) 
[0.019**] 

1.549 
(0.143) 
[0.143] 

- - - - - - - - 

Macroeconomic 
Variables 

4.679 
(0.001***) 
[0.003***] 

3.873 
(0.003***) 
[0.006***] 

3.454 
(0.005***) 
[0.005***] 

- - - - - - - 

Financial Soundness 
Ratios 

4.718 
(0.001***) 
[0.003***] 

3.944 
(0.003***) 
[0.006***] 

3.611 
(0.005***) 
[0.005***] 

0.096 
(0.925) 
[0.925] 

- - - - - - 

Solvency Rations 
5.092 

(0.001***) 
[0.002***] 

4.534 
(0.001***) 
[0.004***] 

4.642 
(0.001***) 
[0.005***] 

2.718 
(0.023**) 
[0.090*] 

3.906 
(0.003***) 
[0.009***] 

- - - - - 

Profitability Ratios 
4.859 

(0.001***) 
[0.003***] 

4.162 
(0.002***) 
[0.005***] 

3.974 
(0.003***) 
[0.005***] 

0.973 
(0.346) 
[0.691] 

1.130 
(0.273) 
[0.273] 

-2.326 
(0.042**) 

[0.167] 

- - - - 

Capitalization Ratios 
5.082 

(0.001***) 
[0.002***] 

4.517 
(0.001***) 
[0.004***] 

4.613 
(0.001***) 
[0.005***] 

2.631 
(0.026**) 

[0.102] 

3.749 
(0.003***) 
[0.010**] 

-0.269 
(0.791) 
[0.791] 

2.192 
(0.051*) 
[0.109] 

- - - 

Liquidity Ratios 
5.066 

(0.001***) 
[0.002***] 

4.491 
(0.001***) 
[0.004***] 

4.564 
(0.001***) 
[0.005***] 

2.483 
(0.032**) 

[0.102] 

3.460 
(0.005***) 
[0.014**] 

-0.544 
(0.594) 
[0.791] 

1.963 
(0.073*) 
[0.143] 

-0.308 
(0.762) 
[0.762] 

- - 

Efficiency Ratios 
5.027 

(0.001***) 
[0.002***] 

4.431 
(0.002***) 
[0.005***] 

4.463 
(0.002***) 
[0.005***] 

2.211 
(0.051*) 
[0.152] 

3.076 
(0.009***) 
[0.019**] 

-1.483 
(0.158) 
[0.475] 

1.571 
(0.143) 
[0.143] 

-1.184 
(0.253) 
[0.505] 

-0.752 
(0.462) 
[0.462] 

- 
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1.5.3 Trading application 

To adequately assess the economic significance of the LassoNet's predictive ability, we apply a 

trading simulation to use the OOS industry returns’ forecasts to form spread portfolios on their 

corresponding industry ETFs. We construct monthly spread portfolios of industry ETFs based on the 

best and worst-performing industries according to their forecasts. For example, each month, we sort 

the industries based on the corresponding LassoNet's return predictions, and then, we form long 

positions on ETFs for the industries with the highest forecasted returns and short positions on ETFs for 

the industry with the lowest returns. As ETFs are commonly used for passive investing, with investors 

opting for a few highly profitable ones, we present three variations of long-short portfolios.. First, the 

Max1-Min1 which considers the spread of only the top and bottom forecasted industry returns. 

Second, the Max2-Min2 is the return of being long (short) on the two top (bottom) industry portfolios 

with the highest (lowest) predicted returns and likewise, Max3-Min3 is the spread of the top and 

bottom three portfolios, respectively. We consider an expense ratio of 0.25% every time we take a 

position on each fund.11 12 

Table 1.8 presents a battery of performance metrics for each portfolio and several benchmarks. We 

report the annualized mean return, volatility, annualized Sharpe ratio, maximum drawdown and the 

annualized alphas of 4-factor (Carhart, 1997) and 5-factor (Fama & French, 2015) models. We also 

regress the portfolios’ returns against the four-factor (Carhart, 1997) and five-factor models (Fama & 

French, 2015), and explore the presence of positive and statistically significant alphas. We choose to 

compare the performance of ETF portfolios based on LassoNet forecasts against the corresponding 

portfolios constructed based on Group Lasso, Elastic Net and XGBoost, which are the following best 

performers after LassoNet in terms of statistical accuracy. We also use a buy-and-hold strategy on the 

value-weighted returns of the CRSP index and the S&P 500 index, equally weighted portfolios of the 

industry portfolio returns, equally weighted portfolios of the selected industry ETFs, and a strategy 

that shorts the ETFs’ returns in the current month to trade their spread on the following as our 

benchmarks. The constituents of the CRSP indexes directly match those in the industry returns we 

used to train our machine learning models, offering the most representative benchmark. Moreover, 

this choice aligns with earlier literature, given the diversification properties of the market return and 

 
11 According to Morningstar and Vanguard, the average industry ETF expense ratio has been around 0.25% over 
the past years. We present the results with a more conservative ratio of 0.5% in Appendix 1.E, and we find that 
the overall picture remains the same. We also present the performance of a trading strategy investing directly 
in industry portfolios. 
12 We also perform a similar trading exercise on the forecasts of the maximum number of industry portfolios 
(i.e., 49) available on Kenneth French’s website.  Since not enough ETFs are available to track the expanded 
number of industry portfolios (i.e., 49 industries) we implement our strategy directly on industry portfolios. The 
findings show that LassoNet yields the highest performance and are available in Appendix 1.F. 
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being free from anomalies specific to individual industries (see Moskowitz and Grinblatt, 1999; Dong 

et al., 2022). 

The ETF portfolios based on LassoNet forecasts generate the highest returns, Sharpe ratios, and 

positive and statistically significant alphas compared to the rest of the machine learning models and 

benchmarks. In particular, the Max2-Min2 portfolio achieves the highest performance, generating a 

Sharpe ratio 2.04, followed by the Max1-Min1 portfolio. The same portfolio yields a statistically 

significant annualized alpha of 20%. Similarly, the maximum drawdown of the LassoNet constructed 

portfolios is the lowest most of the time. These findings demonstrate that LassoNet's forecasts can 

effectively generate positive ETF returns not captured by seminal factor models while minimizing the 

downside risk. 

1.6. Conclusion 

We apply an interpretable machine learning framework, the LassoNet, to forecast U.S. industry 

portfolio returns over the 2010 – 2019 period based on a data-rich environment of 88 predictors. We 

compare the performance of LassoNet with that of a battery of linear (i.e., linear regression, Group 

Lasso, Elastic-Net) and nonlinear (i.e., XGBoost, neural networks) methods. We quantify the critical 

determinants of our forecasts by applying the SAGE, global importance interpretability method, on 

features selected by LassoNet. Finally, we evaluate the economic significance of industry portfolio 

returns forecasts in a capital allocation strategy. Our findings contribute to the relevant literature in 

four ways: 

First, we find that state-of-the-art interpretable deep learning specifications can capture nonlinear 

patterns and interactions among our predictors to forecast better industry portfolio returns than linear 

and nonlinear machine learning approaches. LassoNet reports significantly smaller forecasting errors 

across most industries examined than other machine learning models, such as the XGBoost and neural 

networks, as shown by a battery of statistical tests such as the D.M., GR, SPA and MCS tests. Such a 

performance lies in the specific characteristic of LassoNet to simultaneously perform feature selection 

and deep learning for forecasting purposes. Second, the application of the SAGE method for global 

interpretability shows that valuation ratios and individual and cross-industry lagged industry returns 

generate the highest SAGE values, and so they are critical determinants for industry portfolio forecasts. 
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Table 1.8. Performance of industry ETF portfolios based on OOS forecasts. 

The table demonstrates performance metrics for trading strategies of industry ETFs based on LassoNet’s, Group Lasso, Elastic Net and XGBoost forecasts and those of benchmark strategies 
over the 2010 – 2019 OOS period. The Max1-Min1, Max2-Min2, and Max3-Min3 industry ETFs spread portfolios are constructed based on the highest and lowest-performing industries 
according to their corresponding forecasts while considering a 0.25% expense ratio. We report the annualized mean return and Sharpe ratio, maximum drawdown and annualized alphas. The 
reported alphas are obtained using the 4-factor (Carhart, 1997) and 5-factor (Fama & French, 2015) models. *, **, *** denote significance at the 10%, 5% and 1% level, respectively. 

 
Portfolios   Benchmark Strategies 

Panel A : Max1-Min1  LASSONET GROUP LASSO ELASTIC NET XGBOOST VW-CRSP SP500 EW-Ind. Port EW-Ind. ETFs 1 MAH 

 Ann. Mean Return (%) 20.39 18.63 19.60 5.06 12.32 11.46 9.24 10.28 --8.50 

Volatility (%) 14.74 15.07 14.65 12.49 12.72 12.46 12.15 12.46 16.53 

Ann. Sharpe ratio  1.34 1.20 1.30 0.37 0.93 0.88 0.71 0.78 -0.54 

Max Drawdown (%) 20.80 19.80 16.40 33.89 18.52 17.04 17.69 17.86 109.80 

Ann. 4-factor alpha (%)  19.41*** 18.03*** 19.50*** 4.86*** - - 8.31*** 9.22*** -12.07*** 

Ann. 5-factor alpha (%) 19.02*** 17.02*** 18.71*** 4.58*** - - 8.39*** 9.18*** -13.44*** 

          

Panel B: Max2-Min2 LASSONET GROUP LASSO ELASTIC NET XGBOOST VW-CRSP SP500 EW-Ind. Port EW-Ind. ETFs 1 MAH 

 Ann. Mean Return (%) 21.27 16.65 16.02 2.29 12.32 11.46 9.24 10.28 -3.32 

Volatility (%) 10.16 10.39 10.26 9.86 12.72 12.46 12.15 12.46 12.80 

Ann. Sharpe ratio  2.04 1.55 1.51 0.18 0.93 0.88 0.71 0.78 -0.29 

Max Drawdown (%) 6.93 8.18 9.09 18.25 18.52 17.04 17.69 17.86 54.46 

Ann. 4-factor alpha (%)  20.35*** 16.01*** 15.59*** 0.14 - - 8.31*** 9.22*** -5.49 

Ann. 5-factor alpha (%) 20.00*** 16.44*** 15.00*** -0.04 - - 8.39*** 9.18*** -7.02* 

          

Panel C: Max3-Min3 LASSONET GROUP LASSO ELASTIC NET XGBOOST VW-CRSP SP500 EW-Ind. Port EW-Ind. ETFs 1 MAH 

 Ann. Mean Return (%) 19.11 12.07 11.09 0.95 12.32 11.46 9.24 10.28 -5.53 

Volatility (%) 8.20  8.35 8.05 7.34 12.72 12.46 12.15 12.46 10.37 

Ann. Sharpe ratio  2.26 1.38 1.31 0.06 0.93 0.88 0.71 0.78 -0.58 

Max Drawdown (%) 4.70 6.64 10.29 18.18 18.52 17.04 17.69 17.86 65.57 

Ann. 4-factor alpha (%)  19.00*** 11.81*** 10.98*** -1.22 - - 8.31*** 9.22*** -7.25** 

Ann. 5-factor alpha (%) 18.77*** 11.40*** 10.72*** -1.75 - - 8.39*** 9.18*** -8.00** 
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Such evidence complements the relevant findings of studies using linear asset pricing for return 

predictability, which mainly reveal profitability and liquidity ratios as essential factors of stock returns. 

The power of SAGE depends on its cooperative game theory framework, which considers all possible 

interactions across the dataset of selected predictors in optimizing the model's forecasting 

performance. Third, after accounting for transaction costs, we prove the economic significance of 

LassoNet forecasts in constructing more profitable spread portfolios than buy-and-hold strategies on 

market indices. All LassoNet-constructed portfolios generate the highest Sharpe ratios and positive and 

statistically significant multifactor alphas.  

While the Shapley values and SAGE method offer significant advantages in quantifying covariate 

importance and handling complex, non-linear interactions in machine learning models, it has 

limitations when compared to traditional asset pricing models. Traditional models provide clear, 

interpretable coefficients directly tied to economic theory, allowing for more straightforward causal 

explanations. In contrast, SAGE focuses on identifying the covariates which have the highest predictive 

power, but its outputs are less intuitive and harder to interpret in economic terms, making it 

challenging to align with established financial models. Future research can explore combining LassoNet 

and SAGE with traditional asset pricing models to develop a hybrid framework that offers high 

predictive accuracy and further economic interpretability. By integrating the variable selection and 

non-linearity capture of LassoNet with the economic foundations of models like Fama-French (2015), 

researchers can gain deeper insights into factor importance while maintaining connections to financial 

theory. This approach could help bridge the gap between flexible machine learning techniques and 

traditional asset pricing frameworks. 

Overall, we expand the previous studies reporting the ability of Lasso methods to accurately predict 

industry portfolios' returns by successfully applying a Lasso-based deep learning method for nonlinear 

environments while constructing a large-scale set of predictors for the same task. For all the above 

reasons, our study can be of great interest to academics and practitioners in portfolio and asset 

management industries. 
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Appendix 1 

 

1.A. Benchmark models 

To adequately assess the LassoNet forecasting performance, we utilize an extensive set of 

benchmark forecasting models.  

1.A.1 Extreme Gradient Boosting (XGBoost) 

The XGBoost model was introduced in the work of Chen and Guestrin (2016) and extends the 

boosting algorithm developed by Friedman (2001). Jabeur et al. (2021) state that XGBoost is an 

ensemble model based on decision trees that uses an optimization process leading to superior 

performance compared to individual techniques. Nobre and Neves (2019) note that the output of the 

XGBoost model can be calculated with the formula: 

𝑟̂ =  ∑ 𝑓𝑘(X),   𝑓𝑘 ∈ ℱ

𝐾

𝑘=1

 

where 𝑓 is a function in the functional space ℱ, ℱ =  {𝑓(X) = 𝑤𝑞(X)} is the space of the regression 

trees, 𝑞 is the structure of each regression tree,  𝑤 is the leaf weight, 𝑓𝑘 is the 𝑘-th regression tree, 𝐾 

is the number of regression trees. 

The loss function that is optimized to train the model effectively is the following: 

𝐿 =  ∑ 𝑙(𝑟̂, 𝑟) +  ∑ Ω(

𝑘𝑡

𝑓𝑘) 

where 𝑙 is the squared error loss function measuring the difference between the predicted return 𝑟̂ 

and the realized return 𝑟, and Ω is a regularization term. Ω is specified by the following formula: 

Ω(𝑓) =  𝛾𝑇 +  
1

2
𝜆‖ 𝑤‖2 

where 𝛾 is a regularization hyperparameter, 𝑇 is the number of leaves in each regression tree, and 𝜆 

is a regularization hyperparameter. 

In our XGBoost implementation, we use the XGBoost Python library (Chen & Guestrin, 2016) 

associated with the original paper and utilize the library's default parameters. Expressly, the number 

of trees is set to 100, the maximum depth of a tree to 3, the learning rate to 0.1, 𝛾 to 0, and 𝜆 to 1. 
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1.A.2 Group Lasso 

Yuan and Lin (2006) suggest the following Group Lasso13 estimator: 

𝜗∗

 
  
=
 

 𝑎𝑟𝑔𝑚𝑖𝑛 
𝜗0, 𝜗

 ‖𝑟 − 𝜗0 − XT𝜗‖
2

2
+  𝜆 ∑ √𝑑𝜉

𝛫

𝜉=1

‖𝜗𝜉‖
2

 

 

where 𝜆 is a tuning parameter, 𝐾 is the number of categories the variables are divided into, the term 

√𝑑𝜉  weights each category according to its size and 𝑑𝜉  is the size of the 𝜉 category, 𝜗𝜉is a sub-vector 

of coefficients from 𝜗 with components that correspond to the covariates in 𝜉 category. We use five-

fold cross-validation to decide on the optimal value of 𝜆, and following (Gu et al., 2020), our search 

space is {10−4, 10−1}14. 

1.A.3 Elastic-Net 

The Elastic-Net model was introduced by Zou and Hastie (2005) and admits the following 

mathematical formulation:  

𝜗∗

 
  
=
 

 𝑎𝑟𝑔𝑚𝑖𝑛 
𝜗0, 𝜗

 ‖𝑟 −  𝜗0 −  XT𝜗 +‖
2

2
+  𝜆 [

1

2
(1 − 𝜌)‖𝜗‖2

2 + 𝜌‖𝜗‖1 ]
 

 

where, 𝜌 𝜖 [0,1] is a tuning parameter, which we set to 0.5 following Gu et al. (2020). When 𝜌 = 0, 

we retrieve exactly the Ridge penalty, and when 𝜌 = 1, we retrieve the Lasso. To decide on the 

optimal value of the tuning parameter 𝜆, we used five-fold cross-validation while examining 100 

different values of 𝜆. The maximum value for 𝜆 was determined to be the lowest one at which all 

covariate coefficients are forced to be zero15. 

1.A.4 Neural Networks (ANN-MLP) 

Fan et al. (2021) indicated that artificial neural networks (ANN) use a composition of a series of 

non-linear functions to model non-linearity. In mathematical notation, they take the following form: 

𝐻(ℎ) = 𝑓(ℎ) ○  𝑓(ℎ−1) ○ 𝑓(ℎ−2) ○ … ○ 𝑓(1)(X) 

where ○ illustrates the composition of two functions, 𝑎𝑛𝑑 ℎ is the number of hidden layers. 

 
13 For the implementation of the Group Lasso model, we utilized the asgl python library (Civieta et al., 2021) 
14 The step size is 0.1. 
15 Implementing the Elastic Net model is based on the glmnet R package (Friedman et al., 2010). For more 
information regarding its estimation, we direct the reader to the official reference manual: 
https://cran.r-project.org/web/packages/glmnet/glmnet.pdf 
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By letting 𝐻0 ≜  𝑥, we can define recursively 𝐻(𝑙) =  𝑓𝑙(𝐻(𝑙−1)) for all 𝑙 = 1, … , 𝐿 (Fan et al., 2021). 

To retrieve the so-called MLP architecture, we define the output of its hidden layer with the tanh 

activation function as follows: 

𝐻(𝑙) = 𝑓(𝑙)(𝐻(𝑙−1)) ≜ tanh (𝑊(𝑙)𝐻(𝑙−1) + 𝑏(𝑙)) 

where, 𝑊(𝑙) is the weight matrix fully connecting the previous layer with every neuron in the 𝑙-th 

layer, 𝑏(𝑙) is the bias (intercept) term. Finally, the output of the final hidden layer, 𝐻(𝐿), and the 

corresponding observed value from the training dataset are used to estimate the loss function we 

minimize.  

1.A.5 Lasso and ANN-MLP (Lasso-ANN-MLP) 

As an additional benchmark, we leverage a two-step algorithm. First, we employ a Lasso linear 

model (Tibshirani, 1996) without an intercept term. We tune the 𝜆 parameter using 5-fold cross-

validation and the search space {10−4, 10−1}16 with a step size of 0.1. Post-estimation, we track the 

non-zero coefficients and the corresponding covariates. Second, we feed only those non-zero 

covariates to an ANN-MLP architecture, which generates the final forecasts. 

1.A.5.1 Hyperparameter optimization for the ANN benchmarks 

To tune the hyperparameters for the ANN-MLP and Lasso-ANN-MLP benchmarks, we construct a 

validation dataset and leverage the early stopping and sensitivity analysis procedure, as described in 

Section 1.3.2 of the paper. Table 1.A.1 reports the explored hyperparameter settings for ANN-MLP 

and Lasso-ANN-MLP. 

Table 1.A.1. Hyperparameter search space for ANN-MLP and Lasso-ANN-MLP benchmark models. 

This table reports the hyperparameter search space for ANN-MLP and Lasso-ANN-MLP architectures. To 
optimize for the hyperparameters, we use a validation dataset -as in the case of the LassoNet- and choose the 
set which provides the lowest mean squared error in a sensitivity analysis. 

Neural Network Architectures 

[(16, 4) 
(16, 8) 

(16, 8, 4) 
(16, 16, 4)] 

Batch size [72] 

Epochs [200] 

Early stopping [50 epochs] 

 

 
16 For industry portfolio OTHER, we slightly increase the search space of 𝜆 because the original search space was 
not producing any non-zero coefficients for the covariates. 
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Due to the inferior performance of the shallow neural networks, we include only architectures with 

more than one hidden layer as candidate models for the benchmarks. Mirroring the LassoNet's 

hyperparameter search space, we also use a batch size of 72 observations and 200 epochs for the 

benchmarks, and we fix the early stopping mechanism at the 50 epochs level.17. 

1. B. Covariates categories and ETFs details 

Table 1.B.1 presents a detailed description of covariates used for predicting industry returns and 

to which category they belong. The entire universe consists of 88 covariates, being part of ten different 

categories of variables (i.e., valuation, profitability, capitalization, financial soundness, solvency, 

liquidity, efficiency, macroeconomic, past returns, and other-industry past return). 

Table 1.B.1. Covariates’ categories. 

The table reports all the employed covariates for our predictive task and their corresponding categories. 

Covariate Covariate Category 
Dividend Payout Ratio Valuation 

Trailing P/E to Growth (PEG) ratio Valuation 

Book/Market Valuation 

Shillers Cyclically Adjusted P/E Ratio Valuation 

Dividend Yield Valuation 

Enterprise Value Multiple Valuation 

Price/Cash flow Valuation 

P/E (Diluted, Excl. EI) Valuation 

P/E (Diluted, Incl. EI) Valuation 

Price/Sales Valuation 

Price/Book Valuation 

Effective Tax Rate Profitability 

Gross Profit/Total Assets Profitability 

After-tax Return on Average Common Equity Profitability 

After-tax Return on Total Stockholders Equity Profitability 

After-tax Return on Invested Capital Profitability 

Gross Profit Margin Profitability 

Net Profit Margin Profitability 

Operating Profit Margin After Depreciation Profitability 

Operating Profit Margin Before Depreciation Profitability 

Pre-tax Return on Total Earning Assets Profitability 

Pre-tax return on Net Operating Assets Profitability 

Pre-tax Profit Margin Profitability 

Return on Assets Profitability 

Return on Capital Employed Profitability 

Return on Equity Profitability 

Capitalization Ratio Capitalization 

 
17 For the implementation of the neural network benchmarks, we utilized the asgl (Civieta et al., 2021), Keras 
(Chollet, 2016), and TensorFlow (Abadi et al., 2016) Python libraries. 
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Common Equity/Invested Capital Capitalization 

Long-term Debt/Invested Capital Capitalization 

Total Debt/Invested Capital Capitalization 

Inventory/Current Assets Financial Soundness 

Receivables/Current Assets Financial Soundness 

Free Cash Flow/Operating Cash Flow Financial Soundness 

Operating CF/Current Liabilities Financial Soundness 

Cash Flow/Total Debt Financial Soundness 

Cash Balance/Total Liabilities Financial Soundness 

Cash Flow Margin Financial Soundness 

Short-Term Debt/Total Debt Financial Soundness 

Profit Before Depreciation/Current Liabilities Financial Soundness 

Current Liabilities/Total Liabilities Financial Soundness 

Total Debt/EBITDA Financial Soundness 

Long-term Debt/Book Equity Financial Soundness 

Interest/Average Long-term Debt Financial Soundness 

Interest/Average Total Debt Financial Soundness 

Long-term Debt/Total Liabilities Financial Soundness 

Total Liabilities/Total Tangible Assets Financial Soundness 

Total Debt/Equity Solvency 

Total Debt/Total Assets Solvency 

Total Debt (Liabilities)/Total Assets Solvency 

Total Debt/Capital Solvency 

After-tax Interest Coverage Solvency 

Interest Coverage Ratio Solvency 

Cash Conversion Cycle (Days) Liquidity 

Cash Ratio Liquidity 

Current Ratio Liquidity 

Quick Ratio (Acid Test) Liquidity 

Asset Turnover Efficiency 

Inventory Turnover Efficiency 

Payables Turnover Efficiency 

Receivables Turnover Efficiency 

Sales/Stockholders Equity Efficiency 

Sales/Invested Capital Efficiency 

Sales/Working Capital Efficiency 

NFCI Macroeconomic Variables 

CFNAI Macroeconomic Variables 

PANDI Macroeconomic Variables 

CPI Macroeconomic Variables 

lag1ret 1-Month Lagged Return 

lag2ret 2-Month Lagged Return 

lag3ret 3-Month Lagged Return 

lag4ret 3-Month Lagged Return 

lag5ret 5-Month Lagged Return 

lag6ret 6-Month Lagged Return 
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lag7ret 7-Month Lagged Return 

lag8ret 8-Month Lagged Return 

lag9ret 9-Month Lagged Return 

lag10ret 10-Month Lagged Return 

lag11ret 11-Month Lagged Return 

lag12ret 12-Month Lagged Return 

DURBL-VW Return-lag1 1-Month Other-Industry 
Lagged Return 

ENRGY-NW Return-lag1 1-Month Other-Industry 
Lagged Return 

HITEC-VW Return-lag1 1-Month Other-Industry 
Lagged Return 

HLTH-VW Return-lag1 1-Month Other-Industry 
Lagged Return 

MANUF-VW Return-lag1 1-Month Other-Industry 
Lagged Return 

NODUR-VW Return-lag1 1-Month Other-Industry 
Lagged Return 

OTHER-VW Return-lag1 1-Month Other-Industry 
Lagged Return 

SHOPS-VW Return-lag1 1-Month Other-Industry 
Lagged Return 

TELCM-VW Return-lag1 1-Month Other-Industry 
Lagged Return 

UTILS-VW Return-lag1 1-Month Other-Industry 
Lagged Return 

 

Table 1.B.2 presents the details of ETFs collected from the CRSP database as representatives of 

each Fama and French industry portfolio examined. We match CRSP Stocks and CRSP Mutual funds 

datasets, and we obtain the prices series of all traded index-funds with share code 73 and stated as 

Equity, Domestic and Sectorial. Then, we keep the industry ETFs which report in their name the 

keyword industry closest to the Fama and French industries, and with the most extended available 

data. In cases where the Fama and French industries corresponds to more than one ETF (i.e., industries 

OTHERS and SHOPS), we consider the equally weighted portfolio of selected ETF returns. The details 

include the name of the ETF, the corresponding vendor, and the industry each ETF tracks.  

1.C. Subperiods analysis  

1.C.1 Forecasting accuracy 

For robustness, we assess the LassoNet’s predictive ability on four OOS subperiods (i.e., 2000-2006, 

2007-2009, 2010-2014, 2015-2019). 
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Table 1.B.2. ETFs details. 

Table 1.B.2 reports the ETF details used for our trading simulation. We matched the Fama and French industries 
with ETFs from the CRSP database to select the industry funds for our trading exercise. To do so, we use the 
keyword “industry” to identify the ETFs tracking each industry’s returns, and then we choose the ETFs with the 
most extended available data.  

Fund Name Industry 

Vanguard World Funds: Vanguard Telecommunication Services 
Index Fund; ETF Shares 

TELCM 

Vanguard World Funds: Vanguard Financials Index Fund ETF 
Shares 

OTHER (Financials) 

PowerShares Exchange-Traded Fund Trust: PowerShares 
Dynamic Building & Construction Portfolio 

OTHER (Construction) 

Vanguard World Funds: Vanguard Consumer Staples Index Fund; 
ETF Shares 

NODUR 

Vanguard World Funds: Vanguard Healthcare Index Fund; VIPERs 
Share Class 

HLTH 

Vanguard World Funds: Vanguard Industrials Index Fund; ETF 
Shares 

MANUF 

First Trust Exchange-Traded AlphaDEX Fund: First Trust 
Industrials/Producer Durables AlphaDEX Fund 

DURBL 

StreetTRACKS Series Trust: SPDR Metals & Mining ETF OTHER (Mining) 

Vanguard World Funds: Vanguard Energy Index Fund; ETF Shares ENRGY 

Vanguard Specialized Funds: Vanguard REIT Index Fund; ETF 
Shares 

OTHER (REIT) 

iShares Trust: iShares S&P Global Consumer Discretionary Index 
Fund 

SHOPS (Discretionary) 

PowerShares Exchange-Traded Fund Trust: PowerShares 
Dynamic Leisure & Entertainment Portfolio 

OTHER (Leisure) 

SPDR Series Trust: SPDR S&P Retail ETF SHOPS (Retail) 

iShares Trust: iShares S&P Global Technology Sector Index Fund HITEC   

Vanguard World Funds: Vanguard Utilities Index Fund; ETF 
Shares 

UTILS 

 

Again, the forecasting horizon is one month ahead for each OOS subperiod, while the in-sample (IS) is 

the previous 15 years of data per industry (i.e., 180 months/data points). This way, we examine how 

the model’s performance varies across time and business cycles.  For instance, we isolated the 2007-

2009 years to investigate any differentiation in the model's performance during the global financial 

crisis. On the contrary, according to the NBER dates of the US business cycle expansions and 

contractions, the preceding years (i.e., 2000 to 2006) are mainly characterized by economic expansion. 

Economic expansion is also prevalent throughout the 2010-2019 decade without major recession 
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events. We, therefore, divide 2010-2019 into two equal-length OOS periods to investigate notable 

differences in the model’s performance across the decade. We optimize the hyperparameters of 

LassoNet following the early stopping procedure presented in Section 1.3.2. Figure 1.C.1 presents the 

separation of IS and OOS periods. 

Figure 1.C.1. In-sample and out-of-sample partition of monthly observations. 

 

Panel A of Table 1.C.1 presents the OOS Root Mean Squared Error (RMSE) and Mean Absolute Error 

(MAE) metrics for the ten industries, which are averaged across the four subperiods (i.e., 2000 – 2006, 

2007 – 2009, 2010 – 2014, 2015 – 2019) for practical reasons. The findings again demonstrate that the 

LassoNet consistently outperforms all the other industry benchmark models by achieving the lowest 

prediction error metrics.  Consistent with the full OOS results of the main paper, the XGBOOST 

outperforms all the other benchmark models across industries, while the Group Lasso is the third-best 

model under both RMSE and MAE. In addition, the LassoNet achieves the lowest discrepancy for all 

error metrics' minimum and maximum values, according to panel B findings. 

We now assess the statistical significance of LassoNet’s forecasts against all the benchmark models 

via the Diebold and Mariano (1995) (DM) test for each OOS subperiod. Table 1.C.2. reports the 

relevant results. The overall picture shows that LassoNet outperforms the benchmark models for most 

subperiods and across all industries.  The forecasting superiority is achieved at a 1% or 5% significance 

level.  Only the XGBoost model demonstrates an almost equivalent performance in some subperiods 

and industries (e.g., 2015 – 2019), but this is not statistically significant against LassoNet. However, 

even in these subperiods, LassoNet significantly outperforms XGBoost in three out of ten industry 

portfolios forecasted. In addition, LassoNet outperforms all benchmarks during the financial crisis 

period (i.e., 2007 – 2009) so it represents a robust forecasting specification that is fully interpretable 

at the same time. 
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Table 1.C.1. OOS statistical performance for the LassoNet and the employed benchmark models across subperiods. 

The table reports the OOS statistical performance across the four subperiods. For each industry, we compare the performance of the LassoNet model against the employed benchmarks (i.e., 

OLS-Regression, Group-Lasso, Elastic-Net, MLP-NN, Lasso-ANN-MLP, and XGBoost). We report the root mean squared error (RMSE) and the mean absolute Error (MAE) as error metrics. In 

Panel B, we also present the range for the RMSE and MAE metrics, which are calculated by the difference between each error metric's highest and lowest values. The lowest values are reported 

in bold. 

 
Panel A: 
Loss Criteria 

LASSONET OLS GROUP 
LASSO 

ELASTIC 
NET 

MLP-NN LASSO 
& MLP-

NN 

XGBOOST   LASSONET OLS GROUP 
LASSO 

ELASTIC 
NET 

MLP-NN LASSO & 
MLP-NN 

XGBOOST 

  DURBL   ENRGY 

RMSE 0.0785 0.2017 0.1002 0.1092 0.183 0.2226 0.0874   0.0655 0.4851 0.1229 0.1123 0.1433 0.1401 0.0696 

MAE 0.0566 0.1522 0.0751 0.082 0.1423 0.178 0.0669   0.053 0.4152 0.1016 0.0903 0.1146 0.113 0.0550 

                              

  HLTH   NODUR 

RMSE 0.0426 6.2205 0.0651 0.0746 0.0872 0.0915 0.0549   0.0395 0.1714 0.0728 0.0745 0.1556 0.1528 0.0524 

MAE 0.0338 2.4352 0.053 0.0601 0.0687 0.0718 0.0440   0.0315 0.1398 0.0606 0.0616 0.1214 0.1154 0.0417 

                              

  TELCM   UTILS 

RMSE 0.0495 0.2437 0.0802 0.1007 0.1143 0.1303 0.0667   0.0402 0.3541 0.212 0.252 0.1234 0.1813 0.0481 

MAE 0.0385 0.1759 0.0601 0.0749 0.0899 0.1068 0.0510   0.0316 0.2787 0.1729 0.2017 0.0957 0.147 0.0367 

                              

  MANUF   HITEC 

RMSE 0.0525 0.1574 0.1068 0.1361 0.1283 0.1615 0.0595   0.0733 0.2884 0.1585 0.1494 0.161 0.1562 0.0952 

MAE 0.0401 0.1385 0.0953 0.1228 0.1056 0.1197 0.0435   0.0565 0.2511 0.1284 0.118 0.1361 0.126 0.0733 

                              

  SHOPS   OTHER 

RMSE 0.0467 3.6683 0.1109 0.1292 0.1347 0.1055 0.0589   0.052 0.3097 0.132 0.1482 0.1486 0.1421 0.0629 

MAE 0.0377 2.3331 0.09 0.1101 0.0982 0.0848 0.0473   0.0389 0.22 0.1039 0.116 0.1289 0.1132 0.0499 
      

 
        

 

Panel B: Error 
Metric Range 

LASSONET OLS GROUP 
LASSO 

ELASTIC 
NET 

MLP-
NN 

LASSO 
& MLP-

NN 

XGBOOST 

RMSE Range 0.0390 6.0631 0.1469 0.1775 0.0958 0.1311 0.0471 

MAE Range 0.0251 2.2967 0.1199 0.1416 0.0736 0.1062 0.0365 
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Table 1.C.2. Diebold Mariano test results for the LassoNet against benchmark models across subperiods. 

The table displays the t-statistics and p-values of the DM (1995) test for the LassoNet against each benchmark pairwise for the four OOS subperiods separately. The null 
hypothesis tests that LassoNet and the benchmark forecast have equal predictive ability. Bold p-values and t-statistics indicate that we reject the null hypothesis of the two 
forecasts' equivalence and show the superiority of LassoNet against the benchmark. 

