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Abstract

This thesis is concerned with three-dimensional vortex dynamics, in particular

the modelling of vortex structures in an inviscid context. We are motivated by the

open problem of regularity of the inviscid equations, i.e. whether or not these

equations possess solutions. This problem is manifest in small scales, where

vortex filaments are stretched and intensify as they are drawn into increasingly

thin tendrils. This creates great difficulty in the investigation of such flows. Our

only means of experimentation is to perform numerical simulations, which require

exceptionally high resolution to capture the small scale vortex structures.

A new numerical method to solve the inviscid Euler equations for three-

dimensional, incompressible fluids is presented, with special emphasis on spatial

adaptivity to resolve as broad a range of scales as possible in a completely self-

similar fashion. We present a hybrid vortex method whereby we discretise the

vorticity in Lagrangian filaments and perform and inversion to compute veloc-

ity on an arbitrary unstructured finite-volume grid. This allows for a two-fold

adaptivity strategy. First, although naturally spatially adaptive by definition,

the vorticity filaments undergo ‘renoding’. We redistribute nodes along the fil-

ament to concentrate their density in regions of high curvature. Secondly the

Eulerian mesh is adapted to follow high strain by increasing resolution based on

local filament dimensions. These features allow vortex stretching and folding to

be resolved in a completely automatic and self-similar way. The method is vali-

dated via well known vortex rings and newly discovered helical vortex equilibria
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are also used to test the method.

We begin by presenting this new class of three-dimensional vortex equilibria

which possess helical symmetry. Such vortices are observed in propeller and wind

turbine wakes, and their equilibria shapes have until now been unknown. These

vortices are described by contours bounding regions of uniform axial vorticity.

Material conservation of axial vorticity enables equilibria to be calculated simply

by a restriction on the helical stream function. The states are parameterised

by their mean radius and centroid position. In the case of a single vortex, the

parameter space cannot be fully filled by our numerical approach. We conjecture

that multiply connected contours will characterise equilibria where the algorithm

fails. We also consider multiple vortices, evenly azimuthally spaced about the

origin. In such cases instabilities often lead to a single helical vortex.
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Commonly used symbols

Note: bold characters refer to vectors.

Generic symbols

x = (x, y, z) Cartesian position vector

u velocity

ω vorticity

Re Reynolds number

Γ circulation

p pressure

ρ density

ψ streamfunction

∇ gradient operator

∆ Laplacian

ν kinematic viscosity

T kinetic energy

H helicity

Ω rotation rate

J(a, b) Jacobian

t time

T time steps
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Helical Vortex Parameters

ǫ helical pitch

R̄ mean core radius

d centroid position

h helical vector

E excess energy

J angular impulse

N number of vortices

VortexFoam Parameters

Note:

subscript p denotes Lagrangian filament quantities.

subscript i denotes Eulerian mesh quantities

ψ vector potential

xp filament nodes

cp vortex element scaling

κ curvature

µ renode parameter

d filament core radius/inter-filament distance

N total vortex nodes

Ncells total mesh cells

γ′ mesh refinement parameter

α vortex ring/tube radius

Nfil total vortex filaments

hi mesh cell width
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Abbreviations

NS Navier-Stokes equations

DNS Direct Numerical Simulation

LES Large Eddy Simulation

ODE Ordinary Differential Equation

PDE Partial Differential Equation

CASL Contour-advective semi-Lagrangian

FEM Finite Element Method

FVM Finite Volume Method

FFT Fast Fourier Transform

CFD Computational Fluid Dynamics

ADI Alternating Direction Implicit

2D Two-dimensional

3D Three-dimensional
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Chapter 1

Introduction

Arguably one of the most widely utilised mathematical disciplines, fluid me-

chanics has applications which are far reaching in modern life. From weather and

climate forecasting, wind turbine modelling to the design of planes, ships and

cars, we have all benefitted from accurate mathematical models of fluid flows.

However, such is its complexity that no proof exists that the equations at the

heart of fluid mechanics even possess smooth solutions. This is considered such

a fundamental problem in contemporary mathematics that it is one of the seven

million dollar ‘millennium prizes’ offered by the Clay Institute (Fefferman, 2000).

1.1 Governing equations

The system of equations which describe the motion of a general viscous, New-

tonian fluid are the Navier-Stokes (NS) equations named for George Gabriel

Stokes and Claude-Louis Navier who independently derived them.1 Newton’s

1Most of the credit should properly lie with Stokes, Navier having stumbled upon the cor-

rect form of the equations without a sound understanding of the processes he was describing

(O’Connor and Robertson, 2011a).
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second law provides the momentum equation, describing the force balance in a

fluid, derived from a continuum hypothesis. In this work we will consider incom-

pressible flows (sound waves are not permitted) and the Navier-Stokes can be

written as

Du

Dt
= −∇p

ρ
+ ν∇2u (1.1)

where u is fluid velocity, p pressure, ρ density, ν the kinematic viscosity and

D
Dt

= ∂
∂t

+ u · ∇ the material derivative. The left hand side of the equation

represents the inertial acceleration of the fluid, the first term on the right hand

side the acceleration induced by pressure gradients and the final term the dis-

sipation brought about by viscous shear stresses. The right hand side is often

supplemented with body forces such as gravity or rotational forces.

In addition to conservation of momentum, a fluid must obey conservation of

mass, for incompressible flows this reduces to

∇ · u = 0 (1.2)

i.e. the velocity field is divergence free, or solenoidal. Together with appropriate

boundary and initial conditions, equations (1.1) and (1.2) describe the general

motion of a viscous, incompressible, Newtonian fluid. (Note, pressure can be

solved for by simply taking the divergence of (1.1).)

This equation set is somewhat misleading in its simplicity. It is quite clear to

even a casual observer that the behaviour of fluids like air and water can be highly

complex and irregular. The chaotic motions stem from the strong nonlinearity

in the left hand size of (1.1) namely the convective acceleration term, u · ∇u.
It is this quadratic nonlinearity in u that is responsible for the turbulent and

unpredictable nature of certain fluid flows.

While the complexity is driven by the nonlinear term, there is still a part to be
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played by viscosity. The form viscosity takes in an incompressible flow is diffusive

and serves to regularise and damp the small scale turbulent motions. Therefore

any meaningful comment about the nature of the flow regime must involve some

relationship between the convective and viscous terms. First introduced by Stokes

but named for Osbourne Reynolds after his famous experiments concerning the

onset of turbulence in pipe flows (see figure 1.1 and (Reynolds, 1883)) , the

Reynolds number, Re, is a dimensionless parameter defined as the ratio of the

characteristic magnitudes of the inertial and viscous forces in a given flow, i.e.

Re =
UL

ν

Figure 1.1: Onset of turbulence in pipe flow from (Reynolds, 1883).

where U is a characteristic speed and L is a characteristic length scale of the

flow. The most challenging regimes for the numerical modeller and mathemati-

cal analyst are those for which the Reynolds number is high. The smoothness and

existence problem for the NS equation can therefore be supposed to be most rele-

vant for high Re. Indeed it may be argued that the more pertinent mathematical

question concerns the regularity of the equations neglecting viscosity, correspond-

ing to infinite Reynolds number (the inviscid equations actually predate (1.1) and

were first presented by Leonard Euler after whom they are named). There is a

commonly held, yet unproven belief that even a small amount of viscosity will
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serve to maintain the regularity of the equations. Conversely, if it can be shown

that even the inviscid form of the equations remain regular, the question will

likely likewise be closed for the NS equations.

Thus far we have only made general statements concerning the form of the

equations, yet clearly it is important to understand the mechanisms by which the

nonlinear complexity is manifest.

A key concept in understanding unsteady flows is vorticity, defined as

ω = ∇× u (1.3)

which can be thought of as a rotation rate for a fluid particle (precisely twice the

rotation rate). We obtain the prognostic equation for vorticity by simply taking

the curl of (1.1). Thus, for an inviscid fluid of constant density, we have

Dω

Dt
= ω · ∇u (1.4)

and

∇ · ω = 0 (1.5)

i.e. vorticity is also solenoidal. Now taking the curl of (1.3) and using (1.2) gives

the Poisson equation for velocity

∆u = −∇× ω.

It is common for this Poisson equation to be expressed using a vector potential

ψ, i.e.

∆ψ = −ω. (1.6)

u = ∇×ψ

which enforces incompressibility and reduces derivatives on ω. For a given vor-

ticity distribution, this equation can be inverted to compute the velocity field, u,
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given boundary conditions. For an unbounded flow, u may be expressed using

the Biot-Savart integral

u = − 1

4π

∫

V

(x− x′)× ω(x′)dx′

|x− x′|3
. (1.7)

The dynamics of vorticity is a rich area of research (Saffman, 1995), (Majda

and Bertozzi, 2001), (Pullin and Saffman, 1998). Vorticity dynamics is relevant

to a wide variety of phenomena, from the wing-tip vortices in aerodynamics, to

the large swirling motions of hurricanes and cyclones in the atmosphere. Indeed

vortices are nearly ubiquitous in fluid flows: the complex turbulent flows which are

the source of such intense study are known to possess coherent vortex structures

in even their smallest (arguably the most important) scales (see section 1.4). It

is this dominance of vorticity in complex flows which motivates scientists and

mathematicians to seek a thorough understanding of vortex structures and their

interactions.

Figure 1.2: Vortex structures in nature. Left is a ‘steam ring’ vortex ring (a few

metres across) produced by Mount Etna during volcanic activity in 2000 (Alean,

2011). Right is a satellite image of Hurricane Katia (of the order of hundreds of

kilometres across), the remnant of which crossed the Atlantic and caused high

winds and disruption across the west of the UK in September 2011 (AFP/Getty

Images, 2011).
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1.2 Circulation and Helmholtz’s vortex laws

Despite the fact that the removal of viscosity typically leads to increased

complexity in fluid flows, it leads to some elegant vortex laws first described

by (Helmholtz, 1858). These laws are also justified in the context of weak vis-

cosity (high Re), where the diffusion of vorticity is small (for a more thorough

presentation see (Saffman, 1995)).

First let us define the following important scalar, circulation Γ,

Γ =

∮

C

u · ds =
∫∫

A

ω · n dA (1.8)

where C is a simple closed curve traversed anti-clockwise, ds an element of the

curve, A the open surface bounded by C with n its unit normal.

Also let us define the concept of vortex lines, that is space curves which are

everywhere tangential to the vorticity vector, ω. A collection or bundle of vortex

lines will define vortex tubes, e.g. a smoke ring (vortex ring), a tornado, etc. Let

us consider a volume, V , enclosing some segment of a vortex tube and integrate

the divergence of vorticity over it. Clearly this integral is zero due to (1.5),

however due to Gauss’ Theorem so is the integral of the flux of vorticity across

the closed surface, S, of V , i.e.

∫

V

∇ · ωdV =

∫

S

ω · ndS = 0

The surface integral reduces to the sum of the circulations at either end of the

segment of vortex tube, with opposite sign due to the direction of n:
∫

S

ω · ndS =

∫

A1

ω · ndS +

∫

A2

ω · ndS = 0

where A1 and A2 are the areas at either ends of the vortex tube (see figure 1.3).

This demonstrates that the vortex tube must have constant strength, or cir-

culation along its length: Γ =constant. This is the first of Helmholtz’s vortex

12



n

n

ω

A
1

A
2

Figure 1.3: A volume V , enclosing a segment of vortex tube demonstrating

Helmholtz’s first vortex law.

laws.

The final law concerns the dynamics of vortex lines and states that vortex

lines are also material lines. Considering the evolution of Γ,
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dΓ

dt
=

d

dt

(
∮

C

u · ds
)

=

∮

C

Du

Dt
· ds+

∮

C

u · Dds

Dt

then substituting from the Euler equations (equation (1.1) minus the final term)

the first term becomes

∮

C

Du

Dt
· ds = 1

ρ

∮

C

∇p · ds = 0

and the second term

∮

C

u · Dds

Dt
=

∮

C

u · ds · ∇u =

∮

C

∇(u · u) · ds = 0

since
∮

C
∇f ·ds = 0 for any f . Hence, for any homogenous (ρ =constant), inviscid

fluid,

DΓ

Dt
= 0

for any material, closed contour, C. This is also known as Kelvin’s circulation

theorem. As a consequence one can now see that in the absence of viscosity the

generation of rotational flow from irrotational flow is impossible. While rotational

flows can intensify via instability and vortex stretching, the rotationality must

be present for all time, and is not able to vanish.

1.3 Energy and Helicity

The invariance of Γ actually constitutes an infinite number of invariants, since

the contour C is arbitrary. Alas, even with an infinite number of constraints,

Euler flows have a great deal of freedom to evolve. Along with circulation, Γ,

the Euler equations (which we will be primarily concerning ourselves with in the

majority of the thesis) have another two invariants which prove extremely useful

when discussing inviscid flows. The first of these is the kinetic energy, defined as

half the bulk square of velocity magnitude, i.e.
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T =
1

2

∫

V

|u|2dV. (1.9)

Conservation can be shown via the momentum equation. Removing viscous dis-

sipation from equation 1.1 and taking the scalar product with u yields

u · Du
Dt

= −u · ∇p

ρ

i.e.
1

2

D

Dt
u · u = −1

ρ
∇ · (pu)

via incompressibility (equation (1.2)). Now integrating over the entire volume of

the fluid and employing Gauss’ Theorem

dT

dt
= −1

ρ

∫

V

∇ · (pu)dV

= −1

ρ

∫

δA

pu · n̂dS

= 0

provided u · n̂ = 0 on the boundary, δA, of the volume, V , where n̂ is the unit

normal to δA.

The second conserved quantity is helicity, defined as

H =
1

2

∫

V

u ·ωdV. (1.10)

we can determine its conservation by noting

D

Dt
u ·ω = u · Dω

Dt
+ ω · Du

Dt

Thus taking u· the vorticity equation and ω· the momentum equation and using

15



equations 1.2 and 1.5 we can write

D

Dt
u · ω = u · (ω · ∇u)− ω · ∇p

ρ

=
1

2
ω · ∇|u|2 − ω · ∇p

ρ

= ω · ∇φ = ∇ · (ωφ)

where φ = 1
2
|u|2 − p

ρ
. Thus integrating over the volume V and employing Gauss’

Theorem as before

dH

dt
=

∫

δA

φω · n̂dS = 0

provided ω · n̂ = 0 on δA.

Thus given appropriate boundary conditions T and H are conserved for invis-

cid flows. Notice these boundary conditions are not restrictive since an inviscid

boundary requires the free slip condition, namely

u · n̂ = 0 & ω = 0

on δA.

1.4 Turbulence and Vortex stretching

In the discussion of Reynolds number above we alighted on the complexity in

turbulent flows. The problem of turbulence is one which has plagued physicist,

mathematician and engineer alike (Frisch, 1995), (Davidson, 2004). One of the

main reasons for this level of interest is due to the ubiquitous nature of turbulent

flows. From flow over planes, cars and even buildings, to large scale atmospheric

motions, turbulence is perhaps the most important barrier to our understanding

of these flows (Davidson, 2004), (Moffatt, 1981), (Batchelor, 1967). The drag
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associated with turbulent motions can be associated with a substantial proportion

of human energy consumption as we force ourselves and our commodities through

the fluids of the air and ocean to transport them. The accuracy of weather and

climate forecasting is influenced by our understanding of turbulence, and thus so

is our ability to predict adverse or dangerous weather events.

Having satisfied ourselves with the importance of turbulence, we turn to gath-

ering some understanding of certain properties of turbulent motions. The notion

of a turbulent fluid is a difficult one to quantify. Leading scientists in the subject

today still debate appropriate definitions of turbulence.2 One inescapable truth

is that turbulence is a chaotic process, both in the intuitive physical sense and in

the rigorous mathematical one. Observing all of the complexity in an energetic

mixing fluid, there is a clear sense of unpredictability. Research over many years

has shown this is exactly the case, as fluid motions are highly sensitive to their

initial conditions and therefore are typically not reproducible. It is for this rea-

son that much of turbulence theory is interested in the statistical properties of

turbulence, i.e. what type of phenomena the flow is likely to exhibit.

Another commonly-held view in the classification of turbulence is the range

of scales of motion that are encompassed. These scales are best characterised

by the sizes of the vortices or eddies in the flow. Richardson (Richardson, 1926)

and Kolmogorov (Kolmogorov, 1941) popularised the idea of a turbulent cascade,

whereby energy in the flow is transferred from large to small scales via a succession

of inertial instabilities. The effect of viscosity is to act where shear stress is

highest, that being where the eddies are smallest. This is why the cascade is an

inertial process, driven entirely by the action of the eddies on themselves. The

scale at which viscosity eventually steps in to dissipate the energy is commonly

2There has been a long standing tradition in turbulence of studiously avoiding any formal

definition of what we mean by a ‘turbulent eddy’, or for that matter turbulence, see page 52 of

(Davidson, 2004)
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known as the Kolmogorov microscale, and beyond this scale the motions are

effectively suppressed. The Kolmogorov microscale scales with an inverse power

of Reynolds number, and hence the higher the Reynolds number the smaller the

scale at which viscosity damps the motion. This implies a fundamental difficulty

in modelling turbulence; at physically appropriate Reynolds numbers the range

of scales present in the flow may be (and often is) prohibitively large. An example

given in (Davidson, 2004) shows that for a wind tunnel experiment at Re = 1000

with characteristic length scale L = 1cm the Kolmogorov microscale is 0.06mm.

i.e. motions from 1cm down to hundredths of a mm require representing, this is

3-4 orders of magnitude!

The mechanisms at work in this cascade are the subject of intense study.

However the phenomenology of Richardson suggests a dominating role is played

by the process of vortex stretching. Vortex tubes or sheets are intensified by

the background strain, and as they are stretched they also must thin due to

incompressibility (and the lack of action by viscosity). This process of stretching,

combined with the folding of vortex lines, serves to transfer energy from the

mean flow into thin coherent vortex structures (Moffat and Kida, 1994), (Vincent,

1994). Ignoring viscosity means circulation is conserved and vortex lines are

material lines; they are frozen-in to the fluid.

Empirical observations of the inertial range (the range of scales from the

characteristic length scale to the Kolmogorov microscale) indicate that turbulent

flows are in fact highly intermittent at high Re, that is vorticity is concentrated

in exactly the thin, coherent filaments and sheets that one might expect from

the vortex stretching process (see section 8.9 of (Frisch, 1995)). These vortex

structures in general only occupy a small fraction of the volume in a given region

(Chorin, 1994). Given this, it is not surprising, though somewhat frustrating

that the vorticity field is a particularly challenging one to measure experimen-

tally. This is one motivation for performing numerical simulations (see section
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Figure 1.4: Isolevels of the magnitude of vorticity from a high-resolution pseu-

dospectral simulation of homogeneous isotropic forced turbulence. Notice the

prevalence of coherent vortex structures (Schumacher et al., 2008).

1.5). However the modelling of turbulence is itself inherently difficult due to the

large range of scales which need to be resolved. Without viscosity, one expects

this range to extend indefinitely to small scales. This cascade is central to the

regularity of the Euler equations, but is there any hope in modelling it?

For even moderate Reynolds numbers, modelling the range of scales required

for an accurate representation of the entire flow in a direct numerical simulation

(DNS) is often acutely computationally expensive. Given that most flows of

significance (aerodynamics, atmosphere/ocean flows) have Reynolds numbers on

the order of tens or hundreds of thousands it is common practise to parameterise

the unresolved scales in the flow. This requires turbulence models to estimate

the average influence of the sub-grid processes on the mean flow. This is in part

physically justified since the energy cascade is largely direct, in that the large
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scales feed into the small, without the small scales having much influence on the

large (or so it is believed by many). This type of method is known as a large eddy

simulation (LES) and is useful provided the primary focus is on the larger scale

motions, for example in producing a forecast of atmospheric conditions (LES was

first proposed in 1963 by Smagorisky in the context of an atmospheric general

circulation model (Smagorinsky, 1963)).

The more ‘academic’ questions surrounding inertial range processes require

efficient numerical algorithms to provide insight. This is particularly important

for simulating completely inviscid flow where there is no viscous diffusion; the

Reynolds number is infinite, and there is no microscale lower bound in resolution.

In addition the only method of experimentation at our disposal for an inviscid

fluid is numerical. As was mentioned previously, the open question of regularity

of the fluid dynamical equations is perhaps even more pointed in the case of zero

viscosity.

While weak solutions to the Navier-Stokes equations exist (Fefferman, 2000),

weak solutions to the Euler equations have been found to be non-unique (Shnirelman,

1996) . This difficulty is indicative of the problem facing the community in con-

firming the nature of the solutions to the ideal equations. We have, however,

been furnished with various conditional regularity results, perhaps the most im-

portant of which is the so called BKM (Beale, Kato, Majda (Beale et al., 1984))

theorem. In simple terms it states that the regularity is controlled by the infinity

(maximum) norm of vorticity; solutions will exist provided, that, for any T > 0

∫ T

0

‖ω(t)‖∞dt <∞.

This result means that a numerical modeller need only observe the growth in

vorticity maximum to establish finite-time blow-up evidence. This theorem, com-

bined with the vortex picture of turbulence, provides certain weight to the impor-

tance of vortex structures and their stability, the process of vortex stretching and
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the observed intermittency in turbulent flows. The finite-time blow-up problem,

the numerical evidence for it and further conditional regularity results based on

the geometry of the vorticity field are discussed further in chapter 4.

1.5 Numerical methods

The numerical simulation of fluid flows plays an extremely important role in

the study and analysis of their behaviour. While physical experiments continue to

provide important results, the computer age has allowed for numerical solutions

to be carried out without the expense and time involved in constructing elabo-

rate laboratories. In addition numerical calculations allow for a greater variety

of variables and diagnostics to be monitored and stored during an experiment.

There are also instances where physical experiments are impractical, for exam-

ple large scale atmosphere/ocean scenarios as applicable to weather and climate

forecasting. Unfortunately the computation of solutions to (1.1) have their own

unique set of challenges.

The development of such numerical calculations in the context of fluid flows

has its roots in the finite-difference calculations performed by (Richardson, 1922).

These calculations were performed by hand in order to demonstrate the possibil-

ity of modelling and predicting the state of the atmosphere and thereby provide

a forecast of weather conditions. In 1922 this idea was far ahead of its time,

indeed Richardson realised it would require 60,000 people to perform calcula-

tions sufficiently quickly to enable a forecast to be made in time (O’Connor and

Robertson, 2011b). However his pioneering work initiated the branch of modern

applied mathematics now know as numerical analysis, and since the advent of

computers, the field has become one of the most important in all of mathematics,

with the numerical solution of PDEs utilised in an enormous number of industrial

and academic applications.
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There now exist a plethora of numerical techniques for the solution of fluid

flow problems, each with their own set of advantages and disadvantages. For

completeness a brief summary of a selection of methods is given to provide some

context for the description of the numerical code to follow in chapter 3.

1.5.1 Grid based methods

The prototype example for a numerical method is the one used by Richardson

known as finite difference, whereby the equation of interest is discretised on some

grid of points (methods which make use of some fixed grid of points are known

as Eulerian methods). Gradients are then approximated by a difference equation

across adjacent grid points. Over the entire domain a linear system of equations

is obtained for the spatial discretisation, which is then inverted, generally by

some iterative linear solver. This results in a system of ODEs in time which can

then be integrated with an ODE solver (e.g. Runge-Kutta, Adams-Bashforth),

often referred to as time-stepping. The numerical scheme is then constrained by

stability criteria determined by the stencil shape, the size of the time step and

the grid length. A necessary but not sufficient stability criterion was developed

by Courant, Friedrich and Lewy, and is known as the CFL condition, where the

Courant number, a ratio of time step to grid length dictates stability.

There are time integration schemes available which avoid the CFL constraint.

