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Abstract

In this Thesis, we introduce two new combinatorial objects known as Disjoint

Partial Difference Families and External Partial Difference Families: these ob-

jects generalise Disjoint Difference Families (DDFs), External Difference Families

(EDFs) and Partial Difference Sets (PDSs), which have all been well-studied in

the literature. We demonstrate how DPDFs and EPDFs can be formed from

PDSs and Relative Difference Sets (RDSs), presenting both cyclotomic and non-

cyclotomic constructions of these objects.

We also develop two new cyclotomic frameworks within this Thesis, which

allow us to identify new cyclotomic constructions of DPDFs and EPDFs along

with other types of difference structures. The first of these cyclotomic frameworks

relies upon a series of partition results, the second utilises natural connections

between cyclotomic numbers and cyclotomic cosets. These frameworks remove

the need to evaluate all cyclotomic numbers in a particular finite field.

We primarily use these frameworks to identify new DPDF and EPDF con-

structions, however, we also use the cyclotomic techniques underpinning these

frameworks to establish a series of algorithms that compute the cyclotomic num-

bers in a given finite field. Further, we use one of these frameworks to prove that

a PDS with Denniston parameters exists in the group Z9
3: as 3 is an odd prime,

it was previously believed that such a PDS would not exist in this group.
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Chapter 1

Introduction

1.1 Motivation and Outline

In this Thesis, we introduce two new combinatorial structures known as Disjoint

Partial Difference Families (DPDFs) and External Partial Difference Families

(EPDFs). These objects generalise three well-studied combinatorial objects in

the literature, known as Disjoint Difference Families (DDFs), External Difference

Families (EDFs) and Partial Difference Sets (PDSs).

We can group all of these objects together under the umbrella term “difference

structure”. Difference structures first arose in the literature in the 1930s in the

work of Paley [56] and Bose [7]. (These objects were implicitly defined in these

papers; we now refer to these objects as Partial Difference Sets (PDSs) and

Difference Sets respectively.) PDSs are closely connected to association schemes

and strongly regular graphs. Bose’s motivations for constructing Difference Sets

centred around design theoretic applications, specifically he wanted to identify

new construction of balanced incomplete block designs (BIBDs). In the 1970s,

Wilson demonstrated that PDSs can also be used to find constructions of block

designs known as partial BIBDS (PBIBDs), in [66] he also defined Difference

Families in this paper (DFs). DFs are a generalisation of Difference Sets: a DF

with disjoint component sets is known as Disjoint Difference Family (DDF). DDFs

have been particularly well-studied (see for example Novak’s conjecture [29],[54]).

More recently, they have been studied for their various applications in information

security and other areas of combinatorics (see [9],[10],[14],[32],[46],[53]).

In the early 2000s, Ogata et al. defined an external analogue of Disjoint Dif-
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ference Families, known as an External Difference Family (EDF) [55]. EDFs are

of particular interest to cryptographers, as they can be used to build a type of

cryptographical tool, known as an authentication code, which protects against

attacks from active adversaries (see [19],[55],[58]). Owing to their applications in

information security, many variants of EDFs have been studied in the literature

(see [2],[16],[21],[33],[37],[38],[58]). The objects introduced in this Thesis very

naturally extend many of these structures.

A second theme of this Thesis is using and developing finite field cyclotomy to

identify constructions of difference structures (including the first cyclotomic proof

that a PDS with Denniston parameters exists an elementary abelian group in

which p is an odd prim(e). Finite field cyclotomy was first studied by Gauss in the

1800s and continues to be studied, owing to the difficulty of determining concrete

values of cyclotomic numbers in finite fields. Currently mathematicians have only

been able to determine certain sporadic values of cyclotomic numbers of order up

to 24 (see [5]), and as these results are expressed indirectly in terms of character

sums, they can be hard for combinatorialists with no experience of character

theory to interpret. This Thesis develops two new cyclotomic frameworks that

identify alternative ways of working with finite field cyclotomy.

In the first Chapter of this Thesis, we introduce DPDFs and EPDFs, as well

as necessary group theoretic and cyclotomic results. The second Chapter is con-

cerned with developing two cyclotomic frameworks for establishing new DPDF

and EPDF constructions: the first framework relies upon a series of partition re-

sults to identify certain structural properties which yield new DPDF and EPDF

constructions, while the second framework establishes a connection between cy-

clotomic numbers and cyclotomic cosets. In Chapter 3, we use the frameworks

developed in Chapter 2 to establish new constructions of DPDFs and EPDFs. In

Chapter 4, we apply the cyclotomic techniques developed in Chapter 2 to more

general problems in this area of combinatorics, namely we develop a series of al-

gorithms that may be used to compute cyclotomic numbers in large finite fields,

and we discuss how cyclotomy may be used to prove that PDSs with Denniston

parameters (see [23]) exist for odd primes.

Finally, in Chapter 5 we present a series of non-cyclotomic DPDF and EPDF

constructions, which use group rather than field properties. We also present the

first examples of DPDFs that are not EPDFs and vice versa.
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1.2 Preliminaries/notation

Before we move on to the main themes of this Thesis, we must first cover some of

the common notation used in this area of combinatorics, as well as some important

preliminary results. For further information on all of the classic combinatorial

structures discussed throughout this Thesis, see [17].

Let G be a group, which we write additively, unless otherwise stated the identity

of G is 0. Throughout this Thesis, the notation G∗ be used to denote the set

G\{0} (this is consistent with notation used in literature on difference families).

For an element g ∈ G, we will consistently use the notation ⟨g⟩ to denote the

subgroup generated by g ∈ G.

Throughout this Thesis we introduce various sets: note that capital italic letters

will henceforth only be used to describe sets. For the purposes of this Thesis, we

assume that S∗ denotes the non-zero elements of the set S. We also introduce

various multisets throughout this body of work: note that the symbols ∆(D),

∆(D1, D2), Int(D) and Ext(D) (where D, D1 and D2 are sets) will be exclu-

sively used to describe multisets. Below we introduce the multisets ∆(D) and

∆(D1, D2); the multisets Int(D) and Ext(D) will be introduced in a later part of

this Chapter.

Definition 1.2.1. (i) For a subset D ⊆ G, we define the multiset

∆(D) = {x− y : x ̸= y ∈ D}.

(ii) For two subsets D1, D2 ⊆ G, we define the multiset

∆(D1, D2) = {x− y : x ∈ D1, y ∈ D2}.

In the literature, it is often specified that D1, D2 ⊆ G must be disjoint subsets

of a group G. As in Chapter 4 we will look at a special case in which we allow

D1, D2 ⊆ G to be non-disjoint sets, we specify that it is possible for D1 and D2

to be non-disjoint in Definition 1.2.1. Finally, for a subset D ⊆ G and a non-

negative integer λ, we denote the multiset conisting of λ copies of the set D by

the notation λD. With the multisets ∆(D) and ∆(Di, Dj) defined, we note the

following.
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Remark 1.2.2. Let G be a group and D be a k-subset of G, then

∆(D,D) = ∆(D) ∪ k{0}.

We now establish some new notation which is used throughout this Thesis.

Definition 1.2.3. Let S ′ = {D1, . . . , Dm} denote a collection of m (usually

pairwise disjoint) subsets of G. We define the following multisets:

(i) Int(S ′) =
m⋃
i=1

∆(Di)

(ii) Ext(S ′) =
⋃

1≤i,j≤m
i ̸=j

∆(Di, Dj).

We refer to Int(S ′) as the internal differences of S ′ = {D1, . . . , Dm} and

Ext(S ′) as the external differences of S ′ = {D1, . . . , Dm}.

The following lemma plays an important role in many subsequent results.

Lemma 1.2.4. Let S be a subset of elements of a group G, partitioned by S ′ =

{D1, . . . , Dm}, where S ′ is a collection of m disjoint subsets. Then the following

multiset equation holds

Int(S ′) ∪ Ext(S ′) = ∆(S).

Proof. Since S ′ is a partition of S into m disjoint subsets, we may write

∆(S) = ∆(D1∪D2∪. . .∪Dm) =
m⋃
i=1

∆(Di)∪
⋃

1≤i,j≤m
i ̸=j

∆(Di, Dj) = Int(S ′)∪Ext(S ′).

Some results within this Thesis rely upon translating subsets of a group. The

formal definition of a translate is given below.

Definition 1.2.5. Let G be an additive group, g ∈ G and S ⊆ G. The translate

of S by g is defined by the set g+S = {g+s|s ∈ S}. Suppose G is a multiplicative

group, then the translate of S by g is the set gS = {gs|s ∈ S}.
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1.3 Difference families

Disjoint and External Partial Difference Families are relatively new combinatorial

objects, that I first defined at the outset of my PhD. My supervisor and I formally

define these objects in our joint paper [34]. Both of these objects are types of

difference structures. In this Section, we cover the definitions and applications

of related difference structures, and we also explore how the new objects that I

have defined fit into this area of combinatorics.

In essence, the term difference family refers to a combinatorial object with

certain uniform difference properties. The study of objects with interesting uni-

form difference properties began in the 1930s, when in [56] Paley recorded the an

infinite construction of a family of objects, which exist in any finite field GF(q) of

order q ≡ 3 mod 4. These structures are now known as Partial Difference Sets.

Definition 1.3.1. Let G be a group of order n and P be a k-subset of G. Then P

is an (n, k, λ, µ)-Partial Difference Set (or (n, k, λ, µ)-PDS) if the following

multiset equation is satisfied:

∆(P ) = λ(P ∗) ∪ µ(G∗\P ),

for some non-negative integers λ, µ. We say that P is proper if λ ̸= µ and that

P is regular if P = −P and 0 ̸∈ P .

PDSs are now well-researched combinatorial objects (see [49],[61],[63]), owing

to their links with association schemes and strongly regular graphs ([48],[61]),

their connections with combinatorial designs ([47],[66]) and their applications in

coding theory ([22],[39]).

Paley’s construction in [56] also yields an infinite construction of another type

of difference family known as a Difference Set.

Definition 1.3.2. Let G be a group of order n and D be a k-subset of G. Then

D is an (n, k, λ)-Difference Set if the following multiset equation is satisfied:

∆(D) = λ(G∗),

for some non-negative integer λ.
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Difference Sets were later generalised to structures known as Difference Fam-

ilies in [66].

Definition 1.3.3. Let G be a group of order n and S ′ = {D1, . . . , Dm} be a

collection of k-subsets of G. Then S ′ is an (n,m, k, λ)-Difference Family (or

(n,m, k, λ)-DF) if the following multiset equation is satisfied:

Int(S ′) = λ(G∗).

We say that a difference family is disjoint if S ′ is a collection of disjoint

subsets. Throughout this thesis, we often use DDF as an abbreviation of Disjoint

Difference Family. We say that a DDF is near-complete if its sets partition

G∗.

In fact, the following remark demonstrates that both PDSs and (D)DFs can

be thought of as generalisations of Difference Sets.

Remark 1.3.4. Let D be an (n, k, λ)-Difference Set in the group G observe that

we can also view D as being

(i) an (n, k, λ, λ)-PDS,

(ii) an (n, 1, k, λ)-DDF.

Example 1.3.5. In the group Z7, the set D = {1, 2, 4} forms a (7, 3, 1)-Difference

Set. To see this observe that

∆(D) = {1− 2, 1− 4, 2− 1, 2− 4, 4− 1, 4− 2} = {6, 4, 1, 5, 3, 2}

The set D = {1, 2, 4} is thus consistent with the definition of (7, 3, 1)-Difference

Set since it is a subset of size 3 in the group Z7, in which every element of Z7

occurs once in the multiset ∆(D). Notice that this is also consistent with the

definition of a (7, 3, 1, 1)-Partial Difference Set, as all of the elements in the set

D = {1, 2, 4} occur with frequency 1 in the multiset ∆(D), and all of the ele-

ments in G\D = {3, 5, 6} also occur with frequency 1 in ∆(D). Similarly, we

can view D as a (7, 1, 3, 1)-DDF. For an example of a PDS that is not also a

Difference Set, observe that the set {(0, 1), (0, 2)} forms a (9, 2, 1, 0)-PDS in the

group Z3 × Z3. The collection of subsets S ′ = {{1, 2, 4}, {3, 5, 6}} in Z7 is an

example of a (7, 2, 3, 2)-DDF that is not simultaneously a Difference Set.
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Difference Sets and Difference Families (particularly DDFs) have also at-

tracted a lot of attention from the combinatorial community, owing to their appli-

cations in various areas of combinatorics. In fact, Difference Sets and Difference

Families were first defined by Bose and Wilson respectively (in [7] and [66]) to

identify new constructions of balanced incomplete block designs. In more recent

years, the connection between these objects and partitions of complete multipar-

tite graphs have been well-studied ([12],[57]). The applications of these objects

in information security have also attracted recent attention (see [11],[52],[53]).

External Difference Families (or EDFs) are another type of difference family that

have been well-researched in recent years. First defined in [55] and [19], these

objects are essentially external analogues of DDFs.

Definition 1.3.6. Let G be a group of order n and S ′ = {D1, . . . , Dm} be a collec-

tion of disjoint k-subsets of G. Then S ′ is an (n,m, k, λ)-External Difference

Family (or (n,m, k, λ)-EDF) if the following multiset equation is satisfied

Ext(S ′) = λ(G∗).

We say that an EDF is near-complete if its sets partition G∗.

Example 1.3.7. In Z5, let S
′ = {{1, 4}, {2, 3}}. The first subtraction table below

contains the elements of the multiset ∆({1, 4}, {2, 3}), and the second subtraction

table contains the elements of the multiset ∆({2, 3}, {1, 4}).

− 2 3

1 4 3

4 2 1

− 1 4

2 1 3

3 2 4

Notice that since Ext(S ′) = ∆({1, 4}, {2, 3})∪∆({2, 3}, {1, 4}), it follows that
every non-identity element of Z5 occurs twice in the multiset union Ext(S ′) hence

S ′ is a (5, 2, 2, 2)-EDF.

EDFs have attracted much attention in recent years, predominantly due to

their applications in cryptography: they can be used to design cryptographical

tools that meet particular optimality constraints. They can also be used to

build cryptographical tools with perfect secrecy. A cryptographical tool is said
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to have perfect secrecy if each encoded message reveals no information about

the plaintext source that has been encrypted. In the paper [58], many variants

of EDFs are detailed, all of which have their own interesting applications in

information security.

As EDFs and DDFs are analogues of one another, there are interesting connec-

tions between these objects. In what follows, we cover a result of [14] that high-

lights the connections between DDFs and EDFs that partition the non-identity

elements of a group G. Before we arrive at this result, we require an intermediary

Proposition.

Proposition 1.3.8. Let G be a group of order n, then ∆(G∗) = (n − 2)G∗ and

G∗ is an (n, n− 1, n− 2)-Difference Set.

We can now prove the following result of Chang and Ding detailed in [14].

Note that a similar result is also given in [21]: in this paper the authors show that

any partition S ′ of G∗ is a near-complete DDF if and only if it is a near-complete

EDF.

Proposition 1.3.9. Let (G,+) be an abelian group of order n and S ′ = {D1, . . . ,

Dm} be a collection of k-subsets of G. If S ′ is a partition of G∗, then S ′ is an

(n,m, k, n− k − 1)-EDF in G if and only if it is an (n,m, k, k − 1)-DDF in G.

Proof. By Proposition 1.3.8, it follows that ∆(G∗) = (n − 2)G∗. Since S ′ parti-

tions G∗, when S ′ is an (n,m, k, n− k − 1)-EDF, it follows by Proposition 1.2.4

that

(n− k − 1)G∗ ∪ Int(S ′) = (n− 2)G∗,

and hence, Int(S ′) = (k−1)G∗. It therefore follows by Definition 1.3.3 that S ′ is a

(n,m, k, k−1)-DDF when S ′ is an (n,m, k, n−k−1)-EDF. It analogously follows

that if S ′ is a (n,m, k, k−1)-DDF then S ′ is also an (n,m, k, n−k−1)-EDF.

Observe that for any DDF S ′ partitioning G∗, the multiset union Int(S ′)

must consist of precisely k − 1 copies of each non-identity element of G∗. To see

this, note that |Int(S ′)| = mk(k − 1), where mk = n − 1 as the m k-subsets of

S ′ partition the elements of G∗. As Int(S ′) must comprise an equal number of

copies of each element of G∗, it follows that Int(S ′) = (k − 1)G∗. Hence, the

DDF and EDF parameters in Proposition 1.3.9 apply to any DDF or EDF that

partitions G∗ when G is an additive abelian group.
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Moreover, notice that the relationship between the multiset unions Int(S ′)

and Ext(S ′) in Proposition 1.3.9 depends upon the multiset ∆(G∗) containing

precisely n− 2 copies of each non-identity element of G∗ in the above proof. By

replacing G∗ by a general (n, k, λ)-Difference Set, S, where clearly ∆(S) = λG∗,

we can see that it is possible to partition any Difference Set into a collection of

disjoint subsets that is simultaneously a DDF and an EDF (it should be noted

that this change will alter the DDF and EDF parameters). However, this prop-

erty does not hold for a proper (n,m, k, λ, µ)-Partial Difference Set, P , since

∆(P ) = λ(P ) ∪ µ(G∗\P ) by definition. The following remark therefore estab-

lishes an equivalent relationship between the multiset unions Int(S ′) and Ext(S ′)

for S ′ partitioning an (n,m, k, λ, µ)-PDS. This remark motivates the definitions of

Disjoint Partial Difference Families (or DPDFs) and External Partial Difference

Families (or EPDFs), as we will see presently.

Remark 1.3.10. Let G be a group of order n, and let S be an (n, k, λ, µ)-PDS

and suppose S ′ = {D1, . . . , Dm} is a collection of subsets that partition S, then

(i) if S ′ is an (n,m, k, λ′)-DDF, by Lemma 1.2.4,

Ext(S ′) = (λ− λ′)(S∗) ∪ (µ− λ′)(G∗\S).

(ii) if S ′ is an (n,m, k, λ′)-EDF, it follows by Lemma 1.2.4 that

Int(S ′) = (λ− λ′)(S∗) ∪ (µ− λ′)(G∗\S).

Remark 1.3.10 therefore demonstrates that in order to study partitions of

PDSs, new combinatorial objects must be defined, in which the internal/external

differences produce each non-identity of a group G at one of two frequencies,

dependant upon membership/non-membership of the PDS. Hence, this Remark

lead me to define DPDFs and EPDFs, which are objects with precisely these

structural properties.

These seemed like natural objects to define since similar analogues of Differ-

ence Sets (namely DDFs and EDFs) had already been defined, and proven to have

many interesting applications to other areas of combinatorics (see abov(e). For-

mal definitions of these objects first appear in my joint paper with my supervisor

[34].
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Definition 1.3.11. Let G be a group of order n, S ′ = {D1, . . . , Dm} be a collec-

tion of disjoint k-subsets of G∗ and S = ∪m
i=1Di. Then S ′ is an (n,m, k, λ, µ)-

Disjoint Partial Difference Family (or (n,m, k, λ, µ)-DPDF) if the follow-

ing multiset equation is satisfied

Int(S ′) = λ(S∗) ∪ µ(G∗\S).

If λ ̸= µ then S ′ is called proper.

Definition 1.3.12. Let G be a group of order n, S ′ = {D1, . . . , Dm} be a collec-

tion of disjoint k-subsets of G∗ and S = ∪m
i=1Di. Then S ′ is an (n,m, k, λ, µ)-

External Partial Difference Family (or (n,m, k, λ, µ)-EPDF) if the fol-

lowing multiset equation is satisfied

Ext(S ′) = λ(S∗) ∪ µ(G∗\S).

If λ ̸= µ then S ′ is called proper.

Example 1.3.13. In the group Z2
3, let S

′ = {D1, D2}, where D1 = {(0, 1), (0, 2)},
and D2 = {(1, 2), (2, 1)}. S ′ is both a (9, 2, 2, 1, 0)-DPDF and a (9, 3, 2, 0, 2)-

EPDF. To highlight this, I have included two subtraction tables below the first

table contains the internal differences between elements in D1 and D2, and the

second table contains all external differences between these sets.

− (0, 1) (0, 2) (1, 2) (2, 1)

(0, 1) - (0, 2)

(0, 2) (0, 1) -

(1, 2) - (2, 1)

(2, 1) (1, 2) -

− (0, 1) (0, 2) (1, 2) (2, 1)

(0, 1) (2, 2) (1, 0)

(0, 2) (2, 0) (1, 1)

(1, 2) (1, 1) (1, 0)

(2, 1) (2, 0) (2, 2)

From these tables, it is clear that Int(S ′) = {(0, 1), (0, 2), (1, 2), (2, 1)} and

Ext(S ′) contains two copies of each of the elements {(1, 1), (2, 2), (1, 0), (2, 0)}. As
D1∪D2 = {(0, 1), (0, 2), (1, 2), (2, 1)} and (Z2

3)
∗\{D1∪D2} = {(1, 0), (2, 0), (1, 1),

(2, 2)}, it follows by Definitions 1.3.11 and 1.3.12 that S ′ is both a (9, 2, 2, 1, 0)-

DPDF and a (9, 3, 2, 0, 2)-EPDF.

Some related structures to DPDFs and EPDFs have previously been explored

in the literature. For example, Almost Difference Families, first studied in [27],
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are structures in which every non-identity element of a group G, occurs either λ or

λ+ 1 times in the multiset Int(S ′): note that the frequency at which an element

occurs as a difference in Int(S ′) is not determined by whether it is contained

within one of the subsets of S ′. Another related, existing structure, also known

as an External Partial Difference Family, was defined in [21]. Under the definition

of an External Partial Difference Family given in [21], if a collection of m disjoint

k-subsets S ′ = {D1, . . . , Du} is an External Partial Difference Family, then S ′

must partition G∗ and the frequency at which an element of G∗ occurs in Ext(S ′)

depends upon membership/non-membership of the collection of subsets ∪γ
i=1Di

for γ ∈ {1, . . . , u − 1}. Finally, in [52], the authors implicitly explore various

EPDF constructions in order to construct a type of combinatorial object known

as a Difference System of Sets. These objects are all similar to DPDFs/EPDFs

but do not naturally subsume other difference family definitions: in following

results, we see that other varieties of difference families can be thought of as

DPDFs/EPDFs that meet particular constraints.

We now observe an important result about the parameters of a DPDF/EPDF.

Lemma 1.3.14. (i) If S ′ is a (n,m, k, λ1, µ1)-DPDF, then

mk(k − 1) = λ1mk + µ1(n− 1−mk).

(ii) If S ′ is a (n,m, k, λ2, µ2)-EPDF, then

m(m− 1)k2 = λ2mk + µ2(n− 1−mk).

Proof. (i) Suppose that S ′ = {D1, . . . , Dm}, and let S = ∪m
i=1Di. By def-

inition, since S ′ is a DPDF, then the following multiset equation must

hold Int(S ′) = λ1(S) ∪ µ1(G
∗\S). We may then write |Int(S ′)| = λ1|S| +

µ1|(G∗\S)|. As Int(S ′) comprises s multisets of the form ∆(Di), where

Di ∈ S ′, and each multiset ∆(Di) has cardinality k(k − 1), it follows that

|Int(S ′)| = mk(k−1). Moreover, since S comprises the union of m pairwise

disjoint k-subsets, it is clear that |S| = mk, and from this we can obtain

|G∗\S| = n− 1−mk.

(ii) The proof of this result is analogous to the proof of part (i).
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Remark 1.3.15. Let G be a group and suppose that S ′ is a collection of m

disjoint k-subsets, then

(i) every (n, k, λ, µ)-PDS is an (n, 1, k, λ, µ)-DPDF.

(ii) every (n,m, k, λ)-DDF is an (n,m, k, λ, λ)-DPDF,

(iii) every (n,m, k, λ)-EDF is an (n,m, k, λ, λ)-EPDF.

With DPDFs and EPDFs defined, we are able to partition both Difference

Sets and PDSs into DDFs/EDFs/DPDFs/EPDFs.

Theorem 1.3.16. In a group G of order n, let S ′ = {D1, . . . , Dm} be a collection

of m disjoint k-subsets and suppose that S = ∪m
i=1Di is an (n,mk, λ)-Difference

Set. Then

(i) S ′ is an (n,m, k, λ′)-DDF if and only if S ′ is an (n,m, k, λ− λ′)-EDF,

(ii) S ′ is an (n,m, k, λ′, µ′)-DPDF if and only if S ′ is an (n,m, k, λ−λ′, µ−µ′)-

EPDF.

Proof. (i) It follows by Remark 1.3.4 that we can think of a DS as being a PDS

in which λ = µ. This result then immediately follows from Remark 1.3.10.

(ii) When S is an (n,m, k, λ) Difference Set, by Definition 1.3.2, ∆(S) = λ(G∗).

If we then assume that S ′ is an (n,m, k, λ′, µ′)-DPDF, this means that

Int(S ′) = λ′(S∗) ∪ µ′(G∗\S). It then follows by Lemma 1.2.4 that

(λ′(S∗) ∪ µ′(G∗\S)) ∪ Ext(S ′) = λG∗

⇔ Ext(S ′) = (λ− λ′)(S∗) ∪ (λ− µ′)(G∗\S).

By Definition 1.3.12, this then implies that S ′ is an (n,m, k, λ−λ′, µ−µ′)-

EPDF. The reverse direction is analogous.

Theorem 1.3.17. In a group G of order n, let S ′ = {D1, . . . , Dm} be a collection

of m disjoint k-subsets and suppose that S = ∪m
i=1Di is an (n,mk, λ, µ)-PDS.

Then

(i) S ′ is an (n,m, k, λ′, µ′)-DPDF if and only if S ′ is an (n,m, k, λ−λ′, µ−µ′)-

EPDF,
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(ii) S ′ is an (n,m, k, λ′)-DDF if and only if S ′ is an (n,m, k, λ − λ′, µ − λ′)-

EPDF,

(iii) S ′ is an (n,m, k, σ)-EDF if and only if S ′ is an (n,m, k, λ′, µ′)-DPDF, where

λ− λ′ = µ− µ′ = σ.

Proof. By Definition 1.3.1, as S is an (n,mk, λ, µ)-PDS, this means that ∆(S) =

λ(S) ∪ µ(G∗\S). Moreover, if we assume that S ′ is an (n,m, k, λ′, µ′)-DPDF, by

Definition 1.3.11, Int(S ′) = λ′(S) ∪ µ′(G∗\S). By Lemma 1.2.4, this means that

λ′(S∗) ∪ µ′(G∗\S) ∪ Ext(S ′) = λ(S∗) ∪ µ(G∗\S)

⇔ Ext(S ′) = (λ− λ′)(S∗) ∪ (µ− µ′)(G∗\S).

It then follows by Definition 1.3.12 that S ′ is an (n,m, k, λ− λ′, µ− µ′)-EPDF.

By Lemma 1.3.15, parts (ii) and (iii) are special cases of part (i), in which λ′ = µ′

and λ− λ′ = µ− µ′ respectively.

Lemma 1.2.4 highlights a clear, bidirectional relationship between the inter-

nal/external differences of a collection of subsets, S ′, that partition a larger set S

and the behaviour of the multiset ∆(S). In the previous result, we looked at how

we can partition PDSs into DPDFs and EPDFs. We now see that if we have a

collection of subsets, S ′, that simultaneously is a DPDF and an EPDF, the union

of these subsets in S ′ must be a PDS.

Theorem 1.3.18. Let G be a group, and S ′ = {D1, . . . , Dm} be a collection of

k-subsets of G. Suppose S ′ partitions a set S, then if S ′ is both an (n,m, k, λ′, µ′)-

DPDF and an (n,m, k, λ, µ)-EPDF, then S is always an (n,mk, λ+λ′, µ+µ′)-PDS

and an (n,m, k, λ+ λ′)-Difference Set in the case where λ+ λ′ = µ+ µ′.

Proof. By Definitions 1.3.11 and 1.3.12, when S ′ is both an (n,m, k, λ, µ)-DPDF

and an (n,m, k, λ′, µ′)-EPDF, this means that Int(S ′) = λ(S∗) ∪ µ(G∗\S) and

Ext(S ′) = λ′(S∗) ∪ µ′(G∗\S). It therefore follows by Lemma 1.2.4 that

(λ(S∗) ∪ µ(G∗\S)) ∪ (λ′(S∗) ∪ µ′(G∗\S)) = ∆(S) ⇔

(λ+ λ′)S∗ ∪ (µ+ µ′)(G∗\S) = ∆(S).

It then follows by Definition 1.3.1 that S is an (n,mk, λ+λ′, µ+µ′)-PDS.
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We have seen so far in this Section that DPDFs and EPDFs subsume the

definitions of various other difference structures. We have also demonstrated

that these structures can also be used to partition both Difference Sets and PDSs

into interesting sub-structures. We now close this Section by further motivating

DPDFs and EPDFs by demonstrating that constructions of DPDFs and EPDFs

naturally arise from existing constructions of PDSs. Before we get onto these

results, we require the following Theorem, which summarises a series of results

in [47], and is recorded in a similar format in [34].

Theorem 1.3.19. Let G be a group of order n. Let S ⊆ G, such that S has

cardinality k and S is an (n, k, λ, µ)-PDS.

(i) If S is not proper (i.e. S is a Difference Set), its complement G\S is also

a Difference Set.

(ii) If S is a proper PDS, then S = −S.

(iii) If S is a regular PDS then S ∪{0}, G∗\S, G\S and (G\S)\{0} are all also

PDSs.

(iv) If S is a non-regular proper PDS, then S\{0}, G∗\S G\S and (G\S)∪{0}
are also PDSs.

(v) If S is a non-trivial subgroup of G, then it is a (n, k, k − 1, 0)-PDS.

(vi) If λ ̸= 0 and µ = 0, then S ∪ {0} is a subgroup of G.

The following results from [34] demonstrate how DPDFs and EDPFs can be

obtained from existing PDS constructions.

Theorem 1.3.20. Let G be a group of order n, S ′ = {D1, . . . , Dm} be a collection

of disjoint k-subsets of G and S = ∪m
i=1Di. Suppose that each Di ∈ S ′ is an

(n, k, λ, µ)-PDS. Then

(i) S ′ is an (n,m, k, λ(m− 1)µ,mµ)-DPDF,

(ii) if S is an (n,mk, η, ν)-PDS, then S ′ is also an (n,m, k, η−(λ(m−1)µ), ν−
mµ)-EPDF.
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Proof. (i) It follows by Definition 1.2.3 that

Int(S ′) =
m⋃
i=1

∆(Di).

Since each Di ∈ S ′ is an (n, k, λ, µ)-PDS, it follows by Definition 1.3.1 that

Int(S ′) = (λ(D1) ∪ µ(G∗\D1)) ∪ (λ(D2) ∪ µ(G∗\D2)) ∪ . . . ∪

(λ(Dm) ∪ µ(G∗\Dm))

= (λ(D1) ∪ µ(D2 ∪ . . . ∪Dm)) ∪ (λ(D2) ∪ µ(D1 ∪D3 ∪ . . . Dm))∪

. . . ∪ (λ(Dm) ∪ µ(D1 ∪ . . . Dm−1)).

The above multiset union, Int(S ′), is broken up into preciselym expressions,

with each expression corresponding to the elements of a multiset of the

form ∆(Di), where Di ∈ S ′. Notice that for every Di ∈ S ′, Di occurs at

frequency µ in precisely m− 1 of these expressions, while in the expression

corresponding to the multiset ∆(Di), Di occurs at frequency λ. For every

a ∈ G∗\S, where S = D1 ∪D2 ∪ . . . ∪Dm, a occurs at frequency µ in each

of the m expressions in Int(S ′). Since D1 ∪ D2 ∪ . . . ∪ Dm = S, we may

rewrite this multiset union as;

Int(S ′) = (λ+ (m− 1)µ)S ∪mµ(G∗\S),

and therefore S ′ is an (n,m, k, λ+ (m− 1)µ,mµ)-DPDF.

(ii) It follows by Lemma 1.2.4, Definition 1.3.11 and Definition 1.3.1 that when

S ′ is an (n,m, k, λ + (m − 1)µ,mµ)-DPDF and S is an (n,mk, η, ν)-PDS,

this implies

(λ+ (m− 1)µ)S ∪mµ(G∗\S) ∪ Ext(S ′) = η(S) ∪ ν(G∗\S).

Notice that this expression is equivalent to

Ext(S ′) = (η − (λ+ (m− 1)µ))S ∪ (ν −mµ)(G∗\S).
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By Definition 1.3.12, the above equation implies that S ′ is also an (n,m, k, η−
(λ+ (m− 1)µ), ν −mµ)-EPDF.

Theorem 1.3.21. Let G be a group of order n and let S ′ = {D1, . . . , Dm} be

a collection of disjoint k-subsets, where each Di ∈ S ′ is an (n, k, λ, µ)-PDS.

Moreover, suppose that S = ∪m
i=1Di. If

(i) G\S is a PDS or

(ii) G∗\S is a PDS (providing 0 ̸∈ S),

then S ′ is a DPDF which is also an EPDF.

Proof. (i) It follows by Theorem 1.3.19 that when G\S is a PDS (irrespective

of whether G\S is proper or regular) then its complement, S, is also a PDS.

It then follows by Theorem 1.3.20 that since each Di ∈ S ′ is a PDS, and S ′

partitions the PDS S, that S ′ is both a DPDF and an EPDF.

(ii) The proof of this result is analogous to the proof of part (i).

1.4 Cyclotomy in finite fields

Throughout the majority of this Thesis, I use a technique known as finite field

cyclotomy to find new constructions of disjoint and external partial difference

families, as well as other related combinatorial structures. The book [60], by

Thomas Storer, is the earliest known source to explore the connections between

between Difference Sets and cyclotomic classes since this book was written, cy-

clotomy has been used as a standard technique for developing constructions of

various types of difference family (see [2],[34],[65],[66]).

Many cyclotomic constructions of difference families utilise formulas for com-

puting the cyclotomic numbers of order e in a finite field of order q (see for

example the constructions of a sub-classification of EDFs, known as SEDFs, in

[2]) to take many of these results further, formulas for computing the cyclotomic

numbers of order e in general finite fields of order q need to be extended to larger

values of e. Generally speaking, identifying the cyclotomic numbers of order e in

any finite field of order q is a hard problem to resolve, and is indeed a problem
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that has received a lot of attention since it was first approached by Gauss. In [60]

Storer determines a formula for the cyclotomic numbers of order 2 and 3 also giv-

ing selective formulas for cyclotomic numbers of orders 4, 6 and 8, in [43] Emma

Lehmer derives formulas for all cyclotomic numbers of order 8, and between the

papers [25], [42] and [50] formulas for selective cyclotomic numbers of order up

to e = 12 are detailed. In [5], the cyclotomic numbers were resolved for order up

to 24 but we have not come across explicit cyclotomic number formulas in the

literature for e ≥ 24. Uniform cyclotomy can be used to determine cyclotomic

numbers of order e in particular finite fields, even when e is greater than or equal

to 22, but uniform cyclotomy is only applicable if e meets certain criteria. Due

to the difficult nature of determining formulas for cyclotomic numbers of order

e in general finite fields, a feature of Storer’s work in [60] is seeking alternative

methods for simplifying the computation of cyclotomic numbers. In this Thesis,

I apply some Storer’s techniques to identify cyclotomic constructions of disjoint

and external partial difference families and I also develop some new techniques

that may be used to evaluate cyclotomic numbers in certain cases.

In this Section, we use [60], [34] and [4], to set up a series of definitions and

preliminary results which are later used to find cyclotomic constructions of dis-

joint and external difference families in later chapters. Before we cover these

results, we must first cover some basic algebraic results.

The Fundamental Theorem of Finite Fields.

(1) There is a field with exactly q elements if and only if q = ps for a prime p

and s ≥ 1.

(2) Any two finite fields with the same cardinality are isomorphic.

(3) For any finite field F of order ps, where p is prime

(a) the additive group (F,+) ∼= ((Zp)
s,+),

(b) the multiplicative group (F∗, ·) is cyclic and a generator of the multi-

plicative subgroup is called a primitive element of F.

Throughout this Thesis, we will use the notation GF(q) to denote the unique

(up to isomorphism) finite field of order q = ps.
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The Fundamental Theorem for Cyclic Groups

(1) Every subgroup of a cyclic group is cyclic.

(2) In a finite cyclic group G of order n, if H ≤ G then the order of H divides

n.

(3) For each m | n, there is exactly one cyclic subgroup H ≤ G of order m.

We can now define cyclotomic classes and cyclotomic numbers. In [60], Storer

defines a cyclotomic class as follows:

Definition 1.4.1. In a finite field GF(q) of order q = pm = ef + 1 (where p is

prime and e, f ∈ N), we define the cyclotomic class of order e, Ce,m
i , in GF(q)

to be the set:

Ce,m
i = αi⟨αe⟩,

where α is a primitive element of GF(q) and i ∈ Ze. Notice that each cyclotomic

class comprises f distinct elements.

The reader should observe that the elements of each cyclotomic class of order

e depend upon the primitive element chosen.

Example 1.4.2. Note that α = 3 and α = 6 are two distinct primitive elements

of the finite field GF(17). When α = 3, the cyclotomic classes of order 4 in

GF(17) are as follows

C4,1
0 = {α0, α4, α8, α12} = {1, 13, 16, 4}

C4,1
1 = {α, α5, α9, α13} = {3, 5, 14, 12}

C4,1
2 = {α2, α6, α10, α14} = {9, 15, 8, 2}

C4,1
3 = {α3, α7, α11, α15} = {10, 11, 7, 6}.

When α = 6, the cyclotomic classes of order 4 in GF(17) are as follows

C4,1
0 = {α0, α4, α8, α12} = {1, 4, 16, 13}

C4,1
1 = {α, α5, α9, α13} = {6, 7, 11, 10}

C4,1
2 = {α2, α6, α10, α14} = {2, 8, 9, 15}

C4,1
3 = {α3, α7, α11, α15} = {12, 14, 5, 3}.
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Surprisingly, cyclotomic classes, which are in essence multiplicative structures,

have some inherent additive properties. The study of finite field cyclotomy ex-

plores the additive relationships between elements contained within the same or

distinct cyclotomic classes in the finite field GF(q). To understand these addi-

tive properties, we study the cyclotomic numbers of order e in a given finite field

GF(q). The following definition of a cyclotomic number is again based on a defini-

tion given in [60]. Note that if i1 ≡ i2mod e and j1 ≡ j2mod e then the number of

solutions for αes+i1 +1 = αet+j1 is the same as the number for αes+i2 +1 = αet+j2 ;

for this reason we assume that i and j in the following definition lie in Ze.

Definition 1.4.3. Let GF(q) be a finite field of order q = pm = ef + 1 and let

α be a primitive element of GF(q). For fixed integers i, j ∈ Ze, the cyclotomic

number (i, j)e (of order e) is the number of ordered pairs (s, t) (where 0 ≤ s, t ≤
f − 1) such that

αes+i + 1 = αet+j,

where αes+i ∈ Ce,m
i and αet+j ∈ Ce,m

j .

The reader should note here that there are two different ways of viewing the

2-tuple (i, j) which indexes the cyclotomic number (i, j)e. One can either view

i and j as element of Ze or as two integers that lie in the following interval:

0 ≤ i, j ≤ e − 1. It is clear that these two viewpoints are analogous to one

another, but we point this out as we will change the convention used across

the various Sections and Chapters of this Thesis. In this Chapter, we will view

(i, j) ∈ Ze × Ze and we will follow this same convention in Section 2 of Chapter

2, however in Section 1 of Chapter 2, Chapter 3 and Chapter 4, we will follow

the convention that 0 ≤ i, j ≤ e − 1. Our reasoning for this is that in Chapter

1 and Section 2 of Chapter 2, we gain additional insight into certain proofs by

viewing i and j as elements of the group Ze, whereas we follow the standard

cyclotomic number convention in the other Sections. This is because the other

Sections contain published material, and we keep the notation in these Sections

in-line with the notation used in the original papers that these Sections are based

upon.

The reader should also note that the cyclotomic numbers of order e depend

upon the primitive element chosen as the generator for the cyclotomic class Ce,m
0 .

Whilst the cyclotomic numbers vary for different primitive elements, the cyclo-
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tomic numbers will always be equivalent up to isomorphism. We demonstrate

this property with an example.

Example 1.4.4. In Example 1.4.2, the elements of each of the cyclotomic classes

of order 4 when α = 3 are recorded. Notice that from the cyclotomic classes

generated by α = 3, we obtain the following sets (where the notation Ce,m
i − 1

denotes usual subtraction)

C4,1
0 − 1 = {0, 12, 15, 3}

C4,1
1 − 1 = {2, 4, 13, 11}

C4,1
2 − 1 = {8, 14, 7, 1}

C4,1
3 − 1 = {9, 10, 6, 5}.

From the above sets, we obtain that the cyclotomic numbers of order 4 are as

follows when α = 3: (0, 0)4 = (3, 0)4 = (1, 1)4 = (0, 3)3 = 0, (2, 0)4 = (2, 1)4 =

(3, 1)4 = (0, 2)4 = (1, 2)4 = (2, 2)4 = (3, 2)4 = (1, 3)4 = (2, 3)4 = 1 and (1, 0)4 =

(0, 1)4 = (3, 3)4 = 2.

By undergoing the same process with the cyclotomic classes of order 4 generated

by the primitive element α = 6 in the finite field GF(17), we obtain the following

cyclotomic numbers: (0, 0)4 = (1, 0)4 = (0, 1)4 = (3, 3)4 = 0, (2, 0)4 = (2, 1)4 =

(0, 2)4 = (1, 2)4 = (2, 2)4 = (3, 2)4 = (3, 1)4 = (1, 3)4 = (2, 3)4 = 1 and (3, 0)4 =

(1, 1)4 = (0, 3)4 = 2.

This illustrates the well known fact (see page 24 of [60]) that the cyclotomic

numbers are determined up to choice of primitive element.

We will now split the cyclotomic numbers into the following sub-classifications.

Definition 1.4.5. For all i, j ∈ Ze, the cyclotomic numbers of the form (i, i)e,

(i, 0)e and (0, i)e are referred to as internal cyclotomic numbers, and all cy-

clotomic numbers of the form (i, j)e, where 0 ̸= i ̸= j ̸= 0, are referred to as

external cyclotomic numbers.

We require these sub-classifications because, as we see in a later Chapter on

cyclotomic orbits, we can establish identities between collections of internal cy-

clotomic numbers and collections of external cyclotomic numbers. The following

Definition and Theorem, first recorded in [4], demonstrate that in certain finite
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fields, we can in fact take this further, and demonstrate that internal (respectively

external) cyclotomic numbers are equal to one another.

Definition 1.4.6. The cyclotomic numbers in GF(q) are said to be uniform if

(i, i)e = (i, 0)e = (0, i)e = (1, 1)e for all i ∈ Ze (the internal cyclotomic numbers

have the same value) and if (i, j)e = (1, 2)e for all i ̸= j ∈ Ze (the external

cyclotomic numbers have the same value).

Theorem 1.4.7. Let GF(q) be a finite field of order q = pr = ef + 1, where p is

prime and e ≥ 3. The cyclotomic numbers of order e are uniform if and only if

−1 is a power of p modulo e. When the cyclotomic numbers are uniform either

p is odd and f is even or p = 2. Moreover, when the cyclotomic numbers are

uniform q = s2, where s ≡ 1 mod e, and we may express the cyclotomic numbers

of order e as follows

(0, 0)e =

(
s− 1

e

)2

− (e− 3)

(
s− 1

e

)
− 1,

(0, i)e = (i, 0)e = (i, i)e =

(
s− 1

e

)2

+

(
s− 1

e

)
for i ̸= 0,

(i, j)e =

(
s− 1

e

)2

for 0 ̸= i ̸= j.

Example 1.4.8. In the finite field GF(9), let e = 4 and observe that p = 3.

Notice that 3 ≡ −1 mod 4, and moreover f = 9−1
4

= 2 is even. It therefore

follows that the cyclotomic numbers of order 4 are uniform in GF(9). Observe

that s = −3 satisfies both s ≡ 1 mod 4 and s2 = 9. It follows from Theorem 1.4.7

that as s = −3 when e = 4, this means (0, 0)4 = 1, (i, 0)4 = (i, i)4 = (0, i)4 = 0

for all 1 ≤ i ≤ 3 and (i, j)4 = 1 for all 1 ≤ i ̸= j ≤ 3.

To verify this, observe that in GF(9), C4,2
0 = {1, 2}. By definition, (0, 0)4 is

the number of elements in α4s ∈ C4,2
0 (1 ≤ s ≤ 2) such that α4s − 1 ∈ C4,2

0 and

the cyclotomic number (0, i)e is the number of elements in α4s ∈ C4,2
0 (1 ≤ s ≤ 2)

such that α4s − 1 ∈ C4,2
i (1 ≤ i ≤ 3). Since 2 − 1 = 1, we can directly compute

(0, 0)4 = 1 and (0, i)e = 0. We can similarly verify the other cyclotomic numbers

of order 4 in the finite field GF(9) by directly computing the elements of each

cyclotomic class. This is left to the reader.

We return to the notions of internal/external cyclotomic numbers in later

Chapters to establish cyclotomic constructions of DPDFs and EPDFs.
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In the remainder of this Section, we establish identities between individual

cyclotomic numbers. Before we present these identities, we must first define the

Frobenius automorphism: a well-known endomorphism of finite fields of charac-

teristic p, which is an automorphism when the field is finite (see [64] for further

details).

Definition 1.4.9. Let GF(q) be a finite field of characteristic p. The Frobenius

automorphism ϕ : GF(q) → GF(q) is defined by ϕ(ω) = ωp, for every ω ∈ GF(q).