 2000-2006  2007-2009 

 DURBL ENRGY HITEC HLTH MANUF NODUR OTHER SHOPS TELCM UTILS  DURBL ENRGY HITEC HLTH MANUF NODUR OTHER SHOPS TELCM UTILS 

OLS -5.69 
(0.00) 

-9.27 
(0.00) 

-9.87 
(0.00) 

-9.34 
(0.00) 

-11.20 
(0.00) 

-4.42 
(0.00) 

-6.61 
(0.00) 

-13.14 
(0.00) 

-6.30 
(0.00) 

-11.22 
(0.00) 

 -4.03 
(0.00) 

-5.39 
(0.00) 

-6.07 
(0.00) 

-5.91 
(0.00) 

-6.27 
(0.00) 

-6.09 
(0.00) 

-3.05 
(0.00) 

-3.95 
(0.00) 

-4.64 
(0.00) 

-5.87 
(0.00) 

GROUP 
LASSO 

-4.72 
(0.00) 

-6.74 
(0.00) 

-3.88 
(0.00) 

-8.00 
(0.00) 

-5.89 
(0.00) 

-4.46 
(0.00) 

-6.75 
(0.00) 

-11.70 
(0.00) 

-5.05 
(0.00) 

-11.98 
(0.00) 

 -2.40 
(0.02) 

-3.17 
(0.00) 

-3.13 
(0.00) 

-3.35 
(0.00) 

-6.19 
(0.00) 

-4.90 
(0.00) 

-2.42 
(0.02) 

-3.56 
(0.00) 

-2.63 
(0.01) 

-6.07 
(0.00) 

ELASTIC 
NET 

-4.79 
(0.00) 

-5.34 
(0.00) 

-4.10 
(0.00) 

-8.46 
(0.00) 

-8.56 
(0.00) 

-3.91 
(0.00) 

-6.84 
(0.00) 

-12.96 
(0.00) 

-5.20 
(0.00) 

-11.65 
(0.00) 

 -2.86 
(0.00) 

-3.70 
(0.00) 

-3.09 
(0.00) 

-3.52 
(0.00) 

-6.59 
(0.00) 

-4.55 
(0.00) 

-3.20 
(0.00) 

-4.04 
(0.00) 

-2.95 
(0.00) 

-6.10 
(0.00) 

MLP NN -5.40 
(0.00) 

-5.13 
(0.00) 

-3.88 
(0.00) 

-5.03 
(0.00) 

-5.66 
(0.00) 

-7.32 
(0.00) 

-8.34 
(0.00) 

-4.61 
(0.00) 

-4.01 
(0.00) 

-5.85 
(0.00) 

 -2.23 
(0.03) 

-3.71 
(0.00) 

-4.31 
(0.00) 

-2.11 
(0.03) 

-5.58 
(0.00) 

-4.36 
(0.00) 

-6.96 
(0.00) 

-2.71 
(0.01) 

-4.40 
(0.00) 

-3.72 
(0.00) 

LASSO & 
MLP-NN 

-8.01 
(0.00) 

-5.49 
(0.00) 

-3.25 
(0.00) 

-5.59 
(0.00) 

-7.13 
(0.00) 

-4.56 
(0.00) 

-3.63 
(0.00) 

-4.81 
(0.00) 

-6.61 
(0.00) 

-6.15 
(0.00) 

 -3.26 
(0.00) 

-3.16 
(0.00) 

-4.44 
(0.00) 

-3.06 
(0.00) 

-3.76 
(0.00) 

-3.62 
(0.00) 

-4.36 
(0.00) 

-2.75 
(0.01) 

-3.71 
(0.00) 

-4.69 
(0.00) 

XGBOOST -2.46 
(0.01) 

-0.96 
(0.33) 

-3.87 
(0.00) 

-6.89 
(0.00) 

-1.85 
(0.06) 

-5.25 
(0.00) 

-4.97 
(0.00) 

-0.16 
(0.87) 

-4.75 
(0.00) 

-0.33 
(0.73) 

 -0.64 
(0.51) 

-2.66 
(0.01) 

-2.59 
(0.01) 

0.56 
(0.56) 

-1.53 
(0.12) 

-1.67 
(0.09) 

-1.93 
(0.05) 

-1.70 
(0.08) 

-1.59 
(0.10) 

-2.30 
(0.02) 

 2010-2014  2015-2019 
 DURBL ENRGY HITEC HLTH MANUF NODUR OTHER SHOPS TELCM UTILS  DURBL ENRGY HITEC HLTH MANUF NODUR OTHER SHOPS TELCM UTILS 

OLS -5.22 
(0.00) 

-15.21 
(0.00) 

-8.75 
(0.00) 

-6.55 
(0.00) 

-6.85 
(0.00) 

-7.20 
(0.00) 

-5.43 
(0.00) 

-4.86 
(0.00) 

-4.53 
(0.00) 

-7.46 
(0.00) 

 -3.49 
(0.00) 

-6.60 
(0.00) 

-5.83 
(0.00) 

-2.61 
(0.01) 

-5.32 
(0.00) 

-6.43 
(0.00) 

-3.92 
(0.00) 

-3.87 
(0.00) 

-4.23 
(0.00) 

-4.03 
(0.00) 

GROUP 
LASSO 

1.71 
(0.09) 

-3.80 
(0.00) 

-5.30 
(0.00) 

-2.38 
(0.02) 

-9.19 
(0.00) 

-4.03 
(0.00) 

-4.07 
(0.00) 

-6.03 
(0.00) 

-2.12 
(0.03) 

-6.08 
(0.00) 

 -2.71 
(0.00) 

-6.54 
(0.00) 

-5.14 
(0.00) 

-1.20 
(0.23) 

-2.09 
(0.04) 

-5.48 
(0.00) 

-6.10 
(0.00) 

-2.65 
(0.01) 

-2.13 
(0.03) 

-3.82 
(0.00) 

ELASTIC 
NET 

1.16 
(0.24) 

-2.00 
(0.04) 

-4.78 
(0.00) 

-2.74 
(0.00) 

-10.50 
(0.00) 

-2.27 
(0.02) 

-4.29 
(0.00) 

-7.50 
(0.00) 

-1.05 
(0.29) 

-6.05 
(0.00) 

 -3.04 
(0.00) 

-5.13 
(0.00) 

-4.72 
(0.00) 

-1.27 
(0.20) 

-3.59 
(0.00) 

-7.54 
(0.00) 

-4.80 
(0.00) 

-2.91 
(0.00) 

-4.00 
(0.00) 

-3.88 
(0.00) 

MLP NN -3.60 
(0.00) 

-4.69 
(0.00) 

-3.07 
(0.00) 

-5.71 
(0.00) 

-2.49 
(0.01) 

-2.87 
(0.00) 

-5.20 
(0.00) 

-6.15 
(0.00) 

-6.89 
(0.00) 

-5.09 
(0.00) 

 -5.06 
(0.00) 

-4.58 
(0.00) 

-13.21 
(0.00) 

-4.00 
(0.00) 

-5.20 
(0.00) 

-4.26 
(0.00) 

-7.46 
(0.00) 

-4.04 
(0.00) 

-4.21 
(0.00) 

-3.71 
(0.00) 

LASSO & 
MLP-NN 

-5.03 
(0.00) 

-4.72 
(0.00) 

-2.92 
(0.00) 

-4.92 
(0.00) 

-4.63 
(0.00) 

-3.47 
(0.00) 

-4.74 
(0.00) 

-5.92 
(0.00) 

-6.32 
(0.00) 

-4.68 
(0.00) 

 -4.10 
(0.00) 

-5.86 
(0.00) 

-7.66 
(0.00) 

-4.74 
(0.00) 

-2.58 
(0.01) 

-6.90 
(0.00) 

-5.41 
(0.00) 

-5.57 
(0.00) 

-5.31 
(0.00) 

-6.98 
(0.00) 

XGBOOST -2.27 

(0.02) 

 

2.70 

(0.00) 

2.28 

(0.02) 

-1.84 

(0.06) 

0.33 

(0.73) 

-3.17 

(0.00) 

-1.20 

(0.22) 

-5.24 

(0.00) 

-2.35 

(0.02) 

-2.38 

(0.02) 

 
0.25 

(0.85) 

-0.60 

(0.54) 

-0.97 

(0.32) 

-3.31 

(0.00) 

-1.30 

(0.19) 

2.44 

(0.01) 

0.15 

(0.88) 

-3.01 

(0.00) 

-2.93 

(0.00) 

-3.46 

(0.00) 
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We also evaluate the statistical significance of LassoNet’s forecasts against all the benchmark 

models via the Superior Predictive Ability (SPA) test of Hansen (2005) and the Model Confidence Set 

(MCS) test of Hansen et al. (2011) for each of the four OOS subperiods Tables 1.C.3 and 1.C.4 report 

the findings of the SPA and MCS tests, respectively. Table 1.C.3 shows that LassoNet is not inferior to 

most benchmarks and for the subperiods examined. Only for the ENRGY and NODUR industries and 

for the 2010 – 2014 and 2015 – 2019 industries, respectively, is LassoNet inferior to the benchmark 

models. Table 1.C.4 demonstrates that the LassoNet almost always belongs to the model confidence 

set (i.e., p-value greater than nominal statistical levels) and generates the highest p-value most of the 

time. There are only a few exemptions (i.e., ENRGY, HITEC, and NODUR), which does not hold for the 

2010 – 2014 and 2015 – 2019 periods. The second-best model is the XGBoost since it is frequently 

included in the confidence set, while Group Lasso is the third-best, especially for the most recent 

subperiods. Finally, we do not perform the Giacomini and Rossi (2010) (GR) fluctuation test for each 

subperiod as it assesses the relative forecasting performance of the proposed model with each of the 

benchmark models over time based on a rolling window of observations (i.e., 60 months). Hence, the 

GR test will not provide meaningful results, especially for our subperiods, which are less or equal to 

five years. 

Table 1.C.3. SPA test results for the LassoNet and the employed benchmark models. 

The table displays the p-values for the SPA test of Hansen (2005) for each OOS subperiod. The test provides 
insights regarding the relative performance of LassoNet against the employed benchmarks (OLS-Regression, 
Group Lasso, Elastic-Net, MLP-NN, Lasso-MLP-NN, and XGBoost). Bold p-values indicate a failure to reject the 
null hypothesis that LassoNet is not inferior to the benchmarks. 

 
 DURBL ENRGY HITEC HLTH MANUF NODUR OTHER SHOPS TELCM UTILS 

 
 

          

P
-V

A
LU

E 

  

 2000-2006 

RMSE 0.515 0.928 0.717 0.509 0.525 0.542 0.733 0.542 0.501 0.602 

MAE 0.512 0.957 0.828 0.519 0.838 0.554 0.607 0.350 0.54 0.394 

 2007-2009 

RMSE 0.992 0.605 0.937 0.17 0.868 0.516 0.947 0.942 0.964 0.503 

MAE 1.000 0.699 0.82 0.142 0.901 0.896 0.985 0.922 0.907 0.513 

 2010-2014 

RMSE 0.165 0.009 0.408 0.585 0.407 0.520 0.541 0.608 0.874 0.537 

MAE 0.361 0.000 0.338 0.938 0.302 0.529 0.791 0.601 0.882 0.514 

 2015-2019 

RMSE 0.383 0.714 0.899 0.739 0.991 0.015 0.451 0.691 0.879 0.806 

MAE 0.384 0.725 0.918 0.964 0.945 0.029 0.695 0.776 0.886 0.504 
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Table 1.C.4. MCS test results for the LassoNet and the employed benchmark models. 

The table reports p-values for Hansen et al.'s (2011) MCS procedure over each OOS subperiod and each industry at a 10% confidence level. A sequence of significance tests is performed to find model 
forecasts that are not inferior to others. P-values that exceed the nominal significance levels (i.e., 1%, 5%, and 10%) show that the model belongs to the MCS. The models belonging to the confidence 
set at the 10% significance level are reported in bold.  

 2000-2006  2007-2009 

 DURBL ENRGY HITEC HLTH MANUF NODUR OTHER SHOPS TELCM UTILS  DURBL ENRGY HITEC HLTH MANUF NODUR OTHER SHOPS TELCM UTILS 

OLS 0.010 0.002 0.006 0.000 0.000 0.001 0.034 0.000 0.034 0.000  0.001 0.000 0.000 0.010 0.000 0.001 0.176 0.009 0.003 0.002 

GROUP 
LASSO 

0.059 0.000 0.006 0.000 0.013 0.046 0.034 0.000 0.070 0.000 
 

0.229 0.064 0.111 0.121 0.000 0.011 0.176 0.057 0.103 0.002 

ELASTIC 
NET 

0.059 0.002 0.015 0.000 0.000 0.065 0.034 0.000 0.067 0.000 
 

0.120 0.013 0.113 0.121 0.000 0.012 0.066 0.009 0.016 0.001 

MLP NN 0.000 0.000 0.015 0.000 0.000 0.001 0.003 0.087 0.070 0.002  0.023 0.000 0.000 0.121 0.000 0.000 0.000 0.057 0.000 0.000 

LASSO & 
MLP-NN 0.000 0.000 0.000 0.000 0.000 0.012 0.013 0.000 0.000 0.006 

 
0.000 0.013 0.000 0.116 0.000 0.000 0.000 0.01 0.000 0.002 

XGBOOST 0.001 0.160 0.006 0.000 0.053 0.001 0.034 0.906 0.031 0.805  0.496 0.013 0.118 1.000 0.253 0.082 0.176 0.137 0.197 0.002 

LASSONET 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000 1.000 1.000 0.355 1.000 1.000 1.000 1.000 1.000 1.000 

 2010-2014  2015-2019 

 DURBL ENRGY HITEC HLTH MANUF NODUR OTHER SHOPS TELCM UTILS  DURBL ENRGY HITEC HLTH MANUF NODUR OTHER SHOPS TELCM UTILS 

OLS 0.065 0.000 0.000 0.010 0.000 0.002 0.092 0.015 0.026 0.001  0.064 0.000 0.000 0.193 0.022 0.011 0.106 0.082 0.097 0.060 

GROUP 
LASSO 

1.000 
0.003 

0.005 
0.093 

0.000 0.000 0.113 0.002 0.026 0.002 
 

0.064 0.010 0.017 0.193 0.392 0.000 0.007 0.146 0.222 0.062 

ELASTIC 
NET 

0.870 
0.003 

0.005 
0.093 

0.000 0.002 0.113 0.002 0.222 0.002 
 

0.001 0.044 0.018 0.193 0.029 0.002 0.044 0.146 0.097 0.060 

MLP NN 0.001 0.003 0.036 0.005 0.000 0.005 0.000 0.000 0.000 0.000  0.013 0.000 0.000 0.000 0.001 0.011 0.000 0.025 0.057 0.035 

LASSO & 
MLP-NN 

0.001 
0.003 

0.000 0.003 0.000 0.002 0.000 0.000 0.000 0.000 
 

0.010 0.000 0.000 0.000 0.050 0.000 0.000 0.005 0.000 0.000 

XGBOOST 0.001 1.000 1.000 0.093 1.000 0.000 0.113 0.000 0.026 0.001  1.000 0.588 0.191 0.000 0.392 1.000 0.912 0.082 0.043 0.003 

LASSONET 0.312 0.001 0.015 1.000 0.758 1.000 1.000 1.000 1.000 1.000  0.777 1.000 1.000 1.000 1.000 0.012 1.000 1.000 1.000 1.000 



47 
 

1.C.2. Covariates importance 

1.C.2.1 SAGE value estimation 

Positive SAGE values reflect a covariate’s contribution to lowering the model’s prediction error. 

Figure 1.C.2 presents the covariates with the three highest SAGE values for every industry and the 

OOS subperiods examined (i.e., 2000-2006, 2007-2009, 2010-2014, 2015-2019).  By observing Figure 

1.C.2, we arrive at four significant conclusions.  First, the valuation ratios are the covariate category 

most frequently achieves the highest SAGE values. This finding indicates that valuation ratios are 

instrumental for predictive tasks involving industry returns and should be regarded as an integral part 

of the input variable set, especially when forecasting periods characterized by financial distress. In 

terms of importance, valuation ratios are followed by industry and other-industry lagged returns 

categories. Lagged returns, and therefore past performance, contain valuable information when 

predicting future returns. Additionally, we prove that solid links and interdependencies exist among 

the industries reported in previous studies (see Rapach et al., 2015, 2019). 

Like the main paper, we calculate the fraction of covariates belonging to the group with the three 

highest SAGE values across the four OOS subperiods and the ten industries in total. We repeat that 

computation for every category. Figure 1.C.3 presents the estimated selection rates for the different 

covariates’ categories across the four OOS periods and all industries.  

From Figure 1.C.3, it is evident that the valuation ratios have again the highest aggregate presence, 

as indicated by a selection rate close to 50%. In the second and third place, the industry’s lagged 

returns and other-industry lagged returns categories possess similar selection rates, 18.33% and 

17.5%, respectively. This time, the macroeconomic variables and financial soundness categories follow 

with a selection rate of 5.83% and 4.16%, while the remaining categories achieve even lower selection 

rates.  
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Figure 1.C.2. SAGE values bar plots. 

The figure displays the three covariates with the highest SAGE values for every industry across the four OOS subperiods. We restrict our results to 
the three covariates with the highest SAGE values to investigate the most significant variables (and the categories they belong to). The bar graphs 
also include 95% confidence intervals for the SAGE value of each covariate. 
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Figure 1.C.3. Selection rates for the covariates’ categories. 

The figure displays the selection rate for each category's covariates within the three highest positions regarding 
their corresponding SAGE values across the four OOS subperiods and ten industries. 

 
To quantitatively examine for fluctuations in the positive contribution of each covariate category 

across time, we conduct cross-industry summations of the SAGE values for each OOS subperiod. The 

results are displayed in Table 1.C.5 and validate that valuation ratios, industry, and other-industry 

lagged returns categories become increasingly crucial for the model's predictive accuracy during the 

financial crisis years. In terms of the 2007-2009 period, the positive contribution of the three most 

crucial categories, we find that the valuation ratios achieve a higher positive contribution to the model 

when compared to both the industry and other-industry lagged returns. This result is directly derived 

by examining the SAGE value sums' relative magnitude for the covariate categories. 

1.C.2.2 Statistical significance of SAGE values across subperiods 

Another question is how a category's positive contribution varies over time. To provide a 

quantitative answer, we perform hypothesis testing. Specifically, we create a set of ten aggregate 

SAGE values corresponding to each covariate category across all industries for each OOS subperiod. 

For instance, we sum the SAGE values of all covariates belonging to the same category across all 

industries. 
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Table 1.C.5. Aggregate SAGE values across the covariates’ categories. 

The table reports the cross-industry summation of SAGE values for each of the four OOS subperiods. We obtain an aggregate measure of a category’s overall positive 
contribution to the LassoNet’s performance by summing all covariates belonging to a specific category for every OOS subperiod. 

  
 

Valuation 
Ratios 

Profitability 
Ratios 

Capitalization 
Ratios 

Financial 
Soundness 

Ratios 

Solvency 
Ratios 

Liquidity 
Ratios 

Efficiency 
Ratios 

Macroecon. 
Variables 

Lagged 
Returns 

Other-industry 
Lagged Returns 

2000-2006 
 

3.29x10−3 8.10x10−5 - 2.24x10−4 1.36x10−5 - - 3.31x10−4 7.33x10−4 3.00x10−4 

2007-2009 
 

1.58x10−2 1.54x10−3 5.15x10−6 8.83x10−4 3.23x10−4 2.93x10−4 3.85𝑥10−4 1.10x10−3 4.20x10−3 2.18x10−3 

2010-2014 
 

3.37x10−3 1.48x10−6 1.44x10−4 5.35x10−6 5.04x10−4 2.28x10−5 5.20 𝑥10−6 1.03x10−4 5.07x10−4 7.55x10−4 

2015-2019 
 

2.50x10−3 4.60x10−5 - 2.30x10−4 5.34x10−4 4.02x10−6 3.15 𝑥10−6 2.24x10−5 6.59x10−4 6.47x10−4 
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Then, we create a set of 10 category aggregate SAGE values for each OOS subperiod, and for 

consecutive periods, we conduct two-tailed pairwise t-tests between the aggregate SAGE value sets. 

Effectively, we conduct hypothesis tests for the following period pairs: (2000-2006) – (2007-2009), 

(2007-2009) – (2010-2014), (2010-2014) – (2015-2019). This task aims to investigate variations in a 

category's importance across periods. Table 1.C.6 demonstrates the t-statistics of the hypothesis tests 

for the ten covariate categories and the four OOS periods.  

Table 1.C.6. SAGE values hypothesis tests between periods. 

The table reports the two-tailed t-statistic between category aggregate SAGE values of consecutive OOS 
subperiods. We sum all industries' SAGE values of all covariates in the same category. We create a set of 10 
aggregate SAGE values for all covariate categories and each OOS independently. Given that our first hypothesis 
test compares 2007-2009 and 2000-2006, the first row of the table is empty. Empty table cells also denote that 
a hypothesis could not be performed if the LassoNet did not choose any positively contributing covariates for a 
particular category and any of the periods being compared in the corresponding t-test. *, **, *** denote 
significance at the 10%, 5% and 1% level, respectively. 

OOS 
periods 

Val. 
Ratios 

Prof. 
Ratios 

Capt. 
Ratios 

Fin. 
Sound. 
Ratios 

Solvency 
Ratios 

Liquidity 
Ratios 

Efficiency 
Ratios 

Macro. 
Variables 

Lagged 
Rets 

OI 
Lagged 

Rets 

2000-2006 - - - - - - - - - - 

2007-2009 2.00* 0.98 - 1.20 1.62 - - 0.88 1.88* 2.02* 

2010-2014 -1.95* -1.04 0.96 -1.63 0.34 -1.08 -1.43 -1.16 -2.01* -1.50 
2015-2019 -0.43 0.97 - 1.91* -0.91 -0.81 -0.34 -1.17 0.46 -0.36 

 

Consistent with previously reported findings, Table C.6 exhibits that the valuation ratios positive 

contribution increased during the financial crisis (i.e., 2007-2009). Specifically, we observe a positive 

and statistically significant test statistic of 2.00 at the 5% level for the hypothesis test comparing 2007-

2009 with 2000-2006 (i.e.,  H0: 𝜇2007−2009 − 𝜇2000−2006 = 0) and a negative test statistic of -1.95 for 

the test comparing 2007-2009 and 2010-2014 periods (i.e.,  H0: 𝜇2010−2014 − 𝜇2007−2009 = 0). The 

hypothesis test confirms the significance of the valuation ratios category for any forecasting exercise, 

especially when analyzing periods characterized by increased financial uncertainty and distress. Our 

findings are consistent with Bianchi and McAlinn (2021), who report increased explanatory power for 

financial ratios during recessions when those are used to forecast industry returns. We can also 

observe increasing importance for the other-industry lagged returns category for the financial crisis 

years. This finding directly results from a positive test statistic of 2.02 for the hypothesis test between 

the 2007-2009 and 2000-2006 periods (i.e.,  H0: 𝜇2007−2009 − 𝜇2000−2006 = 0). The economic 

interpretation of this finding is the existence of stronger cross-industry links and interdependencies 

during periods of economic crisis, which has crucial implications for any investment and portfolio 

construction attempt. This finding aligns with the evidence provided in previous literature. Specifically, 

Rapach et al. (2015, 2019) show that an investment strategy based on model predictions using as 

inputs individual and other-industry lagged returns achieves substantial gains during business cycle 
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recessions. Additionally, the positive contribution of the lagged returns category also increases during 

the same period (t-statistic = 1.88), while for the financial soundness category, we witness increased 

importance for the years 2015-2019 compared to 2010-2014. 

In the second stage, we employ pairwise hypothesis tests between the covariates' categories to 

statistically evaluate differences in their positive contribution to predictability. After determining the 

positive contribution of a specific category, as previously described in this subsection, we repeat this 

task for the four OOS periods. We effectively create four sets of 10 aggregate SAGE values. Then, we 

concatenate the four discrete sets into one set for each covariate category.18 by the time period. 

Each set, corresponding to a specific category, has 40 aggregate SAGE values across all OOS 

subperiods. Finally, we employ pairwise two-tailed t-tests between the SAGE values of the covariates 

categories.  

Table 1.C.7 reports the t-statistics and the corresponding p-values of the cross-category hypothesis 

tests. Specifically, the hypothesis tests comparing the mean of the valuation ratios against the mean 

of every other covariate category have a positive and statistically significant t-statistic at the 1% level 

in most cases. This result is not unexpected since valuation ratios have the highest selection rates in 

the three positions with the highest SAGE values across the industries and the OOS periods. In 

addition, the t-tests also reveal a favourable and statistically significant outcome for the mean positive 

contribution of the lagged returns category compared to other covariate categories. In this case, the 

statistical significance is established on average at the 5% level. The only exceptions are the valuation 

ratios and the other-industry lagged returns category. When comparing the mean contribution of 

lagged returns against other-industry lagged returns, the t-statistic is positive (i.e., 0.96) but 

insignificant. The results for the other-industry lagged returns are similar to the lagged returns 

category, except for the t-test with the profitability ratios. In this case, the outcome still favours the 

other-industry lagged returns category but is not statistically significant. 

 
18 Since we are interested exclusively in the cross-category comparison for this task, we do not separate the 
aggregated SAGE values for a specific category 
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Table 1.C.7 SAGE values pair-wise hypothesis tests between the covariates’ categories. 

We sum the SAGE values of all covariates belonging to the same category for each of the ten industries over the four OOS subperiods. For all covariate categories, we create a set of 10 
aggregate SAGE values. We then employ pairwise t-tests between the covariates’ categories to statistically evaluate differences in the positive contribution. We present the t-statistics and 
the corresponding p-values for the hypothesis tests in parenthesis. We additionally report the corresponding p-values under the Hommel (1988) criterion for p-value correction in brackets. 
The t-statistics and p-values of the column category with a statistically significant higher positive contribution than row one are presented in bold. *, **, *** denote significance at the 10%, 
5% and 1% level, respectively. 

 
Valuation 

Ratios 
Lagged 
Returns 

Other-
industry 
Lagged 
Returns 

Macroeconomic 
Variables 

Financial 
Soundness 

Ratios 

Solvency 
Ratios 

Profitability 
Ratios 

Capitalization 
Ratios 

Liquidity 
Ratios 

Efficiency 
Ratios 

 
 
 
 
 

Valuation Ratios - - - - - - - - - - 

Lagged Returns 
2.503 

(0.016**) 
[0.016**] 

- - - - - - - - - 

Other-industry Lagged 
Returns 

2.878 
(0.006***) 
[0.013**] 

0.962 
(0.34) 
[0.34] 

- - - - - - - - 

Macroeconomic 
Variables 

3.204 
(0.003***) 
[0.008***] 

2.027 
(0.048**) 

[0.128] 

1.689 
(0.095*) 
[0.191] 

- - - - - - - 

Financial Soundness 
Ratios 

3.248 
(0.002***) 
[0.007***] 

2.229 
(0.031**) 
[0.095*] 

2.125 
(0.038**) 

[0.113] 

0.204 
(0.839) 
[0.949] 

- - - - - - 

Solvency Rations 
3.311 

(0.002***) 
[0.006***] 

2.456 
(0.018**) 
[0.077*] 

2.553 
(0.013**) 
[0.053*] 

0.643 
(0.523) 
[0.949] 

0.575 
(0.567) 
[0.838] 

- - - - - 

Profitability Ratios 
3.147 

(0.003***) 
[0.009***] 

1.745 
(0.085*) 
[0.171] 

1.214 
(0.229) 
[0.229] 

-0.064 
(0.949) 
[0.949] 

-0.205 
(0.838) 
[0.838] 

-0.492 
(0.625) 
[0.625] 

- - - - 

Capitalization Ratios 
3.422 

(0.001***) 
[0.006***] 

2.891 
(0.006***) 
[0.037**] 

3.539 
(0.001***) 
[0.006***] 

1.56 
(0.127) 
[0.546] 

2.003 
(0.051*) 

[0.24] 

1.362 
(0.18) 
[0.54] 

1.017 
(0.315) 
[0.404] 

- - - 

Liquidity Ratios 
3.397 

(0.002***) 
[0.006***] 

2.794 
(0.008***) 
[0.048**] 

3.313 
(0.002***) 
[0.009***] 

1.336 
(0.188) 
[0.753] 

1.621 
(0.111) 
[0.333] 

0.981 
(0.331) 
[0.625] 

0.894 
(0.376) 
[0.404] 

-0.586 
(0.56) 
[0.56] 

- - 

Efficiency Ratios 
3.387 

(0.002***) 
[0.006***] 

2.754 
(0.009***) 

[0.053*] 

3.227 
(0.002***) 
[0.012**] 

1.248 
(0.218) 
[0.873] 

1.482 
(0.144) 
[0.432] 

0.84 
(0.404) 
[0.625] 

0.843 
(0.404) 
[0.404] 

-0.781 
(0.438) 
[0.56] 

-0.195 
(0.846) 
[0.846] 

- 
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1.D. Forecasting accuracy in changing conditions 

We compare the relative forecasting performance of the LassoNet with each benchmark model over 

time and assess the stability over time given changing conditions with the Giacomini and Rossi (2010) 

(GR) fluctuation test. The GR test defines the local relative loss for the two models as the sequence of 

rolling OOS loss differences. We consider rolling windows of 90 observations for the overall OOS 

period (i.e., 2010 – 2019). The null hypothesis assesses the equality of forecasting performance versus 

the one-sided alternative that the benchmark model forecasts are worse than those of LassoNet at 

least one point in time. Table 1.D.1 reports the relevant results along with the critical values generated 

by the GR test at 5% and 10% statistical significance levels. In particular, we present the maximum test 

statistic as Giacomini and Rossi (2010) suggested for statistical inference under unstable conditions 

along with the average proportion of rejections of the null hypothesis across industries.  Our findings 

show that the LassoNet is the best model for most industries and all benchmarks, except for a few 

cases where the null is not rejected (DURABL, NODUR, TELCM, and UTILS). 

Table 1.D.1. Giacomini and Rossi (2010) test statistics for the LassoNet and benchmark models for 
2010 – 2019. 

The table reports the Giacomini and Rossi (2010) fluctuation test statistics for the LassoNet against each benchmark 
and across all industries. We performed a one-sided test, H0: E[Delta L(t,h)] = 0 for all months t, vs. [Delta L(t,h)] > 0, 
where DeltaL(t,h) is the difference between the squared forecast errors of the two competing models,  L1 being the 
benchmark model and L2 being the LassoNet. Giacomini and Rossi (2010) report that the t-statistic is calculated as the 
largest t-statistic over the sequence of the local relative forecast error losses over the 2010 – 2019 OOS period. We 
also report the proportion of rejections over the OOS. Bold test statistics indicate rejection of the null hypothesis at 
5% and 10% significance level (i.e., critical values of 2.08 and 1.74).  

Industry OLS Group Lasso Elastic Net MLP Lasso-MLP XGBoost 

DURBL 2.45137** 1.58897 2.11564** 4.48722** 1.64475 2.36937** 

ENERG 4.42121** 2.69759** 2.51923** 2.50882** 4.07156** 2.96719** 

HITECH 3.20637** 2.91216** 3.00463** 5.12442** 5.12289** 4.55903** 

HLTH 3.16127** 3.01982** 3.74091** 3.61146** 3.71238** 2.70526** 

MANUF 4.73910** 2.65211** 3.42005** 4.56712** 4.88276** 2.10526** 

NODUR 2.68160** 2.09735** 1.59148 8.15421** 5.57494** 1.92356* 

OTHER 2.21763** 2.24457** 2.51885** 2.87921** 3.38487** 2.27009** 

SHOPS 4.17061** 2.14354** 2.22786** 2.73764** 1.85687* 3.10657** 

TELCM 4.37874** 1.55920 2.27454** 6.40765** 3.77355** 3.27609** 

UTILS 4.57595** 1.97674* 2.62336** 4.17115** 7.37913** 1.21159 

Proportion of 
rejections 

0.69677 0.22903 0.39677 0.88710 0.82903 0.48710 
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1.E. Trading application – robustness checks 

In the section, we utilize the out-of-sample (OOS) industry returns predictions based on rolling-

window forecasting to create portfolios with their corresponding ETFs by considering more 

conservative expense ratios and portfolios of the industry portfolio themselves. 

1.E.1. ETFs trading application 

First, we build monthly long-short portfolios for industry ETFs by selecting the best and worst-

performing industries based on the forecasts generated in the preceding sections, , but this time we 

consider a more conservative expense ratio of 0.50% every time we execute trades on the ETFs. 

Similarly to the main paper, we report the performance of Max1-Min1, Max2-Min2, and the Max3-

Min3 spread portfolios. Table 1.E.1 presents the performance of ETF’s long-short portfolios 

constructed based on LassoNet, Group Lasso, Elastic net and XGBoost forecasts as well as numerous 

benchmarks (i.e., value-weighted CRSP and S&P500 composite indices, equally weighted portfolios of 

the industry portfolios and selected industry ETFs, one-month ahead spread portfolio of industry ETFs) 

as described in the main text. Once again, ETF portfolios constructed based on LassoNet's forecasts 

beat all benchmarks, validating the results of the main paper. The most profitable portfolio is the 

Max3-Min3 generating an annualized Sharpe ratio of 2.20 and an annualized five-factor alpha of 

18.77%, statistically significant at a 1% significance level. 

1.E.2. Industry returns trading application 

Second,  we use the OOS industry returns forecasts to form directly spread portfolios of different 

industries. To do so, we sort the industry portfolios each month based on the corresponding return 

predictions of LassoNet and the rest of the benchmark models (i.e., Group Lasso, Elastic Net and 

XGBoost). We create long-short portfolios as in the ETF's exercise (i.e., Max1-Min1, Max2-Min2, and 

Max3-Min3). We consider ten basis points transaction costs for our strategy. Following Balvers and 

Wu (2006), we divide the total transaction cost among the industry portfolios, forming the strategy in 

each portfolio. For instance, the Max2-Min2 strategy is formed monthly using four industry portfolios, 

with two of which we construct our long position, while the remaining two form our short position. 

For the Max1–Min1, Max2-Min2, and Max3–Min3 portfolios, we count each switch of one of the two, 

three, or six industry portfolios as 1⁄2, 1⁄4, and 1⁄6 of the total transaction costs. Suppose for a specific 

month, we switch only the long position in the Max1-Min1 portfolio to a different industry portfolio. 

This action will account for 1/2 of the total transaction costs since the short position will remain 

unaltered. We keep almost the same benchmarks as in the ETF's exercise, apart from the equally-

weighted portfolio of ETFs, while this time, we create a one-month ahead portfolio, which short the 
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industries' returns in the current month to trade their spread on the following month. Table 1.E.2 

reports the relevant findings for the investment strategies' performance. 

Notably, all our deep learning investment portfolios, except the XGBoost, generate higher returns 

and positive and statistically significant alphas than the benchmarks. LassoNet is once again the 

superior model in terms of economic significance. At the same time, the overall findings demonstrate 

that it can effectively generate abnormal returns not captured by seminal factor models while 

minimizing the downside risk. Hence, it authenticates LassoNet's ability to provide economically 

meaningful forecasts, which fund managers and trading desks can utilize. 

 



57 
 

Table 1.E.1 Performance of industry ETF portfolios based on OOS forecasts. 

The table demonstrates performance metrics for trading strategies of industry ETFs based on LassoNet's, Group Lasso, Elastic Net and XGBoost forecasts and benchmark strategies over the 
2010 – 2019 OOS period. The Max1-Min1, Max2-Min2, and Max3-Min3 industry ETFs spread portfolios are constructed based on the highest and lowest-performing industries according to 
their corresponding forecasts while considering a 0.50% expense ratio. We report the annualized mean return and Sharpe ratio, maximum drawdown and annualized alphas.  The reported 
annualized alphas are obtained using the 4-factor (Carhart, 1997) and 5-factor (Fama & French, 2015) models. *, **, *** denote significance at the 10%, 5% and 1% level, respectively. 

 
Portfolios   Benchmark Strategies 

Panel A: Max1-Min1  LASSONET GROUP LASSO ELASTIC NET XGBOOST VW-CRSP SP500 EW-Ind. Port EW-Ind. ETFs 1 MAH 

 Ann. Mean Return (%) 19.89 18.13 19.00 4.46 12.32 11.46 6.24 7.28 -9.10 

Volatility (%) 14.74 15.07 14.65 12.49 12.72 12.46 12.15 12.46 16.53 

Ann. Sharpe ratio  1.30 1.16 1.26 0.31 0.93 0.88 0.47 0.54 -0.58 

Max Drawdown (%) 20.80 19.80 16.41 33.89 18.52 17.04 17.69 17.86 100.09 

Ann. 4-factor alpha (%)  18.85*** 17.40*** 17.71*** 3.56 - - 5.23** 6.22** -11.57** 

Ann. 5-factor alpha (%) 17.92*** 16.50*** 16.95*** 2.12 - - 5.39** 6.18** -12.94*** 

          

Panel B: Max2-Min2 LASSONET GROUP LASSO ELASTIC NET XGBOOST VW-CRSP SP500 EW-Ind. Port EW-Ind. ETFs 1 MAH 

 Ann. Mean Return (%) 20.07 15.45 15.02 1.29 12.32 11.46 6.24 7.28 -4.52 

Volatility (%) 10.16 10.39 10.26 9.86 12.72 12.46 12.15 12.46 12.80 

Ann. Sharpe ratio  1.92 1.44 1.41 0.08 0.93 0.88 0.47 0.54 -0.39 

Max Drawdown (%) 6.93 8.18 9.09 18.25 18.52 17.04 17.69 17.86 54.44 

Ann. 4-factor alpha (%)  19.62*** 15.00** 14.61** 0.87 - - 5.23** 6.22** -6.94* 

Ann. 5-factor alpha (%) 19.13*** 14.34** 14.14** 0.26 - - 5.39** 6.18** -7.02* 

          

Panel C: Max3-Min3 LASSONET GROUP LASSO ELASTIC NET XGBOOST VW-CRSP SP500 EW-Ind. Port EW-Ind. ETFs 1 MAH 

 Ann. Mean Return (%) 18.61 11.57 10.59 0.45 12.32 11.46 6.24 7.28 -7.33 

Volatility (%) 8.21 8.35 8.05 7.34 12.72 12.46 12.15 12.46 10.37 

Ann. Sharpe ratio  2.20 1.32 1.25 -0.09 0.93 0.88 0.47 0.54 -0.72 

Max Drawdown (%) 4.70 6.64 10.29 18.18 18.52 17.04 17.69 17.86 6.65 

Ann. 4-factor alpha (%)  18.28*** 9.94** 8.02** 0.08 - - 5.23** 6.22** -8.75** 

Ann. 5-factor alpha (%) 17.76*** 9.00** 7.22** -0.77 - - 5.39** 6.18** -9.05** 

 

 



58 
 

Table 1.E.2 Performance of industry portfolios based on OOS forecasts. 