An example, which has garnered popularity in the geophysical setting is the

semi-Lagrangian scheme, whereby variables are updated on grid points given the

Lagrangian position of the fluid element at the previous time-step. This requires,

in general, some interpolation which has been shown to be dissipative (see the

review (Staniforth, 1991) and (Dritschel et al., 1999)).

The finite difference methods remain popular largely due to their ease of

implementation; a more sophisticated grid based method (in some respects a
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generalisation of finite difference) is the finite element method (FEM). FEM is

popular in engineering applications where mesh generality and adaptation are

advantageous (or indeed essential). In this case the discrete set of equations is

obtained from the weak form of the equations, having multiplied first by some

test function and subsequently integrated by parts to reduce the order of the

derivatives. The space of test functions is extremely general. Most often piece-

wise polynomials make up the finite elements over the discretised space. The

generality of this approach allows for a range of spatial adaptations to be em-

ployed, commonly classified as one of three types. Refinement which adjusts the

mesh topology without changing the number of computational elements is known

as r-refinement ; increasing resolution by means of an increase (or decrease) of

nodes in the mesh is known as h-refinement ; and finally an adjustment of the

order of the element polynomials is denoted p-refinement. The elaborate nature

of this method means it is more favoured by modellers involved with complex

geometries and/or moving boundaries rather than those studying large problems

where many scales require to be discretised.

Fluid mechanics, particularly in an industrial setting, favours another method

which shares certain similarities with FEM, the finite volume method (FVM).

The discretisation is again very general, allowing for h and r-refinement; mesh

nodes are centred on small computational control volumes, over which the PDE

is integrated, allowing divergence terms to be converted to surface integrals via

Gauss’ Theorem. This makes for a conservative scheme as fluxes across the

control volumes are explicitly accounted for. Many commercial computational

fluid mechanics (CFD) codes favour this method due to its mesh generality and

relatively low memory cost (see figure 1.5 for an example of a complex FVM mesh

used in an industrial context). FVM will be discussed in more detail in appendix

A (for further reading see (Versteeg and Malalasekera, 2007)).

Another Eulerian method which can be compared to the FEM most closely
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Figure 1.5: Adapted unstructured polyhedral mesh with pressure distribution on

an F1 car using ANSYS CFD FVM Software (Analysis, 2011).

is the spectral method. In this case the discretisation utilises a global basis of

Fourier modes, i.e. a discrete and finite series in wavenumber space, but with

each Fourier component continuous over the whole domain (as opposed to a small

subset). The ‘Fast Fourier Transform’ (FFT) algorithm allows for the transfer

between physical and spectral spaces, and derivatives are now easily performed as

wavenumber multiplication (see e.g. (Orszag, 1971)). A variation of the spectral

method is the pseudospectal method where a gridded discretisation is transferred

between physical space, where nonlinear products are carried out, and spectral

space, where derivatives and time-stepping take place. These methods are ex-

tremely high order (for sufficiently smooth fields) and give superior convergence

compared to finite-difference based methods (see (Hussaini, 1987) for a review of

the use of these methods in fluid mechanics). However, due to the global support

of the basis functions it is restricted to uniform resolution (it does not allow for

any local refinement) and is limited to periodic boundary conditions in general.

Certain extensions have been developed for e.g. complex geometries (Orszag,

1980) and a combination of FEM and Fourier bases has resulted in the spectral
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element method (Henderson, 1995).

It is also possible to develop finite-difference based methods with some h-

refinement. One such example is the ADI (alternating direction implicit) method

(Douglas Jr et al., 1963), whereby one iterates across clustered patches of the

domain in each direction, at each refinement level, applying boundary conditions

from the level above. This method is simple to implement as each direction will

yield a tridiagonal system which is quick to solve via the Thomas algorithm. A

much more common approach is to implement a multigrid method (Briggs et al.,

2000), where nested patches of refinement are cycled over, where in each pass

iterations are performed (relaxation) with corrections obtained from residuals on

the refined grid. This is known as V-cycling; one ascends from fine to coarse,

computing residuals (of residuals...) and then descends correcting and relaxing

at each level. Multigrid has gained much popularity in numerical analysis in a

purely algebraic setting, i.e. algebraic multigrid (AMG), as a method of solving

any linear system.

1.5.2 Vortex methods

Thus far all of the methods discussed have been purely Eulerian in that

they involve computing the solution on a grid which is fixed in space. While

r-refinement allows for a certain degree of mesh movement, and FEM can handle

complex and moving boundaries, the frame of reference for the solution of the

PDE is still fixed. All of these methods will suffer, to some degree or another,

from CFL type stability constraints. Lagrangian methods on the other hand in-

tegrate the equations via computational elements which are not fixed to a grid

but are free in space to move, with the flow, independently of each other.

Perhaps the most widely used grid-free methods are the vortex methods.

These methods generally employ a finite number of computational elements to

25



represent the vorticity field. This can potentially give a computational advan-

tage as vortex elements are only required on the subset of the domain where

vorticity is non-zero. The elements are then advected with the flow field, com-

puted by the inversion of an elliptic problem. In standard vortex methods this

inversion is given by the Biot-Savart integral (1.7). The advection must also be

supplemented in 3D with an update of the circulations of the elements, given by

the local strain field. Due to this Lagrangian approach, vortex methods can be

thought of as being self adaptive; vortex elements will naturally tend to cluster

where computational effort is required.

This is a broad overview of the general vortex method, but as with most nu-

merical methods there is much diversity as research has innovated and applied

them to various problems (see (Cottet and Koumoutsakos, 2000)). One main

area of innovation has been to increase the efficiency of the algorithms which

were traditionally slow due to the solution of essentially an N -body problem

for the vortex elements (computations scale as O(N2) for N vortex elements).

Domain decomposition and multipole expansions have seen this expense greatly

reduced (see appendix B of (Cottet and Koumoutsakos, 2000) for example). An-

other strategy in reducing this computational burden is to implement a so-called

hybrid method, whereby an underlying Eulerian grid is employed to invert, for

example (1.6), and interpolation transfers variables between the grid and the

elements. This type of method is often referred to as particle or vortex-in-cell

(Christiansen, 1973). In this setting it is possible to grasp some of the further

advantages of the vortex method; where a standard grid-based method will have

a representation which terminates at the resolution of the grid, vortex-in-cell

methods have a representation which can continue far beneath that scale. Indeed

some workers go further still to correct the sub-grid vorticity due to its local

interactions (Anderson, 1986).

There is also a wide variety of approaches to the treatment of the vortex ele-
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ments themselves. Most often the elements are simply point vortices with some

regularising (or interpolating) kernel. In two dimensions this is somewhat sim-

plified due to the material conservation of the scalar vorticity. An alternative

strategy which has seen great success in 2D and ‘quasi-geostrophic’ regimes has

been the use of contours as vorticity elements, to create a piecewise-constant vor-

ticity representation (see figure 1.6) (Dritschel, 1988b) (Dritschel and Ambaum,

1997) (Fontane and Dritschel, 2009).

Figure 1.6: Time series of potential vorticity (PV) from a two-dimensional, un-

forced, inviscid, quasi-geostrophic turbulence simulation using the ‘hyperCASL’

algorithm which employs a number of vortex method features, including vorticity

(here PV) contours, point vortices and an Eulerian grid for various elements of

the computation (Fontane and Dritschel, 2009).
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The situation is complicated somewhat in three dimensions as vorticity is no

longer a conserved scalar. Then Helmholtz/Kelvin circulation theorem states

that circulation is conserved, implying that vortex lines are materially advected

for inviscid flow. In computations this requires the circulations of each vortex

element be updated due to vortex stretching. An extension of the particle method

is to create vortex filaments, with each vortex element representing a segment

of some piecewise linear space curve representing the centre of a vortex filament

having a core width given by some regularising or interpolation kernel (Cottet and

Koumoutsakos, 2000). This means vortex stretching can be implicitly accounted

for simply by the separation of the adjacent nodes on the space curve ((Leonard,

1985) is a good review of a variety of these methods). For particle methods where

the elements are subjected to high strain, it is necessary to regrid the particles

onto a uniform array to maintain the overlap requirement for convergence of the

method (Cottet et al., 1999) (Beale and Majda, 1982). A significant advantage

of the filament method is that the connectivity of the elements allows for easy

spatial adaptation of the Lagrangian representation and hence removes the need

for regridding which inherently introduces some dissipation into the method.

1.5.3 Validation of numerics

Any new numerical method must be properly validated to convince the user

of its accuracy and robustness. While convergence results provide a rigorous

mathematical foundation for a particular scheme, the process of writing the code

is a minefield of bugs and blind alleys. For these reasons it is extremely important

that a thorough validation is performed. Simulations of well documented flows

are the best way of doing this. However, few comprehensive mathematical results

are available to benchmark a new method, particularly one concerned with 3D

vortex structures.
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One class of results which performs this task very well consists of vortex steady

states or equilibria. In two dimensions these are manifold, e.g. Kirchhoff’s ellipses

(Kirchhoff, 1876) and the more general results of (Dritschel, 1985). However, in

three-dimensions the results are far more sparse. The seminal work of (Norbury,

1973) presents a set of axisymmetric vortex rings with a vorticity profile propor-

tional to radius r, parameterised by a mean core radius (cross-sectional area).

These results combined with the extensive literature on the steady translation

and stability of vortex rings (Widnall et al., 1974),(Saffman, 1978),(Shariff and

Leonard, 1992) make them the natural choice for validating a new 3D vortex

method.

Relying purely on a single example is, however, bad practise, particularly

one with a strong symmetry like the vortex ring, regardless of how extensive the

literature is.

1.5.4 Synopsis

In chapter 2 we address the shortage of 3D vortex equilibria and present a

new class which have helical symmetry (this work is published in (Lucas and

Dritschel, 2009)). Helical vortices, while having previously no known steady

states, do have a rich literature describing their stability (Widnall, 1972),(Okulov,

2004), (Walther et al., 2007) as their existence in rotor wakes has made them of

considerable interest to engineers, particularly in recent years in the context of

wind turbine wakes (Okulov and Sørensen, 2007a).

Having motivated the importance of the process of vortex stretching in sec-

tion 1.4, chapter 3 details a new hybrid vortex method which combines a vortex

filament approach with renoding ideas from the contour methods of Dritschel

(Dritschel, 1988b) and an inversion carried out using a FVM code taking ad-

vantage of h-refinement. The goal is to model complex vortex structures in a
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completely automatic and self-similar way over as broad a range of scales as

possible.
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Chapter 2

Helical Vortex Equilibria

The following chapter consists of a study published in The Journal of Fluid

Mechanics (Lucas and Dritschel, 2009) and the work is reproduced here with

minor modifications.

2.1 Introduction

The generation of helical tip vortices in rotor wakes is of major significance in

the study of many applications of propeller and wind turbine flow dynamics. Re-

cent research has highlighted the importance of such wakes trailing wind turbines

and the subsequent consequences of strong tip vortices interacting with other tur-

bines in the wind farm; (Okulov and Sørensen, 2007b), (Walther et al., 2007).

These studies model the wake by a system of N tip vortices, which are infinitely

long, slender helical vortices, equally azimuthally spaced and an additional axial

hub vortex.

(Widnall, 1972) was the first to consider the linear stability of a helical vortex

filament by calculating the self-induced velocities due to sinusoidal perturbations

of the filament. Studies presented by Okulov and co-workers (Okulov, 2004),
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(Fukumoto and Okulov, 2005), (Okulov and Sørensen, 2007b) have continued

this procedure of evaluating the induced velocity field and have extended it to a

multiplicity of vortices to address the problem of the rotor wake. Such research

has remained predominately asymptotic and has been concerned almost exclu-

sively with vortex filaments of small core radius e.g. Rcore ≪ dcen, where dcen is

the distance from the centre of the filament from the central axis.

Despite this recent interest in helical vortex stability, there has been no general

theory to enable a complete description of helical vortex equilibria of arbitrary

size. In a classical paper in fluid dynamics, Norbury (Norbury, 1973) computed,

numerically, equilibria for the axisymmetric problem of a vortex ring. This class

of equilibria is parameterised by a mean core radius, and each equilibrium state

consists of a single closed contour bounding a distribution of azimuthal vorticity

which is proportional to r, the distance from the axis of symmetry of the ring.

Axisymmetric vortex rings are amongst the most widely studied fluid dynamical

structures and have a multitude of applications, both in physical problems and

as mathematical constructs.

This work aims to adapt Norbury’s approach and apply it to that of helical

vortices. We make use of helical symmetry to compute equilibria of constant pitch

(ǫ = 1) by considering a cross-section of constant height, z, and parameterising

the family of equilibria not only by a mean radius, R̄, of arbitrary size, but

also by a centroid position, d, which can also be considered as the radius of

the vortex system (in applications to wind turbine wakes, d is the rotor radius).

We find that for such helically symmetric flows, and for a special choice of the

velocity component parallel to vortex lines, we have material conservation of

axial vorticity, ω 1 in an absolute frame of reference. We may thus consider

1Such conservation was first noticed in (Dritschel, 1991) but ω was not identified with axial

vorticity. Another interesting study (Alekseenko et al., 1999) also mentions this point and is

worthy of mention here
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a contour bounding a uniform distribution of ω for which a constant helical

stream function, ψ, upon this boundary in a rotating frame of reference implies

an equilibrium state. The two main problems posed by this approach are in

inverting a linear helical operator Lψ to compute velocities upon the contour

and also in parameterising the contour itself. The former is performed via a

combination of spectral methods and finite differences and the parameterisation

uses a particularly effective “time-travel” coordinate.

In the first instance we consider the case of single vortex equilibrium states

and then extend our method to N equally spaced vortices in azimuthal angle.

2.2 Helical symmetry

Let us consider an unbounded, inviscid, incompressible fluid which possesses

helical symmetry (Landman, 1990), (Dritschel, 1991)), i.e. invariant to rotation

and translation. We are able to reduce the problem to two dimensions by consid-

ering a cylindrical polar description (r, θ, z) and introducing the helical coordinate

φ = θ+ǫz. Here ǫ is the pitch of the helix taken in our equilibria computations to

be ǫ = 1 without loss of generality (ǫ = 0 recovers two-dimensional flow, ǫ → ∞
the axisymmetric case, and ǫ = 1 represents a helix which performs a single twist

in an axial distance of 2π, see figure 2.1). We now introduce the helical vector h

defined as orthogonal to ∇r and ∇φ

h = h2(ez − ǫreθ)

h2 = (1 + ǫ2r2)−1

Helical symmetry now implies that velocity, vorticity and pressure do not vary

with h and h · ∇ applied to any scalar function of r, φ and time, t, is zero. We

may then define the unit vector for the helical coordinate φ by
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Figure 2.1: Schematic of the helical coordinate system. Note that the vectors h

and eφ lie on the surface of the cylinder r = constant. For the special class of

flows considered, the vorticity ω is everywhere tangent to h.
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eφ = h−1h× er = h(eθ + ǫrez)

which reduces the gradient operator to ∇ = er∂/∂r + eφ(rh)
−1∂/∂φ. We are

now able to decompose the velocity and vorticity fields in terms of helical scalar

functions

u = h×∇ψ + hυ (2.1)

ω = h×∇χ + hζ (2.2)

which automatically enforces the incompressibility and divergence-free vorticity

conditions. The individual velocity components can be expressed as

ur = −1

r

∂ψ

∂φ
(2.3)

uθ = h2
(

∂ψ

∂r
− ǫrυ

)

(2.4)

uz = h2
(

υ + ǫr
∂ψ

∂r

)

(2.5)

The definition of vorticity ω = ∇×u furnishes us with the well known helical

equation coupling vorticity and velocity (Landman, 1990), (Dritschel, 1991),

Lψ ≡ 1

r

∂

∂r

(

rh2
∂ψ

∂r

)

+
1

r2
∂2ψ

∂φ2
= ω + 2ǫh4υ (2.6)

where ω = h · ω = h2ζ . We must also have that χ = −υ.

We seek steadily rotating vortex solutions in a flow which is irrotational as

r → ∞ (in fact the flow will be rotational only within one or several helical vortex

tubes). To this end it is convenient to express the flow in a rotating frame of

reference (ωR, υR, ψR etc.)
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ω = ωR + 2Ω

u = uR +Ω× x

where Ω = Ωez is the rotation rate (to be chosen so that the flow is steady in

this frame). Taking the scalar product of h with these equations gives

h · ω ≡ ω = ωR + 2Ωh2 = ωR + ω̄(r)

h · u = h2υ = h2υR + h · (Ω× x) = h2υR − ǫr2h2Ω

i.e. υ = υR − ǫr2Ω = υR + ῡ(r).

Similarly we can express the stream function as ψ = ψR + ψ̄(r) and use (2.6)

to derive ψ̄(r);

L ψ̄(r) = ω̄(r) + 2ǫh4ῡ(r) = 2Ωh4

and solving for ψ̄(r) gives

ψ̄(r) =
1

2
Ωr2 (2.7)

given that we require bounded velocities.

Now turning to the full nonlinear dynamical equations in the rotating frame

we have from (Dritschel, 1991)

∂υR
∂t

+ J(ψR, υR) = −2ǫΩ
∂ψR

∂φ
(2.8)

∂ωR

∂t
+ J(ψR, ωR) = 2ǫΩh2

∂υR
∂φ

+ 2ǫh4
(

J(ψR, υR)− ǫυR
∂υR
∂φ

)

(2.9)

where J(f, g) is the Jacobian, defined in helical coordinates as

J(f, g) =
1

r

(

∂f

∂r

∂g

∂φ
− ∂g

∂r

∂f

∂φ

)

.

36



and the terms proportional to Ω in (2.8) and (2.9) account for the effect of

background rigid rotation.

Rewriting (2.8) and (2.9) in terms of the absolute frame variables υ and ω,

we find
∂υ

∂t
+ J(ψR, υ)−

1

r

∂ψR

∂φ
2ǫΩr = −2ǫΩ

∂ψR

∂φ

∂υ

∂t
+ J(ψR, υ) = 0 (2.10)

and (2.9) becomes

∂ω

∂t
+ J(ψR, ω)−

1

r

∂ψR

∂φ
4ǫ2Ωrh4 = (2.11)

2ǫΩh2
∂υ

∂φ
+ 2ǫh4

(

J(ψR, υ)− 2ǫΩ
∂ψR

∂φ
− ǫ(υ − ῡ)

∂υ

∂φ

)

(2.12)

∂ω

∂t
+ J(ψR, ω) = 2ǫΩh2

∂υ

∂φ
(1− ǫ2r2h2) + 2ǫh4

(

J(ψR, υ)− ǫυ
∂υ

∂φ

)

(2.13)

= 2ǫh4
(

J(ψR, υ)− ǫυ
∂υ

∂φ

)

(2.14)

Hence, for the special case υ = constant, considered henceforth, it follows

that the quantity ω is materially conserved

Dω

Dt
≡ ∂ω

∂t
+ J(ψR, ω) = 0. (2.15)

For a general helically symmetric flow with bounded momentum, it can be

shown that υ must in fact be equal to the conserved circulation multiplied by

−ǫ/2π. This is a non-trivial result and will be discussed in further detail in

section 2.3. Since χ = −υ = constant in (2.2), we can express the full vorticity

field in terms of ω

ω = ωez − ǫrωeθ. (2.16)

Note that ω is everywhere tangent to h. It is the conservation of ω in (2.15)

which provides us with a means to compute equilibria consisting of a contour
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bounding a uniform distribution of ω in a constant z cross section and irrotational

flow in the absolute frame away from the vortex. Each equilibrium state must

then satisfy J(ψR, ω) = 0 i.e. for a single contour, the quantity ψR = ψ − 1
2
Ωr2

must be constant on the contour.

2.3 Inverting L ψ

Having determined the prescription for an equilibrium state in terms of the

helical stream function, ψ, we are faced with the task of accurately inverting

the helical operator Lψ. In this section we present a numerical method based

on both Fourier transforms and finite differences to perform this inversion for a

general distribution of axial vorticity. In addition we verify the method against

an analytic solution for a particular distribution of ω.

The first step is to express ψ and ω as Fourier series in φ

ψ =
∑

m

ψ̂m(r)e
imφ & ω =

∑

m

ω̂m(r)e
imφ

allowing us to rewrite (2.6) as

L̃mψ̂m =
d

dr

(

rh2
dψ̂m

dr

)

− m2

r
ψ̂m = rω̂m (2.17)

for m > 0. Numerically we are able to use the fast Fourier transform algorithm

(with 512 wavenumbers) to transfer between physical and spectral space in this

way, and hence solve (2.17) for each azimuthal wavenumber m > 0 by approxi-

mating the equation by central differences (we address the m = 0 case later). In

doing this we obtain a symmetric tridiagonal system of difference equations, eas-

ily inverted via the Thomas algorithm. To solve for large radii a novel approach

is employed whereby we divide the radial grid in two parts, with a uniform grid
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close to the origin and a stretched grid, scaled by h, for large radius, enabling

increased accuracy for smaller r. Specifically we use the coordinates

r r < rm

s = b+ crh r > rm

where rm is the grid transition radius, chosen such that the vorticity is fully con-

tained within this radius. We integrate (2.17) up to s = sN = c+b corresponding

to rh = 1, i.e. r = ∞. The constants c and b are given by continuity conditions

at rm

ds

dr

∣

∣

∣

∣

r=rm

= 1 ⇒ c = h−3
m

sm = rm ⇒ b = rm(1− chm) = −ǫr3m

so s = h−3
m rh − ǫr3m. In the calculations to follow a total of 400 intervals in

r and s are used and a comparison with an analytic test solution is presented in

section 2.3.1.

We now turn attention to the problem of the axisymmetric (m = 0) mode,

ψaxi, and first note that we are able to decompose this mode into a υ-independent

part, ψ̂0 and a υ-dependent part, ψυ

ψaxi = ψ̂0 + ψυ

where ψυ satisfies

d

dr

(

rh2
dψυ

dr

)

= 2ǫυrh4

which we can solve directly to give
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ψυ =
1

2
υǫr2 (2.18)

given that we require bounded velocities at the origin.

Now for large r we can rewrite our expression for the axial velocity, (2.5),

purely in terms of the axisymmetric mode, (since the contribution from all other

modes tends to zero in this limit)

lim
r→∞

uz = lim
r→∞

{

υ + ǫrh2
dψ̂0

dr

}

.

In order for the axial momentum of the system to remain bounded we require

that this limit goes to zero and we can satisfy this constraint by setting

υ = − lim
r→∞

ǫrh2
dψ̂0

dr
; (2.19)

a constant. It is possible to relate this constant to another conserved quantity,

namely circulation, defined as

Γ ≡
∫ ∫

A

ωdA =

∮

C

u.dx

(this is conserved due to material conservation of ω and incompressibility). Here

C is a contour sufficiently large to bound all the vorticity. Substituting in the

velocity components (2.3) & (2.4) and considering a contour for constant z we

can express circulation as

Γ =

∮

C

rh2
(

∂ψ

∂r
− ǫrυ

)

dφ−
∮

C

1

r

∂ψ

∂φ
dr

Consider now a circular contour of radius r → ∞. Noting that for large r the

stream function ψ becomes independent of φ, since in this region ω = 0, we find
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Γ = 2π lim
r→∞

(

rh2
dψ̂0

dr

)

= −2πυ

ǫ
⇒ υ = − ǫΓ

2π

using (2.19). Considering now the calculation for the complete axisymmetric

stream function we first make the following observations. From (2.17) for m = 0

we can write

rh2
dψ̂0

dr
=

∫ r

0

r′ω̂0(r
′)dr′ (2.20)

which tends to Γ/2π for r → ∞. We can now add the contribution from ψυ,

having substituted for υ into (2.18), and rewrite (2.20) as the difference of two

integrals (from 0 to ∞ minus from r to ∞) giving

rh2
dψaxi

dr
=

Γ

2π

(

1− ǫ2r2h2
)

−
∫ ∞

r

r′ω̂0(r
′)dr′

⇒ dψaxi

dr
=

Γ

2πr
− 1

rh2

∫ ∞

r

r′ω̂0(r
′)dr′

showing that dψaxi/dr tends to 0 as r → ∞ like Γ/2πr. Numerically, we use the

equivalent expression obtained by adding (2.20) and dψυ/dr:

dψaxi

dr
= S0(r)

where

S0(r) =
1

rh2

∫ r

0

r′ω̂0(r
′)dr′ − ǫ2rΓ

2π

which we have already shown tends to Γ/2πr as r → ∞. Integrating S0 with

respect to r produces a logarithmic singularity as r → ∞. To avoid this numeri-

cally, the singularity is treated explicitly by adding and subtracting the function

f(r) ≡ ǫ2rh2Γ

2π
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from the right hand side, using

f(r) = − Γ

2π

d log h

dr

leading to

ψaxi =
Γ

2π
log h+

∫ ∞

r

(f(r′)− S0(r
′)) dr′

Now both the integrand and the integral are finite for all radii. We proceed

by this technique in our numerical inversion, computing the integral via the

trapezoidal rule.