We also require the following Lemma (often referred to as Freshman’s Ex-

ponentiation Lemma) to derive later results in this chapter. For a proof of the

following result, see [64].

Lemma 1.4.10. Let GF(q) be a finite field of characteristic p. For any elements

a, b ∈ GF(q), (a+ b)p = ap + bp.

Finally, we require the following Lemma, originally proven by Storer in [60].

Lemma 1.4.11. Let GF(q) be a finite field of order q = pm = ef + 1, where p

is prime and m ∈ N. Moreover, for each i ∈ Ze, let C
e,m
i = αi⟨αe⟩, where α is a

primitive element of GF(q). When

(i) e and f are both odd, −1 ∈ Ce,m
0 ,

(ii) f is even, −1 ∈ Ce,m
0 ,

(iii) e is even and f is odd, −1 ∈ Ce,m
e
2

.

Proof. (i) When e and f are both odd, this implies that q = pm = ef + 1 is

even, meaning that p = 2. When p = 2, 1 ≡ −1 mod p.

(ii) When f is even, q = pm = ef +1 is odd, meaning p ̸= 2. As a consequence

of Lagrange’s Theorem, α
ef
2 = −1. When f is even, f

2
is an integer, hence

αe f
2 = −1 ∈ Ce,m

0 .

(iii) As in part (ii), when e is even and f is odd, q − 1 = ef is even and so

α
ef
2 = −1 ∈ GF(q). When f is odd, f

2
is not an integer, but e

2
is an integer.

Observe that we may write αf e
2 = α(f−1) e

2
+ e

2 = α
(f−1)

2
e+ e

2 = −1, since we

have expressed −1 as a power of the form αse+ e
2 , where 0 ≤ s = f−1

2
≤ f−1,

it is clear that −1 ∈ Ce,m
e
2

.
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With the preliminary results and definitions outlined, we are now able to

prove all known identities between cyclotomic numbers. The following Theorem

is based on the cyclotomic number identities introduced in [60] and [65] and also

includes a new result in part (e) on the summation of all cyclotomic numbers

with i = j.

Theorem 1.4.12. Let q = pm, where m ≥ 1, p is prime and q− 1 = ef (e ≥ 2).

Let (i, j)e be the cyclotomic numbers of order e in GF(q), then

(a) (i, j)e = (e− i, j − i)e,

(b) (i, j)e = (ip, jp)e,

(c) suppose p is a prime, then

(i, j)e =

(j, i)e, if p = 2or f is even

(j + e
2
, i+ e

2
)e, if f is odd,

(d) (i) when either p = 2 or f is even,

e−1∑
i=0

(i, 0)e =
e−1∑
i=0

(0, i)e =
e−1∑
i=0

(e− i, e− i)e = f − 1,

(ii) when e is even and f is odd,

e−1∑
i=0

(i, 0)e =
e−1∑
i=0

(
e

2
, i)e =

e−1∑
i=0

(e− i, e− i)e = f − 1,

(e) (i) for any j ̸= 0 ∈ Ze,
∑e−1

i=0 (i, j)e = f ,

(ii) when either p = 2 or f is even, for any i ̸= 0 ∈ Ze,
∑e−1

j=0(i, j)e = f ,

(iii) when e is even and f is odd, for any i ̸= e
2
∈ Ze,

∑e−1
j=0(i, j)e = f .

Proof. By Definition 1.4.3, for all i, j ∈ Ze the cyclotomic number (i, j)e is pre-

cisely the number of solutions (s, t) ∈ Zf × Zf to the following equation

αse+i + 1 = αte+j. (1.1)

Analogously, for all I, J ∈ Ze, the cyclotomic number (I, J)e is precisely the

number of solutions (s′, t′) ∈ Zf × Zf to the following equation

αs′e+I + 1 = αt′e+J . (1.2)
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In subsequent parts of this proof, we aim to establish a bijection between the

solution sets of (1.1) and (1.2). This will demonstrate the solution sets have the

same size and thus (i, j)e = (I, J)e for appropriate I, J ∈ Ze.

(a) Let I = e− i and J = j − i. We define a mapping g : Zf × Zf → Zf × Zf

by g(s, t) = (f − 1 − s, t − s). We will prove that g : Zf × Zf → Zf × Zf

is a bijection, show that g maps solutions of (1.1) to solutions of (1.2) and

demonstrate that g−1 maps solutions of (1.2) to solutions of (1.1).

We begin this process by demonstrating that g is an injective mapping. Let

s1, s2, t1, t2 ∈ Zf and suppose that g(s1, t1) = g(s2, t2), it then follows from

the definition of g that the following equations must hold

f − 1− s1 = f − 1− s2, (1.3)

t1 − s1 = t2 − s2. (1.4)

It is immediate from (1.3) that s1 = s2 and it then naturally follows from

(1.4) that t1 = t2. We can therefore conclude that g is an injective mapping

and hence a surjective mapping as set sizes are equal. We now determine

the inverse of g. Suppose that (X, Y ) ∈ Zf × Zf ; we now find (x, y) ∈
Zf × Zf such that g(x, y) = (X, Y ). If we assume that g(x, y) = (X, Y ),

then this requires (X, Y ) = (f − x − 1, y − x), which would mean that

X = f − 1−x and Y = y−x, hence we may then write x = f − 1−X and

y = Y + x = f − 1−X + Y .

By applying g−1 to (X, Y ) we obtain

g−1(X, Y ) = (x, y) = (f − 1−X, f − 1−X + Y ).

We now demonstrate that g maps every solution (s, t) of (1.1) to a solution

g(s, t) of (1.2). Suppose that (s, t) ∈ Zf × Zf belongs to solution set of

(1.1), it then follows that

αse+i + 1 = αte+j.

By multiplying this equation by α(f−1−s)e+(e−i) (the inverse of αse+i) we
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obtain

αse+i+fe−e−se+e−i + α(f−1−s)e+(e−i) = αte+j+fe−e−se+e−i.

Since αfe = 1 by Lagrange’s Theorem, it follows that

1 + α(f−1−s)e+(e−i) = α(t−s)e+(j−i).

Since g is a bijective mapping, every solution (s, t) in the solution set of

(1.1) corresponds to a solution g(s, t) = (f − 1− s, t− s) of (1.2).

We now demonstrate that g−1 maps a solution of (1.2) to a solution of (1.1).

Suppose that (s′, t′) is in the solution set of (1.2), then this implies that

αs′e+(e−i) + 1 = αt′e+(j−i).

By multiplying this equation by α(f−1−s′)e+i

αs′e+e−i+fe−e+s′+i + α(f−1−s′)e+i = αt′e+j−i+fe−e−s′e+i,

1 + α(f−1−s′)e+i = α(f−1−s′+t′)e+j.

It is then immediate that g−1 maps each solution (s′, t′) in the solution set

of (1.2) to a solution g−1(s′, t′) = (f − 1− s′, f − 1− s′ + t′) of (1.1).

(b) This is immediate by properties of the Frobenius automorphism (see Defi-

nition 1.4.9 and Lemma 1.4.10).

(c) By Lemma 1.4.11, 1 = −1 when p = 2, thus

αse+i + 1 = αte+j ⇔ αte+j + 1 = αse+i.

It then immediately follows from Definition 1.4.3 that when p = 2, (i, j)e =

(j, i)e. When p is an odd prime the situation is more complicated. In what

follows, we will tackle the cases for f even and f odd when p is an odd prime.

To do this, we will establish two bijections h1 and h2 and demonstrate that

these bijections map solutions of (1.1) onto solutions of (1.2) in the case

where f is even and f is odd respectively.
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When f is even, we define a bijection h1 between the solution set of (1.1)

and the solution set of (1.2). In this instance, suppose I = j and J = i.

We define the mapping h1 : Zf ×Zf → Zf ×Zf by h1(s, t) = (t+ f
2
, s+ f

2
).

We will prove that h1 : Zf × Zf → Zf × Zf is a bijection, show that h1

maps solutions of (1.1) to solutions of (1.2) and demonstrate that h−1
1 maps

solutions of (1.2) to solutions of (1.1).

We begin this process by demonstrating that h1 is an injective mapping.

Let s1, s2, t1, t2 ∈ Zf and suppose that h1(s1, t1) = h1(s2, t2), it then follows

from the definition of h1 that the following equations must hold

t1 +
f

2
= t2 +

f

2
, (1.5)

s1 +
f

2
= s2 +

f

2
. (1.6)

It is immediate from (1.5) that t1 = t2 and it is similarly immediate from

(1.6) that s1 = s2. We can therefore conclude that h1 : Zf ×Zf → Zf ×Zf

is an injective mapping, and hence a surjective mapping, since set sizes are

equal.

We next determine h−1
1 . Suppose (X, Y ) ∈ Zf×Zf ; we find (x, y) ∈ Zf×Zf

such that h1(x, y) = (X, Y ). If we assume that h1(x, y) = (X, Y ) then this

implies that (X, Y ) = (y + f
2
, x+ f

2
), meaning x = Y − f

2
and Y = X − f

2
.

By applying h−1 to (X, Y ) we obtain

h−1(X, Y ) = (x, y) = (Y − f

2
, X − f

2
).

We will now demonstrate that when I = j, J = i and f is even, the bijection

h1 guarentees that we can map every solution in the solution set of (1.1) to

a solution in the solution set of (1.2). Suppose that (s, t) ∈ Zf ×Zf belongs

to the solution set of (1.1), it then follows that

αse+i + 1 = αte+j.

We will now multiply both sides of this equation by the element −1 ∈
GF(q)∗. Notice that since we are in the case where f is even, −1 = α

ef
2 =

αe f
2 , hence when we multiply each term of the above expression by −1, we
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obtain

αse+i+e f
2 − 1 = αte+j+e f

2 .

By rearranging this equation, we obtain

α(t+ f
2
)e+j + 1 = α(s+ f

2
)e+i.

As h1 is a bijective mapping, every solution (s, t) in the solution set of (1.1)

corresponds to precisely one solution h1(s, t) = (t+ f
2
, s+ f

2
) in the solution

set of (1.2).

We will now demonstrate that h−1
1 maps every solution of (1.2) to a solution

in the solution set of (1.1). Suppose that (s′, t′) ∈ Zf × Zf in the solution

set of (1.2), then this implies that

αs′e+j + 1 = αt′e+i.

We will now multiply the equation through by −1. As above, since we are

assuming f is even, this means that −1 = αe f
2 . We therefore obtain the

following equation when we multiply this equation by −1

α(s′+ f
2
)e+j − 1 = α(t′+ f

2
)e+i.

We can then rearrange this equation to give

α(t′+ f
2
)e+i = α(s′+ f

2
)e+i + 1.

Since h1 is a bijection, h−1
1 maps every solution (s′, t′) ∈ Zf × Zf of (1.2)

to a solution h−1
1 (s′, t′) = (t′ − f

2
, s′ − f

2
) of (1.1), so the solution sets must

have the same size and therefore (i, j)e = (j, i)e when f is even.

We now define a bijection h2 : Zf ×Zf → Zf ×Zf by h2(s, t) = (t+ f−1
2
, s+

f−1
2
). Owing to the similarities between the mappings h1 and h2, we will

leave it up to the reader to prove for themselves that h2 is a bijection, but

we will note that the inverse mapping h−1
2 : Zf×Zf → Zf×Zf is defined by

h−1
2 (X, Y ) = (x, y) = (Y − f−1

2
, X− f−1

2
) for any two pairs (X, Y ) ∈ Zf×Zf

in the solution set of (1.2) and any (x, y) ∈ Zf × Zf in the solution set of
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(1.1).

We will now prove, using the bijection h2, that when I = j + e
2
, J = i + e

2

and f is odd, every solution in the solution set (1.1) maps to precisely one

solution in the solution set (1.2). To see this, suppose (s, t) ∈ Zf ×Zf is in

the solution set of (1.1). It then follows that (s, t) ∈ Zf × Zf satisfy

αse+i + 1 = αte+j.

We will now multiply the terms of this equation through by −1. As f is odd

in this instance, we can write −1 = α
ef
2 = αe f−1

2
+ e

2 . We therefore obtain

the following equation when we multiply each term of the above equation

by −1

α(s+ f−1
2

)e+(i+ f
2
) − 1 = α(t+ f−1

2
)e+(j+ f

2
).

Which we can then rearrange to

α(t+ f−1
2

)e+(j+ f
2
) + 1 = α(s+ f−1

2
)e+(i+ f

2
).

As h2 is a bijection, every solution of (s, t) ∈ Zf × Zf in the solution set

of (1.1) maps to precisely one solution h(s, t) = (t + f−1
2
, s + f−1

2
) in the

solution set of (1.2).

Finally, we will demonstrate that h−1
2 maps every solution (s′, t′) ∈ Zf ×Zf

in the solution set of (1.2) to a solution in the solution set of (1.1) in the

case where f is odd. Suppose (s′, t′) ∈ Zf × Zf is in the solution set of

(1.2), then

αs′e+(j+ e
2
) + 1 = αt′e+(i+ e

2
).

We will now multiply each term of this equation through by −1. As above,

since f is odd, we may write −1 = αe f−1
2

+ e
2 . Multiplying each term of the

above equation through by −1 therefore yields

α(s′+ f−1
2

)e+j − 1 = α(t′+ f−1
2

)e+i,

which can be rewritten as

α(t′+ f−1
2

)e+i + 1 = α(s′+ f−1
2

)e+j.
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As h2 is a bijection, h−1
2 maps every solution (s′, t′) ∈ Zf ×Zf of (1.2) to a

solution h−1
2 (s′, t′) = (t′− f−1

2
, s′− f−1

2
) of (1.1), so the solution sets of (1.1)

and (1.2) must be of the same size, and therefore (i, j)e = (j + e
2
, i + e

2
)e

when f is odd.

(d) By Definition 1.4.3, the cyclotomic number (i, 0)e denotes the number of

pairs (s, t) ∈ Zf × Zf , such that:

αse+i + 1 = αte.

This can be rewritten as:

αse+i = αte − 1,

or the number of elements of Ce,m
i (where i ∈ Ze) that be expressed as an

element of the set Ce,m
0 −1 = {αte−1 | t ∈ Zf}. This means that

∑e−1
i=0 (i, 0)e

is the number of elements in Ce,m
0 −1 that are contained in some cyclotomic

class Ce,m
i for i ∈ Ze.

There are precisely f distinct elements in the cyclotomic class Ce,m
0 = ⟨αe⟩.

As the element 1 ∈ Ce,m
0 (since 1 = αef ), this means that 0 ∈ Ce,m

0 − 1.

Since the element 0 is the only element of GF(q) not contained within one

of the cyclotomic classes of order e, this means that precisely f−1 elements

of the set Ce,m
0 − 1 can be expressed as an element of one of the cyclotomic

classes of order e. Therefore
∑e−1

i=0 (i, 0)e = f − 1.

Moreover it follows from part a) that for every i ∈ Ze, (i, 0)e = (e−i, e−i)e,
therefore

∑e−1
i=0 (e−i, e−i)e = f−1. Notice that by part (b) (i, 0)e = (ip, 0)e,

however the sum
∑e−1

i=0 (ip, 0)e counts the same cyclotomic numbers as the

sum
∑e−1

i=0 (i, 0)e since i, ip ∈ Ze, so no new information is gained from this

identity.

(i) When either e and f are both odd or when f is even it follows from part

(c) (i, 0)e = (0, i)e for all i ∈ Ze, which implies that
∑e−1

i=0 (0, i)e = f−1.

(ii) When e is even and f is odd by part (c) (i, 0)e = ( e
2
, i + e

2
)e, hence∑e−1

i=0 (
e
2
, i+ e

2
)e = f − 1. Observe that by part a), ( e

2
, i+ e

2
)e = ( e

2
, i)e,

however as i, e
2
, i + e

2
∈ Ze, the sums

∑e−1
i=0 (

e
2
, i + e

2
)e and

∑e−1
i=0 (

e
2
, i)e
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count the same cyclotomic numbers, so no new information is gained

from this identity.

(e) (i) By Definition 1.4.3 the cyclotomic number (i, j)e is the number of pairs

(s, t) ∈ Zf × Zf such that:

αse+i = αte+j − 1.

In other words,
∑e−1

i=0 (i, j)e is the number of elements in Ce,m
j − 1 =

{αte+j − 1 | t ∈ Zf} that lie in some cyclotomic class Ce,m
i , where

i ∈ Ze. Note that for each i ∈ Ze and j ∈ Z∗
e, the cyclotomic classes

Ce,m
i and Ce,m

j consist of f distinct elements of GF(q)∗. As in part

(d), for a fixed j ∈ Z∗
e, we can therefore think of

∑e−1
i=0 (i, j) as being

the number of non-zero elements of GF(q) contained within the set

Ce,m
j − 1. As j ∈ Z∗

e (i.e. j ̸= 0) this means that 1 ̸∈ Ce,m
j , and

therefore 0 ̸∈ Ce,m
j − 1. This means all f of the elements in Ce,m

j − 1

are non-zero element of GF(q), and therefore
∑e−1

i=0 (i, j) = f .

(ii) As above, by Definition 1.4.3 the cyclotomic number (i, j)e is the num-

ber of pairs (s, t) ∈ Zf × Zf such that:

αse+i = αte+j − 1.

It follows from this that
∑e−1

j=0(i, j)e counts the number of elements

αte+j ∈ ∪e−1
j=0C

e,m
j = GF(q)∗ satisfying αse+i+1 = αte+j, where αse+i ∈

Ce,m
i . In other words,

∑e−1
j=0(i, j)e is the equivalent to the number of ele-

ments in the intersection Ce,m
i ∩(GF(q)∗\{−1}), where GF(q)∗\{−1} =

{αte+j−1 | j ∈ Ze, t ∈ Zf}. By Lemma 1.4.11, when either e and f are

both odd or when f is even, −1 ∈ Ce,m
0 , meaning that for all i ∈ Ze,

|Ce,m
i ∩ (GF(q)∗\{−1})| = f and so

∑e−1
j=0(i, j)e = f for all i ∈ Ze.

(iii) By Lemma 1.4.11 when e is even and f is odd, −1 ∈ Ce,m
e
2

. This means

that when i ̸= e
2
∈ Ze, |Ce,m

i ∩ (GF(q)\{−1})| = f . By part (e)(ii) it

follows that
∑e−1

j=0(i, j)e = f for all i ̸= e
2
∈ Ze.
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Chapter 2

Cyclotomic frameworks

In this Chapter, we establish two new cyclotomic frameworks that can be deployed

in different ways to find new constructions of difference families, as well as being of

independent interest. In the beginning of this Chapter, we present the cyclotomic

framework established in [34], that combines the partition results introduced in

Chapter 1 and finite field cyclotomy to obtain new cyclotomic techniques that

can be used to construct PDSs, DPDFs and EPDFs. The paper [34] is a joint

paper with my supervisor Dr Sophie Huczynska. The key ideas of the paper were

mine but I worked closely with my supervisor to refine and express these ideas.

In Chapter 4 we will demonstrate how these techniques can be used to find new

cyclotomic constructions of PDSs, DPDFs and EPDFs.

In the second half of this Chapter, we outline a framework for determining of

cyclotomic orbits of order e for a particular finite field GF(q). In Chapter 4, it is

demonstrated that this framework can be used to establish a more sophisticated

algorithm for computing the internal cyclotomic numbers of order e, where e ≥ 5

is prime and f is even (for further details see Algorithm 2 in Chapter 4). The

results in Section 2 of this Chapter are new results that I obtained myself whilst

developing the algorithms in Chapter 4: working on these algorithms highlighted

the necessity of idenitfying the equivalent cyclotomic numbers in a given finite

field.
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2.1 Key cyclotomic number framework

2.1.1 Internal differences

Throughout this Subsection, it is assumed that q is a prime power and can be

expressed by q = ps = ef+1, where p is prime, s ∈ N and e, f are integers greater

than 1, unless otherwise stated. We also use the notation Ce,s
i to denote the ith

cyclotomic class of order e in the finite field GF(q). Finally, it is assumed for all

results that α is a primitive element of GF(q). All results in this Subsection are

included in my joint paper with my supervisor [34].

In this Subsection, we establish tools for determining the elements contained

within each multiset of the form ∆(Ce,s
i ), where Ce,s

i is a cyclotomic class. We

begin this subsection with stating the definition of a transversal of the multiset

∆(Ce,s
i ).

Definition 2.1.1. (i) For each 1 ≤ r ≤ f − 1, we define

Tr := {αne − αme : n−m ≡ r mod f, 0 ≤ n ̸= m ≤ f − 1}.

Notice that Tr ⊆ ∆(Ce,s
0 ) (as defined in Chapter 1). We refer to Tr as a

transversal of ∆(Ce,s
0 ) (these are also simply referred to as transversals

throughout this Thesis). Each transversal Tr is simply a cyclotomic class

of order e, therefore |Tr| = f (see Lemma 2.1.2 below).

(ii) For each 1 ≤ r ≤ f − 1, let ar ∈ {0, . . . , e− 1} be such that αre − 1 ∈ Ce,s
ar .

The following Lemma demonstrates how transversals can be used to split the

multiset ∆(Ce,s
i ) up into a series of cyclotomic classes, since each transversal is

effectively a copy of the cyclotomic class Ce,s
ar , where ar ∈ {0, 1, . . . , e− 1}.

Lemma 2.1.2. (i) For 1 ≤ r ≤ f − 1, Tr ⊆ ∆(Ce,s
0 ). We may write the set Tr

as follows: Tr = (αre − 1)Ce,s
0 = Ce,s

ar .

(ii) ∆(Ce,s
0 ) =

f−1⋃
r=1

Tr =
f−1⋃
r=1

Ce,s
ar =

e−1⋃
i=0

(i, 0)eC
e,s
i .

(iii) For 0 ≤ j ≤ e− 1, ∆(Ce,s
j ) = αj∆(Ce,s

0 ) =
f−1⋃
p=1

αjTr =
e−1⋃
i=0

(i− j, 0)eC
e,s
i .
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Proof. (i) It follows from Definition 2.1.1 (i) that for each 1 ≤ r ≤ e− 1

Tr = {αne − αme : 0 ≤ m ≤ f − 1}.

Note that since 0 ≤ n ̸= m ≤ f − 1, we may write n ≡ m+ r mod f . We

may then write

Tr = {α(m+r)e − αme : 0 ≤ m ≤ f − 1} = {αme(αre − 1) : 0 ≤ m ≤ f − 1}

= (αre − 1)Ce,s
0 .

By Definition 2.1.1 (ii), this means Tr = Ce,s
ar .

(ii) By Definition 1.4.3, for 0 ≤ j ≤ e− 1, the elements of the cyclotomic class

Ce,s
j can be written in the form αet+j, where α is a primitive element of

GF(q) and 0 ≤ t ≤ f − 1. This means that ∆(Ce,s
0 ) = {αne−αme : 0 ≤ n ̸=

m ≤ f − 1}. Since for each pair 0 ≤ n ̸= m ≤ f − 1, there is a unique up

to modulo f value of 1 ≤ r ≤ f − 1 such that n ≡ m + r mod f , we may

rewrite this multiset as

∆(Ce,s
0 ) = {α(m+r)e − αme : 1 ≤ r ≤ f − 1, 0 ≤ m ≤ f − 1}

=

f−1⋃
r=1

{α(m+r)e − αme : 0 ≤ m ≤ f − 1} =

f−1⋃
r=1

Tr =

f−1⋃
r=1

(αre − 1)Ce,s
0

by part (i). By Definition 1.4.3, for each 0 ≤ i ≤ e − 1 there are precisely

(i, 0)e values of 1 ≤ r ≤ f − 1 such that αre− 1 ∈ Ce,s
i . This means that for

0 ≤ i ≤ e − 1 the cyclotomic class Ce,s
i occurs (i, 0)e times in the multiset

union ∆(Ce,s
0 ) =

f−1⋃
r=1

(αre − 1)Ce,s
0 , hence

∆(Ce,s
0 ) =

f−1⋃
r=1

(αre − 1)Ce,s
0 =

f−1⋃
r=1

Ce,s
ar =

e−1⋃
i=0

(i, 0)eC
e,s
i .

(iii) As in part (ii), we can use Definition 1.4.3 to write the elements of the

multiset ∆(Ce,s
j ) as follows
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∆(Ce,s
j ) = {αen+j − αme+j : 0 ≤ n ̸= m ≤ f − 1}

= {αj(αen − αme) : 0 ≤ n ̸= m ≤ f − 1}

= αj∆(Ce,s
0 ).

It then follows by part (ii) that

∆(Ce,s
j ) = αj∆(Ce,s

0 ) =

f−1⋃
p=1

αj(Tr) =

f−1⋃
r=1

αj(Ce,s
ar ) =

e−1⋃
i=0

(i, 0)e(α
jCe,s

i ).

Notice that we may rewrite

e−1⋃
i=0

(i, 0)e(α
jCe,s

i ) =
e−1⋃
i=0

(i, 0)e(C
e,s
i+j) =

e−1⋃
i=0

(i− j, 0)e(C
e,s
i ).

Using the above result, we are able to show that if the cyclotomic numbers of

order e meet certain conditions (i.e. all cyclotomic numbers of the form (a, 0)e

where 1 ≤ a ≤ e − 1 are equal) then each multiset of the form ∆(Ce,s
j ) (where

0 ≤ j ≤ e − 1) is automatically a PDS. Moreover, any collection, S ′, of distinct

cyclotomic classes satisfying the above property will be a DPDF. We demonstrate

this in the following result.

Lemma 2.1.3. Let GF(q) be a finite field of order q = ps = ef + 1.

(i) For 0 ≤ i ≤ e− 1, each Ce,s
i is a (q, q−1

e
, A,B)-PDS if and only if there are

integers A and B satisfying A = (0, 0)e and B = (j, 0)e for all 1 ≤ j ≤ e−1.

The PDS is proper precisely when A ̸= B.

(ii) Suppose that there exist integers A and B satisfying A = (0, 0)e and B =

(i, 0)e for all 1 ≤ i ≤ e − 1. Let D′ = {Ce,s
j }j∈R be a collection of u

cyclotomic classes of order e, where R ⊆ {0, 1, . . . , e − 1}. Then D′ is a

(q, u, q−1
e
, A+(u− 1)B, uB)-DPDF, which is proper precisely when A ̸= B.

Proof. (i) Assume that Ce,s
i is a PDS, then by Definition 1.3.1

∆(Ce,s
i ) = A(Ce,s

i ) ∪B(G∗\Ce,s
i ).



35

By Lemma 2.1.2 (iii), we may then write

∆(Ce,s
i ) = A(Ce,s

i ) ∪B(G∗\Ce,s
i ) =

e−1⋃
i′=0

(i′ − i, 0)Ce,s
i′ .

When i′ = i, it follows that (i− i, 0)e = (0, 0)e = A, moreover for all i′ ̸= i,

it’s clear that (i′ − i, 0)e = B. In other words, for all 1 ≤ j ≤ e − 1,

(j, 0) = B.

For the reverse direction; by Lemma 2.1.2 (iii), when A = (0, 0)e and B =

(j, 0)e for all 1 ≤ j ≤ e− 1, then

∆(Ce,s
i ) = (0, 0)e(C

e,s
i ) ∪ (j, 0)e(G

∗\Ce,s
i ).

By Definition 1.3.1 it is then immediate that Ce,s
i is a (q, q−1

e
, A,B)-PDS,

where A = (0, 0)e and B = (j, 0)e for all 1 ≤ j ≤ e − 1. Since A = (0, 0)e

counts the number of occurrences of the elements of Ce,s
i in ∆(Ce,s

i ), and

B = (j, 0)e counts the occurrences of all other non-zero elements of GF(q)

then by Definition 1.3.1 this implies that Ce,s
i is a proper PDS when A ̸= B.

(ii) In part (i) it was demonstrated that when A = (0, 0)e and B = (j, 0)e for

all 1 ≤ j ≤ e− 1, then Ce,s
i is a (q, u, q−1

e
, A+(u− 1)B, uB)-DPDF. It then

follows as a direct consequence of Theorem 1.3.20 that if D′ comprises a

collection of u of these cyclotomic classes then D′ is a (q, u, q−1
e
, A + (u −

1)B, uB)-DPDF.

Note that Lemma 2.1.3 (i) is stronger than Lemma 2.1.3 (ii) (i.e. part (i) is

an if and only if statement, whereas part (ii) is an if statement). This is because

for a PDS, S, the multiset of internal differences Int(S) comprises only of the

multiset ∆(Ce,s
i ), meaning that each element of G∗\{Ce,s

i } must occur equally

often in the multiset ∆(Ce,s
i ). For a DPDF, S ′, comprising of more than one

cyclotomic class, Int(S ′) comprises multiple multisets of the form ∆(Ce,s
i ) (where

0 ≤ i ≤ e − 1), this means that B ̸= (j, 0)e, where 0 ≤ j ≤ e − 1 is no longer a

requirement. However, when B = (j, 0)e for all 1 ≤ j ≤ e − 1, this means that

each of the component sets of the DPDF is an individual PDS.

We now turn our attention to the following Lemma, which demonstrates how we

can partition cyclotomic classes into unions of smaller cyclotomic classes.
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Lemma 2.1.4. Let q = ef + 1 = ϵρ+ 1, where ϵ | e. Then

(i) Cϵ,s
0 =

e/ϵ−1⋃
i=0

Ce,s
iϵ ,

(ii) for 0 ≤ j ≤ ϵ− 1, Ce,s
j =

e/ϵ−1⋃
i=0

Ce,s
iϵ+j

Proof. (i) The cyclotomic class Cϵ,s
0 consists of ϵth powers of α, where α is a

primitive element, while the cyclotomic class Ce,s
0 consists of all eth powers

of α. As ϵ | e, it is clear that Ce,s
0 ⊆ Cϵ,s

0 , and moreover that for 0 ≤ i ≤ ϵ−1,

Ce,s
iϵ ⊆ Cϵ,s

0 . It then naturally follows that

Cϵ,s
0 =

e/ϵ−1⋃
i=0

Ce,s
iϵ

(ii) Immediate from part (i).

Building upon the idea of partitioning larger cyclotomic classes into smaller

cyclotomic classes, we are able to extend the notion of transversals to structures

which, for a collection of cyclotomic classes S ′, contain elements of every multiset

∆(Ce,s
i ) ⊂ Int(S ′) (where 0 ≤ i ≤ e− 1). We call these new structures diagonals

of transversals. Establishing a definition of these new objects will simplify the

process of computing the elements of Int(S ′), which will in turn allow us to build

machinery that is more easily able to identify cyclotomic constructions of DPDFs

in which the component sets are not individually PDSs.

Definition 2.1.5. Let GF(q) be a finite field of order q = ef +1 = ϵρ+1, where

ϵ | e. For 1 ≤ r ≤ f − 1, we define

Dr :=

e/ϵ−1⋃
i=0

αiϵTr.

We refer to Dr as a diagonal of a transversal.

We now replicate the results of Lemma 2.1.2 for diagonals of transversals.
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Lemma 2.1.6. Let GF(q) be a finite field of order q = ps = ef +1 = ϵρ+1 such

that ϵ | e. Moreover, let S ′ = {Ce,s
0 , Ce,s

ϵ , . . . , Ce,s
e−ϵ}.

(i) Int(S ′) =
f−1⋃
r=1

Dr.

For each 1 ≤ r ≤ f − 1

(ii) Dr = (αre − 1)Cϵ,s
0 ,

(iii) Dr = Cϵ,s
a′r
, where a′r is defined by αre − 1 ∈ Cϵ,s

a′r
.

Proof. (i) By Defintion 1.2.3 and Lemma 2.1.2 (iii), it follows that

Int(S ′) =

e/ϵ−1⋃
i=0

∆(Ce,s
iϵ ) =

e/ϵ−1⋃
i=0

αiϵ∆(Ce,s
0 ).

Moreover, by Lemma 2.1.2 (ii)

Int(S ′) =

e/ϵ−1⋃
i=0

αiϵ

(
f−1⋃
r=1

Tr

)
=

f−1⋃
r=1

e/ϵ−1⋃
i=0

αiϵTr

 =

f−1⋃
r=1

Dr.

(ii) It follows by Lemma 2.1.2 (i) that for each 1 ≤ r ≤ f−1, Tr = (αre−1)Ce,s
0 ,

thus by Definition 2.1.5

Dr =

e/ϵ−1⋃
i=0

αiϵ(αre − 1)Ce,s
0 = (αre − 1)

e/ϵ−1⋃
i=0

Ce,s
iϵ .

The result then follows by Lemma 2.1.4.

(iii) Since αre− 1 ∈ GF(q) (by the additive closure of GF(q)), there exist values

of 0 ≤ u ≤ ρ − 1 and 0 ≤ a′r ≤ ϵ − 1 such that αre − 1 = αuϵ+a′r , hence it

follows by part (ii) of this result that

Dr = (αre − 1)Cϵ,s
0 = αuϵ+a′rCϵ,s

0 .

Moreover, observe that since αuϵ ∈ Cϵ,s
0 , we may write αuϵ+a′rCϵ,s

0 = αa′rCϵ,s
0 .

The result is then immediate by Definition 1.4.1.
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With these results replicated for diagonals of transversals, we now set up fur-

ther machinery to identify relationships between diagonals of transversals. This

will further aid in the process of establishing new cyclotomic DPDF construc-

tions. We start by establishing a quantity ϕi which, for each 0 ≤ i ≤ ϵ − 1,

counts the number of diagonals of transversals in the multiset Int(S ′) (where

S ′ = {Ce,s
0 , Ce,s

ϵ , . . . , Ce,s
e−ϵ}) that are copies of the cyclotomic class Cϵ,s

i .

Definition 2.1.7. Let GF(q) be a finite field of order q = ps = ef + 1 = ϵρ+ 1,

such that ϵ | e. Let α be a primitive element of GF(q), Cϵ,s
i = αi⟨αϵ⟩ for 0 ≤ i ≤

ϵ− 1 and Ce,s
0 = ⟨αe⟩. We then define, for 0 ≤ i ≤ ϵ− 1,

Φi := {x ∈ Ce,s
0 : x ̸= 1, x− 1 ∈ Cϵ,s

i } andϕi = |Φi|.

Proposition 2.1.8. Let GF(q) be a finite field of order q = ef +1 = ϵρ+1 such

that ϵ | e, then for 0 ≤ j ≤ ϵ− 1,

ϕj =

e/ϵ−1∑
i=0

(ϵi+ j, 0)e

Proof. By Lemma 2.1.4, it follows that Cϵ,s
j =

e/ϵ−1⋃
i=0

Ce,s
iϵ+j, where 0 ≤ j ≤ ϵ − 1.

This means

Φj = {x ∈ Ce,s
0 : x− 1 ∈ Cϵ,s

j } = {x ∈ Ce,s
0 : x− 1 ∈ ∪e/ϵ−1

i=0 Ce,s
iϵ+j}.

By Definition 1.4.3, this implies ϕj =
e/ϵ−1∑
i=0

(iϵ+ j, 0)e.

Theorem 2.1.9. Let GF(q) be a finite field of order q = ef + 1 = ϵρ + 1, such

that ϵ | e. Moreover, let (Cϵ,s
0 )′ = {Ce,s

0 , Ce,s
ϵ , . . . , Ce,s

e−ϵ}.

(i) If ϕ1 = . . . = ϕϵ−1, then Int((Cϵ,s
0 )′) = ϕ0(C

ϵ,s
0 ) + ϕ1(G

∗\Cϵ,s
0 ) meaning

(Cϵ,s
0 )′ is a DPDF (or PDS if ϵ = e).

(ii) If ϕ0 = ϕ1 = . . . = ϕϵ−1, then Int((Cϵ,s
0 )′) = G∗ meaning (Cϵ,s

0 )′ is a DDF

(or DS when ϵ = e).

(iii) If ϕi ̸= ϕj for some distinct i, j ∈ {1, . . . , ϵ− 1} then (Cϵ,s
0 )′ is not a DPDF

(and therefore not a DDF).
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Proof. The proofs of both (i) and (ii) follow by Definition 2.1.7 and Lemma

2.1.6. In part (iii), suppose that there exist values of i, j ∈ {1, . . . , ϵ − 1} such

that ϕi ̸= ϕj. This implies that Int((Cϵ,s
0 )′) contains ϕi copies of C

ϵ,s
i and ϕj copies

of Cϵ,s
j . Since Cϵ,s

i , Cϵ,s
j ∈ GF(q)∗\Cϵ,s

0 , where Cϵ,s
0 =

∑ e
ϵ
−1

a=0 C
e,s
aϵ , it is immediate

by Definition 1.3.11 that (Cϵ,s
0 )′ is not a DPDF.

In the following Theorem and Corollary, we observe that the transversals and

diagonals of transversals naturally pair up with one another.

Proposition 2.1.10. Let GF(q) be a finite field of order q = ps = ef+1 = ϵρ+1,

Ce,s
0 = ⟨αe⟩ and Cϵ,s

0 = ⟨αϵ⟩.

(i) For each 1 ≤ r ≤ f − 1, Tf−r = −Tr.

(ii) For each 1 ≤ r ≤ f − 1, Df−t = −Dt.

Proof. (i) By Lemma 2.1.2 (i), for each 1 ≤ r ≤ f−1, −Tr = −(αre−1)Ce,s
0 =

(1 − αre)Ce,s
0 . By Lagrange’s Theorem αef = 1, we can therefore rewrite

−Tr = (αef − αre)C0 = αre(αef−re − 1)Ce,s
0 = αre(αe(f−r) − 1)Ce,s

0 . Since

αre ∈ Ce,s
0 , which is closed under multiplication, it follows that −Tr =

(αe(f−r) − 1)Ce,s
0 = Tf−r.

(ii) It follows by Lemma 2.1.6 that −Dr = −(αre − 1)Cϵ,s
0 . The proof of this

result is then analogous to the proof of part (i).

Corollary 2.1.11. Let GF(q) be a finite field of order q = ps = ef + 1 = ϵρ+ 1,

where ϵ | e. Moreover, let Cϵ,s
0 = ⟨αϵ⟩ and Ce,s

0 = ⟨αe⟩, where α is a primitive

element of GF(q).

(a) Suppose that Tr = Ce,s
ar (as definied in Definition 2.1.1) for 1 ≤ r ≤ f − 1,

then

(i) if either f is even or p = 2, then Tf−r = Ce,s
ar (note that when r = f

2
,

trivially Tf− f
2
= T f

2
).

(ii) if e is even but f is odd, then Tf−r = Ce,s
ar+

e
2
.

(b) Suppose that Dr = Cϵ,s
a′r

(as definied in Lemma 2.1.6.) for 1 ≤ r ≤ f − 1,

then
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(i) if either ρ is even or p = 2, then Df−r = Cϵ,s
a′r

(again, when r = ρ
2
,

trivially Df− f
2
= D f

2
).

(ii) if ϵ is even but ρ is odd, then Df−r = Cϵ,s
a′r+

ϵ
2
.

(c) When f is even T f
2
= (2)Ce,s

0 and D f
2
= (2)Cϵ,s

0 .

Proof. (a) By Proposition 2.1.10, Tf−r = −Ce,s
ar . It follows immediately by

Lemma 1.4.11 that when f is even or p = 2, −1 ∈ Ce,s
0 , hence Tf−r =

−Ce,s
ar = Ce,s

ar , as multiplying an element of Ce,s
ar (a coset of Ce,s

0 ) by an

element of Ce,s
0 trivially returns an element of Ce,s

ar . When f is odd and e is

even, it follows by Lemma 1.4.11 that −1 = α
f−1
2

e+ e
2 ∈ Ce,s

e
2
. By choosing a

particular coset representative αev+ar ∈ Ce,s
ar (where v ∈ Zf ), we may then

write Tf−r = −Ce,s
ar = α

f−1
2

e+ e
2αev+arCe,s

0 = α( f−1
2

+v)e+(ar+
e
2
)Ce,s

0 . Since

α( f−1
2

+v)e ∈ Ce,s
0 , it follows that we may write Tf−r = αar+

e
2Ce,s

0 , and hence

by Definition 1.4.1, when f is odd and e is even, Tf−r = Ce,s
ar+

e
2
.

(b) Similarly, it follows from Lemma 1.4.11 that when ρ is even or p = 2, then

−1 ∈ Cϵ,s
0 , and when ρ is odd but ϵ is even, −1 = α

ρ−1
2

ϵ+ ϵ
2 ∈ Cϵ,s

ϵ
2
. The

proof is then analogous to part (a).

(c) By Lemma 2.1.2 (i), T f
2
= (α

f
2
e−1)Ce,s

0 . Moreover, by Lagrange’s Theorem,

α
f
2
e = −1, therefore T f

2
= (−1− 1)Ce,s

0 = (−2)Ce,s
0 . As f is even, it follows

by Lemma 1.4.11 that −1 ∈ Ce,s
0 , so therefore T f

2
= (2)Ce,s

0 . When f is

even, it is immediate that ρ must be even (since f | ρ), therefore −1 ∈ Cϵ,s
0

when f is even. It then follows by similar reasoning that D f
2
= (2)Cϵ,s

0 .

In what follows, we refer to T f
2
as the central transversal and D f

2
as the

central diagonal.

In the case where ϵ = 2, we have the following useful cyclotomic result from

[60] (can be found in Theorem 4 of the e = 2 chapter, which can be found on

page 31 of the book [60]).

Lemma 2.1.12. Let GF(q) be a finite field, where q = ps = 2ρ + 1 and suppose

ρ is even, then

(i) if q ≡ 1 mod 8, then 2 ∈ C2,s
0 ,

(ii) if q ≡ 5 mod 8, then 2 ∈ C2,s
1 .
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The next result then follows as an immediate consequence of Corollary 2.1.11(c)

and Lemma 2.1.12.

Corollary 2.1.13. Let GF(q) be a finite field, where q = ps = ef + 1 = 2ρ + 1.

Let e and f be even, then

(i) if q ≡ 1 mod 8, D f
2
= C2,s

0 ,

(ii) if q ≡ 5 mod 8, D f
2
= C2,s

1 .

We now establish a quantity ψi, which we will subsequently use to count the

number of paired diagonals of transversals in Int(S ′), where S ′ = {Ce,s
0 , Ce,s

ϵ , . . . , Ce,s
e−ϵ}

is a partition of the cyclotomic class Cϵ,s
0 .

Definition 2.1.14. Let GF(q) be a finite field of order q = ef +1 = ϵρ+1, such

that ϵ | e. For 0 ≤ i ≤ ϵ− 1, let

Ψi := {1 ≤ r <
f

2
: αre ∈ Φi} andψi := |Ψi|.

In the final results of this subsection, we demonstrate how the machinery that

we have built can be used to find new constructions of PDSs, DPDFs and EPDFs.

Theorem 2.1.15. Let GF(q) be a finite of order q = ps = ef +1 = ϵρ+1, where

ϵ | e. Moreover, let (Cϵ,s
0 )′ = {Ce,s

0 , Ce,s
ϵ , . . . , Ce,s

e−ϵ}.

(a) Suppose that ρ is even (i.e. p is odd) and ϕ1 = ϕj for all 1 ≤ j ≤ ϵ − 1,

then (Cϵ,s
0 )′ is a (q, e

ϵ
, f, ϕ0, ϕ1)-DPDF (or (q, ρ, ϕ0, ϕ1)-PDS when ϵ = e).

(i) If f is odd then ϕ0 = 2ψ0 and ϕ1 = 2ψ1.

(ii) If f is even and ϵ > 2, then ϕ0 = 2ψ0 + 1 and ϕ1 = 2ψ1.

(iii) If ϵ = 2 and q ≡ 1 mod 8, then ϕ0 = 2ψ0 + 1 and ϕ1 = 2ψ1.

(iv) If ϵ = 2 and q ≡ 5 mod 8, then ϕ0 = 2ψ0 and ϕ1 = 2ψ1 + 1.

(b) Let p = 2 and suppose that ϕ1 = ϕj for all 1 ≤ j ≤ ϵ− 1. Then ϕ0 = 2ψ0,

ϕ1 = 2ψ1 and (Cϵ,s
0 )′ is a (q, e

ϵ
, f, ϕ0, ϕ1)-DPDF (or (q, ρ, ϕ0, ϕ1)-PDS when

ϵ = e).

(c) Let ϵ be even and ρ be odd, and suppose ϕ1 = ϕj for all 1 ≤ j ≤ ϵ− 1, then

ϕ0 = ϕ1 and (Cϵ,s
0 )′ is a (q, e

ϵ
, f, ϕ0)-DDF (or (q, ρ, ϕ0)-Difference Set when

ϵ = e).
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Proof. As q = ef + 1 = ϵρ+ 1 such that ϵ | e, then this implies that f | ρ.

(a) It follows by Corollary 2.1.11 (b)(i) that when ρ is even, if Dr = Cϵ,s
i for

1 ≤ r ≤ f − 1 (note 0 ≤ i ≤ ϵ − 1), then Df−r = Cϵ,s
i . This means that

if for some 1 ≤ r ≤ f
2
, r ∈ Ψi (where 0 ≤ i ≤ ϵ − 1), then αre ∈ Φi

and α(f−r)e ∈ Φi. By Corollary 2.1.11(c), it follows that if f is even, then

D f
2
= Cϵ,s

k (where 0 ≤ k ≤ ϵ − 1) if 2 ∈ Cϵ,s
k . We can therefore conclude

that ϕi = 2ψi (where 0 ≤ i ≤ ϵ− 1) if 2 ̸∈ Cϵ,s
i and ϕi = 2ψi + 1 if 2 ∈ Cϵ,s

i .