The table demonstrates performance metrics for trading strategies of industry portfolios based on LassoNet's, Group Lasso, Elastic Net and XGBoost forecasts and benchmark strategies over 
the 2010 – 2019 OOS period. The Max1-Min1, Max2-Min2, and Max3-Min3 industry spread portfolios are constructed based on the highest and lowest-performing industries according to 
their corresponding forecasts and considering one-way transaction costs of 10 basis points. We report the annualized mean return and Sharpe ratio, maximum drawdown and annualized 
alphas.  The reported annualized alphas are obtained using the 4-factor (Carhart, 1997) and 5-factor (Fama & French, 2015) models. *, **, *** denote significance at the 10%, 5% and 1% level, 
respectively. 

 Portfolios Benchmark Strategies 

Panel A : Max1-Min1  LASSONET GROUP LASSO ELASTIC NET XGBOOST VW-CRSP SP500 EW-Ind. Port 1 MAH 

 Ann. Mean Return (%) 21.33 20.13 20.64 5.55 12.32 11.46 12.68 -2.58 

Volatility (%)) 14.46 15.96 15.11 13.31 12.72 12.46 12.46 16.37 

Ann. Sharpe ratio  1.42 1.22 1.33 0.38 0.93 0.88 0.97 -0.18 

Max Drawdown (%) -21.04 -23.00 -18.75 -34.65 18.52 17.04 17.86 52.22 

Ann. 4-factor alpha (%)  19.46*** 18.53*** 18.61*** 4.23 - - 11.72*** -3.87 

Ann. 5-factor alpha (%) 18.74*** 17.71*** 18.05*** 3.25 - - 10.33*** -4.28* 

         

Panel B: Max2-Min2 LASSONET GROUP LASSO ELASTIC NET XGBOOST VW-CRSP SP500 EW-Ind. Port 1 MAH 

 Ann. Mean Return (%) 22.75 17.97 17.38 5.20 12.32 11.46 12.68 -1.34 

Volatility (%)) 10.12 11.03 11.11 9.98 12.72 12.46 12.46 12.62 

Ann. Sharpe ratio  2.19 1.58 1.51 0.47 0.93 0.88 0.97 0.07 

Max Drawdown (%) -6.95 -9.78 -9.91 -11.99 18.52 17.04 17.86 27.53 

Ann. 4-factor alpha (%)  19.98*** 16.94*** 16.54*** 4.07 - - 11.72*** -1.32 

Ann. 5-factor alpha (%) 19.09*** 16.03*** 16.00*** 2.79 - - 10.33*** -2.51 

         

Panel C: Max3-Min3 LASSONET GROUP LASSO ELASTIC NET XGBOOST VW-CRSP SP500 EW-Ind. Port 1 MAH 

 Ann. Mean Return (%) 14.52 10.34 9.56 2.48 12.32 11.46 12.68 -0.52 

Volatility (%)) 6.17 6.92 6.91 6.32 12.72 12.46 12.46 10.47 

Ann. Sharpe ratio  2.26 1.42 1.31 0.32 0.93 0.88 0.97 -0.09 

Max Drawdown (%) -3.60 -8.19 -7.99 18.86 18.52 17.04 17.86 33.35 

Ann. 4-factor alpha (%)  13.55*** 10.14*** 9.00*** 1.65 - - 11.72*** -2.18 

Ann. 5-factor alpha (%) 12.27*** 9.22*** 8.65*** 0.86 - - 10.33*** -3.13 
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1.F. Robustness check: 49 industry portfolios 

1.F.1. Forecasting accuracy 

Finally, we run the same forecasting experiment using a more granular U.S. industry portfolio 

returns. In particular, we use 49 industry portfolios from Kenneth French's website.19 Again, we 

employ the same rolling-window forecasting exercise for 1985-2019, using January 2010 to December 

2019 as the OOS, in which the forecasting horizon is one month ahead. We also use the same 

covariates (i.e., 88 covariates).  However, this time, we use a panel data format for our prediction task. 

This is for practical reasons in presenting the forecasting performance of LassoNet and the benchmark 

models for 49 industries. Table 1.F.1 reports the average OOS RMSE and MAE criteria across the 

industries examined. The overall picture validates the relevant findings of the main paper. LassoNet is 

the superior model in forecasting industry portfolios, with XGBoost, Elastic Net and Group Lasso being 

the second, third and fourth-best models. Interestingly, the simple linear regression performs better 

than the remaining deep learning models (i.e., MLP and Lasso-MLP). 

Table 1.F.1. OOS statistical performance for the LassoNet and the employed benchmark models. 

The table reports the OOS statistical performance over the 2010 – 2019 period across 49 industries. We compare 

the performance of the LassoNet model against the employed benchmarks (i.e., OLS-Regression, Group-Lasso, 

Elastic-Net, MLP-NN, Lasso-ANN-MLP, and XGBOOST). We report the root mean squared error (RMSE) and the 

mean absolute Error (MAE) as error metrics. The lowest values are reported in bold.  

Panel B: Error 
Metric  

LASSONET OLS GROUP 
LASSO 

ELASTIC 
NET 

MLP LASSO - 
MLP 

XGBOOST 

RMSE  0.0542 0.0677 0.0662 0.0656 0.0812 0.0749 0.0563 

MAE 0.0420 0.0511 0.0503 0.0501 0.0637 0.0595 0.0437 

 

To assess the statistical significance of LassoNet's forecast against the benchmark models, we 

conduct the Diebold and Mariano (1995) (DM) test for forecasting accuracy while using the squared 

error as a loss function. Once again, a negative and significant t-statistic rejects the null hypothesis 

that two forecasts have equal predictive ability, and it shows the superiority of LassoNet against the 

benchmark (i.e., lower loss). Table 1.F.2., presents the DM t-statistics and their corresponding p-values 

(in parenthesis).  All p-values are below the significance thresholds, and their corresponding t-statistics 

are negative enough to prove that LassoNet has superior predictive ability against the benchmarks for 

all the 49 industries. 

 

 
19 The industry definitions and their corresponding returns can be found on Kenneth French's website: 
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. 

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Table 1.F.2. Diebold Mariano test results for the LassoNet against benchmark models. 

The table displays the t-statistics and p-values of the D.M. (1995) test for LassoNet against each benchmark 
pairwise across 49 industries for the 2010-2019 OOS period. The null hypothesis is defined as the LassoNet’s 
and benchmark forecasts having equal predictive ability. Bold p-values and t-statistics indicate that we reject 
the null hypothesis of the two forecasts' equivalence and show the superiority of LassoNet against the 
benchmark.  

DM test: t-statistic (p-value) 

LASSONET 

OLS GROUP LASSO  ELASTIC_NET MLP LASSO_MLP XGBOOST 

-2.85 
(0.002) 

-2.85 
(0.002) 

-2.91 
(0.001) 

-7.08 
(0.000) 

-6.62 
(0.000) 

-1.84 
(0.073) 

 

1.F.2. Covariates importance 

In this section, we examine the covariates driving the LassoNet forecasts across the 49 industries 

by computing the aggregate SAGE values of the forecasts. Figure 1.F.1 presents the five covariates 

with the highest SAGE values OOS across all industries, along with 95% confidence intervals of the 

mean SAGE value of each covariate.20 

Figure 1.F.1. SAGE values bar plots. 

The figure displays the three covariates with the highest SAGE values for all 48 industries across the 2010 – 2019 OOS 
period. We restrict our results to the five covariates with the highest SAGE values to investigate the most significant 
variables (and the categories they belong to). The bar graphs also include 95% confidence intervals around the mean 
SAGE value of each covariate. 

 

 

 
20 We decided that presenting the five covariates with the highest SAGE values would be more informative since 
we forecast 49 industries in a panel data framework. 
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Consistent with our findings on forecasting ten industry portfolios, valuation ratios, specifically 

Book/Market and Price/Book, along with other-industry lagged returns and the lagged returns of the 

same industry, are the most important in contributing to LassoNet's predictability. 

1.F.3. Trading application 

We also evaluate the economic significance of the 49 industry portfolios’ forecasts. We follow the 

same trading exercise as in the main manuscript (i.e., forming spread portfolios), but this time, we 

invest directly in the industry portfolios because of the lack of availability of ETFs for each industry. To 

do so, we form long-short industry portfolios each month based on the corresponding return 

predictions of LassoNet and the rest of the benchmark models (i.e., Group Lasso, Elastic Net and 

XGBoost). We consider top-bottom 5%, 10% and 15% portfolios of the highest and lowest-performing 

industries. Our target is to evaluate the performance of a more granular subset of industry spread 

portfolios since we forecast a large set of industries (i.e., 49). However, we know that a passive 

investor would choose to invest only in a few ETFs, contrary to an active investor who trades numerous 

equities. Again, we consider ten basis points transaction costs and divide the total transaction cost 

among the industry portfolios, forming our strategy while considering the same benchmarks. Table 

1.F.3. reports the same performance metrics of each portfolio and benchmarks as the ones computed 

in the main manuscript and previous sections. All long-short portfolios constructed based on LassoNet 

industry forecasts outperform the portfolios constructed on the rest of deep learning benchmarks and 

benchmark strategies. 
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Table 1.F.3 Performance of 49 industry portfolios based on OOS forecasts. 

The table demonstrates performance metrics for trading strategies of 49 industry portfolios based on LassoNet's, Group Lasso's, Elastic Net and XGBoost's forecasts and those of benchmark 
strategies over the 2010 – 2019 OOS period. The top-bottom 5%, 10% and 15% industry spread portfolios are constructed based on the highest and lowest-performing industries according to 
their corresponding forecasts and by considering one-way transaction costs of 10 basis points. We report the annualized mean return and Sharpe ratio, maximum drawdown and annualized 
alphas.  The reported annualized alphas are obtained using the 4-factor (Carhart, 1997) and 5-factor (Fama & French, 2015) models. *, **, *** denote significance at the 10%, 5% and 1% level, 
respectively. 

 Portfolios Benchmark Strategies 

Panel A: Top-Bottom 5% LASSONET GROUP LASSO ELASTIC NET XGBOOST VW-CRSP SP500 EW-Ind. Port 1 MAH 

Ann. Mean Return (%) 27.98 26.82 24.54 24.23 12.32 11.46 12.74 -4.67 

Volatility (%)) 17.52 17.36 17.25 15.68 12.72 12.46 14.20 26.94 

Ann. Sharpe ratio  1.59 1.51 1.39 1.51 0.93 0.88 0.86 -0.19 

Max Drawdown (%) 24.04 22.20 22.20 9.69 18.52 17.04 22.25 76.97 

Ann. 4-factor alpha (%)  26.83*** 26.68*** 24.06*** 22.41*** - - 10.76** -8.06** 

Ann. 5-factor alpha (%) 26.24*** 26.00*** 23.76*** 22.16*** - - 9.77** -8.01** 

         

Panel B: Top-Bottom 10% LASSONET GROUP LASSO ELASTIC NET XGBOOST VW-CRSP SP500 EW-Ind. Port 1 MAH 

Ann. Mean Return (%) 24.81 24.15 24.08 18.85 12.32 11.46 12.74 -0.66 

Volatility (%)) 11.15 11.22 11.87 8.92 12.72 12.46 14.20 16.41 

Ann. Sharpe ratio  2.17 2.10 2.02 2.05 0.93 0.88 0.86 -0.07 

Max Drawdown (%) 6.60 6.86 12.27 7.82 18.52 17.04 22.25 40.53 

Ann. 4-factor alpha (%)  24.24*** 23.54*** 22.67*** 18.47*** - - 10.76** -3.44 

Ann. 5-factor alpha (%) 22.80*** 22.00*** 20.10*** 18.18*** - - 9.77** -3.61 

         

Panel C: Top-Bottom 15% LASSONET GROUP LASSO ELASTIC NET XGBOOST VW-CRSP SP500 EW-Ind. Port 1 MAH 

Ann. Mean Return (%) 21.33 21.30 20.78 16.63 12.32 11.46 12.74 0.26 

Volatility (%) 7.90 7.74 8.97 6.98 12.72 12.46 14.20 13.30 

Ann. Sharpe ratio  2.68 2.63 2.31 2.30 0.93 0.88 0.86 -0.02 

Max Drawdown (%) 4.63 4.02 8.14 3.65 18.52 17.04 22.25 25.23 

Ann. 4-factor alpha (%)  20.56*** 20.37*** 20.09*** 16.02*** - - 10.76** -2.58 

Ann. 5-factor alpha (%) 19.89*** 19.76*** 19.11*** 15.38*** - - 9.77** -2.43 
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CHAPTER 2 

Imputing Hedge Fund Datasets via Bi-directional Deep Learning 

 

2.1. Introduction 

A common problem in financial datasets—especially those for hedge funds—is the presence of missing 

values. Missing values present challenges for many topics in asset pricing, including model estimation and out-

of-sample return forecasting. Thus, the effective imputation of missing data can substantially improve 

empirical asset pricing, including out-of-sample asset return prediction. Despite its importance, the issue of 

missing values in financial datasets has only recently started to receive significant attention in the finance 

literature (e.g., Giglio et al., 2021; Freyberger et al., 2021; Bryzgalova et al., 2024; Beckmeyer and Wiedemann, 

2023; Chen and McCoy, 2024). This paper examines the imputation of missing values in hedge fund datasets. 

Missing values are a particularly glaring issue for hedge fund datasets, so imputing missing data has important 

implications for empirical research on hedge funds. We consider imputing missing values for both hedge fund 

returns and predictors, analyzing the accuracy of the imputations and how they affect out-of-sample hedge 

fund return prediction. 

To deal with missing data in hedge fund datasets, we employ a deep learning model that considers both 

time-series and cross-sectional properties to impute missing values for hedge fund returns and a large set of 

fund characteristics. Specifically, we use the bidirectional recurrent imputation network for time series (BRITS, 

Cao et al., 2018) method that applies to general settings for missing data. Several BRITS properties make it 

attractive to fill in missing values for hedge fund datasets. First, BRITS network uses information from a 

variable's past and future values to impute missing values. This bidirectional flow provides a richer information 

set that is especially useful in sparse datasets with relatively large numbers of missing values and helps the 

model achieve the same quality of imputation at the beginning and the end of a variable’s time series. Second, 

the BRITS network uses information from the entire cross-section of available observations for a variable, 

which aligns with the dependency of financial variables on common factors such as business-cycle fluctuations. 

Third, BRITS attaches less weight to observations in the distant past when imputing missing values. This seems 

reasonable, as observations from the recent past are likely to have more of an effect on a variable’s current 

value than those from the more distant past. Fourth, BRITS is a recurrent neural network that can effectively 

model data characterized by nonlinear dynamics. Overall, the properties of BRITS make it well suited for 

imputing missing values for financial data, including hedge fund data. 

We consider data for 3,800 hedge funds from January 1994 to November 2021. Our dataset consists of a 

time series for hedge fund returns, along with 23 hedge fund predictors that are potentially relevant for 
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forecasting future hedge fund returns. Among the predictors we consider are past returns, return 

autocorrelations, higher return moments, and measures of fund manager skill. After making standard 

adjustments to the hedge fund return data and accounting for the availability of hedge fund predictors’ data, 

the in-sample period is January 1998 to December 2012, while January 2013 to November 2021 serves as the 

out-of-sample period for evaluating hedge fund return forecasts based on the fund predictors and their 

interactions with a set of economic variables. 

We first experiment over the in-sample period to investigate the accuracy of BRITS in imputing missing 

values for hedge fund returns and predictors relative to a set of benchmark methods. For benchmarks, we 

consider the cross-sectional mean (e.g., Haugen and Baker, 1996; Green et al., 2017; Light et al., 2017), the 

time-series mean, and the singular value thresholding algorithm for matrix completion (Cai et al., 2010). In the 

experiment, we randomly drop a portion of the observed values for a hedge fund variable and fill in the actual 

and artificial missing values using an imputation method. For the artificial missing values, we use the filled-in 

and actual values to compute the root mean squared error (RMSE), thereby providing a measure of the 

accuracy of the imputation method. The BRITS method produces a lower RMSE than the benchmarks for the 

artificial missing values, so BRITS imputes missing values for hedge fund variables with greater fidelity. 

Next, we assess the performance of BRITS in an out-of-sample (OOS) forecasting and trading context. First, 

we forecast hedge fund returns using a large set of variables comprised of the 23 fund predictors and their 

interactions with four economic variables (for a total of 115 predictors). We generate a sequence of monthly 

hedge fund return forecasts for all available funds in a given month using a rolling window of 15 years (180 

months). Specifically, to generate return forecasts for the month 𝑡 +  1, we first consider available data for 

hedge fund returns and predictors for the month 𝑡 −  179 to month t. We apply the BRITS method to fill in 

missing values for the return and predictors’ data. We then use the complete set of available and filled-in 

observations for the returns and predictors (as well as the economic variables, which do not have missing 

values) for the month 𝑡 −  179 to month t to train a prediction model that generates a set of return forecasts 

for the month 𝑡 +  1. We do this sequentially to generate hedge fund return forecasts for January 2013 to 

November 2021. Second, we use the OOS forecasts to form equally-weighted decile portfolios. Specifically, 

we sort the hedge funds in the cross-section into deciles based on the OOS forecasts and then focus on the 

top decile of the highest-performing hedge funds to create equally-weighted portfolios of a long-only strategy 

of hedge funds. We exclusively form long positions on the top fund decile since hedge funds are not tradable 

assets that investors can short. Instead, investors can only decide which funds to allocate their capital to and 

from which funds to withdraw their capital. Therefore, by the end of each month, we invest evenly all capital 

available (i.e., form long positions) in the funds belonging to the top decile portfolio based on the forecasts. 
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For the prediction models, we employ machine learning methods from three classes: gradient-boosted 

trees, neural networks, and linear penalized regression. For gradient-boosted trees, we use the XGBoost (Chen 

and Guestrin, 2016), LightGBM (Ke et al., 2017), and CatBoost (Prokhorenkova et al., 2018) algorithms. We 

consider three neural network architectures, including deep neural networks. For linear penalized regression, 

we use the seminal least absolute shrinkage and selection operator (LASSO, Tibshirani, 1996) as well as two of 

its variants: adaptive LASSO (Zou, 2006), and sparse group LASSO (Simon et al., 2013). For the various machine 

learning methods, out-of-sample hedge fund return forecasts based on filling in missing values (for both hedge 

fund returns and predictors) with BRITS are substantially more accurate in terms of RMSE and MAE than return 

forecasts that rely on filling in missing values via the cross-sectional mean. Moreover, the trading application 

results outline the economic significance of BRITS imputations. The models' forecasts that were trained on 

BRITS imputed returns and predictors data lead to more profitable trading decisions as measured by higher 

portfolio annualized returns, Sharpe ratios, and alphas. On the contrary, the equally-weighted decile portfolios 

constructed based on the forecasts of the models trained on cross-sectional mean imputed data attain inferior 

portfolio performance metrics. In the context of forecasting hedge fund returns with a large pool of predictors 

and creating fund portfolios, BRITS provides an effective strategy for dealing with the plethora of missing 

values in hedge fund datasets. 

In sum, we make three primary contributions to the literature. First, we show that BRITS is an efficacious 

deep-learning tool for dealing with missing values in hedge fund datasets. Because missing values are a 

pervasive problem in hedge fund datasets, this makes BRITS a valuable resource for empirical research on 

hedge funds. The effectiveness of BRITS in filling in missing values lies in its ability to glean information along 

both the time and cross-sectional dimensions and to accommodate nonlinear dynamics. BRITS also does not 

require strong data assumptions, providing a flexible approach for filling in missing values in financial datasets. 

Second, we provide the most comprehensive analysis on out-of-sample hedge fund return predictability. Our 

analysis incorporates many hedge fund return predictors, including numerous hedge fund characteristics and 

their interactions with a set of economic variables, as well as a broad array of machine learning models.21 

When we impute missing values for hedge fund datasets via BRITS, we find that combining many predictors 

and machine learning methods generates significant improvements in out-of-sample hedge fund return 

predictability. Third, the information advantage associated with BRITS imputed datasets enables the predictive 

models to generate more profitable forecasts, as highlighted in our trading application’s results. The forecasts 

of machine learning methods, which were trained on fully recovered datasets by BRITS, can effectively identify 

which hedge funds will be the most profitable next month. Such crucial piece of information can be leveraged 

 
21 Existing studies that investigate out-of-sample hedge fund return predictability include Avramov et al. (2011, 2013) 
and Wu et al. (2021) 
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by institutional investors when constructing their portfolios and deciding on which hedge funds to allocate 

their capital. 

The rest of the chapter is organized as follows. Section 2.2 describes the data. Section 2.3 outlines the BRITS 

network for imputing missing values. Section 2.4 reports the empirical results. Section 2.5 concludes. 

2.2. Literature Review 

Financial literature spreads on two broad categories of studies that refer to the issue of missing values. 

Those that employ conventional techniques to handle missing values, such as the cross-sectional mean (see, 

Haugen and Baker, 1996; Kelly and Jiang, 2014; Green et al., 2017; Light et al., 2017; Kozak et al., 2020; Gu et 

al., 2020) and those that develop new methods for imputing missing values to improve the performance of 

existing ones (see, Freyberger et al, 2021; Giglio et al., 2021; Beckmeyer and Wiedemann, 2022;  Bryzgalova et 

al., 2022).  

When it comes to the first class of studies, Haugen and Baker (1996) employ factor models to analyze the 

cross-section of stock returns using data from all stocks represented in the Russell 3000 stock index for the 

period from 1979 to 1993. The authors adopt the cross-sectional mean method to impute missing values, since 

it creates less bias than removing a stock entirely from the sample. Light et al. (2017) also handle missing 

observations by using the cross-sectional mean approach to fill in missing observations of U.S. monthly stock 

returns and firm characteristics for the period January 1980 to December 2014. Recently Kozak et al. (2020) 

treat missing U.S. stock market data by focusing on the cross-sectional mean imputation to form 50 portfolios 

of anomalies characteristics for the sample period of November 1973 to December 2017. Similarly, Gu et al. 

(2020) examine all listed firms in NYSE, AMEX, and NASDAQ and use the cross-sectional median to handle the 

missing entries for a comprehensive sample that spans from March 1957 until December 2016. On the other 

hand, Kelly and Jiang (2014) create a subset of the original dataset based on the condition that the included 

stocks will have at least 36 months observed out of the 120 months examined.  

Regarding new and more efficient approaches to imputing missing entries, Freyberger et al. (2021), develop 

a linear method that uses a GMM estimator to impute missing values. The authors use the common stock 

universe of firms trading in the NYSE, AMEX, and NASDAQ exchanges as their data application setting and state 

that their imputing procedure provides significant benefits in terms of OOS predictability. Furthermore, their 

framework operates under the limitation that 18 stock characteristics are observable so that they can drive 

the imputation process for the rest of the characteristics. The GMM procedure operates based on the setup 

that the imputed predictors should explain the stock return movements. Therefore, the imputation is oriented 

towards filling values that best explain stock returns and not uncovering the actual missing values of the 

predictors. In their research, Giglio et al. (2021) leverage a matrix completion method to fill hedge funds’ 
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returns for the sample period 1994 – 2018. The authors use a nuclear norm penalized regression approach to 

recover missing hedge fund returns entries, which relies on the assumption that the returns matrix can be 

rewritten as a noisy low-rank matrix. While the low-rank assumption may be justified in the context of the 

study and the hedge fund returns case, it is generally restricting and potentially not optimal to handle other 

types of datasets, such as predictors’ data. Bryzgalova et al. (2022), employ principal component analysis (PCA) 

and linear regression to handle missing values. Based on the latent factors of observed stock characteristics, 

the model can impute missing values for a sample that covers thousands of individual stocks and spans from 

January 1967 until December 2020. Their modeling framework can be adjusted to include cross-sectional and 

time series information, but it lacks capturing non-linear relationships. Finally, Beckmeyer and Wiedemann 

(2022) propose an advanced imputation method that does not make any assumptions on the data. Their 

sample contains 153 stock characteristics for all firms trading in NYSE, AMEX, and NASDAQ exchanges, and it 

covers the period from July 1962 to December 2020. Despite the advantage of the proposed framework in 

dealing with non-linear relations, the adopted deep learning setup only predicts in which percentile the 

missing stock characteristics belong and not the actual value of the characteristic. While the recovery of the 

missing observations’ percentiles can be appropriate for specific financial applications, this method is not 

flexible enough to accommodate the direct filling of missing values.  

Our imputing framework is not affected by any of the limitations described above. BRITS does not make any 

assumptions about the structure of the data and can effectively use both time series, and cross-sectional 

information to effectively impute missing observations. Finally, several innovative properties differentiate our 

modeling framework from other conventional and unconventional methods and can lead to an enhanced 

imputation fidelity that other models cannot achieve. 

2.3. Data 

We use hedge fund data from the Lipper Trading Advisor Selection System (TASS) database for January 

1994 to November 2021. Following standard procedure in the hedge fund literature, we apply a set of filters 

to the data before using it for our analysis (e.g., Fung and Hsieh, 2000; Aragon, 2007; Bali et al., 2012, 2021; 

Chen et al., 2021; Wu et al., 2021). We follow Chen et al. (2021) and consider only US-oriented hedge funds 

(to avoid fund duplicates in different currencies) as well as funds that report net-of-fees returns. In terms of 

the filters, we preclude survivorship bias by including both live and defunct funds. To account for backfill bias, 

we delete each fund’s first twelve months of returns. In addition, to remove multi-period sampling bias, we 

require each fund to have at least 30 return observations22. Finally, we discard funds with assets under 

management below $5 million, so we focus on large funds that are more relevant to investors and that are 

 
22 For robustness purposes, we follow Giglio et al. (2021) and require each fund to have at least 60 return observations 
across the full sample period for the imputation experiment in Section 2.4.2. 
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less likely to manipulate reporting to TASS. After applying the filters, we have 3,800 hedge funds for our 

analysis. 

With respect to hedge fund return predictors, we consider a collection of 23 characteristics that are 

plausible fund return predictors and/or have been found to predict fund returns (e.g., Titman and Tiu, 2011; 

Bali et al., 2012, 2019; Heuson et al., 2020; Wu et al., 2021). We group the hedge fund predictors into four 

categories, as indicated in Panels A through D of Table 2.1. The first category consists of lagged cumulative 

returns ranging from one to 36 months, which are designed to capture short-, medium-, and long-term 

momentum effects. The second category is comprised of the first- through third-order autocorrelations in 

hedge fund returns over the last twelve months. These provide additional measures for capturing persistence 

in hedge fund returns. The next category is comprised of various return moments, including measures of 

volatility, coskewness, skewness, and kurtosis. Predictors that provide proxies for managerial skill make up the 

fourth category. This category includes alphas based on different multifactor models for hedge fund returns, 

the 𝑅2 statistic in the context of the well-known Fung and Hsieh (2004) seven-factor model, assets under 

management, and the maximum return of the last twelve months. In addition, we consider four economic 

variables (see Panel E of Table 2.1, which we interact with the fund characteristics. This allows for the 

predictive relations between the predictors and future hedge fund returns to vary with economic conditions. 

The four economic variables are the equity market uncertainty index (Economic Policy Uncertainty website), 

the economic policy uncertainty index (Baker et al., 2016), the TED spread, and the CBOE volatility index (VIX). 

After allowing for the hedge fund predictors to interact with the economic variables, we have a total of 23 + 4 

× 23 = 115 predictors. 

Table 2.1. The employed hedge fund predictor set. 

This table presents the predictor set used for the modeling purposes of our study along with the corresponding symbol 
of each predictor we use in the following section.  

Predictor variable Abbreviation 

Panel A: Previous returns  

One month return PastR 

Three-month cumulative return CR3 

Six-month cumulative return CR6 

Nine-month cumulative return CR9 

12-month cumulative return CR12 

36-month cumulative return CR36 

Panel B: Previous return autocorrelations  

Lag 1 autocorrelation of the past 12 months’ returns ALg1 
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Lag 2 autocorrelation of the past 12 months’ returns ALg2 

Lag 3 autocorrelation of the past 12 months’ returns ALg3 

Panel C: Return moments  

Total volatility over the past 36 months T.Vol 

Unsystematic risk over the past 36 months UnVol 

Systematic risk over the past 36 months SysVol 

Coskewness over the past 36 months CoSkw 

Idiosyncratic skewness over the past 36 months Id.Skw 

Skewness over the past 36months  T.Skw 

Kurtosis over the past 36months  T.Kurt 

Panel D: Managerial skill  

7-Factor alpha over the past 12 months based on Fung and Hsieh (2004) FHA12 

7-Factor alpha over the past 36 months based on Fung and Hsieh (2004) FHA36 

9-Factor alpha over the past 24 months based on Bali et al. (2021)  B.9FA 

11-Factor alpha over the past 36 months based on Chen et al (2021) C.11FA 

R-Squared  𝑹𝟐 

Assets Under Management AUM 

Max return over the past 12 months (Upside potential of Bali et al. (2019) MaxR 

Panel E: Economic variables  

Equity Market Economic Uncertainty Index EMU 

Economic Policy Uncertainty Index EPU 

TED Spread TED 

Implied Volatility Index VIX 

 

2.4. Methodology 

Our work builds on the research of Cao et al. (2018) and employs a specialized bidirectional long-short term 

memory (LSTM) architecture, so-called BRITS, that is explicitly modified to conduct multivariate time series 

imputation for the hedge fund datasets.23 The most characteristic property of BRITS is the use of the two base 

layers that process time series data in a forward (i.e., positive time) and a backward (i.e., negative time) 

 
23 The Long-Short Term Memory (LSTM) network is a variant of a recurrent neural network (RNN) (see Hochreiter & 
Schmidhuber, 1997). 
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direction for our imputation exercise. The learning mechanism is achieved by jointly training the two layers 

specialized in handling sequential data. The recurrent neural network layers process the time series from the 

past towards the future, and vice versa, while the overall joint architecture extracts patterns from the data 

and optimizes the objective function. In the simplest scenario, the two layers use only time-series information 

to impute missing values and therefore assume no correlation between the hedge funds cross-section. The 

implementation of the imputing layers requires a recurrent or temporal component and a regression part.  

Hedge fund datasets, such as the Lipper Tass, possess an ideal setup for financial data imputation, given that 

missing values are conditioned on information that flows both from the past and the future. As a result, the 

bidirectional processing of information can assist in extracting valuable data patterns that can help the overall 

modeling framework fill in missing values with high fidelity. Such a property differentiates our proposed 

method from the other imputation techniques, which are restricted by relying exclusively on past data, or by 

assuming only linear data dynamics. The following subsections start with a detailed description of the data 

setup and they describe the operation of forward and backward layers in both time series and cross-sectional 

structure. Then, the hyperparameters optimization is presented, followed by a simulation study, a forecasting 

experiment, and a trading application, designed to evaluate the proposed method’s imputation ability as well 

as the significance of fully recovering missing values via BRITS. 

2.4.1. Initial setup 

We denote a dataset of multivariate time series of hedge fund returns and predictors as {𝑥𝑡1
, 𝑥𝑡2

, … , 𝑥𝑡𝑁
} ≡

𝕏. These time series are observed at regularly-spaced intervals {𝑡1, 𝑡2, … , 𝑡𝑁} , and for each observation holds 

that 𝑥𝑡 ∈  ℝ𝐷 (i.e., the 𝑡-th observation 𝑥𝑡 consists of D elements {𝑥𝑡
1, 𝑥𝑡

2, … , 𝑥𝑡
𝐷} ). In our hedge fund dataset, 

it is usually the case that there exist some 𝑥𝑡’s for which some or all D elements are missing. Figure 2.1 provides 

a representation of our data setting, illustrating the data's irregular missing value patterns.  

Figure 2.1. Presence of missing values following irregular patterns. 

This figure shows an arbitrary form of missingness that is present in both our hedge fund returns and 
predictors datasets. For each month 𝑡 , we denote the observed values and the missing values for the 
multivariate time series matrix 𝕏. Missing entries can appear randomly. 
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The multivariate time series 𝕏 is incomplete, and a masking matrix  𝑚𝑡
  (Μ) is used to represent the missing 

components. In some cases, consecutive 𝑥𝑡’s ( ∈  ℝ𝐷 ) can be partially or fully missing for consecutive 

timesteps. Given that past time-series’ observations have a decaying influence on future observations, we aim 

to capture this feature by creating a particular matrix that tracks for how long a value has been missing. 

Specifically, a tracking matrix, 𝛿𝑡
 (Δ) is used to capture the gap from the last non-missing observation to the 

current timestep 𝑡 . Equations (2.1) and (2.2) below provide the calculation of the masking and tracking 

matrices for every timestep 𝑡 . 

𝐦𝐭
𝒅 =  {

0,           𝑖𝑓 𝑥𝑡
𝑑   𝑖𝑠 𝑚𝑖𝑠𝑠𝑖𝑛𝑔

1,    𝑖𝑓 𝑥𝑡
𝑑   𝑖𝑠 𝑛𝑜𝑡 𝑚𝑖𝑠𝑠𝑖𝑛𝑔

  (2.1) 

                                                                         

𝛿𝑡 =  {

1 +  𝛿𝑡−1, 𝑖𝑓 𝑡 > 1,  𝐦𝐭−𝟏
𝐝 = 0  

1,                    𝑖𝑓 𝑡 > 1,  𝐦𝐭−𝟏
𝐝 = 1  

           0,              𝑖𝑓 𝑡 = 1                                      

 (2.2) 

Figure 2.2 shows a practical application given the matrix 𝕏 of Figure 2.1. In the first column of the masking 

matrix in Figure 2.2, we observe that only the first and the sixth months have a value of 1, while the rest of 

the months have a value of zero. The sequence of ones and zeros follows the presence of missing values in 

the matrix of Figure 2.1, and, evidently, in the first column, we only have observed values for Month 1 and 

Month 6. The frequent presence of missing values for the first hedge fund (i.e., the first column) of matrix  𝕏 

is also depicted in the tracking matrix of Figure 2.2. For instance, by inspecting the first column and Month 6 

of the tracking matrix we see the value of five. Given the current timestep  𝑡 (i.e., Month 6), the last 

observation took place in Month 1, and therefore 𝛿𝑡  is calculated as: 𝛿6 = 6 − 1 = 5.  

 

Figure 2.2. Example estimation of the masking and tracking matrices. 

This figure illustrates example instances of the masking and tracking matrices, which are named Μ and Δ, 
respectively. The construction of both matrices is based on matrix 𝕏 of Figure 2.1 and the formulas of 
equations (2.1) and (2.2). 
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We impute the hedge fund returns and each of the predictor matrices separately by forming 24 cross-

sectional matrices, upon which we apply the BRITS methodology. Also, the masking and tracking matrices are 

calculated separately for the returns and each predictor. The aforementioned setup is essential for training 

our deep learning architecture, which we describe in the following section.  

2.4.2 Forward and backward layers 

At each timestep 𝑡 the forward imputing layer receives an observation (i.e., 𝑥𝑡1
, 𝑥𝑡2

, … , 𝑥𝑡𝑁
) and constructs 

the so-called “memory cell”, which consists of an ensemble of functions known as “gates”. In each memory 

cell, several mathematical operations occur, such as the non-linear transformations on the data, extracting 

meaningful data patterns, and filtering out information not instrumental for the objective function. To model 

a complete sequence of time series observations, we need an equivalent in-length series of memory cells. 

Furthermore, the sequential nature of our data requires the use of recursive functions to construct the 

memory cell at each timestep 𝑡. The mathematical representation of the memory cell is as follows:   

(

𝑖𝑡
𝑓𝑡
𝑜𝑡
𝑔𝑡

) =  (

𝜎
𝜎
𝜎

𝑡𝑎𝑛ℎ

) 𝐖 (

ℎ𝑡−1
𝑥𝑡

𝟏
) (2.3) 

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑔𝑡 (2.4) 

ℎ𝑡 = 𝑜𝑡 ⊙ tanh(𝑐𝑡) (2.5) 

where, 𝑖𝑡, 𝑓𝑡, and 𝑜𝑡, and 𝑔𝑡 are functions known in the machine learning literature as input gate, forget gate, 

output gate, and candidate cell state, respectively; 𝐖 represents the weight matrix receiving gradient updates 

for each gate function; 𝜎 and 𝑡𝑎𝑛ℎ represent the sigmoid and hyperbolic tangent functions, respectively. ⊙ 
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denotes the element-wise multiplication; 𝑐𝑡 and ℎ𝑡 are known as the cell state and the hidden state, 

respectively.24   

Fan et al. (2019) note that 𝑐𝑡 carries information of the modeled time series, while 𝑓𝑡 selectively filters and 

removes information from the previous cell state, 𝑐𝑡−1. Krauss and Fisher (2018) note that 𝑜𝑡 determines 

which information from the cell state is used as the output of the memory cell, which we refer to as the hidden 

state. Lastly, 𝑖𝑡 decides how much information is added to the current cell state as a function of the input at 

time 𝑡 and the memory cell’s output at time 𝑡 − 1. According to Fan et al. (2019) all the gate functions would 

ideally obtain nearly binary values, which numerically would represent the filtering and adjustment of 

information stored in the cell state. The described mechanism exhibits how the LSTM can effectively learn 

temporal dependencies between the observations and extract data patterns essential. 