2.3.1 Analytic Solution

It is possible to construct analytic solutions to equation (2.17) via the use of

Green’s functions for the case of circular, compact distributions of ω̂, correspond-

ing to ω = ω̂(r)eimφ. Following the general theory of Green’s functions we seek a

solution of the form

ψ̂(r) =

∫ ∞

0

G(r; r0)r0ω̂(r0)dr0

where G is Green’s function and satisfies the homogeneous equation, L̃G = 0

(see (2.17), here we take ǫ = 1 consistent with the results presented). It can be

shown that Green’s function has the form

G(r; r0) =







rr0I
′
m(mr)K

′
m(mr0) r < r0

rr0K
′
m(mr)I

′
m(mr0) r > r0

where Im and Km are the modified Bessel functions of the first and second kind,

of order m, and a prime denotes a derivative with respect to the argument.

Consider an idealised axial vorticity defined by

ω̂(r) =







1 r < R

0 r > R
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for a circular cross-section, radius R. Then the stream function becomes

ψ̂ =







−rK ′
m(mr)

∫ r

0
r20I

′
m(mr0)dr0 − rI ′m(mr)

∫ R

r
r20K

′
m(mr0)dr0 r < R

−rK ′
m(mr)

∫ R

0
r20I

′
m(mr0)dr0 r > R

(2.21)

This analytic solution for ψ̂ allows the numerical inversion to be accurately

verified for this particular distribution of axial vorticity.

Figure 2.2 displays plots showing the difference between the analytically com-

puted solution (e.g. (2.21) with integrals computed via a midpoint rule), and

the numerically computed solution computed on the two part grid as described

in section 2.3. We have very good agreement and suffer partial loss in accuracy

across the boundary of the circular vortex patch (r = R) since the piecewise

constant distribution can only be approximately represented on a discrete grid.

2.4 Computing equilibrium states

Having discussed the method of computing the helical stream function we

are now able to address the problem of computing the equilibrium states. As

mentioned in section 2.2 the equilibrium states are those for which ψ − 1
2
Ωr2 is

constant upon a contour bounding a uniform distribution of ω. We now consider

the problem in terms of a contour with z = 0, i.e. a vertical cross-section and

consider such a contour bounding a region of uniform axial vorticity, ω = 1.

We expand the constraint on ψ about the previous iteration or ‘basic state’

and linearise, computing both the contour perturbation and angular velocity Ω

at each iteration, while preserving area and centroid position. This process is

repeated with the updated contour becoming the basic state until the maximum

correction falls inside a prescribed threshold (10−12) compared to the mean radius.
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Figure 2.2: Plots showing difference in the numerical calculation of ψ̂ and the

analytic solution (2.21) (E = log10 |ψ̂ana − ψ̂num|) for a circular distribution with

radius R = 1, wave number m = 2 (a) and radius R = 2, wave number m = 3

(b).
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The states are thus parameterised by the mean radius R̄ and centroid d and the

numerical algorithm spans families of states for a given R̄ or d.

Let the new contour be x = x0 + x
′ where x0 is the previous state and x′ is

a small correction. Likewise let Ω = Ω0 + Ω′. Linearising ψ − 1
2
Ωr2 = C yields

x′v0 − y′u0 − Ω0 (x0x
′ + y0y

′)− 1

2
Ω′
(

x20 + y20
)

= C − ψ̃(x0, y0) (2.22)

where

u0 = − ∂

∂y
ψ (x0, y0) v0 =

∂

∂x
ψ (x0, y0)

ψ̃(x0, y0) = ψ(x0, y0)−
1

2
Ω0

(

x20 + y20
)

.

To define the contour in terms of a single variable and allow the calculation of

a single perturbation quantity, we parameterise the contour following the method

of (Dritschel, 1995) (Appendix B) whereby a normal displacement multiplied by

a ‘perturbation function’ constitutes the disturbance, i.e.

x = x0 + x
′ = x0(α) +

{dy0/dα,−dx0/dα}
(dx0/dα)

2 + (dy0/dα)
2η(α) (2.23)

where η is a perturbation function. In general α can be any parameterisation

of the contour but here we take it to be the “travel-time coordinate”, i.e. pro-

portional to the time taken for a fluid parcel to travel a fixed distance along

the contour (for convenience α = 2π is taken as a full circuit of the contour).

This parameterisation simplifies the problem significantly and circumvents diffi-

culties which arise for particularly elongated contours when using a polar type

parameterisation.

The basic state velocity on the contour in the rotating frame is given by,

ũ0 =
∂x0

∂α

dα

dt
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and dα/dt is defined by our definition for α to be

dα

dt
= Ω̄

where Ω̄ is defined as the frequency of the rotation of the fluid elements around

the boundary x0. This is independent of α and implies that in a given increment

of time all locations along the contour will move through the same increment of

α. Thus the parameterisation reduces the first three terms of (2.22) i.e.

x′v0 − y′u0 − Ω0 (x0x
′ + y0y

′) = ṽ0x
′ − ũ0y

′

= Ω̄η(α)

Now (2.22) gives

η(α) =
1

Ω̄

(

C − ψ̃(x0, y0) +
1

2
Ω′
(

x20 + y20
)

)

. (2.24)

So we have an equation for the perturbation function in terms of the previous

state, x0, C and Ω′. We calculate C and Ω′ from the equations for area and

centroid of the contour. In terms of a contour integral we can express the area as

A =
1

2

∮

xdy − ydx

Substituting our expansion x = x0+x
′, linearising to first order and substituting

in our time-travel coordinate parameterisation (2.23) gives

A = A0 +

∫ 2π

0

ηdα (2.25)

where A0 is the area from the previous iteration. Substituting for η from (2.24)

we have

A = A0 +
1

Ω̄

∫ 2π

0

(

C − ψ̃(x0, y0) +
1

2
Ω′
(

x20 + y20
)

)

dα. (2.26)
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The contour integral formulation for the x centroid position is given by

d =
1

3A

∮

x (xdy − ydx)

As with the area we expand in perturbation terms, linearise to first order and

substitute in our parameterisation (2.23) yielding

Ad =
1

3

∮

x0 (x0dy0 − y0dx0) +

∫ 2π

0

x0ηdα,

and substituting for η from (2.24) gives

Ad =
1

3

∮

x0 (x0dy0 − y0dx0) +
1

Ω̄

∫ 2π

0

x0

(

C − ψ̃(x0, y0) +
1

2
Ω′
(

x20 + y20
)

)

dα

(2.27)

We are now able to calculate Ω′ and C from (2.26) and (2.27) (effectively a

2 × 2 system) which in turn enables us to update the perturbation function η

and thus update the contour. Numerically these integrals are evaluated using a

trapezoidal rule on 400 contour points.

2.5 Results

Having parameterised the states in terms of a mean radius R̄ and centroid

d, we compute equilibrium states by fixing R̄ or d and incrementing the other.

Circles are provided as a first guess and convergence is generally achieved within

around 20 iterations. Subsequent computations use the previous state, or an

extrapolation of 2 previous states, as a starting point for the routine.

2.5.1 The single vortex, N = 1

Figure 2.3 shows a sample of different equilibrium states from across pa-

rameter space. These plots show the projection of the contour to form the 3-
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dimensional helix. In particular we note that while the contour in the plane

z = 0 can be quite elongated and curved for large d, the core of the vortex,

viewed from a plane perpendicular to h (or ω), is close to circular. For smaller

d we find the contours in the z = 0 plane are themselves closer to circular, this

being nearer to the core projection. Attention is also drawn to (a) and (b) in

the figure which show states of identical mean radius R̄ = 2.20 and exceptionally

close centroid, d = 0.695 and d = 0.696. Despite their proximity in parameter

space these states are quite distinct. Turning now to figure 2.4 we are able to

observe where the different states lie within parameter space. Of particular im-

portance is the region where the code fails to converge (shown as a bold line), the

states mentioned above being at the lower boundary of this region. These limit-

ing states indicate that multiply connected contours may describe the equilibria

inside this region. The states on the left hand edge of the boundary are cusp-like,

for example state (a) in figure 2.3, while those on the right hand edge are more

curved and elongated, e.g. (c) in figure 2.3. We conjecture that states inside the

left edge will have a small hole, pinched off at this cusp, and those inside the

right edge will have a larger hole, where the edges of the curved contour have

‘coalesced’. These conjectures are substantiated by simulations carried out in

section 2.5.4.

2.5.2 Multiple vortices, N > 1

Having examined parameter space in the case of single vortex equilibria we

extend the method to consider N evenly azimuthally spaced vortices. Clearly

this implies a geometric restriction on the mean radius of the vortices dependent

on the centroid radius d. We show results for the limiting states in this regime

in figure 2.5. The contours computed show quite a degree of variation over

parameter space and for small d in the cases of 2 and 3 vortices these states

take on the configuration of two-dimensional corotating vortices computed by
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(a) (b)

(c) (d)

(e) (f)

Figure 2.3: Plots of equilibrium states for a sample of parameter space: (a)

R̄ = 2.20 d = 0.695, (b) R̄ = 2.20 d = 0.696, (c) R̄ = 2.75 d = 0.85, (d) R̄ = 1.50

d = 2.50, (e) R̄ = 2.50 d = 2.50, (f) R̄ = 2.55 d = 0.6 . Inserts show the contours

along with the full 3D helical vortex, viewed from a perspective of 30◦ elevation

and 20 units from the origin. 3 spirals of the helix are shown here.

49



R̄.

3

2

1

0 1

d

2 3

Figure 2.4: Plot of parameter space, for a single vortex, showing the boundary

where convergence is not achieved with insets of equilibrium states.
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(Dritschel, 1985) where the limiting behaviour is for the vortices to pinch toward

the origin. As d increases we see helical effects becoming more pronounced. The

contours becoming increasingly curved and elongated and the vortices close up

around the circle radius d. As with the single vortex case we see contours which

are closer to circular for smaller d.

Figure 2.6 shows parameter space for the cases of N = 2 and N = 3 vortices,

the transition from the two-dimensional type states is notable by a distinct change

in the curve showing the boundary of the limit of convergence. The states in this

transition region neither close together at the origin nor around the circle, rather

they flatten and form an edge facing inwards.

2.5.3 Diagnostics

In addition to axial vorticity and circulation, there are two further invariants

for these flows, namely ‘excess’ energy E and angular impulse J per unit axial

length (the axial momentum is proportional to J). The angular impulse is

J =

∫ ∫

ωr2dxdy =
ω

4

∮

(

x2 + y2
)

(xdy − ydx)

for a vortex patch of constant vorticity ω.

The ‘excess’ energy (minus an infinite constant proportional to the square of

circulation) is

E ≡ −1

2

∫ ∫

ωψrdrdφ

(Dritschel, 1985), conservation of which can be derived in the standard way by

multiplying (2.15) by ψ and integrating. To convert this into a contour integral,

we use Stokes’ Theorem repeatedly to give
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(a) (b)

(c) (d)

(e)

Figure 2.5: Plots of equilibrium states showing typical limiting states for N = 2, 3

and 4 vortices: (a) N = 2, R̄ = 1.34, d = 2; (b) N = 2, R̄ = 0.355, d = 0.50; (c)

N = 3, R̄ = 0.82, d = 2; (d) N = 3 R̄ = 0.2 d = 0.36; (e) N = 4, R̄ = 0.6, d = 2.

Contours are shown along with the full 3D helical vortex viewed from the same

perspective as in figure 2.3, with plots (a), (c) and (e) showing 2 full twists and

(b) and (d) showing a single twist of the helix.
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Figure 2.6: Plots of parameter space for N = 2 (upper) and N = 3 (lower)

vortices showing the boundary where convergence is not achieved with insets of

equilibrium states.
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−E =
1

4
ω

∮ [

ψ − 1

r
gh2

∂ψ

∂r
+
ω

8

(

r2 +
1

3
ǫ2r4

)]

r2dφ+
1

4
ω

∮

g

r

∂ψ

∂φ
dr

where

g(r) =
1

2
r2 +

1

4
ǫ2r4.

These integrals are computed using cubic interpolation of the contours to-

gether with a two-point Gaussian quadrature method in each of the 400 intervals.

This enables an accurate estimation of J and E over the entire parameter space.

The calculations of energy and angular impulse were verified by noting that for a

circular patch of constant vorticity the expressions reduce to E = 1
4
R4π(1

4
−logR)

and J = 1
2
πR2 (independent of ǫ, where R is the radius of the patch).

The energy, angular impulse and rotation rate of the single vortex states are

shown in figure 2.7. These quantities confirm that there is a jump in the nature

of the states over the gap in parameter space. This is not unexpected as we have

already observed a clear distinction in the shapes of the limiting states, c.f. figure

2.4.

Validation of the numerics has been carried out to check the computed val-

ues for rotation rate by considering small amplitude waves on an axisymmetric

helical vortex in section 2.6. It is worth mentioning that the dispersion relation-

ship is not that of (Kelvin, 1880), who considered a Rankine vortex with only

axial vorticity. Here helical symmetry implies we have an additional azimuthal

component of vorticity (see equation (2.16)), and hence an associated axial flow.

Further corroboration has been sought by comparing with the asymptotic ap-

proximation derived by (Widnall, 1972). This comparison however suffers from

several limitations. First the asymptotic approximation considers filaments of

small core radius and small pitch, a regime in which our numerical computations

are most sensitive to numerical error. Second, the approximation contains a cor-

rection term which requires much extra work to compute and which is simply read
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from the plot in (Widnall, 1972) in more recent work (see e.g. (Ricca, 2006)).

The result is poor agreement. For d = 0.5, ignoring the correction term (a small

negative contribution for ǫ = 1), we have at R̄ = 0.12, Ω = −0.0091 compared

with Widnall’s approximation ΩW = −0.0085, while for R̄ = 0.18, Ω = −0.018

compared with ΩW = −0.015 (where ΩW is the rotational frequency in (Widnall,

1972). A more convincing validation is given in section 2.6.

Figure 2.7 also shows energy contours in the lower half of parameter space

(bottom right panel). It has previously been observed in 2D flows (Dritschel,

1995) that an extremum of energy and angular impulse in parameter space may

coincide with the margin of stability for vortex equilibria. In particular this

extremum must occur over states which have equivalent circulation, in this case,

for a given R̄. Figure 2.7 shows a shallow minimum for increasing R̄. These is

no corresponding extremum in J , by contrast to 2D flows, and direct numerical

simulations of perturbed equilibria have yet to indicate any instability.

In the case of multiple vortices, we compare states with equal total circulation,

Γ, in order to compare like states. This requires that if the mean radius of

the single vortex equilibrium is R̄1 then the N vortex case has the individual

mean radii scaled by 1/
√
N so that the total area of the patches is equal (i.e.

R̄N = R̄1/
√
N). Of particular interest in figure 2.8 is a reversal in the rotation

rate for small d, R̄1 when N > 1. Hence there are equilibrium states for which Ω

is zero. We also observe that increasing the circulation brings the trend for the

single vortex closer to that of the multiple vortex case, where we have a noticeable

steepening for small d.

We have attempted to compare our results for Ω with the asymptotic slender-

vortex results derived by (Okulov, 2004). Again comparisons are difficult due to

the small core size but also due to limitations in the asymptotics. (Okulov, 2004)

tabulates values of non-dimensional rotation rate minus a constant containing

a logarithmic singularity as the core radius goes to zero. This constant term
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Figure 2.7: Contours of diagnostics for N = 1. Upper left panel shows angu-

lar impulse J , upper right angular velocity Ω and lower plots excess energy E.

Contour intervals are ∆J = 10, ∆Ω = 0.1 and ∆E = 10 for global energy plot

(bottom left) and ∆E = 0.1 for lower half plane plot (bottom right)
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is actually of leading order and compromises the accuracy of any comparison.

Nonetheless comparisons can be made; premultiplying Ω with −4πd2/Γ to be

consistent with the non-dimensionalisation in (Okulov, 2004) and considering

N = 2, d = 1, and R̄ = 0.15, we find Ω = 0.97 for the dimensionless rotation rate

compared with ΩO = 1.097 in (Okulov, 2004) after reintroducing the logarithmic

term. Similarly considering R̄ = 0.12 with other parameters fixed we find Ω =

1.04 compared with ΩO = 1.02. In both examples the logarithmic term is O(1).

2.5.4 CASL simulations

This section presents results from dynamical simulations carried out using an

adapted CASL algorithm whereby contours of ω are advected by the flow field

computed by inverting L ψ as discussed in section 2.3 of this paper. The reader

is referred to (Dritschel and Ambaum, 1997) and (Macaskill and Padden, 2003)

for a more detailed description of the model. Although this model limits one

to the purely helical evolution of vorticity, we are able to deduce the validity of

our equilibrium states and their stability (to spatial perturbations) under heli-

cal symmetry (and for υ = constant). In addition we are able to validate the

conjectures made regarding the gap in parameter space when N = 1.

Simulations are carried out with a time step ∆t = 0.025 (the CASL algorithm

uses a standard fourth order Runge-Kutta time integration) together with 400

radial intervals and 512 azimuthal intervals. The equilibria are perturbed by

displacing all the x coordinates of the contour nodes by some increment ∆d. All

figures shown in this section are in the rotating frame of the equilibrium state.

Figure 2.9 shows a generic single vortex equilibrium state, R̄ = 2, d = 2

perturbed by a small amount ∆d = 0.01. Virtually no effect is felt by the vortex,

even at late times. The only dynamical response is a slight change in the rotation

rate.
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Figure 2.8: Plots of rotation rate Ω for fixed circulation or total area A1 with

curves for N = 1, 2, 3 & 4; (a) A1 = π/4 (R̄1 = 1/2); (b) A1 = π (R̄1 = 1) and

(c) A1 = 9π/4 (R̄1 = 3/2)
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t=0 t=67 t=133 t=200

Figure 2.9: CASL simulation for the N = 1, R̄ = 2, d = 2 state with perturbation

∆d = 0.01

t=50

t=100

t=0

t=200

Figure 2.10: CASL simulation for the N = 1, R̄ = 2.64, d = 0.8 state with

perturbation ∆d = −0.03
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Figure 2.11: CASL simulation for the N = 1, R̄ = 2.2, d = 0.6 state with

perturbation ∆d = 0.1

Figures 2.10 and 2.11 show simulations for N = 1 where limiting states at the

boundary in parameter space are perturbed in the direction of the gap. Figure

2.10 shows an elongated contour from the right edge of the gap, closing over and

cutting off a region of zero vorticity within the vortex edge. Hence the equilib-

rium evolves into a multiply connected state. Figure 2.11 shows the entrainment

of filamentary structures of irrotational fluid into the vortex. For large time,

the filaments congregate into a small region of zero vorticity inside the vortex.

These simulations provide compelling evidence that multiply-connected equilib-

rium states exist in the gap. Notably, despite the distinct change in the shape of

the contour, the vortices remain coherent and robust. In the case shown in fig-

ure 2.11 filaments entrained inside the vortex coalesce into a single patch of zero

vorticity inside the vortex. The changes in topology occur through the removal

of extremely thin filaments by ‘surgery’ (Dritschel, 1988b) at a tenth of the inner

radial spacing of the grid. This allows the vortex to relax to a quasi-steady state

while only very weakly dissipating angular impulse and energy.

To gain a more comprehensive picture of the interior states, simulations were
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Figure 2.12: Final frame for CASL simulation, t = 200, left hand plot shows

the R̄ = 2.64, d = 0.8 state with perturbation ∆d = −0.105 and the right the

R̄ = 2.64, d = 0.59 state with perturbation ∆d = 0.105

t=20t=0 t=100 t=200

Figure 2.13: CASL simulation for the N = 1, R̄ = 1, d = 1 state with perturba-

tion ∆d = 1

carried out perturbing the edge states from either side of the gap by an equal

and opposite amount. This gives the evolution of two different states of the

same mean radius at the same centroid location, d. Figure 2.12 shows the final

frame for large time of these simulations for the limiting states at R̄ = 2.64 and

suggests that there is the possibility that more than one equilibria state exists

for a particular point of parameter space inside the gap. It is conceivable that

multiply-connected equilibria exist anywhere in parameter space, not solely in

this region where we were unable to find singly-connected states.
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t=1 t=25 t=50 t=500

Figure 2.14: CASL simulation for the N = 2, d = 2, R̄ = 1.34 state with

perturbation ∆d = 0.01

As previously suggested, these single-vortex states are remarkably stable to

finite-amplitude perturbations. To demonstrate this, we performed a simulation

where the equilibrium for R̄ = 1 and d = 1 was perturbed by ∆d = 1, i.e. a

full doubling of the centroid. Figure 2.13 shows the flow evolution. Although the

contour deforms strongly and has a substantial anomaly in its angular velocity,

it remains coherent after only tiny filaments have been expelled.

In contrast to the strong stability of the single-vortex states, the multiple-

vortex states present more varied results. Generally it is found that the vortex

states for R̄ ≪ d are more robust than those for which R̄ ≈ d. Perturbing

states in which the vortices are larger and more closely spaced, we observe that

the rotation rates of the individual patches diverge from the rotation rate of the

system, causing the patches to move together and interact. Figures 2.14, 2.15 and

2.16 show this for N =2, 3 & 4 vortices respectively. The long time behaviour,

in particular for the two vortex case, shows the vorticity tending towards a single

patch type configuration, as we have observed to be stable in helical dynamics.
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t=1 t=36 t=40 t=50

Figure 2.15: CASL simulation for N = 3, d = 2, R̄ = 0.5 state with perturbation

∆d = 0.01

t=1 t=20 t=30 t=40

Figure 2.16: CASL simulation for N = 4, d = 2, R̄ = 0.5 state with perturbation

∆d = 0.01

63



2.6 Dispersion relation for a columnar vortex

with helical symmetry

Over a century ago Lord Kelvin calculated the dispersion relationship for

infinitesimal linear perturbations of a uniform vortex column (Kelvin, 1880). The

non-axisymmetric azimuthal disturbances with azimuthal wavenumber m = 1 are

known as bending modes and correspond to helical disturbances of the vortex.

This work was generalised in (Moore and Saffman, 1972) to include an axial flow

which subsequently became the starting point for many asymptotic studies of a

helical vortex filament, e.g. (Ricca, 2006), (Kuibin and Okulov, 1998). Linear

stability of a Rankine vortex with a discontinuous axial flow and the addition

of swirl has been considered in (Loiseleux et al., 1998) where frequencies for the

helical bending modes were computed. It is, however, possible to generalise this

linear theory yet further by considering an axisymmetric columnar vortex with

helical symmetry.