Note that when ρ is even, f | ρ can be odd or even.

(i) It follows from the above that when f is odd, there is no central

diagonal D f
2
, so ϕ0 = 2ψ0 and ϕ1 = 2ψ1.

(ii) Suppose that ϵ > 2 and 2 ∈ Cϵ,s
l for 1 ≤ l ≤ ϵ − 1, it then follows

from part (i) that D f
2
= Ce,s

l and thus ϕl = 2ψl + 1. This contradicts

ϕ1 = ϕj for all 1 ≤ j ≤ ϵ − 1, since for all 1 ≤ i ̸= l ≤ ϵ − 1, it was

demonstrated in part (i) that ϕi = 2ψi. This means that if ϕ1 = ϕi for

all 1 ≤ i ≤ ϵ− 1, then 2 ∈ Cϵ,s
0 and thus ϕ0 = 2ψ0 + 1.

When f is even and ϵ = 2, the only values of 0 ≤ i ≤ ϵ−1 are i = 0, 1.

This means that when ϵ = 2, the above contradiction does not hold.

This result is then immediate from Corollary 2.1.13.

(b) When ρ is odd, f
2
is not an integer meaning that there is no central diagonal,

therefore each Dr (where 1 ≤ r ≤ f − 1) pairs up with a distinct Df−r.

The proof of this result is otherwise analogous to the proof of part (a).

(c) As above, since ρ is odd, there is no central diagonal, therefore each Dr

(where 1 ≤ r ≤ f − 1) pairs up with a distinct Df−r. By Corollary 2.1.11,

when ρ is odd, if Dr = Cϵ,s
i for some 0 ≤ i ≤ ϵ − 1 and 1 ≤ r ≤ ϵ − 1

then Df−r = Cϵ,s
i . This then means that if for some 1 ≤ r < f

2
, r ∈ Ψi

then αre ∈ Φi and α(f−r)e ∈ Φi+ ϵ
2
(where 0 ≤ i ≤ ϵ − 1). It then follows

that ϕi = ϕi+ ϵ
2
for all 0 ≤ i ≤ ϵ − 1: in particular, ϕ0 = ϕ ϵ

2
. Finally, since

ϕ1 = ϕj for all 1 ≤ j ≤ ϵ− 1, ϕ1 = ϕ ϵ
2
= ϕ0.
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Corollary 2.1.16. Let GF(q) be a finite field of order q = ef +1 = ϵρ+1, where

ϵ | e. Let (Cϵ,s
0 )′ = {Ce,s

0 , Ce,s
ϵ , . . . , Ce,s

e−ϵ}.

(a) Assume that ρ is even.

(i) If Cϵ,s
0 is a PDS, then it must be proper (and therefore regular).

(ii) Suppose f is even, then if (Cϵ,s
0 )′ is a DPDF, then it must be proper.

Suppose ϵ > 2.

(iii) If Cϵ,s
0 is a proper PDS then 2 ∈ Cϵ,s

0 .

(iv) Let f be even, then if (Cϵ,s
0 )′ is a proper DPDF, then 2 ∈ Cϵ,s

0 .

(b) Let ϵ be even and ρ be odd, then

(i) Cϵ,s
0 is either a Difference Set, or it is not a PDS.

(ii) (Cϵ,s
0 )′ is either a DDF, or it is not a DPDF.

Proof. (a) Assume that ϵ > 2. Since Cϵ,s
0 is a PDS, we apply ϵ = e and ρ = f

to Theorem 2.1.15 (a)(ii). As ρ is even, it follows by Theorem 2.1.15 (a)(ii)

that ϕ0 = 2ψ0 + 1 and ϕ1 = 2ψ1. When we assume ϵ = 2, it follows by

Theorem (a)(ii) that either ϕ0 = 2ψ0 + 1 and ϕ1 = 2ψ1 or ϕ0 = 2ψ0 and

ϕ1 = 2ψ1 + 1. In all cases, ϕ0 and ϕ1 have opposing parity, and therefore

Cϵ,s
0 is a proper PDS. Since Cϵ,s

0 comprises the elements of a cyclotomic

class, 0 ̸∈ Cϵ,s
0 and so Cϵ,s

0 is a regular PDS.

The proof of (ii) is analgous to the above here we simply assume that e > ϵ.

Parts (iii) and (iv) are immediate from the proof of part (ii) of Theorem

2.1.15.

(b) When Ce,s
0 is a PDS, we apply ϵ = e and ρ = f to Theorem 2.1.15 (c) and

obtain that ϕ0 = ϕj for 1 ≤ j ≤ ϵ − 1. It is immediate from this that Cϵ,s
0

must be a Difference Set, and cannot be proper PDS. We can analogously

prove that (Cϵ,s
0 )′ is always a DDF.
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2.1.2 External differences

We can define similar tools for analysing the relationships between elements con-

tained within multisets of the form ∆(Ce,s
i , Ce,s

j ) (where 0 ≤ i ̸= j ≤ e−1) which

we refer to as external multisets. Note that the results in this subsection are also

recorded in my joint paper with my supervisor [34].

We begin this Subsection by establishing an external analogue of a transversal.

Definition 2.1.17. Let α be a primitive element of GF(q), where q = ps = ef+1.

(i) Let T(r,l) ⊆ ∆(Ce,s
l , Ce,s

0 ) (where 1 ≤ l ≤ e− 1) then for 0 ≤ r ≤ f − 1,

T(r,l) := {αne+l − αme : n−m ≡ r mod f, 0 ≤ n,m ≤ f − 1}.

We refer to the set T(r,l) as an external transversal of ∆(Ce,s
l , Ce,s

0 ) (or

simply external transversal). Note that |T(r,l)| = f .

(ii) For each 0 ≤ r ≤ f − 1 and 1 ≤ l ≤ e− 1, let a(r,l) ∈ {0, . . . , e− 1} be such

that αre − 1 ∈ Ce,s
a(r,l)

.

The following Lemma demonstrates that, like transversals, we can use external

transversals to split the multiset ∆(Ce,s
i , Ce,s

j ) into individual cylotomic classes.

Lemma 2.1.18. Let GF(q) be a finite field of order q = ps = ef + 1

(i) For 0 ≤ r ≤ f − 1 and 1 ≤ l ≤ e − 1, each external transversal T(r,l) =

(αre+l − 1)Ce,s
0 is a copy of Ce,s

a(r,l)
.

(ii) For 0 ≤ r ≤ f − 1, ∆(Ce,s
l , Ce,s

0 ) =
f⋃

r=1

T(r,l) =
f−1⋃
r=0

Ce,s
a(r,l)

=
e−1⋃
k=0

(k, l)eC
e,s
k .

(iii) For 0 ≤ i ̸= j ≤ e − 1, ∆(Ce,s
i , Ce,s

j ) = αj∆(Cl, C0) =
f−1⋃
r=0

αjT(r,l) =

e−1⋃
k=0

(k − j, l)eC
e,s
k , where l ≡ i− j mod e.

Proof. The proof of this result is analogous to the proof of Lemma 2.1.2.

We now demonstrate that we can use the above machinery to establish new

EPDF constructions when the cyclotomic numbers meet certain criteria. Note

that in the following proof, we refer to the cyclotomic classes Ce,s
r and Ce,s

t as the
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components of the multiset∆(Ce,s
r , Ce,s

t ). An element that is not a component

of the multiset ∆(Ce,s
r , Ce,s

t ) is referred to as a non-component.

Proposition 2.1.19. Let GF(q) be a finite field, where q = ps = ef + 1. Let

I ⊂ {0, 1, . . . , e − 1} (where |I| = u, 2 ≤ u ≤ e − 1) and D′ = {Ce,s
i }i∈I . If

there exist integers B and X such that B = (i, 0)e = (i, i)e and X = (i, j)e for all

1 ≤ i ̸= j ≤ e− 1, then

(i) ∆(Ce,s
r , Ce,s

t ) = B(Ce,s
r ∪ Ce,s

t ) ∪X(G∗\(Ce,s
r ∪ Ce,s

t )).

(ii) D′ is a (q, u, q−1
e
, 2B(u− 1)+X(u− 1)(u− 2), Xu(u− 1))-EPDF (which is

proper if B ̸= X).

Proof. (i) It follows from Lemma 2.1.18 (iii) that

∆(Ce,s
r , Ce,s

t ) = αt∆(Ce,s
r−t, C

e,s
0 ) =

e−1⋃
k=0

(k − t, r − t)eC
e,s
0 .

Notice that the cyclotomic number (k − t, r− t)e is an external cyclotomic

number except when k = r or k = t. Since all internal cyclotomic numbers

have value B, and all external cyclotomic numbers have valueX, this means

that we can rewrite ∆(Ce,s
r , Ce,s

t ) as

∆(Ce,s
r , Ce,s

t ) = B(Ce,s
r ∪ Ce,s

t ) ∪X(G∗\(Ce,s
r ∪ Ce,s

t )).

(ii) It follows by Definition 1.2.3 that

Ext(D′) =
⋃

r,t∈I:r ̸=t

∆(Ce,s
r , Ce,s

t ).

By part (i), the components Ce,s
r and Ce,s

t of the multiset ∆(Ce,s
r , Ce,s

t )

occur at frequency B in this multiset ∆(Ce,s
r , Ce,s

t ), while each the non-

components occurs at frequency X. There are precisely u(u− 1) multisets

in Ext(D′). For each r ∈ I, Ce,s
r is a component of precisely u− 1 multisets

of the form ∆(Ce,s
r , Ce,s

t ) (where t ∈ I and t ̸= r), and is also a component

of precisely u− 1 multisets of the form ∆(Ce,s
t , Ce,s

r ) (where similarly, t ∈ I

and t ̸= r) there are no further multisets for which Ce,s
r is a component.



46

This means that there are 2(u− 1) multisets in which (for r ∈ I) Ce,s
r has

frequency B and a remaining u(u− 1)− 2(u− 1) = (u− 1)(u− 2) multisets

in which Ce,s
r has frequency X. For any v ̸∈ I, it follows by part (i) that

Ce,s
v has frequency X in all multisets in Ext(D′). It then follows that D′ is

a (q, u, q−1
e
, 2B(u−1)+X(u−1)(u−2), Xu(u−1))-EPDF, which is proper

when B ̸= X.

Notice that we have not defined an external analogue of a diagonal of a

transversal in this Subsection. This is because diagonals of transversals are only

able to establish connections between unions of transversals and copies of cyclo-

tomic classes of order ϵ, if the transversals partition a cyclotomic class of order ϵ.

This means that if the multiset Int(S ′), where S ′ = {Ce,s
0 , Ce,s

ϵ , . . . , Ce−ϵ}, can be

split into a collection of diagonals of transversals, then we can partition results

in Section 1 to establish the elements contained in the multiset Ext(S ′), since we

know that S ′ partitions the cyclotomic class Cϵ,s
0 . In other words, an external

analogue of a diagonal of a transversal would give us no extra information. It is,

however, still useful to define an external transversal, since we may use external

transversals to determine the behaviour of multisets of the form ∆(Ce,s
i , Ce,s

j )

(where 0 ≤ i ̸= j ≤ e− 1), when the cyclotomic classes Ce,s
i , Ce,s

j ∈ S ′, where S ′

is a collection of cyclotomic classes that does not partition a larger cyclotomic

class. We see this machinery in action in Section 6.

2.1.3 Uniform cyclotomy

The concept of uniform cyclotomic numbers was defined in Chapter 1. We now

close this Section of Chapter 2 by looking at how this concept can be used to find

constructions of cyclotomic DPDFs and EPDFs. We begin this Section with the

following results from [34].

Lemma 2.1.20. Let GF(q′) be a finite field of order q′ = ps = ef + 1, where p

is prime and e ≥ 3. The following conditions are equivalent

(i) −1 is a power of p modulo e,

(ii) there exists a prime power q such that q′ = q2b (b ∈ N) and e|q + 1.

Proof. For the forwards direction, notice that ps ≡ 1 mod e, since e | ps − 1.

If we then suppose that pt is the smallest positive integer satisfying pt ≡ −1
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mod e, we can see that 2t | s, and so s = 2tb for some b ∈ N. This then means

that q′ = ps = p2tb = (pt)2b, where e | pt + 1. For the reverse direction, note that

q ≡ −1 mod e and we may write q = pc, where c ∈ N.

The following result recorded in [34] demonstrates that we can use uniform

cyclotomy to find new constructions of PDSs, DPDFs and EPDFs. Note that as

a special case of Theorem 2.1.21 part (iii), we obtain the result of Calderbank and

Kantor in Section 9 of [13], which is also presented in Section 10 of the survey

paper [49]. Calderbank and Kantor demonstrated that the set D is a PDS when

e = q + 1. Moreover, Theorem 2.1.21 part (iii) also subsumes a result of [26],

an alternative proof of which is given in [4]. In [26] and [4], both sets of authors

demonstrate that D is a Difference Set when η, e and u meet certain criterion.

Theorem 2.1.21. Let GF(q′) be a finite field of order q′ = q2β = ef + 1, where

β ∈ N and q = p2m for some prime p and m ∈ N. Let e | q + 1 and let

η =
(

(−q)β−1
e

)
. For any I ⊆ {0, 1, . . . , e − 1} (where |I| = u for some u with

2 ≤ u ≤ e− 1) let D′ = {Ce,4mβ
i }i∈I . Then

(i) each Ce,2m
i is a (regular) (q′, q

′−1
e
, η2 − (e− 3)η − 1, η2 + η)-PDS,

(ii) D′ is a (q′, u, q
′−1
e
, uη2+(u+2−e)η−1, u(η2+η))-DPDF and a (q′, u, q−1

e
, u(u−

1)η2 + 2(u− 1)η, u(u− 1)η2)-EPDF,

(iii) D =
⋃

i∈I C
e,2m
i is a (regular) (q′, u (q′−1)

e
, u2η2 + (3u− e)η − 1, u2η2 + uη)-

PDS, which is proper except when η = 1 = 2u− e and η = −1 = 2u− e.

Proof. (i) As e | q + 1 for a prime power q satisfying q′ = q2β, where β ∈ N, it
follows, by Lemma 2.1.20 and Theorem 1.4.7, that the cyclotomic numbers

of order e are uniform in the finite field GF(q′). Moreover, by Theorem

1.4.7, for all 1 ≤ i ̸= j ≤ e− 1

(0, 0)e =

(
s− 1

e

)2

− (e− 3)

(
s− 1

e

)
− 1,

(i, 0)e = (0, i)e = (i, i)e =

(
s− 1

e

)2

+

(
s− 1

e

)
,

(i, j)e =

(
s− 1

e

)2

,
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where for q′ = s2, s ≡ 1 mod e. Notice that since e | q + 1, this implies

that q ≡ −1 mod e and therefore that −q ≡ 1 mod e. Since q′ = s2 and

q′ = q2β, it follows from the above that s = (−q)β. We can therefore write

(0, 0)e = η2 − (e− 3)η − 1,

(i, 0)e = (0, i)e = (i, i)e = η2 + η,

(i, j)e = η2,

where 1 ≤ i ̸= j ≤ e−1 and η = (−q)β−1
e

. It is then immediate from Lemma

2.1.3 (i) that for each 0 ≤ l ≤ e−1, Ce,2m
l is a (q′, q

′−1
e
, η2−(e−3)η−1, η2+η)-

PDS.

(ii) This is immediate from the above and Lemma 2.1.3 (ii).

(iii) This result is similarly immediate from the above and Proposition 2.1.19

(ii). Notice that when u2η2 + (3u − e)η − 1 = u2η2 + uη, then D is a

Difference Set. We can rearrange the above to give

uη2 + (3u− e)η − 1 = u2η2 + uη ⇔ (2u− e)η = 1.

It follows that the only solutions to this are η = 2u−e = 1 and η = 2u−e =
−1.

The following result is a new proof of a result in Section 8 of [4].

Corollary 2.1.22. Let GF(q′) be a finite field of order q′ = q2β = ef + 1, where

β ∈ N and q = pr for some prime p (i.e. q is a prime power). Let e | q + 1 and

let η =
(

(−q)β−1
e

)
. For any I ⊂ {0, 1, . . . , e− 1} (where |I| = u for some u such

that 2 ≤ u ≤ e− 1) let D =
⋃

i∈I C
e,2rβ
i , then D is a proper PDS unless

(i) e = 3, u = 2 and η = 1, in which case D is a (16, 10, 6)-Difference Set,

(ii) e = 2a+1, u = 2a−1 and η = −1, in which case D is a (4u2, u(2u−1), u(u−
1))-Difference Set.

Proof. As demonstrated in the proof of Theorem 2.1.21 (iii), D is a proper PDS,

except when η = 2u − e = 1 and η = 2u − e = −1. In both of these cases

(2u− e)η = 1: we can rearrange this to give
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2uη = eη + 1. (2.1)

Observe that

eη + 1 = e

(
(−q)β − 1

e

)
+ 1 = (−q)β. (2.2)

It follows from the above that 2uη = (−q)β, and since q′ = ((−q)β)2, it follows
that q′ is a power of 2 (as q′ is a prime power). We therefore write q′ = 22a, where

m ∈ N.

(i) When η = 1, it follows from the above that

e+ 1 = (−q)β ⇔ e = (−q)β − 1.

As e is a positive integer, note that this means β ≥ 2 must be an even

integer. Assuming that β is even, we may rewrite this e = qβ−1. Moreover,

as e | q + 1, this means that e = q + 1, since if e < q + 1, then it is not

possible for e = qβ − 1, where β ≥ 2 is an integer. Observe that e = qβ − 1

and e = q + 1 can only both be satisfied if e = 3, q = 2 and β = 2 (since

q is a power of 2). Since β = 2, it follows that q′ = q2β = 16. Moreover, it

follows that as η = 1, 2u = (−2)2, meaning u = 2 thus u(q′−1)
e

= 2(15)
3

= 10

and u2η+uη = 4(1)+2(1) = 6. It is then immediate that D is a (16, 10, 6)-

Difference Set when η = 1.

(ii) When η = −1, it follows from the above that

−e+ 1 = (−q)β ⇔ e = 1− (−q)β.

As e is a positive integer, it follows that β ≥ 1 is an odd integer, and so

e = qβ + 1. As e | q + 1, it follows that e = q + 1 and β = 1. Since

q′ = 22a = (q)2β = q2, it follows that q = 22m, and so e = 2m + 1.

Moreover, since q = 2m, this implies (−q)1 = −2m. By combining this fact

with Equations (2.1) and (2.2) we obtain

2uη = −2m ⇔ −2u = −2m ⇔ u = 2m−1,

where m ∈ N. It then follows that since e = 2m − 1, u = 2m−1 and η = −1

that u(q′−1)
e

= 2m−1(22m−1)
2m+1

= 2m−1(2m−1) = u(2u−1), u2η2+uη = u2−u =
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u(u − 1) and q′ = 22m = 4(22(m−1)) = 4u2. It therefore follows that D is a

(4u2, u(2u− 1), u(u− 1))-Difference Set.

As demonstrated in my joint paper with my supervisor [34] further to Corol-

lary 2.1.22, we can also use Theorem 2.1.21 to obtain the recursive construction

below. As demonstrated by the result below, this recursive construction only pro-

duces an EDF when the component sets partition the non-identity elements of

GF(q′)∗. (Here the term recursive construction refers to the fact that component

sets are PDSs that can be individually partioned into DPDFs/EPDFs.) This

means that non-trivial DPDF/EPDF constructions obtained from the following

result do not encompass any pre-existing cyclotomic DDF/EDF constructions in

the literature.

Theorem 2.1.23. Let GF(q′) be a finite field of order q′ = q2β = p2m, where

m,β ∈ N. For e ≥ 3, let e|q + 1 and η = (−q)β−1
e

. Let u,w ∈ N such that wu ≤ e

and for 1 ≤ a ≤ w, let Ia ⊂ {0, 1, . . . , e − 1} such that |Ia| = u and Ia ∩ Ib = ∅
for all 1 ≤ a ̸= b ≤ w. Let Da =

⋃
i∈Ia C

e,2m
i and W ′ = {D1, D2, . . . , Dw}. Then

(i) W ′ is a (q′, w, u q′−1
e
, u2η2+(3u−e)η−1+(w−1)(u2η2+uη), w(u2η+uη))-

DPDF.

(ii) when w ≥ 2, W ′ is a (q′, w, u q′−1
e
, w(w−1)u2η2+2(w−1)uη, w(w−1)u2η2)-

EPDF.

(iii) if W ′ does not partition GF(q′), then W ′ is a DDF if and only if each Da is

a Difference Set. W ′ is only a DDF with w ≥ 2 when e = 2a +1, u = 2a−1,

η = −1 and w = 2.

(iv) Let w ≥ 2. If W ′ does partition GF(q′), then W ′ is not an EDF.

Proof. (i) By Theorem 2.1.21 (iii), eachDa =
⋃

i∈Ia C
e,2m
i is a (q′, u(q

′−1)
e

, u2η2+

(3u−e)η−1, u2η2+uη)-PDS. It is then immediate from Theorem 1.3.20 (i)

that W ′ is a (q′, w, u q′−1
e
, u2η2+(3u−e)η−1+(w−1)(u2η2+uη), w(u2η2+

uη))-DPDF.

(ii) Let w ≥ 2 andW = ∪w
a=1Da, where Da ∈ W ′. As Da = ∪i∈IaC

e,2m
i , we may

write W = ∪w
a=1(∪i∈IaC

e,m
i ). Notice that this means that W is a collection

of uw cyclotomic classes of order e. It then follows by Theorem 2.1.21
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that W is a (q′, wu q′−1
e
, (uw)2η2 + (3uw − e)η − 1, (uw)2η2 + uwη))-PDS.

Therefore, by Theorem 1.3.20, W ′ is also an EPDF.

By Lemma 1.2.4 as Int(W ′) = (u2η2 + (3u − e)η − 1 + (w − 1)(u2η2 +

uη))W ′ ∪ w(u2η + uη)(GF(q′)∗) and ∆(W ′) = ((uw)2η2 + (3uw − e)η −
1)W ′ ∪ (uw)2η2 + uwη)(GF(q′)∗\W ′), it follows that Ext(W ′) = (w(w −
1)u2η2 +2(w− 1)uη)W ′ ∪w(w− 1)u2η2(GF(q′)∗\W ′). It is then clear that

when w ≥ 2, W ′ is a (q′, w, u q′−1
e
, w(w−1)u2η2+2(w−1)uη, w(w−1)u2η2)-

EPDF.

(iii) For the forwards direction W ′ is a DDF when u2η2 + (3u− e)η − 1 + (w −
1)(u2η2 + uη) = w(u2η + uη) this happens precisely when (2u − e)η = 1.

By Theorem 2.1.21, when (2u− e)η = 1, then each Da ∈ W ′ is a Difference

Set. The reverse direction is immediate, since any collection of disjoint

Difference Sets forms a DDF.

By Corollary 2.1.22, there are two cases for which a set Da = ∪i∈IaC
e,2m
i

forms a Difference Set this happens when either e = 3, u = 2 and η = 1 or

when e = 2a + 1, u = 2a−1 and η = −1. In the first case, we may apply

the recursive construction when w = 1, since if w ≥ 2, wu ≥ 4, which is

greater than e = 3. Therefore, in the first case, the recursive construction

produces the (16, 10, 6)-Difference Set found by Corollary 2.1.22. In the

second case, notice that w ∈ {1, 2}, since when w = 2, wu = 2a, where

2a < 2a + 1 = e. Notice if w > 2, then wu > e. In the case where w = 2,

we obtain a (4u2, 2, u(2u− 1), 2u(u− 1))-DDF (using the parameters given

Corollary 2.1.22).

(iv) Let w ≥ 2. IfW ′ is an EPDF, then w(w−1)u2η2+2(w−1)uη = w(w−1)u2η2

must hold. In order for this equation to hold (w − 1)uη = 0 must be true,

but if (w − 1)uη = 0 then either u = 0, η = 0 or w − 1 = 0. Since u and η

have to be non-zero integers, and w ≥ 2, W ′ is always a proper EPDF.

Example 2.1.24. In the finite field GF(16), where 16 = 24, let q = 4 and e = 5.

When u = 2 and w = 2, W ′ = {D1, D2}, where D1 ∩ D2 = ∅ and D1 and D2

comprise elements of two distinct cyclotomic classes of order 5. For example, we

can choose D1 = C5,4
0 ∪ C5,4

4 and D2 = C5,4
1 ∪ C5,4

3 . By Corollary 2.1.22, D1 and

D2 are individually (16, 6, 2)-Difference Sets, so naturally if W ′ = {D1, D2} then
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W ′ is a (16, 2, 6, 4)-DDF. It then naturally follows by Theorem 2.1.23 that W ′ is

also a (16, 2, 6, 4, 8)-EPDF. It is left up to the reader to check this.

2.2 Cyclotomic orbit framework

In this Section, we introduce a new cyclotomic tool, which we refer to as a

cyclotomic orbit. Essentially, cyclotomic orbits are equivalence classes, in which

any two cyclotomic numbers, indexed by distinct values of (i, j) ∈ Ze × Ze, are

related to each other under a collection of the identities outlined in Theorem

1.4.12. Note that whilst there is an inherent group action underpinning the

relationship between each pair of cyclotomic numbers contained within the same

cyclotomic orbit, in this Section we will be studying these objects from a purely

combinatorial point of view.

The work in this Section enables us to identify the number of cyclotomic

numbers of e, indexed by distinct values of (i, j) ∈ Ze × Ze, that have the same

value when e ≥ 5 and f is even. This addresses a gap in the literature as there

is currently no way of enurmerating the number of distinct cyclotomic numbers

of order e in a given finite field. The machinery developed in this Section is used

to identify a new method for constructing DPDFs in Chapter 3.6 and to create

a more efficient algorithm for computing the cyclotomic numbers in large finite

fields in Chapter 4.1.

Throughout this Section, we will use a combinatorial object known as a cy-

clotomic coset to understand more about the structure of cyclotomic orbits. Cy-

clotomic cosets have only previously been used in coding theory (see [45]). The

relationship between cyclotomic cosets and cyclotomic orbits, explored in this

Section, inherently will establish a connection between cyclotomic cosets and cy-

clotomic numbers. No such connection between cyclotomic cosets and cyclotomic

numbers has previously been explored in the literature.

Definition 2.2.1. (i) A cyclotomic orbit, OrbR(i, j)e is the set of cyclo-

tomic numbers equivalent to the cyclotomic number (i, j)e ((i, j) ∈ Ze×Ze)

under a collection of cyclotomic relations, R.

(ii) The orbit representative of OrbR(i, j)e is the lexicographically smallest

cyclotomic number (a, b)e such that d = |b−a|, where d = min(x,y)e∈OrbR(i,j)e
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|y − x|. Throughout the rest of this document, we write the orbit as

OrbR(a, b)e.

The reasoning behind the rigid definition of the cyclotomic representative

of the cyclotomic orbit Orb(i, j)e will become clear later. As each indiviudal

cyclotomic orbit is defined under a particular collection of relations, R, we will

need to highlight the particular collection of relations that we are referring to

in each subsequent result/example. We therefore define the three special sets of

relations which will be used throughout subsequent results.

Definition 2.2.2. (i) R1 := {(i, j)e = (ip, jp)e},

(ii) R2 := {(i, j)e = (j, i)e, (i, j)e = (e− i, j − i)e},

(iii) R3 := {(i, j)e = (j, i)e, (i, j)e = (e− i, j − i)e, (i, j)e = (ip, jp)e}.

With these sets of relations defined, we will now look at an example of the

Definition 2.2.1.

Example 2.2.3. In the finite field GF(81), there are 10 orbits under the relations

of R3:

OrbR3(0, 0)8 = {(0, 0)8}
OrbR3(1, 1)8 = {(1, 1)8, (3, 3)8, (7, 0)8, (5, 0)8, (0, 7)8, (0, 5)8}
OrbR3(2, 2)8 = {(2, 2)8, (6, 6)8, (6, 0)8, (2, 0)8, (0, 6)8, (0, 2)8}
OrbR3(4, 4)8 = {(4, 4)8, (4, 0)8, (0, 4)8}
OrbR3(5, 5)8 = {(5, 5)8, (7, 7)8, (3, 0)8, (1, 0)8, (0, 3)8, (0, 1)8}
OrbR3(1, 2)8 = {(1, 2)8, (3, 6)8, (2, 1)8, (6, 3)8, (7, 1)8, (5, 3)8, (1, 7)8, (3, 5)8, (6, 7)8,

(2, 5)8, (7, 6)8, (5, 2)8}
OrbR3(1, 3)8 = {(1, 3)8, (3, 1)8, (7, 2)8, (5, 6)8, (2, 7)8, (6, 5)8}
OrbR3(3, 4)8 = {(1, 4)8, (3, 4)8, (4, 1)8, (4, 3)8, (7, 3)8, (5, 1)8, (3, 7)8, (1, 5)8, (4, 5)8,

(4, 7)8, (5, 4)8, (7, 4)8}
OrbR3(2, 3)8 = {(1, 6)8, (3, 2)8, (6, 1)8, (2, 3)8, (7, 5)8, (5, 7)8}
OrbR3(2, 4)8 = {(2, 4)8, (6, 4)8, (4, 2)8, (4, 6)8, (6, 2)8, (2, 6)8}

Definition 2.2.4. Any two cyclotomic numbers (a, b)e and (x, y)e contained

within the same orbit OrbR(i, j)e are said to be co-orbital. (Note that for

i, j ∈ Ze, (i, j)e is the orbit representative of OrbR(i, j)e.) Two co-orbital cy-

clotomic numbers (a, b)e and (x, y)e, indexed by (a, b), (x, y) ∈ Ze × Ze, are said
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to be identical if a = x and b = y, and distinct otherwise. We define the

order of a cyclotomic orbit OrbR(i, j)e to be the number of distinct co-orbital

cyclotomic numbers it contains.

Notice that for any cyclotomic number (i, j)e, indexed by (i, j) ∈ Ze × Ze,

we can view the elements i and j individually as elements of Ze. This viewpoint

allows us to learn more about the impact of the cyclotomic number relations on

cyclotomic numbers, and thus understand more about size of individual cyclo-

tomic orbits. The following definition of a cyclotomic coset, which is based upon

the definition given in [45], allows us to understand more about the structure of

cyclotomic orbits under the relation in R1.

Definition 2.2.5. Let p be a prime such that gcd(e, p) = 1 and let Ze = {0, 1, . . . , e−
1} be the ring of integers modulo e. Then the cyclotomic coset Ci, where i ∈ Ze,

is defined by the set

Ci = {ipx (mod e)|0 ≤ x < y},

where y is the smallest positive integer such that ipy ≡ i (mod e).

Definition 2.2.6. The smallest positive integer k, such that pk ≡ 1 mod e is

denoted orde(p). Notice that this is the size of the cyclotomic coset C1.

Example 2.2.7. Let e = 8 and p = 3. It is clear that the gcd(8, 3) = 1 and

the cyclotomic cosets in Z8 are as follows; C0 = {0}, C1 = {1, 3} = C3, C2 =

{2, 6} = C6, C4 = {4}, C5 = {5, 7} = C7.

Note that in [45], as well as many other papers in the literature, the definition

of a cyclotomic coset is often given in terms of a prime power q. For the purposes

of this Thesis, the definition is given in terms of a prime p, as we want to use

the behaviour of the cyclotomic cosets to study the cyclotomic number relation

(i, j)e = (ip, jp)e.

Throughout following results, we use the notation U(Ze) to refer to the group of

units of the ring Ze. As any element x ∈ Ze is a unit if gcd(x, e) = 1, we can

observe that there is an interesting connection between the cyclotomic coset C1

and the group U(Ze).

Remark 2.2.8. Since gcd(e, p) = 1, p ∈ U(Ze). By Definition 2.2.5, it follows

that C1 = {1, p, . . . , porde(p)−1} is a multiplicative subgroup of U(Ze), comprising
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orde(p) elements. Moreover, as p ∈ U(Ze), for each i ∈ Z∗
e, ip is a unique element

of Z∗
e.

Having established that the cyclotomic coset C1 is a subgroup of U(Ze), we

can use this relationship to determine the order of each cyclotomic coset Ci, where

2 ≤ i ≤ e− 1. To do this, we require the following preliminary Lemma.

Lemma 2.2.9. Let e ∈ N, where gcd(e, p) = 1 for some prime p. For i ∈ Ze, let

ni be the smallest positive integer ipni ≡ i mod e. Then

(i) for every w ∈ N, ipwni ≡ i mod e,

(ii) if for x ∈ N ipx ≡ i mod e, then this implies ni | x.

Proof. (i) We show inductively that ipwni ≡ i mod e for every w ∈ N. The

base case ipni ≡ i mod e is true by definition.

Assume for some v ∈ N that ipvni ≡ i mod e. It then follows that

ip(v+1)ni ≡ ipvni+ni ≡ ipvnipni ≡ ipni mod e by the inductive hypothe-

sis. Therefore, we have proven by induction that ipwni ≡ i mod e for every

w ∈ N.

(ii) Since ni is the smallest positive integer satisfying ipni ≡ i mod e, we as-

sume that x ≥ ni. Assume ni ∤ x, this implies that x = qni + r, where

q = x−r
ni

and 1 ≤ r ≤ ni − 1. Then i ≡ ipx ≡ ipqni+r ≡ ipqnipr mod e.

It follows from part (i) that ipqni ≡ i mod e, therefore ipqnipr ≡ ipr ≡ i

mod e. This is a contradiction as r < ni and ni is the smallest positive

integer satisfying ipni ≡ i mod e.

We can now use this result to prove that the order of any cyclotomic coset Ci

(where i ∈ Ze) must divide the order of C1.

Proposition 2.2.10. Let {1, p, p2, . . . , porde(p)−1} ⊆ Z∗
e, where p be is a prime

and gcd(e, p) = 1. Moreover, let Ci = {i, ip, ip2, . . . , iporde(p)−1} for i ∈ Ze, then

(i) when i ∈ U(Ze), |Ci| = orde(p),

(ii) when i ̸∈ U(Ze), |Ci| divides |C1| = orde(p).
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Proof. (i) It is immediate from Remark 2.2.8 that C1 = {1, p, . . . , porde(p)−1} is

a multiplicative subgroup of Ze consisting of orde(p) distinct elements. Now

suppose that for i ̸= 1 ∈ Ze, i ∈ U(Ze) then Ci = {i, ip, . . . , iporde(p)−1} =

i(C1). As C1 ⊆ U(Ze) and i ∈ U(Ze), it follows that Ci = i(C1) is a

multiplicative coset of C1 in the group U(Ze), and therefore Ci also has

order orde(p).

(ii) When i = 0, observe that C0 = {0} and therefore |C0| = 1, so the statement

is true for i = 0.

Now suppose that for 2 ≤ i ≤ e − 1, i ̸∈ U(Ze). Since p ∈ U(Ze), there

are no zero divisors under multiplication by p in the ring Ze. This means

that for i ̸∈ U(Ze), there exists some s ∈ N that is the smallest positive

integer satisfying ips ≡ i mod e. It follows directly from Lemma 2.2.9 that

s | orde(p), and thus |Ci| divides orde(p).

Example 2.2.11. In the ring Z8, U(Z8) = {1, 3, 5, 7} and the

elements of Z8 not contained within the group of units are the elements

{0, 2, 4, 6}. It was demonstrated in Example 2.2.7 that when p = 3 and e = 8,

C1 = ⟨3⟩ = {1, 3} = C3. As the elements {5, 7} are also units, it is clear that the

cyclotomic coset C5 = 5⟨3⟩ = {5, 7} = C7 is a multiplicative coset of C1 in the

group U(Z8).

It follows from Proposition 2.2.10 that each of the non-units is contained within

a cyclotomic coset, Ci, whose order divides |C1| = 2. Observe that |C0| = 1,

|C2| = |C6| = 2 and |C4| = 1, all of which divide 2.

Using the above Proposition, we can establish an interesting connection be-

tween the cyclotomic classes of order e in the finite field GF(q) (q = ps = ef +1)

and certain cyclotomic classes in the finite field GF(e) when e and p are both

prime.

Corollary 2.2.12. Let ⟨p⟩ ⊆ Z∗
e, where e and p are distinct primes. For each

i ∈ Ze, let Ci = {i, ip, . . . , ipni−1} ⊆ Ze. Then

(i) |C0| = 1,

(ii) for i ∈ Z∗
e, |Ci| = orde(p),
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(iii) for each i ∈ Z∗
e, the cyclotomic coset Ci is equivalent to the cyclotomic class

Cϵ,1
j ⊂ GF(e), where ϵ = e−1

orde(p)
and i ∈ Cϵ,1

j for some j ∈ Zϵ.

Proof. (i) This result is immediate by Proposition 2.2.10.

(ii) When e is prime, the group U(Ze) comprises all the elements of Z∗
e. It

therefore follows from Proposition 2.2.10 (i) that since every element of Z∗
e

is a unit, each cyclotomic coset must have order orde(p).

(iii) When e is prime, the ring Ze is equivalent to the finite field GF(e). It then

follows from Remark 2.2.8 that C1 is a multiplicative subgroup of order

orde(p) in GF(e)∗. By the fundamental theorem of cyclic groups, as GF(e)∗

is a cyclic group, each subgroup of GF(e)∗ is unique. This means that,

irrespective of the generator chosen, the subgroup of order orde(p) in GF(e)∗

contains the elements {1, p, . . . , porde(p)−1}, and thus C1 is equivalent to the

cyclotomic class Cϵ,1
0 = ⟨αϵ⟩, where α is a primitive element of GF(e) and

ϵ = e−1
orde(p)

. Moreover, for 2 ≤ i ≤ e − 1, Ci = iC1 is a multiplicative coset

of C1. As i ∈ GF(e)∗, there exists a j ∈ Zϵ and an 0 ≤ s ≤ orde(p)−1 such

that αϵs+j = i (where α is a primitive element of GF(e) as above). Observe

that αϵs+j ∈ Cϵ,1
j , therefore the cyclotomic coset Ci, where 1 ≤ i ≤ e− 1, is

equivalent to the cyclotomic class Cϵ,1
j .

Let (i, j) ∈ Ze × Ze denote the ordered 2-tuple which indexes an arbitrary

cyclotomic number (i, j)e. In the following results, we demonstrate that by view-

ing i and j as individual elements of the group Ze, in particular viewing i as an

element of the cyclotomic coset Ci and j as an element of the cyclotomic coset

Cj, allows us to compute number of distinct co-orbital cyclotomic numbers lying

in each OrbR1(i, j)e.

Proposition 2.2.13. In Ze, let p be a prime such that the gcd(e, p) = 1. More-

over, suppose that Ci = i⟨p⟩ and Cj = j⟨p⟩ are cyclotomic cosets, where |Ci| = ni,

|Cj| = nj and i, j ∈ Ze. The smallest positive integer zi,j | orde(p) for which

ipzi,j = i and jpzi,j = j is zi,j = lcm(ni, nj).

Proof. It follows from Lemma 2.2.9 that zi,j = lcm(ni, nj) satisfies ipzi,j ≡ i

mod e and jpzi,j ≡ mod e. As a further consequence of Lemma 2.2.9, any integer

0 ≤ z < zi,j can satisfy ipzi,j ≡ i mod e and jpzi,j ≡ mod e simultaneously if
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and only if ni | z and nj | z. Since zi,j = ninj

gcd(ni,nj)
is the lowest common multiple

of ni and nj, no integer 0 < z < zi,j can satisfy both ipzi,j ≡ i mod e and jpzi,j ≡
mod e simultaneously.

Lemma 2.2.14. Let GF(q) be a finite field of order q = pn = ef + 1, where p

is an odd prime (note that gcd(e, p) = 1). Suppose that for i, j ∈ Ze, Ci and Cj

denote the ith and jth cyclotomic cosets modulo e, where |Ci| = ni and |Cj| = nj.

Then the OrbR1(i, j)e has order zi,j, where zi,j = lcm(ni, nj) and zi,j | orde(p).

Proof. All cyclotomic numbers contained within the cyclotomic orbit OrbR1(i, j)e

are of the form (ipr, jpr)e, where ip
r ∈ Ci, jp

r ∈ Cj and r ∈ Z. To determine

the order of OrbR1(i, j)e for a particular (i, j) ∈ Ze × Ze, we therefore need

to determine the number of distinct cyclotomic numbers that can be written

in the form (ipr, jpr)e, where r ∈ Z, ipr ∈ Ci and jpr ∈ Cj. By Proposition

2.2.13, the smallest positive integer r satisfying ipr ≡ i mod e and jpr ≡ j

mod e simultaneously is zi,j = lcm(ni, nj), where |Ci| = ni and |Cj| = nj. Since

ipzi,j ≡ i mod e and jpzi,j ≡ j mod e, the cyclotomic numbers (ipzi,j , jpzi,j)e and

(i, j)e are identical. Further, assume that two cyclotomic numbers (ipr1 , jpr1)e

and (ipr2 , jpr2)e, where 0 ≤ r1 < r2 ≤ zi,j − 1, are identical to one another. This

is true if and only if ipr1 ≡ ipr2 mod e and jpr1 ≡ jpr2 mod e which in turn

is true if and only if ipr2−r1 ≡ i mod e and jpr2−r1 ≡ j mod e. Notice that

0 ≤ r2 − r1 ≤ zi,j − 1, so it follows by Proposition 2.2.13 that there are no values

0 ≤ r1 < r2 ≤ zi,j − 1 satisfying ipr2−r1 ≡ i mod e and jpr2−r1 ≡ j mod e

simultaneously, therefore the cyclotomic numbers (ipr1 , jpr1)e and (ipr2 , jpr2)e,

where 0 ≤ r1 < r2 ≤ zi,j − 1 must be distinct. Finally, for t > zi,j, observe

that we may write t = uzi,j + s, where u = t−s
zi,j

and 0 ≤ s ≤ zi,j − 1. Since by

Proposition 2.2.13 ipzi,j ≡ i mod e and jpzi,j ≡ j mod e, it follows by Lemma

2.2.9 that ipt = ipuzi,jps ≡ ips mod e and jpt = jpuzi,jps ≡ jps mod e. This

means that each cyclotomic number (ipt, jpt)e, where t > zi,j is equivalent to the

cyclotomic number (ips, jps)e, where t = uzi,j + s for 0 ≤ s ≤ zi,j −1 and u = t−s
zi,j

(as above).

We now demonstrate that when e is an odd prime, all cyclotomic orbits under

the relation (i, j)e = (ip, jp)e have order orde(p).
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Corollary 2.2.15. Let GF(q) be a finite field of order q = pn = ef + 1, where

e and p are distinct primes. Then OrbR1(i, j)e has order orde(p) for all (i, j) ∈
Ze × Z∗

e.

Proof. By Lemma 2.2.14 that |OrbR1(i, j)e| = zi,j, where, for ni = |Ci| and

nj = |Cj|, zi,j = lcm(ni, nj). It then follows by Corollary 2.2.12 that |Ci| =
|Cj| = orde(p) for all i, j ∈ Z∗

e.

Remark 2.2.16. As a direct consequence of Corollary 2.2.15, we can say that

when e and p are distinct primes, the relation (i, j)e = (ip, jp)e maps each cy-

clotomic number (a, b)e (where (a, b) ∈ Ze × Ze) to orde(p) cyclotomic num-

bers of the form (apx, bpx), where 0 ≤ x ≤ orde(p) − 1. It is evident from the

proof of Lemma 2.2.14 that the cyclotomic numbers (apx, bpx) are all distinct for

0 ≤ x ≤ orde(p)− 1.

Lemma 2.2.17. Let GF(q) be a finite field of order q = pn = ef + 1, where p is

an odd prime and f is even. Suppose that i, j ∈ Ze. Then the cyclotomic orbit

OrbR2(i, j)e has order at most 6.

Proof. By Lemma 1.4.12, when f is even, the following relations (i, j)e = (j, i)e

and (i, j)e = (e− i, j − i)e hold for all i, j ∈ Z∗
e. It is immediately clear that the

relation (i, j)e = (j, i)e is self-inverse. It is less clear that (i, j)e = (e − i, j − i)e

is self-inverse, but observe that under relation:

(e− i, j − i)e = (e− (e− i), (j − i)− (e− i))e = (i, j − e)e = (i, j)e.

It is immediately clear from the above relations that the cyclotomic numbers

(i, j)e, (j, i)e, (e − i, j − i)e ⊆ OrbR2(i, j)e. To find further cyclotomic num-

bers contained within OrbR2(i, j)e, the cyclotomic relations (i, j)e = (j, i)e and

(i, j)e = (e− i, j− i)e must be applied in combination with one another. Note the

relations (i, j)e = (e − i, j − i)e and (i, j)e = (j, i)e must be applied alternately,

as both relations are self-inverse.

By first applying the relation (i, j)e = (e − i, j − i)e to the cyclotomic number

(i, j)e, followed by the relation (i, j)e = (j, i)e, we obtain the cyclotomic number

(j−i, e−i)e. By then applying the relation (i, j)e = (e−i, j−i)e to the cyclotomic

number (j − i, e− i)e, we obtain the cyclotomic number:

(j− i, e− i)e = (e− (j− i), (e− i)− (j− i))e = (e+ i− j, e− j)e = (i− j, e− j)e.
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Applying the relation (i, j)e = (j, i)e to the cyclotomic number (i−j, e−j)e yields
the cyclotomic number (e− j, i− j)e. Applying the relation (i, j)e = (e− i, j− i)e
for a final time to (i, j)e = (e− j, i− j)e gives:

(e− j, i− j)e = (e− (e− j), (i− j)− (e− j))e = (j, i− e)e = (j, i)e,

which is an existing cyclotomic number in the cyclotomic orbit OrbR2(i, j)e. Since

both relations are symmetric, applying the relations in the reverse direction pro-

duces a series cyclotomic numbers, already contained in the cyclotomic orbit

OrbR2(i, j)e. Hence, OrbR2(i, j)e = {(i, j)e, (j, i)e, (e− i, j− i)e, (j− i, e− i)e, (i−
j, e − j)e, (e − j, i − j)e}. Therefore OrbR2(i, j)e has order exactly 6 when the

cyclotomic numbers (i, j)e, (j, i)e, (e− i, j − i)e, (j − i, e− i)e, (i− j, e− j)e and

(e− j, i− j)e are all distinct cyclotomic numbers, and order less than 6 when any

collection of these cyclotomic numbers are identical.