In their study, Cao et al. (2018) state that the presence of missing values requires a modified version of the 

recurrent neural network learning algorithm. If there are missing values in the input 𝑥𝑡, then 𝑥𝑡 cannot be 

used directly in equation (2.3). The authors note that a “complemented” version, 𝑥𝑡
𝑐, needs to be constructed 

since there are missing values in  𝑥𝑡. For the generic case of a recurrent neural network, 𝑥𝑡
𝑐 is updated 

according to the following algorithm: 

𝑥𝑡̂
𝑓𝑜𝑟𝑤 = W𝑥ℎ𝑡−1 + 𝑏𝑥   (2.6) 

𝑥𝑡
𝑐 = 𝑚𝑡 ⊙ 𝑥𝑡 + (1 − 𝑚𝑡) ⊙ 𝑥𝑡̂

𝑓𝑜𝑟𝑤 (2.7) 

𝛾𝑡 = 𝑒{− max(0,   𝑊𝛾𝛿𝑡 +  𝑏𝛾)}  (2.8) 

ℎ𝑡 = 𝜎(Wh[ℎ𝑡−1 ⊙ 𝛾𝑡] + 𝑈ℎ[𝑥𝑡
𝑐 ∘ 𝑚𝑡] + 𝑏ℎ)  (2.9) 

ℓ𝑡 =  〈𝑚𝑡, ℒ𝑀𝐴𝐸(𝑥𝑡, 𝑥𝑡̂
𝑓𝑜𝑟𝑤)〉 (2.10)

where, W𝑥, 𝑊𝛾 and 𝑈ℎ are weight matrices receiving gradient updates and ∘ denotes concatenation. 

In equation (2.6) we provide the mathematical representation of the regression component of the forward 

imputing layer. Essentially, we calculate an optimal approximation of 𝑥𝑡 by the previous timestep’s hidden 

state,  ℎ𝑡−1. Across time, we get a series of approximations, {𝑥𝑡1̂

𝑓𝑜𝑟𝑤, 𝑥𝑡2̂

𝑓𝑜𝑟𝑤 , … , 𝑥𝑡𝑁̂

𝑓𝑜𝑟𝑤}. However, if some 

elements of 𝑥𝑡 are present, it is reasonable to directly use these values instead of their approximation. 

Equation (2.7) shows the construction of the complement vector 𝑥𝑡
𝑐, which is populated by the observed 

elements of 𝑥𝑡, when those exist, and their approximation 𝑥𝑡̂, when those are missing. This calculation is 

 
24 All the weights that compose the BRITS architecture are optimized via the gradient descent iterative algorithm. The 

gradient descent algorithm uses the gradient of the model’s loss function at each iteration of the optimization and updates 
the weights in the opposite direction of the gradient. 
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feasible given that the masking vector 𝑚𝑡 tracks the positions of missing values. Equation (2.8) describes the 

temporal decay factor (Cao et. al, 2018), one of the algorithm's most innovative parts that distinguishes the 

model from any other imputation method. For large values of 𝛿𝑡, which is equivalent to a value being missing 

for many timesteps, we obtain a small value of 𝛾𝑡, which in turn causes a significant decay to the hidden state 

carrying past information via the “ℎ𝑡−1 ⊙ 𝛾𝑡” operation. 𝛾𝑡 captures the specific missing value patterns in the 

hedge fund returns and predictors time series and is responsible for the most effective imputation of their 

missing values. Importantly, 𝛾𝑡 is constructed with learnable parameters which obtain their optimal values 

with updates received from the neural network’s iterative learning algorithm (i.e., gradient descent). Equation 

(2.9) shows that the calculation of the hidden state at time 𝑡 relies on the hidden state of 𝑡 − 1 adjusted by 

the decay factor, and the complement vector 𝑥𝑡
𝑐. Finally, equation (2.10) refers to the forward reconstruction 

loss function via which the error is calculated so that the neural network can receive the gradient updates for 

its weight matrices. The “masked” version of mean absolute error (MMAE) is used to proxy the reconstruction 

loss.25 Specifically, the mean absolute error is obtained exclusively for the elements of 𝑥𝑡 where we have 

estimated an approximation 𝑥𝑡̂
𝑓𝑜𝑟𝑤., and at the same time, an observed value (i.e., the ground truth) is 

available. This series of calculations is possible given the masking vector  𝑚𝑡 and at the end, we get a series of 

forward reconstruction errors {ℓ𝑡1

𝑓𝑜𝑟𝑤
, ℓ𝑡2

𝑓𝑜𝑟𝑤
, … , ℓ𝑡𝑁

𝑓𝑜𝑟𝑤
}. We practically update the recurrent component (i.e., 

hidden state) of the LSTM architecture via a modified version of equations (2.3) to (2.5), which can now be 

computed since we replace 𝑥𝑡, which contains missing values, with 𝑥𝑡
𝑐 that holds the observed values and 

model generated approximations (𝑥𝑡̂) for the missing value cases. A pioneering aspect of the model is that the 

approximated 𝑥𝑡̂ returns or predictor values at each timestep are treated as a learnable parameter, not a 

constant number. Consequently, these values are optimized in a twofold manner. First, via the optimization 

of the weight matrices involved in the estimation of 𝑥𝑡̂. Second, via direct updates to the 𝑥𝑡̂ values themselves. 

This novel adaptation of the neural network’s learning algorithm promotes higher convergence speed and 

performance for the whole model.  

In cases where a return or predictor value has been missing for a long time, past information may be less 

influential than future information. For instance, suppose a predictor value has been missing from March until 

September for a specific year. Naturally, observed predictor values for October and November are expected 

to be more closely related to September’s missing value compared to January and February's observed values. 

However, the forward imputing layer imputes missing values only by considering the relation with past 

information, which can limit the effectiveness of our method. To overcome this limitation, the backward 

imputing layer is implemented. The mathematical specification of the backward imputing layer is identical to 

the one of the forward imputing layer—the significant difference lies in how the time series is processed. The 

 
25 Where ℒ𝑀𝐴𝐸(𝑥𝑡 

, 𝑥𝑡  ̂
 ) =  

1

𝑑
∑ |𝑥𝑡𝑖 − 𝑥𝑡𝑖̂|

𝑑
𝑖=1 . 
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backward imputing layer receives and processes the time series observations in the reverse order (i.e., the last 

observation becomes the first and so on). At each timestep, it outputs an approximation of 𝑥𝑡, the 𝑥𝑡̂
𝑏𝑎𝑐𝑘𝑤., 

and across time, a series of approximated 𝑥𝑡 values, {𝑥𝑡1̂

𝑏𝑎𝑐𝑘𝑤, 𝑥𝑡2̂

𝑏𝑎𝑐𝑘𝑤, … , 𝑥𝑡𝑁̂

𝑏𝑎𝑐𝑘𝑤}. As in the forward 

imputing layer case, for each approximated 𝑥𝑡 , we get an error ℓ𝑡, and as a result, a sequence of backward 

reconstruction errors {ℓ𝑡1

𝑏𝑎𝑐𝑘𝑤, ℓ𝑡2

𝑏𝑎𝑐𝑘𝑤, … , ℓ𝑡𝑁

𝑏𝑎𝑐𝑘𝑤}. Cao et al. (2018) suggest employing the so-called 

consistency loss to ensure that each element of {𝑥𝑡1̂

𝑏𝑎𝑐𝑘𝑤, 𝑥𝑡2̂

𝑏𝑎𝑐𝑘𝑤, … , 𝑥𝑡𝑁̂

𝑏𝑎𝑐𝑘𝑤} is as close as possible to 

the corresponding element of {𝑥𝑡1̂

𝑓𝑜𝑟𝑤, 𝑥𝑡2̂

𝑓𝑜𝑟𝑤, … , 𝑥𝑡𝑁̂

𝑓𝑜𝑟𝑤 }. In other words, the 𝑥𝑡̂ Imputations obtained 

in the forward and backward direction are required to be consistent and with the least discrepancy possible. 

To measure the discrepancy, the absolute error is used (e.g., ℓ𝑡1

𝑐𝑜𝑛𝑠 = |𝑥𝑡1̂

𝑓𝑜𝑟𝑤 −  𝑥𝑡1̂

𝑏𝑎𝑐𝑘𝑤|) and a series of 

consistency errors is obtained, {ℓ𝑡1

𝑐𝑜𝑛𝑠, ℓ𝑡2

𝑐𝑜𝑛𝑠, … , ℓ𝑡𝑁

𝑐𝑜𝑛𝑠}. The total model loss via which the weight matrices 

and the imputed values are optimized is the summation of the forward reconstruction loss, the backward 

reconstruction loss, and the consistency loss. The final imputed values at each 𝑡 are obtained with the 

following formula: 

𝑥𝑡 ̂

𝑓𝑖𝑛𝑎𝑙 =
(𝑥𝑡 ̂

𝑓𝑜𝑟𝑤 +  𝑥𝑡 ̂

𝑏𝑎𝑐𝑘𝑤)

2
 (2.11) 

2.4.3. Cross-sectionally enhanced imputation 

So far both the forward and the backward imputing layers are constructed based on sequential time series 

data. However, hedge fund returns, and financial assets' returns in general, are also characterized by their 

cross-sectional dependencies. It follows that using past, future, and cross-sectional information is expected to 

provide the best imputation fidelity, which is also the reason of the efficacy of the cross-sectional mean 

imputation method in financial literature (see, Haugen and Baker, 1996; Light et al., 2017; Kozak et al., 2020). 

To facilitate the inclusion of capturing cross-sectional information at time 𝑡, first, we obtain the complement 

vector 𝑥𝑡
𝑐 by equations (2.6) and (2.7). The cross-sectional approximation of 𝑥𝑡̂

 is given by the following 

formula: 

𝑥𝑡̂
𝑐𝑟𝑜𝑠𝑠 = W𝑐𝑟𝑜𝑠𝑠𝑥𝑡

𝑐 + 𝑏𝑐𝑟𝑜𝑠𝑠 (2.12) 

where, W𝑐𝑟𝑜𝑠𝑠 and 𝑏𝑐𝑟𝑜𝑠𝑠 are weights receiving gradient updates. W𝑐𝑟𝑜𝑠𝑠 is restricted to having zero values in 

the diagonal. Given that 𝑥𝑡̂
𝑐𝑟𝑜𝑠𝑠 is based on 𝑥𝑡

𝑐, actual cross-sectional values are used when they do exist, 

while their approximation is used when those are unavailable. The 𝑑-th element in each 𝑥𝑡̂
𝑐𝑟𝑜𝑠𝑠 approximates 

the 𝑑-th element in 𝑥𝑡
  using the cross-sectional values (i.e., exclusively cross-sectional information). For the 

forward (backward) layer, the past (future) time series information is combined with the cross-sectional 

information via the following formulas: 
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𝛽𝑡 = 𝜎(𝑊𝛽[𝛾𝑡 ∘ 𝑚𝑡] + 𝑏𝛽) (2.13) 

𝑐𝑡̂ =  𝛽𝑡 ⊙ 𝑥𝑡̂
𝑐𝑟𝑜𝑠𝑠 + (1 − 𝛽𝑡) ⊙ 𝑥𝑡̂

 (2.14) 

where, 𝛽𝑡, 𝑊𝛽, and 𝑏𝛽 are weights receiving gradient updates. 𝛽𝑡 is bounded on [0, 1]𝐷 and determines the 

optimal weighting between the cross-sectional based estimation 𝑥𝑡̂
𝑐𝑟𝑜𝑠𝑠 and the 𝑥𝑡̂

  estimation, which 

depends on past (future) time series observations for the case of the forward (backward) layer. The temporal 

decay factor 𝛾𝑡 is also involved in the estimation of  𝛽𝑡. As a result, the optimal weighting 𝛽𝑡 can be adjusted 

when a value has been missing for several timesteps and, therefore, its influence diminishes. For instance, 

suppose a funds return has been missing for several months, and we want to impute its value at time 𝑡. The 

cross-sectional values are available at time 𝑡. Then, at this timestep, the learning algorithm should ideally 

adjust 𝛽𝑡 to assign a larger weight toward the cross-sectional approximation of 𝑥𝑡 (i.e., 𝑥𝑡̂
𝑐𝑟𝑜𝑠𝑠) and a smaller 

weight to the past information-based approximation (i.e., 𝑥𝑡̂
 ) given that the predictor value has been missing 

for a long time. We obtain 𝑐𝑡̂ via equation (2.14) which is the final approximation of 𝑥𝑡. The inclusion of cross-

sectional information for the imputation task and the newly introduced equations requires the adjustment of 

equations (2.7) and (2.9). The new complement vector 𝑐𝑡
𝑐, the hidden state ℎ𝑡, and the final loss are calculated 

as follows: 

𝑐𝑡
𝑐 =  𝑚𝑡 ⊙ 𝑥𝑡 + (1 − 𝑚𝑡) ⊙ 𝑐𝑡̂  (2.15) 

ℎ𝑡 = 𝜎(Wh[ℎ𝑡−1 ⊙ 𝛾𝑡] + 𝑈ℎ[𝑐𝑡
𝑐 ∘ 𝑚𝑡] + 𝑏ℎ) (2.16) 

ℓ𝑡
𝑓𝑖𝑛𝑎𝑙

=  〈𝑚𝑡, ℒ𝑀𝐴𝐸(𝑥𝑡, 𝑥𝑡̂
 )〉 + 〈𝑚𝑡 , ℒ𝑀𝐴𝐸(𝑥𝑡, 𝑥𝑡̂

𝑐𝑟𝑜𝑠𝑠 
)〉 + 〈𝑚𝑡, ℒ𝑀𝐴𝐸(𝑥𝑡, 𝑐𝑡̂  )〉 (2.17) 

Expectedly, the 𝑥𝑡̂
 is replaced by its enhanced counterpart (i.e., 𝑐𝑡̂  ) that also leverages cross-sectional 

information for the approximation of 𝑥𝑡. The complement vector 𝑐𝑡
𝑐 dictates that we keep the truly observed 

values where those exist and use the approximations only for the cases of missing values. The hidden state is 

estimated in equation (2.16). The hidden states is involved in the calculation of other formulas and by 

recursively depending at time 𝑡 on ℎ𝑡−1, it encodes and “memorizes” historical information26 about the time 

series. The final model loss uses the masking vector  𝑚𝑡 to locate the truly observed values in 𝑥𝑡 and compares 

them with the approximation that leverages historical information, the cross-sectional approximation, and the 

approximation which uses both historical and cross-sectional information. Essentially, the ℓ𝑡
𝑓𝑖𝑛𝑎𝑙

 accumulates 

the model’s error from three different sources so that the weight matrices can be updated effectively and 

reach their optimal values. The ℓ𝑡
𝑓𝑖𝑛𝑎𝑙

  as well as equations (2.12) – (2.17) are estimated independently for the 

forward and backward imputing layers. For the forward and backward layers, we get two 𝑐𝑡̂ , the 𝑐𝑡 ̂

𝑓𝑜𝑟𝑤 and 

 
26 Historical information is a general reference to the previous timesteps. In the forward and backward layers the meaning 
of the word “historical” is adapted accordingly based on which direction the time series is processed in each case. 
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𝑐𝑡 ̂

𝑏𝑎𝑐𝑘𝑤, respectively. The BRITS generates the final imputed version of our returns and predictors’ dataset by 

the following calculation: 

𝑥𝑡
𝑖𝑚𝑝𝑢𝑡𝑒𝑑

= 𝑚𝑡 ⊙ 𝑥𝑡 + (1 − 𝑚𝑡) ⊙ [
(𝑐𝑡 ̂

𝑓𝑜𝑟𝑤 +  𝑐𝑡 ̂

𝑏𝑎𝑐𝑘𝑤)

2
] (2.18) 

2.4.4. Optimization and hyperparameters 

Similar to most neural network architectures, the weights of BRITS are optimized by the gradient descent 

iterative algorithm. In equation (2.17) we have described the model’s loss function which is based on the MAE 

criterion and is minimized by the optimization process. At each step of the optimization, we evaluate the 

gradients and then update the BRITS weights in the opposite direction of the gradient (see also Gu et al., 2020; 

Beckmeyer & Wiedemann, 2022). The practical implementation of BRITS requires an additional optimization 

step known as hyperparameter optimization in the machine learning literature. This step involves deciding the 

highest-performing neural network specification out of all candidate architectures. In our study, we examine 

16 candidate architectures exploring different values for the number of hidden neurons, epochs, early 

stopping patience, and learning rates. We display the hyperparameter search space in Table 2.3.  

Table 2.3. The hyperparameter search space. 

This table presents the different hyperparameter values for the BRITS specifications we explore. The optimized BRITS is 
the combination that achieves the lowest imputation error, which is calculated by the masked root-mean-square error 
(equation 2.20), for the hedge fund returns and each predictor dataset. 

Hidden neurons [64, 128] 

Epochs [50, 200] 

Early stopping patience [5, 25] 

Learning rate [10−6, 10−3] 

Batch size 12 

Optimizer Adam 

   

For the number hidden neurons, we explore two values in the power of two, as is common in the relevant 

literature. Cao et al. (2018) use 64 neurons, and we also try 128 neurons. For the number of epochs, we 

experimented with a smaller number (i.e., 50 epochs) and a larger number (i.e., 200 epochs). In terms of early 

stopping, we follow Gu et al. (2020) and we apply five epochs patience, as well as an even larger value of 25. 

We follow Cao et al. (2018) and Gu et al. (2020) and we apply learning rates of 10−6 and 10−3. The batch size 

is set equal to 12 months (i.e., one year) and we use as our optimizer the Adam optimizer following again Cao 

et al. (2018) and Gu et al. (2020). The superior architecture, out of the candidates, achieves the lowest 

imputation error and it is the one we use for our the remaining of our study. 
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2.5. Imputation fidelity 

We examine the performance of our proposed method by adopting a holistic approach that assesses the 

imputations obtained from BRITS methodology. Specifically, we estimate the imputation error via a simulation 

study in which we randomly drop a percentage of observed values and impute them along with the original 

missing entries. We track the location of the artificially dropped values via the indicative masking given by 

equation (2.19). This is important since those observed values act as the target for measuring the imputation 

performance of the BRITS model.  For our in-sample dataset (i.e., January 1998 to December 2012), we develop 

two different simulation experiments. In the first one we randomly drop 10% of the observed values and we 

fill their missing entries along with those that originally missing. In the second experiment, we repeat the same 

process, but this time we randomly remove 20% of the original entries. We follow the recent literature on 

financial data imputation (see Bryzgalova et al., 2022), and adapt the root-mean-square error formula to 

calculate the imputation error for both simulation studies. A lower error reveals higher imputation 

performance, and, therefore, higher imputation fidelity. Specifically, in equation (2.20) we display the 

calculation via the masked root-mean-square (MRMSE) error formula. The MRMSE criterion serves as a proxy 

of the achieved imputation error. 

It
𝑑 = {

 
 
 
 
1

0

, 𝑖𝑓 𝑥𝑡
𝑑  𝑖𝑠 𝑎𝑟𝑡𝑖𝑓𝑖𝑐𝑖𝑎𝑙𝑙𝑦 𝑑𝑟𝑜𝑝𝑝𝑒𝑑 

, 𝑖𝑓 𝑥𝑡
𝑑  𝑤𝑎𝑠 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑙𝑦 𝑚𝑖𝑠𝑠𝑖𝑛𝑔

 (2.19) 

ℓ𝑀𝑅𝑀𝑆𝐸(imputation, target, It
𝑑) = √

∑ ∑ (𝑖𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 − 𝑡𝑎𝑟𝑔𝑒𝑡)2𝑇
𝑡=1

𝐷
𝑑=1 ⊙ It

𝑑

∑ ∑ It
𝑑 𝑇

𝑡=1
𝐷
𝑑=1

 (2.20) 

We also compare the performance of BRITS in imputing hedge fund returns and predictors’ values against 

popular counterparts used by financial studies. We apply three other imputation techniques for that purpose, 

the time-series mean, the cross-sectional mean (see, Haugen and Baker, 1996; Green et al., 2013; Light et al., 

2017; Beckmeyer and Wiedemann, 2022; Bryzgalova et al., 2022), and the singular value thresholding for 

nuclear norm minimization (SVT.NNM) (see, of Giglio et al., 2021).27  SVTNNM is our most powerful benchmark 

method, since it belongs to a class of algorithms known as the matrix completion methods, which are 

particularly used to fill in missing values in the data (Cai et al., 2010). Given a partially observed matrix 𝐴, the 

objective is to retrieve a low-rank matrix X. In our study, matrix 𝐴 represents the stacked hedge fund returns 

or predictors’ series in the cross-section of hedge funds, which contain missing values, while X̂  represents the 

retrieved matrix with no missing values. To obtain X̂,  the following optimization problem is solved: 

 
27 Giglio’s et al. (2021) differs from ours as they conduct matrix completion on the residual matrix of hedge returns obtain 
by factor models, for identifying funds with significant alphas via a false discovery rate control. 
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X̂ = 𝑎𝑟𝑔𝑚𝑖𝑛X {
1

2
 ‖PΩ(X) − PΩ(𝐴)‖𝐹

2

 
+  𝜆‖X‖∗} (2.21) 

where, PΩ(X) = X𝑖𝑗 if the return or predictor value is observed and 0 otherwise, ‖ ‖𝐹 is the Frobenius norm, 

𝜆 is a tuning parameter, and ‖ ‖∗ denotes the nuclear norm that is equal to the sum of singular values of X. In 

our implementation, we set 𝜆 = 1, the maximum number of iterations at 50, and tolerance level at 0.001. 

Several Python libraries are used to analyze the data and implement the imputation methods. Numpy 

(Harris et al., 2020) and pandas (McKinney, 2010) are employed to pre-process the datasets. The BRITS model 

is implemented by utilizing the code associated with the original paper (Cao et al., 2018)28 and the pypots (Du, 

2023) library. The filling (Fuchs et al., 2021) R package is applied to estimate the matrix completion benchmark. 

To ensure reproducibility, where applicable, we fix the model’s random seed to control for random 

components, such as the weight initialization in the BRITS architecture, and serialize the trained models using 

the pickle library. Serialization guarantees that the exact trained model, including its parameters and 

architecture, can be loaded and reused, which is crucial for consistency. 

Tables 2.4 and 2.5 present the 10% and 20% simulation study results, respectively, for the hedge fund 

returns and the universe of our predictors. Both tables mainly report the mean MRMSE value. For the 

predictor’s case, we provide aggregate metrics, across all predictors in the form of mean imputation error and 

the standard deviation of the error metric. A lower standard deviation of the imputation error indicates 

consistent imputation performance across all predictors. Additionally, Tables 2.6 and 2.7, provide a more in-

depth picture of the imputation methods’ performance across each predictor, by displaying their MRMSE 

separately. Table 2.4 clearly shows that BRITS achieves superior imputation performance for both the hedge 

fund returns and predictor variables. Concerning the returns imputation, BRITS yields an MRMSE of 3.4477, 

while the second performing model (i.e., cross-sectional mean) generates an error of 4.0381. More 

importantly, our proposed method outperforms both the more standard methods of imputing returns as well 

as the more powerful SVT.NNM matrix completion method. SVT.NNM produces a much higher MRMSE of 

4.0656 compared to BRITS. To shed more light, the absolute difference, in terms of masked MRMSE criterion, 

between the BRITS and the SVT.NNM methods is 0.6179, while the relevant absolute difference between the 

SVT.NNM and the worst performing method (i.e., time series mean) is only 0.4647. Evidently, the imputation 

quality achieved by BRITS is substantially higher than any other approach. The SVT.NNM is also outperformed 

by the cross-sectional mean imputation method.  With respect to the predictors, the results are in line with 

those of hedge fund returns, highlighting that BRITS yields the lowest mean MRMSE value, at the 4.1144 level. 

Furthermore, BRITS obtains the lowest imputation error standard deviation (i.e., 5.3038). The remaining 

methodologies generate similar mean imputation errors and corresponding standard deviations, which are by 

 
28 The code is available at the following GitHub repository: https://github.com/caow13/BRITS 
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far higher than those of the BRITS model. The matrix completion method, SVT.NNM, shows the second-best 

performance with a mean imputation error of 6.5140, while the time series mean achieves the second-lowest 

standard deviation of the imputation error at the 8.9549 level. The above findings regarding BRITS superiority 

are also confirmed by the 20% simulation study results presented in Table 2.6. Concerning hedge fund return 

imputation, BRITS generates again the lowest mean imputation error at 3.5863, while the cross-sectional 

mean follows with an imputation error of 4.1207. For the predictors case, BRITS yields also the lowest mean 

imputation error (i.e., 6.8818) and standard deviation of that error across predictors (i.e., 17.6176). The 

second-best method in terms of mean imputation error is that of SVT.NNM (i.e., 9.2462). Both benchmark 

methods also have similar performance for the standard deviation of imputation error, with the cross-

sectional mean achieving a slightly lower value in comparison (i.e., 19.0318). 

Tables 2.6 and 2.7 validate the above results, revealing that our proposed model achieves the lowest 

imputation error for most predictors, specifically for 17 out of the 23 predictors for 10% simulation study and 

for 19 out of 23 predictors for the 20% simulation study. SVT.NNM is the top imputation performer, while 

BRITS holds the second-best position for most of the remaining predictors. Additional significant insights are 

derived from the above tables by comparing the imputation error's minimum and maximum values across all 

predictors. For example, the corresponding imputation error range is [0.0105 – 18.9780] for BRITS, while this 

range is at much higher levels, [0.0152 – 29.8859] for SVT.NNM. For the cross-sectional mean imputing 

method, the imputation error ranges [0.0415 – 29.9949], while for the time series mean method [0.0374 – 

32.1998]. These findings suggest that BRITS has the most consistent imputing ability with smaller performance 

deviations than all benchmarks.  
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Table 2.4. 10% Simulation study results. 

This table presents the 10% simulation study’s results for the hedge fund returns and predictors datasets. For the 23 predictors, we display a mean imputation error. For the 
case of funds returns, the imputation error is calculated by the masked RMSE for the artificially dropped observed values. 

Imputation method Hedge Fund Returns 
 

PREDICTORS 

Mean Imputation Error  Mean Imputation Error Std. Deviation of Imputation Error 

Cross-sectional Mean (X-Mean) 4.0381  6.8857 8.9549 

Time-Series Mean (TS-Mean) 4.5028  6.8945 9.3650 

SVT.NNM  4.0656  6.5140 9.1547 

Optimized BRITS 3.4477  4.1144 5.3083 

 

 

Table 2.5. 20% Simulation study results. 

 This table presents the 20% simulation study’s results for the hedge fund returns and predictors datasets. For the 23 predictors, we display a mean imputation error. For the 
case of funds returns, the imputation error is calculated by the masked RMSE for the artificially dropped observed values. 

Imputation method Hedge Fund Returns 
 

PREDICTORS 

Mean Imputation Error  Mean Imputation Error Std. Deviation of Imputation Error 

Cross-sectional Mean (X-Mean) 4.1207  9.4925 19.0318 

Time-Series Mean (TS-Mean) 4.5598  9.4216 19.1810 

SVT.NNM  4.1901  9.2462 19.2209 

Optimized BRITS 3.5863  6.8818 17.6176 
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Table 2.6. 10% Simulation study results for the predictors. 

This table displays the 10% simulation study’s results for the 23 predictors examined in our research. For all predictors, we present the imputation error, which is calculated 
by the masked RMSE for the artificially dropped observed values. 

Imp. 

Method 
PastR CR3 CR6 CR9 CR12 CR36 ALg1 ALg2 ALg3 T.Vol UnVol SysVol CoSkw Id.Skw T.Skw T.Kurt FHA12 FHA36 B.9FA C.11FA 𝑹𝟐 AUM MaxR 

X-Mean 
7.910 10.125 11.755 16.094 20.714 28.375 0.312 0.316 0.337 4.843 4.594 0.866 0.041 0.839 0.930 2.942 3.969 1.352 1.257 29.995 0.196 1.615 8.991 

TS-Mean 
8.145 10.764 13.391 17.386 21.729 27.074 0.311 0.322 0.349 3.596 3.508 0.496 0.037 0.666 0.771 2.405 3.970 1.106 1.181 32.200 0.127 0.976 8.063 

SVT.NNM 
7.958 10.090 11.933 16.284 20.988 28.255 0.175 0.175 0.185 4.001 3.972 0.065 0.015 0.213 0.224 1.512 3.736 1.030 0.677 29.886 0.032 0.346 8.072 

BRITS 
7.700 6.936 5.898 8.806 9.861 15.797 0.174 0.173 0.183 1.587 1.535 0.152 0.011 0.223 0.252 1.711 3.311 0.263 0.262 18.978 0.110 7.102 3.607 

 

 

Table 2.7. 20% Simulation study results for the predictors. 

This table displays the 20% simulation study’s results for the 23 predictors examined in our research. For all predictors, we present the imputation error, which is calculated 

by the masked RMSE for the artificially dropped observed values. 

Imp. 

Method 
PastR CR3 CR6 CR9 CR12 CR36 ALg1 ALg2 ALg3 T.Vol UnVol SysVol CoSkw Id.Skw T.Skw T.Kurt FHA12 FHA36 B.9FA C.11FA 𝑹𝟐 AUM MaxR 

X-Mean 
6.270 8.934 13.056 20.107 19.020 32.009 0.313 0.316 0.337 4.134 3.845 0.873 0.043 0.830 0.929 2.937 3.870 1.157 1.387 88.538 0.197 1.619 7.605 

TS-Mean 
6.567 9.760 14.315 20.835 20.404 30.008 0.312 0.323 0.349 3.072 2.974 0.500 0.038 0.664 0.771 2.372 3.880 0.972 1.319 89.153 0.127 0.986 6.996 

SVT.NNM 
6.349 9.181 13.610 20.703 19.857 32.414 0.181 0.184 0.194 3.289 3.191 0.074 0.016 0.237 0.253 1.788 3.663 0.804 0.924 88.457 0.033 0.448 6.810 

BRITS 
6.027 5.964 7.042 8.887 9.186 15.465 0.181 0.183 0.194 1.582 1.443 0.158 0.011 0.236 0.276 1.687 3.343 0.279 0.325 85.529 0.110 7.032 3.142 
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2.6. Assessing imputation predictability on realized returns 

After establishing that BRITS achieves superior imputation performance, we investigate whether 

that imputation significantly improves the forecasting accuracy of realized hedge fund returns. The 

link between imputation fidelity and higher forecasting accuracy lies in the informational advantage 

gained when a forecasting model is estimated on a “complete” version of the dataset including both 

realized and retrieved entries. In addition, more accurate predictions can lead to more profitable 

investment decisions and therefore, such an informational advantage of data imputation can hold 

economic value as well. In this section, we employ a battery of powerful machine learning models 

forecasting financial assets and we focus on evaluating the predictive models’ accuracy fully OOS. Each 

machine learning specification is trained independently using the “complete” version of predictors’ 

dataset as this is recovered by BRITS and has a forecast target realized hedge fund returns only (i.e., 

original data including missing entries). The OOS period ranges from January 2013 to November 2021 

and we utilize the RMSE and MAE formulas for evaluation. The MRMSE and MMAE formulas, 

presented earlier on, guarantee that our forecasting application is realistic, and so we do not calculate 

the prediction error for months that we do not observe any realized funds returns. We also compare 

the forecasting performance of the machine learning models using the BRITS method for the 

imputation of our forecasting inputs, with the equivalent performance using the cross-sectional mean 

imputation method. We mainly select the cross-sectional mean approach as our main benchmark due 

to its popularity in imputing financial data in financial literature (see, Haugen and Baker, 1996; Green 

et al., 2017; Light et al., 2017; Kozak et al., 2020; Gu et al., 2020). Also, the cross-sectional mean 

achieves the second-best performance in imputing hedge fund returns as shown in our simulation 

experiment in the previous section.  

To realistically impute the missing values in-sample dataset we apply a rolling window forward 

format for all our imputation methods. We use the optimal BRITS architecture tuned for each of the 

hedge fund returns and predictor matrices during the simulation study in which we randomly drop 

10% of the observed values of the data. We use that architecture to impute the first 15 years (i.e., 180 

months) of data for both the hedge fund returns (i.e., 𝑟𝑖,𝑡+1 −  𝑟𝑖,𝑡+180) and predictors’ sets (i.e., 𝕏𝑖,𝑡 −

 𝕏𝑖,𝑡+179) and we then shift forward the data by one month and re-apply BRITS on the next 15-year 

window for the returns (i.e., 𝑟𝑖,𝑡+2 −  𝑟𝑖,𝑡+181) and predictors (i.e., 𝕏𝑖,𝑡 − 𝕏𝑖,𝑡+179).  We repeat this 

process sequentially until the end of our sample. For our forecasting application, we adopt the 

following general panel regression framework, which describes the expected excess return 𝑟𝑖,𝑡+1 of 

hedge fund 𝑖 at time 𝑡 + 1 as a function of predictors 𝕏𝑖,𝑡 via the following additive prediction error 

model (see, Gu et al., 2020): 
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𝑟𝑖,𝑡+1  = 𝔼𝑡 (𝑟𝑖,𝑡+1) +  𝑒𝑖,𝑡+1 =  𝑔 (X𝑖,𝑡) +  𝑒𝑖,𝑡+1 (2.22) 

where, hedge funds are indexed by  𝑖, and months by 𝑡 = 1, … , 𝑇. The conditional expected excess 

return 𝑔 (∎) term represents a flexible function that a machine learning model parameterizes, 𝕏𝑖,𝑡 is 

a 𝐷-dimensional vector of predictors and 𝑒𝑖,𝑡+1 is the error term. In our case, we use a balanced panel 

dataset {(𝕏𝑖,𝑡 , 𝑟𝑖,𝑡+1)}
1≤𝑖≤𝑛

 spanning across the set of predictors and 3800 hedge funds. To estimate 

the machine learning models and generate the OOS predictions, we also use a rolling-window method 

and conduct annual model re-estimations. Specifically, we use 15-years as in-sample observations to 

estimate our models and produce forecasts for the following one year (i.e., 12 months) following Gu 

et al. (2020). We then roll forward our in-sample dataset by one year and re-estimate our predictive 

models before generating again OOS forecasts for the next 12 months. This process is repeated until 

the end of our dataset.  

We apply a comprehensive set of 10 machine learning models belonging to the generic families of 

gradient-boosted trees, deep neural networks, and penalized regressions (see Gu et al., 2020; Filippou 

et al., 2022; Gunnarsson et al., 2021; DeMiguel et al., 2023). Specifically, we use three gradient-

boosted tree models (i.e., XGBoost, LightGBM and Catboost), three deep neural network architectures 

(i.e., NNs with different number of hidden layers and neurons), and three penalized regressions (i.e., 

Lasso, Sparse Group Lasso, and Adaptive Lasso). We present the exact methodologies of those 

approaches in Appendix 2.A. Since all forecasting models require setting up specific parameterizations, 

we construct a grid of candidate hyperparameters closely following the relevant literature (see Kingma 

& Ba, 2017; Gu et al., 2020; Mendez-Civieta et al. 2020; Gunnarsson et al. 2021; Filippou et al., 2022). 

The full universe of those hyperparameters tested for each model are displayed in Table 2.8. For the 

gradient-boosted tree models, we explore different values for the number of trees, fraction of inputs 

used to construct each tree, maximum tree depth, and learning rate. 

For the deep NN architectures, we set the batch size to 10000, the number of epochs to 100, the 

optimizer to Adam, the learning rate to 0.001, the 𝑙1- weight regularization to 0.001, and the early 

stopping patience at five epochs. The early stopping mechanism prevents model-overfitting, which is 

equivalent to a high in-sample and poor OOS performance. In practice, to conduct early stopping, we 

use a validation dataset. At each iteration of the training algorithm, the NN will generate predictions 

for the validation sample, and the training algorithm will be stopped prematurely if the validation 

sample error rises for five consecutive training iterations (i.e., epochs). Regarding the number of 

hidden layers of NNs, we consider up to five hidden layers. For the number of neurons of the first 

hidden layer we compromise between two popular rules of thumb, namely, half or the square root of 
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the number of predictors (Filippou et al., 2022). As for the number of neurons for the consecutive 

layers we follow the geometric pyramid rule (see Gu et al., 2020). 

Table 2.8. The forecasting models. 

This table displays the different predictive models employed for the forecasting task. We employ a 
battery of commonly used machine learning models to form a representative and complete set of 
predictive techniques.  