Starting from linear theory we expand about the basic state. We note that,

due to the presence of azimuthal vorticity (ω = ωez−ǫrωeθ), there is a parabolic

axial flow within the undisturbed vortex given by ūz =
1
2
ωǫ(r2 − R2). Note also

that ūz = 0 outside the vortex. Due to material conservation of ω, (2.15), we can

restrict attention to deformations of the vortex edge in the plane z = 0. This

implies that the perturbation vorticity ω′ = 0 both inside and outside the vortex

boundary. The linearised version of equation (2.6) then gives simply Lψ′ = 0,

and expressing ψ′ = ℜ(∑m ψ̂m(r)e
imθ−iσt) we have solutions to the homogeneous

problem as given in section 2.3.1, namely

ψ̂m = AG(r;R) (2.28)

where G is Green’s function and A is a constant to be determined by matching
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the velocity components at the boundary.

Defining the perturbed vortex edge as r = R + η(θ, t), where R is the radius

of the undisturbed vortex, we use the fact that η evolves materially according to

Dr

Dt
= ur ⇒ Dη

Dt
= ur ⇒ ∂η

∂t
+
uθ
r

∂η

∂θ
= ur.

Rewriting η as η = ℜ(
∑

m η̂me
imθ−iσt) we obtain after linearisation

(
1

2
ωm− σ)η̂m = −m

R
ψ̂m(R) = −mAG(R;R)

R
, (2.29)

given the simple form of the velocity field for an axisymmetric uniform helical

vortex.

We now require the velocity field to be continuous on the perturbed boundary

r = R + η. The radial component consists only of a perturbed part and is

continuous over r by the continuity of ψ̂m. The azimuthal component has a mean

part whose shear jumps across the boundary. Continuity of the full azimuthal

component then implies a jump in the perturbed part, i.e. [u′θ] = ωη, at r = R,

upon linearisation. This implies

ωη̂m = h2(R)

[

dψ̂m

dr

]

⇒ ωη̂ =
A

R
(2.30)

from (2.28) and section 2.3.1. Continuity of axial velocity yields the same rela-

tionship.

Substituting (2.30) into (2.29) leads to the dispersion relation

Ωm = − σ

mω
= −1

2
+ (ǫR)2I ′m(mǫR)K

′
m(mǫR) (2.31)

where we have now restored the dependence on pitch. In our analysis ǫ is the

direct analogue of the axial wavenumber, k, and ǫR is a dimensionless axial

wavenumber (denoted ka in (Saffman, 1995)) The dispersion relation (2.31) is not
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the same as the one derived by (Kelvin, 1880) who assumed a two-dimensional

(non-helical) basic state with ω = ωez in contrast to ω = ωez − ǫrωeθ in helical

flows.

This expression for Ωm furnishes us with a further validation of our numerics.

For m = 1, (2.31) gives an approximation for the rotation rate Ω (for ω = 1),

in the regime d ≪ 1. Figure 2.17 shows Ω1 from (2.31) versus the numerically

computed Ω (for d = 0.02), together with the rotational frequency obtained

by (Kelvin, 1880) against dimensionless axial wavenumber. Notice that despite

considering a more complex flow, the dispersion relation derived here is much

simpler than Kelvin’s, allowing the precessional frequency of the vortex to be

directly calculated without having to solve a transcendental equation. The curves

for Ω1 and Ω indicate very close agreement of the numerical computations and the

linear theory. These curves diverge from Kelvin’s as axial wavenumber increases

and the vortex lines become less rectilinear.

The angular frequencies of the linear helical modes, Ωm(ǫR) form = 1 to 5 are

plotted in figure 2.18 (for ω = 1). For ǫR ≪ 1, these tend to the two-dimensional

values 1
2
(m − 1)/m, while for ǫR ≫ 1, these tend to 1

2
ǫR/m. The existence

of these modes implies that there are finite-amplitude non-axisymmetric helical

vortex equilibria also for m > 1 centred on the z-axis.

2.7 Conclusions

This work has presented a numerical method for computing equilibrium states

for helically-symmetric vortices. A novel approach using Fourier transforms and

finite differences on a two-part grid was employed to invert the linear operator

Lψ for a general distribution of axial vorticity. A property which has proved

crucial in allowing the computation of these equilibrium states is that helically

symmetric flows materially conserve axial vorticity when the flow parallel to vor-
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Figure 2.17: Curves showing the numerically computed rotation rate, Ω (for d =

0.02) and the analytical bending-mode frequencies, Ω1 and ΩK , of a perturbed

axisymmetric helical and rectilinear vortex, respectively, against non-dimensional

wavenumber, ǫR (= R since we take ǫ = 1) or ka.
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Figure 2.18: Curves showing the analytical linear mode frequencies, Ω1 to Ω5, of

a perturbed axisymmetric helical vortex against non-dimensional wavenumber,

ǫR.
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tex lines is proportional to (1 + ǫ2r2)−1/2. Moreover, the constant of proportion-

ality is uniquely determined by the integral of axial vorticity over a cross section

z = constant (the circulation), by the requirement of bounded momentum per

unit length. Equivalently, this conservation property follows from restricting the

vorticity to be everywhere tangent to the helical vector h.

Here we have computed equilibria described by contours bounding regions of

uniform axial vorticity ω = 1. The equilibria depend only on their radius and

centroid position. The contours are parameterised by a time-travel coordinate to

allow arbitrary distortions. In the single vortex case we have been able to compute

equilibrium states over all of parameter space apart from a specific region where

we conjecture only multiply-connected states exist. CASL simulations support

this conjecture and also demonstrate the remarkable stability of the states. It

should be noted, however, that this stability is for purely helical dynamics and

previous asymptotic results (Widnall, 1972) suggest that instability would likely

occur in the full 3D dynamics.

In the case of multiple vortices we have computed equilibrium states over

parameter space and determine where geometric constraints prevent equilibria.

We see a distinction between the states for small radial spacing d, where we have

a configuration analogous to the two-dimensional vortex equilibria of (Dritschel,

1985), and the states for moderate or large radial spacing, where helical effects

become important. Simulations show helical instability for larger, more closely

spaced configurations, with the long time evolution tending towards a single patch

configuration.

When considering equilibrium vortex configurations, one must entertain the

possibility that there exists a multiplicity of states for a fixed location in pa-

rameter space. In the case of a single two-dimensional Rankine vortex patch we

now know that there is an infinite multiplicity of states arising from the linear

displacement modes proportional to eimθ (see (Saffman, 1995)). When m = 2,
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these states are elliptical (Kirchhoff, 1876). These elliptical states have a self-

induced rotation, Ω = ωλ/(1 + λ)2, associated with them which is dependent

upon the aspect ratio, λ, of the patch. Analogous states almost certainly exist

also in helical flows, for vortices centred on the z-axis (see section 2.6). In helical

flows an additional rotation is induced by the curved shape of the vortex as it

twists around the z-axis. If we now consider, as in this work a single vortex not

centred on the z-axis but displaced from it by a small distance d, an equilibrium

in some rotating frame of reference requires that the self-induced rotation (for

d = 0) nearly matches the rotation of the curved vortex about the z-axis. This

additional requirement for helical flows suggests that the vortex shape is unique

for a given dimensionless mean radius ǫR̄ and displacement ǫd. We hence con-

jecture that there are no other single vortex equilibria for ǫd > 0 than the ones

we have found here.

We motivated this work by the recent studies on rotor wake flows (Okulov

and Sørensen, 2007b), (Walther et al., 2007) and many parameters commonly

associated with such applications can easily be represented by the parameters

used here (noting first that setting ǫ = 1 sets the length scale of the system).

Parameters such as rotor radius, d, and pitch, ǫ, are readily available and the

circulation of each vortex has been discussed in section 2.3 and is proportional to

R̄2. The advance ratio, commonly utilised in aerodynamics, defined as the ratio of

the velocity of the flow over the rotor to the angular velocity of the rotor, can be

expressed here as simply 1/dǫ (velocity of flow over the rotor can be expressed as

2π/ǫT and angular velocity 2πd/T where T is the period of rotation). Although

the problem of the rotor wake is not directly addressed in this work, care has been

taken to ensure that the size, strength and configurations of vortices considered

are of such a general nature as to be applicable to a variety of applications.

The problem of the rotor wake can be more fully addressed in future work by

adapting this method to include a central hub vortex consistent with the rotor
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wake configuration. This introduces two additional parameters to the problem,

namely the strength and size of the inner vortex. Also of interest is to extend

the method to consider multiply connected patches of vorticity.

The equilibrium states found in this study can be adapted for use as non-

trivial test cases in the simulation of the 3D Euler equations and are a step more

complex than Norbury’s vortex rings. We plan to use these states to test a new

hybrid Lagrangian-Eulerian algorithm for the 3D Euler equations.
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Chapter 3

VortexFOAM

3.1 Introduction

Since the earliest point vortex approximations of (Rosenhead, 1931), many

authors concerned with the simulation of incompressible flows have found numer-

ous benefits in formulating the problem using Lagrangian ‘particles’ or elements

to represent the vorticity field. The primary benefit of this seemingly benign

transformation is to reduce the solution of a highly nonlinear hyperbolic PDE

(Navier-Stokes or Euler equations) to that of a set of ODE’s for the trajectories

of each element plus an inversion of a linear elliptic PDE. An immediate conse-

quence of this formulation is the avoidance of the usual stability constraints which

limit the efficiency of a direct discretisation of the equations. In conjunction with

this computational saving, vortex methods can be considered to be self-adaptive;

the computational elements defining the vorticity field are required only where

vorticity is nonzero and their motion, defined by the flow-map, concentrates com-

putational effort where it is most required. These facts mean that vortex methods

are very well suited for studying high Reynolds number or inviscid flows where

vortical motions dominate the dynamics and small scales present a challenge to
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traditional methods.

In this study we present a new method which seeks to combine several bene-

ficial advances in the field in an effort to apply additional adaptation and hence

computational savings to resolve vortex stretching in a consistent and completely

automatic way. Firstly, in the Lagrangian description of vorticity we combine

a vortex filament approach (Greengard, 1986) (Leonard, 1985) with a variable

vortex blob method (Cottet et al., 2000) (Hou, 1990). We consider space curves

represented by a series of points, or nodes, to define centres of vortex tubes or fil-

aments, and define vorticity contributions using smoothing lengths for segments

of the filaments which are dynamically updated to resolve the small scales gen-

erated by vortex stretching while maintaining the overlap criteria required for

the method to converge. In addition, we add further refinement to the method

by employing a ‘renoding’ procedure to redistribute points along the filament,

increasing the concentration in regions of high strain.

Kelvin’s circulation theorem means that for an ideal flow, vortex lines are

frozen into the fluid, therefore we materially advect the vortex filament having

first calculated the induced velocity field. Traditionally this inversion is carried

out by some regularised Biot-Savart type calculation (Leonard, 1985), (Beale

and Majda, 1982), although this proves particularly computationally expensive,

being O(N2) in operations for N nodes. Efforts to reduce this computational

burden include domain decomposition procedures, where the N -body problem is

replaced with contributions from near and far fields (see appendix B in (Cottet

and Koumoutsakos, 2000) for a review of such methods). Hybrid methods replace

the Biot-Savart integral with a discretised version of the original Poisson equa-

tion, ∆u = −∇×ω, on a fixed Eulerian grid, and employ a grid based solver to

compute velocities (Christiansen, 1973). Having designed the Lagrangian com-

ponent of the method to concentrate effort in regions of interest, we continue

this strategy in the Eulerian portion by employing adaptive mesh refinement
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(AMR) in locations where the velocity gradients, responsible for straining the

vortex filaments, require careful resolving. To this end we take advantage of

the OpenFOAM CFD library (http://www.openfoam.com, 2011) which uses the

finite-volume discretisation and allows for great generality in mesh topology, re-

finement criteria, linear solvers etc. A method with various similarities, including

AMR and vortex filaments was presented in (Almgren et al., 1994). This method,

however, is significantly different to that presented here. The treatment of the

inversion problem included the separation of the near and far fields (Method

of Local Corrections) where a Poisson equation solved for the far field and an

expensive N -body problem the near field. Their Lagrangian adaptation is com-

paratively primitive, vortex line segments are split as they stretch rather than

a full renoding algorithm which accounts for the well known folding (hairpin

vortices) associated with vortex stretching (Chorin, 1988).

The final component of the method concerns the communication between

Lagrangian vorticity elements and the Eulerian grid. Vortex-in-Cell (VIC) meth-

ods require an interpolation procedure to convert vorticity values to the grid and

velocities from the grid to the elements. Traditionally this is achieved using piece-

wise polynomials, e.g. B-splines (Monaghan, 1985); however, the application of

these interpolation kernels is restricted to uniform grids. Instead we choose inter-

polation weights based on a vortex-blob concept, noting that interpolation to the

grid is directly analogous to providing some core profile to the elements, while

maintaining a partition of unity to conserve circulation.

3.1.1 Adaptivity and self-similarity

The Euler equations (and indeed their viscous counterpart the Navier-Stokes

equations) remain one of the most intensely studied sets of equations in applied

mathematics. Their role in fluid modelling of a wide range of commercial ap-
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plications has motivated much research, and their strong nonlinearity poses an

onerous challenge to their analysis and simulation. The subject of yet more fer-

vent debate surrounds the unproven regularity of the equations. However it is

clear the main challenge for numerical methods is in resolving the vast range of

scales which their turbulent evolution will support. It has also been found that

the smallest scales exhibit coherent vortex filaments, and it is their geometry

that is proving to be a fruitful area of study in tackling the problem of finite-time

blow-up in the Euler equations. (Deng et al., 2006), (Deng et al., 2005), (Hou

and Li, 2006).

The adaptivity of the method presented, and its inherent self-similar nature,

combined with the emphasis on resolving vorticity and its stretching, is motivated

predominately by these observations. The Lagrangian vortex elements present

themselves as an obvious candidate for diagnosing the geometry of the flow in

locations of intense vorticity production.

3.2 The Method

We seek to calculate solutions to the incompressible Euler equations, written

here in their vorticity-velocity form

Dω

Dt
= ω.∇u (3.1)

ω = ∇× u (3.2)

∇.u = ∇.ω = 0 (3.3)

where u and ω denote fluid velocity and vorticity respectively. We discretise these

two constituents separately, with an emphasis placed upon resolving vorticity;

velocity by definition is supported by a narrower range of scales.

Vortex filaments are defined by space curves (piecewise linear for the purposes

of advection and vorticity interpolation), denoted by a sequence of N points, xp.
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Since these are discrete approximations to vortex lines, we insist that they form

closed loops as is required in an ideal fluid in the absence of solid boundaries.

The vorticity is inferred from the filaments, by considering each segment as a

discrete element, whose vorticity is proportional to its length, i.e.

ωp = cpℓp (3.4)

where ℓp = xp+1−xp. The vorticity is defined at the midpoint between xp+1 and

xp and here cp a strength scale factor. Kelvin’s circulation theorem then allows

us to materially advect these points,

dxp

dt
= u(xp, t)

which is performed numerically using the fourth-order Runge-Kutta time stepping

scheme, given velocities on the elements (this can be considered as conservation

of circulation for the filament). An adaptive time step is chosen based on the

peak vorticity to maintain accuracy

δt =
π

10‖ω‖∞
.

Velocities are calculated from the vector potential ψ and the Poisson equation

∆ψ = −ω (3.5)

u = ∇×ψ (3.6)

using the OpenFOAM CFD library, which in turn uses the finite-volume method

(FVM), on an arbitrary polyhedral mesh. A number of other options were ex-

plored (e.g. an ADI method (Douglas Jr et al., 1963), (Ziegler, 2004), a mulitgrid

method (Briggs et al., 2000) etc.) before deciding on the OpenFOAM solver due

to its simple implementation and generality. We employ periodic boundaries in
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one space variable, which we define to be z and maintain free-slip boundary con-

ditions in x and y. The vector potential is used to avoid derivative boundary

conditions and to enforce incompressibility. To keep the vorticity distribution far

enough away from the horizontal boundaries we scale our domain such that the

horizontal to vertical aspect ratio a = Lh

Lz
= 3. Since u → 0 like 1/r2, we will

set Lz = π and consider an initial vortex length scale and circulation of unity,

then this aspect ratio allows sufficient decay without the necessity to solve a large

domain. The boundary conditions are

ψ(x, y, Lz) = ψ(x, y,−Lz)

ψ(Lh, y, z) = ψ(−Lh, y, z) = 0 (3.7)

ψ(x, Lh, z) = ψ(x,−Lh, z) = 0

with the nodes xp of the vortex filaments periodically shifted at Lz and −Lz.

A global mesh is generated initially with a2163 equal hexahedral cells, which

are subjected to a mesh refinement procedure outlined in section 3.2.3. Stan-

dard FVM in OpenFOAM is used in the discritisation of (3.5) with a diagonal

incomplete-Cholesky preconditioned conjugate gradient linear solver.

While creating vortex filaments as closed loops will only approximately satisfy

the solenoidality property for vorticity, it is not, in fact, necessary to perform any

additional correction when computing velocities since any corrected component is

not involved in the advection of vorticity. If we assume the uncorrected vorticity

is ω∗ then

ω∗ = ω +∇χ ⇒ ∇.ω∗ = ∆χ

by a Helmholtz decomposition. Thus the corrected vorticity field can be expressed

as

ω = ω∗ −∇∆−1∇.ω∗.
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Equation (3.5) requires taking the curl of ω, and so the correction term will not

contribute. For any detailed discussion of the vorticity field to be performed this

correction will be necessary in post processing.

3.2.1 Interpolation

Having described the model set up for the evolution of vorticity and the calcu-

lation of velocities upon the grid, the next step is to discuss the communication

of information between element and grid. The process to which we shall give

most consideration is that of assigning vorticity values from the elements to the

grid. As has already been alluded to, the nonuniform nature of our grid presents

additional challenges in determining an accurate and consistent interpolation

kernel. This must, however, be tempered with the efficiency requirement of the

algorithm, consequently we employ some local interpolation procedure such that

only a small subset of the grid is in direct communication with the elements.

Following the convention in (Cottet and Koumoutsakos, 2000), we denote

gridded quantities by subscript i and particle variables by subscript p, so for

example xi are the cell centres of the control volumes in the Eulerian mesh and

x̄p are the locations of the ‘particle’ centres. We introduce an interpolation

kernel for each segment, p, and denote it as φp(x) = φ(x̄p − x). Our assignment

of vorticity to the grid follows from

ωi =
1

Vi

N
∑

p

vpωpφp(xi) (3.8)

where the Vi are the volumes of the cells, and vp are the particle volumes (see

below). For a uniform grid, appropriate choices for φp have been established as

tensor products of one dimensional B-splines. These kernels are limited to second

order accuracy, but have favourable smoothness properties. (Monaghan, 1985)

was able to increase the accuracy of B-spline kernels using Richardson extrapo-
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lation, and his M ′
4 kernel is a standard method for vortex method interpolation

(Cottet et al., 1999). Unfortunately, these basis functions are dependent on uni-

form mesh widths and the arbitrary unstructured mesh paradigm employed in

OpenFOAM does not permit mapping to a uniform Cartesian mesh.

In order to determine a mesh independent interpolating function, we must

consider its smoothing properties. Too much smoothing and we smear out the

vorticity gradients, too little and we overestimate the gradients, resulting in a

much too noisy vorticity field. One can consider any interpolation procedure

for vortex-in-cell methods to be analogous to smearing a blob of vorticity of size

proportional to the smoothing length, onto the grid. We are able to draw a certain

comparison to the vortex blob method (Hou, 1990), (Leonard, 1980) and consider

our interpolation to be providing some core vorticity profile to the Lagrangian

elements.

We have designed our method to be able to follow the direct cascade to small

scales automatically, throughout the process attempting to resolve the strong

straining of vortex filaments as accurately as possible. Previous methods which

utilise a fixed uniform grid, and therefore smoothing lengths, effectively employ

vortex blobs of fixed width and thus suffer from a upper bound in resolution which

is fixed a priori. We therefore propose an interpolation method that dynamically

adjusts the smoothing provided to each element precisely dependent upon the

vortex stretching which drives the descent to small scales.

Several authors have made great use of vortex methods employing a Gaus-

sian profile for vortex elements (Leonard, 1985), (Barba et al., 2005), (Cottet

et al., 2000) as it allows vorticity and its derivatives to decay quickly enough at

infinity for the method to satisfy the convergence criteria (Cottet and Koumout-

sakos, 2000). This choice is also practical for our purposes as it allows a mesh

independent smoothing of compact support to be determined.
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To maintain overlap between segments and have consistent particle ‘sizes’

during our simulations we use an ellipsoidal Gaussian of the form

φp(x̂) ∝ e
− x̂2+ŷ2

σ2
p

− ẑ2

τ2p

where x̂ = (x̂, ŷ, ẑ) form a local Cartesian coordinate system centred on the

particle with the ẑ-axis tangential to the filament, such that σp is the smoothing

parameter perpendicular to segment p and τp is the smoothing parameter parallel

to it. We can now define a particle volume by

vp =
4

3
πσ2

pτp (3.9)

which remains constant over the lifespan of the element (section 3.2.2 describes

updating of filaments). Now since vortex stretching is accounted for simply via

the separation of the points xp in the filament, we are able to maintain overlap

by carefully updating σp and τp . We initialise by

σp = d (3.10)

τp = ℓp (3.11)

where we define ℓp the length of the element and d the inter-filament spacing. τp

is updated as element end points are time-stepped and incompressibility allows

σp to be calculated from (3.9).

The most important property of φp is that it is conservative, i.e. that the

precise amount of vorticity possessed by the element is distributed to the grid,

which we can express as

np
∑

i

φp(xi) ≡ 1.
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= xp+1

−xp. The vorticity is defined at the midpoint between

c a strength scale factor. Kelvin’s circulation theorem then

σp

τp

Figure 3.1: Schematic showing smoothing lengths relative to filaments and seg-

ments demonstrating overlapping properties.

where np is the number of cells inside the support of segment p. This is often

referred to as a ‘partition of unity’ for the interpolation kernel. Therefore to

satisfy partition of unity, the discrete form for our Gaussian interpolation kernel

is

φp(x̂) =
Vi

π3/2σ2
pτp

e
− x̂2+ŷ2

σ2
p

− ẑ2

τ2p (3.12)

which satisfies

np
∑

i

φi ≈ 1 since

1

π3/2σ2
pτp

∫∫∫

V

e
− x̂2+ŷ2

σ2
p

− ẑ2

τ2p dV = 1.

This interpolation procedure is easily verified in one dimension for a uniform

distribution of point sources. Let σ be the smoothing length, such that the

volumes are vp = σ and the separation of the points d = σ. Therefore the
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equivalent expression to (3.8) with the one dimensional form of (3.12) reads

ω(xi) =
1

Vi

N
∑

p

σωp
Vi√
πσ

e
−(xi−xp)

2

σ

=
1√
π

N
∑

p

ωpe
−(xi−xp)

2

σ

where ωp is the strength of each particle. Figure 3.2 shows a plot of such a profile

for 10 point sources uniformly spaced at integer intervals (i.e. d = vp = σ = 1)

with uniform strengths (ωp = 1, for all p). The overlap is such that a constant

profile is maintained with a smoothly varying edge.

Note that conservation is only weakly enforced since we consider only cells

within some shell (6 times σ or τ in the appropriate direction) of each segment to

lie within the support of φp. The more cells included the better the conservation.

In fact the cell density within a smoothing length distance has more influence

on conservation that the size of the support. However we are faced with a trade

off; if np, the number of cells in the support of segment p, tends toward the total

number of vortex nodes, N , then the hybrid method becomes redundant and

we approach a calculation on the order of the N -body full Lagrangian problem.