Next we look to identify the size of each orbit OrbR2(i, j)e. We first identify

the conditions under which certain pairs of elements from the orbit OrbR2(i, j)e

are identical, and the conditions under which pairs of elements in OrbR2(i, j)e are

always distinct.

As demonstrated in the proof of Lemma 2.2.17, each distinct cyclotomic num-

ber in OrbR2(i, j)e can be written as at least one of the following cyclotomic

numbers (i, j)e, (j, i)e, (e− i, j − i)e, (e− j, i− j)e, (j − i, e− i)e, (i− j, e− j)e.

To determine the number of identical/distinct co-orbital cyclotomic numbers

in the orbit OrbR2(i, j)e, we need to determine whether each pair of 2-tuples

((a, b), (c, d)) ∈ Ze×Ze indexing the elements of OrbR2(i, j)e is identical/distinct

under certain conditions. As there are 6 distinct 2-tuples (a, b) ∈ Ze × Ze in-

dexing the co-orbital cyclotomic numbers of OrbR2(i, j)e, we need to consider all(
6
2

)
= 15 possible pairs of indicies ((a, b), (c, d)) ∈ Ze × Ze.

Lemma 2.2.18. Let GF(q) be a finite field of order q = ef + 1 = pn, where p is

an odd prime and f is even. Let i, j ∈ Ze. Under the relations in R2, the pairs

of indicies of co-orbital cyclotomic numbers in OrbR2(i, j)e satisfy the following

(i) {(i, j), (e− i, j− i)}, {(i, j), (i− j, e− j)}, {(j, i), (e− j, i− j)}, {(j, i), (j−
i, e− i)}, {(e− i, j − i), (j − i, e− i)} and {(e− j, i− j), (i− j, e− j)} are

always distinct from one another.
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(ii) {(i, j), (j, i)}, {(e− i, j − i), (e− j, i− j)} and {(j − i, e− i), (i− j, e− j)},
are identical when i = j and distinct otherwise,

(iii) {(i, j), (e − j, i − j)}, {(i, j), (j − i, e − i)}, {(e − j, i − j), (j − i, e − i)},
{(j, i), (e− i, j− i)}, {(j, i), (i−j, e−j)} and {(e− i, j− i), (i−j, e−j)} are

identical when the conditions i ≡ 2j mod e and 3j ≡ 0 mod e are both

satisfied, and distinct otherwise. Observe that this case can only arise if

3 | e.

Proof. (i) Observe that for all i, j ∈ Z∗
e we have j ̸= j− i, and analogously, for

all i, j ∈ Z∗
e, i ̸= i− j. This means that the following pairs of indicies must

always be distinct: {(i, j), (e− i, j − i)}, {(i, j), (i− j, e− j)}, {(j, i), (e−
j, i− j)} and {(j, i), (j− i, e− i)}. Note that for all i, j ∈ Z∗

e, e− j ̸= i− j,

since if e − j = i − j this implies i = e, meaning that i is outside of

the set range of integer values. Analogously for all 1 ≤ i, j ≤ e − 1,

e − i ̸= j − i. This means that the following pairs of indicies are always

distinct: {(e− i, j − i), (j − i, e− i)} and {(e− j, i− j), (i− j, e− j)}.

(ii) When i = j ∈ Ze, observe that the following pairs of indicies are identical

{(i, j), (j, i)}, {(e− i, j − i), (e− j, i− j)} and {(i− j, e− j), (j − i, e− i)}.
Moreover, when i ̸= j ∈ Z∗

e, then i ̸= j, e − i ̸= e − j and j − i ̸= i − i,

therefore the above pairs of cyclotomic numbers are not identical when

i ̸= j ∈ Z∗
e.

(iii) Finally, when for i ̸= j ∈ Z∗
e, i ≡ 2j mod e and 3j ≡ 0 mod e hold, this

means:

(i, j) = (2j, j)

(e− j, i− j) = (3j − j, 2j − j) = (2j, j)

(j − i, e− i) = (j − 2j, 3j − 2j) = (2j, j)

(j, i) = (j, 2j)

(e− i, j − i) = (e− 2j, j − 2j) = (j, 2j)

(i− j, e− j) = (2j − j, e− j) = (j, 2j).

It then immediately follows from the above that when, for i ̸= j ∈ Ze, i ≡
2j mod e and 3j ≡ 0 mod e, the following pairs of indicies are identical
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{(i, j), (e − j, i − j)}, {(i, j), (j − i, e − i)}, {(e − j, i − j), (j − i, e − i)},
{(j, i), (e− i, j − i)}, (j, i), (i− j, e− j)} and {(e− i, j − i), (i− j, e− j)}.

We now prove that the pairs of indicies {(i, j), (e− j, i− j)} and {(j, i), (i−
j, e− j)} are only identical when, for i ̸= j ∈ Z∗

e, i ≡ 2j mod e and 3j ≡ 0

mod e. The above pairs of cyclotomic numbers are only identical if i = e−j
and j = i − j from the second condition, we obtain that 2j ≡ i mod e,

therefore immediately follows that if i ̸≡ 2j mod e, then these pairs of

cyclotomic numbers are not equal. Moreover, suppose i ≡ 2j mod e, but

3j ̸≡ 0 mod e, then it is clear that i ̸≡ e − j mod e, and so the pairs of

indicies, {(i, j), (e− j, i− j)} and {(j, i), (i− j, e− j)}, cannot be identical
when i ̸≡ 2j mod e or 3j ̸≡ 0 mod e.

Using an analogous proof strategy, we can demonstrate that the following

pairs of indicies are identical only if i ≡ 2j mod e and 3j ≡ 0 mod e

{(i, j), (j − i, e− i)}, {(j, i), (e− i, j − i)}, {(e− j, i− j), (j − i, e− i)} and

{(e− i, j − i), (i− j, e− j)}.

Remark 2.2.19. In case (ii), observe that as i = j, the orbit representative

is automatically the cyclotomic number (i, i)e. In case (iii), there are only two

elements in (i, j)e and (j, i)e in the orbit OrbR2(i, j)e notice that i ≡ 2j mod e

and 3j ≡ 0 mod e if and only if j ≡ 2i mod e and 3i ≡ 0 mod e.

As we have determined when the indicies of the cyclotomic numbers in OrbR2(i, j)e

are identical, and when they are distinct, we can now determine the size of each

orbit OrbR2(i, j)e.

Lemma 2.2.20. Let GF(q) be a finite field of order q = ef + 1 = pn, where p is

an odd prime and f is even. The cyclotomic orbit OrbR2(i, j)e has size 6 except

for in the following cases:

(i) i = j = 0, in which case |OrbR2(i, j)e| = 1,

(ii) i = j ̸= 0, in which case |OrbR2(i, j)e| = 3,

(iii) i ≡ 2j mod e and 3j ≡ 0 mod e, in which case |OrbR2(i, j)e| = 2

Proof. Notice that OrbR2(i, j)e = {(i, j)e, (j, i)e, (e− i, j − i)e, (e− j, i− j)e, (j −
i, e− i)e, (i− j, e− j)e}. This result is then immediate from Lemma 2.2.18.
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In the remaining part of this Subsection, we build upon previous results to

determine the size of each cyclotomic orbit OrbR3(i, j)e. Throughout all subse-

quent results, it will be assumed that f is even. Note that the set R3 contains all

known cyclotomic numbers relations listed for f even in Theorem 1.4.12, there-

fore these orbits under the relations of R3 are the most useful orbits explored

in this Subsection when it comes to establishing new cyclotomic constructions of

combinatorial objects in the f even case. In the result below, we establish the

maximum possible size of each orbit OrbR3(i, j)e.

Theorem 2.2.21. Let GF(q) be a finite field of order q = pn = ef + 1, where

e ≥ 5 and p are both odd primes and f is even. In the finite field GF(e), let

Cϵ,1
0 = ⟨αϵ⟩ ∼= ⟨p⟩, where α is a primitive root of GF(e) and n1 = |Cϵ,1

0 | = orde(p)

is odd.

(i) Each cyclotomic number in the orbit OrbR3(i, j)e can be written in the form

(apr, bpr)e, where (a, b) ∈ OrbR2(i, j)e and 0 ≤ r ≤ n1 − 1.

(ii) Let GF(q) be a finite field of order q = ef+1 = pn, where p is an odd prime

and e is prime. Then the cyclotomic orbit OrbR3(i, j)e has order at most

6n1, where n1 = orde(p).

Proof. (i) By applying the relation (i, j)e = (ip, jp)e to the cyclotomic num-

bers contained in the cyclotomic orbit OrbR2(i, j)e we obtain all co-orbital

cyclotomic numbers of the form (ipu, jpu)e, (jp
v, ipv)e, ((e−i)pw, (j−i)pw)e,

((e− j)px, (i− j)px)e, ((j− i)py, (e− i)py)e and ((i− j)pz, (e− j)pz)e, where
0 ≤ u, v, w, x, y, z ≤ n1 − 1. These are precisely the cyclotomic numbers

contained within the cyclotomic orbit OrbR3(i, j)e. To see this, observe that

we may write all of the cyclotomic numbers above as a cyclotomic number

in OrbR2(i, j)e with the cyclotomic relation (i, j)e = (ip, jp)e applied to it,

as a cyclotomic number of the form (apr, bpr)e, where (a, b) ∈ OrbR2(i, j)e

and 0 ≤ r ≤ n1 − 1. By applying the relation (i, j)e = (j, i)e to the cy-

clotomic number (apr, bpr)e, we obtain the cyclotomic number (bpr, apr)e,

which has already been obtained by applying the relation (i, j)e = (ip, jp)e

to the element (b, a)e of the orbit OrbR2(i, j)e. Similarly, by applying the

relation (i, j)e = (e− i, j− i)e to (apr, bpr)e, we obtain ((e−a)pr, (b−a)pr)e,
which has also already been determined by applying (i, j)e = (ip, jp)e to an

element of OrbR2(i, j)e.
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(ii) By Lemma 2.2.17, the cyclotomic orbit OrbR2(i, j)e comprises at most 6

cyclotomic numbers it therefore follows by Remark 2.2.16 that OrbR3(i, j)e

comprises at most 6n1 cyclotomic numbers, where n1 = orde(p).

As the maximum size of each orbit OrbR3(i, j)e has now been established, we

now seek to determine the exact size of each orbit. Before we can do this, we

require a few preliminary results.

Proposition 2.2.22. Let GF(q) be a finite field of order q = pn = ef+1, where p

is prime, e is prime and f is even. Let n1, as it is definied statement of Theorem

2.2.21, be odd and let 1 ≤ m ≤ e− 1, then

(i) if m ∈ Cϵ,1
r , then −m ∈ Cϵ,1

r+ ϵ
2
, where 0 ≤ r ≤ ϵ− 1.

(ii) for all 0 ≤ x, y ≤ n1 − 1, mpx ̸≡ (−m)py mod e.

(iii) for all 1 ≤ x ≤ n1 − 1, mp2x ̸≡ m mod e.

Proof. (i) As |Cϵ,1
0 | = n1 is odd, it follows by Lemma 1.4.11 that −1 ∈ Cϵ,1

ϵ
2
.

This means that ifm ∈ Cϵ,1
r , then−m = (−1)m ∈ Cϵ,1

r+ ϵ
2
where 0 ≤ r ≤ ϵ−1.

(ii) Since Cϵ,1
0

∼= ⟨p⟩, there exist integers 0 ≤ x, y ≤ n1 − 1 such that mpx ≡
(−m)py mod e, if m and −m are contained within the same cyclotomic

class. By part (i), m and −m are in distinct cyclotomic classes, we see that

mpx ̸≡ (−m)py mod e for all 0 ≤ x, y ≤ n1 − 1.

(iii) As 1 ≤ m ≤ e − 1, m ∈ Cϵ,1
r , where 0 ≤ r ≤ ϵ − 1. By Corollary 2.2.12,

|Cϵ,1
r | = orde(p) = n1 meaning that n1 is the smallest positive integer such

that mpn1 ≡ m mod e. As n1 is odd, there is no integer 1 ≤ x ≤ n1 − 1

such that 2x ≡ 0 mod n1 by Lemma 2.2.9 as n1 ∤ 2x for 1 ≤ x ≤ n1 − 1,

this means mp2x ̸≡ m mod e for all 1 ≤ x ≤ n1 − 1.

We can now use the above result to identify the conditions under which cer-

tain pairs of co-orbital cyclotomic numbers are identical to each other under the

relations in R3 as well as when pairs of co-orbital cyclotomic numbers are always

distinct from one another under the relations in R3.

Recall from Lemma 2.2.21 that for each cyclotomic number (apr, bpr)e ∈
OrbR3(i, j)e, indexed by (apr, bpr) ∈ Ze × Ze, the 2-tuple (a, b) indexes a cy-

clotomic number (a, b)e ∈ OrbR2(i, j)e. Therefore, if a pair of cyclotomic num-

bers ((apr, bpr)e, (cp
s, dps)e) ∈ OrbR3(i, j)e × OrbR3(i, j)e, then (a, b)e, (c, d)e ∈
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OrbR2(i, j)e and 0 ≤ r, s ≤ n1 − 1. Note that, for any pair of co-orbital cyclo-

tomic numbers ((apr, bpr)e, (cp
s, cps)e) ∈ OrbR3(i, j)e × OrbR3(i, j)e, there are 4

possibilities

(i) (a, b) = (c, d) ∈ OrbR2(i, j)e and 0 ≤ r = s ≤ n1 − 1,

(ii) (a, b) = (c, d) ∈ OrbR2(i, j)e and 0 ≤ r ̸= s ≤ n1 − 1,

(iii) (a, b) ̸= (c, d) ∈ OrbR2(i, j)e and 0 ≤ r = s ≤ n1 − 1,

(iv) (a, b) ̸= (c, d) ∈ OrbR2(i, j)e and 0 ≤ r ̸= s ≤ n1 − 1.

Case (i) is trivial as any cyclotomic number is identical to itself, however,

determining whether a pair of cyclotomic numbers satisfying Cases (ii)-(iv) is

distinct/identical requires more work. Over the next three results, we identify all

pairs of co-orbital cyclotomic numbers in Cases (ii)-(iv) that are distinct under the

relations in R3, and we also identify when certain pairs of co-orbital cyclotomic

numbers in Cases (ii)-(iv) are identical under the relations in R3. Each Lemma

below covers one of Cases (ii)-(iv) outlined above.

Lemma 2.2.23. Let GF(q) be a finite field of order q = ef + 1 = pn, where p is

an odd prime, e ≥ 5 is prime and f is even. In the finite field GF(e), let Cϵ,1
0 =

⟨αϵ⟩ ∼= ⟨p⟩ and suppose n1 = |Cϵ,1
0 | = orde(p) is odd. Let (a, b) ∈ OrbR2(i, j)e and

let 0 ≤ r ̸= s ≤ n1 − 1. Then the cyclotomic numbers (apr, bpr)e, (ap
s, bps)e ∈

OrbR3(i, j)e are distinct.

Proof. This result is immediate from Remark 2.2.16.

Lemma 2.2.24. Let GF(q) be a finite field of order q = ef + 1 = pn, where

p is an odd prime, e ≥ 5 is prime and f is even. In the finite field GF(e),

let Cϵ,1
0 = ⟨αϵ⟩ ∼= ⟨p⟩ and suppose n1 = |Cϵ,1

0 | = orde(p) is odd. Let (a, b) ̸=
(c, d) ∈ OrbR2(i, j)e and let 0 ≤ r ≤ n1 − 1. Then the cyclotomic numbers

(apr, bpr)e, (cp
r, dpr)e ∈ OrbR3(i, j)e are distinct if

(i) {(a, b), (c, d)} is a pair in Case (i) of Lemma 2.2.18,

(ii) {(a, b), (c, d)} is a pair in Case (ii) of Lemma 2.2.18 and i ̸= j,

(iii) {(a, b), (c, d)} is a pair in Case (iii) of of Lemma 2.2.18.
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If {(a, b), (c, d)} is a pair in Case (ii) of Lemma 2.2.18 and i = j then (apr, bpr)e,

(cpr, dpr)e ∈ OrbR(i, j)e are identical.

Proof. Let (apr, bpr)e, (cp
r, dpr)e be any two cyclotomic numbers satisfying 0 ≤

r ≤ n1 − 1, where (a, b) ̸= (c, d) ∈ {(i, j), (j, i), (e − i, j − i), (e − j, i − j), (j −
i, e − i), (i − j, e − j)}. The cyclotomic numbers (apr, bpr)e and (cpr, dpr)e are

identical if and only if apr ≡ cpr mod e and bpr ≡ dpr mod e, which is true if

and only if apr−r ≡ c mod e and bpr−r ≡ d mod e. We can see that apr−r = a

and bpr−r = b, therefore, the cyclotomic numbers (apr, bpr)e and (cpr, dpr)e are

identical if and only if the cyclotomic numbers (a, b)e and (c, d)e are identical.

Since f is even and p is prime, parts (i) and (ii) are immediate from Lemma

2.2.20.

For part (iii) notice that the pairs in Lemma 2.2.20 are identical precisely

when i ≡ 2j mod e and 3j ≡ 0 mod e, however the second condition requires

e | 3j, which is not possible since e ≥ 5 and e is prime. This means that these

pairs are not identical pairs under the above conditions.

Theorem 2.2.25. Let GF(q) be a finite field of order q = ef+1 = pn, where p is

an odd prime, e ≥ 5 is prime and f is even. In the finite field GF(e), let Cϵ,1
0 =

⟨αϵ⟩ ∼= ⟨p⟩ and suppose n1 = |Cϵ,1
0 | = orde(p) is odd. Let (ap

r, bpr)e and (cps, dps)e

be two co-orbital cyclotomic numbers in the cyclotomic orbit OrbR3(i, j)e such that

(a, b) ̸= (c, d) ∈ Ze×Ze index two cyclotomic numbers (a, b)e, (c, d)e ∈ OrbR2(i, j)e

and 0 ≤ r ̸= s ≤ n1 − 1. Then if

(i) {(a, b), (c, d)} ∈ {(i, j), (e− i, j− i)}, {(i, j), (i− j, e− j)}, {(j, i)e, (e− j, i−
j)}, {(j, i), (j − i, e− i)} the cyclotomic numbers (apr, bpr)e and (cps, dps)e

are distinct.

(ii) {(a, b), (c, d)} ∈ {{(i, j), (j, i)}, {(e−i, j−i), (j−i, e−i)}, {(e−j, i−j), (i−
j, e− j)}} the cyclotomic numbers (apr, bpr)e and (cps, dps)e are distinct.

(iii) {(a, b), (c, d)} ∈ {{(e− i, j − i), (e− j, i− j)}, {(j − i, e− i), (i− j, e− j)}}
the cyclotomic numbers (apr, bpr)e and (cps, dps)e are distinct.

(iv) (a) For {(a, b), (c, d)} ∈ {{(i, j), (e − j, i − j)}, {(e − j, i − j), (j − i, e −
i)}, {(j, i), (i − j, e − j)}} we have (apr, bpr)e = (cps, dps) precisely if

i ≡ (−j)ps−r mod e and j ≡ i(ps−r + 1) mod e.
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(b) For {(a, b), (c, d)} ∈ {{(i, j), (j − i, e− i)}, {(j, i), (e− i, j − i)}, {(e−
i, j − i), (i − j, e − j)}} we have (apr, bpr)e = (cps, dps) precisely if

i ≡ (−j)pr−s mod e and j ≡ i(pr−s + 1) mod e.

Proof. As 0 ≤ r ̸= s ≤ e − 1 are arbitrary, the number of distinct cases

((apr, bpr)e, (cp
s, dps)e ∈ OrbR3(i, j)e depends only on the number of distinct

pairs ((a, b), (c, d)) ∈ OrbR2(i, j)e × OrbR2(i, j)e. Since there are 6 different ele-

ments in the cyclotomic orbit OrbR′(i, j)e, there are
(
6
2

)
= 15 different pairs of

cyclotomic numbers (apr, bpr)e and (cps, dps)e in OrbR3(i, j)e for which (a, b) ̸=
(c, d) ∈ OrbR2(i, j)e and 0 ≤ r ̸= s ≤ n1 − 1. We account for 4 of the pos-

sibilities in part (i), 3 of the possibilities in part (ii), 2 of the possibilities in

part (iii) and 6 of the possibilities in part (iv) thus all 15 possible cases of cyclo-

tomic numbers (apr, bpr)e and (cps, dps)e where (a, b) ̸= (c, d) ∈ OrbR2(i, j)e and

0 ≤ r ̸= s ≤ n1 − 1 are accounted for in this result.

(i) The cyclotomic numbers (ipr, jpr)e and ((e− i)ps, (j− i)ps)e, where 0 ≤ r ̸=
s ≤ n1−1, are identical if and only if ipr ≡ (e− i)ps mod e and jpr ≡ (j−
i)ps mod e. By Proposition 2.2.22, for all 0 ≤ r ̸= s ≤ n1−1, ipr ̸≡ (e−i)ps

mod e (since e− i = −i) this means that the cyclotomic numbers (ipr, jpr)e

and ((e − i)ps, (j − i)ps)e are always distinct. We can also see that this

implies that the cyclotomic numbers (jpr, ipr)e and ((j − i)ps, (e − i)ps)e

are always distinct. Similarly, by Proposition 2.2.22, for all 0 ≤ r ̸= s ≤
n1 − 1 jpr ̸≡ (e − j)ps this implies that the pairs of cyclotomic numbers

{(ipr, jpr)e, ((i−j)ps, (e−j)ps)e} and {(jpr, ipr)e, ((e−j)ps, (i−j)ps)e} are

always distinct.

(ii) Assume that for 0 ≤ r ̸= s ≤ n1−1, the cyclotomic numbers (ipr, jpr)e and

(jps, ips)e are identical. This means that ipr ≡ jps mod e and jpr ≡ ips

mod e. By rearranging these expressions, we obtain ipr−s ≡ j mod e and

j ≡ ips−r mod e. We can then combine the resultant equalities to give

ipr−s ≡ ips−r mod e, which we can then multiply through by pr−s to give

ip2(r−s) ≡ i mod e. As 0 ≤ r ̸= s ≤ n1 − 1, either 0 ≤ r < s ≤ n1 − 1 or

0 ≤ s < r ≤ n1−1. In the first case, 1 ≤ r−s ≤ n1−1 and so by Proposition

2.2.22, ip2(r−s) ̸≡ i mod e. In the second case, −(n1 − 1) ≤ r − s ≤ −1.

Since pn1 ≡ 1 mod e, pr−s+n1 ≡ pr−s mod e, where 1 ≤ r−s+n1 ≤ n1−1.
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By Proposition 2.2.22, as 1 ≤ r− s+ n1 ≤ n1 − 1, ip2(r−s+n1) ≡ ip2(r−s) ̸≡ i

mod e. Therefore, (ipr, jps)e and (jpr, ips)e must always be distinct.

An analogous argument can be used to show that the ensuing pairs of

cyclotomic numbers must also be distinct {((e − i)pr, (j − i)pr)e, ((j −
i)ps, (e − i)ps)e} and {((e − j)pr, (i − j)pr)e, ((i − j)ps, (e − j)ps)e} for all

0 ≤ r ̸= s ≤ n1 − 1.

(iii) Assume that the cyclotomic numbers ((e−i)pr, (j−i)pr)e and ((e−j)ps, (i−
j)ps)e are identical for 0 ≤ r ̸= s ≤ n1− 1, then this means that (e− i)pr ≡
(e−j)ps mod e and (j−i)pr ≡ (i−j)ps mod e. Observe that if 0 ≤ i ̸= j ≤
e−1, j− i = −(i− j), and so by Proposition 2.2.22 (ii) (j− i)pr ̸≡ (i− j)ps

mod e, which is a contradiction. This means that if (j − i)pr ≡ (i − j)ps

mod e then 0 ≤ i = j ≤ n1 − 1. When 0 ≤ i = j ≤ n1 − 1, (e − j)ps =

(e − i)ps and therefore (e − i)pr ≡ (e − i)ps mod e. By Remark 2.2.16

(e − i)pr ̸≡ (e − i)ps mod e for any 0 ≤ r ̸= s ≤ n1 − 1, so therefore the

cyclotomic numbers ((e−i)pr, (j−i)pr)e and ((e−j)ps, (i−j)ps)e are always
distinct when 0 ≤ r ̸= s ≤ n1−1. The same argument can be used to show

that the cyclotomic numbers ((j− i)pr, (e− i)pr)e and ((i− j)ps, (e− j)ps)e

are always distinct.

(iv) In case (a), the cyclotomic numbers (ipr, jpr)e and ((e− j)ps, (i− j)ps)e are
identical for 0 ≤ r ̸= s ≤ n1−1, precisely if ipr ≡ (e−j)ps mod e and jpr ≡
(i − j)ps mod e. These conditions can rearranged to give i ≡ (e − j)pr−s

mod e and j ≡ (i−j)pr−s mod e, which is equivalent to i ≡ −jps−r mod e

and j ≡ ipr−s + i mod e. All other cases follow analogously.

Remark 2.2.26. It can be shown that (i, j)e satisfies the conditions of Theorem

2.2.25 (iv) precisely if (a, b)e also satisfies these conditions for any other (a, b)e

in the orbit. Hence the condition does not depend on the choice of (i, j)e.

As we have found all pairs of conditionally identical/distinct cyclotomic num-

bers under the relations in R3 between the three results above, we can determine

the size of all cyclotomic orbits under the relations in R3.
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Theorem 2.2.27. Let GF(q) be a finite field of order q = ef + 1 = pn, where

p is an odd prime, f is even and e ≥ 5 is prime. Moreover, in the finite field

GF(e), let Cϵ,1
0 = ⟨αϵ⟩ ∼= ⟨p⟩, where |Cϵ,1

0 | = orde(p) = n1 is odd. The cyclotomic

orbit OrbR3(i, j)e has order 6n1 except in the following cases:

(i) when i = j = 0, OrbR(i, j)e has order 1,

(ii) when i = j ∈ Z∗
e, OrbR(i, j)e has order 3n1,

(iii) when i ≡ −jpx mod e and j ≡ i(px + 1) mod e for 1 ≤ x ≤ n1 − 1,

OrbR(i, j)e has order 2n1.

Proof. Part (i) follows from Lemma 2.2.20; notice that when i = j = 0, OrbR2(i, j)e

contains only 1 element, the element (0, 0)e. Applying the cyclotomic number

relation (i, j)e = (ip, jp)e to the cyclotomic number (0, 0)e only returns the cy-

clotomic number (0, 0)e. Part (ii) is immediate from above. For part (iii) by

Theorem 2.2.25 (iv) it is immediate that if there is some 0 ≤ x ≤ n1 − 1 such

that i ≡ −jpx mod e and j ≡ i(px + 1) mod e then

• (apr, bpr)e = (cpr+x, dpr+x)e for {(a, b), (c, d)} ∈ {{(i, j), (e− j, i− j)}, {(e−
j, i− j), (j − i, e− i)}, {(j, i), (i− j, e− j)}.

• (apr, bpr)e = (cpr−x, dpr−x)e for {(a, b), (c, d)} ∈ {{(i, j), (j−i, e−i)}, {(j, i),
(e− i, j − i)}, {(e− i, j − i), (i− j, e− j)}.

I now introduce a final new definition, this is the definition of internal and

external cyclotomic orbits. It is important distinguish between internal and ex-

ternal cyclotomic orbits as internal cyclotomic orbits can be used as tools to find

new constructions of disjoint partial difference families, whilst external cyclo-

tomic orbits may be used to construct external partial difference families. Note

that the following definition discusses internal and external cyclotomic numbers;

for a formal definition of these concepts, we refer the reader back to Definition

1.4.5.

Definition 2.2.28. When a cyclotomic orbit comprises only internal cyclotomic

numbers, this cyclotomic orbit is referred to as an internal cyclotomic orbit.

Similarly, a cyclotomic orbit that comprises only external cyclotomic numbers, is

referred to as an external cyclotomic orbit.
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Note that it is not always possible to cleanly partition the cyclotomic orbits

into internal cyclotomic orbits and external cyclotomic orbits. Whilst in the f

even case every orbit is either an internal cyclotomic orbit or external cyclotomic

orbit, since the relations (i, j)e = (j, i)e, (i, j)e = (e − i, j − i)e and (i, j)e =

(ip, jp)e (which are the only cyclotomic number relations that hold when f is

even) relate internal cyclotomic numbers to internal cyclotomic numbers and

external cyclotomic numbers to external cyclotomic numbers, the same is not true

in the case where f is odd. When f is odd is the relation (i, j)e = (j + e
2
, i+ e

2
)e

relates internal cyclotomic numbers to external cyclotomic numbers (for details,

see Theorem 1.4.12), therefore we can only classify cyclotomic orbits as internal

and external cyclotomic orbits when f is even.

With the above definition established, we can determine the order of all in-

ternal and external cyclotomic orbits.

Corollary 2.2.29. Let GF(q) be a finite field of order q = ef + 1 = pn, where p

is an odd prime, f is even and e ≥ 5 is prime. Moreover, let n1 (as defined in

the statement of Theorem 2.2.27) be odd. Then

(i) (a) we can index: n1 of the cyclotomic numbers in each internal cyclotomic

orbit by (i, i) ∈ Ze × Ze, n1 of the cyclotomic numbers by (e − i, 0) ×
Ze × Ze and n1 of the cyclotomic numbers by (0, e− i) ∈ Ze × Ze.

(b) all internal cyclotomic numbers are contained in internal cyclotomic

orbits of order 1 or 3n1.

(c) there is 1 internal orbit of order 1 and ϵ internal orbits of order 3n1.

(ii) all external cyclotomic numbers are contained in external cyclotomic orbits

of order 2n1 or 6n1.

Proof. (i) (a) This result is immediate from the proof of Theorem 2.2.21.

(b) It is clear that OrbR3(0, 0)e = {(0, 0)e}, so the internal cyclotomic

number (0, 0)e is contained in an orbit of order 1.

By Definition 1.4.5 the remaining internal cyclotomic numbers of order

e are indexed by one of the following; (j, j) ∈ Z∗
e×Z∗

e, (j, 0)e ∈ Z∗
e×Ze

or (0, j)e ∈ Ze × Z∗
e. It follows from part (i)(a) that all cyclotomic

numbers, indexed by the above, are in internal orbits of length 3n1.
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(c) The cyclotomic orbit OrbR3(0, 0)e has size 1. There are then a re-

maining 3(e − 1) internal cyclotomic numbers. By part (i)(b), all

other internal cyclotomic orbits have order 3n1. There are therefore

3(e− 1) internal cyclotomic numbers contained in orbits of order 3n1.

It follows from this that there are 3(e−1)
3n1

= ϵn1

n1
= ϵ internal cyclotomic

orbits of order 3n1.

(ii) From part (i), all orbits of the form OrbR3(i, i)e of order 3n1 only contain

internal cyclotomic numbers. Further, the only orbit of order 1 contains

an internal cyclotomic number. Since by Theorem 2.2.27, all orbits when

e and p are both prime and n1 is odd are of order 1, 2n1, 3n1 or 6n1, it

follows that the orbits of order 2n1 and 6n1 must be external cyclotomic

orbits.

In Theorem 2.2.27 we demonstrate that external cyclotomic orbit OrbR3(i, j)e

has order 2n1 when i = −jpx and j = i(px + 1). In the following Corollary we

demonstrate that i and j have to lie in particular cyclotomic classes in order for

this phenomenon to occur.

Corollary 2.2.30. If 1 ≤ i, j ≤ e − 1 satisfy the conditions of Theorem 2.2.27

then i ∈ Cϵ,1
r and j ∈ Cϵ,1

r+ ϵ
2
for 0 ≤ r ≤ ϵ− 1.

Proof. Recall that e = ϵn1 + 1, where e ≥ 5 is an odd prime and n1 is odd.

By Lemma 1.4.11, as n1 is odd, this means that −1 ∈ Cϵ,1
ϵ
2
. As p generates the

cyclotomic class Cϵ,1
0 , we know that if i = −jpx and i ∈ Cϵ,1

r for some 0 ≤ r ≤ ϵ−1,

then j ∈ Cϵ,1
r+ ϵ

2
.

In fact, I have been able to do more analysis of this type to determine further

results about the structure of external orbits of order 2n1, but it is not included

in this thesis due to time and space considerations.

We have now established the size and classification of each cyclotomic orbit in

a finite field GF(q), in which e ≥ 5 and p are both prime, f is even and n1 = |⟨p⟩|
is odd. In the following example, we use the above results to present the size and

classification of each cyclotomic orbit in GF(243) under the relations of R3 when

e = 11.
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Example 2.2.31. In the finite field GF(243), it is clear that p = 3. Observe that

243 = 11(22) + 1. If we choose e = 11, then we satisfy the conditions that e is

a prime greater than 5 and f is even. Notice that ⟨3⟩ = {1, 3, 9, 5, 4} in GF(11),

it therefore follows that the elements of ⟨3⟩ coincide with the cyclotomic class

C2,1
0 ∈ GF(11). This means that ϵ is equal to 2, and as ⟨3⟩ comprises 5 distinct

elements, this implies n1 = 5 and thus, we meet all the conditions of Theorem

2.2.27 and Corollary 2.2.29. It is immediate from the proof of Corollary 2.2.29

that when e = 11, each internal cyclotomic orbit OrbR(i, j)11 has order 3n1,

except for the cyclotomic orbit containing the element (0, 0)11, which has order

1. Excluding the cyclotomic number (0, 0)11, there are 30 internal cyclotomic

numbers of order 11 by Corollary 2.2.29 (i)(c), as ϵ = 2, this means there are 2

internal orbits of order 3n1 = 15. As follows

OrbR(0, 0)11 = {(0, 0)11}
OrbR(1, 1)11 = {(1, 1)11, (3, 3)11, (9, 9)11, (5, 5)11, (4, 4)11, (10, 0)11, (8, 0)11, (2, 0)11,

(6, 0)11, (7, 0)11, (0, 10)11, (0, 8)11, (0, 2)11, (0, 6)11, (0, 7)11},
OrbR(2, 2)11 = {(2, 2)11, (6, 6)11, (7, 7)11, (10, 10)11, (8, 8)11, (9, 0)11, (5, 0)11,

(4, 0)11, (1, 0)11, (3, 0)11, (0, 9)11, (0, 5)11, (0, 4)11, (0, 1)11, (0, 3)11}.

From Corollary 2.2.30, we need to check where there are any i ∈ C2,1
0 =

{1, 3, 9, 5, 4} and j ∈ C2,1
1 = {2, 6, 7, 10, 8} such that i ≡ −j3x mod e and j =

i(3x + 1). As there are no elements of this type, there are zero external orbits of

order 2n1 = 10 in this case. The remaining 3 orbits of size 6n1 = 30 are

OrbR(1, 2)11 = {(1, 2)11, (3, 6)11, (9, 7)11, (5, 10)11, (4, 8)11, (2, 1)11, (6, 3)11, (7, 9)11,
(10, 5)11, (8, 4)11, (10, 1)11, (8, 3)11, (2, 9)11, (6, 5)11, (7, 4)11, (1, 10)11,

(3, 8)11, (9, 2)11, (5, 6)11, (4, 7)11, (9, 10)11, (5, 8)11, (4, 2)11, (1, 6)11,

(3, 7)11, (10, 9)11, (8, 5)11, (2, 4)11, (6, 1)11, (7, 3)11}
OrbR(4, 5)11 = {(1, 3)11, (3, 9)11, (9, 5)11, (5, 4)11, (4, 1)11, (3, 1)11, (9, 3)11, (5, 9)11,

(4, 5)11, (1, 4)11, (10, 2)11, (8, 6)11, (2, 7)11, (6, 10)11, (7, 8)11, (2, 10)11,

(6, 8)11, (7, 2)11, (10, 6)11, (8, 7)11, (8, 9)11, (2, 5)11, (6, 4)11, (7, 1)11,

(10, 3)11, (9, 8)11, (5, 2)11, (4, 6)11, (1, 7)11, (3, 10)11}
OrbR(3, 4)11 = {(1, 5)11, (3, 4)11, (9, 1)11, (5, 3)11, (4, 9)11, (5, 1)11, (4, 3)11, (1, 9)11,

(3, 5)11, (9, 4)11, (10, 4)11, (8, 1)11, (2, 3)11, (6, 9)11, (7, 5)11, (4, 10)11,

(1, 8)11, (3, 2)11, (9, 6)11, (5, 7)11, (6, 7)11, (7, 10)11, (10, 8)11, (8, 2)11,

(2, 6)11, (7, 6)11, (10, 7)11, (8, 10)11, (2, 8)11, (6, 2)11}.
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2.2.1 Cyclotomic coset representatives

In the previous subsection, we determined the number of cyclotomic orbits of

order e in a finite field of characteristic p. In this subsection, we shift focus

slightly and determine the orbit representatives of each cyclotomic orbit in a

finite field GF(q), where for q = pm = ef +1, e ≥ 5 is prime, p is prime, f is even

and |⟨p⟩| ⊆ GF(e) is odd. Ultimately, we are interested in doing this, because

knowing the cyclotomic orbit representatives in these finite fields enables us to

design an algorithm for computing the cyclotomic numbers in finite fields that

meet these criteria in a later chapter.

We will use the following notation throughout this subsection.

Definition 2.2.32. The notation αj,ϵ is used to denote the smallest positive in-

teger in GF(e) that is contained within the cyclotomic class Cϵ,1
j = αj⟨αϵ⟩, where

Cϵ,1
j ⊆ GF(e) and e is a prime.

Theorem 2.2.33. Let GF(q) be a finite field of order q = pn = ef+1, where p is

an odd prime, e ≥ 5 is prime and for ⟨p⟩ ⊆ GF(e)∗, |⟨p⟩| = n1 is odd. Moreover,

in the finite field GF(e), for all 0 ≤ j ≤ ϵ − 1, let Cϵ,1
j = αj⟨αϵ⟩ = αj⟨p⟩. The

representative of each internal cyclotomic orbit of order 3n1 is the cyclotomic

number (αj,ϵ, αj,ϵ)e.

Proof. It follows from the proof of Corollary 2.2.29 that when p is an odd prime,

f is even, e ≥ 5 is prime and n1 is odd, all internal cyclotomic numbers, exclud-

ing (0, 0)e, are contained within a cyclotomic orbit of order 3n1. Further, each

cyclotomic orbit of order 3n1 contains exactly n1 elements of the form (ipr, ipr)e,

n1 elements of the form ((e− i)pr, 0)e and n1 elements of the form (0, (e− i)pr)e

(where 1 ≤ i ≤ e− 1 and 0 ≤ r ≤ n1 − 1). Notice that d = |i− i| = 0, therefore

the cyclotomic number (i, i)e with smallest 0 ≤ i ≤ e− 1 is the representative of

each orbit of order 3n1.

Moreover, it follows by the proof of Corollary 2.2.29 that two cyclotomic numbers

(ipr, ipr)e and (ips, ips)e where 0 ≤ r ̸= s ≤ n1 − 1 are only equivalent to one

another under the relation (i, j)e = (ip, jp)e. It therefore follows that ip
r and ips

(where 0 ≤ r ̸= s ≤ n1 − 1) must be contained within the same cyclotomic coset

Ci = {i, ip, . . . , ipn1}. By Corollary 2.2.12, each cyclotomic coset Ci is equivalent

to some cyclotomic class Cϵ,1
j , where ϵ = e−1

orde(p)
and i ∈ Cϵ,1

j . It therefore follows

that the smallest cyclotomic number (i, i)e in each cyclotomic orbit of order 3n1
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corresponds to the cyclotomic number (αj,ϵ, αj,ϵ), where αj,ϵ is smallest element

of the cyclotomic class Cϵ,1
j .

Example 2.2.34. Let GF(243) and choose e = 11. Note that in this finite field,

p = 3. It follows from Example 2.2.31 that there are two internal orbits of order

3n1 = 15: the orbit representatives of these orbits are (1, 1)11 and (2, 2)11.

Observe that in the finite field GF(11), α = 6 is a primitive element of this finite

field. Moreover, α2 = 3 mod 11, therefore C2,1
0 = ⟨α2⟩ = {3, 9, 5, 4, 1} = ⟨3⟩

in GF(11). It follows that in GF(11), α0,2 = 1, this corresponds to the orbit

representative (1, 1)11. Further, the only other cyclotomic class of order 2 in

GF(11) is the cyclotomic class C2,1
1 = {6, 7, 10, 8, 2} and it is clear that α1,2 = 2,

where (α1,1, α1,1)11 corresponds to the cyclotomic number (2, 2)e.

At this present time, I have not been able to replicate these results to find

the cyclotomic orbit representatives for all external cyclotomic orbits.
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Chapter 3

Cyclotomic constructions of

DPDFs and EPDFs

In this Chapter, we utilise the cyclotomic frameworks developed in Chapter 2,

to establish further DPDF and EPDF constructions. As mentioned in the in-

troductory chapter, field cyclotomy has long since been an established tool for

constructing various types of difference family with more recent papers in this area

centering around finding new constructions of DDFs and EDFs (see for example

[14],[16]). As DPDFs generalise DDFs and EDFs, the results in this Chapter

extend previous DDF and EDF constructions. We also able to extend some more

historic difference family results, for example, one of our results expands upon

the main PDS result in [4].

This Chapter is organised as follows in the first Section of this Chapter, we

explore cyclotomic PDS constructions, which we use in subsequent Sections to in-

form new DPDF and EPDF constructions. In the second Section of this Chapter,

we utilise the PDS constructions found in Section 1 to identify new DPDF/EPDF

constructions, in which the component sets of the DPDFs are individually PDSs.

In Section 3, we construct DPDFs and EPDFs by partitioning cyclotomic PDSs

into smaller cyclotomic classes. In Sections 4 and Section 5, we look at partitions

of the squares into cyclotomic classes with small values of e and f respectively.

Finally, in Section 6, we look at a standalone cyclotomic PDS/DPDF construc-

tion obtained using cyclotomic orbits. The results in Sections 1 to 4 are from the

paper [34], while Section 5 largely contains results from the upcoming preprint

[40].
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3.1 PDS constructions for small e

As demonstrated in the Introduction, PDSs can be used to construct DPDFs and

EPDFs in two different ways we can partition PDSs into DPDFs/EPDFs and we

can also construct DPDFs (and EPDFs) from collections of PDSs. In this Section

we therefore explore cyclotomic constructions of PDSs, as we utilise these results

in later Sections to find new cyclotomic constructions of DPDFs and EPDFs.

Throughout this Section, we investigate when a particular cyclotomic class

Ce,m
0 ⊆ GF(q), where q = ef + 1, forms a PDS. (In a later Chapter we construct

PDSs from unions of cyclotomic classes.) We begin this Section by looking at

some key results in the papers [60] and [67] which provide insight into when

Ce
0 is/isn’t a Difference Set. In the second part of this section, we explore the

conditions under which Ce
0 is a PDS for small, selected values of e (namely the

values e = 2, 3, 4, 6, 8). Finally, in the last part of this Section, we include some

more general PDS results that depend on the relation between e and f , as opposed

to evaluating specific cyclotomic numbers. All results in this Section are recorded

in my joint paper with my supervisor [34].

The result below is a concatenation of results from [60] and [67]. The book [60]

is the earliest known resource to explore cyclotomic constructions of Difference

Sets, and hence contains many interesting results about when Ce,m
0 is a Difference

Set. However, in [60], most of the results are predicated on q being an odd prime

power. The paper [67] is a more up to date resource which establishes new

results, including results where q is an even prime power. (Note that since it

was demonstrated by Remark 1.3.4 that we can view any cyclotomic Difference

Set as being a PDS, we can also use Difference Sets to inform DPDF/EPDF

constructions.)

Theorem 3.1.1. Let q = pm = ef + 1 be a prime power.

(i) If q is even then Ce,m
0 is not a Difference Set for any value of e.

(ii) If q is odd and Ce,m
0 is a Difference Set, then e must be even and f must be

odd.

(iii) If q = 2f + 1 ≡ 3 mod 4, then C2,m
0 is a Difference Set.

(iv) If q = 4f + 1 then C4,m
0 is a Difference Set if and only if q = 1 + 4t2 and t

is odd.
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(v) When q = 6f + 1 then C6,m
0 is not a Difference Set.

(vi) If q = 8f + 1 then C8,m
0 is a Difference Set if and only if q admits the

simultaneous representations q = 9 + 64y2 = 1 + 8b2, where y ≡ b ≡ 1

mod 2.

We now look at when Ce,m
0 is a PDS. We begin by looking at when Ce,m

0 is a

PDS for small values of e.

The result below covers the case e = 2. (Notice that part Theorem 3.1.2(ii) is a

rewriting of Theorem 3.1.1(iii).) Proposition 3.1.2 was first recorded in [60], but

is essentially a rewrite of Paley’s classical PDS construction in [56] in cyclotomic

notation.