Model type Model Specification 

  

Gradient-Boosted Trees  

XGBoost Number of regression trees: {50, 100, 150] 
Fraction of inputs used: [0.6, 0.8] 

Maximum tree depth: [1, 2, 3] 
Learning rate: [0.3, 0.4] 

LightGBM 

Catboost 

  

Neural Network Models  

Deep Neural Network 

3 Hidden Layers 

neurons [32, 16, 8] Batch size: 10000 
Epochs: 100 

Optimizer: Adam 
Early stopping: 5 epochs 

Learning rate: 0.001 
Weight regularization: 0.001 

 
 

Deep Neural Network 

4 Hidden Layers 

neurons: [32, 16, 8, 4] 

Deep Neural Network 

5 Hidden Layers 

neurons: [32, 16, 8, 4, 2] 

  

Penalized Regressions  

Lasso 𝜆 𝜖 {10−4, 10−1} 

Sparse Group Lasso 𝜆 𝜖 {10−4, 10−1}, 𝛼 ∈ [0,0.25,0.5,0.5,1] 

Adaptive Lasso 𝜆 𝜖 {10−4, 10−1}, 𝛾 ∈ [0,8, 1] 

  

 

Finally, for the regression models, we explore different values for the respective penalty parameters 

as presented in Table 2.8. Finally, we perform grid-search, and to choose the optimal combination of 

hyperparameter values which generate the lowest mean squared error in the validation dataset for 

each model. We achieve that by setting the validation dataset equal to 30% of our in-sample dataset 

for the tuning of our forecasting models. To respect the time series structure of our data, we do not 

use cross-validation. Instead, we construct the validation sample by subtracting the last 30% of 
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observations from our in-sample dataset. The validation dataset is not available to the model during 

the training phase and therefore, a low mean-squared error indicates potentially superior OOS 

performance.  

With respect to the implementation of the forecasting models we use different libraries offered 

within the Python programming language. Specifically, lightgbm (Ke et al., 2017), xgboost (Chen & 

Guestrin, 2016), and catboost (Prokhorenkova et al., 2018) libraries are utilized for the estimation of 

the gradient-boosted trees. The asgl (Mendez-Civieta et al., 2021) library is used for the penalized 

regression benchmarks, while MLP neural network benchmarks are implemented with 

tensorFlow/keras (Abadi et al., 2016) library. To ensure reproducibility, we also apply the random seed 

technique and serialize the trained models using the pickle library. 

Since our OOS dataset contains missing values, we take the necessary steps to calculate the OOS 

prediction error only for the cases where a realized return exists. As a first step, we apply equation 

(2.1) and calculate the masking matrix for our OOS returns dataset. The generated masking matrix 

provides information on which months we have realized returns for each hedge fund. As a second 

step, we use modified formulas for the root-mean-squared-error and mean-absolute-error to 

estimate the OOS prediction error for our models. The modified formulas use only information from 

months we observe realized returns OOS. The masked root-mean-squared error and masked mean-

absolute-error formulas are as follows: 

ℵ =  ∑  

𝐷

𝑑=1

∑  

𝑇

𝑡=1

𝑂𝑂𝑆𝑚𝑡
𝑑   (2.23) 

𝐿𝑅𝑀𝑆𝐸(𝑟̂𝑡+1, 𝑟𝑡+1, 𝑂𝑂𝑆𝑚𝑡
𝑑) = √

∑  𝐷
𝑑=1 ∑  𝑇

𝑡=1 (( 𝑟̂𝑡+1 − 𝑟𝑡+1 ) ⊙  𝑂𝑂𝑆𝑚𝑡
𝑑) )

 

2

ℵ
 (2.24) 

𝐿𝑀𝑀𝐴𝐸(𝑟̂𝑡+1, 𝑟𝑡+1, 𝑂𝑂𝑆𝑚𝑡
𝑑) =  

∑ ∑ |𝑟̂𝑡+1 −  𝑟𝑡+1|𝑇
𝑡=1

𝐷
𝑑=1 ⊙ 𝑂𝑂𝑆𝑚𝑡

𝑑

ℵ
 (2.25) 

where,  ℵ counts the total number of realized hedge fund returns on our OOS dataset with the masking 

matrix term 𝑂𝑂𝑆𝑚𝑡
𝑑 taking a value of 1 when a return exists and 0 otherwise, we use the Hadamard 

product ⊙ and the OOS masking matrix to calculate across time 𝑡 and the different hedge funds 𝑑 the 

squared error (i.e., (( 𝑟̂𝑡+1 −  𝑟𝑡+1 ) ⊙  𝑂𝑂𝑆𝑚𝑡
𝑑) )

 

2
) and absolute error  (i.e., |𝑟̂𝑡+1 −  𝑟𝑡+1|  ⊙  

𝑂𝑂𝑆𝑚𝑡
𝑑) between predicted returns and realized returns only when the latter exist on the OOS dataset 

In Table 2.9, we compile the results for our forecasting experiment. The reported findings confirm 

the information advantage and improved predictive accuracy gained for all forecasting models 

estimated on the fully recovered datasets. Notably, these results are consistent and robust across all 
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model categories. When the forecasting models use as inputs the imputed datasets generated by the 

BRITS method, the MRMSE ranges from 4.431 to 4.748. On the other hand, when the forecasting 

models are estimated on a cross-sectional mean imputed dataset, the MRMSE ranges at higher levels 

in comparison and precisely 4.457 to 4.825. We arrive at a similar conclusion by investigating the 

reported MMAE results. The MMAE ranges at lower levels (i.e., 2.207 to 2.352) when the machine 

learning models are trained on BRITS imputed data compared to cross-sectional mean imputed data 

(i.e., 2.236 to 2.504). 

Comparing the forecasting performance of the employed models, the penalized regressions and 

gradient-boosted trees outperform the NN architectures irrespective of the imputation method used 

to recover the missing entries. The lowest MRMSE is achieved by the Lasso penalized regression model 

(i.e., 4.431) followed by the CatBoost gradient-boosted tree model (i.e., 4.437). With respect to the 

lowest MMAE, CatBoost achieves superior performance (i.e., 2.207). Examining the models’ 

performance when trained on BRITS imputed dataset, the penalized regressions on average attain the 

lowest MRMSE at the 4.463 level, while the mean MRMSE (i.e., 4.466) of gradient-boosted trees family 

is only slightly higher than that yielded by the family of penalized regressions, with the family of deep 

NNs coming last. Hence, deep NN architectures report the weakest performance compared to the 

other models with a mean MRMSE of 4.698, and a mean MMAE of 2.319. The relevant performance 

when using the cross-sectional mean method is similar based on the mean MRMSE criterion, however, 

when it comes to the lowest mean MMAE error, gradient-boosted trees are the top performers. The 

Lasso model attains again the superior performance (i.e., MRMSE: 4.457, MMAE: 2.236) out of all 

forecasting models. Thus, irrespective of the imputation method used, the deep NNs present the 

weakest predictive performance as confirmed by both the MRMSE and MMAE. The above findings 

highlight that complex and sophisticated specifications, such as deep NNs, are not always the most 

efficient for predicting hedge fund returns. In contrast, linear and gradient-boosted tree models can 

potentially provide superior results when forecasting fund returns.  
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Table 2.9. The forecasting models’ OOS prediction error. 

This table presents the OOS prediction error results for the predictive models when trained on BRITS imputed data and the cross-sectional mean imputed data. The OOS 
period ranges from January 2013 to November 2021, while the models are trained in a rolling window format with annual re-estimations. In our study, we employ machine 
learning models that belong to three distinct categories, specifically, gradient-boosted trees, deep neural networks, and penalized regressions. With no exceptions, the 
reported results prove that all the machine learning models achieved superior performance when trained on BRITS imputed data compared to cross-sectional mean imputed 
data. 

 OOS: January 2013 – November 2021 OOS: January 2013 – November 2021 

 OOS MRMSE OOS MMAE 

Predictive Models 
BRITS 

training data 
Cross-sectional Mean 

training data 
BRITS 

training data 
Cross-sectional Mean 

training data 

Gradient-Boosted Trees (GBT)  

XGBoost 4.523 4.558 2.211 2.240 

LightGBM 4.438 4.460 2.210 2.252 

CatBoost 4.437 4.467 2.207 2.264 

Mean GBA Error Metric 4.466 4.495 2.209 2.252 

 

Multi-Layer Perceptron 
Neural Networks (NN) 

 

5-Hidden Layers NN 4.745 4.801 2.314 2.504 

4-Hidden Layers NN 4.748 4.825 2.352 2.503 

3-Hidden Layers NN 4.603 4.754 2.292 2.497 

Mean MLP-NN Error Metric 4.698 4.793 2.319 2.501 

 

Penalized Regressions  

Lasso 4.431 4.457 2.211 2.236 

Sparse Group Lasso 4.513 4.529 2.330 2.358 

Adaptive Lasso 4.444 4.470 2.219 2.258 

Mean Penalized Regr. Error Metric 4.463 4.485 2.253 2.284 
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2.7. Measuring predictors' importance 

In this section, we investigate the importance of the fund-specific predictors and their interactions 

with the top-performing forecasting models from each category of machine learning specifications. 

We use the Shapley Additive exPlanations (SHAP) methodology to calculate the SHAP values of our 

predictors. SHAP is based on a cooperative game theory framework, which aggregates the Shapley 

values across all predictors to measure the contribution of each predictor to the forecasting exercise. 

The method considers the fluctuations in the forecasting model output (i.e., the prediction) with and 

without a specific predictor, while including the rest. The predictions from the two models are 

compared and the difference in predictions is calculated. Then, the SHAP values are estimated as the 

weighted average of all possible differences for each predictor, respectively (Lundberg and Lee, 2017). 

For the estimation of Shapley values, we use the shap (Lundberg & Lee, 2017) Python library. Figure 

2.3 provides the 10 most important predictors according to their SHAP values for CatBoost, NN with 

three layers and Lasso models. We focus on these models, since, per model category, these 3 

techniques achieved the lowest OOS forecasting error. We calculate the SHAP values as the mean of 

the absolute SHAP value across all observations for each predictor as well as their interactions with 

the macroeconomic factors, as those have been imputed by BRITS. To gain further insights and 

conduct a comparative analysis, we also estimate the SHAP values when the same machine learning 

models are trained on cross-sectional mean imputed data. Upon estimating the SHAP values, we 

evaluate the predictor's importance, on the last OOS window covering the period January 2021 to 

November 2021. 

In Figure 2.3.A., we observe that the interactions of fund-specific predictors with macroeconomic 

interaction variables dominate the standalone fund-specific predictors since they are among the top 

10 most important overall predictors most of the time and for all models. This is a sound finding since 

powerful machine learning methodologies cannot only capture nonlinearities in the data but also take 

advantage of their interactions to provide better predictions, which is also explained by the fact that 

CatBoost is a top-performing model. In terms of importance, the interaction of cumulative returns 

appears more frequently in the top places, while interactions of predictors presenting managerial skill, 

such as the maximum return over the past year as well as the assets under management of funds and 

𝑅2 come second. We also observe, interactions and standalone predictors of systematic volatility to 

be important for predictions mainly for the case of NNs. In addition, the EMU and EPU indices, are the 

macroeconomic factors that appear more frequently in the most important interactions with fund-

specific predictors. We also estimate the corresponding SHAP values of the predictors imputed by the 

cross-sectional mean method in Figure 2.3.B. Similarly, to Figure 2.3.A., the macroeconomic 

interaction variables are the most significant across all models compared to individual predictors. 
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Figure 2.3. SHAP values graphs. 

The figure displays the OOS SHAP values for the top-performing forecasting models per model category. In Figure 2.3.A., we present the SHAP values for the CatBoost, NN 
with three hidden layers, and Lasso regression models, which were trained on hedge fund returns and predictors imputed by BRITS. In Figure 2.3.B., we present the SHAP 
values when the aforementioned models are trained on imputed data generated by the cross-sectional mean method. Irrespective of the imputation method used, the 
interactions between the predictors and the economic variables achieve higher significance for the model’s predictions compared to the individual predictors. 

 

A. Machine learning models trained on BRITS imputed data

B. Machine learning models trained on cross-sectional mean imputed data

Catboost Neural Network Lasso regression

Catboost Neural Network Lasso regression
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The interactions with cumulative returns and variables that belong to the manager skill category are 

the most instrumental for the model’s predictions. Therefore, we can conclude that irrespective of 

the imputation method used, the macroeconomic interaction variables dominate individual predictors 

in terms of importance, while the previous returns and manager skill variable categories create the 

most informative interactions for the models’ forecasts. 

2.8. Trading application 

As a final experiment, we construct an investment application. The trading application will provide 

us with insights regarding the economic significance of the forecasts generated by the machine 

learning models which were trained on BRITS imputed returns and predictors datasets. For each 

month, we sort the hedge funds in the cross-section into deciles based on each machine learning 

model’s forecast. We form equally-weighted decile portfolios, but we mainly focus on the top decile 

portfolio, which includes the top-performing hedge funds.  Focusing on the top-performing hedge 

funds (i.e., top decile) is a natural decision since investors can not short a hedge fund as is the case 

with other assets (e.g., stocks), but instead, they can only choose in which fund to invest the available 

capital. Hence, we invest evenly all capital available by the end of each month in the top decile 

portfolio, which is equivalent to holding long positions on these specific funds. At the end of each 

month, we compute the monthly return of the top-decile portfolio and present its annualized mean 

return, the annualized Sharpe ratio, and the Fung and Hsieh (2004) seven-factor model annualized 

alpha. We compute the Newey-West t-statistic with three lags for the annualized return and alpha. 

We also report the 𝑅2 statistic29, which measures how well the machine learning model predicts the 

realized top decile portfolio return. If the realized abnormal return factor is predicted more accurately, 

then an investor knows better how much funds in the top decile will outperform in the next period 

(see Kaniel et al. 2023).  

Table 2.10 presents the performance of top decile fund portfolios for each of the top machine 

learning forecasters based on the MRMSE criterion, along with the performance of an ensemble of 

the mean of forecasts for the top-performing models. Based on the forecasting application results (see 

Table 2.9) and for the case of BRITS imputed data, the lowest forecasting error is achieved by CatBoost, 

NN with three layers, and Lasso regression. For the case of cross-sectional mean imputed data, the 

top forecasters are LGBM, NN with three layers, and Lasso regression, and we use those forecasts to 

construct our benchmark portfolios. Table 2.11 reports the performance of top decile fund portfolios 

 
29 We calculate the 𝑅2 statistic following Kaniel et al. (2023). We denote 𝐹𝑡 the realized returns and 𝐹𝑡̂ the 
predicted return of the long portfolio based on the prediction-sorted deciles. The predictive 𝑅2 statistic is 

calculated as: 𝑅2 = 1 − 
∑ (𝐹𝑡̂−𝐹𝑡 )2𝑇

1

∑ (𝐹𝑡̂)2𝑇
1
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constructed based on the ensembles of mean forecasts of each category of machine learning models 

employed (i.e., gradient-boosted trees, neural networks, penalized regressions). We also report the 

performance on the ensembles of mean forecasts generated by all machine learning models for each 

imputation method in the bottom row of each panel. 

Table 2.10 highlights that the BRITS-generated imputations of the hedge fund returns and 

predictors datasets provide an information advantage that enables the machine learning models to 

produce more profitable forecasts. The decile portfolios which were formed based on the forecasts of 

the models that were trained on BRITS imputed datasets attain higher annualized returns, Sharpe 

ratios, and alpha values compared to the benchmark portfolios. The Lasso regression’s forecasts, 

which rely on BRITS’ effective imputation of the data, display the highest probability since the 

constructed portfolio has an annualized return of 15.11%, a Sharpe ratio of 1.22, a statistically 

significant and positive alpha of 4.19%, and a predictive 𝑅2 of 21.51. The second-highest annualized 

return, alpha, and predictive 𝑅2 is achieved by the CatBoost-BRITS portfolio with values of 12.91%, 

2.96%, and 18.31%, respectively. The NN-BRITS portfolio has a lower performance in comparison, but, 

still outperforms the NN-cross-sectional mean benchmark portfolio in terms of annualized return, 

Sharpe ratio, and alpha values. The ensemble portfolio that relies on the mean forecast of the top 

machine learning models has a superior performance when the models are trained on BRITS data. The 

aforementioned portfolio has a higher annualized return (i.e., 15.11%), Sharpe ratio (i.e., 1.22), and 

alpha (i.e., 3.44%) compared to the cross-sectional mean benchmark portfolio. 

The results presented in Table 2.11 further validate the economic significance of BRITS 

imputations.  For the three model categories, the decile portfolios attain higher annualized returns, 

alpha values, and predictive 𝑅2 compared to the cross-sectional mean ensemble portfolios. The 

penalized regression category achieves the highest profitability, while the decile portfolio achieves an 

annualized return of 14.41%, a Sharpe ratio of 1.41, a positive and statistically significant Sharpe ratio 

of 4.68%, and a predictive 𝑅2 of 21.11%. Considering the ensemble portfolio of the three model 

categories, we observe superior performance for the BRITS case. In more detail, the BRITS ensemble 

portfolio has a higher annualized return (i.e., 15.24%), Sharpe ratio (i.e., 1.26), and alpha value (i.e., 

3.24%). The cross-sectional mean ensemble portfolio of the three model categories has an inferior 

performance across all metrics except for predictive 𝑅2. Finally, in both BRITS and cross-sectional 

mean cases, the decile portfolios constructed based on the ensemble of the penalized regression 

category outperform the ensemble portfolios related to the other model categories (i.e., gradient-

boosted trees and neural networks). 
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Table 2.10. Decile portfolio for top-performing machine learning models. 

The table presents the performance metrics for the equally-weighted decile portfolios which were formed based on the top-performing (per model category) machine 
learning models’ forecasts. The machine learning models are trained on BRITS imputed datasets (Panel A) and cross-sectional mean imputed datasets (Panel B), in order to 
perform a comparative analysis considering the portfolios’ performance. We focus on the top decile portfolio, which includes the top-performing hedge funds. At the end of 
each month, we compute the monthly return of the top-decile portfolio and present its annualized mean return, the annualized Sharpe ratio, and the Fung and Hsieh (2004) 
seven-factor model annualized alpha. We compute the Newey-West t-statistic with three lags for the annualized return and alpha. We also report the predictive 𝑅2 statistic 
following Kaniel et al. (2023). 

Top models (RMSE) 
Ann. Mean 

Return (%) 
Return t-stat 

Ann. Sharpe 

ratio 

FH (2004) alpha 

(%) 
Alpha t-stat Pred. 𝑹𝟐(%) 

 Panel A: BRITS       

CatBoost 12.91*** 2.76 1.11 2.96 1.29 18.31 

NN-3layers 12.47*** 2.74 1.02 1.14 0.54 -0.55 

Lasso 15.14*** 3.49 1.31 4.19** 1.99 21.51 

Ensemble-Top (Mean) 15.11*** 3.22 1.22 3.44 1.61 17.56 

       

Panel B: Cross-sectional mean       

LGBM 11.16*** 3.01 1.13 2.32 1.18 12.47 

NN-3layers 10.42** 2.43 0.91 -0.07 -0.04 -0.39 

Lasso 12.97*** 3.21 1.18 2.44 1.27 14.94 

Ensemble-Top (Mean) 12.11*** 2.93 1.08 1.61 0.78 18.11 
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Table 2.11. Decile portfolio for the three model categories. 

The table presents the performance metrics for the equally-weighted decile portfolios which were formed based on the mean ensemble forecast of each of the three machine 
learning model categories we examine. The machine learning models are trained on BRITS imputed datasets (Panel A) and cross-sectional mean imputed datasets (Panel B), 
in order to perform a comparative analysis considering the portfolios’ performance. We focus on the top decile portfolio, which includes the top-performing hedge funds. At 
the end of each month, we compute the monthly return of the top-decile portfolio and present its annualized mean return, the annualized Sharpe ratio, and the Fung and 
Hsieh (2004) seven-factor model annualized alpha. We compute the Newey-West t-statistic with three lags for the annualized return and alpha. We also report the predictive 
𝑅2 statistic following Kaniel et al. (2023). 

Top models  (RMSE) 
Ann. Mean 

Return (%) 
Return t-stat 

Ann. Sharpe 

ratio 

FH (2004) alpha 

(%) 
Alpha t-stat Pred. 𝑹𝟐(%) 

 Panel A: BRITS 
      

Gradient-Boosted Trees 11.94** 2.52 1.01 2.04 0.76 15.2 

Neural Networks 13.17*** 3.06 1.08 1.08 0.62 -0.65 

Penalized regressions 14.41*** 3.8 1.41 4.68** 2.41 21.11 

Ensemble- All  15.24*** 3.51 1.26 3.24* 1.71 15.9 

       

Panel B: Cross-sectional mean       

Gradient-Boosted Trees 10.89*** 2.88 1.07 2.04 1.09 11.6 

Neural Networks 11.27** 2.48 0.96 0.72 0.31 -29.5 

Penalized regressions 13.17*** 3.63 1.41 4.56*** 2.53 18.6 

Ensemble-All 12.80*** 3.25 1.23 2.64 1.4 20.31 
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2.9. Conclusion 

The study proposes a bidirectional recurrent imputation neural network for imputing hedge fund 

returns and their corresponding predictors. The model handles missing values by capturing time series 

and cross-sectional information without making any assumptions about the hedge fund data's 

structure and distribution. Hence, we can effectively recover funds’ missing entries. To establish the 

imputation fidelity of BRITS, we construct two simulation studies in which we artificially drop a random 

10% and 20% of the observed values and a battery of benchmarks used in the financial literature for 

data imputation. Additionally, we examine the importance of BRITS generating full informative 

predictors datasets for forecasting hedge fund returns. We train well-established machine learning 

methodologies on the imputed set of predictors for our forecasting experiment. 

Our findings indicate that BRITS outperforms all benchmarks in terms of imputation error and 

provides a recovered set of predictors, which can generate accurate forecasts when fed to gradient-

boosted trees, NNs, and penalized regressions. The simulation study validates that our framework 

achieves superior results in imputing hedge fund returns and predictors’ values. This result is robust 

in the 10% and 20% simulation studies. The forecasting task’s results confirm that machine learning 

models estimated on the BRITS imputed datasets show higher forecasting accuracy than those 

imputed using the cross-sectional mean method, the standard method in the financial literature. 

Hence, BRITS can provide an informational advantage, boosting the OOS performance of forecasting 

models. Regarding predictor importance, we provide evidence that interactions of fund-specific 

predictors with macroeconomic variables dominate the standalone fund-specific predictors. As shown 

by the SHAP interpretability method, macroeconomic interactions with fund-specific characteristics 

are among the top 10 most important predictors, most of the time considering all models. This 

outcome favoring the significance of macroeconomic interactions holds irrespective of the imputation 

method we use to fill the missing values. Finally, we prove via our trading application that adopting an 

effective imputation method such as BRITS can assist the forecasting models in generating more 

profitable and economically meaningful forecasts. When trained on BRITS imputed data, machine 

learning models can more accurately identify the hedge funds that achieve the highest returns in the 

next month. Such an outcome has important implications for institutional investors, who can benefit 

from the enhanced accuracy of their predictive models and make optimal decisions concerning which 

hedge funds to include in their portfolio and from which to withdraw their capital. Out of the three 

considered model categories, penalized regressions display the highest profitability. The superior 

economic performance of penalized regressions is consistent irrespective of the imputation method 

we use to fill in the missing values in the hedge fund datasets. 
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Appendix 2 

 

2.A. Forecasting models 

For the forecasting task, we employ a battery of commonly-used machine learning models 

described in this section of the Appendix. 

2.A.1. Gradient-boosted tree algorithms 

2.A.1.1 EXtreme Gradient Boosting (XGBoost) 

The XGBoost model was introduced in the work of Chen and Guestrin (2016) and extends the 

boosting algorithm developed by Friedman (2001). Jabeur et al. (2021) state that XGBoost is an 

ensemble model based on decision trees that utilizes an optimization process leading to superior 

performance compared to individual techniques. Nobre and Neves (2019) note that the output of the 

XGBoost model can be calculated with the formula: 

𝑟̂ =  ∑ 𝑓𝑘(X),   𝑓𝑘 ∈ ℱ

𝐾

𝑘=1

 

where, 𝑓 is a function in the functional space ℱ, ℱ =  {𝑓(X) = 𝑤𝑞(X)} is the space of the regression 

trees, 𝑞 is the structure of each regression tree,  𝑤 is the leaf weight, 𝑓𝑘 is the 𝑘-th regression tree, 𝐾 

is the number of regression trees. 

The loss function that is optimized to train the model effectively is the following: 

𝐿 =  ∑ 𝑙(𝑟̂, 𝑟) +  ∑ Ω(

𝑘𝑡

𝑓𝑘) 

where,  𝑙 is the squared error loss function measuring the difference between the predicted return 𝑟̂ 

and the realized return 𝑟, and Ω is a regularization term. Ω is specified by the following formula: 

Ω(𝑓) =  𝛾𝑇 +  
1

2
𝜆‖ 𝑤‖2 

where, 𝛾 is a regularization hyperparameter, 𝑇 is the number of leaves in each regression tree, and 𝜆 

is a regularization hyperparameter. 

In our XGBoost implementation we use the xgboost Python library (Chen & Guestrin, 2016) 

associated with the original paper, and utilize the library’s default parameters. Specifically, the 
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number of trees is set to 100, the maximum depth of a tree to 3, the learning rate to 0.1, 𝛾 to 0, and 

𝜆 to 1. 

2.A.1.2 Light gradient boosting machine (LightGBM) 

The LightGBM model was introduced by Ke et al. (2017). To effectively deal with a large number of 

data instances and explanatory variables, the model’s training algorithm consists of two novel 

techniques: gradient-based one-side sampling and exclusive feature bundling. The objective function 

of the model integrates a number of regression trees to approximate the final model (Sun et al., 2020) 

as follows: 

𝑓𝑇(𝑋) = ∑  

𝑇

𝑡=1

𝑓𝑡(𝑋) 

where, 𝑓𝑡(𝑋) denotes a regression tree. 

The objective function is estimated by Newton’s method (Sun et al., 2020). According to Ken et al. 

(2017), LightGBM can outperform the XGBoost model in terms of computational speed and memory 

consumption. 

2.A.1.3 Categorical Boosting (CatBoost) 

The CatBoost model was proposed by Prokhorenkova et al. (2018) and belongs to the class of 

gradient-boosting algorithms. The authors state that CatBoost outperforms other gradient-boosted 

models due to its properties. The model’s training algorithm consists of two innovative techniques, 

specifically ordered boosting, which is a permutation-driven alternative to the classic algorithm, and 

a novel algorithm for processing categorical features. Instead of the conventional regression trees, 

CatBoost is constructed based on oblivious decision trees (Gulin et al., 2011; Ferov& Modrý, 2016), 

which are more balanced and less prone to overfitting. As noted in Jabeur et al. (2021), the function 

of each decision tree ℎ𝑡  in the 𝑡-th step of the sequence of approximations is the following: 

ℎ𝑡 = arg 𝑚𝑖𝑛
1

𝑁
∑(−𝑓𝑡(X, r) − ℎ(X))

2
 

where, 𝑓𝑡 is a least squares approximation by the Newton method. 

2.A.2 Deep Neural Network 

Fan et al. (2021) indicate that artificial neural networks use a composition of a series of non-linear 

functions to model non-linearity. In mathematical notation, they take the following form: 

𝐻(ℎ) = 𝑓(ℎ) ○ 𝑓(ℎ−1) ○ 𝑓(ℎ−2) ○ … ○ 𝑓(1)(𝑥)  
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where, ○ illustrates the composition of two functions, ℎ is the number of hidden layers. 

By letting 𝐻0 ≜  𝑥, we can define recursively 𝐻(𝑙) =  𝑓𝑙(𝐻(𝑙−1)) for all 𝑙 = 1, … , 𝐿 (Fan et al., 2021). 

To retrieve the so-called MLP architecture, we define the output of its hidden layer with ReLU 

activation functions as follows: 

𝐻(𝑙) = 𝑓(𝑙)(𝐻(𝑙−1)) ≜ ReLU(𝑊(𝑙)𝐻(𝑙−1) + 𝑏(𝑙))  

where, 𝑊(𝑙) is the weight matrix fully connecting the previous layer with every neuron in the 𝑙-th 

layer, 𝑏(𝑙) is the bias (intercept) term. Finally, the output of the final hidden layer, 𝐻(𝐿), and the 

corresponding observed value from the training dataset are used to estimate the loss function we 

minimize. We do not apply an activation function for the neural network's final output to avoid binding 

it to a specific value range. 

2.A.3.1 Lasso regression 

The Lasso regression (Tibshirani, 1996) introduces sparsity in the predictors’ set by shrinking some 

coefficients and setting others to zero. The Lasso estimator is given by: 

𝜗∗

 
  
=
 

 𝑎𝑟𝑔𝑚𝑖𝑛 
𝜗

 ‖𝑟 − XT𝜗‖
2

2
+  𝜆 ∑|𝜗𝑑|1

𝐷

𝑑=1 

 

where, 𝜆 is a tuning penalty parameter controlling the level of sparsity. 

We use a validation dataset to decide on the optimal value of 𝜆 and following (Gu et al., 2020) our 

search space is {10−4, 10−1}. 

A.3.2 Group Lasso 

Yuan and Lin (2006) suggest the following Group Lasso estimator: 

𝜗∗

 
  
=
 

 𝑎𝑟𝑔𝑚𝑖𝑛 
𝜗0, 𝜗

 ‖𝑟 − XT𝜗‖
2

2
+  𝜆 ∑ √𝑑𝜉

𝛫

𝜉=1

‖𝜗𝜉‖
2

 

 

where, 𝐾 is the number of categories the predictors are divided into, the term √𝑑𝜉  weights each 

category according to its size and 𝑑𝜉  is the size of the 𝜉 category, 𝜗𝜉is a sub-vector of coefficients from 

𝜗 with components that correspond to the covariates in 𝜉 category. We use a validation dataset to 

decide on the optimal value of 𝜆 and following (Gu et al., 2020) our search space is {10−4, 10−1}. In 

Section 3 of our main paper, we mention that our predictors can be divided into 3 major categories 

(i.e., past returns and autocorrelation, second and higher moments and skill of hedge fund managers). 
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We also introduce a fourth category by including macroeconomic factors and their interactions with 

the predictors (i.e., 𝐾 = 4). We use a validation dataset to decide on the optimal value of 𝜆 and 

following (Gu et al., 2020) our search space is {10−4, 10−1}. 

2.A.3.3 Sparse Group Lasso 

The Sparse Group Lasso model was introduced in Friedman et al. (2010) and combines the Lasso 

and Group Lasso penalization under the following mathematical formulation: 

𝜗∗

 
  
=
 

 𝑎𝑟𝑔𝑚𝑖𝑛 
𝜗

 ‖𝑟 −  XT𝜗‖
2

2
+  𝑎𝜆 ∑|𝜗|1

𝐷

𝑑=1

+ (1 − 𝑎)𝜆 ∑ √𝑑𝜉

𝛫

𝜉=1

‖𝜗𝜉‖
2

 

 

where, 𝑎 is bounded in [0, 1] and controls the penalization between Lasso and Group Lasso. 

We use a validation dataset to decide on the optimal value of 𝜆, and following (Gu et al., 2020) our 

search space is {10−4, 10−1}. Regarding the tunable parameter 𝑎, we explore the following values: 

𝛼 ∈ [0, 0.25, 0.5, 0.75, 1] 

2.A.3.4 Adaptive Lasso 

The Adaptive Lasso was introduced in Zhou (2006). The authors suggest that the model satisfies 

the so-called oracle properties, and it performs as well as if the true model was provided in advance. 

The Adaptive Lasso estimator is the following: 

𝜗∗

 
  
=
 

 𝑎𝑟𝑔𝑚𝑖𝑛 
𝜗

 ‖𝑟 − XT𝜗‖
2

2
+  𝜆 ∑ 𝑤𝑑̃|𝜗𝑑|1

𝐷

𝑑=1 

 

𝑤𝑑̃  =  
1

|𝜗𝑑
𝛾

|
 

where, 𝑤𝑑̃  is a weight corresponding to 𝜗 coefficient of 𝑑 predictor. 

To determine 𝑤𝑑̃  we leverage a recent technique proposed by Mendez-Civieta et al. (2021) that 

uses partial least squares components. Under the condition that collinearity is not an issue, Zhou 

(2006) proposes first to run an OLS regression and then feed these weights (i.e., 𝜗𝑑
 ) to 𝑤𝑑̃. However, 

a high number of variables in our pool of predictors are correlated. Alternatively, when collinearity is 

present in the dataset, Mendez-Civieta et al. (2021) propose to run a partial least squares (PLS) 

regression instead of an ordinary OLS regression and then feed the obtained weights in 𝑤𝑑̃. To 

determine the number of utilized PLS components, the researcher needs to specify the desired 

amount of variability in X (the matrix of predictors) explained. For this setting, we selected a number 

of PLS components that can explain 90% of the variability in our predictors’ matrix. For the 𝜆 and 𝛾 
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tunable parameters, we used a validation dataset to decide on the optimal combination given the 

defined search spaces: 𝜆 𝜖 {10−4, 10−1}, 𝛾 ∈ [0,8, 1]. 
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CHAPTER 3 

Directional Predictability of Industry Returns via White-Box Deep Learning 

 

3.1. Introduction 

Effectively predicting the directional movements of the industries' portfolios' excess returns is 

significant to portfolio managers and financial institutions. Predicting the directional movement of an 

asset’s return (i.e., directional forecasts) refers to predicting the sign of the next period’s return using 

past information. This task holds important implications concerning market timing and shifting wealth 

between financial assets and risk-free investments. Earlier research has suggested that directional 

accuracy is the only conventional measure of forecast quality related to profits (see Leitch & Tanner, 

1991), which is also supported by the finding of Leung et al. (2000). More recent studies (see Nyberg, 

2011; Nyberg & Pönkä, 2016; Pönkä, 2017; Becker & Leschinski, 2018; Iworiso & Vrontos, 2019) 

reiterate this point and highlight that successful trading strategies and investment decisions rely on 

the accuracy of the directional forecasts. Despite its economic importance, there is scarce literature 

exploring the directional predictability of returns, especially in the returns of industries’ portfolios. 

Most financial literature has focused on modelling the conditional mean of stock returns (see, among 

others, Gu et al., 2020; Chen et al., 2021; Gu et al., 2021) rather than considering directional forecasts 

and industry-aggregated datasets. The current state of the literature and the ever-growing adoption 

of machine learning models for financial applications motivate our research objective. We aim to 

explore the ability of these models to generate accurate directional forecasts in the context of industry 

return predictability. However, to avoid using a machine learning model as a “black box”, it is essential 

also to identify the determinants of predictability (Becker & Leschinski, 2018) and, therefore, 

identifying the most informative covariates when predicting directional movements of industry 

returns. 

In this study, we adopt a state-of-the-art and interpretable neural network model to predict the 

directional movements of industries’ excess returns effectively. Essentially, predicting directional 

movements of returns is a classification task related to sign prediction (i.e., positive or negative). Our 

modelling framework adopts the TabNet neural network architecture, which was introduced in the 

study of Arik and Pfister (2021). Three fundamental properties distinguish TabNet from other neural 

network architectures and the standard model (i.e., the logistic regression) employed in classification-

oriented financial tasks. First, contrary to standard neural networks, TabNet is an interpretable 

architecture with the ability to conduct sparse covariate selection and quantify the importance of each 

covariate. TabNet derives its predictions by utilising a sequential process with multiple decision steps. 
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Each decision step relies on three computational blocks, which perform mathematical operations and 

are responsible for non-linear data transformations and extracting patterns from the data. The 

computational blocks also select the most informative covariates driving the model’s prediction and 

provide insights regarding the level of importance for each covariate. 

Second, TabNet is a parameter-efficient neural network architecture. Typically, the number of 

weights in neural network architectures increases as the number of covariates increases. On the other 

hand, TabNet conducts covariate selection and exclusively reserves the learning capacity (i.e., the 

estimated model weights) to the most informative covariates without wasting “resources” on 

irrelevant covariates. Furthermore, at each decision step of the model’s architecture, TabNet 

possesses two sets of weights. The first set of weights is unique to each decision step, while the second 

set is shared across decision steps. This component of the model and the act of sharing weights at 

different parts of the model’s architecture ensure parameter efficiency and distinguish TabNet from 

other neural networks. 

Third, TabNet’s architecture performs non-linear data transformations and extracts meaningful 

data patterns via the feature transformer computational blocks. Feature transformers utilize modern 

neural network techniques such as gated linear unit non-linearity and batch normalization, which 

benefit the model’s training process and, eventually, the model’s performance (see among others, 

Dauphin et al. 2016; Gu et al., 2020). Additionally, TabNet does not impose any assumption on the 

distribution and structure of the data. The properties mentioned above provide TabNet a predictive 

advantage over linear models, such as the logistic regression, which is the standard benchmark for 

financial classification applications (see Fischer & Krauss, 2018; Gunnarsson et al., 2021) and imposes 

several assumptions on the data (e.g., the linearity assumption between the log-odds of the target 

variable and the covariates, absence of multicollinearity). 