In section 3.2.3 we describe mesh refinement criteria based upon σ and τ which

ensures np ≪ N .

It is also possible to explicitly force conservation by exchanging (3.12) with

φp(x̂) =
Wp(x̂)

np
∑

i

Wp(x̂)

, Wp(x̂) = Vie
− x̂2+ŷ2

σ2
p

− ẑ2

τ2p

however this can lead to undesirable noise if np is small.

Velocity interpolation from the grid to the filament nodes is (in the first in-

stance) a linear interpolation from neighbouring cells. Notice this interpolation

is distinct from the vorticity interpolation; vorticity interpolation requires dis-

crete ‘packets’ of circulation to be distributed to the grid in a conservative way,
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√

Figure 3.2: Plot showing vorticity profile for a uniform distribution of point

sources given the interpolation formulae outlined. 10 particles are placed at

integer intervals starting from x = 1 with uniform unit strength.
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whereas velocity interpolation at the filament nodes requires only the sampling

of the continuous field defined upon the grid. We employ the cellPointFace func-

tion contained in the OpenFOAM library which decomposes the parent cell into

tetrahedra with one vertex at the cell centre and the rest on the cell faces, one of

which is a face centre. The sample node is located within a particular tetrahedra

and the velocity is linearly interpolated from the vertices (face values being inter-

polated from cell centres). Further choices for smoothing velocity interpolation

are discussed in section 3.3.2.

3.2.2 Renoding

To motivate an appropriate refinement strategy for both the Lagrangian and

Eulerian parts of the method an appreciation of vortex stability and 3D turbu-

lence is necessary. The filament approach that has been devised takes advantage

of Kelvin’s circulation theorem to employ an implicit handling of the dominant

nonlinear vortex stretching term in equation (3.1) which allows a certain relax-

ation in the numerical stability of the method. The high strain this term imposes

on the vortex filaments is associated with the well known cascade to small scales

and the associated regularity question for inviscid flows. From the point of view

of a vortex filament, small scales are generated through formation of hairpin vor-

tices, as the strained filaments are curved back on themselves. Given this, it is

clear that resolution is required in regions of high strain and curvature of vortex

lines.

A common practise in filament methods is to allow the segments to subdivide

once they exceed some threshold in length, and likewise merge adjacent segments

when their sizes are small (Almgren et al., 1994). It was found, however, that

this strategy does not take fully into account the bending and folding of fila-

ments associated with vortex stretching (Chorin, 1988). The result was irregular
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filaments, with acute angles at the nodes.

A promising alternative to this traditional filament adaptivity of splitting

and merging, is to perform a renoding procedure similar to that used in the con-

tour algorithms of Dritschel (Dritschel, 1988b), (Dritschel and Ambaum, 1997).

This method redistributes nodes, adjusting their total where necessary, to in-

crease their concentration in regions of high curvature or strain. It is particularly

advantageous to accurately represent high curvature regions since a degree of

curvature has been discovered to be essential in order to generate near singular

conditions (Deng et al., 2006).

Since space curves form a 3D analogue of planar contours we can follow

(Dritschel, 1988b) in defining a node density function, ρ, defined along the fila-

ment which when integrated gives an updated number of nodes required to resolve

the filament. Instead of using curvature, we define ρ to be proportional to the

local velocity gradient; velocity gradients are nonlocal and will account for devel-

oping deformations of the filament due to the induced velocity of all filaments,

not purely the deformations due to the self induced velocity gradients for which

curvature is responsible.

To allow a continuous definition of the space curve we perform cubic interpo-

lation between the nodes along the filament. We start with a local orthonormal

coordinate basis for each segment p:

ξp =
ℓp

ℓp
, (3.13)

np =
xp+1 × xp

|xp+1 × xp|
, (3.14)

bp = ξp × np (3.15)

where ℓp = |ℓp|. Notice, while we use the symbols n and b and the terms ‘normal’

and ‘binormal’, these vectors are distinct from the Frenet-frame, which would

break down in regions of zero curvature (in the unlikely scenario that np we can
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use spherical polar coordinates eR, eθ, eφ). ξp is thus the local Lagrangian unit

vorticity vector. The space curve is interpolated by

x(q) = xp + qℓp + η(q)np + ξ(q)bp (3.16)

η(q) = apq + bpq
2 + cpq

3 (3.17)

ξ(q) = αpq + βpq
2 + γpq

3 (3.18)

where q ∈ [0, 1] is a parameterisation between the nodes p and p+1 (see figure 3.3)

. The coefficients ap, bp, cp, αp, βp, γp are found by fixing x(0) = xp, x(1) = xp+1

and matching the curvatures at xp and xp+1 in the np and bp directions.

Curvature contributions at the points xp are found in the planes defined by

np and bp, consistent with the spherical contour surgery approach in (Dritschel,

1988a). We define the ‘curvature vector’

κp =
2(ℓp−1 × ℓp)

∣

∣ℓpℓ
2
p−1 + ℓp−1ℓ2p

∣

∣

and therefore for a given segment p we define the projections of κp

κ̂p = np · κp, κ̂p+1 = np · κp+1 (3.19)

κ̃p = bp · κp, κ̃p+1 = bp · κp+1 (3.20)

and match these to the equivalent expressions from our interpolation parameter-

isation (3.16),

κ̂(q) =
η′′(q)ℓp

(

ℓ2p + η′(q)2 + ξ′(q)2
)

3
2

(3.21)

κ̃(q) =
−ξ′′(q)ℓp

(

ℓ2p + η′(q)2 + ξ′(q)2
)

3
2

(3.22)

where primes denote derivatives with respect to q. As with (Dritschel, 1988a),

nodes are distributed such that the deviations of x(q) from the straight line, i.e.
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+ qℓp
+ η(q)np

+ ξ(q)bp

and xp+1

matching the curvatures at xp

Figure 3.3: Diagram showing the interpolation contributions for renoding

η(q) and ξ(q), are small compared to ℓp. This means we can neglect the nonlinear

terms in equations (3.21) and (3.22) and curvature becomes piecewise linear along

the contour:

κ̃(q) =
d2η

dq2
ℓ−2
p

κ̂(q) = −d2ξ

dq2
ℓ−2
p

This results in coefficients remarkably similar to those in (Dritschel, 1988b) and

(Dritschel, 1988a)

ap = −
ℓ2p
6
(2κ̃p + κ̃p+1) αp =

ℓ2p
6
(2κ̂p + κ̂p+1)

bp =
ℓ2p
2
κ̃p βp = −

ℓ2p
2
κ̂p

cp =
ℓ2p
6
(κ̃p+1 − κ̃p) γp = −

ℓ2p
6
(κ̂p+1 − κ̂p)

It is possible to show that the convergence for this interpolation is precisely the

same fourth order as found in (Dritschel, 1988b). Considering an area RMS error

defined as
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Figure 3.1: Plot showing log ǫA

Figure 3.4: Plot showing log ǫA vs logN for a single helical filament

ǫA =

(

N
∑

p=1

ℓ2p
N

∫ 1

0

|x̃(q)− xp(q)|2 dq
)

1
2

where x̃(q) represents some predefined exact expression for a space curve for

which the xp denote the piecewise linear segment end points. For error analysis

purposes a helical filament was chosen so as to have both components, η and ξ,

in its correction. Figure 3.4 contains a log-log plot of this error and shows the

O(N−4) dependence.

We follow (Dritschel, 1988b) and (Dritschel and Ambaum, 1997) to use cur-

vature averages to construct a smooth and consistent node density function ρ.
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First let

κ̄p =
ℓp
µ
(κp + κp+1)

νp =
(

L−2 + κ̄2p
)

1
2

The form for κ̄p is dimensionless and is chosen to preserve the self similarity of

the method; the goal is that for a given value of µ, the dimensionless node density

parameter, a circle will be represented by a similar number of points, regardless

of radius. This is generally a typical segment length on the unit circle, i.e. from

the initial condition µ = 2π/Ns for Ns segments. The parameter L is included

to ensure an appropriate node density on straight filament sections where κ is

small. This serves to place a lower bound on node density. It is desirable for this

bound to be related to the resolution of the Eulerian mesh; segments should not

exceed some proportion of the largest cell which they encounter. We set

L = 2l0

where l0 is the largest cell width in the mesh (the global mesh width).

Further averaging is performed such that four nodal curvature values will

contribute to the node density function, ρp

ν̄p =
ℓp−1νp−1 + ℓpνp

ℓp−1 + ℓp

ν ′p =
1

2
(ν̄p+1 + ν̄p)

ρp =
ℓp

2L2µ
ν ′p

1
4

This form has sufficient non-locality and smoothness to prevent abrupt changes

in node density. Various forms were investigated for ρp, including using nodal

values for strain in place of circulation, and extensive tests performed. Strain

89



was found to perform no better than curvature as a node density function, but

required additional computations. The exponent of 1
4
in ρp was found necessary

for stability. Considering values of µ and L which are physically relevant, it was

discovered higher powers on ν ′p result in oscillations in node density and number

on sequential passes of the renode subroutine. For example with a single unit

radius circular filament with N = 128 nodes, i.e. µ = 2π/128, the form of ρp

above gives N = 127 new nodes on the filament on the first call of renode and

every call thereafter. With this initial condition but now changing µ = 2π/256,

the first pass yields N = 297, second pass N = 246 and on the third pass N = 256

and this is stable on all subsequent calls. Similarly µ = 2π/64 gives N = 57,

N = 60, N = 64. This convergence is not so readily achievable for other choices

of ρp. e.g. setting ρ̄p =
2ℓp

13L2µ
ν ′p then the sequence of filament nodes for the same

initial condition and µ = 2π/128 is N = 71, 120, 75, 114. Setting µ = 2π/256

the sequence is N = 263, 138, 245, 146. Similar results are obtained until the

exponent of ν ′p is reduced sufficiently to damp node density variations. Clearly it

is possible that alternative forms for a node density function could be obtained

and function equally as successfully as this one.

Renoding thus proceeds filament by filament, fixing the first node on each

and distributing nodes by the variation of ρp, with the number of nodes on each

filament given by the integer part of the sum of all ρp. The process of fixing the

first node was found to initiate oscillations at the join due to the first node never

having the ability to relax relative to the interpolated second and final nodes.

The fix was simply to adjust the ordering of the nodes along each filament such

that node 1 was incremented each time the renode subroutine was called.

Certain quantities associated with the filament segments require updating at

renoding. To maintain consistent volume and vorticity strength conservation

from each filament, we require to update vp and cp at every renode call. The new

nodes naturally create new segments which require some volume. Volumes are
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interpolated linearly from the original filament via the parameter q (q provides

a natural partition of unity). This automatically conserves their total and has

the effect of relaxing the widths σp to respond to the small deviations in length

introduced by perturbations η and ξ. We now have a new set of segments upon a

given filament, with new lengths determined by ρ. Since vorticity is proportional

to length (equation (3.4)) and volumes have been determined from the original

filament, the contribution to the full vorticity field from each segment needs to

be updated to match the value before renoding (c.f. equation (3.8)). In other

words the precise vorticity from the original filament needs redistributing to the

new one. This can also be performed during renoding by linear interpolation in

q, now aimed at conserving
∑

vpcplp, i.e. for each new segment, p′

gp′ =
∑

p

w(q)vpcpℓp

where w(q) are the linear interpolation weights (for example if an entire segment

is included w(q) = 1) and the sum is over all overlapping segments on the original

filament (note this sum could contain a single term). After renoding is complete

the cp are updated:

cp′ =
gp′

vpℓp

3.2.3 Mesh adaptivity

To perform dynamic mesh refinement in OpenFOAM it is necessary to define a

suitable scalar function from which cells are flagged for refinement. Appropriate

choices seem to present themselves in the form of the interpolation smoothing

lengths σ and τ . To enable accurate velocity gradients to be computed and

transferred to the filament nodes, sufficient resolution in the grid must be present.

The physical small scales inevitably generated in the flow can be attributed to the

stretching and folding of vortex lines, as already discussed. Therefore to resolve

such structures the grid should be adapted where σ and τ are small, i.e. where
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Figure 3.5: Mesh configuration on simulating a vortex ring with refinement cri-

terion given in (3.23)

stretching is more intense and (or) filaments require more resolution via renoding.

Various forms have been trialled for the refinement function γ. The two used in

the following results are as follows

γ1(xi) = max
p





hi
min
p
(τp, σp)



 (3.23)

i.e. γ1 returns the largest ratio of cell width, hi, to smoothing length. The

support over which the maximum is sought is proportional to the cell width, i.e.

any segment within 6 cell widths is considered. In this way, small scales are

tracked by the mesh via the shrinking smoothing lengths. This was found to be

appropriately smooth for uniform filaments; however, when employed for more

dynamic simulations, it generated noisy mesh configurations, by which we mean

a mesh containing refinement patterns which do not vary smoothly, see figure

3.5. To address this problem, we introduce a different refinement criterion using
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Gaussian smoothing, with a smoothing length given by some proportion of the

cell width,

γ2(xi) = max
p







Vie
−
|xp−xi|

2

h2
i

min
p
(τp, σp)






. (3.24)

This form allows for better smoothness in the refinement, and avoids large and

abrupt changes in cell size which brings about undesirable non-uniformity (see

section 3.3.2).

We then flag cells satisfying γ > γ′, where γ′ is the refinement parameter

(see Appendix A for some details of the mesh refinement class and flagging cells

in OpenFOAM). This refinement strategy ensures that the filament will be con-

tinually and automatically well resolved based on the scales represented by the

filament segments themselves, with very little computational effort expended ac-

quiring γ.

For computational efficiency we do not perform adaptation (mesh or renoding)

every single time step. It was found 2-3 time steps gave sufficient adaptivity, and

we renode on every third time step and resmesh every second.

3.3 Results

We validate the method by comparison with well known three dimensional

vortex problems. There are surprisingly few examples of steady 3D vortex struc-

tures from which we are able to judge the performance of a new method; vortex

rings are a very well studied class of flows, which are the most obvious candidate.

Their steady behaviour and instability are well documented (Norbury, 1973),

(Widnall and Tsai, 1977), (Leonard, 1985).

First we compare vortex ring propagation speeds with those given by Nor-

bury’s steady states (Norbury, 1973) and from Kelvin’s 1867 paper (see e.g.
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(Lamb Sir, 1993)). We then demonstrate the method’s capability to capture

complex unsteady vortical motions by considering the Widnall instability of the

thin core ring (Widnall and Tsai, 1977). This tests both the spatial adaptation

techniques: renoding and mesh refinement. We also verify the helical vortex

equilibria presented in chapter 2. In all cases we calculate the known invariants,

energy

T =
1

2

∫

V

|u|2dV

and helicity

H =

∫

V

ω · u dV

(circulation is implicitly conserved by the method).

3.3.1 Norbury’s ring translation

(Norbury, 1973) considered a class of steady axisymmetric vortex rings, com-

puting contours bounding a vorticity distribution proportional to radial distance,

parameterised by a mean core radius. These steady states represent an ideal

test case for numerical methods such as the one presented here, their speed of

propagation being accurately known.

For Norbury’s vortex rings, nodes are placed lying inside the symmetric core

boundary δA defined by a cosine series with coefficients given by table 1 in (Nor-

bury, 1973). These contours for various values of mean core radius, α, are shown

in figure 3.6. We initialise the filaments on a cylindrical grid, placing an array of

nodes in the rz-plane and project each filament azimuthally. Inside the bound-

ary the (purely azimuthal) vorticity is given by ωφ = ar, and therefore we scale

the r grid to increase filament density with increasing r i.e. r =
√
ir∆r where

∆r = π2/nr and ir varies between 0 and nr. While the profile we obtain doing

this is approximating the radial structure, the discrepancies turn out to be neg-

ligible in the translation velocity after we non-dimensionalise with circulation Γ.
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Figure 3.6: Contours in the rz-plane representing the boundary δA of the steady

states computed by (Norbury, 1973) for various mean core radii α (the α =
√
2

limit represents Hill’s spherical vortex (Hill, 1894))
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In all cases we also offset the filaments relative to the grid to reduce the effect

of grid generated symmetries on the solution. The filament resolution, given by

the rz-plane grid spacing, is chosen such that the core of the ring is represented

by a similar number of filaments regardless of its size. The motivation for this is

to attempt to construct self-similar vorticity profiles across all sizes of ring. We

do, however, perform simulations with a variety of such resolutions to gauge the

accuracy and efficiency of the method.

To test performance we are able to compare the speed of propagation of the

vortex ring to those given by Norbury and Kelvin. Kelvin found for a uniform

vortex ring of radius R and core radius α′ that the speed is given by

VK =
Γ

4πR

(

log
8R

α′
− 1

4

)

. (3.25)

We demonstrate the steady translation of the vortex ring by computing the z

centroid of the vorticity distribution, i.e.

z̄(t) =

∫∫∫

V
ωφz dV

∫∫∫

V
ωφ dV

.

The translation rate is a particularly good metric for determining the accuracy

and stability of the method, but we can also observe the invariants of the flow,

energy and helicity. For these rings, helicity is zero and Norbury published results

for the energy of the rings to which we can compare. We non-dimensionalise the

states spatially via the ring radius R = 1 and in time by setting circulation γ = 1.

The easiest way to compute Γ is to evaluate the integral

Γ =

∫∫

A

ω · n dA

from the gridded vorticity. However due to the variations in mesh configuration, it

is more appropriate to determine Γ from the Lagrangian description of vorticity;
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hence since the ring is by definition axisymmetric we set the circulation for a

vortex ring to be

Γ ≈
∑

vpcplp
2π

≡ 1

by initialising

cp = c =
2π

∑

vplp

for all p.

To compare to Norbury’s non-dimensionalisation we must rescale the diagnos-

tic quantities (energy, helicity and propagation speed). Norbury sets Γ = aR3α2Γ̄

where Γ̄ is given in (Norbury, 1973) and table 3.1. Thus the translation speed

V̄ =
V

aR2α2
=
RΓ̄V

Γ

and the energy is

T̄ =
T

a2R7α4
=
RΓ̄2T

Γ2
.

As a consequence results for V̄ and T̄ are sensitive to our estimate for Γ, the

circulation for the ring and how well it is represented upon the grid. Thus we

can read from the gridded vorticity a value for a, compute V and T and compare

to the expected results from (Norbury, 1973) (table 3.1).

α a V̄N VK T̄N Γ̄

0.2 7.966 0.8488 0.8589 9.85 3.1385

0.4 1.991 0.6586 0.6830 6.58 3.1262

0.6 0.8995 0.5357 0.5751 5.02 3.0882

0.8 0.5169 0.4428 0.4938 3.99 3.0231

Table 3.1: Parameters and diagnostics for the various Norbury vortex rings under

consideration where V̄N and T̄N are the non-dimensional translation and energy

from (Norbury, 1973)).
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From here onwards we drop the over-bar notation and all quantities presented

will be rescaled to Norbury’s non-dimensionalisation as described above.

α = 0.2 Parameter Study

To demonstrate convergence of the method, a Norbury ring of radius α = 0.2

was examined exploring various values of the renode parameter µ, the inter-

filament distance (or filament resolution) d and grid refinement parameter γ′ (in

all of the Norbury cases γ1 (3.23) is used).

An important property for attaining an accurate solution is to ensure the

vortex core is well resolved. Vorticity profiles for various values of d and γ′ are

shown in figure 3.7. A clear improvement in the accuracy of the core profile

is observed as d increases and γ′ decreases. The majority of simulations are

performed with µ = 2π/128 which was found to give (qualitatively) the smoothest

filaments and be computationally efficient (examples with µ = 2π/64 and µ =

2π/256 are given)

Table 3.2 includes details of the run parameters for each case, including fila-

ment numberNfil, total segment number N , total cells in the mesh Ncells, smallest

cell width hmin. Table 3.3 contains the diagnostics of vorticity scale a, translation

speed V and energy T , to compare to Norbury’s results. All of these diagnostics

are for t = 0, with the obvious exception of V which is computed after T = 200

time steps, t ≈ 6 to 7.

The choices for the parameters are based on computational efficiency and the

preservation of a physical solution. The values for γ′ chosen are those for which

a practical computation time is possible, while maintaining an accurate solution:

Observing the results for V and T given in table 3.3 on decreasing γ (e.g. cases
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case d µ γ′ Nfil N Ncells hmin

a 0.1 2π/128 0.7 28 3474 619005 2π/256

b 0.05 2π/128 fix 106 13208 864448 2π/128

c 0.05 2π/128 1.7 106 13208 294198 2π/128

d 0.05 2π/128 0.7 106 13208 797526 2π/256

d1 0.05 2π/64 0.7 106 6832 425546 2π/256

d2 0.05 2π/256 0.7 106 27074 406800 2π/256

e 0.025 2π/128 3.7 414 51577 267031 2π/128

f 0.025 2π/128 1.7 414 51577 802489 2π/256

g 0.0125 2π/128 7.7 1641 204647 255635 2π/128

h 0.0125 2π/128 3.7 1641 204647 805870 2π/256

Table 3.2: Mesh and filament parameters for runs with Norbury vortex ring initial

condition with core radius α = 0.2. Case (b) is the fixed grid case.

case a V T CPU time

a 7.19 0.8191 9.012 0.13

b 7.48 0.8347 9.272 0.21

c 7.48 0.8305 9.249 0.07

d 7.48 0.8351 9.289 0.22

d1 7.45 0.8407 9.244 0.08

d2 7.48 0.8322 9.301 0.15

e 7.67 0.8426 9.475 0.10

f 7.66 0.8478 9.523 0.36

g 7.84 0.8448 9.521 0.28

h 7.72 0.8511 9.624 1

Table 3.3: Diagnostics for Norbury vortex ring simulations with core radius α =

0.2. Norbury’s results are in table 3.1 and run parameters in table 3.2. CPU

time is for T = 200 time steps and normalised to case (h) which took 2.04E6s on

a single intel i7 X980 3.33GHz processor.
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Figure 3.7: Vorticity profile for the Norbury vortex ring α = 0.2. Plots shows ωy

against x, with y = z = 0, µ = 2π/128 and (c) d = 0.05, γ′ = 1.7, (d) d = 0.05,

γ′ = 0.7, (e) d = 0.025, γ′ = 3.7, (f) d = 0.025, γ′ = 1.7, (g) d = 0.0125, γ′ = 7.7

and (h) d = 0.0125, γ′ = 3.7 alongside the exact profile.
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(c)

(h)

Figure 3.8: t=0 mesh configurations for case (c) (above) and (h) (below) for the

α = 0.2 Norbury ring. Colour represents vorticity magnitude |ω|.
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Figure 3.9: Vortex filaments for the α = 0.2 vortex ring, case (d), showing half

of the filaments (N = 6604). Viewed from a latitude of 60◦, and from a distance

of 6 ring radii (6R). T = 1, 125, 250 time steps correspond to t = 0.038, 4.53,

8.60.
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(c) vs (d), cases (e) vs (f)), we see good accuracy gains. We also see increased

smoothness in the filaments themselves (figure 3.16) and better conservation of

the invariants (Figures 3.10, 3.12, 3.13 show plots for energy, helicity, z-centroid

and total mesh cells for the various cases outlined in table 3.2 for α = 0.2).

It seems, however, that the parameter d, controlling the filament resolution

and therefore profile accuracy seems to have the most influence on the accuracy

of the solution. The results from table 3.3 indicate a significant improvement in

both the accuracy of translation rate and the resolution of the vortex core. The

results for d = 0.0125 may indicate that this trend is curtailed slightly where

the filament resolution falls significantly below the grid scale. This is supported

by the increase in variability in the plots for energy and helicity in figures 3.12

and 3.13. An argument can therefore be made to maintain higher ratios of d/hi,

which is consistent with retaining ‘overlap’ of filaments at the level of the grid

(this is corroborated in the following section).