Proposition 3.1.2. Let GF(q) be a finite field, where q = ps = 2f + 1. Then

C2,s
0 is a

(i) (q, q−1
2
, q−5

4
, q−1

4
)-PDS if q ≡ 1 mod 4,

(ii) (q, q−1
2
, q−3

4
)-Difference Set if q ≡ 3 mod 4.

We now establish similar results for e ∈ {3, 4, 6, 8}. The cycltomic number

expressions quoted below in Theorem 3.1.3 have been taken from the following

sources: [25], [42], [43], [60] and [67]. For a full list of internal cyclotomic number

expressions when e ∈ {3, 4, 6, 8} see Appendix A. The notion of a proper rep-

resentation is a number theoretic technicality, for further information on proper

representation, see the formal definition presented in Appendix A.

Theorem 3.1.3. Let GF(q) be a finite field, where q = pm = ef + 1. Suppose f

is even:

(i) when e = 3, then q = pm ≡ 1 mod 3 and 4q = c2+27d2 is the unique proper

representation of 4q with c ≡ 1 mod 3. It follows that C3,m
0 is a PDS if

and only if d = 0. The parameters of this PDS are (q, q−1
3
, q−8+c

9
, 2q−4−c

18
)

and C3,m
0 is a proper PDS if it is non-trivial. The case d = 0 holds precisely

when q = pm, such that p ≡ 2 mod 3 and m is even.

(ii) when e = 4, then q = pm ≡ 1 mod 4 and q = s2 + 4t2 is the unique proper

representation of q with s ≡ 1 mod 4. It follows that C4,m
0 is a PDS if and
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only if t = 0. The parameters of this PDS are (q, q−1
4
, q−11−6s

16
, q−3+2s

16
). The

case t = 0 holds precisely when q = pm, such that p ≡ 3 mod 4 and m is

even.

(iii) when e = 6, then q = pm ≡ 1 mod 6 and q = s2 + 3t2 is the unique proper

representation of q with s ≡ 1 mod 3, then C6,m
0 is a proper PDS if and

only if t = 0. The parameters of this PDS are (q, q−1
6
, q−17−20s

36
, q−5+4s

36
). The

case t = 0 holds precisely when q = pm, such that p ≡ 5 mod 6 and m is

even.

(iv) when e = 8, then q = pm ≡ 1 mod 8 and q = x2 + 4y2 = a2 + 2b2 are

the unique proper representations of q with x ≡ a ≡ 1 mod 4, then C8,m
0

is a proper PDS if and only if x = a and y = b = 0. The parameters of

this PDS are (q, q−1
6
, q−23−42x

64
, q−7+6x

64
). The case x = a and y = b = 0 holds

precisely when q = pm, such that p ≡ 7 mod 8 and m is even.

Proof. (i) For the forwards direction, note that if C3,m
0 is a (q, q−1

3
, λ, µ)-PDS,

then by Lemma 2.1.2 (ii), λ = (0, 0)3 and µ = (1, 0)3 = (2, 0)3. By Theorem

A.0.2, if (1, 0)3 = (2, 0)3 then this implies

2q − 4− c− 9d

18
=

2q − 4− c+ 9d

18
.

The above equality is satisfied precisely when d = 0. For the reverse di-

rection, observe that if d = 0, by Theorem A.0.2, this means that p ≡ 2

mod 3. This means that p1 ≡ −1 mod 3 and so it then follows by Lemma

2.1.20 and Theorem 1.4.7 that the cyclotomic numbers of order 3 are uni-

form in this case, and thus C3,m
0 is a PDS. By Theorem A.0.2, when d = 0,

λ = (0, 0)3 = q−8+c
9

and µ = (1, 0)3 = (2, 0)3 = 2q−4−c
18

. It follows that

λ = q−8+c
9

= 2q−4−c
18

= µ only when c = 4, q = 4, which is the trivial case

(meaning that C3,m
0 is always proper except for in the trivial case).

(ii) For the forwards direction, take the appropriate case from Theorem A.0.3

the rest of the proof is then analogous to the proof of part (i). This result

was stated without proof in [49].

(iii) By Corollary 2.1.16, if C6
0 is a proper PDS, then 2 ∈ C6,m

0 this determines

the cyclotomic number formulae that we require from Theorem A.0.4 for
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this proof. Both the forwards and reverse directions of this proof are then

analogous to the proof of part (i). The parameters can be obtained from

Theorem A.0.4.

(iv) It follows from Corollary 2.1.16 that if C8,m
0 is a PDS, then f is even and

2 ∈ C8,m
0 this determines the cyclotomic formulae from Theorem A.0.5 that

should be used in the forwards direction of this proof. For the reverse

direction, observe that when y = 0, p ≡ 3 mod 4 and when b = 0, p ≡ 5, 7

mod 8, so y = b = 0 implies p ≡ 7 mod 8. Both directions of this proof

are otherwise analogous to the proof of part (i). The parameters can be

obtained from Theorem A.0.5.

We now end this Section with two results that depend upon the relation

between e and f , and therefore do not require evaluation of small cyclotomic

numbers.

Proposition 3.1.4. (i) Let q = pm, where m > 1. For r | m (where r ̸= m),

let Fr be the subfield GF(pr) of GF(q) then F ∗
r is the cyclotomic class Ce,m

0

of GF(q), where e = q−1
pr−1

.

(ii) Let q = pm = ef + 1. Then Ce,m
0 is a (q, f, f − 1, 0)-PDS if and only if

Ce,m
0 ∪ {0} is a subfield of GF(q). Here, q is a prime power, e = q−1

pr−1
and

f = pr − 1.

Proof. (i) As Fr is a subfield of GF(q), it follows that F ∗
r is a multiplicative

subgroup of GF(q)∗. As GF(q)∗ is the multiplicative group of a finite field,

GF(q)∗ is cyclic. It then follows by the fundamental theorem of cyclic

groups that F ∗
r is the unique multiplicative subgroup of index e of GF(q)∗

up to isomorphism. Moreover, since Fr has order pr, F ∗
r has order pr − 1,

and so e = q−1
pr−1

.

(ii) For the forwards direction, assume Ce,m
0 is a (q, f, f−1, 0)-PDS. It immedi-

ately follows by Theorem 1.3.19 (vi) that Ce,m
0 ∪{0} is an additive subgroup

of GF(q). By definition, every cyclotomic class Ce,m
0 is a multiplicative sub-

group of GF(q)∗. It therefore follows that Ce,m
0 ∪{0} is a subfield of GF(q).

For the reverse direction, notice that if Ce,m
0 ∪ {0} is a subfield of GF(q),

then we can view Ce,m
0 ∪ {0} as an additive subgroup of GF(q). It then
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follows by Theorem 1.3.19 (v) that Ce,m
0 ∪{0} is a (q, f+1, f+1, 0)-PDS in

GF(q). Since ∆(Ce,m
0 , 0) = ∆(Ce,m

0 ) ∪ ∆(Ce,m
0 , 0) ∪ ∆(0, Ce,m

0 ) (∪∆(0, 0)),

and ∆(Ce,m
0 , 0) = ∆(0, Ce,m

0 ) = Ce,m
0 , observe that ∆(Ce,m

0 ) = (f − 1)Ce,m
0 .

It therefore follows that Ce,m
0 is a (q, f, f − 1, 0)-PDS. The values of e and

f can be obtained from part (i).

The final result in this Section demonstrates that a PDS must consist of the

non-identity elements of a subfield of GF(q) if e > f and Ce,m
0 cannot consist

entirely of the non-identity elements of a subfield otherwise.

Theorem 3.1.5. Let q = pm = ef +1. Suppose that Ce,m
0 is a proper (q, f, λ, µ)-

PDS. Then

(i) if e > f then Ce,m
0 ∪ {0} is a subfield of GF(q).

(ii) if e < f then Ce,m
0 ∪ {0} is not a subfield of GF(q) and µ ≥ 1.

(iii) the case where e = f cannot occur for f > 2.

Proof. When Ce,m
0 is a proper (q, f, λ, µ)-PDS, the following multiset equation

must hold

∆(Ce,m
0 ) = λ(Ce,m

0 ) ∪ µ(GF(q)∗\Ce,m
0 ).

Since the set Ce,m
0 has cardinality f , this means that |∆(Ce,m

0 )| = f(f − 1)

and |GF(q)∗\Ce,m
0 | = q − 1− f = (ef + 1)− 1− f = f(e− 1). This then implies

that

f(f − 1) = λ(f) + µ(f(e− 1)).

By dividing each term by f , we find

f − 1 = λ+ µ(e− 1). (3.1)

(i) When e > f , as λ and µ are both non-negative integers, it follows imme-

diately from Equation 3.1 that µ = 0. By Proposition 3.1.4 (ii), as µ = 0,

Ce,m
0 is a subfield of GF(q).
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(ii) It follows from the proof of Proposition 3.1.4 (ii) that if Ce,m
0 ∪ {0} is a

subfield, then |Ce,m
0 | = pr − 1 = f and e = pm−1

pr−1
for some r | m it follows

that we can write m = rk for some k ∈ N. This in turn means that we can

write e = pm−1
pr−1

= (pr)k−1 + (pr)k−2 + . . . + (pr) + 1 > pr − 1 = f . When

e < f , we therefore get a contradiction, so Ce,m
0 is not a subfield if e < f .

(iii) Suppose that e = f > 2. By substituting e = f into Equation 3.1, we

obtain the expression f − 1 = λ + µ(f − 1). Since λ and µ are both

non-negative, this means that µ ∈ {0, 1}. When µ = 0, this forces λ =

f − 1, meaning that Ce,m
0 is a (q, f, f − 1, 0)-PDS. By Proposition 3.1.4,

as Ce,m
0 is a (q, f, f − 1, 0)-PDS, this means that Ce,m

0 consists of the non-

identity elements of a subfield. However, we can see from the proof of part

(ii) that if Ce,m
0 is a subfield, then e = pm−1

pr−1
> pr − 1 = f , which is a

contradiction, so µ ̸= 0. This leaves the case µ = 1. Notice that when

µ = 1, this means that λ = 0 and Ce,m
0 is a (q, f, 0, 1)-PDS. This means

that the multiset ∆(Ce,m
0 ) consists of 1 copy of each cyclotomic class Ce,m

i

for 1 ≤ i ≤ e−1 and no copies of Ce,m
0 . Notice by Lemma 2.1.2 that we may

write ∆(Ce,m
0 ) =

⋃f−1
r=1 Tr, where each transversal is a copy of the cyclotomic

class Car (0 ≤ ar ≤ e − 1). By Corollary 2.1.16, as Ce,m
0 is a proper PDS,

this means that q ≡ 1 mod 2e, it then follows by from Corollary 2.1.11

that for all 1 ≤ s ̸= f
2
≤ f − 1, Ts = Car = Tf−s. Therefore, for any r ̸= f

2
,

there are at least 2 copies of Ce,m
ar , a contradiction unless f = 2. When

e = f = 2, then q = 5 and C2,1
0 is a (5, 2, 0, 1)-PDS. Otherwise µ ̸= 1, and

therefore e ̸= f .

Notice that if q = pm = ef + 1 and e > f , then Ce,m
0 is only a proper PDS

when m ≥ 2. When m = 1, this means q is prime and therefore the only subfield

is the trivial subfield.

3.2 DPDF/EPDF constructions from unions of

PDSs

In this Section, we use the PDS constructions identified in the previous Section to

construct DPDFs in which the component sets are individually PDSs. When the

DPDFs also partition larger PDSs, we are also able to obtain EPDF constructions.
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Our first result in this Section follows from Theorem 3.1.5 in the last section.

Proposition 3.2.1. Let GF(q) be a finite field of order q = pm = ef + 1, where

m > 1. For r | m, let Ce,m
i be the ith cyclotomic class of order e = q−1

pr−1
, where

0 ≤ i ≤ e − 1. Let S ′ consist of any collection of u sets amongst the cyclotomic

classes {Ce,m
0 , . . . , Ce,m

e−1}. Then

(i) S ′ is a (q, u, pr − 1, pr − 2, 0)-DPDF,

(ii) if u = e− 1, S ′ is also a (q, u, pr − 1, q − 3pr + 2, q − pr)-EPDF.

Proof. (i) By Theorem 3.1.5, the cyclotomic class Ce,m
0 is a (q, f, f−1, 0)-PDS:

meaning that ∆(Ce,m
0 ) = (f −1)Ce,m

0 by Definition 1.3.1. It then follows by

Lemma 2.1.2(iii) that for 0 ≤ j ≤ e− 1, Ce,m
j = αjCe,m

0 = αj(f − 1)Ce,m
0 =

(f −1)Ce,m
j , hence it follows by Definition 1.3.1 that for each 0 ≤ j ≤ e−1,

Ce,m
j is a (q, f, f − 1, 0)-PDS. It is then immediate by Theorem 1.3.20 that

S ′ is a DPDF.

(ii) This is immediate from Theorem 1.3.21 and Theorem 1.3.20.

Theorem 3.2.2. Let GF(q) be a finite field of order q = p2m = ef + 1, where

e ∈ {3, 4, 6, 8}. Further, let I ⊆ {0, 1, . . . , e−1} (where |I| = u and 2 ≤ u ≤ e−1)

and D′ = {Ce,2m
i }i∈I . If Ce,2m

0 is a PDS (with parameters (q, q−1
e
, η2 − (e− 3)η−

1, η2 + η)) then D′ is a (q, u, q−1
e
, uη2 + (u+ 2− e)η − 1, u(η2 + η))-DPDF and a

(q, u, q−1
e
, u(u− 1)η2 + 2(u− 1)η, u(u− 1)η2)-EPDF (where η = (−p)m−1

e
).

Proof. Observe that in each part of Theorem 3.1.3 it is demonstrated that Ce,m
0 ,

where e ∈ {3, 4, 6, 8}, is a PDS precisely when q = pm, where p ≡ −1 mod e and

m is even. It is then immediate from Lemma 2.1.20 and Theorem 2.1.21 that each

cyclotomic class Ce,2m
i is (q, q−1

e
, η2−(e−3)η−1, η2+η)-PDS (where 0 ≤ i ≤ e−1)

and that D′ is both a (q, u, q−1
e
, uη2 + (u + 2 − e)η − 1, u(η2 + η))-DPDF and a

(q, u, q−1
e
, u(u− 1)η2 + 2(u− 1)η, u(u− 1)η2)-EPDF (where η = (−p)m−1

e
).

Example 3.2.3. Let q = 9, e = 4 and f = 2. Notice that q = 32, where

3 ≡ −1 mod 4, therefore for each 0 ≤ i ≤ 3, the cyclotomic class C4,2
i is a

(9, 2, 1, 0)-PDS. When u = 2, D′ is both a (9, 2, 2, 1, 0)-DPDF and (9, 2, 2, 0, 2)-

EPDF. When u = 3, D′ is both a (9, 3, 2, 1, 0)-DPDF and (9, 3, 2, 2, 6)-EPDF.

When u = 4, then D′ is both a (9, 4, 2, 1)-DDF and a (9, 4, 2, 6)-EDF.
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3.3 DPDF/EPDF partition constructions

In this Section, we develop new DPDF and EPDF constructions by partitioning

cyclotomic PDSs into collections of smaller cyclotomic classes. It is possible

to identify DPDF and EPDF constructions of this type when, for a finite field

GF(q), we may write q = pm = ϵρ+1 = ef +1, where ϵ | e we can then partition

the cyclotomic class Cϵ,m
0 into the following set of cyclotomic classes of order e

{Ce,m
0 , Ce,m

ϵ , . . . , Ce,m
e−ϵ}.

Similar construction techniques have been used in the literature to establish

new DDF and EDF constructions (see for example Proposition 1.3.9 from the

paper [14], or the papers [16] and [32]). Many of these constructions are special

cases of the constructions explored in this Section. Note that all results recorded

in this Section are from the paper [34].

We begin this Section by identifying all DPDFs and EPDFs that partition

Difference Sets. Recall that we defined ϕi in Definition 2.1.7.

Theorem 3.3.1. Let GF(q) be a finite field of order q = pm = ϵρ + 1 = ef + 1,

where ϵ | e. Let Cϵ,m
0 be a (q, q−1

ϵ
, λ)-Difference Set (λ = q−1−ϵ

ϵ2
) and denote by

(Cϵ,m
0 )′ = {Ce,m

0 , Ce,m
e,m , . . . , C

e,m
e−ϵ}.

(i) If ϕi ̸= ϕj for some distinct i, j ∈ {1, . . . , ϵ−1} then (Cϵ,m
0 )′ is not a DPDF

or an EPDF.

(ii) Otherwise, (Cϵ,m
0 )′ is a (q, e

ϵ
, f, f−1

ϵ
)-DDF and a (q, e

ϵ
, f, (e−ϵ)f

ϵ2
)-EDF.

It follows that (Cϵ,m
0 )′ is never a proper DPDF nor a proper EPDF.

Proof. (i) By Theorem 2.1.9(iii), if ϕi ̸= ϕj for some distinct i, j ∈ {1, . . . , ϵ−1}
then (Cϵ,m

0 )′ is not a DPDF and therefore not an EPDF.

(ii) As Cϵ,m
0 is a Difference Set, it follows by Theorem 3.1.1 that q must be odd,

ϵ must be even and ρ must be odd. It is then immediate from Corollary

2.1.16 that (Cϵ,m
0 )′ is either a DDF or not a DPDF (i.e. (Cϵ,m

0 )′ cannot be

a proper DPDF). Since ϕ0 = ϕ ϵ
2
, this means ϕ0 = ϕ1 = . . . = ϕϵ−1, hence

(Cϵ,m
0 )′ is a DDF and Cϵ,m

0 is a Difference Set, it follows by Lemma 1.2.4

that (Cϵ,m
0 )′ is also an EDF.
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For the parameters note that |Cϵ,m
0 | = ρ = q−1

ϵ
, therefore |∆(Cϵ,m

0 )| =
q−1
ϵ
( q−1

ϵ
− 1) = q−1

ϵ
q−1−ϵ

ϵ
. As Cϵ,m

0 is a Difference Set, it follows that each

of the (q − 1) elements of GF(q)∗ occurs an equal number of times in the

multiset ∆(Cϵ,m
0 ). It therefore follows that λ = q−1−ϵ

ϵ2
. Similarly, since

there are f − 1 diagonals of transversals in Int((Cϵ,m
0 )′), and each cyclo-

tomic class of Cϵ,m
0 occurs at equal frequency in Int((Cϵ,m

0 )′), it follows that

Int((Cϵ,m
0 )′) = (f−1

ϵ
)GF(q)∗. It is then immediate from Lemma 1.2.4 that

Ext((Cϵ,m
0 )′) = (λ− f−1

ϵ
)GF(q)∗ = ( q−1−ϵ

ϵ2
− f−1

ϵ
)GF(q)∗ = (e−ϵ)f

ϵ2
.

The following two specific partition results follow as an immediate conse-

quence of Theorem 3.3.1. The first of these results has been recorded in [32] and

[62] (as well as in [34]).

Corollary 3.3.2. Let GF(q) be a finite field of order q = pm = ef + 1 ≡ 3

mod 4, where e is even. Let C2,m
0 denote the set of squares and let (C2,m

0 )′ =

{Ce,m
0 , Ce,m

2 , . . . , Ce,m
e−2}. Then (C2,m

0 )′ is always a (q, e
2
, f, f−1

2
)-DDF and a (q, e

2
, f,

(e−2)f
4

)-EDF.

Proof. Case (i) of Theorem 3.3.1 is always impossible when ϵ = 2, since the only

integer in the range [1, ϵ − 1] is 1. It therefore follows by Theorem 3.3.1 that

(C2,m
0 )′ is always a (q, e

2
, f, f−1

2
)-DDF and a (q, e

2
, f, (e−2)f

4
)-EDF.

Corollary 3.3.3. Let GF(q) be a finite field of order q = pm = ef + 1 ≡ 1

mod 4, where 4 | e, such that q = 1+4t2 is the unique proper representation of q

and t is odd. Let (C4,m
0 )′ = {Ce,m

0 , Ce,m
4 , . . . , Ce,m

e−4}. If ϕ1 = ϕ2 = ϕ3, then (C4,m
0 )′

is a (q, e
4
, f, f−1

4
)-DDF and a (q, e

4
, f, (e−4)f

16
)-EDF.

Proof. By Theorem 3.1.1 when q = 1+4t2 and t is odd, then C4,m
0 is a (q, q−1

4
, q−5

16
)-

Difference Set. It then immediately follows from Theorem 3.3.1 that (C4,m
0 )′ is a

DDF.

Example 3.3.4. A (2917, 81, 9, 2)-DDF and (2917, 81, 9, 180)-EDF was constructed

by computational checking in [16]. Since q = 2917 = 1+4(27)2, this is an example

of the construction in Corollary 3.3.3.

In the following result, we now consider partitions of proper PDSs.
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Theorem 3.3.5. Let GF(q) be a finite field of order q = pm = ϵρ + 1 = ef +

1, where ϵ | e. Let Ce,m
0 be a proper (q, ef

ϵ
, λ, µ)-PDS and denote (Cϵ,m

0 )′ =

{Ce,m
0 , Ce,m

ϵ , . . . , Ce,m
e−ϵ}.

(i) If ϕi ̸= ϕj for some distinct i, j ∈ {1, . . . , ϵ − 1}, then (Cϵ,m
0 )′ is neither a

DPDF nor an EPDF.

Otherwise assume that ϕi = ϕj for all i, j ∈ {1, . . . , ϵ − 1} and let κ = ϕ1 − ϕ0

then

(ii) when κ = 0, (Cϵ,m
0 )′ is a (q, e

ϵ
, f, f−1

ϵ
)-DDF and a (q, e

ϵ
, f, λ− f−1

ϵ
, µ− f−1

e
)-

EPDF.

(iii) when κ = µ − λ, (Cϵ,m
0 )′ is a (q, e

ϵ
, f, λ − (e−ϵ)f

ϵ2
, µ − (e−ϵ)f

ϵ2
)-DPDF and a

(q, e
ϵ
, f, (e−ϵ)f

ϵ2
)-EDF.

(iv) when κ ̸∈ {0, µ− λ} then (Cϵ,m
0 )′ is a proper (q, e

ϵ
, f, ϕ0, ϕ0 + κ)-DPDF and

a proper (q, e
ϵ
, f, λ− ϕ0, µ− ϕ0 − κ)-EPDF.

Proof. By Lemma 1.2.4, since Cϵ,m
0 is a (q, ef

ϵ
, λ, µ)-PDS, it follows that

Int((Cϵ,m
0 )′) + Ext((Cϵ,m

0 )′) = λCϵ,m
0 ∪ µ(GF(q)∗\Cϵ,m

0 ).

(i) By Theorem 2.1.9, it is necessary for ϕi = ϕj for all i, j ∈ {1, . . . , ϵ − 1}
in order for (Cϵ,m

0 )′ to be a DPDF. As this does not hold, (Cϵ,m
0 )′ is not a

DPDF, and by the above, (Cϵ,m
0 )′ is also not an EPDF.

(ii) Since ϕ1 = ϕi for all i ∈ {1, . . . , ϵ − 1}, it follows by Theorem 2.1.9 that

(Cϵ,m
0 )′ is a (not necessarily proper) DPDF. When κ = 0, this implies that

ϕ0 = ϕi for all 1 ≤ i ≤ ϵ − 1. It therefore follows by Theorem 2.1.9

that (Cϵ,m
0 )′ is a DDF. Since there are f − 1 transversals in Int((Cϵ,m

0 )′), ϵ

cyclotomic classes of order ϵ and since (Cϵ,m
0 )′ is a DDF, each cyclotomic

class must occur an equal number of times in the multiset Int((Cϵ,m
0 )′) this

means that Int((Cϵ,m
0 )′) = f−1

ϵ
GF(q)∗. It then follows from the above that

Ext((Cϵ,m
0 )′)) =

(
λ− f − 1

ϵ

)
(Cϵ,m

0 ) ∪
(
µ− f − 1

ϵ

)
(GF(q)∗\Cϵ,m

0 ).
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(iii) When κ = µ − λ, notice that this means ϕ1 = ϕ0 + µ − λ. As above, it

follows by Theorem 2.1.9 that since ϕ1 = ϕi for all i ∈ {1, . . . , ϵ − 1}, this
means that (Cϵ,m

0 )′ is a DPDF. More specifically, when κ = µ − λ, (Cϵ,m
0 )′

is a (q, e
ϵ
, f, ϕ0, ϕ0 + κ)-DPDF, where

Int((Cϵ,m
0 )′) = ϕ0C

ϵ,m
0 ∪ (ϕ0 + κ)(GF(q)∗\Cϵ,m

0 ).

It then follows that since κ = µ− λ

Ext((Cϵ,m
0 )′) = (λ− ϕ0)C

ϵ,m
0 ∪ (µ− ϕ0 + κ)(GF(q)∗\Cϵ,m

0 )

= (λ− ϕ0)C
ϵ,m
0 ∪ (µ− ϕ0 + λ− µ)(GF(q)∗\Cϵ,m

0 )

= (λ− ϕ0)GF(q)∗.

To obtain the value for ϕ0, note that the
ef
ϵ
− 1 transversals of the multiset

∆(Cϵ,m
0 ) are all either contained in Int((Cϵ,m

0 )′) or Ext((Cϵ,m
0 )′). Notice

that f − 1 of the transversals are diagonals of transversals contained in

Int((Cϵ,m
0 )′) (since Ce,m

0 has cardinality f) so the remaining

ef

ϵ
− 1− (f − 1) =

ef − ϵf

ϵ
=

(e− ϵ)f

ϵ

transversals must be contained in the multiset Ext((Cϵ,m
0 )′). As (Cϵ,m

0 )′ is

an EDF, each of the ϵ cyclotomic classes of order ϵ must occur equally often

in the mulitset Ext((Cϵ,m
0 )′) i.e. (e−ϵ)f

ϵ2
times. Then since λ − ϕ0 = (e−ϵ)f

ϵ2
,

this means ϕ0 = λ− (e−ϵ)f
ϵ2

and ϕ1 = ϕ0 + κ = ϕ0 + µ− λ = µ− (e−ϵ)f
ϵ2

.

(iv) As ϕ1 = ϕj for all 2 ≤ j ≤ ϵ− 1, but κ ̸= 0, it follows that (Cϵ,m
0 )′ must be

a proper (q, e
ϵ
, f, ϕ0, ϕ0 + κ)-DPDF. It then follows that

Int((Cϵ,m
0 )′) = ϕ0C

ϵ,m
0 ∪ (ϕ0 + κ)(GF(q)∗\Cϵ,m

0 ).

By the above, this in turn implies that

Ext((Cϵ,m
0 )′) = (λ− ϕ0)C

ϵ,m
0 ∪ (µ− (ϕ0 + κ))(GF(q)∗\Cϵ,m

0 ).

It is then clear that since κ ̸= µ− λ that λ− ϕ0 ̸= µ− (ϕ0 + κ), so (Cϵ,m
0 )′

is also a proper (q, e
ϵ
, f, λ− ϕ0, µ− (ϕ0 + κ)-EPDF.



87

We can then immediately use the above result to classify all DPDFs/EPDFs

partitioning the squares (the cyclotomic class C2,m
0 ). Notice that the EDF result

in part (ii) was noted in [16].

Corollary 3.3.6. Let GF(q) be a finite field of order q = pm = ϵρ+1 = ef +1 ≡
1 mod 4, where ϵ = 2 and e is even. Let C2,m

0 denote the set of squares, let

(C2,m
0 )′ = {Ce,m

0 , Ce,m
2 , . . . , Ce,m

e−2} and let κ = ϕ1 − ϕ0. Then

(i) when κ = 0, (C2,m
0 )′ forms a (q, e

2
, f, f−1

2
)-DDF and a (q, e

2
, f, (e−2)f−2

4
,

(e−2)f+2
4

)-EPDF.

(ii) when κ = 1, (C2,m
0 )′ forms a (q, e

2
, f, f−2

2
, f
2
)-DPDF and a (q, e

2
, f, (e−2)f

4
)-

EDF.

(iii) when κ ∈ {0, 1} (C2,m
0 )′ forms a proper (q, e

2
, f, ϕ0, ϕ0 + κ)-DPDF and a

proper (q, e
2
, f, q−5

4
− ϕ0,

q−1−4κ
4

− ϕ0)-EPDF.

Proof. As we saw in Proposition 3.1.2, C2
0 is a (q, ef

2
, q−5

4
, q−1

4
)-PDS when q ≡ 1

mod 4. The result then follows by Theorem 3.3.5.

Example 3.3.7. Below are examples of cases (i)-(iii) in Corollary 3.3.6.

(i) Let q = 41 with e = 8 and f = 5. Then C8,1
0 = {1, 10, 16, 18, 37}, we can

then observe that Φ0 = {10, 37} and Φ1 = {16, 18}, therefore κ = ϕ1−ϕ0 =

2−2 = 0, and hence (C2,1
0 )′ is a (41, 4, 5, 2)-DDF and a (41, 4, 5, 7, 8)-EPDF.

(ii) Let q = 29 with e = 14 and f = 2 then ϕ0 = 0 and ϕ1 = 1, so κ = 1. It

follows that (C2,1
0 )′ is a (29, 7, 2, 0, 1)-DPDF and a (29, 7, 2, 6)-EPDF.

(iii) When q = 17, e = 8 and f = 2 ϕ0 = 1 and ϕ1 = 0. It then follows that

κ = −1 and so (C2,1
0 )′ is a (17, 8, 2, 1, 0)-DPDF and a (17, 8, 2, 2, 4)-EPDF.

We observe that when we set f = 4 in Corollary 3.3.6, we obtain the EDF

result in Proposition 21 of [14].

In the following result, we are able to determine conditions, purely in terms

of q and f , for when a DPDF/EPDF partitioning C2,m
0 must be proper.
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Theorem 3.3.8. Let q = pm = ef + 1 ≡ 1 mod 4, and suppose the e is even.

Then, if both of the conditions in (i) or both of the conditions in (ii) hold, (C2,m
0 )′

is a proper (q, e
2
, f, ϕ0, ϕ1)-DPDF and a proper (q, e

2
, f, q−5

5
− ϕ0,

q−1
4

− ϕ1)-EPDF

(where proper implies ϕ0 ̸= ϕ1).

(i) q ≡ 1 mod 8 and f ≡ 2 mod 4.

(ii) q ≡ 1 mod 4 and f ≡ 3 mod 4.

Proof. (i) Recall that (Ce,m
0 )′ is a proper (q, e

2
, f, ϕ0, ϕ1)-DPDF if and only

ϕ0 ̸= ϕ1, and that (Ce,m
0 )′ is a proper EPDF if and only if q−5

5
−ϕ0 ̸= q−1

4
−ϕ1.

As f is even, there are precisely f−2
2

values of 0 ≤ r < f
2
. Since f ≡ 2

mod 4, it follows that f−2
2

is an even integer. As ψ0 + ψ1 = f−2
2

(see

definition of ψi), it follows from this, that there are three cases for ψ0 and

ψ1 either they are equal, they are both odd or they are both even. This

means that we can establish the following relationships between ψ0 and

ψ1: either (1) 2ψ0 = 2ϕ1, (2) 2ψ1 − 2ψ0 ≥ 4 or (3) 2ψ1 − 2ψ0 ≤ −4. It

follows from Proposition 2.1.12, that when q ≡ 1 mod 8, this means that

ϕ0 = 2ψ0 + 1 and ϕ1 = 2ψ1: we may also write 2ψ0 = ϕ0 − 1. In case

(1), since 2ψ0 = 2ψ1, it follows that κ = ϕ1 − ϕ0 = −1. In case (2), since

2ψ1−2ψ0 ≥ 4, it follows that that ϕ1−(ϕ0−1) ≥ 4, which means ϕ1−ϕ0 ≥ 3.

Finally, in case (3), as 2ψ1 − 2ψ0 ≤ −4, this means ϕ1 − (ϕ0 − 1) ≤ −4,

meaning ϕ1 −ϕ0 ≤ −5. By Corollary 3.3.6, we know that (C2,m
0 )′ is a DDF

κ = 0 and an EDF if κ = 1 as κ ̸∈ {0, 1} in cases (1)-(3), it follows that

(C2,m
0 )′ is a proper DPDF and a proper EPDF in all cases.

(ii) The proof of this result is analogous to part (i).

We return to the idea of using values of f to determine cyclotomic DPDF/EPDF

constructions in a subsequent Section. For now, we present some further corol-

laries of Theorem 3.3.5. We begin by looking at partitions of the cubes.

Corollary 3.3.9. Let GF(q) be a finite field of odd order, where q = pm =

ef + 1 = ϵρ + 1 =≡ 1 mod 3, where ϵ = 3 and 3 | e. Suppose that the unique

proper representation of q is given by 4q = c2+27d2 (c ≡ 1 mod 3), where d = 0.

Let (C3,m
0 )′ = {Ce,m

0 , Ce,m
3 , . . . , Ce,m

e−3} and κ = ϕ1 − ϕ0. If ϕ1 = ϕ2, then
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(i) when κ = 0, (C3,m
0 )′ forms a (q, e

3
, f, f−1

3
)-DDF and a (q, e

3
, f, (e−3)f−4+c

9
,

2f(e−3)+4−c
18

)-EPDF.

(ii) when κ = 4−c
6
, (C3,m

0 )′ forms a (q, e
3
, f, 3f−7+c

9
, 6f−2−c

18
)-DPDF and a (q, e

3
, f,

(e−3)f
9

)-EDF.

(iii) when κ ̸∈ {0, 4−c
6
}, (C3,m

0 )′ forms a proper (q, e
3
, f, ϕ0, ϕ0 + κ)-DPDF and a

proper (q, e
3
, f, q−8+c

9
− ϕ0,

2q−4−c−18κ
18

− ϕ0)-EPDF.

Proof. By Theorem 3.1.3, C3
0 is a (q, e

3
, f, q−8+c

9
, 2q−4−c

18
)-PDS when d = 0. The

result is then immediate from Theorem 3.3.5.

Example 3.3.10. To see an example of case (iii) of the above corollary, let

q = 121, e = 60 and f = 2. In GF(121), C3,2
0 is a (121, 40, 15, 12)-PDS. Since

C60,2
0 = {1, 120} and 120 ∈ Φ0, it is immediate that (C3,2

0 )′ is a (121, 20, 2, 1, 0)-

DPDF. By Corollary 3.3.9, we obtain that (C3,2
0 )′ is also a (121, 20, 2, 14, 12)-

EPDF.

We now look at look at the case where ϵ = 4. Notice that the EDF result in

part (ii) below subsumes that of [16].

Corollary 3.3.11. Let GF(q) be a finite field of order q = pm = ϵρ+1 = ef +1,

where ϵ = 4 and 4 | e. Suppose that q = s2 is the proper representation of q, where

m is even, p ≡ 3 mod 4 and s = (−p)m
2 . Let (C4,m

0 )′ = {Ce,m
0 , Ce,m

4 , . . . , Ce,m
ϵ−4}

and let κ = ϕ1 − ϕ0. If ϕ1 = ϕ2 = ϕ3, then

(i) when κ = 0, (C4,m
0 )′ is both a (q, e

4
, f, f−1

4
)-DDF and a (q, e

4
, f, (e−4)f−6−6s

16
,

(e−4)f+2+2s
16

)-EPDF.

(ii) when κ = s+1
2
, (C4,m

0 )′ is both a (q, e
4
, f, 4f−10−6s

16
, 4f−2+2s

16
)-DPDF and a

(q, e
4
, f, (e−4)f

16
)-EDF.

(iii) when κ ̸∈ {0, s+1
2
}, then (C4,m

0 )′ is both a proper (q, e
4
, f, ϕ0, ϕ0 + κ)-DPDF

and a proper (q, e
4
, f, (e−4)f

16
, q−11−6s

16
− ϕ0,

q−3+2s−16κ
16

− ϕ0)-EDF.

Proof. Notice that since q = s2 is the proper representation of q, this implies

that t = 0. By Theorem 3.1.3, when t = 0, this implies that C4,m
0 is a proper

(q, ef
4
, q−11−6s

16
, q−3+2s

16
)-PDS. The result then follows by Theorem 3.3.5.
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Example 3.3.12. Let q = 81, ϵ = 4 and ρ = 20. Since 4 | 3 + 1, where 34 = 81,

it follows by Theorem 2.1.21 that C4,4
0 is an (81, 20, 1, 6)-PDS in the finite field

GF(81). The only value e, where 4 | e, and ϕ1 = ϕ2 = ϕ3 is e = 40. In this case

ϕ0 = 1 and ϕ1 = 0. So κ ̸∈ {0,−4} and hence (C4,4
0 )′ is a (81, 20, 1, 0)-DPDF

and a (81, 20, 0, 6)-EPDF.

In the final part of this Section, we demonstrate that we can apply the argu-

ment used to construct PDSs in Theorem 3.1.5 to DPDF and EPDF construc-

tions.

Theorem 3.3.13. Let q = pm = ϵρ + 1 = ef + 1, where ϵ | e. Let (Cϵ,m
0 )′ =

{Ce,m
0 , Ce,m

ϵ , . . . , Ce,m
e−ϵ} be a (q, e

ϵ
, f, ϕ0, ϕ1)-DPDF.

(i) If ϵ > f , then ϕ0 = f − 1 and ϕ1 = 0, meaning that (Cϵ,m
0 )′ is a (q, e

ϵ
, f, f −

1, 0)-DPDF.

(ii) If ϵ > 2 and ϵ = f , then (Cϵ,m
0 )′ is a (q, e

ϵ
, f, f − 1, 0)-DPDF.

(iii) In both cases (i) and (ii), if Cϵ,m
0 is a (q, ρ, λ, µ)-PDS, then (Cϵ,m

0 )′ is also

a (q, e
ϵ
, f, λ− f + 1, µ)-EPDF, which is proper unless µ− λ = f − 1.

Proof. There are f − 1 diagonals of transversals in Int((Cϵ,m
0 )′), and ϵ− 1 cyclo-

tomic classes of the form Ce,m
i , where 1 ≤ i ≤ ϵ− 1. As in the proof of Theorem

3.1.5, we can derive the following expression for the diagonals of tranversals in

Int((Cϵ,m
0 )′) f −1 = ϕ0+ϕ1(ϵ−1). Note that f , ϵ, ϕ0 and ϕ1 are all non-negative

integers. In part (i), it is clear that if ϵ > f then ϕ1 = 0, and so (Cϵ,m
0 )′ is a

(q, e
ϵ
, f − 1, 0)-DPDF. In part (ii), notice that there are two cases to consider in

order for f − 1 = ϕ0 + ϕ1(ϵ− 1), either (1) ϕ0 = f − 1 and ϕ1 = 0 or (2) ϕ0 = 0

and ϕ1 = 1. In both cases (1) and (2), as ϕ0 ̸= ϕ1, it follows by Theorem 2.1.15

that this means that ϵ cannot be even while ρ is odd, since in this case we require

ϕ0 = ϕ1 (in order for (Ce,m
0 )′ to be a DPDF). Therefore, in cases (1) and (2) we

only need to consider the cases where ρ is even and ϵ and ρ are both odd. It

follows by Theorem 2.1.15 that when ϵ > 2 and ρ is even, ϕ1 is even. Similarly,

when ϵ and ρ are both odd, it follows that ϕ1 must be even. We can therefore

see that case (2) cannot hold, hence case (1) must hold. Part (iii) of this proof is

immediate from Theorem 3.3.5.

The specific case where ϵ = f = 2 is explored later in this Chapter, in Theorem

3.5.1.
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Example 3.3.14. (i) In GF(49), when ϵ = 8, e = 16 and f = 3, it follows that

(C8,2
0 )′ = {C16

0 , C
16
8 } is a (49, 2, 3, 2, 0)-DPDF and a (49, 2, 3, 3, 0)-EPDF.

(ii) In GF(64), when ϵ = 3, e = 21 and f = 3, (C3,6
0 )′ = {C21,6

0 , C21,6
3 , C21,6

6 , C21,6
9 ,

C21,6
12 , C21,6

15 , C21,6
18 } is a (64, 7, 3, 2, 0)-DPDF and a (64, 7, 3, 6)-EDF.

3.4 Explicit DPDF/EPDF constructions obtained

by partitioning the squares into cyclotomic

classes with small e

In this Section, we look at DPDF and EPDF results that can obtained by specif-

ically partitioning the squares in a given finite field GF(q). All results in this

Section are also recorded in my joint paper with my supervisor [34].

In our first result, we partition the squares into sets of cyclotomic classes of order

4. Notice that EDF result in part (ii) of the following Theorem corresponds to

Theorem 3.2 in [32].

Theorem 3.4.1. Let q be a finite field of order q = pm = 4f+1 and let (C2,m
0 )′ =

{C4,m
0 , C4,m

2 }. Let s be defined as in Theorem A.0.3. Then

(i) when f is even, (C2,m
0 )′ is a (q, 2, q−1

4
, q−7−2s

8
, q−3+2s

8
)-DPDF and a (q, 2, q−1

4
,

q−3+2s
8

, q+1−2s
8

) - EPDF which are both proper, except in the case when s = 1.

When s = 1, (C2,m
0 )′ is a (q, 2, q−1

4
, q−1

8
)-EDF.

(ii) when f is odd, (C2,m
0 )′ is a (q, 2, q−1

4
, q−7+2s

8
, q−3−2s

8
)-DPDF and a (q, 2, q−1

4
,

q−3−2s
8

, q+1+2s
8

)-EPDF which are both proper except when s = 1. When

s = 1, (C2,m
0 )′ is a (q, 2, q−1

4
, q−5

8
)-DDF.

Proof. Notice that Int((C2,m
0 )′) = ∆(C4,m

0 ) ∪ ∆(C4,m
2 ). By Lemma 2.1.2 (ii),

∆(C4,m
0 ) = (0, 0)4C

4,m
0 ∪(1, 0)4C4,m

1 ∪(2, 0)4C4,m
2 ∪(3, 0)4C4,m

3 and by Lemma 2.1.2

(iii), ∆(C4,m
2 ) = (2, 0)4C

4,m
0 ∪(3, 0)4C4,m

1 ∪(0, 0)4C4,m
2 ∪(1, 0)4C4,m

3 . It then follows

that Int((C2,m
0 )′) = ((0, 0)4+(2, 0)4)(C

4,m
0 ∪C4,m

2 )∪((1, 0)4+(3, 0)4)(C
4,m
1 ∪C4,m

3 ).

By definition, ϕ0 = (0, 0)4 + (2, 0)4 and ϕ1 = (1, 0)4 + (3, 0)4.

(i) By Theorem A.0.3, when f is even, ϕ0 = (0, 0)4 + (2, 0)4 = q−2s−7
8

and

ϕ1 = (1, 0)4 + (3, 0)4 =
q+2s−3

8
. By Corollary 3.3.6, this means that (C2,m

0 )′
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is a proper (q, 2, q−1
4
, q−2s−7

8
, q+2s−3

8
)-DPDF, except in the case where κ =

ϕ1−ϕ0 = 0 and a proper (q, 2, q−1
4
, q−3+2s

8
, q+1−2s

8
)-EPDF, except in the case

where κ = 1. There are no values of s for which q+2s−3
8

− q−2s−7
8

= 0, but
q+2s−3

8
− q−2s−7

8
= 1 when s = 1.

(ii) By Theorem A.0.3, when f is odd then A = (0, 0)4 = (2, 0)4 and B =

(1, 0)4 = (3, 0)4. It then follows that ϕ0 = 2A = q+2s−7
8

and ϕ1 = q−2s−3
8

.

The result is otherwise analogous to part (i).

We now produce similar results for e = 6. We first make the following inter-

esting remark about the f odd case when e = 6.

Remark 3.4.2. Let GF(q) be a finite field of order q = pm = 6f + 1, where f

is odd. When f is odd, q ≡ 3 mod 4. By Theorem 3.1.1, when q ≡ 3 mod 4,

C2,m
0 is a Difference Set. It then follows by Theorem 3.3.1 that (C2,m

0 )′ is a

(q, 3, f, f−1
2
)-DDF and a (q, 3, f, f)-EDF.

We now look at the case where e = 6 and f is even.

Theorem 3.4.3. Let GF(q) be a finite field of order q = pm = 6f + 1, where p

is an odd prime and f is even. Let s be defined as it is in Theorem A.0.4. Then

(C2,m
0 )′ is a proper (q, 3, q−1

6
, q−9−4s

12
, q−5+4s

12
)-DPDF and a proper (q, 3, q−1

6
, q−3+2s

6
,

q+1−2s
6

)-EPDF, except for when s = 1. In this case, (C2,m
0 )′ is a (q, 3, q−1

6
, q−1

6
)-

EDF.

Proof. Note that by Theorem A.0.4, ϕ0 = (0, 0)6 + (2, 0)6 + (4, 0)6 =
q−9−4s

12
and

ϕ1 = (1, 0)6 + (3, 0)6 + (5, 0)6 =
q−5+4s

12
. The proof is otherwise analogous to the

proof of Theorem 3.4.1.

Example 3.4.4. (i) In GF(13), q = 13 = 1 + 3(2)2, is the proper representa-

tion of q, therefore (C2,m
0 )′ is a (13, 3, 2, 0, 1)-DPDF and a (13, 3, 2, 2)-EDF.