These key components are novel to TabNet architecture since no other neural network technique 

can facilitate covariate selection and the quantification of covariate importance under the same 

architecture, while being parameter efficient. Recently introduced methods in the machine learning 

literature can help explain individual model predictions and provide approximations regarding 

covariate importance. For instance, the Local Interpretable Model-agnostic Explanations (LIME) 

method utilises a local surrogate and more interpretable model that explains a single output from a 

“black-box” model (see Ribeiro et al., 2016; Molnar, 2022). Lundberg and Lee (2017) use Shapley 

values to analyse individual model predictions and then assign covariate importance scores using 

game-theoretic concepts. However, these methods, and all similar techniques, are applied to the 

model post-estimation and can only provide approximations to covariate importance without being 
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directly integrated into the model’s architecture. On the contrary, TabNet has a built-in mechanism 

that determines covariate importance. Notably, the model learns to select and base its predictions on 

the most informative covariates. We can derive the most informative set of covariates and their 

relative importance post-estimation. Therefore, TabNet is a “white-box” architecture that effectively 

solves the “black-box” criticism that neural networks receive. 

We contribute to the literature in multiple ways. First, we contribute to the statistical and 

forecasting literature by adopting a state-of-the-art, parameter-efficient, and interpretable neural 

network technique trained on a financial panel dataset that can effectively provide accurate 

predictions. To our knowledge, this is the first paper that uses TabNet to predict the directional 

movements of 49 industries’ excess returns. Importantly, TabNet has an integrated mechanism as part 

of its architecture that can shed light on the most informative covariates driving the model’s 

predictions without needing an “external” algorithm that can provide an approximation of covariate 

importance. Since financial applications often require model interpretability and transparency, the 

proposed “white-box” neural network can be readily implemented by portfolio managers and financial 

practitioners as part of their predictive toolbox. Second, we extend the scarce financial literature that 

employs a machine learning technique for a classification task. Only limited studies explore the 

performance of neural networks for predicting the directional movements of financial returns. With 

our study, we aim to fill this gap in the literature and provide evidence that sophisticated architectures 

can provide accurate and economically meaningful forecasts. Third, we use extensive datasets of both 

industry portfolios and covariates as predictors, contrary to previous studies (see Rapach et al., 2015; 

2019; Bianchi and McAlinn, 2021). For instance, our forecasting experiment uses a rich set of 49 

industries as given by the Fama-French (1997) industry classification system and 127 covariates. On 

the other hand, Rapach et al. (2015; 2019) and Bianchi and McAlinn (2021) take a less granular 

approach by focusing on 30 and 10 industries, respectively. Moreover, the studies of Rapach et al. 

(2015; 2019) and Bianchi and McAlinn (2021) use a limited set of input variables compared to our 

covariate set. Rapach et al. (2015; 2019) utilize exclusively cross-industry lagged returns. Bianchi and 

McAlinn (2021) do not include lagged returns and cross-industry lagged returns as covariates and limit 

their covariate set to 70 financial ratios and five macroeconomic variables. Our covariate set consists 

of financial ratios, lagged returns, cross-industry lagged returns and macroeconomic variables.  Fourth, 

TabNet’s covariate selection mechanism also captures seasonality effects and cross-industry 

interdependencies, which holds crucial implications for portfolio managers when deciding asset 

allocation and the portfolio’s exposure to industry sectors. 

To conduct our analysis, we examine 49 industries’ portfolios from January 1976 to December 

2022. The out-of-sample (OOS) period ranges from January 2013 to December 2022, approximately 
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20% of the total sample. Our research focuses on predicting the directional movements of industries' 

excess returns. We follow a panel data format structure for our in-sample dataset. The constructed 

panel dataset is used to train the proposed model and all benchmarks, generating out-of-sample 

predictions for 2013-2022. We evaluate the model’s predictions with multiple performance metrics 

(i.e., accuracy, balanced accuracy, logistic loss, brier score loss, and the Area-Under-the-Curve 

statistic) and statistical tests, such as the McNemar’s pairwise test (McNemar, 1947; Edwards, 1948), 

Cochran’s Q-test (Cochran, 1950), F-test (Snedecor & Cochran, 1989), Pesaran-Timmerman directional 

accuracy test (Pesaran & Timmermann, 1992) and Anatolyev-Gerko excess profitability test (Anatolyev 

& Gerko, 2005). We also construct a trading application to evaluate the economic significance of 

TabNet’s predictions. Based on TabNet’s predictions, we form the trading positions and shift wealth 

between the industries’ portfolios and a risk-free investment (i.e., the one-month Treasury Bill). As 

benchmarks, we include three buy-and-hold strategies of three market indices (i.e., the CRSP value 

and equally-weighted indices and the Standard and Poor's 500 index), and a trading strategy based on 

the predictions of the best-performing technique from the benchmark model set. 

Our empirical results indicate that TabNet achieves the highest OOS predictive accuracy across all 

performance metrics compared to other linear (i.e., logistic regression) and non-linear machine 

learning models (i.e., variations of extreme gradient boosting, explainable boosting machine, and 

random forest). The employed statistical tests also validate these results. The attained accuracy for 

TabNet is 64.30%, whereas for the second best-performing model, the logistic regression, the accuracy 

is 61.11%. Furthermore, TabNet has the lowest logistic loss and brier score loss, 0.6458 and 0.2266, 

respectively. The logistic regression has a logistic loss at the 0.8293 level and a brier score loss at 

0.2578. Finally, we establish the economic significance of TabNet’s predictions via the trading 

application results. The strategy formed based on TabNet’s predictions achieves the highest 

annualized return (i.e., 18.04%), Sharpe ratio (i.e., 1.8807), and positive and statistically significant 

alpha values against the four and five-factor models. Based on the logistic regression predictions, the 

trading strategy attains an annualized return of 14.79% and Sharpe ratio at the 1.0947 level. TabNet 

outperforms all other benchmarks even after accounting for five and ten basis points monthly 

transaction costs. 

Our research is related to different strands of literature. In the first strand, we categorize financial 

papers that employ machine learning techniques to predict stock market and industry portfolio 

returns. Notable examples include the work of Krauss et al. (2017), Rapach et al. (2019), Gu et al. 

(2020), and Bianchi and McAlinn (2021). In their work, Krauss et al. (2017) examine the performance 

of machine learning models using daily total returns of all stocks belonging to the S&P 500 index and 

conclude that their findings pose a severe challenge to the semi-strong form of market efficiency. 
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Rapach et al. (2019) use a machine learning framework to examine industry return predictability and 

underline the economic significance of the model’s predictions. The authors also uncover significant 

industry interdependencies and economic links via their modeling framework. In a different study, Gu 

et al. (2020) use US stock market data and indicate that machine learning algorithms models offer an 

improved description of the expected return behaviour relative to traditional forecast methods. 

Bianchi and McAlinn (2021) analyze industry and aggregate stock market excess returns for 1970-2020 

using an ensemble of linear models. They conclude that financial ratios provide valuable information 

for forecasting stock returns at the industry and aggregate market levels.  

In the second strand of literature, we categorize the financial research papers that utilize a machine 

learning model for a classification task, in which discrete class labels are predicted. The research of 

Leung et al. (2000) and Iworiso and Vrontos (2019) belong to the second cluster of papers. Leung et 

al. (2000) analyze a dataset containing three globally traded stock market indices from January 1967 

to December 1995. The authors first use a group of classification models to predict the direction (i.e., 

sign) of the stock index excess return movement, and then a second group of models to conduct a 

level estimation of the stock index excess return (i.e., the regression models). The empirical results 

prove that classification models outperform regression models regarding sign prediction and 

profitability. Iworiso and Vrontos (2019) examine the US stock market from January 1960 to December 

2016. The empirical results validate that the machine learning models outperform the benchmark 

econometric techniques accuracy and the forecasts’ profitability. Gunnarsson et al. (2021) conduct a 

comparative analysis of several machine learning models for the credit scoring classification task and 

conclude that the XGBoost model outperforms other machine learning techniques, including neural 

networks and the logistic regression, which is the industry standard for credit scoring tasks. Our 

proposed model differentiates from machine learning models used in other studies by being 

interpretable and parameter-efficient. For the case of TabNet, we do not need to use additional 

algorithms to determine covariate importance since the model itself can provide insights into the most 

significant covariates. Additionally, TabNet leverages under the same architecture advanced 

techniques, such as gated linear unit non-linearity, batch normalization, and transformer 

computational blocks, which enhance its training process and OOS performance. The combination of 

these techniques is not present in the standard neural network models. 

The remainder of this paper is structured as follows. Section 3.2 discusses the related literature. 

Section 3.3 describes the employed dataset and the covariate set. Section 3.4 presents our 

methodology. Section 3.5 covers the empirical results concerning the proposed model’s predictive 

and trading performance. Finally, section 3.6 concludes. 
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3.2. Literature review 

Our work is linked to different strands of financial literature. In the first cluster, we group the 

studies that employ a machine learning technique to predict financial market returns, specifically stock 

market and industry portfolio returns (see among others, Beller et al., 1998; Rapach et al., 2015; 

Krauss et al., 2017; Rasekhschaffe & Jones, 2019; Rapach et al., 2019; Huck, 2019; Gu et al., 2020; Gu 

et al., 2021; Chen et al., 2021; Bianchi & McAlinn, 2021, Avramov et al., 2022). In the second cluster, 

we group the financial research papers that employ a machine learning model for a classification task, 

in which discrete class labels are predicted instead of a continuous quantity of a target variable (i.e., 

asset returns). The concept of classification takes the form of predicting the directional movements 

(i.e., positive or negative) of stock or indices’ returns, whether a stock return will over-(under-) 

perform the cross-sectional median stock return, and credit scoring tasks (see among others,  Leung 

et al., 2000; Nyberg, 2011; Fischer & Krauss, 2018; Iworiso & Vrontos, 2019; Karhunen, 2019; 

Dumitrescu et al., 2022; Gunnarsson et al., 2021, McDonnell et al., 2023). 

3.2.1. Machine Learning for stock market predictability 

This subsection presents the studies that employ a machine learning model for stock return 

prediction. To analyze the U.S. stock market, Krauss et al. (2017) investigate the effectiveness of ML 

techniques in statistical arbitrage. The dataset consists of daily total returns of all stocks belonging to 

the S&P 500 index from January 1990 until October 2015. The authors state that their findings severely 

challenge the semi-strong form of market efficiency. Rasekhschaffe and Jones (2019) analyze 22 

developed markets for 1994-2016, using a covariate set of 194 factors. Their findings suggest that ML 

techniques can provide a better alternative to linear models when forecasting returns, and their 

performance is consistent across both the US as well as other developed markers. Huck (2019) 

examines the performance of machine learning models in a “big data” setting. The author constructs 

a covariate set with more than 600 predictors and analyses a sample from 1990 to 2015 for the US 

stock market. The predictor set includes lagged returns, firm-specific information, time information, 

indices, risk factors, and commodities. The results show that positive excess returns are negated when 

accounting for transaction costs and that adding covariates does not guarantee a boost in the 

profitability of the machine learning models’ forecasts. Gu et al. (2020) perform a comparative analysis 

of ML algorithms in the setting of cross-section and time-series stock return prediction. The authors 

use a dataset from March 1957 to December 2016 that includes all NYSE-, AMEX-, and NASDAQ-listed 

firms. The study concludes that these models offer an improved description of the expected return 

behavior relative to traditional forecast methods. Moreover, the authors note that neural networks - 

and, to a lesser extent, regression trees- are the top-performing models. In a similar data setting, Chen 
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et al. (2021) use monthly equity return data for all securities on the CRSP universe and a sample period 

from January 1967 to December 2016. The researchers employ a deep neural network architecture 

for their asset pricing model, which outperforms all benchmark approaches with respect to the Sharpe 

ratio value, explained variation, and pricing errors. Gu et al.  (2021) propose a new latent factor 

conditional asset pricing model based on an autoencoder neural network architecture. The dataset 

consists of monthly individual stock returns from CRSP for all firms listed in the NYSE, AMEX, and 

NASDAQ indices. The autoencoder allows for factor exposures as a non-linear function of predictors 

and performs dimensionality reduction.  The findings also support the superiority of the autoencoder 

neural network, given that the out-of-sample pricing errors are far more minor compared to those of 

other leading factor models (i.e., Fama-French factor models). In their work, Avramov et al. (2022) 

investigate whether machine learning techniques can generate profitable signals for investment 

decisions. The authors use a large sample of US stocks for the period spanning from 1987 to 2017. 

Their findings indicate that machine learning methods can identify mispriced stocks, while the 

generated signals can be profitable in long positions and display low downside risk. However, 

transaction costs can deteriorate the performance of machine learning-based strategies. 

3.2.2. Industry return predictability 

This subsection discusses the studies that investigate industry return predictability. Rapach et al. 

(2015) construct a predictive regression framework that examines industry interdependencies and 

cross-industry return predictability while allowing for direct and indirect sectoral links. For this 

research objective, an adaptive Lasso model and network analysis are applied to a dataset consisting 

of monthly data from 1960 until 2014 for 30 industry portfolios’ returns from Kenneth French’s Data 

Library. The results provide strong evidence that lagged returns of interdependent industries are 

significant predictors of individual industry returns. This finding is also reinforced by a profitable long-

short trading strategy that uses the adaptive Lasso’s predictions to construct portfolios. Another work 

contributing to the scarce literature on industry return predictability is the study of Rapach et al. 

(2019), which leverages an ML framework to model 30 industry portfolios’ returns spanning 1960 until 

2016. The employed model generates economically meaningful predictions when used as part of a 

trading strategy and for constructing long-short investment portfolios. Industry returns are modeled 

using a two-step process, using the Lasso model as the first step to conduct covariate selection and 

then an OLS regression on the selected covariates. An additional study that analyzes industry and 

aggregate stock market excess returns for the period 1970-2020 is the work of Bianchi and McAlinn 

(2021). This research uses an ensemble of linear models for its forecasting objective and a rich set of 

predictors, which consist of financial ratios and macroeconomic variables. The authors conclude that 

financial ratios provide valuable information for forecasting stock returns at the industry and 



 

108 
 

aggregate market level. Moreover, they show that their ensemble method can achieve significant OOS 

economic gains while outperforming other linear and non-linear predictive models. An earlier study 

that analyzes industry returns under a Bayesian framework is Beller et al. (1998). Beller et al. (1998) 

use a Bayesian multivariate regression model to analyze a dataset with quarterly equal- and 

capitalization-weighted returns for 55 U.S. industries from 1973 until 1995. Their OOS findings indicate 

that industry returns are predictable, and forecasting models, when combined with mean-variance 

optimization criteria, can provide economically valuable guidance during portfolio selection. 

3.2.3. Classification models and financial applications 

This subsection discusses the scarce literature that employs a classification predictive framework 

for financial applications. Leung et al. (2000) use a dataset containing three globally traded stock 

market indices (i.e., SP500 for the US, FTSE 100 for the UK, and Nikkei 225 for Japan) from January 

1967 to December 1995. The authors first use a group of classification models to predict the direction 

(i.e., sign) of the stock index excess return movement, and then a group of models to conduct level 

estimation of the stock index excess return. The first group of classification models includes linear 

discriminant analysis, logit, probit, and probabilistic neural network techniques. In the second group 

of regression models that predict excess returns as a continuous target variable, the authors include 

exponential smoothing, multivariate transfer function, vector autoregression with Kalman filter, and 

multilayered feedforward neural network techniques. The empirical results prove that classification 

models outperform regression models in terms of predicting the direction of the stock index 

movement and achieving higher returns in the scope of a trading strategy. Nyberg (2011) constructs 

a predictive framework to forecast the direction of US stock excess return movements. The author 

utilizes a dataset from January 1968 to December 2006 and a model set consisting of linear 

classification models, ARMAX models, and predictive models based on volatility forecasts. The 

empirical results show that the direction of the SP500 stock index excess return is predictable in-

sample; however, the predictability becomes weaker OOS. 

In their study, Fischer and Krauss (2018) analyze a dataset consisting of daily total returns of all 

stocks belonging to the S&P 500 index from January 1990 until October 2015. They utilize a battery of 

predictive models to predict whether a stock return will be above or below the cross-sectional median 

stock return. The Long Short-Term Memory (neural) network outperforms the logistic regression, 

standard deep neural networks, and random forest models when considering the forecasts' predictive 

accuracy and profitability. Iworiso and Vrontos (2019) examine the US stock market for the period 

spanning from January 1960 to December 2016. Their analysis includes multiple forecasting 

techniques such as the binary probit models, classification and regression trees, and penalized binary 
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probit models. The predictive binary classification task is to forecast whether US stock excess return 

will be positive or non-positive (i.e., zero or negative). The reported results support that sophisticated 

machine learning models outperform the benchmark binary probit models with respect to their 

statistical accuracy and the economic significance of their forecasts. Karhunen (2019) employs several 

statistical and machine learning algorithms to predict the direction of excess returns for the stock 

market indices of 11 developed countries. The analysis focuses on the period from March 1980 to 

February 2010. The empirical results indicate mild predictability in the stock market when considering 

the statistical significance of the forecasts; however, in some cases there is evidence of highly 

significant results in the economic sense. 

In a different application and data setting, Dumitrescu et al. (2022) examine the performance of 

machine learning models for the credit scoring classification task. Their objective is to predict a loan 

default, while their model set consists of logistic regression, random forest, support vector machine, 

neural network, and the proposed model, which combines decision trees and logistic regression under 

a joint framework. The authors note that the logistic regression remains the benchmark scoring model 

in the credit industry and show that their proposed technique outperforms the standard logistic 

regression and compares competitively to the random forest. In a different study, Gunnarsson et al. 

(2021) examine the performance of the XGBoost model against the logistic regression, decision tree, 

random forest, and several neural network models for the classification task of credit scoring. All 

models are evaluated on ten retail credit scoring data sets. The results indicate that the XGBoost 

technique outperforms all other models, including the industry standard (i.e., the logistic regression) 

and the neural network architectures. Finally, McDonnell et al. (2023) examine machine learning 

classification models for insurance risk classification via claims prediction. They use a limited model 

set and compare TabNet against logistic regression and XGBoost. Their data application involves a 

synthetic dataset with 100000 observations, modeled based on a real dataset provided by a Canadian 

insurer. The authors prove that TabNet has higher accuracy compared to the logistic regression and 

XGBoost models, and therefore, its adoption is encouraged for predictive tasks related to insurance 

risk pricing. 

3.3. Data and covariate set 

We forecast the monthly directional movements of 49 U.S. industry portfolio returns using the in-

sample period from January 1976 to December 2012, and the OOS period from January 2013 to 

December 2022. The in-sample dataset is constructed by stacking for all 49 industries the 

corresponding in-sample datasets in a panel format data structure (see Gu et al., 2020; Filippou et al., 

2022). We use the panel above data structure of the in-sample dataset to train all predictive models. 
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Adopting a panel data structure can significantly increase the size of our in-sample dataset and solve 

the issue of limited observations arising from our data's monthly frequency. The classification of 49 

industries employed follows the Fama-French paradigm and the descriptions on Kenneth French’s 

website. The 49 industry sectors we examine in this study are presented in Appendix 3.A. Accordingly, 

the industry returns correspond to the value-weighted average of their constituent stocks. 

For our prediction task, we construct a set consisting of 127 covariates. To create our dataset, we 

use the Compustat database from the Wharton Research Data Services (WRDS) platform and precisely 

63 industry financial ratios, which belong to valuation, profitability, capitalisation, financial soundness, 

solvency, liquidity, and efficiency categories, respectively. Capitalisation ratios measure the debt 

component of a firm’s total capital structure; efficiency ratios capture the effectiveness of the firm’s 

usage of assets and liability; financial soundness and solvency ratios capture the firm’s ability to meet 

long-term obligations; liquidity ratios measure a firm’s ability to meet its short-term obligations; 

profitability ratios measure the ability of a firm to generate profit; valuation ratios estimate the 

attractiveness of a firm’s stock. The median value from the group of companies belonging to the 

specific industry is taken to arrive at the industry-level aggregation for each financial ratio.30 Based on 

previous research on industry return predictability (see Rapach et al., 2015), we also decided to 

include other industries’ lagged returns to extend our dataset of covariates further. For each U.S. 

industry portfolio, we also include up to 12-month excess lagged returns and the 1-month value-

weighted excess lagged returns of all other 48 industries as additional covariates. 

Motivated by other financial studies that outline the importance of macroeconomic information 

when predicting financial returns (see, Dangl & Halling, 2012; Bianchi & McAlinn, 2021), our dataset 

is extended and also includes macroeconomic variables. We use four macroeconomic variables 

downloaded from the FRED database, namely the Chicago Fed National Financial Conditions Index 

(NFCI), Chicago Fed National Activity Index (CFNAI), Chicago Fed National Activity Index: Production 

and Income (PANDI), and the Consumer Price Index (CPI). The NFCI index captures U.S. financial 

conditions in money, debt and equity markets as well as the traditional and “shadow” banking 

systems. The PANDI index provides information regarding the national economy’s expansion with 

respect to its historical trend rate of growth. The CFNAI index captures overall economic activity and 

the related inflationary pressure, while the CPI is used as an inflation index.  

 

 
30 The aggregation of the data to the industry-level and the respective pre-processing steps are carried out 
by the WRDS research team. For more information we direct the reader to the WRDS Industry Financial 
Ratio manual (2016) published by the WRDS Research Team. 
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3.4. Methodology 

This section discusses the proposed model's methodology for effectively predicting the directional 

movement of industries’ excess returns. In the first subsection, we start with some preliminaries and 

the mathematical formulation of the predictive task. The following subsections discuss TabNet’s 

building blocks for forming innovative neural network architecture. To compare TabNet’s predictive 

ability, we use an extensive benchmark model set consisting of several machine learning techniques, 

including state-of-the-art models and statistical tests. Specifically, for our benchmark model set, we 

consider the logistic regression model, the logistic regression model with 𝑙2 penalty (Fischer & Krauss, 

2018), three variations of the EXtreme Gradient Boosting (XGBoost) model (Chen & Guestrin, 2016), 

the Explainable Boosting Machine (EBM) model (Norti et al., 2019), and the Random Forest model 

(Breiman, 2001). We present the benchmark models in detail in Appendix 3.B.  

3.4.1. Initial setup 

In this study, our objective is to predict the directional movements of monthly industry excess 

returns. We denote the monthly industry excess return over the one-month risk-free rate as 𝑟𝑡. We 

use an indicator variable to convert the continuous variable 𝑟𝑡 to the binary space [0, 1] based on the 

sign of the industry excess return. For this task, the following rule is applied: 

{
𝒚𝒕 = 𝟏, 𝒊𝒇 𝒓𝒕 > 𝟎

 
𝒚𝒕 = 𝟎, 𝒊𝒇 𝒓𝒕 ≤ 𝟎

(3.1) 

The binary variable 𝑦𝑡 captures the directional movements (i.e., positive or negative) of industry 

excess returns. Therefore, we distinguish the positive class, which is related to a positive excess return, 

and the negative class, which corresponds to the negative excess return case31. Our objective is to 

create accurate forecasts of 𝑦𝑡 conditioned on available information up until 𝑡 − 1. To generate 𝑦𝑡̂ 

forecasts, we leverage a non-linear and interpretable (i.e., “white-box”) neural network specification 

to construct a probabilistic framework that provides estimates in the form of: 

{
Pr(𝑟𝑡 > 0| Xt−1) =  Pr(𝑦𝑡 = 1| Xt−1) 

 
Pr(𝑟𝑡 ≤ 0| Xt−1) =  Pr(𝑦𝑡 = 0| Xt−1) = 1 −  Pr(𝑦𝑡 = 1| Xt−1)

(3.2) 

where, Pr(𝑟𝑡 > 0| Xt−1) is a probabilistic estimate of a greater than zero industry excess return for 

next month (i.e., positive class), Pr(𝑟𝑡 > 0| Xt−1) is equivalent to the probabilistic estimate of 𝑦𝑡 being 

equal to one, Pr(𝑟𝑡 ≤ 0| Xt−1) is a probabilistic estimate of a less than or equal to zero industry excess 

return for next month (i.e., negative class); following the rules of probability, it holds that 

 
31 In practice, the negative class includes every non-positive industry excess return. 
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Pr(𝑦𝑡 = 0| Xt−1) = 1 − Pr(𝑦𝑡 = 1| Xt−1), all probabilistic predictions for next month’s directional 

movement of industry excess returns are conditioned on past information set compiled by the chosen 

covariates Xt−1. 

3.4.2 TabNet’s neural network architecture 

 The probabilistic framework is constructed based on the research of Arik and Pfister (2021), which 

introduced the novel TabNet deep learning model32. TabNet is an interpretable neural network since 

we directly derive the most informative covariates from the model. The model’s architecture employs 

a sequential process with multiple decision steps to generate its predictions. In practice, each decision 

step 𝑖 receives as an input the processed information from the [𝑖 − 1] step and performs covariate 

selection as well as the non-linear transformation of the covariate vector. The transformed covariate 

vectors from each step are aggregated and then used by the model to generate predictions. Each 

decision step of the sequential process consists of three computational blocks, the feature 

transformer, the attentive transformer, and the Mask. These computational blocks carry out the 

necessary mathematical operations responsible for the non-linear data transformations and the 

effective covariate selection. Figure 3.1 provides an overview of the model’s neural network 

architecture. 

Figure 3.1. Overview of TabNet’s neural network architecture. 

The figure displays an overview of TabNet’s neural network architecture consisting of the feature transformer, 
the attentive transformer, and covariate masking computational blocks that carry out the mathematical 
operations required for the model’s final prediction. The feature transformer block converts the input to a more 
informative non-linear representation, while the attentive transformer block selects which covariates are passed 
to the following processing steps. The Mask block conducts mathematical operations and contains information 
revealing the most informative and, therefore, significant covariates. 

 

Note: From “Tabnet: Attentive interpretable tabular learning”, by S. Ö Arik,., and T. Pfister, 2021, Proceedings of the AAAI 

Conference on Artificial Intelligence, 35(8), 6679-6687. Copyright 2021 by Association for the Advancement of Artificial 

Intelligence. 

 
32 TabNet is available in Python programming language via the PyTorch library implementation (Dreamquark, 
2023) at: https://github.com/dreamquark-ai/tabnet.  
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3.4.3 The attentive transformer 

The mechanism responsible for covariate selection is the attentive transformer which constructs a 

learnable mask 𝑀[𝑖] ∈  𝑅𝐵𝑥𝐷 at each 𝑖 decision step. The masking is multiplicative, and to effectively 

enforce covariate sparsity, the mask 𝑀[𝑖] is multiplied with the covariates vector 𝑓 ∈ 𝑅𝐵𝑥𝐷 33 received 

as input at each decision step (i.e., 𝑀[𝑖]  ∙ 𝑓). Covariate selection is a fundamental property of the 

architecture since the model’s learning capacity is devoted exclusively to the most informative 

covariates while ignoring the irrelevant ones (Arik and Pfister, 2021). As a result, TabNet becomes a 

parameter-efficient architecture since no trainable weights are assigned to non-informative 

covariates that were not selected by the masking process. Several mathematical operations occur 

inside the attentive transformer block to construct the learnable mask. The attentive transformer 

possesses a separate neural network architecture consisting of fully connected and batch 

normalization layers as well as the sparsemax normalization operation (Martins & Astudillo, 2016). 

The sparsemax normalization enforces sparsity on the covariate vector and then projects these 

covariates onto a probability map in Euclidean space. Each covariate gets assigned an associated 

probability reflecting how much a specific covariate will influence the model’s output at each decision 

step. In practice, at each decision step 𝑖, the attentive transformer receives a processed covariate 

vector from the previous time step [𝑖 − 1] and constructs the mask under the following mathematical 

formulation: 

𝑀[𝑖] = 𝑠𝑝𝑎𝑟𝑠𝑒𝑚𝑎𝑥(𝑃[𝑖 − 1] ∙ ℎ𝑖(𝑎[𝑖 − 1])) (3.3) 

𝑃[𝑖] =  ∏ (𝛾 − 𝑀[𝑗])
𝑖

𝑗=1
(3.4) 

∑ 𝑀[𝑖]𝑏,𝑗 = 1
𝐷

𝑗=1
(3.5) 

where, ℎ𝑖 is a trainable function parameterized by fully connected and batch normalization neural 

network layers, as shown in Figure 3.2 (b), 𝑎[𝑖 − 1] is the output of a previous decisions step’s feature 

transformer (i.e., a processed covariate vector from the previous decision step), 𝑃[𝑖 − 1] is the so-

called “prior scale term” described by the relaxation hyperparameter 𝛾; when 𝛾 = 1, a covariate is 

enforced to be used exclusively at a single decision step, whereas as 𝛾 increases, more flexibility is 

provided in terms of using a covariate at multiple decision steps, 𝑃[0] is initialized as all ones (i.e., 

 
33 Where B is the batch size. 
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1𝐵𝑥𝐷) and no prior information is enforced on the selected covariates, for a single data sample the 

sum of the elements of 𝑀[𝑖] equals one34. 

The sparsity level can be adjusted on the overall TabNet architecture by introducing a 

regularization term to the model’s cross-entropy objective function (see also Krauss et al., 2017)35. 

Specifically, the added term takes the following form: 

∑ ∑ ∑
−𝑀𝑏,𝑗[𝑖] log(𝑀𝑏,𝑗[𝑖] + 𝜀)

𝑁𝑠𝑡𝑒𝑝𝑠 ∙ 𝛣

𝐷

𝑗=1

𝐵

𝑏=1

𝑁𝑠𝑡𝑒𝑝𝑠

𝑖=1
(3.6) 

where, 𝜀 is a small number added for numerical stability, the regularization term can be added to 

TabNet’s objective (i.e., loss) function via a coefficient 𝜆𝑠𝑝𝑎𝑟𝑠𝑒 that is treated as a hyperparameter. 

According to Arik and Pfister (2021), adding the regularization term in TabNet’s cross entropy 

objective function can provide benefits in the presence of datasets where a large number of features 

is redundant. 

3.4.4 The feature transformer 

Each 𝑛-th decision step receives 𝐷-dimensional covariates 𝑓 and outputs to a feature transformer 

a sparse covariate vector (McDonnell et al., 2023). The feature transformer block has a separate neural 

network architecture, transforming the input into a more informative and high-dimensional 

representation. This representation of the covariate vector is then split into the decision step output 

(i.e., 𝑑[𝑖] ∈ 𝑅𝐵𝑥𝑁𝑑) and the information that is passed to a subsequent decision step of the 

architecture (i.e., 𝑎[𝑖] ∈ 𝑅𝐵𝑥𝑁𝑎). The architecture of the feature transformer consists of multiple 

neural network layers that are either unique (i.e., step-dependent) to each decision step or shared 

across decision steps. Constructing feature transformers with step-dependent as well as shared neural 

network layers promotes parameter efficiency and robust learning (Arik & Pfister, 2021). Specifically, 

the feature transformer consists of fully connected neural network layers (FC), a batch normalization 

layer (BN) (see Gu et al., 2020), and Gated Linear Unit (GLU) non-linear activation functions (Dauphin 

et al., 2016). Additionally, the GLU connects to a residual connection (He et al., 2016) with 

normalization. The normalization with √0.5 enhances the model’s optimization (i.e., training) process 

and stabilizes the variance throughout TabNet’s architecture (Gehring et al., 2017; Arik & Pfister, 

 
34 This is an expected mathematical outcome, since 𝑀[𝑖] is derived by a sparsemax operation and covariates are 
projected on a probability map. 
35 For a training sample 𝑏, the loss is calculated as follows: 𝐿𝑏𝑖𝑛𝑎𝑟𝑦 𝑐𝑟𝑜𝑠𝑠 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 =  −(𝑦𝑙𝑜𝑔(𝑝) +
(1 − 𝑦) log(1 − 𝑝)).  
where, 𝑦 is the true class label taking a value 1 or 0, and 𝑝 is the predicted softmax probability for class 1, while 
the predicted probability of sample 𝑏 belonging to class 0 is given by (1 − 𝑝). 
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2021). Finally, we apply a ReLU36 activation function on the feature transformer-generated 

representations of the covariate vectors at each step (i.e., the decision step output, 𝑑[𝑖]),  and 

aggregate the result across all decision steps (i.e., 𝑑𝑜𝑢𝑡 =  ∑ ReLU(𝑑[𝑖]) 
𝑁𝑠𝑡𝑒𝑝𝑠

𝑖=1
). TabNet’s final 

prediction is computed after applying a linear mapping to 𝑑𝑜𝑢𝑡 which is performed by a set of weights 

𝑊𝑓𝑖𝑛𝑎𝑙. Figure 3.2 (a) provides an illustrative overview of the feature transformer and its 

computational components responsible for converting the input vector to a more informative high-

dimensional representation. 

Figure 3.2. The components of the feature transformer and the attentive transformer blocks. 

The figure displays the components of the feature transformer and attentive transformer computational blocks 
of TabNet’s neural network architecture. A) The feature transformer block transforms the received input into a 
more informative, high-dimensional representation. The high-dimensional transformation is achieved by passing 

the input through a series of neural network layers (i.e., fully connected neural network layers (FN), batch 
normalization layers (BN), and Gated Linear Unit (GLU) non-linear activation functions) and a residual 
connection (He et al., 2016) with normalization. B) The attentive transformer possesses a separate 
neural network architecture consisting of FN and BN layers as well as the sparsemax normalization 
operation (Martins & Astudillo, 2016), which enforces sparsity on the covariate vector. The attentive 
transformer assigns each covariate an associated probability reflecting how much a specific covariate 
will influence the model’s output. 

 

Note: From “Tabnet: Attentive interpretable tabular learning”, by S. Ö Arik,., and T. Pfister, 2021, Proceedings of the AAAI 
Conference on Artificial Intelligence, 35(8), 6679-6687. Copyright 2021 by Association for the Advancement of Artificial 
Intelligence. 

3.4.5 TabNet’s global interpretability and the mask 

TabNet is an interpretable architecture since the covariate selection masks at each decision step 

reveal the selected features. For instance, if 𝑀𝑏,𝑗[2] = 0, then the 𝑗𝑡ℎ covariate of the 𝑏𝑡ℎ sample 

does not have any contribution to the 2𝑛𝑑 steps output 𝑑[2]. Arik and Pfister (2021) underline the 

significance of calculating aggregate covariate importance by combining the masks across the decision 

steps. However, each step can contribute at a different magnitude to the overall model’s prediction; 

 
36 ReLU activation function: 𝑓(𝑥) = max (0, 𝑥). 



 

116 
 

for this reason, a weighting mechanism should also be applied to determine each step’s relative 

importance. The authors propose using the following coefficient: 

𝜂𝑏[𝑖] =  ∑ ReLU
𝑁𝑑

𝑐=1
(𝑑𝑏,𝑐[𝑖]) (3.7) 

It follows that 𝜂𝑏[𝑖] denotes the contribution of the decision step 𝑖 to the overall model’s prediction 

for the 𝑏𝑡ℎ sample. In an extreme case, if 𝑑𝑏,𝑐[𝑖] < 0, then all covariates at the 𝑖𝑡ℎ decision step should 

have zero contribution to the overall model prediction for the 𝑏𝑡ℎ sample. As the value of 𝜂𝑏[𝑖] 

increases, then the contribution of the 𝑖𝑡ℎ decision step to the overall model output also increases. 

For each 𝑏 sample, the 𝜂𝑏[𝑖] coefficient scales the mask 𝑀[𝑖] at each decision step, while the formula 

for the aggregate covariate importance mask is presented in equation (3.8). To arrive at the global 

covariate importance across the OOS dataset, we average 𝑀𝑎𝑔𝑔−𝑏,𝑗 for each covariate 𝑗 across all 𝑏 

OOS data points as shown in equation (3.9). 