It is observed that the invariants are not well conserved at late times when

instability is initiated. This is most likely due to mesh refinement not well re-

solving the filaments as they deform and generate smaller scales. This can be

established from cases d1 and d2 where we see spurious growth in small scale noise

and an associated loss in conservation of the invariants; see figures 3.14 and 3.15.

As mentioned in section 3.2.3 various refinement criteria have been tested; in the

following sections γ2 is employed in an attempt to address this issue. In spite of

this, for an inviscid calculation with zero numerical dissipation, the translation

and conservation of these rings is well represented by our method. The introduc-

tion of numerical noise and its implications for gridded quantities is dealt with

more thoroughly in section 3.3.2.

Variations in the filament descriptions themselves appear to have little influ-

ence upon the invariants and translation speed in these calculations. Figure 3.10

contains a plot of the total number of filament nodes N during the evolution.
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Little correlation is observed between the value of N and the trends in T , H and

z̄. The influence of renoding is investigated in more detail in cases d1 and d2

which have µ = 2π/64 and µ = 2π/256 respectively. In addition these cases use

γ2 as the refinement criterion to address the issue raised above. Figure 3.14 shows

energy, helicity and translation for these cases and figure 3.15 shows filaments

at T = 250 (t = 8.67, 7.78 for d1 and d2 respectively). Much of what can be

determined from these runs is broadly qualitative: the filaments in figure 3.15 are

not as smooth as the corresponding plot in figure 3.16 for case d. The filaments

in case d1 are visibly more angular at the nodes and this lack of resolution results

in them being unable to deform smoothly in response to the velocity gradients in

the flow (any perceived efficiency gain over case d can be attributed to the mesh

refinement). Case d2 has the corresponding problem where the filament-wise res-

olution falls below the grid and the grid generated noise (see section 3.3.2) is

magnified when the cubic interpolation in the renoding algorithm attempts to

smooth the filaments. After much trial and error µ = 2π/128 was found to be

broadly optimal.

Convergence of the method is difficult to judge and harder to quantify. We

see improvements in the method on increasing inter-filament and mesh resolution.

However, our metrics for determining accuracy are dependent on our filaments

representing some known vorticity field, which is itself a function of filament

spacing and mesh resolution. This is before we consider time integration, velocity

interpolation, renoding etc. For this reason it is only meaningful to comment

that the method performs well (energy does not quickly diverge and translation

rates match Norbury and Kelvin) and we observe accuracy gains with increased

resolution. In section 3.3.3 we compare our method with OpenFOAM’s in built

incompressible solver and are able to judge better vortexFOAM’s strengths.

Table 3.3 also contains the CPU time for the computations performed up to

T = 200 time steps. This allows for some remarks to be made regarding the

104



efficiency of the method. The most striking characteristic of these results is that

increases in mesh resolution most significantly effect computation time. Having

argued above that the parameter d is most influential in gaining an accurate

solution it is then tempting to dismiss mesh refinement and enforce a desired level

of accuracy by increasing the number of filaments in the calculation. Clearly this

is equally undesirable; velocity gradients will not be well resolved as small scales

are generated. The rings in these simulations are broadly regular and do not

challenge the method in the computation of strong velocity gradients. We are

left with striking a balance between adequate mesh resolution, high ratios of d/hi,

and sufficient filaments to well resolve the vorticity profile. These facts inform

the following results and will be discussed further in the following sections.

α = 0.4, 0.6 and 0.8

Simulations were also carried out for vortex rings of varying size to verify

that the method is robust at modelling different sizes of the vortex structure.

Diagnostics and parameters for runs (i) through (viii), which have core radii

α = 0.4, 0.6 and 0.8 can be found in tables 3.4 and 3.5. Figure 3.17 shows

typical filaments at various times for the three core sizes considered. The times

allow one chosen to visualise the filaments away from transitions across the period

boundary. Figures 3.18, 3.19 and 3.20 show similar diagnostics to those presented

in the previous section, this time for the three larger core sizes considered.

The plots for z̄ also now have to be computed in a slightly different fashion

due to the frequent transitions with the periodic boundary. We compute z̄ by

incrementing an average over all filaments of the mean z filament displacement.

Here

z̄j,T =

Nj
∑

p

zp

Nj

is the mean z coordinate on filament j, given Nj nodes on that filament at time
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Figure 3.10: Energy, helicity, number of grid cells (Ncells) and number of filament

nodes (N) for the Norbury ring α = 0.2 cases with d = 0.05, µ = 2π/128, (b)

fixed grid (no adaptation), (c) γ′ = 1.7, (d) γ′ = 0.7.
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Figure 3.11: z-centroid (z̄) for the Norbury ring α = 0.2 cases with d = 0.05,

µ = 2π/128, (b) fixed grid, (c) γ′ = 1.7, (d) γ′ = 0.7.

case α d µ γ′ Nfil N Ncells hmin

i 0.4 0.1 2π/128 1.7 102 13310 365451 2π/128

ii 0.4 0.05 2π/128 1.7 405 51632 353761 2π/128

iii 0.6 0.154 2π/128 1.7 95 12561 445349 2π/128

iv 0.6 0.0755 2π/128 1.7 392 50976 445118 2π/128

v 0.6 0.0377 2π/128 2.5 1586 205812 447267 2π/128

vi 0.8 0.2 2π/128 1.7 101 13269 834822 2π/128

vii 0.8 0.1 2π/128 1.7 393 53082 833814 2π/128

Table 3.4: Mesh and filament parameters for runs with Norbury vortex ring initial

conditions.
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Figure 3.12: Energy, helicity, number of grid cells (Ncells) and z-centroid (z̄) for

the Norbury ring α = 0.2 cases with d = 0.025, µ = 2π/128, (e) γ′ = 3.7, (f)

γ′ = 1.7.
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Figure 3.13: Energy and helicity for the Norbury ring α = 0.2 cases with d =

0.0125, µ = 2π/128, (g) γ′ = 3.7, (h) γ′ = 7.7.

case α a V T CPU time

i 0.4 1.90 0.6276 6.189 0.09

ii 0.4 1.91 0.6416 6.368 0.13

iii 0.6 0.848 0.5011 4.518 0.15

iv 0.6 0.853 0.5143 4.678 0.20

v 0.6 0.845 0.5161 4.703 0.39

vi 0.8 0.474 0.4017 3.385 0.32

vii 0.8 0.476 0.4166 3.563 0.46

Table 3.5: Diagnostics for Norbury vortex ring simulations. Norbury’s results are

in table 3.1 and run parameters in table 3.4. CPU time is for T = 200 time steps

and normalised to case (h) which took 2.04E6s on a single intel i7 X980 3.33GHz

processor.
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Figure 3.14: Energy, helicity and z-centroid (z̄) for the Norbury ring α = 0.2

cases with γ′ = 0.7, d = 0.05 and (d1) µ = 2π/64, (d2) µ = 2π/256 .
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(d2)(d1)

Figure 3.15: Vortex filaments for T = 250 (t ≈ 8.66) of the Norbury ring α = 0.2

cases with γ′ = 0.7, d = 0.05 and (d1) µ = 2π/64, (d2) µ = 2π/256. Filaments

are viewed from the z-axis and show an eighth of all filaments.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.16: Vortex filaments for the α = 0.2 vortex ring at T = 250 time steps

(t ≈ 7− 8) for the cases detailed in table 3.2 (approximately 15-20 filaments are

rendered for easy visualisation)
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step T (we make use of the filaments in this post-processing due to the infrequency

with which the mesh and associated fields are output. In future work a similar

incremental computation will be made on the grid during runtime). Then the z̄

increment is

z̄′ =
1

Nfil

Nfil
∑

j

1

Nj

Nj
∑

p

(zp − z̄j,T )

and is subjected to a periodicity check to keep it within (−π, π). This is then

incremented from one time step to the next, z̄T+1 = z̄T + z̄′, to find the general

z̄ ignoring periodicity. We do see slight noise in the curves for z̄, particularly

when d is small (see figure 3.18) but this is preferable to z̄ propagating across the

boundary.

We find broadly similar results to those in section 3.3.1. We find the agreement

with translation speed, V , decreases with core size, and, moreover, gains for

increased mesh resolution are smaller. The reason from this is likely to stem

from the fact that when the filament radius d is larger, the ratio of d/h is larger,

and the vorticity profile, particularly at the edge of the ring, is poorly resolved

(see figure 3.21). It remains clear from all of the plots for z̄ that the translation

is steady.

In energy conservation we see the expected improvements for higher mesh

resolution, and the higher d/h ratios result in slightly improved helicity conser-

vation.

3.3.2 Velocity divergence and smoothness

We expect the evolution of these rings to be broadly steady. However (Widnall

et al., 1974) and subsequent studies (Moore and Saffman, 1974) (Widnall and

Tsai, 1977) (Shariff et al., 1994) (Archer et al., 2008) have shown vortex rings

to be unstable to azimuthal disturbances and to radial ones (Leung et al., 2007)

. Numerical noise and grid anisotropy will introduce sufficient disturbances to
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(ii)

(iv)

(vii)

Figure 3.17: Vortex filaments for (ii) α = 0.4, (iv) α = 0.6 and (vi) α = 0.8 vortex

rings at time steps T = 150, 130 and 170 (t = 17.2, 30.3, 69.1) respectively for

the cases detailed in table 3.4 (one eighth of total filaments are rendered for

easy visualisation and times chosen to avoid transitions with periodic boundary).

Filaments are viewed from a latitude of 60◦ and a distance of 6R.
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cases with γ′ = 1.7, µ = 2π/128, (i) d = 0.1, (ii) d = 0.05.
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Figure 3.19: Energy, helicity and z-centroid (z̄) for the Norbury ring α = 0.6

cases with µ = 2π/128, (iii) d = 0.154, (iv) d = 0.075, (v) d = 0.0378.
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(i)

(iii)

Figure 3.21: Vorticity profile (ωy) for the Norbury vortex ring cases (i) and (iii)

detailed in table 3.4.
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instigate the instability of the ring. It is therefore critical that any observed

instability be clearly physical in nature. Figures 3.9, 3.16 and 3.17 show filaments

for the various Norbury ring cases considered thus far. The behaviour, while

broadly similar displays signs of azimuthal inviscid instability (undulating vortex

lines, production of halo vorticity and no viscous wake). The various cases show

instability triggered at different times and with various degrees of smoothness.

Understanding these differences is important in understanding how adaptivity

effects the solutions.

The FVM discretisation employed by OpenFOAM allows for a degree of mesh

non-orthogonality, where the vector joining cell centres of adjacent cells is not

perpendicular to the cell face. This occurs in the locations where the cell sizes,

or resolution changes; the refinement patterns. When calculating gradients at

the faces between cells (which are used to calculate the laplacian) this introduces

errors. For implicit gradients, i.e. inverting differential operators, this is corrected

for by interpolations and a series of iterations.

In addition to the non-orthogonality of the mesh, the refinement patterns

reduce the order of accuracy of explicit gradients (e.g. the curl of equation (3.5)).

This stems from the non-uniformity and skewness of the cells in these regions

which impinges upon the accuracy of the interpolation required to computed the

cell centred gradients (see section A.1).

These two error sources create spurious gradients arising from the curling of

vorticity to be transferred to the Lagrangian filaments near refinement patterns.

In fact the velocity field is not exactly incompressible (despite being defined

as a curl of a potential), therefore the advection of the filaments can violate

Helmholtz’s vortex laws. Some details of the numerical schemes involved and the

corrections available in OpenFOAM are included in appendix A.

This has motivated the refinement strategy outlined in section 3.2.3 so that
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Figure 3.22: A typical mesh configuration for a simulation of a vortex ring, colours

indicate ∇ · u.

we produce meshes with low non-orthogonality in locations near the vortex fila-

ments. We must, however also be wary of such gradients still being introduced

to the filaments via the velocity interpolation. Figure 3.23 demonstrates the con-

sequence of a poor mesh refinement where the refinement pattern coincides with

the filaments and spurious gradients are transferred to the filaments resulting in

unphysical small scale fluctuations.

Figure 3.16 shows the filaments at T = 250 time steps (t ≈ 7) for the α = 0.2

ring. The accuracy discussed in section 3.3.1 and observation of the filaments

indicate that a smooth representation of vorticity is a contributing factor to an

accurate computation. For low filament resolution (large d, case (a)) the core

profile for the Norbury ring is poorly represented. However due to smaller ratios

of cell width, hi to d, a smooth profile is obtained. In other words the individual

filaments are represented smoothly and therefore are subjected to less noise from

the grid (notice, however, these cases fail to give accurate propagation speeds

etc. see case(a) in table 3.3 and figure 3.16). A similar argument can be made

for small values of d, where the filaments are sufficiently dense to represent the
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Figure 3.23: Filaments and mesh configuration where poor mesh refinement,

combined with spurious velocity gradients conspire to introduce erroneous small

scale oscillations to the filaments. Mesh on right has a refinement pattern across

the core of the vortex ring (colour shows azimuthal vorticity).

discontinuous ring boundary smoothly. i.e. despite the individual filaments not

being smoothly represented, their overlapping union is (see cases (g) and (h)

in figure 3.16). It is therefore the intermediate values (here the d = 0.05 cases)

where neither hi/d is small, nor the filaments dense enough where the smoothness

of vorticity beaks down. Cases (b), (c) and (d) show the most irregular filaments

in figure 3.16.

Case (b) is included with no mesh refinement, i.e. a fixed uniform grid

throughout the calculation. While the diagnostics in table 3.3 and figure 3.10

may indicate a slight advantage in this strategy, due to zero mesh variability,

the filaments indicate the benefit of mesh refinement. Case (d) was computed

with comparable CPU time, but has smoother filaments due the higher mesh

resolution possible.

A breakdown in smoothness also has associated consequences for the calcula-

tion of the invariants upon the grid. In particular we see helicity grow that late

times (albeit comparatively small relative to the characteristic magnitudes in the
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flow, recall Γ = 1 and R = 1). It was discovered, however, that this growth is a

further manifestation of mesh variability (in the calculation of H itself), rather

than any consistent topological changes in the flow. This is demonstrated in the

following section (3.3.4) where a filament approximation of helicity is computed

and compared to the gridded quantity. We can also make some more general

comments regarding the invariants in section 3.3.4 when the dynamics are more

complex and renoding and mesh refinement are more acute.

This section serves to indicate a further complication in the development and

calibration of this method. The various adaptive components introduce noise

and variability in a dynamic fashion throughout the calculation. Most often this

occurs with a degree of positive feedback; small scales generate more adaptation

and increased variability. As such, pinpointing the precise cause of a particular

feature within a calculation (desirable or not) is extremely difficult.

It should also, however, be remembered that the disturbances are observed

after a significant time integration of an inviscid calculation. No numerical or

physical diffusion is employed to maintain the steady translation rates for these

rings. It is therefore inevitable that numerical noise will accumulate in the solu-

tion. We must then ensure then that the physical instability is dominant enough

to render the numerical noise negligible.

In this effort it is possible to introduce some smoothing to relax the strict

mesh properties. Employing Gaussian smoothing in the velocity interpolation

(similar to the vorticity assignment) maintains a smoother solution, provided the

smoothing length is greater than or equal to the mesh width (the natural scale

at which the numerical noise is included). Following the format of section 3.2.1

we define interpolation weights as

Φp(xi) = e
−
|xp−xi|

2

σuh2
i (3.26)
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such that velocity assignment is

up = u(xp) =
∑

i





uiΦp(xi)
∑

i

Φp(xi)



 (3.27)

where σu ≥ 1. Figures 3.24 and 3.25 show diagnostics and filaments for the

Norbury ring α = 0.2 with µ = 2π/128, d = 0.05 and Gaussian velocity in-

terpolation with σu = 1. Cases have (s) γ′ = 0.7 and (t) γ′ = 1.7 for direct

comparison to cases (c) and (d) from section 3.3.1. Case (s) finds V = 0.8283

and (t) V = 0.7967, compared to (c) V = 0.8305 and (d) V = 0.8351. We can

therefore conclude that the smoothing is more dispersive; when the smoothing

lengths are larger we may compute a smoother solution, but it is at the cost of

accurate filament velocities.

There are also a number of options available to counter the divergence of

velocity in locations of mesh non-orthogonality/uniformity. The easiest to imple-

ment but of limited scope is simply to adjust the interpolation scheme used in

the computation of gradients (see appendix). Also relatively simple is to make a

correction like that used for vorticity using a Helmholtz decomposition, i.e.

u∗ = u+∇χ ⇒ ∇.u∗ = ∆χ

thus

u = u∗ −∇∆−1∇.u∗.

Unfortunately this itself will suffer from inaccurate explicit gradients and requires

the inversion of the Laplacian operator. Possibly the most promising line for

future work is to devise an entirely new interpolation procedure for which the

nodal (vortex) velocity is divergence free. This may be achievable by considering

a non-collocated form for velocity, i.e. utilising the face normal components,

weighted in some conservative fashion which preserves ∇ · u = 0.
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Figure 3.24: Energy, helicity, and z-centroid for the Norbury ring α = 0.2 cases

with d = 0.05, µ = 2π/128, (s) γ′ = 0.7, (t) γ′ = 1.7 and Gaussian velocity

smoothing.
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(s)

(c) (d)

(t)

Figure 3.25: Vortex filaments for the α = 0.2 vortex ring at T = 300 (t ≈ 10)

for the cases (c) and (d) detailed in table 3.2 and cases (s) and (t) with Gaussian

velocity smoothing. One eighth of all filaments are shown.
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3.3.3 Comparison to icoFOAM

In order to make some more quantitative statements regarding the accuracy of

vortexFOAM and benchmark our solution against an established code, we per-

form some calculations using icoFOAM, OpenFOAM’s incompressible Navier-

Stokes solver. In order to avoid a lengthy exposition of the details of the ico-

FOAM solver, we refer the reader to the OpenFOAM online documentation at

http://www.openfoam.com (2011) and http://www.openfoamwiki.net (2011).

In broad terms icoFOAM uses the FVM method to solve the Navier-Stokes equa-

tions using the PISO (Pressure Implicit with Splitting of Operators) algorithm.

Here we simply set the kinematic viscosity to zero and select the most conserv-

ing interpolation schemes (linear; see appendix for some details on interpolation

schemes in the FVM and OpenFOAM). We select Crank-Nicholson time stepping

with a time step δt = 0.002 to maintain a low Courant number. We use the same

boundary conditions as vortexFOAM (3.7) and take a velocity field from the in-

version of the vorticity field of the α = 0.2 Norbury vortex ring (interpolated

from the filaments in case (f)) as the initial condition. We employ fixed grids

of two resolutions (the grids are fixed in time but are adapted such that there

is uniform resolution r < π) and compare energy conservation properties and

isosurfaces of enstrophy.

The energy conservation properties of the two methods under consideration

are shown in figure 3.26. A clear decay in energy is observed for the icoFOAM

cases (I) and (II) compared to the good conservation of vortexFOAM. Case (I)

has a resolution hmin = 2π/128 and (II) hmin = 2π/256, equivalent to the vor-

texFOAM cases (b) and (f). In fact case (b) uses the same fixed grid as (I) for

its inversion, i.e. with hmin = 2π/128 and the adaptation of (f) is such that

hmin = 2π/256 for the duration of the simulation (see figure 3.12). The energy

loss in the PISO algorithm stems from corrections introduced to alleviate the

computational mode which results from using a collocated grid (all variables de-
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Figure 3.26: Curves for energy T for the α = 0.2 Norbury vortex ring. (b) and (f)

are the vortexFOAM cases detailed in section 3.3.1 and table 3.2. (I) and (II) are

two icoFOAM runs on fixed grids with hmin = 2π/128 and 2π/256 respectively

to compare with the fixed grid of (b) with hmin = 2π/128 and the adaptive grid

of (f) with lowest cell width hmin = 2π/256 .
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fined at cell centres), central differences and linear interpolation on orthogonal

grids. This mode results in a decoupling of the cell centres from their face neigh-

bours (so called ‘checkerboard’ effect) and hence spurious oscillations of pressure.

The pressure correction (known as Rhie-Chow due to (Rhie and Chow, 1983)) is

well known to dissipate energy (Shashank et al., 2010).

Certain caveats should be placed upon any conclusions regarding energy con-

servation; importantly icoFOAM is designed to be a robust viscous FVM solver,

which is adaptable to many different fluid problems. Energy conservation in most

of these contexts is insignificant compared to e.g. mass conservation, particularly

in low Reynolds number cases where viscosity diffuses much of the energy in any

case. A stronger test may be to compare to e.g. a pseudo-spectral inviscid code.

In addition conclusions comparing the efficiency of the methods are difficult to

draw. The icoFOAM cases shown here use fixed grids, however the functional-

ity for an adaptive mesh is readily available in OpenFOAM and will therefore

impact on the CPU time. Also vortexFOAM is still in a proof-of-concept stage

of development and has yet to be optimised (for example velocity interpolation

requires an unnecessary full grid sweep at each vortex node).

Since the grids under consideration will support the same range of scales we

can observe how well those scales are managed by the different algorithms. To

this end we present iso-surfaces of enstrophy (1
2
|ω|2 = 0.1) computed from the

grids for the three cases (b), (I) and (II) in figure 3.27 along with the initial

condition. This figure demonstrates the benefit of the treatment of vorticity used

in vortexFOAM in maintaining accurate vorticity structure and highlights the

diffusive nature of icoFOAM when used as an inviscid solver. We observe an

improvement from (I) to (II) as resolution increases, however instability is still

detected in (II) where none is apparent in the lower resolution vortexFOAM case

(b) (case (f) is smoother still and is omitted for brevity). The instability observed

is synonymous with the viscous transition where the core of the ring spreads and
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t=0 (b)

(I) (II)

Figure 3.27: Iso-surfaces of enstrophy 1
2
|ω|2 = 0.1 for the α = 0.2 Norbury

vortex ring. Shown are the initial condition t = 0, vortexFoam case (b) detailed

in section 3.3.1 and table 3.2 and icoFoam cases (I) and (II) on fixed grids with

hmin = 2π/128 and 2π/256 respectively. (b), (I) and (II) iso-surfaces at t = 5

and colours indicate axial velocity .

129



a wake is ejected. In addition axial velocities (colours in figure 3.27) are shown

to decay upon the iso-surfaces in the icoFOAM cases.

While we account for the strengths of the individual algorithms it seems clear

that the formulation of vortexFOAM does hold some advantage when considering

inviscid flows of this nature. This may give sufficient motivation to continue the

development of the method and address some of the discovered short comings.

3.3.4 Widnall instability

The instability of vortex rings to azimuthal disturbances was first demon-

strated by (Widnall et al., 1974) who considered bending modes on a thin core vor-

tex ring of constant vorticity. Solutions are obtained asymptotically in ε = α/R,

the ratio of ring radius to core radius, with instability found to be an O(ε2) effect.

Instability occurs when the magnitude of the strain upon the vortex due to its

own curvature is larger than the rotation rate Ω of the bending mode disturbances

of the axial vortex. The most amplified wavenumbers are thus those for which

Ω = 0, and the first such intersection of the dispersion relation occurs for the sec-

ond radial mode at κ = kα = 2.51 for a uniform vortex ring. The final criterion

is simply that the ring can only support an integer number of waves around its

circumference, i.e. k = NW/R where NW is an integer. Thus for the first critical

bending mode, given ε, the number of permitted waves can be expressed as

NW =
2.51

ε
(3.28)

In order to validate an accurate computation of the azimuthal instability of the

vortex ring, we simply choose a wavenumber NW and, for a ring radius R = 1,

compute the core size to which this wavenumber is most unstable. In general a

vortex ring will be subject to a superposition of various wavenumber instabilities

around NW ; therefore, to pre-empt the most unstable mode we must perturb the
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ring sufficiently such that the growth rates of the neighbouring modes are negli-

gible. A ring is thus initialised similarly to the Norbury vortex rings of section

3.3.1, only here a uniform radial grid is used, to yield a uniform vorticity profile,

and the core is subject to a sinusoidal azimuthal perturbation of amplitude, A

(inversely proportional to α; A = 1/500α) and wavenumber NW . Widnall’s in-

stability is for the thin core vortex ring regime, i.e. higher wavenumbers, which

serves as an ideal test of the method; the smaller the scale of instability the

more rigorous a test for our adaptive method. This motivates our choices for NW

below.