(ii) In the finite field GF(37), s = −5 and so (C2,m
0 )′ is a (37, 3, 6, 4, 1)-DPDF

and a (37, 3, 6, 4, 8)-EPDF.
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Theorem 3.4.5. Let q = pm = 8f+1, where p is an odd prime. Let x and a be de-

fined as in Theorem A.0.5. Then (C2,m
0 )′ is always a proper (q, 4, q−1

8
, q−11−2x−4a

16
,

q−7+2x+4a
16

)-DPDF and a proper (q, 4, q−1
8
, 3q−9+2x+4a

16
, 3q+3−2x−4a

16
)-EPDF, except in

the following cases

(i) when f is even and x + 2a = 3. In this case (C2,m
0 )′ is a (q, 4, q−1

8
, 3q−3

16
)-

EDF.

(ii) when f is odd and x+2a = −1. In this case (C2,m
0 )′ is a (q, 4, f, q−9

16
)-DDF.

Proof. Suppose, as in Theorem A.0.5, that q is represented by q = x2 + 4y2 =

a2 + 2b2, where x ≡ a ≡ 1 mod 4. By Theorem A.0.5, it follows that

(i) when f is even, ϕ0 = (0, 0)8 + (2, 0)8 + (4, 0)8 + (6, 0)8 = q−11−2x−4a
16

and

ϕ1 = (1, 0)8 + (3, 0)8 + (5, 0)8 + (7, 0)8 =
q−7+2x+4a

16
.

(ii) when f is odd, A = (0, 0)8(4, 0)8 and N = (2, 0)8 = (6, 0)8, meaning ϕ0 =

2A + 2N = q−11−2x−4a
16

. Similarly I = (1, 0)8 = (5, 0)8 and J = (3, 0)8 =

(7, 0)8 meaning ϕ1 = 2I + 2J = q−7+2x+4a
16

.

The proof of this result is otherwise analogous to the proof of Theorem 3.4.1.

Example 3.4.6. (i) In the finite field GF(17), when e = 8, f = 2, therefore f

is even. Moreover in GF(17), x = 1 and a = −3, it therefore follows that

(C2,1
0 )′ is a (17, 4, 2, 1, 0)-DPDF and a (17, 4, 2, 2, 4)-EPDF.

(ii) In the finite field GF(41), when e = 8, f = 5 is odd. In this finite field,

x = 5 and s = −3, hence (C2,1
0 )′ is a (41, 4, 5, 2)-DDF (since x+ 2a = −1)

and a (41, 4, 5, 7, 8)-EPDF.

3.5 DPDF/EPDF constructions obtained by par-

titioning the squares into cyclotomic classes

with small f

In this Section, we explore cyclotomic constructions of DPDFs and EPDF, found

by partitioning the squares (the cyclotomic class C2,1
0 ) in a finite field GF(q) into



94

cyclotomic classes in which 2 ≤ f ≤ 6. This gives an alternative way of using the

cyclotomic framework developed in Chapter 2. All results in this subsection are

recorded in the preprint [40] and have been adapted from results in [52]. Note

that as all DPDFs and EPDFs in this Subsection partition the set of squares,

we will consistently use the notation (C2,s
0 )′ to denote the component sets of the

DPDFs and EPDFs presented in this subsetion. Further, throughout this section

we will use the notation Di (1 ≤ i ≤ f − 1) to denote diagonals of transversals:

for a formal definition of these objects, we refer the reader back to Definition

2.1.5.

We start by going through the f = 2 case. The following result is from the

paper [34] and is the specific case of Theorem 3.3.13. The EDF result in part (ii)

of the following Lemma was also recorded in [14] and the EDF and EPDF results

from parts (i) and (ii) were also implicitly recorded in [52].

Theorem 3.5.1. Let q = ps = 2ρ + 1 = ef + 1, where f = 2 and e = q−1
2

is

even. Let (C2,s
0 )′ = {Ce,s

0 , . . . , Ce,s
e−2}. Then

(i) when q ≡ 1 mod 8, (C2,s
0 )′ forms a (q, q−1

4
, 2, 1, 0)-DPDF and a (q, q−1

4
, 2,

q−9
4
, q−1

4
)-EPDF.

(ii) when q ≡ 5 mod 8, (C2,s
0 )′ forms a (q, q−1

4
, 2, 0, 1)-DPDF and a (q, q−1

4
, 2,

q−3
4
)-EDF.

Proof. By Lemma 2.1.6, when f = 2, Int(C2,s
0 )′ = D1. Moreover, since q ≡ 1

mod 4 in both cases (i) and (ii), it follows by Proposition 3.1.2 that C2
0 is a

(q, q−1
2
, q−5

4
, q−1

4
)-PDS.

(i) By Lemma’s 2.1.6 and 2.1.12 when q ≡ 1 mod 8, Int((C2,s
0 )′) = D1 = C2,s

0 .

By Lemma 1.2.4, this then means that

Ext((C2,s
0 )′) =

(
q − 5

2
− 1

)
C2,s

0 ∪
(
q − 1

4

)
(GF(q)∗\C2,s

0 )

=

(
q − 9

2

)
C2,s

0 ∪
(
q − 1

4

)
(GF(q)∗\C2,s

0 ).

(ii) The proof of this result is analogous to the proof of part (i).

The following results for 3 ≤ f ≤ 6 are generalisations of results in [52].
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Theorem 3.5.2. Let GF(p) be a finite field of order p = 2ρ + 1 = 3e + 1 ≡ 1

mod 4, where p is prime and e = p−1
3

is even. Let (C2,1
0 )′ = {Ce,1

0 , . . . , C2,1
e−2}.

Then (C2,1
0 )′ is a

(i) (p, p−1
6
, 3, 2, 0)-DPDF and (p, p−1

6
, 3, p−13

4
, p−1

4
)-EPDF if (−3)

(p−1)
4 ≡ 1

mod p,

(ii) (p, p−1
6
, 3, 0, 2)-DPDF and (p, p−1

6
, 3, 3s−2

2
, 3s−4

2
)-EPDF if (−3)

(p−1)
4 ≡ −1

mod p.

Proof. (i) By Lemma 2.1.6, when f = 3 it follows that Int((C2,1
0 )′) = D1 ∪D2,

where D1 = (αe− 1)C2,1
0 and D2 = (α2e− 1)C2,1

0 . It was proved in [52] that

(−3)
(p−1)

4 ≡ ±1 mod p. When (−3)
(p−1)

4 ≡ 1 mod p, αe− 1, α2e− 1 ∈ C2,1
0

meaning D1 = D2 = C2,1
0 . It then follows from the first line of this proof

that Int((C2,1
0 )′) = D1 ∪ D2 = 2(C2,1

0 ), and so (C2,1
0 )′ is a (p, p−1

6
, 2, 0)-

DPDF. Further, as p ≡ 1 mod 4, it is immediate by Proposition 3.1.2 that

C2,1
0 is a (p, p−1

2
, p−5

4
, p−1

4
)-PDS. Since (C2,1

0 )′ is a partition of C2,1
0 , (C2,1

0 )′

is a (p, p−1
6
, 3, 2, 0)-DPDF and C2,1

0 is a (p, p−1
2
, p−5

4
, p−1

4
)-PDS, it follows by

Theorem 1.3.17(i) that (C2,1
0 )′ is also a (p, p−1

6
, 3, p−13

4
, p−1

4
)-EPDF.

(ii) It was proved in [52] that when (−3)
(p−1)

4 ≡ −1 mod p, then αe−1, α2e−1 ∈
C2,1

1 . Using this fact, and analogous proof strategy to the proof presented

in part (i), we can prove the statement of (ii). This is left up to the reader.

Example 3.5.3. (i) When q = 13, e = 4 and f = 3, observe that (−3)3 =

−27 ≡ −1 mod 13. It therefore follows from Theorem 3.5.2(ii) that (C2,1
0 )′ =

{C4,1
0 , C4,1

2 } is a (13, 2, 3, 0, 2)-DPDF and a (13, 2, 3, 2, 1)-EPDF.

(ii) Let q = 37, e = 12 and f = 3, then (−3)9 ≡ 1 mod 37, hence Theo-

rem 3.5.2(i) implies that (C2,1
0 )′ = {C12,1

0 , C12,1
2 , C12,1

4 , C12,1
6 , C12,1

8 , C12,1
10 } is

a (37, 6, 3, 2, 0)-DPDF and a (37, 6, 3, 6, 9)-EPDF.

Throughout the following result, we use the notation “||” to mean “strictly

divides” i.e. a | b and a ̸= b.

Theorem 3.5.4. Let GF(p) be a finite field of order p = 2ρ + 1 = 4e + 1 ≡ 1

mod 4, where p is prime and e = p−1
4

is even. Let (C2,1
0 )′ = {Ce,1

0 , . . . , Ce,1
e−2},

then (C2,1
0 )′ is a
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(i) (p, p−1
8
, 4, 3, 0)-DPDF and (p, p−1

8
, 4, p−17

4
, p−1

4
)-EPDF if 4 | e and 2 ∈ C4

0 or

if 2 || e and 2 ∈ C4
2 .

(ii) (p, p−1
8
, 4, 1, 2)-DPDF and (p, p−1

8
, s, 4, 2s− 2)-EDF if 4 | e and 2 ∈ C4

2 or if

2 || e and 2 ∈ C4
0 .

Proof. When f = 4, it follows that Int((C2,s
0 )′) = D1 ∪ D2 ∪ D3, where D1 =

(αe − 1)C2,1
0 , D2 = D f

2
(2)C2,1

0 (by Corollary 2.1.11) and D3 = (α3e − 1)C2,1
0 . As

e = p−1
4

is even, it follows that p ≡ 1 mod 8, thus it follows by Lemma 2.1.12

that D2 = C2,1
0 in both cases.

It was proven in [52] that when f = 4, αe − 1, α3e − 1 ∈ C2,1
0 if −2αe ∈ C4,1

0 and

αe − 1, α3e − 1 ∈ C2,1
1 if −2αe ∈ C4,1

2 . We can see that −1 ∈ C4,1
0 : by Lagrange’s

Theorem −1 = αe f
2 = α2e is a fourth power, since f = 4 and e is even. Therefore,

−2αe ∈ C4,1
0 if and only if 2αe ∈ C4,1

0 this happens when either 4 | e and 2 ∈ C4
0

or when 2 || e and 2 ∈ C4
2 . In both of these cases D1 = D3 = C2,1

0 , and

so Int((C2,1
0 )′) = 3C2,1

0 , meaning that (C2,1
0 )′ is a (p, p−1

8
, 4, 3, 0)-DPDF. When

2αe ∈ C4,1
2 , it follows from the above that D1 = D3 = C2,1

1 and D2 = C2,1
0 ,

meaning Int((C2,1
0 )′) = C2,1

0 ∪ 2C2,1
1 : this happens when 4 | e and 2 ∈ C4

2 or when

2 || e and 2 ∈ C4
0 . Notice that when Int((C2,1

0 )′) = C2,1
0 ∪ 2C2,1

1 , then (C2,1
0 ) is a

(p, p−1
8
, 4, 1, 2)-DPDF.

By Proposition 3.1.2, as p ≡ 1 mod 4, it follows that C2,1
0 is a (p, p−1

2
, p−5

4
, p−1

4
)-

PDS. By Theorem 1.3.17(i), we can then see that since (C2,1
0 )′ is a (p, p−1

8
, 4, 3, 0)-

DPDF when 4 | e and 2 ∈ C4
0 or 2 || e and 2 ∈ C4

2 , it follows that (C2,1
0 )′ must

also be an (p, p−1
8
, 4, p−17

4
, p−1

4
)-EPDF. We can then use analogous reasoning to

prove that (C2,1
0 )′ is a (p, p−1

8
, s, 4, 2s − 2)-EDF when 4 | e and 2 ∈ C4

2 or 2 || e
and 2 ∈ C4

0 .

Theorem 3.5.5. Let GF(p) be a finite field of order p = 2ρ + 1 = 5e + 1 ≡ 1

mod 4, where p is prime and e = p−1
5

is even. Let (C2,1
0 )′ = {Ce,1

0 , . . . , Ce,1
e−2},

then (C2,1
0 )′ is a

(i) (p, p−1
10
, 5, 2)-DDF and (p, p−1

10
, 5, p−13

4
, p−9

4
)-EPDF when 5

p−1
4 = −1 mod p.

(ii) (p, p−1
10
, 5, 4, 0)-DPDF and (p, p−1

10
, 5, p−21

4
, p−1

4
)-EPDF when 5

p−1
4 = 1 mod p

and α
p−1
5 − 1 ∈ C2

0 .

(iii) (p, p−1
10
, 5, 0, 4)-DPDF and (p, p−1

10
, 5, p−5

4
, p−17

4
)-EPDF when 5

p−1
4 = 1 mod p

and α
p−1
5 − 1 ∈ C2

1 .
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Proof. By Lemma 2.1.6, when f = 5, Int((C2,s
0 )′) = D1 ∪ D2 ∪ D3 ∪ D4, where

D1 = (αe−1)C2,1
0 , D2 = (α2e−1)C2,1

0 , D3 = (α3e−1)C2,1
0 and D4 = (α4e−1)C2,1

0 .

Since ρ is even (notice that 2ρ ≡ 0 mod 4) it follows by Corollary 2.1.11 that

D1 = C2,1
i = D4 and D2 = C2,1

j = D3 for some 0 ≤ i, j ≤ 1.

It is demonstrated in [52], that when (−5)
p−1
4 ≡ −1 mod p, then exactly one of

αe − 1 and α2e − 1 is in the cyclotomic class C2,1
0 meaning either D1 = C2,1

0 = D4

and D2 = C2,1
1 = D3 or D1 = C2,1

1 = D4 and D2 = C2,1
0 = D3. In either case,

Int((C2,1
0 )′) = 2C2,1

0 ∪2C2,1
1 . It then follows by Lemma 1.2.4 and Proposition 3.1.2

that Ext((C2,1
0 )′) =

(
p−13
4

)
C2,1

0 ∪
(
p−9
4

)
C2,1

1 .

Further, it is proven in [52] that when 5
p−1
4 = 1 mod p, either αe−1, α2e−1 ∈ C2,1

0

or αe − 1, α2e − 1 ∈ C2,1
1 meaning D1 = D2 = D3 = D4. Therefore, when

α
p−1
5 − 1 ∈ C2

0 , D1 = D2 = D3 = D4 = C2,1
0 meaning Int((C2,1

0 )′) = 4C2,1
0 .

Since Int((C2,1
0 )′) = 4C2,1

0 when α
p−1
5 − 1 ∈ C2

0 , it follows by Lemma 1.2.4 and

Proposition 3.1.2, that Ext((C2,1
0 )′) =

(
p−13
4

)
C2,1

0 ∪
(
p−9
4

)
C2

1 . Analogously, when

α
p−1
5 − 1 ∈ C2

0 , D1 = D2 = D3 = D4 = C2,1
1 meaning Int((C2,1

0 )′) = 4C2,1
1 , and

Ext((C2,1
0 )′) =

(
p−5
4

)
C2,1

0 ∪
(
p−17
4

)
C2

1 .

Example 3.5.6. (i) In Example 3.3.7, we saw that q = 41, e = 8 and f = 5,

(C2,1
0 )′ is a (41, 4, 5, 2)-DDF and a (41, 4, 5, 7, 8)-EDF. Observe that 510 ≡

−1 mod 41.

(ii) When q = 121, e = 24 and f = 5, (C2,2
0 )′ is a (121, 12, 5, 4, 0)-DPDF and a

(121, 5, 4, 25, 30)-EPDF. Here 530 ≡ 1 mod 11 and α24 − 1 ∈ C2,2
0 .

Theorem 3.5.7. Let GF(p) be a finite field of order p = 2ρ + 1 = 6e + 1 ≡ 1

mod 4, where p is prime and e = p−1
6

is even. Let (C2,1
0 )′ = {Ce,1

0 , . . . , Ce,1
e−2},

then (C2,1
0 )′ is a

(i) (p, p−1
12
, 6, 5, 0)-DPDF and (p, p−1

12
, 6, 3s−6, 3s)-EPDF if 4 | e and (−3)

(p−1)
4 ≡

1 mod p.

(ii) (p, p−1
12
, 6, 4, 1)-DPDF and (p, p−1

12
, 6, 3s − 5, 3s − 1)-EPDF if 2 || e and

(−3)
(p−1)

4 ≡ 1 mod p.

(iii) (p, p−1
12
, 6, 3, 2)-DPDF and (p, p−1

12
, 6, 3s− 4, 3s− 2)-EPDF if 4 | e and

(−3)
(p−1)

4 ≡ −1 mod p.

(iv) (p, p−1
12
, 6, 2, 3)-DPDF and (p, p−1

12
, 6, 3s − 3)-EDF if 2 || e and (−3)

(p−1)
4 ≡

−1 mod p.
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Proof. When f = 6, it follows that Int((C2,s
0 )′) = D1 ∪D2 ∪D3 ∪D4 ∪D5, where

D1 = (αe − 1)C2,1
0 , D2 = (α2e − 1)C2,1

0 , D3 = (α3e − 1)C2,1
0 , D4 = (α4e − 1)C2,1

0

and D5 = (α5e − 1)C2,1
0 .

It follows by Corollary 2.1.11 that D1 = D5, D2 = D4 and D3 = (2)C2,1
0 .

Notice that when 2 || e, then p ≡ 0 mod 12, and hence, it follows by Lemma

2.1.12 that 2 ∈ C2,1
1 . When 4 | e, p ≡ 0 mod 24, and so by Lemma 2.1.12,

2 ∈ C2,1
0 .

(αe − 1)2(α2e − 1)2 = −3.

Further, it is also demonstrated in [52], that (αe − 1)2 ∈ C4,1
0 . It therefore

follows that when −3
p−1
4 ≡ 1 mod p, then (α2e−1)2 ∈ C4,1

0 , and so it follows that

αe−1, α2e−1 ∈ C2,1
0 when −3

p−1
4 ≡ 1 mod p. This means that when −3

p−1
4 ≡ 1

mod p, D1 = D2 = D4 = D5 = C2,1
0 . The DPDF results in parts (i) and (ii) can

then be obtained by combining this with the earlier D3 result. Moreover, notice

that since (αe − 1)2 ∈ C4,1
0 , this means that (α2e − 1)2 ∈ C4,1

2 when −3
p−1
4 ≡ −1

mod p hence D1 = D5 = C2,1
0 and D2 = D4 = C2,1

1 . Again, parts (iii) and (iv)

can be obtained by combining this with the earlier D3 results. Apply Lemma

1.2.4 and Proposition 3.1.2 to obtain the relevant EPDF results.

In the upcoming pre-print [40], I have extended these results for 7 ≤ f ≤ 10,

however these results have been omitted due to space constraints.

3.6 Cyclotomic DPDF construction obtained via

the use of cyclotomic orbits

In this short Section, we demonstrate that cyclotomic orbits can be used to

produce PDS/DPDF constructions.

Lemma 3.6.1. Let GF(q) be a finite field of order q = pm = ef + 1, where p

is an odd prime. If e is an odd prime and p is a generator of the multiplicative

group Z∗
e, then for all 1 ≤ i ≤ e− 1, µ = (i, i)e = (i, 0)e = (0, i)e

Proof. By Theorem 1.4.12, the following relations relations apply to the cyclo-

tomic numbers of order e (i, j)e = (j, i)e, (i, j)e = (e − i, j − i)e and (i, j)e =

(ip, jp)e. As p is a generator of Z∗
e, it follows that for 0 ≤ i ̸= j ≤ e − 1,
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the cyclotomic numbers (i, i)e and (j, j)e must be co-orbital, since the relation

(i, j)e = (ip, jp)e maps all cyclotomic numbers of the form (i, i)e and (j, j)e to

each other. By the relation (i, j)e = (e − i, j − i)e, for each 1 ≤ i ≤ e − 1, the

cyclotomic number (i, i) = (e− i, 0), and under the relation (i, j)e = (e− i, j− i)e,
the cyclotomic number (e− i, 0)e = (0, e− i)e.

Part (i) of the following Theorem is immediate from the above. Notice that

part (ii) then follows by Theorem 1.3.20(i).

Theorem 3.6.2. Let GF(q) be a finite field of order q = pm = ef + 1, where p

is an odd prime. If e is an odd prime and p is a generator of the multiplicative

group Z∗
e, then if e | q − 1:

(i) Ce,m
0 is a (q, q−1

e
, λ, µ)-PDS in GF(q),

(ii) any collection of s distinct cyclotomic classes of order e is a (q, s, q−1
e
, λ+

(s− 1)µ, sµ)-DPDF in GF(q).

Example 3.6.3. Notice that α = 3 is a multiplicative generator of Z∗
7, as α

0 = 1,

α = 3, α2 = 2, α3 = 6, α4 = 4 and α5 = 6. As such when e = 7 and

p = 3, (1, 0)7 = (3, 0)7 = (2, 0)7 = (6, 0)7 = (4, 0)7 = (6, 0)7 under the identity

(i, j)e = (ip, jp)e in Theorem 1.4.12, It therefore follows by Lemma 2.1.2 that in

any finite field GF(3m), where 7 | 3m − 1, the cyclotomic class C7,m
0 is a PDS,

and moreover, any collection of order 7 cyclotomic classes is a DPDF.

For example, in the finite field GF (729), 7 | 728, so C7
0 is a (729, 104, 19, 12)-

PDS, and any collection of u cyclotomic class of order 7 is also a (729, 104, 19+

(u− 1)12, 12u)-DPDF.

The following Remark demonstrates that this construction is a special case of

uniform cyclotomy.

Remark 3.6.4. Observe that if p is a multiplicative generator of Z∗
e, then it

follows that p
e−1
2 = −1 mod e.

With further investigation, we hope to use this technique to prove that the

external cyclotomic numbers are also identical when p is a generator of the mul-

tiplicative group Z∗
e.
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Chapter 4

A cyclotomic number algorithm

and Denniston PDSs

The cyclotomic frameworks developed in Chapter 2 are a powerful tool for find-

ing new DPDF/EPDF constructions, but can also be deployed as tool to find

constructions of other difference families. This Chapter presents the work of two

different projects in which I have deployed my knowledge of finite field cyclotomy

in order to tackle mathematical problems outside of the remit of finding new

DPDF and EPDF constructions.

Section 4.1 develops an algorithm for computing general cyclotomic numbers

in large finite fields currently there are no standard methods recorded in the

literature which can be used to do this directly [65]. Section 4.2 is an application

of the cyclotomic techniques that we developed in Chapter 2, together with the

algorithms in Section 4.1, to produce a new PDS with Denniston parameters in

elementary abelian groups in which p is odd these PDS were previously thought

not to exist [1].

4.1 Algorithm for computing cyclotomic num-

bers in large finite fields

In this Section, we connect the use of cyclotomic orbits with other standard

cyclotomic techniques in order to produce an Algorithm that computes the cy-

clotomic numbers in large finite fields. The work in this Section is inspired by the
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preprint [65]. In [65], the authors develop an implicit method for computing a

subset of the internal cyclotomic numbers of order 11 in the finite field GF(243).

I formalise their approach into an algorithm for directly computing internal cy-

clotomic numbers. I then expand upon this algorithm and present an algorithm

which automatically computes all internal cyclotomic orbit representatives when

e and p meet the constraints presented in Theorem 2.2.33. Finally, I also present

an algorithm for computing external cyclotomic numbers.

I begin this Section by stepping through the techniques used by Wen et al. in

[65] to compute the internal cyclotomic numbers of order 11 in the finite field

GF(243) = GF(35). I then demonstrate how these techniques can be further

developed to produce general algorithms for computing cyclotomic numbers.

4.1.1 The Wen et al. paper

In [65], the authors use the following method to compute all internal cyclotomic

numbers of the form (i, i)11 where 0 ≤ i ≤ 10 in the finite field GF(243). Note

that in this particular finite field p = 3, m = 5, and |C11
0 | = f = 22 when e = 11.

Further n1 = 5 and ϵ = 2, in the notation of Chapter 2.

Summary of method for computing internal cyclotomic numbers:

(1) The authors begin by computing all orbits of the form Orb(i,j)11=(3i,3j)11(i, i)e

for 0 ≤ i ≤ e − 1. They find that there are precisely three orbits of this

form when e = 11 and p = 3, these are:

Orb(i,j)e=(ip,jp)e(0, 0)11 = {(0, 0)11},
Orb(i,j)e=(ip,jp)e(1, 1)11 = {(1, 1)11, (3, 3)11, (9, 9)11, (5, 5)11, (4, 4)11}
Orb(i,j)e=(ip,jp)e(2, 2)11 = {(2, 2)11, (6, 6)11, (7, 7)11, (10, 10)11, (8, 8)11}.

(2) The authors then use the fact that −1 ∈ C11,5
0 (since f = 22 is even, it

follows by Lemma 1.4.11 that this is true) to demonstrate that

(0, 0)11 ≥ 1. Since ±1 ∈ C11,5
0 and (−1)− 1 ≡ 2− 1 = 1 mod 3, it follows

that there is at least one pair of elements a, b ∈ C11,5
0 such that

a− b ∈ C11,5
0 .

(3) The authors then choose an irreducible polynomial of order 6 over

GF(3)[x]. The polynomial that they choose is the polynomial
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f(x) = x5 + x4 + x3 + x2 + 2x+ 1, which can be used to show that

x5 = 2x4 + 2x3 + 2x2 + x+ 2 ∈ GF(3)[x].

(4) Note that if {1, θ, θ2, θ3, θ4} is a basis of GF(243), then for every

α ∈ GF(243), we may write α = c0 + c1θ + c2θ
2 + c3θ

3 + c4θ
4, where

c0, c1, c2, c3, c4 ∈ GF(3): we can also write α in vector form

(α = (c0c1c2c3c4)). Using the irreducible polynomial found in step 3) and

primitive element θ = (01000), the authors compute the elements

θ0, θ1, . . . , θ11 ∈ GF(243) in vector form.

θ0 = (10000), θ1 = (01000), θ2 = (00100), θ3 = (00010), θ4 = (00001),

θ5 = (21222), θ6 = (11200), θ7 = (01120), θ8 = (00112), θ9 = (12122),

θ10 = (10020), θ11 = (01002).

(5) With the element θ11 ∈ GF(243) computed, the authors go on to

compute the first f
2
= 11 elements of the cyclotomic class C11

0 , we label

this set D. They find that:

D = {θ0, θ11, θ22, θ33, θ44, θ55, θ66, θ77, θ88, θ99, θ110}

= {(10000), (01002), (21101), (21102), (12212), (11112),

(10121), (12011), (12112), (22002), (02010)}.

The reason why Wen et al. only compute the first 11 elements of the

cyclotomic class C11,5
0 , instead all 22 elements of C11,5

0 , will become clear as

we progress through their algorithm.

(6) In the paper [65], the authors use a counting argument to obtain the values

of cyclotomic numbers of order 11 in GF(243). Notice that a contribution

of 2 to the cyclotomic number (11 − i, 11 − i)11 (0 ≤ i ≤ 10 = e − 1) can

be obtained from every pair {θ11s, θ11t}, where 0 ≤ s ̸= t ≤ 21, satisfying

θ11s − θ11t = θi. This is because, given such a pair

θ11s − θ11t = θi ⇔ θ11(s−1)+(11−i) − θ11(t−1)+(11−i) = 1.

Using Lagrange’s Theorem and Theorem 1.4.12, we may obtain a second

pair of powers of θ contributing to the cyclotomic number (11− i, 11− i)11
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by rearranging the above equation. Observe

−(−(θ11(s−1)+(11−i) − θ11(t−1)+(11−i))) = 1 ⇔

−(θ11(t−1)+(11−i) − θ11(s−1)+(11−i)) = 1 ⇔

θ121(θ11(t−1)+(11−i) − θ11(s−1)+(11−i)) = 1 ⇔

θ11(t+10)+(11−i) − θ11(s+10)+(11−i) = 1.

It is therefore clear that since θ11(s−1) ̸= θ11(s+10), θ11(t−1) ̸= θ11(t+10) ∈ C11,5
0 ,

we can think of the above pair {θ11s, θ11t} satisfying θ11s − θ11t = θi, as

contributing 2 to the cyclotomic number (11 − i, 11 − i)11 (0 ≤ i ≤ 10).

However, notice that when running through all possible values of 0 ≤ s ̸=
t ≤ 21 satisfying θ11(s) − θ11(t) = θi (0 ≤ i ≤ 10), we double count every

cyclotomic number of the form (11−i, 11−i)11 because the pairs {θ11s
′
, θ11t

′}
and {θ11(s′+10), θ11(t

′+10)}(0 ≤ s′ ̸= t′ ≤ 21) are both picked up as we run

through all pairs 0 ≤ s ̸= t ≤ 21, unless we force some restrictions on s and

t. (Note that as f is even, every pair {θ11s, θ11t} satisfying θ11s − θ11t = 1

should be double counted, except for the pair {θ121, θ0}, as the expression

θ121 − θ0 is self-inverse. We must therefore count the pairs contributing to

the cyclotomic number (0, 0)11 in a slightly different manner to cyclotomic

numbers of the form (11− i, 11− i)11 where 1 ≤ i ≤ 10.)

In the paper [65], Wen et al. enforce the restriction that 0 ≤ s ̸= t ≤ 10

to avoid this double counting. (Note that under this restriction, the pair

{α11(s+10), α11(t+10)} won’t be picked up independently, since 11 ≤ s+10, t+

10 ≤ 21 when 0 ≤ s ̸= t ≤ 10.) However, we see in a later example, that

we cannot universally apply this restriction in an arbitrary finite field and

compute all cyclotomic numbers.

Using this counting method, Wen et al. find that there is one pair (θ11s, θ11t)

satisfying θ11s − θ11t = θ4 for 0 ≤ s ̸= t ≤ 10 this is the pair (θ33, θ22)

((21102) − (21101) = (00001)), meaning (7, 7)11 ≥ 2. Similarly, they find

one pair (θ11s, θ11t) satisfying θ11s − θ11t = θ2 for 0 ≤ s ̸= t ≤ 10 this is the

pair (θ88, θ44) ((12112)− (12212) = (00100)), meaning (9, 9)11 ≥ 2.

(7) As the authors of [65] have not run through all possible pairs {θ11(s), θ11(t)}
satisfying 0 ≤ s ̸= t ≤ 21, they need to verify the cyclotomic numbers val-
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ues that they have obtained in previous steps they use Theorem 1.4.12 to

do this. By letting A denote the cyclotomic number contained in the cyclo-

tomic orbit Orb(i,j)e=(ip,jp)e(0, 0)11, B denote the value of each cyclotomic

number contained in the cyclotomic orbit Orb(i,j)e=(ip,jp)e(1, 1)11 and C de-

note the value of the cyclotomic number contained in Orb(i,j)e=(ip,jp)e(2, 2)11

the authors use Theorem 1.4.12 (c)(i) to establish the equation 21 = A +

5(B + C). In part 2), the authors of [65] established that A ≥ 1, and in

part 6), they established that B,C ≥ 2. By substituting these values into

the formula, we obtain 21 = A + 5(B + C), and so A = 1, B = C = 2 are

the values of the cyclotomic numbers of order 11.

4.1.2 Comments on Wen et al. algorithm

Most cyclotomic constructions of various types of difference family recorded in

the literature are reliant upon uniform cyclotomy (see for example [13],[49]), the

computation of cyclotomic numbers via Gauss sums (see for example [2],[67]),

results on small e/f (see [34],[52]) or direct computation (as in [60]). How-

ever the methods for computing internal cyclotomic numbers of the form (i, i)e

(0 ≤ i ≤ e − 1), in [65] are novel. The approach used in [65] can be viewed as

an improvement upon direct computation: to compute the internal cyclotomic

numbers in the finite field GF(243) directly, the elements of each cyclotomic class

Ce
i , where 0 ≤ i ≤ e − 1, must be compared to the set {αse − 1|αse ∈ Ce,m

0 },
whereas the methods of Wen et al. only rely on the comparing the elements of

the sets α0, α1, . . . , α10 ∈ GF(243) to the elements of the set D ∈ GF(243), where

D = {α11s − α11t|0 ≤ s, t ≤ 10}. In the first approach, 242 non-identity elements

of the finite field GF(243) must be computed, whereas using the Wen et al. ap-

proach, only 21 elements of GF(243) are required to find the internal cyclotomic

numbers it is therefore clear that the methods in [65] are more computationally

efficient.

However, the methods of Wen et al. need to be adapted in order to be used as

a standard technique for computing the internal cyclotomic numbers of the form

(i, i)e (0 ≤ i ≤ e − 1) in finite fields other than GF(243). As discussed in the

previous Subsection, one reason that this method cannot be universally deployed

is that the authors of the Wen et al. use a counting technique that cannot be

used in all finite fields. Below, I demonstrate why this counting method cannot
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be used in the finite field GF(729) = GF(36).

Example 4.1.1. In the finite field GF(729), let α be a primitive element of

GF(729). In this example, we are looking at the cyclotomic numbers of order 13.

Notice that for every pair {α13s, α13t} (0 ≤ s ̸= t ≤ 56) satisfying α13s−α13t = αi,

for some 0 ≤ i ≤ 13, we have four possibilities 0 ≤ s ̸= t ≤ 27, 0 ≤ s ≤ 27 and

28 ≤ t ≤ 56, 28 ≤ s ≤ 56 and 0 ≤ t ≤ 27 and 28 ≤ s ̸= t ≤ 56. If we apply the

Wen et al. restriction (i.e. we restrict to powers of α13 up to f
2
), we obtain all

pairs {α13s, α13t} satisfying α13s − α13t = αi, for some 0 ≤ i ≤ 13, where either

0 ≤ s ̸= t ≤ 27 and 28 ≤ s ̸= t ≤ 56, but not any pairs in which 0 ≤ s ≤ 27 and

28 ≤ t ≤ 56 or 28 ≤ s ≤ 56 and 0 ≤ t ≤ 27.

There is only one pair {α13s, α13t} satisfying α13s − α13t = α2, for 0 ≤ s ̸=
t ≤ 27 this is the pair {α13(15) −α13(16)} using the Wen et al. method, this would

indicate that (9, 9)13 ≥ 2 in the finite field GF(729), but infact (9, 9)13 = 4. (To

see this, observe that the following pairs all satisfy α13(s) − α13(t) = α2 for 0 ≤
s ̸= t ≤ 56 {α13(4), α13(33)}, {α13(5), α13(32)}, α13(15), α33(16)} and {α13(43), α13(44)}.)
Therefore, we see that the counting argument used by Wen et al. is not always

able to reliably count the cyclotomic number values in every finite field.

We can, however, derive the following important result from the methods

developed by Wen et al. in [65].

Theorem 4.1.2. Let GF(q) be a finite field of order q = pm = ef + 1, where

p is prime and m ∈ Z. Let Ce,m
i = αi⟨αe⟩ (0 ≤ i ≤ e − 1) denote the ith

cyclotomic class of order e in GF(q) and let (i, i)e (0 ≤ i ≤ e− 1) be an internal

cyclotomic number of order e in GF(q). The number of ordered pairs (s, t), where

0 ≤ s, t ≤ f − 1, satisfying:

αes − αet = αe−i

is precisely the cyclotomic number (i, i)e.

Proof. It follows from Definition 1.4.3 that the cyclotomic number (i, i)e (0 ≤
i ≤ e− 1) is the number of pairs (s′, t′), where 0 ≤ s′, t′ ≤ f − 1, satisfying:

αes′+i − αet′+i = 1.

By multiplying each term of the above equation through by αe−i, we obtain:

αe−i(αes′+i − αet′+i) = αe−i ⇔ αe(s′+1) + αe(t′+1) = αe−i.
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By letting s ≡ s′ + 1 mod f and t ≡ t′ + 1 mod f , we see that (i, i)e (0 ≤
i ≤ e− 1) is the number of solutions (s, t), where 0 ≤ s, t ≤ e− 1, satisfying:

αse − αte = αe−i.

The rest of this Section is dedicated to using the above Theorem to develop

an algorithm which computes the internal and external cyclotomic numbers of

order e in a finite field GF(q).

4.1.3 Adapted Wen et al. algorithm for computing inter-

nal cyclotomic numbers

We can use the ideas presented in Theorem 4.1.2, to develop an algorithm for

computing all internal cyclotomic numbers of order e. As Theorem 4.1.2 demon-

strates, the cyclotomic number (i, i)e is equivalent to number of pairs of elements

(αse, αte) ∈ Ce
0×Ce

0 satisfying α
se−αte = αe−i (where 0 ≤ i ≤ e−1). By develop-

ing an algorithm which counts the number of pairs (αse, αte) ∈ Ce
0 ×Ce

0 satisfying

the above, we can compute each cyclotomic number (i, i)e (0 ≤ i ≤ e−1). In later

Subsections, we will repeat this process for internal cyclotomic numbers in which

we have additional information about the elements of each internal cyclotomic

orbit, and can thus build a step into the Algorithm which computes an element

of each of the internal orbits to reduce the number of computations required.

We will also design a similar algorithm that computes the values of the external

cyclotomic numbers.

Whilst we have not tested the computational complexity of these new algorithms

(which are all based upon the same methodology) or the standard approach for

computing the values of cyclotomic numbers, a dramatic difference can be seen

between the two methods when computing the cyclotomic numbers using these

methods. In tests that we have run, it takes around two days for the standard

method for computing the cyclotomic numbers of order 13 in GF(729), whereas

using the methods adapted from the Wen et al., it only takes one afternoon to

compute the cyclotomic numbers of order 13 in GF(729).

We now present the first of algorithms, which is used to determine general internal

cyclotomic numbers. This Algorithm is presented in pseudocode below.
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Algorithm 1 - Internal cyclotomic number algorithm

Input:Todetermine the cyclotomic number (b, b)e in the finite fieldGF(pm), input

the values of p ,m, e and b. Input a primitive polynomial, αm = c0 + c1α+ . . . cm−1α
m−1,

of GF(pm), in vector form (c0c1 . . . cm−1) (where 0 ≤ ca ≤ p− 1 for all 0 ≤ a ≤ m− 1

and α1 is a primitive element of GF(pm)).

Output:The value of the cyclotomic number (b, b)e.

1: smallelt[1] = α

2: for 2 ≤ i ≤ e do

3: smallelt[i] := smallelt[i− 1]α

▷ Generates the first e powers of α in GF(pm)

4: classelt[1] := smallelt[e]

5: for 2 ≤ j ≤ pm−1
e do

6: classelt[i] := classelt[i− 1]smallelt[e]

▷ Generates the elements of the cyclotomic class Ce,m
0 = ⟨αe⟩

7: bbcount := 0

8: for 1 ≤ l ≤ pm−1
e − 1 do

9: for l < k ≤ pm−1
e do

10: if classelt[k]− classelt[l] = smallelt[e− b] then

11: bbcount := bbcount + 1

12: else if classelt[l]− classelt[k] = smallelt[e− b] then

13: bbcount := bbcount + 1

14: print “(”b“, ”b“)” = bbcount

▷ This loop determines the cyclotomic number (b, b)e by calculating the number

of pairs of elements in Ce
0 with difference αe−b

We will now step through the design of this Algorithm. Algorithm 1 requires

the computation of all f elements of the cyclotomic class Ce,m
0 , as well as the first

e powers of a primitive element α ∈ GF(q), whereas the Algorithm used by Wen

et al. only requires the computation of f
2
+ e elements of GF(243). However,

we can see that Algorithm 1 can be used to find all internal cyclotomic numbers

of the form (i, i)e (where 0 ≤ i ≤ e − 1) in any finite field GF(q), while (as

demonstrated in Example 4.1.1) the implicit Wen et al. algorithm won’t be able

to compute all cyclotomic numbers in a given finite field.
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In the following example, we demonstrate how Algorithm 1, and prior knowl-

edge about the elements contained within each of the cyclotomic orbits when

e = 11, can be used to provide an alternative way of finding all internal cyclo-

tomic numbers of order e = 11 in the finite field GF(243).

Example 4.1.3. As identified in Example 2.2.31, there are precisely ϵ + 1 = 3

internal cyclotomic orbits in the finite field GF(243) when e = 11, these are

OrbR(0, 0)11 = {(0, 0)11}
OrbR(1, 1)11 = {(1, 1)11, (3, 3)11, (9, 9)11, (5, 5)11, (4, 4)11, (10, 0)11, (8, 0)11, (2, 0)11,

(6, 0)11, (7, 0)11, (0, 10)11, (0, 8)11, (0, 2)11, (0, 6)11, (0, 7)11},
OrbR(2, 2)11 = {(2, 2)11, (6, 6)11, (7, 7)11, (10, 10)11, (8, 8)11, (9, 0)11, (5, 0)11,

(4, 0)11, (1, 0)11, (3, 0)11, (0, 9)11, (0, 5)11, (0, 4)11, (0, 1)11, (0, 3)11}.

We can see that the cyclotomic orbit representatives of each of these orbits are

(0, 0)11, (1, 1)11 and (2, 2)11 thus by substituting each of these cyclotomic numbers

into Algorithm 1, we obtain all of the internal cyclotomic numbers of order e = 11.

When Algorithm 1 is given (0, 0)11, the Algorithm finds that the only pair

(αse, αte) ∈ C11,5
0 × C11,5

0 satisfying αse − αte = 1 is the pair (α121, α0), hence

(0, 0)11 = 1. When Algorithm 1 is given (1, 1)11, it is found that the only two pairs

of cyclotomic numbers (αse, αte) ∈ C11,5
0 × C11,5

0 satisfying αse − αte = α11−1 =

α10 are the pairs (α33, α55) and (α176, α154), therefore (1, 1)11 = 2. Finally, the

only two pairs of cyclotomic numbers (αse, αte) ∈ C11,5
0 × C11,5

0 satisfying αse −
αte = α11−2 = α9 are (α66, α11) and (α132, α187), so (2, 2)11 = 2. We then know

that every cyclotomic number in the same cyclotomics as the cyclotomic numbers

(1, 1)11 and (2, 2)11 must also equal 2.

As demonstrated in Example 4.1.3, prior knowledge of the structure of the

cyclotomic orbits, simplifies the process of computing the internal cyclotomic

numbers of order e. In Theorem 2.2.33, I was able to demonstrate that when e ≥
5, p is odd and n1 = orde(p) is odd, the cyclotomic orbit representative of every

internal cyclotomic orbit OrbR(i, j)e (where R = {(i, j)e = (j, i)e, (i, j)e = (e −
i, j − i)e, (i, j)e = (ip, jp)e}) has to be the cyclotomic number (αj,ϵ, αj,ϵ)e, where

αj,ϵ is the lexicographically smallest element contained within the cyclotomic class

Cϵ,1
j ⊆ GF(e). I therefore decided to create an extended version of Algorithm 1,

which computes the lexicographically smallest element of the cyclotomic class
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Cϵ,1
0

∼= ⟨p⟩, we can therefore build an Algorithm that directly computes the

value of the cyclotomic orbit representative of each internal cyclotomic orbit

when e ≥ 5 is prime, p is odd and n1 = orde(p) is odd. By then applying the

relations R = {(i, j)e = (j, i)e, (i, j)e = (e− i, j− i)e, (i, j)e = (ip, jp)e} to each of

the cyclotomic orbit representative (αj,ϵ, αj,ϵ)e, we are able compute the internal

cyclotomic numbers of order e more efficiently. The pseudocode on the next page

(labelled Algorithm 2) describes this process in more detail. Below I demonstrate

how Algorithm 2 computes the internal cyclotomic numbers using our running

example where e = 11 in the finite field GF(243).

Example 4.1.4. Algorithm 2 can also be used to identify the internal cyclotomic

numbers of order e = 11 in the finite field GF(243), since e = 11 and p = 3 are

both prime, and here n1 = orde(p) = 5 however, in Algorithm 2, the Algorithm

computes the internal cyclotomic orbit representatives automatically. Once the

values of e = 11, p = 3 and n1 = 5 have been substituted into the Algorithm, the

Algorithm computes the cyclotomic orbit representatives, by finding the lexico-

graphically smallest b in each cyclotomic coset Ci = i⟨p⟩, where 0 ≤ i ≤ e− 1. In

this example, the Algorithm identifies that the lexicographically smallest elements

in each of the three cyclotomic cosets are the elements 0, 1 and 2.

Once the Algorithm has identified the lexicographically smallest element b ∈
Ci, it automatically computes the cyclotomic number (b, b)11. So in this example,

Algorithm 2 automatically computes the cyclotomic numbers (0, 0)11, (1, 1)11 and

(2, 2)11. The actual process used to compute each of the cyclotomic numbers is

analogous to the process used in Algorithm 1 to compute each cyclotomic number

(b, b)11.
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Algorithm 2 - Internal cyclotomic number algorithm: special case

Input: For the finite field GF(pm), specify the prime p, the integer m, a prime

value of e ≥ 5 and the value of n1 = orde(p). Input a primitive polynomial,

αm = c0 + c1α + . . . cm−1α
m−1, of GF(pm), in vector form (c0c1 . . . cm−1) (where

0 ≤ ca ≤ p − 1 for all 0 ≤ a ≤ m − 1 and α1 is a primitive element of GF(pm)).

Output: The value of each cyclotomic number of the form (b, b)e, where 0 ≤ b ≤
e− 1.