𝑀𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒−𝑏,𝑗 =  
∑ 𝜂𝑏[𝑖]𝑀𝑏,𝑗[𝑖]

𝑁𝑠𝑡𝑒𝑝𝑠

𝑖=1

∑ ∑ 𝜂𝑏[𝑖]
𝑁𝑠𝑡𝑒𝑝𝑠

𝑖=1
𝐷
𝑗=1 𝑀𝑏,𝑗[𝑖]

(3.8) 

𝑀𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒−𝑗 =  
𝑀𝑎𝑔𝑔−𝑏,𝑗

𝑏
, ∀𝑗 (3.9) 

 

3.4.6 TabNet hyperparameters 

TabNet’s neural network architecture contains several hyperparameters, the value of which is 

decided based on the model’s performance on a validation dataset. Deciding on the optimal 

hyperparameter values based on a validation dataset is the standard approach in the financial 

machine learning literature (see Fischer and Krauss, 2018; Gu et al., 2020). For each industry, we retain 

the last 30% of in-sample observations (i.e., the training dataset) as the validation observations, 

corresponding to approximately 20% of the total sample (see also Granger, 1993; Gu et al., 2020).  We 

effectively create 49 validation data matrices. The aggregate validation dataset is constructed by 

stacking these validation data matrices on a panel data format structure. Regarding the 

hyperparameter, we explore every possible combination and retain the optimal one as the optimal 

TabNet architecture used to generate the OOS predictions. Naturally, the optimal architecture is the 

one that achieves the highest accuracy metric on the validation dataset. We explore different values 

for the batch size and epochs (i.e., number of training iterations) as well as the number of steps,  

𝑁𝑠𝑡𝑒𝑝𝑠, and 𝜆𝑠𝑝𝑎𝑟𝑠𝑒 coefficient we described in sections 3.4.2-3.4.4 of our methodology. The financial 

literature has no consensus regarding the optimal batch size range and number of epochs. We try two 
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different values for each hyperparameter and heuristically arrive at the optimal one. Regarding the 

𝑁𝑠𝑡𝑒𝑝𝑠 hyperparameter, we follow Arik and Pfister (2021) who propose using values between three 

and ten. The authors note that higher values for 𝑁𝑠𝑡𝑒𝑝𝑠 can potentially lead to model over-fit. In our 

study, we explore two values for 𝑁𝑠𝑡𝑒𝑝𝑠; specifically, the most conservative possible out of those 

recommended (i.e., 𝑁𝑠𝑡𝑒𝑝𝑠 = 3) as well as a higher candidate value (i.e., 𝑁𝑠𝑡𝑒𝑝𝑠 = 6). Finally, for the 

𝜆𝑠𝑝𝑎𝑟𝑠𝑒 coefficient, we consider values of 0.001, 0.1. 𝜆𝑠𝑝𝑎𝑟𝑠𝑒 = 0.001 is the Python library’s default 

parameter value, and we also include a higher 𝜆𝑠𝑝𝑎𝑟𝑠𝑒 value (i.e., 𝜆𝑠𝑝𝑎𝑟𝑠𝑒 = 0.1). Table 3.1 compiles 

the different hyperparameters we examined to optimize TabNet’s architecture. 

Table 3.1. The hyperparameters’ search space for TabNet’s architecture. 

The table displays the different hyperparameters of TabNet’s architecture we optimized for using a validation 
dataset. The validation dataset holds a panel data structure and was constructed using the last 30% of time 
series observations from each industry’s in-sample dataset. 

TabNet Hyperparameters 

Batch size 200, 300 

Epochs 25, 50 

𝑁𝑠𝑡𝑒𝑝𝑠 3, 6 

𝜆𝑠𝑝𝑎𝑟𝑠𝑒 0.001, 0.1 

 

Total number of 

candidate architectures 
8 

 

3.5. Empirical results 

3.5.1 Forecasting accuracy 

We compare TabNet’s OOS performance with a battery of machine learning models, including 

state-of-the-art techniques (Appendix 3.B.1-3.B.4). All models are trained on the in-sample dataset 

ranging from January 1976 to December 2012, which has a panel format data structure as described 

in our Data section. The trained models are then used to generate predictions for the OOS dataset, 

which spans from January 2013 to December 2022. All models are evaluated on the OOS dataset, 

equivalent to approximately 20% of the total sample. 

We use several Python libraries to conduct our analysis. Numpy (Harris et al., 2020) and pandas 

(McKinney, 2010) are applied for data preprocessing tasks. The TabNet model is developed using 

PyTorch (Paszke et al., 2019) and pytorch_tabnet (DreamQuark-ai, 2023) libraries. Logistic regression 



 

118 
 

and random forest (RF) benchmark models are implemented using scikit-learn (Pedregosa et al., 

2011), while xgboost (Chen & Guestrin, 2016) library is used to estimate the XGBoost (XGB) model. 

Moreover, the XGBoost-Generalized Additive Model (XGB-GAM) is implemented using the nodegam 

(Changet al., 2021) library, while the explainable boosting machine (EBM) model is implemented with 

the interpret (Nori et al., 2019) library. To ensure reproducibility, we fix the random and serialize the 

trained models using the pickle library, enabling consistent reuse and further analysis. 

As suggested in other studies investigating the performance of classification models for financial 

applications (see Lessmann et al., 2015; Gunnarsson et al., 2021) we include multiple metrics to 

effectively evaluate the model’s classification accuracy and do not rely on a single measure. We use 

five different classification performance metrics, and precisely, accuracy, balanced accuracy, logistic 

loss, brier score loss, and the area under the receiver operating characteristic (ROC) curve (AUC 

statistic). In Appendix 3.C., we provide descriptions of the accuracy metrics employed. A higher value 

indicates a more accurate classification model for the accuracy metric, balanced accuracy metric, and 

AUC statistic. In contrast, a lower value denotes a relatively higher predictive accuracy for the logistic 

and the brier score loss. Additionally, for all models, we display the ROC curves from which the AUC 

statistic can be derived, as explained in Appendix 3.C.3. The AUC statistic equals the probability that a 

randomly chosen positive case will be ranked higher (i.e., receive a higher probability score) than a 

randomly chosen negative case; therefore, higher values are equivalent to higher predictive accuracy. 

Table 3.2 validates that TabNet achieves the highest classification accuracy when predicting the 

directional movements of industry excess returns. This result is supported unanimously by all the 

performance metrics. In detail, TabNet achieves the highest accuracy (i.e., 0.6430), balanced accuracy 

(i.e., 0.6066), and AUC statistic (i.e., 0.6486), and the lowest logistic loss (i.e., 0.6458) and brier score 

loss (i.e., 0.2266). The second best-performing model is the logistic regression model, as dictated by 3 

out of 5 performance metrics (accuracy, balanced accuracy, and the AUC statistic). Expectedly, the 

logistic regression with 𝐿2 penalty achieves a very similar performance to the standard logistic 

regression model. The logistic regression with 𝐿2 penalty outperforms the logistic regression in 2 out 

of 5 performance metrics (i.e., the logistic and brier score loss) and, for this reason, is ranked as the 

third best-performing model. In terms of accuracy, the XGB-GAM achieves the worst performance, 

while the RF model has a balanced accuracy of slightly over 50%. Since balanced accuracy considers 

potential class imbalances when calculating the accuracy score for a model, a large discrepancy 

between the accuracy and balanced accuracy metrics can potentially signal a model being biased 

towards the more dominant class in the dataset. The RF model has the largest discrepancy between 

its accuracy and balanced accuracy metrics (i.e., 0.0784), while TabNets achieves one of the smallest 

such discrepancies (i.e., 0.0364) among all models. The difference between the attained accuracy and 
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balance accuracy for the logistic regression (i.e., the second best-performing model) is 0.0601, which 

is approximately double the equivalent value for the case of TabNet. With respect to the logistic loss 

and the AUC statistic, TabNet achieves the best values by a large margin compared to the benchmark 

models. The logistic models have similar AUC values, at 0.5834 and 0.5833, respectively, while the 

XGB default model follows with an AUC value of 0.5494. Again, the RF model attains the lowest 

position in terms of the AUC statistic.  

Finally, Figure 3.3 displays for all models the ROC curves, which are constructed based on the 

predictions for the OOS period. The position of the ROC curve reflects the accuracy of a classification 

model. The ROC of random classifier is placed on the diagonal line, while a greater area under the 

curve denotes better prediction power. Figure 3.3 establishes that the ROC curve associated with 

TabNet covers greater area when compared to all other benchmark models. Therefore, the graphs 

authenticate that TabNet generates the most accurate predictions. 
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Table 3.2. The OOS classification accuracy metrics for the predictive models. 

The table reports the classification accuracy metrics which evaluate the models’ predictions. All models are evaluated on the  OOS period spanning from January 2013 to 
December 2022. In our study, we utilize 5 different performance metrics. For the accuracy and balanced accuracy metrics, as well as the AUC statistic, a higher value indicates 
a relative higher predictive accuracy. On the other hand, for the logistic and brier score loss, a lower value denotes relatively higher predictive accuracy. 

          

Directional Accuracy 

Metric 
 TabNet 

Logistic 

Regression 

Logistic 

Regression  

(𝒍𝟐 penalty) 

XGB default 
XGB 

optimized 
XGB-GAM 

Explainable 

Boosting 

Machine 

Random 

Forest 

          

Accuracy (Acc)  0.6430 0.6111 0.6099 0.5738 0.5719 0.5565 0.5650 0.5827 

Balanced Accuracy (BA)  0.6066 0.5510 0.5494 0.5286 0.5178 0.5298 0.5222 0.5043 

|𝑨𝒄𝒄– − 𝑩𝑨|  0.0364 0.0601 0.0605 0.0452 0.0541 0.0267 0.0428 0.0784 

          

Logistic Loss  0.6458 0.8293 0.8241 0.8118 0.7502 0.7640 0.7416 0.6826 

Brier Score loss  0.2266 0.2578 0.2573 0.2803 0.2662 0.2705 0.2650 0.2447 

AUC statistic  0.6486 0.5834 0.5833 0.5494 0.5428 0.5456 0.5441 0.5171 
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Figure 3.3. The ROC curves for TabNet and the benchmark models. 

The figure displays the ROC for all the employed models in our study. Based on the ROC curves, we also derive the AUC statistic which is reported on the bottom-right position in each of the 
ROC graphs. The ROC curves are constructed using the model’s predictions for the OOS period spanning from January 2013 to December 2022. 
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3.5.1.2 Statistical tests 

This subsection presents the statistical tests we employ to evaluate the classification models. To 

compare TabNet against all benchmark models, we use both pairwise (i.e., McNemar’s test) and 

multiple comparison statistical tests such as (Cochran’s Q-test and F-test37). For the pairwise test, we 

employ the necessary p-value correction. Moreover, following relevant literature (see, Fischer and 

Krauss, 2018), we use the Pesaran-Timmermann test to assess the predictive accuracy of the models. 

In Appendix 3.D., we provide extensive descriptions for all statistical tests. 

The McNemar’s test (McNemar, 1947; Edwards, 1948) conducts pairwise comparisons between 

two machine learning classification models. Under the null hypothesis of the test, the first and the 

second model have the same error rate. Therefore, rejecting the null hypothesis denotes that there is 

a significant difference in the classification accuracy of the two models. In our study, we utilize the 

correction proposed by Edwards (1948) and apply McNemar’s test to compare TabNet against all 

benchmark models in a pairwise manner. Table 3.3 Panel A presents the test results. Based on these 

findings, we can safely conclude that we reject the null hypothesis in all cases. Consequently, there is 

a statistically significant difference between the error rates of TabNet and all benchmark models. 

Therefore, the test highlights significant differences in the predictive performance of TabNet when 

compared with all other models. Since the test is performed pairwise, we also include two p-value 

correction procedures, specifically the Bonferroni (1936) and the Hommel (1998) p-value correction 

methods. The p-value correction process further validates the initial results and does not change the 

initial picture. The 𝜒2-statistics range from 23.9186 (p-value: 0.0000) for the logistic regression model 

to 129.2258 (p-value: 0.0000) for the XGB-GAM model. 

Cochran’s test (Cochran, 1950) can be used to evaluate multiple classifiers and be regarded as a 

generalization of McNemar’s test. For a set {𝑀𝐿1, 𝑀𝐿2, … , 𝑀𝐿𝐿} of classification models, under the 

null hypothesis, there is no difference between the classification accuracies 𝑝𝑎𝑐𝑐 
 of the machine 

learning models (i.e., 𝐻0: 𝑝1 = 𝑝2 = ⋯ = 𝑝𝐿). Similar to Cochran’s test, the test developed by 

Snedecor and Cochran (1989) can assist in evaluating multiple machine learning classification models. 

The F-test assesses the null hypothesis that there is no difference in the classification accuracies of a 

set of 𝐿 machine learning models (i.e., 𝐻0: 𝑝1 = 𝑝2 = ⋯ = 𝑝𝐿). For a set of classifiers 

{𝑀𝐿1, 𝑀𝐿2, … , 𝑀𝐿𝐿}, if the models do not perform differently on the OOS dataset, then the test 

statistic (i.e., F-statistic) follows the F distribution with (𝐿 − 1) and (𝐿 − 1) x 𝑇 degrees of freedom.  

 
37 The McNemar test, The Cochran’s Q test, and the F-test, are implemented using the mlxtend Python library 
(Raschka, 2018).  
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Table 3.3. The McNemar’s pairwise test, Cochran’s Q test, and F-test results for the predictive models. 

The table displays the results for the McNemar’s test, Cochran’s Q test, and F-test for all predictive models explored in this study. The tests are applied to the models’ OOS predictions for the 
period January 2013 to December 2022. For the case of the McNemar’s test (Panel A), we also provide a Bonferroni (1936) and Hommel (1998) p-value correction, since the test is applied in 
a pairwise manner. Finally, in Panel B, we present the results for Cochran’s Q test and the F-test. These tests do not require a p-value correction since they do not operate based on pairwise 
comparisons but consider the entire model set. *, **, *** denote significance at the 10%, 5% and 1% level, respectively. 

Panel A McNemar’s pairwise test 

 
Benchmark 

classification models 
𝝌𝟐-statistic p-value 

Bonferroni (1936) 

p-value correction 

Hommel (1998) 

p-value correction 

 

TabNet 

Logistic Regression 23.9186 0.0000*** 0.0000*** 0.0000*** 

Logistic Regression 

(w/ 𝒍𝟐 penalty) 
25.8312 0.0000*** 0.0000*** 0.0000*** 

XGB default 84.1429 0.0000*** 0.0000*** 0.0000*** 

XGB optimized 100.8637 0.0000*** 0.0000*** 0.0000*** 

XGB-GAM 129.2258 0.0000*** 0.0000*** 0.0000*** 

Explainable Boosting 

Machine 
106.7501 0.0000*** 0.0000*** 0.0000*** 

Random Forest 75.6282 0.0000*** 0.0000*** 0.0000*** 

 Panel B t-statistic p-value 

Cochran’s Q test 129.3037 0.0000*** 

F-test 21.6262 0.0000*** 
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Rejecting the null hypothesis of Cochran’s test and the F-test highlights significant differences in the 

performance of the classification models. We apply the two tests on the OOS predictions generated 

by TabNet and all benchmarks. 

The Cochran’s Q and F-test results in Panel B of Table 3.3 further confirm the outcome of 

McNemar’s test. Both tests assess the null hypothesis that there is no difference between the 

classification accuracies of the examined classification models. Given that for Cochran’s Q test, the t-

statistic is 129.3037, and for the F-test, the t-statistic is 21.6262, we can reject the null hypothesis of 

both tests. The p-values for the same tests are as expected at the 0.0000 level. The above findings 

authenticate a statistically significant difference between the predictive accuracy of TabNet and the 

benchmark models. This observation should be considered in conjunction with the insights from Table 

3.2, compiling the performance metrics. We can statistically significantly argue that TabNet has the 

best performance for predicting the directional movements of industries’ excess returns. 

Finally, we leverage the Pesaran and Timmermann (1992) test that evaluates the OOS classification 

accuracy of machine learning models. The null hypothesis is that a model’s predictions and the target 

variable 𝑦𝑡 are independently distributed (see also Fischer & Krauss, 2018). Therefore, failing to reject 

the null hypothesis signifies an inferior forecasting model. We implement the test for TabNet and each 

of the benchmarks using their OOS predictions and report the results in Table 3.4. Considering the 

results for TabNet, we can reject the null hypothesis with high confidence (p-value: 0.0000). Notably, 

TaNet achieves the highest test statistic (i.e., 17.8477) across all models. These results confirm that 

TabNet’s predictions are not independently distributed from the target variable, which in our case 

captures the directional movements of industries’ excess returns. Except for the RF model, we reject 

the null hypothesis for the rest of the benchmark models. These results indicate that all other models 

exhibit statistically significant forecasting accuracy except for the RF model. 

Based on the above observations and considering both the performance metrics of Table 3.2 as 

well as the statistical test results, we can derive several insights. First, a state-of-the-art neural 

network architecture can outperform linear (i.e., logistic regressions) and tree-based models when 

predicting the directional movements of industry excess returns. Neural networks can effectively 

capture non-linearities and complex data patterns, leading to higher forecasting performance. While 

a relatively vast literature (see among others, Gu et al., 2020; Filippou et al., 2022) has explored the 

predictive ability of neural networks in the context of predicting financial returns as a continuous 

target variable (i.e., a regression task), there is scarce literature exploring the predictive power of 

neural networks for classification objectives. Our results establish that neural networks can be equally 

effective for classification tasks such as the one we explore in this study. 
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Table 3.4. The results for the Pesaran-Timmerman directional accuracy test. 

The table demonstrates the test results for the Anatolyev-Gerko excess profitability test and Pesaran-
Timmerman directional accuracy test across the model set. The tests are performed based on the models’ 
predictions for the OOS period spanning from January 2013 to December 2022. For each test, we report the t-
statistic, as well as the p-value. *, **, *** denote significance at the 10%, 5% and 1% level, respectively. 

 

Pesaran-Timmerman 

Directional Accuracy test 

t-statistic p-value 

   

TabNet 17.8477 0.0000*** 

Logistic Regression 10.3761 0.0000*** 

Logistic Regression 

(w/ 𝒍𝟐 penalty) 
10.0994 0.0000*** 

XGB default 4.98757 0.0000*** 

XGB optimized 3.34482 0.0000*** 

XGB-GAM 4.71625 0.0000*** 

Explainable Boosting 

Machine 
3.79651 0.0000*** 

Random Forest 1.2376 0.1079 

 

Second, contrary to the conclusions drawn by Gunnarsson et al. (2021) regarding the relative 

ineffectiveness of neural networks for credit scoring classification tasks, we show that TabNet can 

outperform all benchmarks, including the state-of-the-art XGB model and its variants. These 

results are aligned with the evidence in Fischer and Krauss (2018), which supports the utility of a 

neural network architecture for the classification task of a stock return over-(under-) performing 

the cross-sectional median return. Third, our analysis shows that a linear model can outperform 

tree algorithms, even the more advanced versions (i.e., the XGB variants). This outcome supports 

that adopting a sophisticated forecasting model should not be a panacea for financial tasks. On 

the other hand, non-linear neural network models, such as TabNet, can provide statistically 

significantly more accurate predictions than all other models. We can conclude that not all non-

linear models outperform their linear counterparts by default; however, those that do can 

potentially provide significant predictive insights and benefits. For this reason, portfolio managers 

and investors should experiment beyond the realm of conventional linear models and are 
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encouraged to include TabNet in their modeling toolbox, given its exceptional performance and 

interpretability. 

3.5.2 Covariate importance 

In Figure 3.4, we display the covariate importance for the OOS period and rank the covariates from 

higher importance to relatively lower. We calculate importance as discussed in Section 4.5 of our 

methodology and present the results for the 15 most influential covariates (i.e., approximately 10% of 

the total covariate pool) driving the model’s OOS predictions. By examining the figure, we conclude 

that the most crucial covariate categories by frequency of presence in these 15 positions are valuation 

ratios, lagged returns, other-industry lagged returns and financial soundness. By focusing on the five 

most important covariate categories, we can observe that the three top positions are dominated by 

valuations ratios, followed by an other-industry lagged return and a 12-month lagged return 

covariates. A large body of literature supports the significance of valuation ratios for predicting 

financial returns (Keim & Stambaugh, 1986; Fama & French, 1988; Campbell & Shiller, 1988; Campbell 

& Thompson, 2008). Our results confirm that valuation ratios can be equally important in predicting 

the directional movements of financial returns, specifically industries’ excess returns. Additionally, we 

underline that our modelling setup differs from the typical setup in which a predictive model forecasts 

a continuous variable, usually excess asset returns. However, we prove that TabNet’s neural network 

architecture can still extract the most informative data patterns present in the valuation ratios even 

for a vastly different predictive objective, that is, a classification of directional movements. 

We derive additional insights by observing that three out of the ten most significant covariates 

belong to the lagged excess returns covariate category, and 3 out of the 15 most significant covariates 

belong to the other-industry lagged excess return category. The results establish that information held 

in lagged excess returns can assist TabNet in creating accurate predictions. Moreover, as shown in 

Figure 3.4, TabNet has chosen the 12-month, 10-month, and 6-month excess return lags as the most 

informative. The 12-month and the 6-month lag can hold information and data patterns relative to 

serial correlation and seasonality effects as reported in the financial literature (Jegadeesh, 1990; see 

also Heston & Sadka, 2008). These data patterns were captured and leveraged by TabNet when its 

classification decisions were made. Moreover, the fact that 20% of the 15 most important covariates 

belong to the other-industry return category is aligned with the literature exploring the predictability 

of industry returns and the diffusion of information across the industries. Rapach et al. (2015; 2019) 

have provided extensive evidence that other industry-lagged excess returns can assist in predicting 

the individual industry’s excess returns. In line with the studies mentioned above, we prove the 

existence of solid economic links between the industries. In practice, these economic links can take 
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the form of “buyer-seller” relationships, supply chain interactions, common reactions towards 

macroeconomic conditions and policy decisions, and technology spillovers. Finally, the financial 

soundness covariate category also has a strong presence with 5 out of the 15 covariates belonging to 

this category (i.e., Short-Term Debt/Total Debt, Receivables/Current Assets, Current Liabilities/Total 

Liabilities, Interest/Average Total Debt, Long-Term Debt/Book Equity), and the profitability category 

has a minor presence with only one covariate (i.e., Return on Assets). 

3.5.3 Trading application 

We construct a trading application to assess the economic significance of TabNet’s predictions in 

the OOS period. To construct the trading application, we follow relevant literature (Leung et al., 2000; 

Karhunen, 2019; Iworiso & Vrontos, 2019) and assume that each month, an investor shifts their wealth 

between an industry portfolio and the one-month Treasury Bill (T-Bill). To make an informative 

decision, the investor uses a predictive model, such as TabNet. Based on the model’s predicted 

probability of a positive excess industry return for next month, the following decision rule is employed 

to construct the trading strategy: 

{
𝑰𝒇 Pr(𝑟𝑡 > 0| Xt−1) =  Pr(𝑦𝑡 = 1| Xt−1) > 0.5 →  𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒 𝑡ℎ𝑒 𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑦 𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜

 
𝑰𝒇 Pr(𝑟𝑡 > 0| Xt−1) =  Pr(𝑦𝑡 = 1| Xt−1) ≤ 0.5 →  𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒 𝑡ℎ𝑒 𝑇𝐵𝑖𝑙𝑙 

(3.10) 

 

In our study, we examine 49 industry portfolios. It follows that each month, the investor will have 

to decide for which industries to go long and for which cases it would be preferable to purchase the 

TBill, as dictated by the model’s predictions. After determining for each industry which position to 

hold, the investor equal-weights all 49 trading positions and forms the final investing portfolio for each 

month 𝑡. We then calculate the trading strategy's performance based on these weights and the OOS 

realized returns. The trading strategy formed based on TabNet’s forecasts is evaluated in two ways. 

First, we repeat the same technique to construct an investing portfolio, but instead of using TabNet’s 

predictions, we use the forecasts of a different predictive model. Naturally, we use the forecasts of 

the most accurate model out of the benchmark model set. The most accurate benchmark model will 

be decided by inspecting the OOS accuracy metrics described in section 3.5.1. Second, we compare 

our trading strategy against a buy-and-hold strategy on three market indices, specifically the CRSP 

Value-Weighted index (CRSP-VW), the CRSP Equal-Weighted index (CRSP-EW), and the Standard and 

Poor's 500 (SP500) index. Finally, for all trading strategies, we calculate the annualized return, 

annualized Sharpe ratio, and the alpha values against the four-factor (Fama & French, 1993; Carhart, 

1997) and five-factor (Fama & French, 2015) models. 
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Figure 3.4. Covariate importance derived from the TabNet model. 

The figure displays the 15 most informative covariates according to the TabNet model. These 15 covariates, 
representing approximately 10% of the total covariate pool, have on average (i.e., across the OOS period; 
January 2013 – December 2022) the highest contribution to the model’s predictions as described in our 
methodology section. The covariates are ranked in order of importance, from higher to relatively lower. 

 

 

3.5.3.1 Anatolyev-Gerko excess profitability test 

The Anatolyev and Gerko (2005) test assesses a trading strategy that issues a buy signal if the 

prediction for the next period's return (here, excess return) is positive and a short signal otherwise. 

The average return of the strategy above is compared with a benchmark strategy that forms buy/sell 

signals randomly to test for the significance of return predictability and excess profit (Liu et al., 2019). 

Under the null hypothesis, the average return of the trading strategy formed based on the sign of the 

return predictions should statistically be equal to a benchmark strategy that issues buy/sell signals at 

random with probabilities corresponding to the proportion of “buys” and “sells” implied ex-post by 

the trading strategy (Anatolyev & Gerko, 2005). Failing to reject the null hypothesis demonstrates that 

a classification model does not perform significantly better than a classifier that would randomly 

produce a positive or negative sign prediction for the next period’s excess return.  Appendix 3.D.5. 

provides a detailed description of the test. 

3.5.3.2 Trading application results 

In this subsection, we present the trading application results for the OOS period spanning from 

January 2013 to December 2012. The positions are constructed using TabNet’s predictions. In case of 

a positive class prediction (i.e., 𝑦𝑡 = 1) for next month, we purchase the industry portfolio, whereas 
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in case of a negative class prediction, we purchase the TBill. This decision rule is applied across all 49 

industries, and then all positions are equal-weighted. In Table 3.5 we compile the trading application 

results, which prove that TabNet can generate economically meaningful forecasts. Specifically, the 

trading strategy that is constructed using TabNet’s predictions generates the highest annualized 

return and Sharpe ratio compared to both the trading strategy that uses the logistic regression’s 

predictions and the buy-and-hold strategies on the three market indices.  

TabNet’s equal-weighted (EW) trading strategy has an annualized return of 18.04% and a Sharpe 

ratio at the 1.8807 level. In contrast, for the case of the logistic regression, the strategy attains an 

annualized return of 14.79% and a Sharpe ratio at 1.1914. Out of the three market indices, the buy-

and-hold strategy on the VW-CRSP index achieves the highest annualized return (i.e., 11.43%) and 

Sharpe ratio (i.e., 0.7659). The profitability of TabNet’s EW trading strategy persists after we apply 

monthly transaction costs at five and ten basis points. For the ten basis points monthly transaction 

cost, we observe in Table 3.5 that TabNet has an annualized return of 16.84% and Sharpe ratio at the 

1.7556 level. These performance metrics are superior to the corresponding metrics of the trading 

strategy based on the logistic regression’s predictions and the VW-CRSP index buy-and-hold strategy. 

The alpha values obtained by the four-factor and five-factor model regressions provide similar insights 

favouring TabNet. In more detail, the alpha values for trading strategy based on TabNet’s predictions 

are 11.69% and 11.03% for the four-factor and five-factor model, respectively. Both these alpha values 

are significant at 1% level and remain statistically significant at 1% even after applying the more 

conservative (i.e., ten basis points) monthly transaction cost. For the case of the logistic regression EW 

trading strategy, the alpha values are at a lower level in comparison, precisely at 6.61% and 4.39% for 

the four-factor and five-factor models, respectively. For the case of the logistic regression trading 

strategy, the five-factor alpha value does not remain significant at the 1% level when we apply five 

and ten basis points monthly transaction costs. Finally, the portfolio constructed based on the 

proposed model’s directional forecasts has the lowest volatility and maximum drawdown values. The 

above results further outline TabNet’s superior predictive accuracy and ability to generate profitable 

predictions. 

Finally, in Table 3.6, we display the results for the Anatolyev-Gerko excess profitability test, which 

reveals the same outcome as the Pesaran-Timmerman test. Considering the test results for TabNet, 

we can reject the null hypothesis with high confidence (p-value: 0.0000). These results confirm that 

TabNet’s forecasts can achieve excess profitability in the context of the Anatolyev-Gerko test. Except 

for the RF model, we can also reject the null hypothesis for the rest of the benchmark models. The 

highest test statistic for the Anatolyev-Gerko (i.e., 20.4898) test is achieved by TabNet. 
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Table 3.5. Trading application results for the OOS period. 

The table reports the trading application results for the OOS period from January 2013 to December 2022. We 
use TabNet’s monthly predictions to form an equally-weighted strategy across the 49 industries, in which we 
purchase the industry portfolio in case of a positive prediction and the TBill otherwise. We compare the 
economic significance of TabNet’s predictions against the logistic regression predictions (i.e., the second-best 
performing model) and a “buy-and-hold” strategy on three market indices (i.e., VW-CRSP, EW-CRSP, SP500). For 
the trading strategies based on model predictions, we also include monthly transaction costs at the five and ten 
basis points level. We report the annualized return and Sharpe ratio performance metrics and the alpha values 
derived by the four-factor and five-factor Fama-French models. *, **, *** denote significance at the 10%, 5% 
and 1% level, respectively. 

 

TabNet 
Model Benchmark 

Logistic Regression38 
Indices Benchmarks 

 EW-trading strategy EW-trading strategy Buy-and-Hold 
 

No TC39 5bp TC 10bp TC No TC 5bp TC 10bp TC VW-CRSP EW-CRSP SP500 

Ann. Mean 

Return (%) 
18.04 17.44 16.84 14.79 14.19 13.59 11.43 8.06 11.03 

Volatility (%) 9.59 9.59 9.59 12.41 12.41 12.41 14.93 16.71 14.76 

Annualized    

Sharpe Ratio 
1.8807 1.8182 1.7556 1.1914 1.1430 1.0947 0.7659 0.4826 0.7475 

Max 

Drawdown (%) 
5.24 5.67 6.19 13.03 13.21 13.39 24.68 30.60 24.77 

Ann. 4-factor 

alpha (%) 
11.69*** 11.09*** 10.49*** 6.61*** 6.01*** 5.41*** - - - 

Ann. 5-factor 

alpha (%) 
11.03*** 10.43*** 9.83*** 4.39*** 3.79** 3.19** - - - 

 

 

 

 

 

 

 

 

 

 
38 Logistic regression is the second-best performing model after TabNet in terms of predictive accuracy metrics 
(and the best model from the benchmark model set). 
39 TC = Transaction (T) Costs (C). 
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Table 3.6. Results for the Anatolyev-Gerko excess profitability test. 

The table demonstrates the test results for the Anatolyev-Gerko excess profitability test and Pesaran-
Timmerman directional accuracy test across the model set. The tests are performed based on the models’ 
predictions for the OOS period spanning from January 2013 to December 2022. For each test, we report the t-
statistic, as well as the p-value. *, **, *** denote significance at the 10%, 5% and 1% level, respectively. 

 

Anatolyev-Gerko 

Excess Profitability test 

t-statistic p-value 

   

TabNet 20.4898 0.0000*** 

Logistic Regression 13.3723 0.0000*** 

Logistic Regression 

(w/ 𝒍𝟐 penalty) 
13.1944 0.0000*** 

XGB default 3.8578 0.0001*** 

XGB optimized 1.7456 0.0404** 

XGB-GAM 5.1952 0.0000*** 

Explainable Boosting 

Machine 
5.6578 0.0000*** 

Random Forest -0.2467 0.5974 

 

3.6. Conclusion 

This paper uses a state-of-the-art and “white-box” deep learning method to predict the directional 

movements of industries’ excess returns. We employ the TabNet model, a neural network architecture 

that uses a multi-step sequential processing mechanism to extract meaningful data patterns, derive 

covariate importance, and generate accurate predictions. To evaluate the OOS predictive ability of 

TabNet, we employ a benchmark model set consisting of linear and machine learning models, 

including state-of-the-art techniques, and use multiple performance metrics and statistical tests. To 

assess the economic significance of TabNet’s predictions, we construct an EW trading strategy and 

compare it to a benchmark trading strategy and buy-and-hold strategies on three market indices. 

Our findings show that TabNet achieves superior predictive accuracy and generates profitable 

predictions in the scope of a trading strategy. The forecasting application’s results validate that TabNet 

has the highest performance considering all performance metrics (i.e., accuracy, balanced accuracy, 

logistic loss, brier score loss, and the AUC statistic) and statistical tests (i.e., Cochrans Q-test, the F-
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test, the Anatolyev-Gerko and Pesaran-Timmerman tests). The second best-performing model is the 

logistic regression model, and the worst is the random forest. We derive covariate importance directly 

from TabNet’s architecture and conclude that the most significant categories are the valuation ratios, 

lagged returns, other-industry lagged returns, and financial soundness. The three top positions with 

the most significant covariates belong exclusively to the valuation ratios category, while the fourth 

and fifth most informative covariates belong to the other-industry lagged return and lagged return 

categories. The reported significance of the other-industry lagged return category confirms the 

presence of strong economic links and interdependencies among the industries and the diffusion of 

information across the economic sectors. The 12-month lagged return is the fifth most influential 

covariate, which indicates the presence of seasonality effects and that past excess returns can hold 

important information when predicting the directional movements of future excess returns. Regarding 

the trading application, the EW trading strategy constructed using TabNet’s predictions is the most 

profitable, has the higher Sharpe ratio and attains positive and statistically significant alphas against 

the four-factor and five-factor models. The alpha values remain positive and statistically significant 

even after including transaction costs. 

Machine learning models like TabNet provide significant advantages in empirical asset pricing by 

capturing complex, non-linear relationships that traditional models like Fama-French (2015) often 

overlook. TabNet’s ability to handle large datasets and dynamic feature selection is highly valuable, 

but challenges like reduced connection to economic theory, data intensity, and computational 

complexity remain. Future research could explore hybrid models that combine the interpretability of 

traditional methods with TabNet’s flexibility, leveraging its performance to discover new factors while 

grounding insights in well-established financial theories. The aforementioned research directions 

could further contribute to creating theoretically sound models that are better equipped to handle 

real-world complexities. 

Overall, our results should persuade portfolio managers to incorporate state-of-the-art and 

interpretable neural networks, such as TabNet, as part of their predictive toolbox. TabNet exhibits 

superior predictive ability against linear and other machine learning models without sacrificing 

performance for interpretability, as with other neural network models. Finally, predicting the 

directional movements of industries’ returns via an effective framework can be profitable and 

generate statistically significantly abnormal returns as the factor models indicate. 
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Appendix 3 

 

3.A. 49 industry sectors 
The table presents the 49 industry sectors we examine in our study. The 49 industries’ classification follows the 
Fama-French paradigm and the descriptions provided on Kenneth French’s website40. 

Industry sector Symbol 

Agriculture AGRIC 

Food Products FOOD 

Candy & Soda SODA 

Beer & Liquor BEER 

Tobacco Products SMOKE 

Recreation TOYS 

Entertainment FUN 

Printing and Publishing BOOKS 

Consumer Goods HSHLD 

Apparel CLTHS 

Healthcare HLTH 

Medical Equipment MEDEQ 

Pharmaceutical Products DRUGS 

Chemicals CHEMS 

Rubber and Plastic Products RUBBR 

Textiles TXTLS 

Construction Materials BLDMT 

Construction CNSTR 

Steel Works Etc STEEL 

Fabricated Products FABPR 

Machinery MACH 

Electrical Equipment ELCEQ 

Automobiles and Trucks AUTOS 

Aero AIRCRAFT 

Shipbuilding, Railroad Equipment SHIPS 

Defense GUNS 

Precious Metals GOLD 

Non-Metallic and Industrial Metal Mining MINES 

Coal COAL 

Petroleum and Natural Gas OIL 

Utilities UTIL 

Communication TELCM 

Personal Services PERSV 

Business Services BUSSV 

Computers HARDW 

Computer Software SOFTW 

Electronic Equipment CHIPS 

Measuring and Control Equipment LABEQ 

Business Supplies PAPER 

 
40 Kenneth French website: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/index.html 
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Shipping Containers BOXES 

Transportation TRANS 

Wholesale WHLSL 

Retail RTAIL 

Restaurants, Hotels, Motels MEALS 

Banking BANKS 

Insurance INSUR 

Real Estate RLEST 

Trading FIN 

Almost Nothing OTHER 

 

3.B. Benchmark models 

To adequately assess TabNet’s accuracy, we utilize an extensive set of benchmark predictive 

models.  

3.B.1 Logistic regression 

The logistic regression model has been widely used in financial applications involving classification 

tasks (see among others, Fischer & Krauss, 2018; Dumitrescu et al., 2022), and its advantage is its 

simple interpretation. The model searches for a single linear decision boundary in the covariates’ 

space to generate the class predictions (Dumitrescu et al., 2022). The logistic regression admits the 

following mathematical formulation: 

Pr(𝑦𝑡 = 1| Xt−1) = 𝐹(𝜉(Xt−1; 𝛽)) =  
1

1 + 𝑒(−𝜉(Xt−1;𝛽))
 

𝜉(Xt−1; 𝛽) = 𝛽0 +  ∑ 𝛽𝑗𝑥𝑡−1,𝑗

𝐷

𝑗=1
 

where, 𝐹 is the logistic cumulative distribution function and 𝛽 is a vector of parameters.  