To damp grid generated small scales, it was found necessary to introduce the

velocity smoothing outlined in section 3.3.2. Results are presented for the cases

outlined in table 3.6 including an investigation into the influence of the velocity

smoothing paramter σu. We also make use of γ2 as the refinement criterion and

this is found to perform more efficiently (for example, 200 time steps in the w6

case detailed in table 3.6 takes approximately 4e5 CPU seconds).

case NW α σu d γ′ Nfil N Ncells hmin

w1 13 0.193 1 0.0242 0.7 198 34752 140380 2π/128

w2 13 0.193 2 0.0242 0.7 198 34752 140380 2π/128

w3 15 0.167 1 0.0209 0.7 198 43070 138070 2π/128

w4 15 0.167 2 0.0209 0.7 198 43070 138070 2π/128

w5 17 0.147 1 0.0185 0.7 198 51497 138154 2π/256

w6 17 0.147 2 0.0185 0.7 198 51497 138154 2π/256

w7 19 0.132 1 0.0165 0.7 196 45178 188456 2π/256

w8 19 0.132 2 0.0165 0.7 196 45178 188456 2π/256

Table 3.6: Parameters and diagnostics for various Widnall instability cases with

µ = 2π/128.

In figure 3.28 we present filaments for the NW = 13 cases w1 and w2 at
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Figure 3.28: Vortex filaments for the NW = 13 Widnall vortex ring instability for

the cases w1 and w2 detailed in table 3.6. Filaments are viewed from the z-axis

and one eighth of all filaments are shown (T = 190 corresponds to t ≈ 3.4).
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t=3.80

t=1.89

Figure 3.29: Enstrophy isosurfaces 1
2
|ω|2 = 25 for the NW = 13 case w2 at

t = 1.89 and t = 3.80. Colour shows vertical velocity.
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t=0.11

t=1.01

t=1.97

Figure 3.30: Enstrophy isosurfaces 1
2
|ω|2 = 30 for the NW = 15 case w4 at

t = 0.11, t = 1.01 and t = 1.97. Colour shows velocity magnitude.
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t=0.109

t=1.01

t=1.97

Figure 3.31: Mesh and vorticity magnitude for the NW = 15 case in the xy-plane.

Cross sections are at z = 0, z = π/16 and z = π/8 for times t = 0.11, t = 1.01

and t = 1.97 respectively.
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t=0.109

t=1.01

t=1.97

Figure 3.32: Mesh and vorticity magnitude for the NW = 15 case w4 at t = 0.11,

t = 1.01 and t = 1.97 in the zy-plane. Cross section is at x = 0.
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(w7)

(w8)

Figure 3.33: Velocity magnitude for the NW = 19 cases w7 and w8 at t = 1.97 in

the xy cross section at z = π/8.
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Figure 3.34: Vortex filaments for the w2 case at the final time t = 4.3

several times throughout the simulation. At late times the smoothness of the

w2 case (which has double the velocity smoothing) is certainly improved over w1

where small scales are observed developing. As we have already discussed, the

introduction of noise into the simulation is inevitable. It is therefore an open

question as to whether these small scales are due to mesh generated gradients

or are in fact the physical secondary instabilities of the vortex filaments, which

are being damped in the w2 case. It is certainly true in all cases that we see

the NW perturbation grow, steepen and eventually break, causing the filaments

to spiral around the core. Figure 3.34 shows the vortex filaments for the final

time (t = 4.3) for the w2 case and is included to demonstrate the compactness

of the vortex lines at late times; there is no diffusion of the vorticity field, no

viscous wake is produced and the vortex lines continue to spiral around the core

generating secondary instability.

The filament representation will in general fall below the grid scale. Due to

the relatively steady Norbury simulations considered thus far, we have had little

cause to consider how well the grid tracks the vorticity representation. For this
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reason we now examine the gridded vorticity field and the mesh structure for the

Widnall instability cases. Figures 3.29 and 3.30 show enstrophy (defined as half

the vorticity magnitude squared) isosurfaces at various times in the w2 and w4

cases. This enables us to determine how well the structure of the instabilities

(or filaments) are represented upon the adapted grid. Again the steepening of

the azimuthal instability is clear, as is the production of the so called “halo

vorticity”, where radial bands of vorticity sitting proud of the main core are

observed. Colours show velocity and indicate the intensification of vorticity at

the core.

Figures 3.31 and 3.32 show the mesh in xy and zy-planes respectively for the

w4 case. This example is particularly convenient as we observe the refinement

tracking the vorticity profile, and also adapting to track small scales, and asso-

ciated vorticity intensification. Figure 3.31 also shows how vortex stretching in

the azimuthal bands intensifies vorticity as the vortex lines wrap around the core

(see also figure 3.40 for a comparison with the filaments).

Figure 3.33 shows velocity magnitude for the cases w7 and w8 in an xy plane.

This highlights the sharp gradients of velocity in the disturbances around the

ring. The w8 case is visibly more uniform as the instability progresses with more

symmetry (see also figure 3.42 for a comparison with the filaments).

Having made some comment upon the gridded fields, we can turn our atten-

tion to the invariants, energy and helicity. Figures 3.35, 3.36, 3.38 and 3.39 show

the invariants alongside diagnostics of mesh size (total cell number Ncells) and fil-

ament nodes (N). In contrast to the results of the section 3.3.1 we see significant

growth in the magnitudes of energy and helicity. We also see significant growth

in the number of mesh cells and filament nodes. Figures 3.28 to 3.33 showing the

mesh and filaments make clear that this resolution increase is important in well

resolving the instability. The question then remains whether we can correlate the

loss of conservation to the adaptivity in the method and if this is justifiable.
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Figure 3.35: Energy, helicity, number of grid cells (Ncells) and number of filament

nodes (N) for the Widnall instability NW = 13 cases with d = 0.0242, µ =

2π/128, γ′ = 0.7, w1 has σu = 1 and w2 has σu = 2.
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Figure 3.36: Energy, helicity, number of grid cells (Ncells) and number of filament

nodes (N) for the Widnall instability NW = 15 cases with d = 0.0209, µ =

2π/128, γ′ = 0.7, w3 has σu = 1 and w4 has σu = 2.
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Figure 3.37: Filament helicity for the Widnall instability NW = 13 (left) and

NW = 15 (right) cases with d = 0.0209, µ = 2π/128, γ′ = 0.7, w1 and w3 have

σu = 1 and w2 and w4 have σu = 2.
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Figure 3.38: Energy, helicity, number of grid cells (Ncells) and number of filament

nodes (N) for the Widnall instability NW = 17 cases with d = 0.0185, µ =

2π/128, γ′ = 0.7, w5 has σu = 1 and w6 has σu = 2.
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Figure 3.39: Energy, helicity, number of grid cells (Ncells) and number of filament

nodes (N) for the Widnall instability NW = 19 cases with d = 0.0185, µ =

2π/128, γ′ = 0.7, w7 has σu = 1 and w8 has σu = 2.
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Making a direct comparison between the plots for energy and total filament

nodes (N), the small jumps in energy are with a frequency comparable to the

renode frequency. It therefore appears that renoding does not well conserve

energy, despite every effort having been made for renoding to be as conservative

as possible. It may be the case, however, that the introduction of the small scales

made by renoding are not well resolved, and still yet more work should be done to

maintain a smooth solution or increase mesh resolution to compensate. Evidence

for this is perhaps available figure 3.38 where the curves for the w6 case show

shallower growth. The implication being that the smoother the solution less rapid

adaptivity is required and the invariants show less growth. The variability on the

grid is potentially compromising an accurate estimate of the energy and helicity

encountered by the filaments. In addition, the conservation of these invariants

relies on strict boundary conditions, which may not be met (additional boundary

resolution may be required).

To investigate this possibility an estimate of filament helicity was found via

Hf =
N
∑

p

vpωp · up

where up is the nodal velocity given by the smoothed interpolation formula (3.27).

This is a justifiable estimate as the filaments will represent precisely locations

where vorticity is non-zero, therefore contributions to H away from the filaments

will be negligible and potentially prone to boundary errors. Figure 3.37 shows

Hf for the cases w1, w2, w3 and w4. These plots indicate improved conservation,

backing up the conclusions regarding spurious errors upon the mesh.

It should also be mentioned that as the cells in the mesh and therefore reso-

lution increases, we should also expect to see a change in the estimate of energy

and helicity since the volume integrations are performed with greater accuracy

and velocity calculations improve. This is a further instance of the inability of

rigorous conclusions to be made due to the multi-adaptability of the method.
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(w4)(w3)

Figure 3.40: Vortex filaments at T = 200 (t ≈ 3.56) for the Widnall instability

NW = 15 cases with d = 0.0209, µ = 2π/128, γ′ = 0.7, w3 has σu = 1 and w4 has

σu = 2 .

(w6)(w5)

Figure 3.41: Vortex filaments at T = 200 (t ≈ 1.19 for w5 and t ≈ 1.49 for w6)

for the Widnall instability NW = 17 cases with d = 0.0185, µ = 2π/128, γ′ = 0.7,

w5 has σu = 1 and w6 has σu = 2 .
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(w8)(w7)

Figure 3.42: Vortex filaments at T = 200 (t ≈ 1.37 for w7 andt ≈ 1.48 for w8) for

the Widnall instability NW = 19 cases with d = 0.0165, µ = 2π/128, γ′ = 0.7,

w7 has σu = 1 and w8 has σu = 2 .

3.3.5 Helical equilibria

As a further validation of the method we present a number of calculations

using the vortex equilibrium states found in (Lucas and Dritschel, 2009). These

states are initialised by laying the starting nodes of each filament upon a planar

Cartesian mesh, where the points lie within the contour computed in chapter

2. The filaments are then projected vertically with helical symmetry and unit

pitch. Here α remains the core size (R̄ in chapter 2) and R is the centroid

radius (d in chapter 2). We retain V as the translation rate; however, this can

equally be considered the rotation rate Ω, due to helical symmetry (see chapter

2). We employ linear velocity interpolation in these calculations with no velocity

smoothing.

In order to verify the translation, or rotation rate we are able to make a direct

comparison with that calculated for the equilibria in chapter 2. We estimate the

rotation of the helix by computing the inverse tangent of the ratio of y-centroid
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to x-centroid of axial vorticity in a constant z plane, i.e.

θ̄ = tan−1
( ȳ

x̄

)

where

x̄ =

∫∫

A
ωzx dA

∫∫

V
ωz dA

and similarly

ȳ =

∫∫

A
ωzy dA

∫∫

A
ωz dA

.

where A is the plane z = 0. These integrals have to be computed on a uniform

grid, with values interpolated from the adapted inversion grid, since the adap-

tation offsets cells of different sizes, therefore a plane is not easily found. To

avoid periodicity considerations, we compute the sum of θ̄ increments from one

time-step to the next and plot this alongside Ωt after non-dimensionalisation with

Γ. Similarly with the Norbury ring calculations, non-dimensionalisation follows

from the ratio of circulations:

V̄ =
Γ̄V

Γ
=
πα2V

Γ

where Γ̄ = πα2 is the circulation of the equilibiria.

α R d γ′ Nfil N Ncells hmin V̄ Ω

0.51 0.9 0.0625 0.5 233 36916 355721 2π/128 0.0906 0.0974

2.01 2.5 0.098 0.5 574 88970 854569 2π/128 1.074 1.112

1 1 0.094 0.7 392 70625 597858 2π/128 0.2634 0.2828

Table 3.7: Parameters and diagnostics for various helical vortex equilibria with

µ = 2π/128.

Table 3.7 lists various parameters, and the non-dimensional translation speed

V̄ computed by our method and rotation rate Ω found in chapter 2, for three

cases with widely varying d and α. We see fair agreement between the rotation

estimates. It should be recalled, however, that the process of computing θ̄ is
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subject to more error than that for the Nobury z-centroid, due to the interpolation

and the lower resolution, uniform grid on which they are computed. In addition,

time constraints did not permit these simulations to be carried out at particularly

high resolution. An alternative for any future study would be to compute an

estimate for angular velocity directly from the nodes of the filaments which would

be independent of the grid.

Figures 3.43, 3.45 and 3.46 show the invariants and translation for the equi-

libria and figures 3.44, 3.47 and 3.48 show filaments at various times. Figure 3.49

shows the adapted mesh and vorticity magnitude for the equilibria α = 0.51,

R = 0.1. The method captures well the steady translation rate of these rings

over a significant time integration. Invariants are similarly conserved as in the

cases explored in section 3.3.1, however the simulations have not proceeded to

the point where any instability has been triggered. An interesting piece of future

work would be to explore the full three-dimensional stability of these equilibria.

3.4 Conclusion

This chapter has described the formulation of a new hybrid vortex method,

utilising techniques from vortex-in-cell methods, vortex filament and blob meth-

ods, mesh adaptivity and space curve renoding, for modellling vortex stretching

across a broad range of scales. We began by defining the vorticity field in terms of

line element segments of Lagrangian space curves which define the centre lines of

vortex filaments. The OpenFOAM CFD library provides finite volume method

solvers to carry out the inversion problem on grids which can be dynamically

refined during the calculation. In section 3.2.1 we presented details of the ellip-

soidal Gaussian smoothing used in the vorticity interpolation. This procedure

is analogous to providing the filaments with a Gaussian core profile and we use

adaptive smoothing lengths based on the dimensions (volumes) of the segments
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Figure 3.43: Plots showing θ̄ for the computed translation (V ) and equilibria

rotation (Ω), and Energy T and helicity H for the helical equilibria α = 0.51,

R = 0.1 case.
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T=1 T=70 T=135 T=220

Figure 3.44: Plots showing vortex filaments for the helical equilibria α = 2.01,

R = 2.5 case. One eighth of filaments are rendered from a 30◦ latitude and a

radial distance of 7. Times correspond to t ≈ 0.25, 16.4, 30.4, 46.4.
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Figure 3.45: Plots showing translation V and rotation Ω, and Energy T and

helicity H for the helical equilibria α = 2.01, R = 2.5 case.
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Figure 3.46: Plots showing translation V and rotation Ω, and Energy T and

helicity H for the helical equilibria α = 11, R = 1 case.
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Figure 3.47: Plots showing vortex filaments for the helical equilibria α = 2.01,

R = 2.5 case. One eighth of filaments are rendered from a 30◦ latitude and a

radial distance of 8. Times correspond to t ≈ 0.99, 49.7, 99.3, 149.0.
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Figure 3.48: Plots showing vortex filaments for the helical equilibria α = 1, R = 1

case. Times are correspond to t ≈ 0.84, 43.2, 86.8, 130.5. One eighth of filaments

are rendered from a 30◦ latitude and a radial distance of 7.

Figure 3.49: Plots showing mesh and vorticity magnitude for the helical equilibria

α = 0.51, R = 0.1 at t = 2.24.
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of the space curve. To enable accurate computation of the velocity gradients

generated by the stretching and folding of the vortex filaments, we adapt the

grid via a refinement criteria based around the smoothing lengths which repre-

sent the typical scales of the filament segments. In section 3.2.2 a novel renoding

procedure is presented with the aim of maintaining smooth adaptive filaments

where a node density function is defined in terms of curvature averages and cubic

interpolation defines the filament from the piecewise linear representation. This

ensures filaments are well resolved when subjected to stretching and folding, and

updates the scales represented in the vorticity description in a self-similar fash-

ion. Put together, self-similarity is at the heart of this method, each component

adapting to track the generation of small scales.

Validation of the method has been carried out using Norbury vortex ring

equilibria, helically symmetric equilibria and Widnall’s instability of the vortex

ring.

Section 3.3.1 contained a thorough exploration of resolution parameters, and

accuracy gains were observed when increasing filament and mesh resolution. A

compromise is sought between mesh resolution, high ratios of filament to cell

widths, d/h, and high filament resolution to correctly resolve the core. Accu-

racy in comparisons to Norbury’s results were found to be sensitive to correctly

resolving the vorticity core profile. A possible avenue for further study is to con-

sider an optimisation method for the placement of filaments matching a known

vorticity distribution. This could follow the method in (Dritschel and Reinaud,

2004) where the configurations of an optimal number of point vortices match the

spatial moments of an ellipsoidal quasi-geostrophic vortex.

The stability and smoothness of these simulations were discussed in section

3.3.2 and a velocity smoothing was introduced in an attempt to damp mesh

generated noise which is an inevitable characteristic of these calculations. Us-

ing this smoothing, section 3.3.4 investigated the instability of vortex rings to
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azimuthal disturbances and we observed strong Widnall instability growth. We

found in these cases the invariants are strongly dependent on the adaptation in

the method and various explanations were given. Finally in section 3.3.5 a brief

survey is made of the helical equilibria computed in chapter 2. We find good

agreement with the rotation rate of the equilibria, calculated in chapter 2, and

this rotation is broadly steady for the integration period we examined.

In summary the method captures the expected dynamics well. Any numer-

ical method contains compromises and it is argued that the promising results

presented display sufficient scope for developing the method further. As we have

alighted upon in previous sections, the high variability in the method brought

about by the various adaptive components make it unusually difficult for defini-

tive statements to be made. However we have presented a careful study of the

parameters in the method and discussed possible short-comings and solutions

in detail. Finally it should be reinforced that the calculations presented dis-

play accurate results over a significant time integration for an inviscid flow with

absolutely no dissipation mechanism.
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Chapter 4

Future work

The incompressible Euler equations have a deceptively innocent sim-

plicity about them; indeed their siren song has tempted many young

scientists, somewhat like Ulysses, towards the twin rocks called Frus-

tration and Despair.

After a career spent in puzzlement, the sadder but wiser researcher is

forced to admit how subtle and difficult they are.

(Gibbon, 2008)

Having designed our inviscid method to adaptively track vortical structures

and model vortex stretching across a wide range of scales, in a self-similar and

automatic fashion, it remains to consider the open problems which vortexFOAM

is suited to tackle.

156



4.1 Finite-time blow-up.

An important unresolved question in the field of fluid mechanics is whether

or not an ideal fluid can develop a singularity in the vorticity field. It is generally

agreed that indeed, given long enough, the absence of viscous diffusion will lead to

a rapid build up of vorticity at small scales. However a more important question

concerns the presence of singularities at some finite time, i.e. the finite-time

blow-up problem.

This problem may be roughly stated as follows: if, beginning from a smooth

initial condition, can, through the strongly nonlinear evolution of the flow, the

solutions to the Euler equations become singular within a finite time? Such a

loss of regularity is manifest at the smallest scales, where the complexity of the

flow presents a formidable challenge to mathematical models. This is one of the

reasons that the finite-time blow-up problem has remained open for so long.

The analogous problem for the Navier-Stokes equations is regarded as such an

important challenge to the modern age of mathematics that the Clay Institute

offers one million dollars for a proof for the existence of solutions (Fefferman,

2000). There is a strong argument that the question of regularity of the Euler

equations is in fact the more challenging and interesting problem. As mentioned

in section 1.4 the Euler equations lack even unique weak solutions (Shnirelman,

1996). A commonly held yet unproven belief is that even a small amount of

viscosity will be enough to prevent blow-up in Navier-Stokes flows. However if

there is evidence to suggest that inviscid flows in fact remain regular, then the

problem is likely to be solved for viscous flows as well. Unfortunately there are

no such proofs and the million dollar prize remains unclaimed.

In section 1.4 we noted that the cascade to small scales is principally driven

by the vortex stretching term, ω.∇u, from (1.4), which causes vortex lines to

be stretched in the direction of maximum positive strain, thereby intensifying
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vorticity into generally thin coherent structures such as vortex filaments and

sheets. In the process, vortex stretching is responsible for the generation of

vorticity; kinetic energy is transferred from the mean flow into the turbulent

vortex. From (Beale et al., 1984) (see section 1.4) we know that the blow-up

of the Euler equations is entirely controlled by the maximum of vorticity, i.e.

we need not concern ourselves with growth in e.g. strain or enstrophy. It is

therefore unquestionable that vortex stretching is of utmost importance in dealing

with such flows and in tackling the finite-time blow-up problem. Given that our

only available method of experimentation with an ideal fluid lies with numerical

simulation, any method must be sure to accurately model this strong stretching

of vortex filaments.

There have been a vast number of numerical studies from a variety of au-

thors searching for convincing evidence for finite-time blow-up, particularly in

the past two or three decades as computers have become increasingly capable in

tackling these complex flows. These studies have been far from conclusive and

have sparked fierce debate; in a recent list compiled in a review article (Gibbon,

2008) the current ‘score’ is 9-7 in favour of a finite-time singularity.

The efforts made to find evidence of finite time blow up in 3D Euler flows

have been many and varied, with authors utilising many different numerical tech-

niques, from the seminal calculations of (Kerr, 1993) who employed a Chebyshev

polynomial method, taking advantage of symmetry in his anti-parallel vortex

tube initial condition, to the high resolution pseudospectral methods employed

by (Hou and Li, 2006) on the same initial condition. Studies by these two sets

of authors arguably contain the more hotly contested science. They are the only

studies to tackle the same initial condition, granted by two differing techniques,

and to come to entirely different conclusions! While agreeing for the majority of

the calculation, for late times Kerr argues evidence for singularity is seen. Hou

and Li argue that in fact, resolving vortex stretching more fully, that a process
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of nonlinear depletion halts the growth of vorticity. This more recent study, re-

visiting Kerr’s work from the early 90s has been able to take advantage of the

increases in computing power and some recent theoretical work.

(Frisch et al., 2003) points out that whether or not we conclude that singular-

ities are stalled by nonlinear depletion, there is a fundamental inconsistency with

simple phenomenology. We expect solutions of the Euler equations to behave as

solutions to
Ds

Dt
= s2

which we know will blow up in time t = 1/s(0) for s(0) > 0. Clearly the debate

would not be so acute were the problem this simple; some mechanism must be

stunting vorticity growth.

A crucial result by (Beale et al., 1984) furnishes us with an elegant character-

isation for the regularity of the Euler equations. The Beale-Kato-Madja (BKM)

theorem, in simple terms states that regularity is controlled by the infinity (max-

imum) norm of vorticity: solutions will exist provided that for any T > 0

∫ T

0

‖ω(t)‖∞dt <∞.

A consequence of this remarkable theorem is of great importance in numerical

experiments. Its states that blow up must behave as

‖ω(t)‖∞ ∼ (ts − t)p

with p ≥ 1. If the data shows a power law relationship with p < 1 the blow-up is

entirely a numerical artefact. This serves as the primary indicator for blow-up in

the numerical evidence found in the literature. However a few recent conditional

regularity results have found constraints on the geometry of the vorticity field for

blow-up.
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The focus of non-blow up arguments concerns the process of dynamic deple-

tion of vortex stretching. Vortex flattening is observed at late times; vortex lines

become geometrically more regular and the flow locally tends to a 2D regime,

at which point vortex stretching slows. What results is a cancellation of the

nonlinear advection and nonlinear stretching terms in the Euler equations and

singularity formation is stopped. The inference is therefore that in locations of

vorticity extrema there must be a degree of curvature in the vortex lines to enable

further vortex stretching. This is the motivation for a variety of geometric reg-

ularity results (Constantin and Fefferman, 1996) (Cordoba, 2001) (Deng et al.,

2005) (Deng et al., 2006).