1: smallelt[1] := α

2: for 2 ≤ i ≤ e do

3: smallelt[i] := smallelt[i− 1]α

▷ Generates the first e powers of α in GF(pm)

4: classelt[1] := smallelt[e]

5: for 2 ≤ j ≤ pm−1
e do

6: classelt[i] := classelt[i− 1]smallelt[e]

▷ Generates the elements of the cyclotomic class Ce,m
0 = ⟨αe⟩

7: for 0 ≤ b ≤ e− 1 do

8: for 1 ≤ c ≤ n1 − 1 do

9: if bpc mod e < b then

10: next b

▷ The nested for loop in lines 7-10 is identifying the orbit representatives

we skip b if it is not the orbit representative

11: bbcount := 0

12: for 1 ≤ l ≤ pm−1
e − 1 do

13: for l < k ≤ pm−1
e do

14: if classelt[k]− classelt[l] := smallelt[e− b] then

15: bbcount := bbcount + 1

16: else if classelt[l]− classelt[k] := smallelt[e− b] then

17: bbcount := bbcount + 1

18: print “(”b“, ”b“)” = bbcount

▷ This loop determines the cyclotomic number (b, b)e by calculating the number

of pairs of elements in Ce
0 with difference αe−b
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4.1.4 Algorithm for computing external cyclotomic num-

bers

After determining the two previous algorithms that compute all internal cyclo-

tomic numbers of order e in a finite field GF(q) we decided that it would useful

to write an Algorithm that was able to compute all external cyclotomic numbers

in a given finite field. As a first step in this process, I found an external analogue

of Theorem 4.1.2.

Theorem 4.1.5. Let GF(q) be a finite field of order q = pm = ef + 1, where

p is prime and m ∈ Z. Let Ce,m
i = αi⟨αe⟩ (0 ≤ i ≤ e − 1) denote the ith

cyclotomic class of order e in GF(q) and let (i, j)e (1 ≤ i ̸= j ≤ e − 1) be an

external cyclotomic number of order e in GF(q). The number of ordered pairs

(s, t), where 0 ≤ s, t ≤ f − 1, satisfying:

αes − αet+d = αe−i,

where d ≡ j − i mod e, is the cyclotomic number (i, j)e.

Proof. It follows from Definition 1.4.3 that the cyclotomic number (i, j)e (1 ≤
i ̸= j ≤ e− 1) is the number of pairs (s′, t′), where 0 ≤ s′, t′ ≤ f − 1, satisfying:

αes′+i − αet′+j = 1.

By multiplying each term of the above equation through by αe−i, we obtain:

αe−i(αes′+i − αet′+j) = αe−i ⇔ αe(s′+1) + αe(t′+1)+j−i = αe−i.

By letting s ≡ s′ + 1 mod f , t ≡ t′ + 1 mod f and d ≡ j − i mod e, we

see that (i, j)e (1 ≤ i ̸= j ≤ e − 1) is the number of solutions (s, t), where

0 ≤ s, t ≤ e− 1, satisfying:

αse − αte+d = αe−i.

Using this Theorem 4.1.5, we can give the following algorithm which computes

the value of any cyclotomic number of order e in a given finite field GF(q).
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Algorithm 3 - External cyclotomic number calculator

Input: To calculate the value of the cyclotomic number (i, j)e in the finite field

GF(p) input the values of: p, n, e, i and j. Further, input a primitive polynomial,

αn = c0 + c1α + . . . cn−1α
n−1, of GF(pm), in vector form (c0c1 . . . cn−1) (where

0 ≤ ca ≤ p− 1 for all 0 ≤ a ≤ n− 1 and α is a primitive element of GF(pm)). Output:

The value of the cyclotomic number (i, j)e.

1: smallelt[1] := α

2: for 2 ≤ k ≤ e do

3: smallelt[k] := smallelt[k − 1]α

▷ Generates the first e powers of α in GF(pm)

4: classelt[1] := smallelt[e]

5: for 2 ≤ l ≤ pm−1
e do

6: classelt[l] := classelt[l − 1]smallelt[e]

▷ Generates the elements of the cyclotomic class Ce,n
0 = ⟨αe⟩

7: d := j − i

8: otherclasselt[1] := smallelt[d]

9: for 2 ≤ m ≤ pm−1
e do

10: otherclasselt[m] := otherclasselt[m− 1]smallelt[e]

▷ Generates the elements of the cyclotomic class Ce,n
d = αd⟨αe⟩

11: z := e− i

12: ijcount := 0

13: for 1 ≤ r ≤ pm−1
e do

14: for 1 ≤ s ≤ pm−1
e do

15: if classelt[r]− otherclasselt[s] := αz then

16: ijcount := ijcount + 1

17: print ijcount

▷ This loop determines the cyclotomic number (i, j)e by calculating the number

of pairs of elements in Ce
0 × Ce

d with difference αe−b

Note that once we have further results about the cyclotomic orbit representa-

tives of external cyclotomic orbits, we will be able to make this Algorithm more

efficient by writing in such a way that all external orbit representatives will be

automatically generated by this Algorithm. For now, this Algorithm can be used

by substituting in the external cyclotomic orbit representatives. In the Example
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below, I demonstrate how this Algorithm can be used to determine the external

cyclotomic numbers of order e = 11 in the finite field GF(243).

Example 4.1.6. In the finite field GF(243), when e = 11, we know from Example

2.2.31 that the external cyclotomic orbits under the relations R = {(i, j)e =

(j, i)e, (i, j)e = (e− i, j − i)e, (i, j)e = (ip, jp)e} are

OrbR(1, 2)11 = {(1, 2)11, (3, 6)11, (9, 7)11, (5, 10)11, (4, 8)11, (2, 1)11, (6, 3)11, (7, 9)11,
(10, 5)11, (8, 4)11, (10, 1)11, (8, 3)11, (2, 9)11, (6, 5)11, (7, 4)11, (1, 10)11,

(3, 8)11, (9, 2)11, (5, 6)11, (4, 7)11, (9, 10)11, (5, 8)11, (4, 2)11, (1, 6)11,

(3, 7)11, (10, 9)11, (8, 5)11, (2, 4)11, (6, 1)11, (7, 3)11}
OrbR(4, 5)11 = {(1, 3)11, (3, 9)11, (9, 5)11, (5, 4)11, (4, 1)11, (3, 1)11, (9, 3)11, (5, 9)11,

(4, 5)11, (1, 4)11, (10, 2)11, (8, 6)11, (2, 7)11, (6, 10)11, (7, 8)11, (2, 10)11,

(6, 8)11, (7, 2)11, (10, 6)11, (8, 7)11, (8, 9)11, (2, 5)11, (6, 4)11, (7, 1)11,

(10, 3)11, (9, 8)11, (5, 2)11, (4, 6)11, (1, 7)11, (3, 10)11}
OrbR(3, 4)11 = {(1, 5)11, (3, 4)11, (9, 1)11, (5, 3)11, (4, 9)11, (5, 1)11, (4, 3)11, (1, 9)11,

(3, 5)11, (9, 4)11, (10, 4)11, (8, 1)11, (2, 3)11, (6, 9)11, (7, 5)11, (4, 10)11,

(1, 8)11, (3, 2)11, (9, 6)11, (5, 7)11, (6, 7)11, (7, 10)11, (10, 8)11, (8, 2)11,

(2, 6)11, (7, 6)11, (10, 7)11, (8, 10)11, (2, 8)11, (6, 2)11}.

Therefore the cyclotomic orbit representatives are the cyclotomic numbers (1, 2)11,

(4, 5)11 and (3, 4)11. Therefore these are the external cyclotomic numbers that

we substitute into Algorithm 3 in order to determine the value of each external

cyclotomic number of order e = 11.

In each of these cases d = |j− i| = 1, so the Algorithms compute all elements

of the cyclotomic Cϵ,1
0

∼= ⟨p⟩ ⊂ GF(e) and all elements of the cyclotomic class Cϵ,1
1

as well. The second stage of the Algorithm runs through all pairs (αse, αte+1) ∈
Cϵ,1

0 × Cϵ,1
1 to determine the value of each of the above cyclotomic numbers.

The Algorithm finds that there is only 1 pair of elements (αse, αte+1) ∈ Cϵ,1
0 ×

Cϵ,1
1 such that αse − αte+1 = αe−2 = α9, this is the pair (α231, α67) meaning

(1, 2)11 = 1. The Algorithm then identifies 1 pair of the form (αse, αte+1) ∈
Cϵ,1

0 ×Cϵ,1
1 such that αse−αte+1 = αe−5 = α6, this is the pair (α99, α188) meaning

that (4, 5)11 = 1. Finally the Algorithm identifies that there are 4 pairs of the

form (αse, αte+1) ∈ Cϵ,1
0 × Cϵ,1

1 such that αse − αte+1 = αe−4 = α7, these are

the pairs (α77, α34), (α55, α89), (α165, α166) and (α22, α210). From this Algorithm

we deduce that (3, 4)11 = 4. All cyclotomic numbers in the respective orbits of
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these cyclotomic orbit representatives take the same value as their respective orbit

representative.

4.2 Denniston partial difference sets

I developed the results in this Section whilst my supervisor and I were undertak-

ing a collaborative research project with Prof. Jim Davis and Prof. John Polhill,

looking at the relationship between partial difference sets with Denniston param-

eters and cyclotomy. We were asked to take part in this collaborative research

project with a view to establishing a cyclotomic interpretation of PDSs with

Denniston parameters. My work in this Section was instrumental in giving us

an understanding of the cyclotomic situation and clarified the need to develop

proof techniques that combine both character theory and cyclotomy in order to

further generalise Denniston’s results. Our results establishing the existence of

cyclotomic Denniston PDSs occur in [20]; however in this Chapter, I only present

the work for which I had the key input.

4.2.1 Background

A PDS with parameters (p3m, pr(pm−pm−r+1)(pm−1), pr(pm−r−1+(pm−pm−r+

1)(pr − 2)), pr(pm − pm−r + 1)(pr − 1)), where p is prime, m ≥ 2 and 1 ≤ r < m,

is said to have Denniston parameters. In [23] Denniston provides a construction

technique that can be used to find PDSs with parameters (23m, 2r(2m − 2m−r +

1)(2m − 1), 2r(2m−r − 1+ (2m − 2m−r +1)(2r − 2)), 2r(2m − 2m−r +1)(2r − 1)) for

every value of 1 ≤ r < m (i.e. all PDSs with Denniston parameters that exist in

the elementary abelian group Z3m
2 , where m ≥ 2). These correspond to maximal

arcs in Desarguesian projective planes of even order. Since such arcs do not exist

in odd characteristic, it was assumed that no Denniston PDSs would exist for

odd primes [1]: as such little attention has been paid to PDSs with Denniston

parameters until recently [6] and [24].

In undertaking this research project, we aimed to extend Denniston’s results

in [23] to the elementary abelian group Z3m
p , where m ≥ 2 and p is an odd

prime, meaning that each PDS has parameters (p3m, pr(pm − pm−r + 1)(pm −
1), pr(pm−r − 1+ (pm − pm−r +1)(pr − 2)), pr(pm − pm−r +1)(pr − 1)) for 1 ≤ r <

m. Our motivation for looking at PDSs of this type arose from computational
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investigations undertaken by Prof. Jim Davis and Prof. John Polhill. The next

two Theorems outline the main results from our paper [20]. The first of these

results demonstrates that a PDS with Denniston parameters in which r = 1 and

m ≥ 2 exists in the elementary abelian group Z3m
p when p is odd.

Theorem 4.2.1. Let ω be a primitive element of GF(pm) and let C
pm−1
p−1

,2m

i ⊆
GF(p2m). The set

D :=

pm−1
p−1

−1⋃
i=0

(ωi⟨ω
pm−1
p−1 ⟩)× (C

pm−1
p−1

,2m

i ∪ {0GF(p2m)})

is a (p3m, (pm− 1) · ((p− 1)(pm+1)+1), pm− p+(pm+1− pm+ p)(p− 2), (pm+1−
pm + 1)(p− 1))-PDS in GF(pm)×GF(p2m).

By applying Delsarte’s Duality Theorem (for further information see [22]) to

the parameters of D we were able to prove the second major result of our paper:

a PDS with Denniston parameters in which r = m − 1 and m ≥ 2 exists in the

elementary abelian group Z3m
p when p is odd.

Theorem 4.2.2. Let D′ be the dual of D in Z3m
p (here we are viewing the group

Z3m
p as GF(pm)×GF(p2m); for the defintion of D see Theorem 4.2.1). Then D′

is a (p3m, (p2m−1 − pm + pm−1)(pm − 1), pm − pm−1 + (p2m−1 − pm + pm−1)(pm−1 −
2), (p2m−1 − pm + pm−1)(pm−1 − 1))-PDS.

The proof of Theorem 4.2.1 (and thus of Theorem 4.2.2), which we ultimately

presented in [20], was expressed in terms of character theory. The character

theory argument can be split into three non-trivial cases: two cases in which there

is a non-principal character and a principal character, and a third case in which

both characters are non-prinicipal. The third case depended on demonstrating

that the kernel of a certain character had a particular form: this could not be

proven using a purely character theoretic approach. However, we realised that

we could express the kernel cyclotomically, and used finite field cyclotomy to

determine that the kernel satisfied the desired properties. Let Trm/1 : GF(pm) →
GF(p) be the trace map, given by Trm/1(x) = x + xp + xp

2
+ . . . + xp

m−1
, then

proving this result boils down to using finite field cyclotomy to determine that

the set:
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D
pm−1
p−1

,2m

0 =

(⋃
j∈I

C
pm−1
p−1

,2m

j

)
∪ {0GF(p2m)} ⊂ GF(p2m), (4.1)

where I = {l |Trm/1(α
l) = 0, αl ∈ GF(pm)}, is a PDS in the group Z2m

p when

m ≥ 2. Using quadratic forms and cyclotomy, we were able to prove in [20]

that the set D
pm−1
p−1

,2m

0 is indeed a regular (p2m, pm−1(pm − p + 1), pm−1(pm−1 −
p+ 1), pm−1(pm−1 − 1))-PDS in the group Z2m

p , and were thus able to prove that

D and D′ are both PDSs with Denniston parameters in the group Z3m
p . Under-

standing of the cyclotomic structure of D, gained from my direct computation,

was instrumental in developing this approach.

In the next Subsection, I will discuss the initial approach to proving that

D
pm−1
p−1

,2m

0 is a PDS in the Z2m
p . This approach centred on direct computation

in small groups to attempt to determine a general, purely cyclotomic proof that

D
pm−1
p−1

,2m

0 is a PDS in the Z2m
p . The majority of Subsection 4.2.2 is dedicated to

looking at a particular example in the finite field GF(729). We will prove that

for all 0 ≤ i ≤ pm−1
p−1

− 1 = 12, the set

D13,6
i = C13,6

i ∪ C13,6
i+4 ∪ C13,6

i+10 ∪ C
13,6
i+12 ∪ {0GF(729)}, (4.2)

(where I = {l | Tr3/1(αl) = 0, αl ∈ GF(33)} = {0, 4, 10, 12}) forms a (729, 225, 63,

72)-PDS in the finite field GF(729) using a purely cyclotomic argument. We will

also discuss the limitations of current cyclotomic techniques in generalising this

result to other finite fields.

4.2.2 Proving that a PDS with Denniston parameters in

which r = 1 exists in Z9
3

As we can see from the definition of the set D13,6
i = C13,6

i ∪C13,6
i+4 ∪C13,6

i+10∪C
13,6
i+12∪

{0GF(729)} (where 0 ≤ i ≤ 12), the set D13,6
i comprises a union of cyclotomic

classes in the finite field GF(729). By thinking of each set D13,6
i in this way, we

can adapt some of the techniques that we developed in Chapter 3 to understand

more about the structure of each D13,6
i and thus prove that each D13,6

i is a partial

difference set.
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In the Lemma below, we decompose the multiset ∆(D13,6
i ) into a union of

multisets of the form ∆(C13,6
i , C13,6

j ) (where 0 ≤ i, j ≤ e − 1). Note that in

all following results in this Subsection, we write 0GF(729) as 0, since we are only

looking at results in the finite field GF(729) in this subsection.

Lemma 4.2.3. In the finite field GF(729), let α be a primitive element of

GF(729), C13,6
j denote the jth cyclotomic class of order 13, I = {0, 4, 10, 12}

and for 0 ≤ i ≤ 12, let S13,6
i = D13,6

i \{0}, where D13,6
i = C13,6

i ∪ C13,6
i+4 ∪ C13,6

i+10 ∪
C13,6

i+12 ∪ {0}. It then follows that

(i) ∆(S13,6
0 ) =

⋃
l∈I(∆(C13,6

l , C13,6
0 ) ∪ α4∆(C13,6

l−4 , C
13,6
0 ) ∪ α10∆(C13,6

l−10, C
13,6
0 )∪

α12∆(C13,6
l−12, C

13,6
0 ))− 224{0},

(ii) ∆(S13,6
i ) = αi∆(S13,6

0 ).

(iii) ∆(D13,6
i ) = ∆(S13,6

i ) ∪ 2S13,6
0 .

Proof. (i) Notice that since 729−1
13

= 56, for 0 ≤ r ≤ e − 1, each cyclotomic

class C13,6
r has cardinality 56, meaning that as S13,6

0 = C13,6
0 ∪ C13,6

4 ∪
C13,6

10 ∪ C13,6
12 , S0 has cardinality 224. It then follows by Remark 1.2.2 that

∆(S13,6
0 , S13,6

0 ) = ∆(S13,6
0 )∪224{0}. Since S13,6

0 = C13,6
0 ∪C13,6

4 ∪C13,6
10 ∪C13,6

12 ,

this means that we can partition the multiset ∆(S13,6
0 , S13,6

0 ) as follows

∆(S13,6
0 , S13,6

0 ) =∆(C13,6
0 , C13,6

0 ) ∪∆(C13,6
4 , C13,6

0 ) ∪∆(C13,6
10 , C13,6

0 )∪

∆(C13,6
12 , C13,6

0 ) ∪∆(C13,6
0 , C13,6

4 ) ∪∆(C13,6
4 , C13,6

4 )∪

∆(C13,6
10 , C13,6

4 ) ∪∆(C13,6
12 , C13,6

4 ) ∪∆(C13,6
0 , C13,6

10 )∪

∆(C13,6
4 , C13,6

10 ) ∪∆(C13,6
10 , C13,6

10 ) ∪∆(C13,6
12 , C13,6

10 )∪

∆(C13,6
0 , C13,6

12 ) ∪∆(C13,6
4 , C13,6

12 ) ∪∆(C13,6
10 , C13,6

12 )∪

∆(C13,6
12 , C13,6

12 )

=
⋃
l∈I

∆
(
C13,6

l , C13,6
0

)
∪
⋃
l∈I

∆
(
C13,6

l , C13,6
4

)
∪⋃

l∈I

∆
(
C13,6

l , C13,6
10

)
∪
⋃
l∈I

∆
(
C13,6

l , C13,6
12

)
.
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By Lemma 2.1.18(iii), we may rewrite the equation for ∆(S13,6
0 , S13,6

0 ) as

∆(S13,6
0 , S13,6

0 ) =
⋃
l∈I

∆
(
C13,6

l , C13,6
0

)
∪ α4

⋃
l∈I

∆
(
C13,6

l−4 , C
13,6
0

)
∪

α10
⋃
l∈I

∆
(
C13,6

l−10, C
13,6
0

)
∪ α12

⋃
l∈I

∆
(
C13,6

l−12, C
13,6
0

)
=
⋃
l∈I

(∆(C13,6
l , C13,6

0 ) ∪ α4∆
(
C13,6

l−4 , C
13,6
0

)
∪

α10∆
(
C13,6

l−10, C
13,6
0

)
∪ α12∆

(
C13,6

l−12, C
13,6
0

)
).

As above, ∆(S13,6
0 ) = ∆(S13,6

0 , S13,6
0 )− 224{0}. It then follows that

∆(S13,6
0 ) =

⋃
l∈I

(∆(C13,6
l , C13,6

0 ) ∪ α4∆
(
C13,6

l−4 , C
13,6
0

)
∪ α10∆

(
C13,6

l−10, C
13,6
0

)
∪ α12∆

(
C13,6

l−12, C
13,6
0

)
)− 224{0}.

(ii) As above

∆(S13,6
i ) =

⋃
l∈I

(∆(C13,6
l+i , C

13,6
i ) ∪ α4∆

(
C13,6

l−4+i, C
13,6
i

)
∪ α10∆

(
C13,6

l−10+i, C
13,6
i

)
∪ α12∆

(
C13,6

l−12+i, C
13,6
i

)
)− 224{0} .

By Lemma 2.1.18(iii), we may then write

∆(S13,6
i ) =

⋃
l∈I

(αi∆(C13,6
l , C13,6

0 ) ∪ αiα4∆
(
C13,6

l−4 , C
13,6
0

)
∪ αiα10∆

(
C13,6

l−10, C
13,6
0

)
∪ αiα12∆

(
C13,6

l−12, C
13,6
0

)
)− 224{0},

= αi(
⋃
l∈I

(∆(C13,6
l , C13,6

0 ) ∪ α4∆
(
C13,6

l−4 , C
13,6
0

)
∪ α10∆

(
C13,6

l−10, C
13,6
0

)
∪ α12∆

(
C13,6

l−12, C
13,6
0

)
)− 224{0},

= αi ∆(S13,6
0 ).

(iii) Observe that we may write D13,6
i = S13,6

i ∪ {0}. It therefore follows that

∆(D13,6
i ) = ∆(S13

i , 0) ∪∆(0, S13,6
i ) ∪∆(S13,6

i ).
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By definition, ∆(S13,6
i , 0) = {s − 0 | s ∈ S13,6

i } = {s | s ∈ S13,6
i } = S13,6

i .

Similarly ∆(0, S13,6
i ) = {−s | s ∈ S13,6

i }. By definition, S13,6
i comprises a

union of four cyclotomic class of order 13 in GF(729). Notice that for each

cyclotomic class C13,6
r (0 ≤ r ≤ 12), of order 13 in GF(729), f = q−1

e
= 56.

It then follows by Lemma 1.4.11 that for each cyclotomic class C13,6
r , where

0 ≤ r ≤ 12, the additive inverse of each element of C13,6
r is contained within

C13,6
r . This means that additive inverse of each element of S13,6

i is also

contained in S13,6
i , and so ∆(0, S13,6

i ) = S13,6
i . The result then immediately

follows.

By exploiting the known connections between cyclotomic classes and cyclo-

tomic numbers, we can use this result to write the number of occurrences of

each element of GF(q) in the multiset ∆(D13,6
i ) in terms of a sum of cyclotomic

numbers. This is demonstrated in the following result.

Lemma 4.2.4. In the finite field GF(729), let α be a primitive element of

GF(729), C13,6
j denote the jth cyclotomic class of order 13, I = {0, 4, 10, 12} and

for 0 ≤ i ≤ 12, S13,6
i = D13,6

i \{0}, where D13,6
i = C13,6

i ∪C13,6
i+4 ∪C

13,6
i+10∪C

13,6
i+12∪{0}.

It then follows that

(i) ∆(S13,6
0 ) =

12⋃
r=0

∑
l∈I((r, l)13+(r−4, l−4)13+(r−10, l−10)13+(r−12, l−

12)13)C
13,6
r − 224{0},

(ii) ∆(S13,6
i ) =

12⋃
r=0

∑
l∈I((r− i, l)13+(r− i− 4, l− 4)13+(r− i− 10, l− 10)13+

(r − i− 12, l − 12)13)C
13,6
r − 224{0},

(iii) ∆(D13,6
i ) =

12⋃
r=0

∑
l∈I((r− i, l)13+(r− i− 4, l− 4)13+(r− i− 10, l− 10)13+

(r − i− 12, l − 12)13)C
13,6
r ∪ 2S13,6

i − 224{0}.

Proof. By Lemma 4.2.3

∆(S13,6
0 ) =

⋃
l∈I

(∆(C13,6
l , C13,6

0 ) ∪ α4∆
(
C13,6

l−4 , C
13,6
0

)
∪ α10∆

(
C13,6

l−10, C
13,6
0

)
∪α12∆

(
C13,6

l−12, C
13,6
0

)
)− 224{0}.
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It then follows by Lemma 2.1.18 that:

∆(S13,6
0 ) =

∑
l∈I

(
12⋃
r=0

(r, l)13C
13,6
r ∪ α4

12⋃
r=0

(r, l − 4)13C
13,6
r ∪ α10

12⋃
r=0

(r, l − 10)13C
13,6
r

∪α12

12⋃
r=0

(r, l − 12)13C
13,6
r )− 224{0}.

=
12⋃
r=0

∑
l∈I

((r, l)13C
13,6
r ∪ (r, l − 4)13C

13,6
r+4 ∪ (r, l − 10)13C

13,6
r+10 ∪ (r, l − 12)13C

13,6
r+12)

−224{0}.

∆(S13,6
0 ) =

12⋃
r=0

∑
l∈I

((r, l)13C
13,6
r ∪ (r − 4, l − 4)13C

13,6
r ∪ (r − 10, l − 10)13C

13,6
r

∪(r − 12, l − 12)13C
13,6
r )− 224{0}.

=
12⋃
r=0

∑
l∈I

((r, l)13 + (r − 4, l − 4)13 + (r − 10, l − 10)13

+(r − 12, l − 12)13)C
13,6
r − 224{0}.

(ii) By Lemma 4.2.3(ii) and part (i) that

∆(S13,6
i ) = αi(

12⋃
r=0

∑
l∈I

((r, l)13 + (r − 4, l − 4)13 + (r − 10, l − 10)13+

(r − 12, l − 12)13)C
13,6
r )− 224{0}

=
12⋃
r=0

∑
l∈I

((r, l)13 + (r − 4, l − 4)13 + (r − 10, l − 10)13+

(r − 12, l − 12)13)C
13,6
r+i − 224{0}.

It then follows by Lemma 2.1.18 that

∆(S13,6
i ) =

12⋃
r=0

∑
l∈I

((r − i, l)13 + (r − i− 4, l − 4)13 + (r − i− 10, l − 10)13+

(r − i− 12, l − 12)13)C
13,6
r − 224{0}.

(iii) Immediate from Lemma 4.2.3 and part (ii).
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Now that we have determined a formula for the number of times each element

of GF(729) occurs in the multiset ∆(D13,6
i ) (where 0 ≤ i ≤ 12) in terms of

cyclotomic numbers of order 13, we are able to prove that each set D13,6
i is a PDS

by substituting in the values of the cyclotomic numbers of order 13. As e = 13 is

prime p = 3 is odd and n1 = ord13(3) = 3 is odd, we are able to use Algorithm 2 to

identify the values of each internal cyclotomic orbit representative. By exhaustive

search, we can also identify the external cyclotomic orbit representatives, and

then use Algorithm 3 to find the values of each cyclotomic orbit representative.

The next few results in this Chapter are dedicated to stepping through the process

of computing the internal and external cyclotomic numbers of order e = 13 in

the finite field GF(729) in detail, as such, the internal cyclotomic number values

will be listed separately from the external cyclotomic number values. To see a

more accessible list of the cyclotomic numbers of order e = 13 in the finite field

GF(729), we refer the reader to Appendix C.

We now record the values of each of the internal cyclotomic orbit representa-

tives. These values were found by inputting e = 13, p = 3 and n1 = ord13(3) into

Algorithm 2.

Lemma 4.2.5. In the finite field GF(729), when e = 13 there are precisely 5

internal cyclotomic orbits under the relations R = {(i, j)e = (j, i)e, (i, j)e =

(e − i, j − i)e, (i, j)e = (ip, jp)e}. The internal cyclotomic orbit representatives

are as follows (0, 0)13, (1, 1)13, (2, 2)13, (4, 4)13 and (7, 7)13. The values of each

of the cyclotomic orbit representatives are as follows (0, 0)13 = 7, (1, 1)13 = 4,

(2, 2)13 = 2, (4, 4)13 = 6 and (7, 7)13 = 4.

Below we record the value of each of the internal cyclotomic numbers. These

values have been found by then equating the value of each of the cyclotomic orbit

representatives to the other elements contained within the same cyclotomic orbit.

Proposition 4.2.6. In the finite GF(729), the internal cyclotomic numbers of

13 are as follows

7 = (0, 0)13

4 = (1, 1)13 = (3, 3)13 = (9, 9)13 = (12, 0)13 = (10, 0)13 = (4, 0)13 = (0, 12)13 =

(0, 10)13 = (0, 4)13

2 = (2, 2)13 = (6, 6)13 = (5, 5)13 = (11, 0)13 = (7, 0)13 = (8, 0)13 = (0, 11)13 =

(0, 7)13 = (0, 8)13
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6 = (4, 4)13 = (12, 12)13 = (10, 10)13 = (9, 0)13 = (1, 0)13 = (3, 0)13 = (0, 9)13 =

(0, 1)13 = (0, 3)13

4 = (7, 7)13 = (8, 8)13 = (11, 11)13 = (6, 0)13 = (5, 0)13 = (2, 0)13 = (0, 6)13 =

(0, 5)13 = (0, 2)13.

We now compute the value of each of the external cyclotomic numbers. To

do this, we use an exhaustive approach to identify that there are 4 external

cyclotomic orbits of order 6 and 6 external cyclotomic orbits of order 18 under

the relations R = {(i, j)e = (j, i)e, (i, j)e = (e− i, j − i)e, (i, j)e = (ip, jp)e}. (To
see the elements contained within each of these orbits see Remark 4.2.9). We

identify the values of each of the external orbit representatives in the following

Lemma. Note that these values have been found by applying Algorithm 3 to each

of the cyclotomic orbit representatives.

Lemma 4.2.7. When e = 13 in finite field GF(729), there are precisely 10

external cyclotomic orbits under the relations R = {(i, j)e = (j, i)e, (i, j)e =

(e − i, j − i)e, (i, j)e = (ip, jp)e}. The orbit representatives for these external

cyclotomic orbits as follows:

(i) the orbit representative for the 4 cyclotomic orbits of order 6 are (3, 4)13,

(9, 10)13, (5, 7)13 and (6, 8)13,

(ii) the orbit representatives for the 6 cyclotomic orbits of order 18 are (1, 2)13,

(2, 3)13, (4, 5)13, (5, 6)13, (6, 7)13 and (7, 8)13.

The values of the orbit representatives are as follows (3, 4)13 = 8, (9, 10)13 = 1,

(5, 7) = 6, (6, 8)13 = 6, (1, 2)13 = 6, (2, 3)13 = 2, (4, 5)13 = 4, (5, 6)13 = 6,

(6, 7)13 = 2, (7, 8)13 = 5.

By equating each of the external cyclotomic orbit representatives to the other

elements contained within the same external orbit, we can then find the value of

each external cyclotomic number.

Lemma 4.2.8. By applying Algorithm 3 to each of the external cyclotomic orbit

representatives found in Remark 4.2.7 when R = {(i, j)e = (j, i)e, (i, j)e = (e −
i, j − i)e, (i, j)e = (ip, jp)e} and e = 13 in the finite field GF(729), we find that

6 = (1, 2)13, 2 = (2, 3)13, 8 = (3, 4)13, 4 = (4, 5)13, 6 = (5, 6)13, 2 = (6, 7)13 and

5 = (7, 8)13, 1 = (9, 10)13, 6 = (5, 7)13 and 6 = (6, 8)13.
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Proposition 4.2.9. In the finite GF(729), when e = 13, the external cyclotomic

numbers are take the following values

6 = (1, 2)13 = (3, 6)13 = (9, 5)13 = (2, 1)13 = (6, 3)13 = (5, 9)13 = (12, 1)13 =

(10, 3)13 = (4, 9)13 = (1, 12)13 = (3, 10)13 = (9, 4)13 = (11, 12)13 = (7, 10)13 =

(8, 4)13 = (12, 11)13 = (10, 7)13 = (4, 8)13,

2 = (2, 3)13 = (6, 9)13 = (5, 1)13 = (3, 2)13 = (9, 6)13 = (1, 5)13 = (11, 1)13 =

(7, 3)13 = (8, 9)13 = (1, 11)13 = (3, 7)13 = (9, 8)13 = (10, 12)13 = (4, 10)13 =

(12, 4)13 = (12, 10)13 = (10, 4)13 = (4, 12)13,

8 = (3, 4)13 = (9, 12)13 = (1, 10)13 = (4, 3)13 = (12, 9)13 = (10, 1)13,

4 = (4, 5)13 = (12, 2)13 = (10, 6)13 = (5, 4)13 = (2, 12)13 = (6, 10)13 = (9, 1)13 =

(1, 3)13 = (3, 9)13 = (1, 9)13 = (3, 1)13 = (9, 3)13 = (8, 12)13 = (11, 10)13 =

(7, 4)13 = (12, 8)13 = (10, 11)13 = (4, 7)13,

6 = (5, 6)13 = (2, 5)13 = (6, 2)13 = (6, 5)13 = (5, 2)13 = (2, 6)13 = (8, 1)13 =

(11, 3)13 = (7, 9)13 = (1, 8)13 = (3, 11)13 = (9, 7)13 = (7, 12)13 = (8, 10)13 =

(11, 4)13 = (12, 7)13 = (10, 8)13 = (4, 11)13,

2 = (6, 7)13 = (5, 8)13 = (2, 11)13 = (7, 6)13 = (8, 5)13 = (11, 2)13 = (7, 1)13 =

(8, 3)13 = (11, 9)13 = (1, 7)13 = (3, 8)13 = (9, 11)13 = (6, 12)13 = (5, 10)13 =

(2, 4)13 = (12, 6)13 = (10, 5)13 = (4, 2)13,

5 = (7, 8)13 = (8, 11)13 = (11, 7)13 = (8, 7)13 = (11, 8)13 = (7, 11)13 = (6, 1)13 =

(5, 3)13 = (2, 9)13 = (1, 6)13 = (3, 5)13 = (9, 2)13 = (5, 12)13 = (2, 10)13 =

(6, 4)13 = (12, 5)13 = (10, 2)13 = (4, 6)13,

1 = (9, 10)13 = (1, 4)13 = (3, 12)13 = (10, 9)13 = (4, 1)13 = (12, 3)13,

6 = (5, 7)13 = (2, 8)13 = (6, 11)13 = (7, 5)13 = (8, 2)13 = (11, 6)13,

6 = (6, 8)13 = (5, 11)13 = (2, 7)13 = (8, 6)13 = (11, 5)13 = (7, 2)13.

With the internal and external cyclotomic numbers of order e = 13 in the finite

field GF(729) calculated, we are able to prove that each D13,6
i , where 0 ≤ i ≤ 12

is a PDS in the finite field GF(729).

Theorem 4.2.10. In the finite field GF(729), let C13,6
i denote the ith cyclotomic

of order 13 for 0 ≤ i ≤ e− 1. Then the set

D13,6
i = C13,6

i ∪ C13,6
i+4 ∪ C13,6

i+10 ∪ C
13,6
i+12 ∪ {0GF(729)}

is a (729, 225, 63, 72)-PDS.
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Proof. This result can be obtained by substituting the cyclotomic numbers, de-

tailed in Propositions 4.2.6 and 4.2.9 into the formula

∆(D13,6
i ) =

12⋃
r=0

∑
l∈I

((r − i, l)13 + (r − i− 4, l − 4)13 + (r − i− 10, l − 10)13+

(r − i− 12, l − 12)13)C
13,6
r ∪ 2S13,6

i − 224{0},

found in Lemma 4.2.4. It is left up to the reader to satisfy themselves that this is

true. A complete proof that the set D13,6
0 is a (729, 225, 63, 72)-PDS is recorded

in Appendix C. The reader can use Lemma 4.2.3 to obtain a formal proof that

this results also holds for the set D13,6
i when 1 ≤ i ≤ 12.

As the reader can see from the above results, this cyclotomic result is not

generalisable because the result relies upon direct computation of the cyclotomic

numbers of order 13 in the finite field GF(729). To generalise this result, we

would need to identify a formula or technique for determining the cyclotomic

numbers of order e = pm−1
p−1

, or at least certain symmetries in the sums of these

numbers, in a general finite field GF(p2m) (which we can also view as the group

Z2m
p ). As no such results currently exist, to get around this issue in the paper

[20], we relied upon quadratic forms.

Subsequent to the original submission of this Thesis, I have been involved in

a collaborative project with Dr. Sophie Huczsnyska and Prof. Maura Paterson,

in which we developed a technique for computing cyclotomic numbers of order

e | pm−1
p−1

whenm ≥ 3. For further information, see our preprint [36]. In them = 3

case, our new techniques signficantly speed up the computation of cyclotomic

numbers. By generalising the techniques in this paper, we hope to identify new

cyclotomic number results, which will ultimately allow us to produce a purely

cyclotomic proof that D
pm−1
p−1

0 is a PDS in the group Z2m
p .
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Chapter 5

Non-cyclotomic constructions of

DPDFs and EPDFs

The previous Chapters in this Thesis are concerned with developing new cyclo-

tomic techniques for constructing cyclotomic PDSs, DPDFs and EPDFs; however

finite field cyclotomy is not the only tool that we can deploy to identify new DPDF

and EPDF constructions. In this Chapter, we present a series of non-cyclotomic

constructions of these objects. One particularly interesting feature of these non-

cyclotomic DPDF/EDPF constructions is that unlike their cyclotomic counter-

parts, they rely heavily on the structure of additive subgroups/complements of

subgroups. This gives wider variety to the DPDF and EPDF constructions and

parameter sets in this Thesis. Another point of interest that arises from the study

of non-cyclotomic DPDFs and EPDFs is that we can find examples of DPDFs

that are not simultaneously EPDFs and vice versa.

We begin by covering a selection of non-cyclotomic DPDF and EPDF con-

structions that can be obtained via non-cyclotomic PDSs in Section 5.1. In

Section 5.2, we look at some non-cyclotomic DPDF and EPDF results that can

be constructed from Relative Difference Sets (we define these objects in Section

5.2). Section 5.2 includes our main result, in which we demonstrate that the

“affine” RDS construction first obtained by Bose in [8] can be extended to a

non-cyclotomic DPDF and EPDF construction. In the final part of the Chapter,

we introduce the first examples of DPDFs that are not simultaneously EPDFs

and vice versa. Note that all DPDF and EPDF constructions contained in this

Chapter can be found in my joint paper with my supervisor [35].
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5.1 DPDF and EPDF constructions arising from

non-cyclotomic PDSs

We begin this Section by looking a result that narrows down the possibilities for

DPDFs and EPDFs that partition proper PDSs.

Theorem 5.1.1. Let Zv be the cyclic group of order v. Suppose S
′ = {D1, . . . , Ds}

is a (v, s, k, λ1, µ1)-DPDF and a (v, s, k, λ2, µ2)-EPDF in Zv, which partitions a

proper PDS, S = ∪s
i=1Di. Then either;

(i) v is an odd prime and v ≡ 1 mod 4, in which case S ′ partitions the set of

non-zero quadratic residues, or the non-residues modulo v,

(ii) or v is a composite number, in which case S ′ partitions a proper non-trivial

subgroup H of Zv or its complement Zv\H.

Proof. By Definition 1.3.11, the element 0 ̸∈ S ′ since all DPDFs partition G∗.

As S ′ partitions S it is immediate that 0 ̸∈ S. Further, as S is proper, for each

s ∈ S, it follows that −s ∈ S (s and −s occur the same number of times in the

multiset ∆(S), so if −s ∈ G\S it immediately follows from Definition 1.3.1 that

S is not proper), hence we can conclude that S = −S. It therefore follows by

Definition 1.3.1 that since 0 ∈ S and S = −S, S must be a regular PDS. It is

stated in Corollary 5.7 of [49] that when S is a regular PDS in Zv, either v ≡ 1

mod 4 is an odd prime and S is the set of quadratic (or non-quadratic) residues

modulo v or v is a composite number, and H = S ∪ {0} is either a subgroup of

Zv or S is the complement of a subgroup H of Zv.

Below we give one example of both of the cases in Theorem 5.1.1.

Example 5.1.2. (i) In the cyclic group Z17, S = {1, 2, 4, 8, 9, 13, 15, 16} is the

set of non-zero squares. By a result in [56] (Proposition 3.1.2 is an analogue

of this result, written in cyclotomic notation) in any cyclic group of order

p, where p is prime and p ≡ 1 mod 4, the set of non-zero squares is a

(p, p−1
2
, p−5

4
, q−1

4
)-PDS. It therefore follows that S is a (17, 8, 3, 4)-PDS.

Notice that the following collection of sets, S ′ is a partition of S

S ′ = {{1, 4, 13, 16}, {2, 8, 9, 15}}.
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Moreover, observe that

Int(S ′) = ∆({1, 4, 13, 16}) ∪∆({2, 8, 9, 15})

= {2, 3, 3, 5, 5, 8, 9, 12, 12, 14, 14, 15} ∪ {1, 4, 6, 6, 7, 7, 10, 10, 11, 11,

13, 16}

= {1, 2, 4, 8, 9, 13, 15, 16} ∪ 2{3, 5, 6, 7, 10, 11, 12, 14}

= S ∪ 2(Z∗
17\S).

Hence, it naturally follows by Definition 1.3.11 that S ′ is a (17, 2, 4, 1, 2)-

DPDF, and it therefore follows by Theorem 1.3.17(iii) that S ′ is also a

(17, 2, 4, 2)-EDF. Thus, S ′ is an example of one of the sets described in

Theorem 5.1.1(i).

(ii) Let G = Z6 and H = {0, 3} ≤ G. Since H is a subgroup of Z6, it follows by

Theorem 1.3.19 that S = Z6\H = {1, 2, 4, 5} is a (6, 4, 2, 4)-PDS.

The following collection sets

S ′ = {{1, 4}, {2, 5}}

is a partion of S. By computing the elements of Int(S ′) and Ext(S ′), the

reader will be able to determine that S ′ is both a (6, 2, 2, 0, 4)-DPDF and a

(6, 2, 2, 2, 0)-EPDF. Therefore, S ′ is an example of one of the sets described

in Theorem 5.1.1 (ii).

The following result, recorded in [49], is used in subsequent results.

Lemma 5.1.3. Let G be a group of order mn with identity e and let H be a

subgroup of G of order n.

(i) H\{e} is an (mn, n− 1, n− 2, 0)-PDS.

(ii) G\H is an (mn, n(m− 1), n(m− 2), n(m− 1))-PDS.

(iii) The sets H, H\{e}, G\H and G\H ∪ {e} are PDSs, with H\{e} and G\H
being regular.
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Proof. For part (i), it is immediate that ∆(H\{e}) = (n − 2)H. For part (ii),

notice that ∆(G) = ∆(G\H) ∪ ∆(G\H,H) ∪ ∆(H,G\H) ∪ ∆(H); since ∆(G) =

(mn)G, ∆(H) = nH, ∆(G\H,H) = n(G\H) and ∆(H,G\H) = n(G\H), we can

deduce that ∆(G\H) = (mn−n)H∪ (mn−2n)(G\H). Part (iii) is an immediate

consequence of part (i) and Theorem 1.3.19.

Following on from the above Lemma, we can establish the following impor-

tant result about DPDFs and EPDFs that partition subgroups with the identity

removed.

Theorem 5.1.4. Let G be a group of order mn and H be a subgroup of G of

order n. Let S = H∗.

(i) If S ′ is an (mn, s, k, λ, µ)-DPDF (respectively EDPF) partitioning S, then

µ = 0, and S ′ is a near-complete (n, s, k, λ)-DDF (respectvely EDF) in the

group H (i.e. the component sets of S ′ partition H∗) .

(ii) Each near-complete (n, s, k, λ)-DDF (respectively EDF) in the group H cor-

responds to an (mn, s, k, λ, 0)-DPDF (respectively EPDF) partitioning S in

every group G, in which H ≤ G.

Proof. (i) As H is a subgroup it follows by Lemma 5.1.3 that ∆(S) = (n−2)S∪
0(G∗\S). As S ′ is a (mn, s, k, λ, µ)-DPDF, Int(S ′) = λS ∪ µ(G∗\S), where
λ, µ ≥ 0. As consequence of Lemma 1.2.4, 0 ≤ λ ≤ n− 2 and µ = 0. Since

S ′ partitions H∗, and hence Int(S ′) comprises λ copies of the non-identity

elements of H, it naturally follows that S ′ is a near-complete DDF in H.

We can analogously show that any EPDF partitioning H is a near-complete

EDF in H.

(ii) This result naturally follows by embedding H into G.

Example 5.1.5. As previously noted in Example 1.3.5, the sets {1, 2, 4} and

{3, 5, 6} form a (7, 2, 3, 2)-DDF in Z7. This DDF is near-complete as the compo-

nent sets partition Z∗
7. Notice these sets are also a (7, 2, 3, 3)-near-complete EDF

in Z7.

The group Z21 contains the subgroup H = {0, 3, 6, 9, 12, 15, 18}, which is iso-

morphic to Z7 via the embedding f : Z7 → Z21, x 7→ 3x. It therefore follows that

the sets {3, 6, 12} and {9, 15, 18} form a (21, 2, 3, 2, 0)-DPDF and a (21, 2, 4, 3, 0)-

EPDF in Z21.
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Note that as near-complete DDFs and EDFs have been well-studied in the

literature (see for example see [14],[21]), we can find many examples of the above

construction. We therefore turn our attention to DPDFs and EPDFs that par-

tition G\H. Note that from this point in the Chapter onwards, we will be using

the term non-trivial cosets of H to refer to the set of all cosets of H, excluding

H itself.

Theorem 5.1.6. Let G be a group of order mn and H be a normal subgroup of

G of order n. Then the set of non-trivial cosets of H in G forms an (mn,m −
1, n, 0,mn− n)-DPDF and an (mn,m− 1, n,mn− 2n, 0)-EPDF.

Proof. It follows by Lemma 5.1.3 that G\H is an (mn,mn−n,mn−2n,mn−n)-
PDS. Moreover, it is clear that non-trivial cosets of H partition G\H, and the

multiset of internal differences of each non-trivial coset of H, consists of n copies of

H∗ and 0 copies of G\H. As there are m−1 non-trivial cosets of H in G, it follows

that the set of non-trivial cosets of H forms a (mn,m − 1, n, 0,mn − n)-DPDF

and consequently an (mn,m− 1, n,mn− 2n, 0)-EPDF by Lemma 1.2.4.