The parameters’ vector 𝛽 is obtained by maximizing the log-likelihood function (see Dumitrescu et al., 

2022). In addition to the formulation above, we also include a logistic regression with 𝐿2 penalty term 

in our benchmark model set.  The 𝐿2 The penalty is added to the logistic regression’s loss function and 

acts as a regularization term. To optimize for the value of the 𝐿2 we follow Fischer and Krauss (2018). 

We use 5-fold cross-validation and select the optimal choice out of 100 𝐿2 candidate values on a 

logarithmic scale between 0.0001 and 10000. 

3.B.2 EXtreme Gradient Boosting and the Generalized Additive Model variation 

The EXtreme Gradient Boosting (XGBoost) model was introduced in the work of Chen and Guestrin 

(2016) and extends the boosting algorithm developed by Friedman (2001). Gunnarsson et al. (2021) 

show that XGBoost can outperform state-of-the-art neural network models in their credit-scoring 
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financial application. Motivated by this research, we add XGBoost to the benchmark model set and 

compare the attained performance with the one achieved by the TabNet neural network architecture. 

Regarding the mathematical formulation of XGBoost, Nobre and Neves (2019) note that the model’s 

output can be calculated with the formula: 

𝑦𝑡̂ =  ∑ 𝑓𝑘(Xt−1),   𝑓𝑘 ∈ ℱ

𝐾

𝑘=1

 

where, 𝑓 is a function in the functional space ℱ, ℱ =  {𝑓(X) = 𝑤𝑞(X)} is the space of the classification 

trees41, 𝑞 is the structure of each classification tree,  𝑤 is the leaf weight, 𝑓𝑘 is the 𝑘-th classification 

tree, 𝐾 is the number of classification trees. 

The loss function that is optimized to train the model effectively is the following: 

𝐿 =  ∑ 𝑙(𝑦𝑡̂ , 𝑦𝑡) + ∑ Ω(

𝑘𝑡

𝑓𝑘) 

where,  𝑙 is the cross-entropy loss function measuring the difference between the predicted class 𝑦̂ 

and the true class 𝑦, and Ω is a regularization term. Ω is specified by the following formula: 

Ω(𝑓) =  𝛾𝑇 +  
1

2
𝜆‖ 𝑤‖2 

where, 𝛾 is a regularization hyperparameter, 𝑇 is the number of leaves in each classification tree, and 

𝜆 is a regularization hyperparameter. 

In our XGBoost implementation, we use the xgboost Python library (Chen & Guestrin, 2016) 

associated with the original paper. In our benchmark model set, we include two versions of the 

XGBoost model. For the XGBoost version utilizing the Python library’s default parameters (XGB 

default, hereafter), the number of trees is set to 100, the maximum depth of a tree to 3, the learning 

rate to 0.1, 𝛾 to 0, and 𝜆 to 1. The second XGBoost version is optimized using 5-fold cross-validation 

and the parameter search space of Gunnarsson et al. (2021). In more detail, we explore three different 

values for the number of trees (i.e., 50, 100, 150) and the maximum depth of a tree (i.e., 1, 2, 3), 2 

different values for the fraction of inputs used to construct each classification tree (i.e., 0.6, 0.8) and 

the learning rate (i.e., 0.3, 0.4), and keep the rest of the parameters to the Python library’s default 

settings. 

We extend the benchmark model set by an additional XGBoost variation, specifically a Generalized 

Additive Model (GAM) version of XGBoost. Chang et al. (2021) suggest that converting an XGBoost 

 
41 Hereafter, we refer to the decision tree model applied for a classification task as “classification tree”. 
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model to a GAM structure (XGB-GAM) requires fixing the maximum depth of the classification trees 

to 1 so that the trees do not learn feature interactions. In their study, the authors provide evidence 

that GAM models based on tree-methods, such as XGB-GAM, outperform other GAM variations in 

terms of accuracy and discovery of data patterns. For the implementation of this XGBoost variation, 

we use the Python library associated with the original paper42. The number of trees is set at 5000, all 

inputs are used to construct each classification tree (i.e., not a fraction of them), the learning rate is 

0.1, 𝛾 is set to 0, and 𝜆 to 1. 

3.B.3 Explainable Boosting Machine  

Norti et al. (2019) introduced the Explainable Boosting Machine (EBM), which is a “white-box” 

machine learning model offering high interpretability. According to the authors, EBM also achieves 

accuracy equal to other state-of-the-art predictive techniques. On a general level, EBM is a GAM 

model with the following form: 

𝑔(𝐸(𝑦𝑡)) =  𝛽0 +  ∑ 𝑓𝑗(𝑥𝑡−1,𝑗)
𝐷

𝑗=1
 

where, 𝑔 is the logistic link function that adapts EBM to the classification setting. 

Norti et al. (2019) state that EBM has several advantages over traditional GAM models. EBM 

learns each 𝑓𝑗 function using modern machine learning techniques, such as bagging (Breiman, 1996) 

and gradient boosting (Friedman, 2001). The model’s boosting algorithm cycles through the features 

in an effective way that mitigates the effects of co-linearity and ensures that feature order does not 

matter. As a result, EBM can optimally learn the best covariate function 𝑓𝑗. Moreover, EBM’s training 

algorithm can detect and include only those covariate interactions (i.e., ∑ 𝑓𝑖,𝑗(𝑥𝑡−1,𝑖, 𝑥𝑡−1,𝑗)  that can 

benefit the model’s performance and avoid including non-informative covariate interactions. For 

additional details regarding the algorithmic procedure and the selection of the most informative 

pairwise covariate interactions, we direct the reader to Lu et al. (2012), Lu et al. (2013), and Caruana 

et al. (2015). For the EBM’s implementation, we use the Python library associated with the original 

paper43 and keep the default parameter settings for the model. For our predictive task, the 𝑓𝑗 is 

replaced by classification trees optimized by EBM’s training algorithm. 

3.B.4 Random Forest 

The Random Forest (RF) machine learning technique was introduced by Breiman (2001) and is 

considered a type of bootstrap aggregation based on a subset of the input covariates that was 

 
42 The Python library is available at the following web-link: https://github.com/zzzace2000/nodegam. 
43 The Python library is available at the following web-link: https://github.com/interpretml/interpret. 



 

137 
 

randomly drown (Iworiso & Vrontos, 2020). In more detail, Fischer and Krauss (2018) note that an RF 

model consists of multiple classification trees built on different bootstrapped training data samples. 

To build each classification tree, a different random sample of the covariates is drawn from the full 

covariate set. Moreover, the large number of classification trees forming the RF model construct a 

voting ensemble that generates the predictions. Specifically, Iworiso and Vrontos (2020) note that this 

voting ensemble assigns to the input 𝐷-dimensional vector of covariates the predicted class that 

attained the majority of votes: 

𝛿𝑅𝐹
𝑀 = 𝑀𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑉𝑜𝑡𝑒 {𝛿𝑚(𝑋𝑡−1)}

𝑚=1

𝑀
 

where, 𝛿𝑏(𝑋𝑡−1) is the class prediction for the 𝑚𝑡ℎ random forest classification tree. 

In our implementation, we use the Gini index (Breiman et al., 1984) to determine the best split at each 

classification tree node. We follow Fischer and Krauss (2018) and set the number of trees to 1000, the 

maximum depth to 20, and the size of the randomly drawn covariate set to the square root of the 

number of covariates. 

3.C. Predictive accuracy metrics and notation 

In this section we present the accuracy metrics we use in our study to assess the models’ 

classification accuracy. We present the required notation and terminology, and subsequently describe 

the formulas used to calculate the accuracy metrics.  

3.C.1 Preliminary notation and terminology 

Positive class (for positive excess returns): 𝑦𝑡 = 1 

Negative class (for negative excess returns): 𝑦𝑡 = 0 

n: Total number of observations (i.e., months) in the forecast series 

P: The number of instances in the positive class 

N: The number of instances in the positive class 

TP: A true positive is an outcome where the model correctly predicts the positive class 

TN: A true negative is an outcome where the model correctly predicts the negative class 

FP: A false positive is an outcome where the model incorrectly predicts the positive class 

FN: A false negative is an outcome where the model incorrectly predicts the negative class 

C.2 Accuracy metrics 

Accuracy44: 𝑨𝑪𝑪 =
𝑇𝑃+𝑇𝑁

𝑛
  

 
44 The so-called directional accuracy in Finance literature, or binary accuracy in machine learning literature. 
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Balanced Accuracy (average per-class accuracy): 𝑩𝑨 =  
1

2
(

𝑇𝑃

𝑃
+  

𝑇𝑁

𝑁
) 

Logistic loss:  

𝑳𝒍𝒐𝒈 (𝑦𝑡 , Pr
TabNet

(𝑦𝑡 = 1 |X𝑡−1) )

=  −𝒚( 𝒍𝒐𝒈 ( Pr
TabNet

(𝑦𝑡 = 1 |X𝑡−1)) + (1 − 𝑦) log (1 − Pr
TabNet

(𝑦𝑡 = 1 |X𝑡−1)) ) 

Brier Score45: 𝑩𝑺 =  
𝟏

𝒏
( ∑ Pr

TabNet
(𝑦𝑡 = 1 |X𝑡−1)𝒏

𝒕=𝟏 − 𝒚𝒕)  

 

3.C.3 Area under the Receiver Operating Characteristic Curve (ROC AUC): Graph and AUC statistic 

3.C.3.1 Preliminary terminology 

𝑻𝑷𝑹: True Positive Rate: The true positive rate gives the proportion of correct predictions in 

predictions of positive class : 𝑻𝑷𝑹 =  
𝑻𝑷

𝑻𝑷+𝑭𝑵
 

𝑭𝑷𝑹: False Positive Rate: The false positive rate gives the proportion of incorrect predictions in 

predictions of positive class : 𝑭𝑷𝑹 =  
𝑭𝑷

𝑭𝑷+𝑻𝑵
 

𝑻𝑵𝑹:True Negative Rate: The true negative rate gives the proportion of correct predictions in 

predictions of negative class : 𝑻𝑵𝑹 =  
𝑻𝑵

𝑻𝑵+𝑭𝑷
 

𝑭𝑵𝑹: False Negative Rate: The false negative rate gives the proportion of incorrect predictions in 

predictions of negative class: 𝑭𝑵𝑹 =  
𝑭𝑵

𝑭𝑵+𝑻𝑷
 

Table 3.C.1. The elements of a confusion matrix. 

The confusion matrix summarizes the classification accuracy of model on a dataset by displaying the number of 
accurate and inaccurate instances given the generated predictions.  

 Actual values 

Positive class (1) Negative class (0) 

Predicted values 
Positive class (1) TP FP 

Negative class (0) FN TN 

 

 
45 Gunnarsson et al. (2021) note that the brier score assesses the directional accuracy by computing the mean-
squared error between the predicted probability of the positive class and the binary response variable. 
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3.C.3.2 The Receiver Operating Characteristic (ROC) Curve 

Japkowicz and Shah (2011) provide an extensive description of the ROC graphs, and how they are 

used for the comparative evaluation of classification predictive models. The authors describe the ROC 

curve as the plot in which the horizontal axis denotes the false-positive rate FPR and the vertical axis 

denotes the true-positive rate TPR of a classification model. Since it holds: 𝟎 ≤  𝑻𝑷𝑹 ≤ 𝟏 and 𝟎 ≤

 𝑭𝑷𝑹 ≤ 𝟏, it follows that the defined ROC space of the graph is unit square. The point of origin (0,0) 

refers to a trivial classification model that predicts only for the negative class (here, would be 𝑦𝑡 = 0, 

i.e., the class associated with negative industry excess return), and therefore TPR and FPR are equal 

to zero. Naturally, the point (1,1) corresponds to a trivial classification model that would constantly 

predict the positive class and therefore 𝑇𝑃𝑅 = 1, and 𝐹𝑃𝑅 = 1. The diagonal line connecting the 

aforementioned points (0,0) and (1,1) corresponds to a classification model which achieves 𝑇𝑃𝑅 =

𝐹𝑃𝑅, and therefore has the property of a random classifier assigning binary predictions randomly. 

Classification models above the diagonal line are better than a random classifier, whereas models 

below the diagonal line perform worse than a random classifier. Finally, the other two extreme graph 

values are (1, 0) and (0, 1). The (1, 0) point corresponds to a classifier that would make all the 

predictions wrong. The (1, 0) point corresponds to a flawless classifier that would correctly predict all 

cases of the positive class and make no mistakes on the negative class.  

For every classifier, a decision rule/decision threshold identifies the value region corresponding to 

each of the discrete classes the model predicts. Japkowicz and Shah (2011) indicate that a so-called 

“operating point” in the ROC space (i.e., a pair of coordinates in the ROC graph) corresponds to a 

particular decision threshold for a classifier. Each operating point reveals the achieved TPR and FPR 

pair by the classifier, and is associated with a confusion matrix. As a result, an ROC curve is a collection 

of various confusion matrices over different and varying decision thresholds for a classification model. 

Exploring different decision thresholds (i.e., any value in the ∈ [0,1]) can give rise to a series of 

observed TPR and FPR pairs, that are depicted by a given coordinate in the ROC graph. Connecting all 

these [TPR, FPR] pairs creates the so-called ROC curve. If the ROC curve of a classification model is 

oriented towards the (0,1) coordinate, then this classifier outperforms another classifier with an ROC 

curve that is “nested” inside. 

Finally, the Area Under the Curve (AUC) is a frequently used statistic for classification problems 

that quantifies the ROC analysis via a single value estimated by calculating the area covered by a 

classification model’s ROC curve. By construction, a higher AUC statistic is preferable and indicates a 

better classifier compared to a lower AUC statistic achieved by a different classifier. The AUC is 
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bounded on [0,1]. An AUC of 1 indicates the perfect classification model, whereas an AUC of 0.5 

corresponds to a random classifier. 

3.D. Statistical tests 

In this section we provide detailed descriptions of the statistical tests we used to assess the models’ 

classification accuracy and excess profitability. 

3.D.1. McNemar’s test 

The McNemar’s test (McNemar, 1947; Edwards, 1948) conducts pairwise comparison between two 

machine learning classification models. Given the OOS predictions of two machine learning models, 

we construct the so-called contingency table, as shown in Table 3.D.1. The contingency table holds 

important information that can shed light on the two models’ classification performance and provide. 

Table 3.D.1. McNemar’s test contingency table. 

A 2x2 table, the contingency table, is used to compare two different models under the McNemar’s test. The 
table holds information regarding the two models’ classification accuracy and can provide insights with respect 
to their performance. 𝑛00: Number of cases the two models misclassified 𝑦𝑡; 𝑛01: Number of cases the first 
model misclassified 𝑦𝑡 , but not the second model; 𝑛10: Number of cases the second model misclassified 𝑦𝑡 , but 
not the first model; 𝑛11: Number of cases 𝑦𝑡  was misclassified by neither the first nor the second model. 

𝑛00 𝑛01 

𝑛10 𝑛11 

Note: 𝑛00 + 𝑛01 + 𝑛10 + 𝑛11 = the size of the OOS dataset 

Under the null hypothesis of the test, the first and the second model have the same error rate. The 

McNemar’s test is a 𝜒2 − 𝑡𝑒𝑠𝑡 that conducts a comparison between the number of counts expected 

given the null hypothesis to the observed counts (Dietterich, 1998). Under the null hypothesis, the 

expected counts are displayed on Table 3.D.1. The test statistic used to perform the test follows the 

𝜒2 distribution with 1 degree of freedom. In our study, we utilize the correction proposed by Edwards 

(1948), and the final form of the test statistic is displayed in Table 3.D.2. 

Table 3.D.2. McNemar’s test null hypothesis and the test statistic. 

The table presents the expected number of counts under McNemar’s test null hypothesis and the calculation of 
the test statistic. The test statistic test follows the 𝜒2 distribution with 1 degree of freedom. 

The expected number of counts under 𝐻0 

𝑛00 (𝑛01 + 𝑛10)/2 

(𝑛01 + 𝑛10)/2 𝑛11 

McNemar’s test statistic 
(|𝑛01 − 𝑛10| − 1)2

𝑛01 + 𝑛10
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3.D.2. Cochran’s test 

Cochran’s test (Cochran, 1950) can be used to evaluate multiple classifiers and be regarded as a 

generalization of McNemar’s test. For a set {𝑀𝐿1, 𝑀𝐿2, … , 𝑀𝐿𝐿} of classification models with size 𝐿, 

Cochran’s Q statistic follows the 𝜒2 distribution with 𝐿 − 1 degrees of freedom. Under the null 

hypothesis, there is no difference between the classification accuracies 𝑝𝑎𝑐𝑐 
 of the machine learning 

models (i.e., 𝐻0: 𝑝1 = 𝑝2 = ⋯ = 𝑝𝐿). Cochran’s Q statistic is defined as follows: 

𝑄𝑐 = (𝐿 − 1)
𝐿 ∑ 𝐺ℎ

2 − 𝑉2𝐿
ℎ=1

𝐿𝑉 − ∑ 𝐿𝑗
2𝑇 

𝑗=1

 

where, 𝐺ℎ is the number of cases out of the total 𝑇 cases that are correctly classified by the 𝑀𝐿𝑙 =

1, 2, … , 𝐿, 𝐿𝑗 is the number of classification models out of 𝐿 that correctly classified the covariate 

vector 𝑧𝑗  ∈ 𝑍𝑇, where 𝑍𝑇  is the dataset of covariates for the OOS period, 𝑉 is the number of correct 

predictions among the 𝐿 classification models, it holds that 𝑉 =  ∑ 𝐺ℎ
 𝐿

ℎ=1 =  ∑ 𝐿𝑗
 𝑇 

𝑗=1 . 

3.D.3. F-test 

The test developed by Snedecor and Cochran (1989) can assist in evaluating multiple machine 

learning classification models. The F-test assesses the null hypothesis that there is no difference in the 

classification accuracies of a set of 𝐿 machine learning models (i.e., 𝐻0: 𝑝1 = 𝑝2 = ⋯ = 𝑝𝐿). For a set 

of classifiers {𝑀𝐿1, 𝑀𝐿2, … , 𝑀𝐿𝐿}, if the models do not perform differently on the OOS dataset, then 

the test statistic (i.e., F-statistic) follows the F distribution with (𝐿 − 1) and (𝐿 − 1) x 𝑇 degrees of 

freedom. As noted by Looney (1988), the F statistic can be calculated by the following steps: 

We start by defining 𝐴𝐶𝐶𝑎𝑣𝑔 as the average of the accuracies of the different machine learning 

classification models, and then calculate the sum of squares of the classifiers (SSA). 

𝐴𝐶𝐶𝑎𝑣𝑔 =
1

𝐿
∑ 𝐴𝐶𝐶𝑗

𝐿

𝑗=1
 

𝑆𝑆𝐴 = 𝑇 ∑ 𝐺ℎ
2

𝐿

ℎ=1
− 𝑇 𝐿 𝐴𝐶𝐶𝑎𝑣𝑔  

where 𝐺ℎ is the proportion of the 𝑇 instances classified correctly by classifier ℎ. 

The sum of squares of the classified covariate vectors is calculated as: 

𝑆𝑆𝐵 =
1

𝐿
∑ 𝐿𝑗

2 −  𝑇 𝐿 𝐴𝐶𝐶𝑎𝑣𝑔2
𝑇

𝑗=1
  

where, 𝐿𝑗
  is the number of classification models that correctly classified the covariate vector 𝑧𝑗 ∈ 𝑍𝑇  
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We proceed with the estimation of the total sum of squares and the following statistics before 

arriving at the F-statistic formula: 

𝑆𝑆𝑇 = 𝑇 𝐿  𝐴𝐶𝐶𝑎𝑣𝑔(1 −  𝐴𝐶𝐶𝑎𝑣𝑔)  

𝑆𝑆𝐴𝐵 =  𝑆𝑆𝑇 − 𝑆𝑆𝐴 − 𝑆𝑆𝐵  

𝑀𝑒𝑎𝑛𝑆𝐴 =  
𝑆𝑆𝐴

𝑇 − 1
 

𝑀𝑒𝑎𝑛𝑆𝐴𝐵 =
𝑆𝑆𝐴𝐵

(𝑀 − 1)(𝑛 − 1)
 

𝐹 − 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 =
𝑀𝑒𝑎𝑛𝑆𝐴

𝑀𝑒𝑎𝑛𝑆𝐴𝐵
 

3.D.4. Pesaran-Timmermann directional accuracy test 

The Pesaran and Timmermann (1992) test that can be used to evaluate the OOS classification 

accuracy of machine learning models. The null hypothesis is that a model’s predictions and the target 

variable 𝑦𝑡 are independently distributed (see also Fischer & Krauss, 2018). We adopt the test 

description to the notation we introduced in the methodology section 4.1. The Pesaran and 

Timmermann test statistic (PT-statistic) can be calculated by first defining 𝐴𝑇̃ and 𝐵𝑇̃ as: 

𝐴𝑇̃ =
1

𝑇
∑ 𝑠𝑖𝑔𝑛(𝑦𝑡̂)𝑠𝑖𝑔𝑛(𝑦𝑡)

𝑇

𝑡=1
 

where, 𝑦𝑡̂ is the model prediction, 𝑇 is the size of the OOS dataset, and sign(.) takes the value of +1 

when the argument is positive and -1 otherwise. 

𝐵𝑇̃ = (
1

𝑇
∑ 𝑠𝑖𝑔𝑛(𝑦𝑡̂))

𝑇

𝑡=1
(

1

𝑇
∑ 𝑠𝑖𝑔𝑛(𝑦𝑡))

𝑇

𝑡=1
 

The PT-statistic is given by: 

𝑃𝑇 − 𝑠𝑡𝑎𝑠𝑡𝑖𝑠𝑡𝑖𝑐 ≡
𝐴𝑇̃ − 𝐵𝑇̃

√𝑉𝑃𝑇̂

 
𝑑
→ 𝑁(0,1)  

where, 

𝑉̂𝑃𝑇 =  
16(𝑇 − 1)

𝑇2
𝑝̂𝑦̂(1 − 𝑝̂𝑦̂)𝑝̂𝑦(1 − 𝑝̂𝑦)  

𝑝̂𝑦 =
1

2
(1 +

1

𝑇
∑ 𝑠𝑖𝑔𝑛(𝑦𝑡)

𝑇

𝑡=1
)  
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3.D.5. Anatolyev-Gerko excess profitability test 

The Anatolyev and Gerko (2005) test assesses a trading strategy that issues a buy signal if the 

prediction for the next period's return (here, excess return) is positive and a short signal otherwise. 

The average return of the aforementioned strategy is compared with a benchmark strategy that forms 

buy/sell signals randomly to test for the significance of return predictability and excess profit (Liu et 

al., 2019). We adopt the test description to the notation we introduced in the methodology section 

4.1. The one-period return of the trading strategy is given by: 

𝑅𝑡 = 𝑠𝑖𝑔𝑛(𝑦𝑡̂)𝑟𝑡  

where, 𝑦𝑡̂ is the model prediction, and sign(.) takes the value of +1 when the argument is positive and 

-1 otherwise. 

The idea behind the test statistic (AG-statistic) is the following: 

𝐸[sign(𝑦̂𝑡)]𝔼[𝑟𝑡] = 𝐸[sign(𝑦̂𝑡)𝐸[𝑟𝑡]]  

=
𝐻0

𝐸[sign(𝑦̂𝑡)𝐸[𝑟𝑡 ∣ 𝑋𝑡−1]]  

= 𝐸[𝐸[sign(𝑦̂𝑡)𝑟𝑡 ∣ 𝑋𝑡−1]]  

= 𝐸[sign (𝑦̂𝑡)𝑟𝑡] = 𝐸[𝑅𝑡]  

Given the above equations, and under the null hypothesis, the average return of the trading 

strategy formed based on the sign of the return predictions should statistically be equal to a 

benchmark strategy that issues buy/sell signals at random with probabilities corresponding to the 

proportion of “buys” and “sells” implied ex post by the trading strategy (Anatolyev & Gerko, 2005). 

The test statistic and the corresponding estimators of the above expectations are calculated using the 

sample data. The estimator of 𝐸[𝑅𝑡] and the estimator of 𝐸[sign(𝑦̂𝑡)]𝔼[𝑟𝑡] is given by: 

𝐴𝑇 =
1

𝑇
∑  

𝑇

𝑡=1

𝑅𝑡  

𝐵𝑇 = (
1

𝑇
∑  

𝑇

𝑡=1

sign(𝑦̂𝑡)) (
1

𝑇
∑  

𝑇

𝑡=1

𝑟𝑡)  

Under the null hypothesis, the variance of 𝐴𝑇 −  𝐵𝑇 is given by the following equation: 

Var[𝐴𝑇 − 𝐵𝑇] =
4(𝑇 − 1)

𝑇2
𝑝𝑦̂(1 − 𝑝𝑦̂) Var[𝑟𝑡]  

where, 𝑝𝑦̂ = Pr (sign(𝑦̂𝑡) = 1) 
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The estimator for Var [𝐴𝑇 − 𝐵𝑇] and 𝑝𝑦̂ are calculated by the sample data. Finally, we provide the 

estimation of Hausman-type AG-statistic and its distribution (i.e., asymptotically normal). 

𝑉̂𝐴𝐺 =
4

𝑇2
𝑝̂𝑦̂(1 − 𝑝̂𝑦̂) ∑  

𝑇

𝑡=1

(𝑟𝑡 − 𝑟̅)2  

𝑝̂𝑦̂ =
1

2
(1 +

1

𝑇
∑  

𝑇

𝑡=1

sign(𝑦̂𝑡))  

𝐴𝐺 − 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 ≡  
𝐴𝑇 − 𝐵𝑇

√𝑉̂𝐴𝐺

 
𝑑
→ 𝑁(0,1)  
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CONCLUSION 

 

This thesis explores the utility of state-of-the-art machine learning techniques in financial 

applications. The research does not serve the purpose of estimating sophisticated models only for 

estimation purposes. Instead, it provides an unbiased and robust evaluation of interpretable machine 

learning in predicting financial returns and constructing investment portfolios. Interpretability is of 

paramount importance in the financial domain. Portfolio managers and investors can benefit from 

sophisticated and high-performing models under the condition that the model generating the 

predictions is transparent. Critical applications such as financial returns forecasting, portfolio 

management, and asset allocation require understanding which variables drive the model’s 

predictions. For this reason, in this thesis, we refrain from using neural networks as “black-boxes” and 

adopt interpretable techniques that can shed light on the decision-making process of the models. 

Given the flexibility of machine learning methods, we also highlight how these methods can be useful 

not only in the financial forecasting setting but also in filling missing values in highly sparse datasets. 

Effectively imputing missing values is often treated as a minor task, receiving limited attention in the 

financial literature despite its importance. It is an undeniable fact that almost all datasets present some 

form of missingness. Our research provides evidence that machine learning can outperform other 

commonly used methods to fill in missing values and generate imputations that enhance the predictive 

accuracy of forecasting models. 

In the first chapter, we apply an interpretable machine learning framework, the LassoNet, to 

forecast U.S. industry portfolio returns over the 2010–2019 period based on a data-rich environment 

of 88 predictors. We compare the performance of LassoNet with several linear and non-linear models. 

Specifically, we include linear regression, Group Lasso, Elastic-Net, XGBoost, and neural networks in 

our benchmark model set. To quantify covariate importance, we leverage SAGE, the global importance 

interpretability method, on the covariate set selected by LassoNet. We develop a trading application 

to evaluate the economic impact of LassoNet’s forecasts. Our findings reveal that state-of-the-art 

interpretable deep learning specifications can capture non-linear patterns and interactions among our 

predictors, which leads to more accurate industry return forecasts than other linear and non-linear 

machine learning techniques. LassoNet achieves significantly smaller forecasting errors across most 

industries examined than other econometric and machine learning models. Several statistical tests 

authenticate these results. Therefore, we prove that integrating covariate selection into a deep 

learning model specification, as performed by LassoNet, is an effective combination for achieving 

superior forecasting accuracy. Second, applying the SAGE method shows that valuation ratios and 
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individual and cross-industry lagged industry returns generate the highest SAGE values. The 

aforementioned covariate categories are critical determinants when predicting industry portfolio 

returns. 

Our empirical evidence complements the relevant findings of studies using linear asset pricing for 

return predictability, mainly revealing profitability and liquidity ratios as essential factors of stock 

returns. We prove the economic significance of LassoNet forecasts in constructing more profitable 

spread portfolios than buy-and-hold strategies on market indices. The constructed portfolios based on 

LassoNet’s forecasts achieve the best performance metrics and positive and statistically significant 

multifactor alphas. Notably, the trading application’s results are robust when considering transaction 

costs. Overall, we expand the previous studies reporting the ability of Lasso methods to accurately 

predict industry portfolios' returns by successfully applying a Lasso-based deep learning method for 

non-linear environments and constructing a large-scale set of predictors for the same task. For all the 

above reasons, our findings can greatly interest academics and practitioners in portfolio and asset 

management industries. 

In the second chapter, we adopt a bidirectional recurrent imputation neural network for imputing 

hedge fund returns and their corresponding predictors. The model handles missing values by capturing 

time series and cross-sectional information without making assumptions about the hedge fund data's 

structure and distribution. Hence, we can effectively recover funds’ missing entries. To establish the 

imputation fidelity of BRITS, we construct a simulation study in which we artificially drop a random 

10% and 20% of the observed values and compare the proposed method with a battery of benchmarks 

used in the financial literature for data imputation. Additionally, we examine the importance of BRITS 

in generating fully recovered predictor datasets for forecasting hedge fund returns. We train well-

established machine learning models on the imputed returns and predictors datasets for our 

forecasting experiment. The employed machine learning models belong to three classes: gradient-

boosted trees, neural networks, and linear penalized regressions. We also construct a trading 

application using the forecasts to construct equally weighted decile portfolios and focus exclusively on 

the top decile to form the long positions. 

Our findings indicate that BRITS outperforms all benchmarks regarding imputation error and 

provides a recovered set of predictors, which can generate accurate forecasts when fed to linear and 

machine learning techniques. The simulation study validates that our framework achieves superior 

results in imputing hedge fund returns and predictors’ missing entries. The forecasting task’s results 

confirm that machine learning models estimated on the BRITS imputed datasets show higher 

forecasting accuracy than those imputed using the cross-sectional mean method, the standard method 
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employed in the financial literature to fill missing values. Therefore, BRITS can provide an information 

advantage, boosting the OOS performance of forecasting models. We use the SHAP interpretability 

method to uncover predictor importance and provide evidence that interactions of fund-specific 

predictors with macroeconomic variables dominate the standalone fund-specific predictors. 

Macroeconomic interactions with fund-specific characteristics are among the ten most important 

predictors most of the time and across all forecasting models. The trading application’s results show 

that the equally-weighted decile portfolios formed based on the forecasts of machine learning models 

trained on BRITS imputed data achieve higher annualized returns, Sharpe ratios, and alpha values. 

These findings outline that the information advantage provided by BRITS imputations leads to higher 

OOS forecasting accuracy and superior profitability. 

In the third chapter, we use a state-of-the-art and “white-box” deep learning method to predict the 

directional movements of industries’ excess returns. We employ the TabNet model, a deep learning 

architecture that can provide the benefits of neural network models in terms of higher predictive 

accuracy without sacrificing interpretability. A key component of TabNet is that it is interpretable by 

construction; therefore, no external algorithm is required to derive covariate importance. To evaluate 

the OOS predictive ability of TabNet, we employ a benchmark model set consisting of linear and 

machine learning models and use multiple performance metrics and statistical tests. To assess the 

economic significance of TabNet’s predictions, we construct an equally weighted trading strategy and 

compare it to a benchmark trading strategy based on the logistic regression forecasts and buy-and-

hold strategies on three market indices. 

Our results show that TabNet achieves superior predictive accuracy and generates profitable 

predictions. The forecasting application’s results validate that TabNet has the highest performance 

considering all employed performance metrics and statistical tests. The second best-performing model 

is the logistic regression model, and the worst-performing is the random forest. We derive covariate 

importance directly from TabNet’s architecture and conclude that the most significant categories are 

the valuation ratios, lagged returns, other-industry lagged returns, and financial soundness. The three 

top positions with the most significant covariates belong exclusively to the valuation ratios category. 

In contrast, the fourth and fifth most informative covariates belong to the other-industry lagged return 

and lagged return categories. The reported significance of the other-industry lagged return category 

confirms the presence of strong economic links and interdependencies among the industries and the 

diffusion of information across the economic sectors. The significance of the 12-month lagged return 

indicates the seasonality effects. It validates that past excess returns can hold important information 

when predicting the directional movements of future excess returns. Regarding the trading application 

results, the equal-weighted trading strategy constructed using TabNet’s predictions is the most 
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profitable. It attains positive and statistically significant alphas against the four-factor and five-factor 

models. TabNet’s profitability persists even in the presence of transaction costs. 

Our findings should persuade portfolio managers to incorporate state-of-the-art deep learning 

methods into their predictive toolbox. Interpretable neural network architectures such as those 

explored in this thesis exhibit superior predictive ability without sacrificing performance for 

interpretability and vice-versa. In addition, deep learning methods such as BRITS can effectively impute 

missing values in financial datasets and provide crucial information advantages to models trained on 

fully recovered datasets. As seminal factor models indicate, predicting the directional movements of 

industries’ returns via a deep learning framework can provide statistically significantly abnormal 

returns. Directional forecasts can be an alternative to the standard objective in financial research, 

which is to predict the level of returns. Therefore, financial practitioners are advised also to include 

classification methods when conducting their quantitative analyses. 

The adoption of neural network models is not a topic restricted to portfolio managers and financial 

practitioners, since central banks and policymakers can also benefit from such powerful predictive 

techniques. Machine learning techniques can assist central banks in improving their operations and 

decision-making processes in multiple ways. Some key applications include economic forecasting, 

portfolio management, fraud detection, and risk assessment. First, machine learning models can be 

used in the time-series forecasting domain to process large volumes of data and produce highly 

accurate forecasts of economic variables (e.g., GDP, inflation, employment figures) and financial 

market returns (e.g., stock market and exchange rates). Second, these models can help central banks 

better predict economic conditions and adjust their monetary policies accordingly. Central banks can 

also use machine learning models to manage their assets and reserves by leveraging these cutting-

edge techniques in investment decisions and optimizing asset allocation strategies. 

Another area where machine learning can make a difference is in monitoring financial institutions 

and payment systems. Fraud detection and anomaly detection are becoming increasingly critical for 

the financial sector. Machine learning models can process transaction data and identify potentially 

fraudulent or unusual activity, contributing to more effective oversight. Research in this area could 

explore which specific algorithms and models are most effective at anomaly detection, particularly in 

the context of central banks’ regulatory responsibilities. Furthermore, machine learning models can 

also be applied to risk assessment, analyzing market data, balance sheets, and macroeconomic 

indicators to identify vulnerabilities and systemic risks. 

Future research can address the limitations within the scope of the thesis. First, the focus of this 

study was primarily on monthly data from U.S. industry portfolios and hedge funds, which may limit 
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the generalizability of the findings to other markets or types of data. Expanding this research to daily 

or intra-day financial data could significantly extend the models' applications, especially in high-

frequency trading environments. Second, despite the significant predictive power of LassoNet and the 

insights provided by the SAGE method, there are limitations inherent in using Shapley values (as 

applied via SAGE) to interpret variable importance. While Shapley values offer a flexible, data-driven 

measure of covariate importance, their lack of direct linkage to traditional financial theories can pose 

challenges. For instance, traditional asset pricing models, like the Fama-French factors, offer an 

intuitive, economically grounded explanation of returns based on theoretically established factors such 

as market risk, size, and value. Shapley values, on the other hand, operate purely from a data-driven 

perspective, which can limit their interpretability in financial contexts where clear economic rationale 

is often sought. Future research could explore bridging this gap by combining Shapley-based 

interpretability with more traditional, theory-driven approaches to asset pricing. 

Another limitation of this thesis is the lack of integration of unstructured textual data into the 

models, such as financial news, analyst reports, and social media. Textual data has become a crucial 

source of insights into market sentiment and investor behavior, which can provide early signals of 

market movements that may not be reflected in traditional financial metrics. Future research could 

incorporate natural language processing (NLP) techniques, such as sentiment analysis and topic 

modeling, to analyze and quantify market sentiment from these sources. More accurate forecasting 

models could be developed by combining traditional financial data with real-time sentiment analysis 

from news and social media. This approach could improve models’ ability to predict market 

movements and detect early signals of major financial events, offering a more comprehensive 

understanding of market dynamics. In conclusion, while this thesis provides meaningful contributions 

to the field of financial forecasting through the use of interpretable machine learning models, it also 

highlights the potential for future research to explore more complex models, additional datasets, and 

the integration of new data types. The above directions for future research could enhance the 

accuracy, applicability, and interpretability of machine learning in financial markets, further advancing 

both academic understanding and practical implementation in the field. 
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