(Constantin and Fefferman, 1996) showed that if the vorticity vector ξ =

ω/|ω| remains smooth and the velocity, u bounded, no blow-up can occur. (Cor-

doba, 2001) demonstrate that (again with the assumption of bounded velocity) in

order to achieve the vortex tube collapse associated with blow-up, the tube must

undergo considerable bending and twisting such that its definition as a coherent

vortex tube is under question (there exists rather a tangle of vortex filaments).

Both of these results are proved for some O(1) region, more localised results are

obtained by (Deng et al., 2005) (Deng et al., 2006) which are potentially more

amenable to use in numerical simulations where it is observed that the regions of

extreme vorticity tend to shrink in time.

In their first study Deng et al. (Deng et al., 2005) presented two new results.

Firstly they show that if the divergence of ξ along the vortex line segment [s1, s2]

which contains the maximum vorticity is integrable then no singularity is possible

i.e.

∣

∣

∣

∣

∫ s2

s1

∇ · ξds
∣

∣

∣

∣

≤ C(T ) 0 ≤ t ≤ T

where s is arc length and T the proposed singularity time. The implication of

this theorem is that if there is blow-up at one point in this segment then vorticity
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must diverge along the whole segment at the same rate.

The second result of (Deng et al., 2005) deals with a family of vortex lines.

Suppose there exists some segment, denonted Lt, along which the maximum

vorticity is comparable to the global maximum. Then if ℓ(t) is the arc length

of the line segment, ℓ(t)||κ||∞(ℓ(t)) (where κ is the curvature of Lt ) remains

bounded, and the maximum tangential and normal velocities along the vortex

line are integrable, then the length of the vortex line segment ℓ(t) can shrink to

zero as t → T and no blow-up is possible. (See (Deng et al., 2005) for a more

formal description and proof of these theorems).

These two theorems give geometric conditions on the vortex lines at near

singular locations and make certain strict descriptions of vortex stretching while

alluding to the possible nonlinear depletion mechanism. We focus on these results

due to their striking suitability for use in the numerical method described in chap-

ter 3. We readily have at our disposal a numerical approximation of the vortex

lines of our flow and every effort has been made to ensure they are appropriately

resolved; vortex stretching and folding being automatically followed.

A strategy for future research, which will exploit the novelties of the new

method, will be to attempt to recreate near singular conditions, e.g. the anitpar-

allel vortex tubes considered in (Kerr, 1993) and (Hou and Li, 2006). We can also

develop diagnostics based on the conditional regularity results discussed above,

directly from the computational vortex lines. In this way new insight may be

afforded us via the high adaptability and hence broad range of scales represented

in the method.

Furthermore a study could be performed to investigate the prevalence of near

singular conditions in a general ‘turbulent’ inviscid fluid. The studies discussed

thus far are concerned with actively searching for singularity, using very esoteric

initial data. An important question might well be, how likely are we to see
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the development of such conditions in a generic Euler flow, given that we might

expect an unbounded turbulent cascade to small scales?

4.2 Method generality

Until now, the motivation and application for the method has focussed on the

inviscid context and the problems surrounding the regularity of the equations.

However certain aspects of the method may allow for it to be extended to tackle

a variety of other less idealised problems.

Clearly a potentially rich avenue for future research already touched upon

is into vortex structures, particularly at small scales. The modelling of fairly

general vortex structures allowed by this method could allow for various vortex

stability problems to be reinvestigated with greater precision and with an in-

creased understanding of the dynamics of the vortex lines in the flow, as we have

them readily available for diagnostics and visualisation. One example of such a

study would be to investigate the full nonlinear 3D stability of the helical vortex

equilibria computed in chapter 3 (Lucas and Dritschel, 2009).

Another obvious candidate for development is to include a vortex reconnection

mechanism by extending the contour surgery algorithm of (Dritschel, 1988b). A

version of such an algorithm and motivation for such a scheme has been presented

in (Chorin, 1993). Combined with a viscosity scheme (see chapter 5 of (Cottet

and Koumoutsakos, 2000)) this may open the method up to the study of various

high Re Navier-Stokes problems with greater efficiency in resolving the inertial

range. This may make the method attractive to workers with limited computing

facilities, i.e. those without access to, for example, massively parallel clusters.

The renoding subroutine in the method could be adapted for use in a number

of regimes where space curves can model field lines. One example of such an
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application could be superfluids where quantised vortex lines of fixed strength

and infinitesimal core structure exist. At broad scales superfluids have a striking

similarity to conventional vortex dynamics, and the turbulent tangle of super-

fluid vortex lines is therefore of great interest to quantum physicists and fluid

dynamicists alike (Barenghi et al., 2001). There is sufficient precedence of us-

ing vortex filaments in modelling turbulent superfluids to expect a robust and

efficient renoding and surgery routine to benefit numerical simulations (Barenghi

et al., 1997).

4.2.1 Non-conservative forcing

Many problems where the modelling of a complex small-scale vorticity field

is necessary require extensions of the method to include non-conservative effects.

For example, vortex methods have a rich history in the study of wake problems

where flow over an obstacle generates vorticity in it’s lee (Koumoutsakos, 1995)

(Ploumhans et al., 2002), (Liu, 2001), (Winckelmans et al., 2005). The generality

of the OpenFOAM framework allows for arbitrary boundaries to be included;

moreover the treatment of the emission of a near-boundary vorticity flux is well

established (Koumoutsakos, 1995). This would mean the method could then be

utilised for any problem involving flow over a solid body since the inclusion of

vorticity generated by the no-slip condition would be theoretically possible.

Another field where additional forces impinge on the vorticity evolution is in

magnetohydrodynamics (MHD). Here the Lorentz force arising in an electrically-

conducting fluid creates or destroys vorticity. This force resists vortex motion,

due to the tension in magnetic field lines. In the context of modelling the solar

corona, for example, it is conjectured that the process of magnetic reconnection is

responsible for heating the solar atmosphere to temperatures much higher than

the solar surface (see (Zirker, 1993) and references therein). In addition, the
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ejection of plasma from the solar atmosphere in the form of solar flares and coronal

mass ejections (Zhang, 2005) can travel to the Earth and disturb the Earth’s own

magnetic field, disrupting communication satellites, electricity networks and even

endangering astronauts in orbit. The generality of OpenFOAM means that the

additional MHD equations are readily solvable, provided there is an appropriate

scheme for the treatment of vorticity.

To achieve this additional generality, and enable the inclusion of such effects,

a scheme has partially been designed to enable vorticity increments to be as-

signed to the Lagrangian line elements. This does, however, require a relaxation

in the connectivity of the vortex line segments. Instead, vorticity will be defined

by individual, unconnected, line elements which can be thought of in a particle

context as overlapping blobs of vorticity. An algorithm has already been con-

structed which will apply adjustments to these vectors and iterate to match the

Lagrangian and Eulerian vorticity descriptions. A consequence of the lack of con-

nectivity in the vorticity field means that the topological constraint, ∇ ·ω = 0 is

not automatically satisfied. However, the scheme described can be employed to

perform corrections to maintain zero divergence.

In this way any additional sources or sinks of vorticity arising from boundary

conditions or general forcing may be readily included.

4.3 Algorithm Development

The possibility for efficiency improvements are extensive. Now that the basic

method has been validated, certain benchmarking can be performed to investigate

the efficiency of the inversion portion of the method. It may be advantageous to

invest some time considering alternatives to the current Poisson solver to establish

if efficiency and accuracy may be improved.
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The problem of maintaining incompressibility in vortexFOAM requires to be

rigorously addressed before the code can be stress tested with blow-up type initial

data. As has been discussed in section 3.3.2 a number of options have been

explored, none of which have seen great improvements made. Some time should

be dedicated to developing an efficient velocity interpolation which ensures the

nodal velocities are divergence free. In addition the velocity interpolation is open

to some computational saving by making some use of the particle tracking classes

in openFOAM to avoid lengthy mesh searches.

Perhaps the most obvious efficiency boost, and the one to which priority

should be given, is to parallelise the code. As the method stands, the mesh and

solver have domain decomposition options built in via OpenFOAM. However the

Lagrangian component requires this functionality to be added and dovetailed into

the OpenFOAM parallelisation classes. In principle this should be straightfor-

ward as we simply need a processor designation for each node on the filament

corresponding to the section of the domain the node lies within. This can then

be tracked and nodes which translate between processor domains updated. The

main difficulty will lie in efficiently distributing the computational burden across

the processors, with problems involving little symmetry being particularly chal-

lenging.

4.4 Conclusions

In this thesis we have focussed on vortex structures in three-dimensions,

sought their equilibria and developed a novel numerical method with which to

compute their evolution.

In chapter 1 we provided the motivation for this work, placing emphasis on

robust numerical approximations in making advances in our understanding of

complex flows. Turbulence and the regularity of the equations are two rich areas
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of research in this regard. The ubiquitous nature of vorticity in turbulence and

the regularity of the inviscid equations for bounded vorticity are intrinsically

linked via the process of vortex stretching, whereby vorticity is intensified by

the stretching of vortex tubes. The self-similar modelling of this process, as the

scales of motion cascade to increasingly smaller scales, is the crux of the numerical

approach presented in chapter 3.

This hybrid vortex method models the inviscid (Euler) equations via a La-

grangian description of vorticity in terms of space curves representing the core of

smooth vortex filaments which are material lines due to Kelvins circulation theo-

rem. An underlying grid is used to perform an inversion to determine velocities,

and is subjected to adaptive refinement (using the OpenFOAM CFD library) to

concentrate numerical calculations in regions of intense stretching. In addition

the filaments are constantly adjusted via a novel renoding algorithm, whereby

additional nodes are included along the filaments in locations of high curvature.

The algorithm has been designed such that this distribution of numerical effort

is completely automatic, the scales of motion being represented in a completely

self-similar way and limited purely by the capability of the machine.

The method has been validated using well known vortex structures. First

vortex rings were considered. Known equilibria exist in the form of Norbury’s

rings (Norbury, 1973) and the method was validated using a number of these

rings. We find the method well represents the steady translation of these rings

and conservation of the invariants, energy and helicity was found to be good.

These results showed the expected improvement on increasing the Lagrangian

and Eulerian resolution. In addition vortex ring instability was studied via the

Widnall instability, whereby vortex rings are perturbed sinusoidally in with az-

imuthal wavenumber inversely proportional to core radius. These waves were

observed to grow as expected and secondary instability was observed, particu-

larly in cases with low velocity smoothing. Finally vortex equilibria possessing
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helical symmetry, presented in chapter 2, are used to verify the method. Good

agreement with translation rates and invariant conservation is again found.

These helical equilibria presented in chapter 2 are computed via a numerical

method, where a restriction on the streamfunction on contours bounding uniform

axial vorticity is sufficient to define the equilibria due to the conservation of axial

vorticity when vortex lines are helical. States are parameterised by mean radius

(or area) and centroid location, and the method is extended to include multiple

vortices evenly azimuthally spaced about the z-axis. The equilibria are computed

in a rotating frame, the rotation of the states being given by their own self-induced

rotation. This rotation rate is computed as part of the problem and presents itself

as an ideal validation tool for new three-dimensional, inviscid numerical methods.

By way of summary, we have found that the accumulation of small scale,

grid generated noise is inevitable in the VortexFOAM method. It can be miti-

gated with smoothing in the velocity interpolation and there is potential in future

research to address the problem with some correction procedure. The method

highlights the advantages of a Lagrangian description of vorticity and an adap-

tive mesh in resolving vortex stretching in 3D vortex dynamics in a consistent

and self-similar way. The level of accuracy gained on a single processor for a

three-dimensional, inviscid calculation is remarkably high given the CPU times,

making this method attractive for future development and application.
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Appendix A: OpenFOAM

This appendix aims to give a brief outline of the OpenFOAM (FOAM stand-

ing for “Field Operation And Manipulation”) suite of codes, with an emphasis on

their use in the vortexFOAM method. The OpenFOAM library and documen-

tation is distributed free by OpenCFD under the GNU General Public License,

and as such much of what follows is reproduced from the user guide and online

content at http://www.openfoam.com (2011). A further intention of this section

is to allow enough of a working knowledge of the code to allow a user to perform

their own calculations using vortexFOAM.

OpenFOAM is an object oriented c++ library, focussed on the simulation

of continuum mechanics problems. Although not restricted to this, the primary

application is to fluid mechanics and solvers are available to study a wide variety

of fluid problems. We first describe the discretisation and solvers employed before

describing the practicalities of using the codes.

A.1 OpenFOAM discretisation

OpenFOAM makes use of the finite volume method (FVM) to discretise the

solution space. This has a variety of advantages for CFD applications, not least

that it allows great generality in mesh structures. We will first give a very brief

synopsis of the FVM.

Scalars, vectors and even tensors are handled consistently through the object

oriented structure used in OpenFOAM and the standard operations (multiplica-

tions, additions, vector and scalar products etc.) are all available as appropriate.

The FVM considers a domain discretised as a union of small non-overlapping

control volumes with ‘nodes’ at cell centres. The PDE is then transformed by

integrating over control volumes and converting divergence terms into surface
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fluxes and gradient terms (including curl) into surface integrals using the diver-

gence theorem. The matching of fluxes across the surfaces of adjacent control

volumes makes the method conservative. For example given the poisson equation

∆ψ = −ω

then
∫

cv

∆ψdV = −
∫

cv

ωdV ⇒
∫

sf

∇ψ.nsfdS = −
∫

cv

ωdV

Surface integrals can thus be computed as a summation and gradient terms are

approximated via finite differences across the face. This can be complicated

by the non-orthogonality of the mesh, i.e. where surface normals, nsf , and cell

centres are not aligned and additional interpolation is required. These corrections

can, however, be iterated over within the solve to reduce the error.

Let us now consider the approximation of u = ∇×ψ. The standard method

in OpenFOAM is to again use Gauss integration to compute u, i.e.

∫

cv

udV =

∫

cv

∇×ψdV =

∫

sf

nsf ×ψdS

so for a given cell, i,

ui =
1

Vi

∑

faces

nsf ×ψf .

Therefore it is necessary to transfer values of ψ from the cell centre locations

to the cell face centres. The accuracy of this interpolation is related to the

skewness and relative sizes of the adjacent cell centres (skewness is the degree

to which the cell centre vector is from intersecting the cell face centre), which

in turn impacts upon the overall accuracy of the velocity u. This is the reason

why we find divergence in refinement patterns, as described in section 3.3.2.

Using linear interpolation, as in the simulations presented, results in a reduction

of the solution to first order accurate near the refinement patterns. Choosing

either a least squares scheme (instead of Gauss integration) or skewCorrected
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interpolation increases the accuracy (skewCorrected includes a correction which

is a projection of the surface normal gradient in the skewed direction between

nsf and the cell centre vector). As has already been discussed this inaccuracy is

an outstanding difficulty requiring additional future work.

The application of the boundary conditions is remarkably straight forward,

given that our equation has been transformed into an expression involving surface

quantities. When such a face of a cell is a boundary face the prescribed boundary

condition can be applied, and OpenFOAM allows a variety of conditions to be

specified. For the purposes of our algorithm, we desire free-slip conditions upon

the x and y boundaries and periodic, or cyclic, condition on the z boundary. In

terms of the discretisation this simply requires the vector potential ψ = 0.

The result is a system of equations which, as with many other numerical

methods, can be expressed in terms of a matrix of coefficients along with vectors

of solution variables and source terms i.e.

Au = b

where the source term b contains the right hand side of the poisson equation plus

boundary data. Iterative schemes for the solution of this system will be discussed

in section A.3.

A.2 The mesh and refinement

The physical partitioning of the domain into control volumes is performed

by a mesh generator. There are several ways to achieve this, including many

third party programs, however openFOAM comes with its own mesh generation

routine blockMesh. The FVM allows for a great generality in its mesh, which is

one of the reasons for its wide use in the field of CFD. Although our domain is

very simple, OpenFOAM can handle complex geometries and a wide variety of
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cell shapes through its ‘arbitrary unstructured’ mesh paradigm.

blockMesh begins with a user defined decomposition of the domain with 1 or

more hexahedral blocks and the mesh is then generated with a specified number

of cells per block. Edges are not limited to being lines but can be curves, defined

either piecewise or as splines. For our case of a cuboidal domain, we specify a

single block, with the eight vertices on each corner of the domain. Boundaries

must also be specified to blockMesh via ‘patches’, again given as a vertex list, with

the periodic boundary as a ‘cyclic’ of two patches. An initial mesh 48× 48× 16

is generated (this was found to be optimum to allow the boundary conditions

to be accurately discretised) before a preprocessing utility setVfMesh is called

which performs an initial refinement of the mesh, given the vortex filaments for

the simulation considered.

The mesh is defined as a dynamicFvMesh type, which allows for changes to

the mesh during runtime. The mesh is adjusted according to a scalar field defined

on the mesh, gamma, as discussed in section 3.2.3.

Due to the interpolations performed by the OpenFOAM classes it was dis-

covered necessary to flag cells satisfying the refinement criteria (γi > γ′, where

γ′ is a specified constant) with a large value to force refinement. The scalar field

gamma=10 is set for cells where γi > γ′. If γi < γ′/10 the mesh is allowed to

unrefine and gamma=0. All other cells have gamma=0.5 and the thresholds are

detailed in section A.3.

The preprocessing performed by setVfMesh allows sufficient resolution locally

to the vortex filaments such that the runtime mesh refinement laid out in sec-

tion 3.2.3 can perform satisfactorily. setVfMesh uses dynamicFvMesh updating

similar to during runtime but instead refines a cylindrical zone r < π.

171



A.3 Solving

Most of the code for what is described above is several layers of inherited class

structures below the user. The necessary classes and thus functions are included

via header files in the main source code. While this makes for a neat and tidy

code, which is very efficient to adapt to specific uses, it can be a challenge for the

uninitiated to follow the inner workings of the library. Understanding the nature

of the method and the available options and schemes is essential in utilising this

powerful code to best advantage.

The equation and variable discretisation classes make the solve line in the

code very straight forward:

solve (fvm::laplacian(psi)+vort);

U = fvc::curl(vort)

where fvm are the implicit terms in the discretisation and fvc the explicit. The

velocity and vorticity fields (U and vort) are defined as volVectorField type,

implying a volume centred vector field, as required to form the discrete equations.

The control of this solve is not set until runtime, therefore applications can

be compiled with a certain generality in this regard. For any given run of an

OpenFOAM application a directory is created containing certain essential subdi-

rectories and ‘dictionary’ files.

The first directory, constant, contains the primary mesh data and initial

conditions for the run. Contained within is the polyMesh/ directory holding

the mesh data generated by blockMesh via the blockMeshDict dictionary. This

file is common for all runs and simply outlines the 36864 cell uniform global

mesh before it is updated by setVfMesh. The constant directory contains the

dynamicMeshDict dictionary file which controls the mesh refinement parame-

ters for the run. This dictionary is necessary for both the preprocessing of
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setVfMesh and for the vortexFOAM run itself. The dictionary contains vari-

ous parameters including the thresholds on gamma for refinement/unrefinement

(lowerRefineLevel=1, upperRefineLevel=10000, unrefineLevel= 0.1), the

maximum cell limit (50000000 cells), the maximum number of refinement levels

(20) and the frequency of mesh updating (every 3 steps).

constant must also contain initial conditions for any global variables defined

on the mesh which require outputting, e.g. U and vort are always of this type.

The second directory recognises the zero time initial condition of the mesh and

solver variables, denoted by 0/, containing a copy of polyMesh/ and U and vort.

The final directory is system/ and contains a number of dictionary files which

are read by the application and prescribe the options for solvers, interpolations

etc. The main control parameters are set in the controlDict file. These include

time parameters (time step, run length, time precision) and output parameters

(write format, frequency, precision) for writing meshed variables to file. The

output is contained within a series of subdirectories named by the current time

and containing the same data format as 0/.

The other two dictionary files in the system/ directory are fvSolution and

fvSchemes which prescribe the linear solver options and discretisation options

respectively. fvSolution must contain within it the appropriate solver choice

for every variable the application solves for. For example in the case of vortex-

FOAM this includes U and also gamma, which is used to correct for the solenoidal

constraint before writing vorticity.

There are a substantial number of options for linear solvers in openFOAM,

the main three being preconditioned conjugate gradient, smoothing solvers and a

generalised geometric-algebraic multigrid. Each of these has its own set of further

options associated with it; conjugate gradients require a preconditioner, smooth

solvers (e.g. Gauss-Seidel) must be set, and the multi-grid method requires var-

173



ious parameters dictating coarsening, cycles etc. Details of these options can

be found in section 4.5 of the user guide. In addition to choosing the solver

type, tolerances are also required to control convergence of the iterative scheme.

tolerance denotes a general threshold upon the value of the residual for halting

the solver, and relTol is a relative tolerance from one iteration to the next.

For vortexFOAM we generally employ the default settings. No substantial

gains in accuracy or speed were observed with changing the solver preferences. We

employ preconditioned conjugate gradient iteration with a diagonal incomplete-

Cholesky preconditioner. tolerance is set at 10−10, and relTol to 0.01.

The options for the numerical schemes employed in the finite volume method

are contained in the fvSchemes file. There are various options for the treatment

of the different terms in the equations of interest and in handling the necessary

interpolations the method requires. The default for derivative terms is to employ

standard Gaussian finite volume integrations which requires surface information

on the control volumes. An associated interpolation is needed to transfer data

from the cell centres. The default for the interpolations throughout is linear,

although the options in OpenFOAM are extensive (see section 4.4.1 in the user

guide for details). For the purposes of the Poisson solver in vortexFOAM it

was found that anything more elaborate was not efficient enough to justify an

improvement in the algorithm. The choices were explored in regard to alleviating

the mesh non-orthogonality/uniformity issue described in 3.3.2; however, other

choices were found to produce negligible differences.

The final pieces of data required for a vortexFOAM run are the Lagrangian

vortex elements and non-OpenFOAM parameters. Various initialisation routines

are available to construct filaments. All will output an elements.dat file which

includes a list of 3D points which represent the space curve along with an integer

label denoting the subsequent node along the filament. The params.dat file

includes parameters for time stepping, i.e. the RK4 time step, output frequency
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and total run duration, and parameters relating to the filaments, i.e. vorticity

scaling cp (initially constant over all segments/filaments), transverse smoothing

length σp (filament width), renode parameter µ, refinement parameter γ′ and the

total number of filaments Nfil.

In summary, to perform a run using vortexFOAM a <case> directory is re-

quired containing the following file structure:

• params.dat

• elements.dat

• constant/

– polyMesh/

– dynamicMeshDict

– vort

– U

• system/

– controlDict

– fvSchemes

– fvSolution

• 0/

– polyMesh/

– vort

– U

Once inside this directory, with OpenFOAM installed and vortexFOAM com-

piled the job can be started by simply calling the program:

> vortexFOAM
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Data will be output into a number of files. The file vect.dat contains the La-

grangian vortex elements, output at the interval determined in params.dat with

the same format as elements.dat. This data can be visualised with the gplot pro-

grams vecprint and vecdisp. Diagnostics are output into the files output time.dat

and diagnostic.dat, the first containing the number of cells in the mesh, the to-

tal number of Lagrangian nodes, a diagnostic for the vorticity interpolation accu-

racy, and the magnitudes of the divergences in velocity and vorticity. diagnostic.dat

contains energy, helicity, and axial centroid location for vortex ring propagation.

Eulerian data is output in the OpenFOAM format into directories named

by time with the same format as 0/. The preferred method to visualise this

data is to use the ParaView visualisation application which comes packaged with

OpenFOAM along with various plugin/interface script options to enable users to

visualise their data.

In due course all the necessary codes and files will be packaged and made

available with the necessary documentation to allow any OpenFOAM user to

perform calculations with vortexFOAM.
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