We finish this Section by establishing some parameter constraints for DPDFs

and EPDFs that partition the complement of a subgroup, but before we get onto

our main result, we require the following technical Lemma.

Lemma 5.1.7. If gcd(sk, v − 1) = 1, then;

(i) for every (v, s, k, λ1, µ1)-DPDF, either µ1 = 0 or µ1 = sk.

(ii) for every (v, s, k, λ2, µ2)-EPDF, either µ2 = 0 or µ2 = sk.

Proof. By Lemma 1.3.14 (i), sk(k−1) = λ1sk+µ1(v−1−sk), it is therefore clear
that sk | µ1(v− 1− sk). Since sk and v− 1 are coprime, it therefore follows that

sk | µ1, and as µ1 ≤ sk, it follows that µ1 = 0 or µ1 = sk. Part (ii) analogously

follows by Lemma 1.3.14 (ii).

We may now state our main result of this Section.

Theorem 5.1.8. Let G be a group of order v = mn. Suppose that S ′ is a

(v, s, k, λ1, µ1)-DPDF and a (v, s, k, λ2, µ2)-EPDF that partitions G\H, where H

is a subgroup of G order n. Then;

(i) n | µ1 and n | µ2.
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(ii) If gcd(mn− n,mn− 1) = 1, then S ′ is one of the following:

(a) an (mn, s, k, k−1, 0)-DPDF and an (mn, s, k,mn−2n−k+1,mn−n)-
EPDF,

(b) an (mn, s, k, k − n,mn − n)-DPDF and an (mn, s, k,mn − n − k, 0)-

EPDF.

(iii) If n = 2 then S ′ is one of the following:

(a) a (2m, s, k, k−1, 0)-DPDF and a (2m, s, k, 2m−3−k, 2m−2)-EPDF,

(b) a (2m, s, k, k−2, 2m−2)-DPDF and a (2m, s, k, 2m−2−k, 0)-EPDF.

Proof. In part (i), notice that since S ′ partitions G\H, this means that sk =

n(m − 1). Note that there are n − 1 elements in H\{e}. It is then immediate

form Lemma 1.3.14 (i) that

n(m− 1)(k − 1) = λ1n(m− 1) + µ1(n− 1).

Similar to the proof of Lemma 5.1.7, since n | µ1(n − 1) and gcd(n − 1, n) = 1,

we have n | µ1. We can use a similar technique to prove that n | µ2. Parts (ii)

and (iii) are a direct consequence of Lemma 5.1.7. Note that in part (iii), when

n = 2, gcd(mn− n,mn− 1) = 1.

5.2 DPDF and EPDF constructions arising from

Relative Difference Sets

In this Section, we write G multiplicatively and we don’t assume that G abelian.

Relative Difference Sets (RDSs) are combinatorial objects that were first de-

fined by Elliot and Butson in [28], but were previously introduced implicitly by

Bose in the paper [8] as an affine analogue to Singer Difference Sets. RDSs are

similar objects to PDSs, in the sense that the non-identity elements of a group G

occur as a pairwise difference between elements of the RDS at one of two frequen-

cies: the distinction is that the frequency at which an element of G occurs as a

pairwise difference is dependent upon membership/non-membership of a partic-

ular subgroup H. Like PDSs, RDSs have been well-studied in the literature (see

[10],[15],[28],[30],[44]); for an extensive survey of RDSs see [59].



131

Definition 5.2.1. Let G be a group of order mn and let H be normal subgroup of

G of order n. We say a k-subset R of G is an (m,n, k, λ)-relative difference

set (or RDS) in G relative to H if the following multiset equation holds;

∆(R) = λ(G\H)

i.e. λ copies of each element in G\H and no copies of any element of H. If n = 1,

R is a Difference Set.

Example 5.2.2. Let G = Z8. The set R = {1, 6, 7} is a (4, 2, 3, 1)-RDS with

respect to H = {0, 4} as the multiset ∆(R) consists of one copy of every element

in G\H, and no copies of the elements of H.

To be consistent with the original definition of an RDS, I have chosen to

define RDSs as difference structures that are relative to normal subgroups in this

Thesis, however it is important to note the following fact, which will be used to

make a later result more general.

Remark 5.2.3. In Definition 5.2.1, it is possible to relax the condition that H

is a normal subgroup. In fact, in Theorem 1.1 of [15] the authors present an

RDS construction in the group A5 relative to a subgroup of order 2. Whilst

this construction satisfies most requirements of an RDS, it fails to satisfy the

requirement that H is a normal subgroup.

We can use RDSs to identify new DPDF and EPDF constructions. In this

Section, we present some theoretical results and DPDF and EPDF constructions

that utilise RDSs. We begin this Section by presenting some important general

results required to construct DPDFs and EPDFs from RDSs. This Section then

culminates by demonstrating that Bose’s original RDS construction in [8] can be

extended to a construction of DPDFs.

Proposition 5.2.4. Let G be a group of order mn and let H be a (not necessarily

normal) subgroup of G of order n. If S ′ = {D1, . . . , Ds} is a family of disjoint

k-subsets of G such that;

(i) each Di (1 ≤ i ≤ s) is an (n,m, k, λ)-RDS in G relative to H,

(ii) S ′ partitions G\H,
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then S ′ is an (mn, s, k, sλ, 0)-DPDF and an (mn, s, k,mn − 2n − sλ,mn − n)-

EPDF.

Proof. As each Di is an (n,m, k, λ)-RDS, ∆(Di) = λ(G\H) ∪ 0(H). As Int(S ′) =

∪s
i=1∆(Di), it follows that Int(S

′) = sλ(G\H)∪ 0(H), and so S ′ is an (mn, s, k, sλ, 0)-

DPDF. It was demonstrated in Lemma 5.1.3 that G\H is an (mn,mn− n,mn−
2n,mn−n)-PDS, and so it follows by Lemma 1.2.4 that S ′ is also an (mn, s, k,mn−
2n− sλ,mn− n)-EPDF.

One way of identifying DPDF and EPDF constructions arising from RDSs

is to take a series of disjoint translates of an RDS in a group G that partitions

G\H. The following Lemma, based on a result of [30], highlights a property that

translates of an RDS must have in order to be disjoint.

Lemma 5.2.5. Let G be a group and H be a (not necessarily normal) subgroup

of G and let S be an (m,n, k, λ)-RDS relative to H. Let g1 ̸= g2 ∈ G. Then the

translates g1S and g2S are disjoint if and only if g−1
2 g1 ∈ H.

Proof. For both directions of this proof we prove the contrapositive. In the

forwards direction, suppose g−1
2 g1 ∈ G\H; notice that we may write g−1

2 g1 = y,

where y ∈ G\H. As S is an RDS relative to H, for every element z ∈ G\H,
there are precisely λ > 0 pairs (s1, s2) ∈ S × S such that s2s

−1
1 = z (since

s2s
−1
1 ∈ ∆(S)). Further, this means that there are λ pairs (s1, s2) ∈ S × S such

that s2s
−1
1 = y (where g−1

2 g1 = y as above). It follows from the above that

when g−1
2 g1 ∈ G\H, there exist s1, s2 ∈ S such that g−1

2 g1 = s2s
−1
1 . We can

rearrange this expression to give g1s1 = g2s2; this then implies g1S ∩ g2S ̸= ∅.
For the reverse direction, suppose that g1S ∩ g2S ̸= ∅, meaning that there exist

elements s1, s2 ∈ S such that g1s1 = g2s2. We can rearrange this expression to

give g−1
2 g1 = s2s

−1
1 . As S is an RDS relative to H, this means that s2s

−1
1 ∈ G\H,

this implies that g−1
2 g1 ∈ G\H.

Notice that since the argument of this proof does not depend upon the sub-

group H being normal, we can use Remark 5.2.3 to apply this result to RDSs

relative to a subgroup H, where H is not normal.

The following Remark about the parameters of an RDS, whose translates

partition G\H, is a consequence of Lemma 5.2.5.



133

Remark 5.2.6. (i) Suppose S is an (n,m, k, λ)-RDS, then k(k − 1) = (mn−
n)λ. To see this, note that ∆(S) = k(k−1) and there are precisely mn−m
elements in G\H.

(ii) Suppose S is an (n,m, k, λ)-RDS, whose translates partition G\H. By

Lemma 5.2.5 two translates h1+S and h2+S will be disjoint if and only if

h1, h2 ∈ S. As |H| = n, this means that that there are precisely n disjoint

translates of S partitioning G\H, and since there are nm − m elements

in G\H, it follows that nk = (nm − m), implying k = m − 1. By sub-

stituting k = m − 1 into the equation obtained in part (i), we find that

(m− 1)(m− 2) = n(m− 1)λ or in other words λ = m−2
n

.

Henceforth, we assume that H is a normal subgroup of G.

Lemma 5.2.7. Let G be a group and H be a normal subgroup of G. Suppose that

S is an (m,n, k, λ)-RDS relative to H. Then;

(i) ∆(S) = ∆(gS) for any g ∈ G. This means that any translate gS is an

(m,n, k, λ)-RDS relative to H.

(ii) S cannot contain more than one representative from any coset gH (g ∈ G).

In particular, k ≤ m.

Proof. (i) The multiset ∆(gS) consists of all elements of the form gs1(gs2)
−1 =

g(s1s
−1
2 )g−1, where s1s

−1
2 ∈ ∆(S). As S is an RDS, it follows that ∆(S)

comprises λ copies of G\H and 0 copies of H. As H is a normal sub-

group, it follows that gHg−1 = H and gGg−1 = G, therefore we have that

g(G\H)g−1 = G\H. It then naturally follows that ∆(gS) comprises λ copies

of G\H and 0 copies of H.

(ii) Suppose that S contains two elements s1 ̸= s2 ∈ gH; we write s1 = gh1 and

s2 = gh2. Observe that s1s
−1
2 = gh1(gh2)

−1 = g(h1h
−1
2 )g−1, but as we saw

in part (i), as H is a normal subgroup, this means s1s
−1
2 = g(h1h

−1
2 )g−1 ∈ H.

We must therefore have s1 = s2 which is a contradiction.

We conclude this part of this Section with a result that ties the above results

together to demonstrate that any collection of disjoint RDSs that partition G\H
and meet the parameter constraints outlined in Remark 5.2.6 forms both a DPDF

and an EPDF.
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Theorem 5.2.8. Let G be a group of order mn and let H be a normal subgroup

of G of order n. Suppose there exists an (m,n,m− 1, m−2
n

)-RDS R in G relative

to H. Then there exists an (mn, n,m − 1,m − 2, 0)-DPDF and an (mn, n,m −
1, (m− 2)(n− 1), (m− 1)n)-EPDF which partitions G\H.

Proof. It is immediate from Lemma 5.2.7 that any translate gR, where g ∈ G,

is an (m,n,m − 1, m−2
n

)-RDS. We also demonstrate in Lemma 5.2.7 that every

RDS R contains at most one coset representative of every coset of H. Since

[G : H] = m and the cardinality of R is m − 1, this means that R contains one

representative from m− 1 of the cosets of H and no representative from the final

coset. Let aH be the only coset of H without a representative in R and suppose

ah ∈ aH. We will now prove that the translate S := a−1R, where a−1 ∈ G is

the multiplicative inverse of a ∈ G, is an RDS comprising only of representatives

of non-trivial cosets of H. Let R′ = R ∪ {ah}, where ah ∈ aH as above, then

a−1R′ = a−1R∪{a−1ah} = a−1R∪{h}. Notice that since h ∈ H and R′ contains

one representative of each distinct coset of H, this implies that S = a−1R cannot

contain an element of H.

Let SH = {hS |h ∈ H}, meaning that SH is the set of all translates of S

by elements of the multiplicative subgroup H. As S contains no elements of H,

it follows that hS ∩ H = ∅, since if hS ∩ H was non-empty, this would imply

that there exists a h1 ∈ H such that h1 = hs for some s ∈ S i.e. s = h−1h1,

which is clearly not true. By Lemma 5.2.7, the translates of S contained in

SH are all disjoint, so the union of the sets in SH has (m − 1)n elements. It

therefore follows that SH partitions G\H; thus, by Proposition 5.2.4, SH is both

an (mn, n,m−1,m−2, 0)-DPDF and an (mn, n,m−1, (m−2)(n−1), (m−1)n)-

EPDF.

Example 5.2.9. Let G = Z8. We saw in a previous example that the set S =

{1, 6, 7} is a (4, 2, 3, 1)-RDS relative to the (normal) subgroup H = {0, 4}. By

translating S by 4, we obtain the set {5, 2, 3}, which by Lemma 5.2.7 is also a

(4, 2, 3, 1)-RDS. As the RDSs {1, 6, 7} and {5, 2, 3} partition Z8\{0, 4}, it follows
that {1, 6, 7} and {5, 2, 3} form an (8, 2, 3, 2, 0)-DPDF and an (8, 2, 3, 2, 6)-EPDF.
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5.2.1 Extension of Bose’s construction to DPDFs/EPDFs

In this Subsection, we cover an elegant extension of Bose’s original RDS construc-

tion in the paper [8] to constructions of DPDFs and EPDFs. This constructions

fits in well with the general themes of this Thesis, as in contrast to previous re-

sults, it presents a non-cyclotomic DPDF and EDPF construction in finite fields

of order q, where q is an even power of a prime. Note, while cyclotomic classes

appear as multiplicative cosets in the proof below, cyclotomic techniques are not

used.

Theorem 5.2.10. Let q be a prime power and let α be a primitive element of

GF(q2) with primitive polynomial f over GF(q). For each αi ∈ GF(q2) (0 ≤ i ≤
q2 − 2), there exist ai, bi ∈ GF(q) such that αi = ai + biα.

(i) For each c ∈ GF(q)∗, let

Sc := {αi ∈ GF(q2) |αi = ai + cα, ai ∈ GF(q)}.

Then the family {Sc}c∈GF(q)∗ is a multiplicative (q2 − 1, q − 1, q, q − 1, 0)-

DPDF and a multiplicative (q2 − 1, q− 1, q, (q− 1)(q− 2), q2 − q)-EPDF in

GF(q2)∗.

(ii) For each c ∈ GF(q)∗ let

S ′
c := {i |αi ∈ Sc, 0 ≤ i ≤ q2 − 2} ⊆ Zq2−1.

Then the family {S ′
c}c∈GF(q)∗ is an additive (q2 − 1, q− 1, q, q− 1, 0)-DPDF

and an additive (q2 − 1, q − 1, q, (q − 1)(q − 2), q2 − q)-EPDF in Zq2−1.

Proof. Let c ∈ GF(q)∗. To construct each set Sc, we first identity the elements

contained in each multiplicative coset of GF(q)∗ in GF(q2)∗, and we express the

elements of each of the multiplicative cosets as elements of the form a + bα

(a, b ∈ GF(q)) via the primitive polynomial. There are q2−1
q−1

= q + 1 cosets of

C0 = ⟨αq+1⟩ ∼= GF(q)∗ and each of them can be written in the form Ci = αiC0,

where 0 ≤ i ≤ q). The elements of each coset Ci, where 0 ≤ i ≤ q, can be written

as

Ci = {tαi | t ∈ GF(q)∗} = {tai + tbiα | t ∈ GF(q)∗}.
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In each multiplicative coset Ci, there is one unique element whose coefficient

of α is c; this is the element cb−1
i (ai + biα). For each c ∈ GF(q)∗, observe

Sc = {cb−1
1 (a1 + b1α), cb

−1
2 (a2 + b2α), . . . , cb

−1
q (aq + bq)α}.

Therefore, precisely one element of every non-trivial multiplicative coset Ci

with i ̸= 0 is contained in Sc. As c runs through GF(q)∗, the q − 1 sets in

{Sc}c∈GF(q)∗ partition the elements of GF(q2)∗\C0. Each Sc is an example of a

multiplicative (q+1, q−1, q, 1)-RDS in GF(q2)∗ with respect to the multiplicative

subgroup C0. Further, each of these RDSs is an example of the original RDSs

obtained by Bose in [8]. To see that no element of C0 arises as a multiplicative

difference between a pair of elements of a particular Sc, observe that every element

of Sc is in a distinct coset of C0. It can be shown by direct computation that

each element of GF(q2)∗\C0 arises precisely once as a difference in the multiset

∆(Sc) (the details of this are left up to the reader). As each Sc is an RDS, and

{Sc}c∈GF(q)∗ partitions GF(q2)∗\C0, it follows by Theorem 5.2.8 that {Sc}c∈GF(q)∗

is a (q2−1, q−1, q, q, 0)-DPDF and a (q2−1, q−1, q, (q−1)(q−2), q2−q)-EPDF.
Finally, we convert each Sc to a set of powers of α i.e. a set S ′

c = {i |αi ∈
Sc, 0 ≤ i ≤ q2 − 2} ⊆ Zq2−1. Clearly each S ′

c is an additive (q + 1, q − 1, q, 1)-

RDS, hence {S ′
c}c∈GF(q)∗ is an additive DPDF and EPDF in Zq2−1.

There is a natural interpretation of Theorem 5.2.10 in finite geometry; we may

consider each element αi = ai + biα ∈ GF(q2) to be a point (ai, bi) in the affine

plane AG(2, q). We may then view each set Sc as a line in a given parallel class,

which gives us the connection to Bose’s original construction in [8]; for further

information see our paper [35].

Example 5.2.11. In the finite field GF(25), let α be a primitive element, with

primitive polynomial x2+x+2 over GF(5). By computing the first 6 powers of α;

α, α2 = 3+4α, α3 = 2+4α, α4 = 2+3α, α5 = 4+4α, α6 = 2, we can compute the

non-trivial multiplicative cosets of the multiplicative subgroup C0 = {1 = α0, 2 =

α6, 4 = α12, 3 = α18} = GF(5)∗ in GF(25)∗, which are: C1 = {α, 2α, 4α, 3α},
C2 = {3 + 4α, 1 + 3α, 2 + α, 4 + 2α}, C3 = {2 + 4α, 4 + 3α, 1 + 2α, 3 + α},
C4 = {2 + 3α, 4 + α, 1 + 4α, 3 + 2α}, C5 = {4 + 4α, 3 + 3α, 2 + 2α, 1 + α}.

It follows above that S1 = {α1, α14, α15, α10, α17}, S2 = {α7, α20, α21, α16, α23},
S3 = {α19, α8, α9, α4, α11} and S4 = {α13, α2, α3, α22, α5}. Each Sc forms a
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multiplicative (6, 4, 5, 1)-RDS with respect to the multiplicative subgroup C0 =

{1, 2, 3, 4} in GF(25)∗, and as the subsets partition GF(25)∗\C0, it is clear that

they also form a (24, 4, 5, 4, 0)-DPDF and a (24, 4, 5, 12, 30)-EPDF in GF(25)∗.

Moreover, S ′
1 = {1, 14, 15, 10, 17}, S ′

2 = {7, 20, 21, 16, 23}, S ′
3 = {19, 8, 9, 4, 11},

S ′
4 = {13, 2, 3, 22, 5} are individually additive (6, 4, 5, 1)-RDSs in Z24, and thus

form both a (24, 4, 5, 4, 0)-DPDF and (24, 4, 5, 12, 20)-EPDF in the group Z24.

5.3 DPDFs that are not EPDFs and vice versa

In this short section we present a construction of a DPDF that is not also an

EPDF and include some computational examples of EPDFs that are not DPDFs.

Proposition 5.3.1. Let t > 2. Then in Z2t+1, the collection of sets

S ′ = {{2, 3}, {4, 5}, . . . , {2t− 2, 2t− 1}}

form a (2t+ 1, t− 1, 2, 0, t− 1)-DPDF which is not also an EPDF.

Proof. Each Si ⊂ S ′ takes the form {2i, 2i+1} for (1 ≤ i ≤ t−1). It follows that

for each Si ⊂ S ′, ∆(Si) = {−1, 1}. Therefore the multiset Int(S ′) comprises t− 1

copies of the elements of the set {−1, 1}, and no copies of the other elements of

Z2t+1. Since S = ∪s
i=1Si (where Si ∈ S ′) consists of all non-zero elements of Z2t+1,

except the elements ±1, it is immediate that S ′ is a (2t+1, t−1, 2, 0, t−1)-DPDF.

Notice that there are t − 2 pairs of consecutive sets in S ′; for each pair of

consecutive sets, we may write Si = {2i, 2i + 1} and Si+1 = {2i + 2, 2i + 3},
where 1 ≤ i ≤ t− 2. Notice that for each 1 ≤ i ≤ t− 1, 2i + 2− (2i + 1) = 1 ∈
∆(Si+1, Si) and 2i + 1− (2i + 2) = −1 ∈ ∆(Si, Si+1); meaning that there are at

least t − 2 copies of the elements in the set {1,−1} in Ext(S ′). Similarly, since

2i+2−2i, 2i+3− (2i+1) ∈ ∆(Si+1, Si) and 2i+2−2i, 2i+3− (2i+1) = 2, this

means that there are at least 2(t− 2) copies of 2 in Ext(S ′). We can analogously

show that there are at least 2(t− 2) copies of −2 in Ext(S ′).

As each sub-multiset ∆(Si, Sj) ∈ Ext(S ′) (1 ≤ i, j ≤ t − 1) has cardinality

4, and there are (t − 1)(t − 2) multisets of the form ∆(Si, Sj) ∈ Ext(S ′),; this

means there are 4(t − 1)(t − 2) elements in Ext(S ′). If we assume that S ′ is an

EPDF, then each element in Z∗
2t+1\{1,−1} must occur at the same frequency

as {2,−2}, which is at least 2(t − 2). After the removal of the copies of the
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elements of the set {±1,±2} from the multiset Ext(S ′), we are left with at most

4(t − 1)(t − 2) − 6(t − 2) = 2(t − 2)(2t − 5) elements in the multiset Ext(S ′).

There are 2t + 1 − 5 = 2(t − 2) elements in Z∗
2t+1\{±1,±2}. This means if

Ext(S ′) contains at least t − 2 copies of {1,−1} and at least 2(t − 2) copies of

{2,−2}; then every element of Z∗
2t+1\{±1,±2} occurs with frequency at most

2(t−2)(2t−5)
2(t−2)

= 2t− 5, and since 2t− 5 < 2(t− 2), S ′ is not an EDF.

The following EPDF examples in cyclic groups (found by Prof. Chris Jefferson

[41] via computation in GAP [31]) are, to date, our only examples of EPDFs that

are not also DPDFs. We are yet to find an overarching construction for these

results, but they have been included within this Thesis as they may be of interest

to the reader.

Example 5.3.2. (i) The sets {1, 8}, {3, 6} form a (9, 2, 2, 0, 2)-EPDF in Z9,

which is not simultaneously a DPDF.

(ii) Similarly, the sets {1, 2, 11, 12}, {3, 5, 8, 10} form a (13, 2, 4, 2, 4)-EPDF which

is not also a DPDF.
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Chapter 6

Conclusion and further work

In this Thesis, we introduced two new combinatorial objects, known as Disjoint

Partial Difference Families (DPDFs) and External Partial Difference Families

(EPDFs), that generalise many of the existing structures in the literature. We

established two new cyclotomic frameworks which may be used to identify new

cyclotomic constructions of these objects. A key strength of the cyclotomic frame-

works developed in this Thesis is that they give mathematicians a novel way of

using finite field cyclotomy to identify new constructions of various difference

structures, without having to rely upon evaluating specific cyclotomic numbers.

We applied the cyclotomic frameworks to identify new DPDF and EPDF

constructions in various finite fields. Moreover, we used the techniques from

these frameworks to create a series of algorithms that compute the cyclotomic

numbers of order e in large finite fields; it is useful to have algorithms that

allow one to generate cyclotomic numbers in large finite fields in order to analyse

patterns of cyclotomic numbers within larger finite fields and thus identify new

universal cyclotomic behaviour. In this Thesis, we used this algorithm to produce

the cyclotomic numbers of order 13 in the finite field GF(729), thus proving that

a PDS with Denniston parameters exists in this particular finite field. Finally,

we established the first non-cyclotomic constructions of DPDFs and EPDFs from

collections of non-cyclotomic PDSs and RDSs.

There are many different ways in which we can expand upon the work of this

Thesis. One natural direction is to look at further developing the cyclotomic

frameworks that we established in Chapter 2. In the paper [51], the authors use

lifting constructions to identify new constructions of cyclotomic Difference Sets.
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By incorporating such techniques into our framework, we will be able to identify

new cyclotomic constructions of Difference structures. Another idea that we will

explore is looking at cyclotomy in Galois Domains Storer laid the foundations

for this in the second half of [60], and we explored similar ideas in our Denniston

project.

In terms of the cyclotomic orbit framework, there are several questions that

it would helpful to answer, for example:

Question 1. When p and e ≥ 5 are distinct odd primes and n1 = orde(p)

in GF(e) is odd, can we determine the cyclotomic orbit representative of any

cyclotomic orbit of order 2n1?

Question 2. When p and e ≥ 5 are distinct odd primes and n1 = orde(p) is odd,

can we determine the cyclotomic orbit representative of any cyclotomic orbit of

order 6n1?

Resolving these questions will allow us to generate an algorithm which auto-

matically computes the external cyclotomic numbers of e in a finite field GF(q)

of order q = pm = ef + 1, where p is prime, f is even, e ≥ 5 and n1 = orde(p)

is odd, which will increase the scope of the current algorithm. Moreover, we will

also continue to explore the connection between cyclotomic orbits and cyclotomic

numbers more generally. In particular, we can look at cases where f is odd, e is

not prime and where n1 = orde(p) is even.

We also hope to continue to deepen our understanding of the finite field cy-

clotomy underlying the constructions of Denniston PDSs, in the hope that we

can identify new constructions of related combinatorial structures. We note that

since the original submission of this Thesis, some of the questions in open ques-

tions in our paper [20] have been answered by the paper [3]. In particular the

authors of [3] have resolved the intermediate Denniston PDS cases (the cases

where 2 ≤ r ≤ m− 2).

Beyond cyclotomy, we plan to explore applications of DPDFs and EPDFs in

experiment design and information security we have begun this process in the

preprint [40].

Finally, we also wish to establish constructions for EPDFs that are not also

DPDFs, and vice versa, as this has not, as of yet, been explored. The examples

at the end of Chapter 5 are a first step in this process.
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Appendix A

Cyclotomic numbers

In this Appendix, we present some results on evaluating the cyclotomic numbers

of order e ∈ {3, 4, 6, 8} these results are stated without proof. Before we cover the

results of this Appendix, we first define the term unique proper representation, as

this term is used throughout all theorems in this Section. The following definition

has been taken from page 24 of [18].

Definition A.0.1. An integral binary quadratic form f(x, y) is a quadratic

homogeneous polynomial in two variables

f(x, y) = ax2 + bxy + cy2,

where a, b, c ∈ Z. An integer n is represented by f(x, y) if there exist integers

x and y such that n = f(x, y). A representation is proper if gcd(x, y) = 1. For

certain values of n, there exists a unique proper representation of n.

For further discussions on unique proper representations see page 56 of [60].

Note that we only give the values of internal cyclotomic numbers of the form

(i, 0)e (where 0 ≤ i ≤ e − 1) in many of the results of this Appendix. This is

because the results in this Section are only applied in Chapter 3 of this Thesis,

and in Chapter 3, we are only interested in the values of the internal cyclotomic

numbers.

Our first result details the cyclotomic numbers of order e = 3. These results have

been taken from [25] and [60].
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Theorem A.0.2. Let GF(q) be a finite field of order q = pm ≡ 1 mod 3. Let

4q = c2 + 27d2, c ≡ 1 mod 3,

where,

(i) if p ≡ 2 mod 3 then m is even and d = 0

(ii) if p ≡ 1 mod 3 then this is the unique proper representation of 4q with

c ≡ 1 mod 3.

The cyclotomic number relations are as follows

A = (0, 0)3 =
1

9
(q − 8 + c), B = (2, 2)3 = (1, 0)3 = (0, 1)3 =

1

18
(2q − 4− c− 9d),

C = (1, 1)3 = (2, 0)3 = (0, 2)3 =
1

18
(2q − 4− c+ 9d),

D = (1, 2)3 = (2, 1)3 =
1

9
(q + 1 + c).

Our next result details formulas for some of the cyclotomic numbers of order

4. The results quoted in this Theorem have been taken from [?], [42] and [60].

Theorem A.0.3. Let GF(q) be a finite field of order q = pm ≡ 1 mod 4. Let v

be a generator of GF(q)∗.

(i) If p ≡ 3 mod 4, then s = (−p)m
2 and t = 0.

(ii) If p ≡ 1 mod 4, define s uniquely by q = s2 + t2, p ∤ s, s ≡ 1 mod 4, then

t is uniquely by v(q−1)/4 ≡ s/t mod p.

Then the cyclotomic numbers of the form (i, 0)4 in GF(q) corresponding to v

are determined unambiguously by the formulae:

• When f is even: A = (0, 0)4 = 1
16
(q − 11 − 6s), B = (3, 3)4 = (1, 0)4 =

(0, 1)4 =
1
16
(q−3+2s+4t), C = (2, 2)4 = (2, 0)4 = (0, 2)4 =

1
16
(q−3+2s),

D = (1, 1)4 = (3, 0)4 = (0, 3)4 =
1
16
(q− 3+ 2s− 4t), E = (1, 2)4 = (1, 3)4 =

(2, 1)4 = (2, 3)4 = (3, 1)4 = (3, 2)4 =
1
16
(q + 1− 2s).

• When f is odd A = (0, 0)4 = (2, 0)4 =
1
16
(q−7+2s), E = (1, 0)4 = (3, 0)4 =

1
16
(q − 3− 2s).
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The next theorem details formulas for some of the cyclotomic numbers of

order e = 6 when f is even. These results have been taken from [25], [60] and

[67] (note that whilst [67] does not explictly include the cyclotomic numbers of

order 6, the cyclotomic numbers of order 6 can be derived using the results of

this paper).

Theorem A.0.4. Let GF(q) be a finite field of order q = pm ≡ 1 mod 6. The

cyclotomic numbers of order 6 are solely functions of the unique representation

q = pm = s2 + 3t2, s ≡ 1 mod 4

determined by

(i) if p ≡ 5 mod 6 then m is even and q = (±pm
2 )2 + 3(0)2

(ii) if p ≡ 1 mod 6, then q = s2 + 3t2 is the unique proper representation of q,

with s ≡ 1 mod 3 the sign of t is ambiguously determined.

Then, when f is even, the internal cyclotomic numbers of the form (i, 0)6 may

be determined by the following formulae:

• when 2 ∈ C6,m
0 or 2 ∈ C6,m

3 : A = (0, 0)6 =
1
36
(q − 17− 20s), B = (1, 0)6 =

1
36
(q− 5+4s+18t), C = (2, 0)6 =

1
36
(q− 5+4s+6t), D = (3, 0)6 =

1
36
(q−

5+4s), E = (4, 0)6 =
1
36
(q−5+4s−6t), F = (5, 0)6 =

1
36
(q−5+4s−18t).

• when 2 ∈ C6,m
1 or 2 ∈ C6,m

4 : A = (0, 0)6 =
1
36
(q−17−8s+6t), B = (1, 0)6 =

1
36
(q− 5+4s+12t), C = (2, 0)6 =

1
36
(q− 5+4s− 6t), D = (3, 0)6 =

1
36
(q−

5+4s− 6t), E = (4, 0)6 =
1
36
(q− 5− 8s), F = (5, 0)6 =

1
36
(q− 5+4s− 6t).

• when 2 ∈ C6,m
2 or 2 ∈ C6,m

5 : A = (0, 0)6 =
1
36
(q−17−8s−6t), B = (1, 0)6 =

1
36
(q − 5 + 4s+ 6t), C = (2, 0)6 =

1
36
(q − 5− 8s), D = (3, 0)6 =

1
36
(q − 5 +

4s+6t), E = (4, 0)6 = (q− 5+ 4s+6t), F = (5, 0)6 =
1
36
(q− 5+ 4s− 12t).

Our final result details formulas for the cyclotomic numbers of order e = 8.

These results can be found in [25], [60] and [43].

Theorem A.0.5. Let GF(q) be a finite field of order q = pm ≡ 1 mod 8. The

cyclotomic numbers of order 8 are uniquely determined by x, y, a and b defined

below.
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(i) q = x2 + 4y2, x ≡ 1 mod 4 is the unique proper representation of q = pm

if p ≡ 1 mod 4 otherwise x = ±pm
2 and y = 0.

(ii) q = a2 + 2b2, a ≡ 1 mod 4, is the unique proper representation of q = pm

if p ≡ 1 mod 8 or p ≡ 3 mod 8 otherwise a = ±pm
2 and b = 0.

The signs of y and b are ambiguously determine.

The cyclotomic numbers of the form (i, 0)8 are then uniquely determined by

the following formulae

• When 2 is a quartic residue and f is even: A = (0, 0)8 = 1
64
(q − 23 −

18x − 24a), B = (1, 0)8 = 1
64
(q − 7 + 2x + 4a + 16y + 16b), C = (2, 0)8 =

1
64
(q − 7 + 6x + 16y), D = (3, 0)8 = 1

64
(q − 7 + 2x + 4a − 16y + 16b),

E = (4, 0)8 =
1
64
(q−7+2x+8a), F = (5, 0)8 =

1
64
(q−7+2x+4a+16y−16b),

G = (6, 0)8 =
1
64
(q − 7 + 6x− 16y), H = 1

64
(q − 7 + 2x+ 4a− 16y − 16b).

• When 2 is a quartic residue and f is odd: A = (0, 0)8 = (4, 0)8 = 1
64
(q −

15−2x), I = (1, 0)8 = (5, 0)8 =
1
64
(q−7+2x+4a), N = (2, 0)8 = (6, 0)8 =

1
64
(q− 7− 2x− 8a), J = (3, 0)8 = (7, 0)8 =

1
64
(q− 7+ 2x+4a− 16y− 16b).

• When 2 is not a quartic residue and f is even: A = (0, 0)8 =
1
64
(q−23+6x),

B = (1, 0)8 =
1
64
(q− 7 + 2x+ 4a), C = (2, 0)8 =

1
64
(q− 7− 2x− 8a− 16y),

D = (3, 0)8 = 1
64
(q − 7 + 2x + 4a), E = (4, 0)8 = 1

64
(q − 7 + 10x), F =

(5, 0)8 = 1
64
(q − 7 + 2x + 4a), G = (6, 0)8 = 1

64
(q − 7 − 2x − 8a + 16y),

H = 1
64
(q − 7 + 2x+ 4a).

• When 2 is not a quartic residue and f is odd: A = (0, 0)8 = (4, 0)e =
1
64
(q − 15 − 10x − 8a), I = (1, 0)8 = (5, 0)8 = 1

64
(q − 7 + 2x + 4a + 16y),

N = (2, 0)8 = (6, 0)8 = 1
64
(q − 7 + 6x), J = (3, 0)8 = (5, 0)8 = 1

64
(q − 7 +

2x+ 4a− 16y).
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Appendix B

All cyclotomic DPDFs and

EPDFs

This Appendix contains a series of tables which list all known DPDF and EPDF

constructions in finite fields of order q ≤ 121 and ϵ ∈ {2, 3, 4, 6, 8}.

q ϵ ρ PDS Parameters e f DPDF Parameters EPDF Parameters

9 2 4 (9, 4, 1, 2)-PDS 4 2 (9, 2, 2, 1, 0)-DPDF (9, 2, 2, 0, 2)-EPDF

13 2 6 (13, 6, 2, 3)-PDS 4 3 (13, 2, 3, 0, 2)-DPDF (13, 2, 3, 2, 1)-EPDF

13 2 6 (13, 6, 2, 3)-PDS 6 2 (13, 2, 3, 0, 1)-DPDF (13, 2, 3, 2)-EPDF

17 2 8 (17, 8, 3, 4)-PDS 4 4 (17, 2, 4, 1, 2)-DPDF (17, 2, 4, 2)-(S)EDF

17 2 8 (17, 8, 3, 4)-PDS 8 2 (17, 4, 2, 1, 0)-DPDF (17, 4, 2, 2, 4)-EPDF

25 2 12 (25, 12, 5, 6)-PDS 4 6 (25, 2, 6, 3, 2)-DPDF (25, 2, 6, 2, 4)-EPDF

25 2 12 (25, 12, 5, 6)-PDS 6 4 (25, 3, 4, 3, 0)-DPDF (25, 3, 4, 2, 6)-DPDF

25 2 12 (25, 12, 5, 6)-PDS 8 3 (25, 4, 3, 0, 2)-DPDF (25, 4, 3, 5, 4)-EPDF

25 2 12 (25, 12, 5, 6)-PDS 12 2 (25, 6, 2, 1, 0)-DPDF (25, 6, 2, 4, 6)-EPDF

25 3 8 (25, 8, 3, 2)-PDS 6 4 (25, 2, 4, 3, 0)-DPDF (25, 2, 4, 0, 2)-EPDF

25 3 8 (25, 8, 3, 2)-PDS 12 2 (25, 4, 2, 1, 0)-DPDF (25, 4, 2, 2)-EDF

25 6 4 (25, 4, 3, 0)-PDS 12 2 (25, 2, 2, 1, 0)-DPDF 25, 2, 2, 2, 0)-EPDF

29 2 14 (29, 14, 6, 7)-PDS 4 7 (29, 2, 7, 4, 2)-DPDF (29, 2, 7, 2, 5)-EPDF

29 2 14 (29, 14, 6, 7)-PDS 14 2 (29, 7, 2, 0, 1)-DPDF (29, 7, 2, 6)-EDF

37 2 18 (37, 18, 8, 9)-PDS 4 9 (37, 2, 9, 4)-DDF (37, 2, 9, 4, 5)-EPDF

37 2 18 (37, 18, 8, 9)-PDS 6 6 (37, 3, 6, 4, 1)-DPDF (37, 3, 6, 4, 8)-EPDF

37 2 18 (37, 18, 8, 9)-PDS 12 3 (37, 6, 3, 2, 0)-DPDF (37, 6, 3, 6, 9)-EPDF

37 2 18 (37, 18, 8, 9)-PDS 18 2 (37, 9, 2, 0, 1)-DPDF (37, 9, 2, 8)-EDF
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q ϵ ρ PDS Parameters e f DPDF Parameters EPDF Parameters

41 2 20 (41, 20, 9, 10)-PDS 4 10 (41, 2, 10, 3, 6)-DPDF (41, 2, 10, 6, 4)-EPDF

41 2 20 (41, 20, 9, 10)-PDS 8 5 (41, 4, 5, 2)-DDF (41, 4, 5, 7, 8)-EPDF

41 2 20 (41, 20, 9, 10)-PDS 10 4 (41, 5, 4, 3, 0)-DPDF (41, 5, 4, 6, 10)-EPDF

41 2 20 (41, 20, 9, 10)-PDS 20 2 (41, 10, 2, 1, 0)-DPDF (41, 10, 2, 8, 10)-EPDF

49 2 24 (49, 24, 11, 12)-PDS 4 12 (49, 2, 12, 5, 6)-DPDF (49, 2, 12, 6)-EDF

49 2 24 (49, 24, 11, 12)-PDS 6 8 (49, 3, 8, 3, 4)-DPDF (49, 3, 8, 8)-EDF

49 2 24 (49, 24, 11, 12)-PDS 8 6 (49, 4, 6, 5, 0)-DPDF (49, 4, 6, 6, 12)-EPDF

49 2 24 (49, 24, 11, 12)-PDS 12 4 (49, 6, 4, 3, 0)-DPDF (49, 2, 8, 12)-EPDF

49 2 24 (49, 24, 11, 12)-PDS 16 3 (49, 8, 3, 2, 0)-DPDF (49, 8, 3, 9, 12)-EPDF

49 2 24 (49, 24, 11, 12)-PDS 24 2 (49, 12, 2, 1, 0)-DPDF (49, 12, 2, 10, 12)-EPDF

49 4 12 (49, 12, 5, 2)-PDS 8 6 (49, 2, 6, 5, 0)-DPDF (49, 2, 6, 0, 2)-EPDF

49 4 12 (49, 12, 5, 2)-PDS 16 3 (49, 4, 3, 2, 0)-DPDF (49, 4, 3, 3, 2)-EPDF

49 4 12 (49, 12, 5, 2)-PDS 24 2 (49, 6, 2, 1, 0)-DPDF (49, 6, 2, 4, 2)-EPDF

49 8 6 (49, 8, 5, 0)-PDS 16 3 (49, 2, 3, 2, 0)-DPDF (49, 2, 3, 3, 0)-EPDF

49 8 6 (49, 8, 5, 0)-PDS 24 2 (49, 3, 2, 1, 0)-DPDF (49, 3, 2, 4, 0)-EPDF

53 2 26 (53, 26, 12, 13)-PDS 4 13 (53, 2, 13, 4, 8)-DPDF (53, 2, 13, 8, 5)-EPDF

53 2 26 (53, 26, 12, 13)-PDS 26 2 (53, 13, 2, 0, 1)-DPDF (53, 2, 13, 12)-EDF

61 2 30 (61, 30, 14, 15)-PDS 4 15 (61, 2, 15, 8, 6)-DPDF (61, 2, 15, 6, 9)-EPDF

61 2 30 (61, 30, 14, 15)-PDS 6 10 (61, 3, 10, 2, 7)-DPDF (61, 3, 10, 12, 8)-EPDF

61 2 30 (61, 30, 14, 15)-PDS 10 6 (61, 5, 6, 4, 1)-DPDF (61, 5, 6, 10, 14)-EPDF

61 2 30 (61, 30, 14, 15)-PDS 12 5 (61, 6, 5, 2)-DDF (61, 6, 5, 12, 13)-EPDF

61 2 30 (61, 30, 14, 15)-PDS 20 3 (61, 10, 3, 2, 0)-DPDF (61, 6, 5, 12, 15)-EPDF

61 2 30 (61, 30, 14, 15)-PDS 30 2 (61, 15, 2, 0, 1)-DPDF (61, 15, 2, 14)-EDF

64 3 21 (64, 21, 8, 6)-PDS 9 7 (64, 3, 7, 6, 0)-DPDF (64, 3, 7, 2, 6)-EPDF

64 3 21 (64, 21, 8, 6)-PDS 21 3 (64, 7, 3, 2, 0)-DPDF (64, 7, 3, 6)-EDF

73 2 36 (73, 36, 17, 18)-PDS 4 18 (73, 2, 18, 9, 8)-DPDF (73, 2, 18, 8, 10)-EPDF

73 2 36 (73, 36, 17, 18)-PDS 6 12 (73, 3, 18, 7, 4)-DPDF (73, 3, 12, 10, 14)-EPDF

73 2 36 (73, 36, 17, 18)-PDS 8 9 (73, 4, 9, 4)-DDF (73, 4, 9, 13, 14)-EPDF

73 2 36 (73, 36, 17, 18)-PDS 12 6 (73, 6, 6, 3, 2)-DPDF (73, 6, 6, 14, 16)-EPDF

73 2 36 (73, 36, 17, 18)-PDS 18 4 (73, 9, 4, 1, 2)-DPDF (73, 9, 4, 16)-EDF

73 2 36 (73, 36, 17, 18)-PDS 24 3 (73, 12, 3, 0, 2)-DPDF (73, 12, 3, 17, 16)-EPDF

73 2 36 (73, 36, 17, 18)-PDS 36 2 (73, 18, 2, 1, 0)-DPDF (73, 18, 2, 16, 18)-EPDF

81 2 40 (81, 40, 19, 20)-PDS 4 20 (81, 2, 20, 7, 12)-DPDF (81, 2, 20, 12, 8)-EPDF

81 2 40 (81, 40, 19, 20)-PDS 8 10 (81, 4, 10, 5, 4)-DPDF (81, 4, 10, 14, 16)-EPDF
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q ϵ ρ PDS Parameters e f DPDF Parameters EPDF Parameters

81 2 40 (81, 40, 19, 20)-PDS 10 8 (81, 5, 8, 7, 0)-DPDF (81, 5, 8, 12, 20)-EPDF

81 2 40 (81, 40, 19, 20)-PDS 16 5 (81, 8, 5, 0, 4)-DPDF (81, 8, 5, 19, 16)-EPDF

81 2 40 (81, 40, 19, 20)-PDS 20 4 (81, 10, 4, 3, 0)-DPDF (81, 10, 4, 16, 20)-EPDF

81 2 40 (81, 40, 19, 20)-PDS 40 2 (81, 20, 2, 1, 0)-DPDF (81, 10, 4, 18, 20)-EPDF

81 4 20 (81, 20, 1, 6)-PDS 40 2 (81, 10, 2, 1, 0)-DPDF (81, 10, 2, 0, 6)-EPDF

89 2 44 (89, 44, 21, 22)-PDS 4 22 (89, 2, 22, 9, 12)-DPDF (89, 2, 22, 12, 10)-EPDF

89 2 44 (89, 44, 21, 22)-PDS 8 11 (89, 4, 11, 2, 8)-DPDF (89, 4, 11, 19, 14)-EPDF

89 2 44 (89, 44, 21, 22)-PDS 22 4 (89, 11, 4, 1, 2)-DPDF (89, 11, 4, 20)-EDF

89 2 44 (89, 44, 21, 22)-PDS 44 2 (89, 11, 4, 1, 0)-DPDF (89, 11, 20, 22)-EPDF

97 2 48 (97, 48, 23, 24)-PDS 4 24 (97, 2, 24, 9, 14)-DPDF (97, 2, 24, 14, 10)-EPDF

97 2 48 (97, 48, 23, 24)-PDS 6 16 (97, 3, 16, 5, 10)-DPDF (97, 3, 16, 18, 14)-EPDF

97 2 48 (97, 48, 23, 24)-PDS 8 12 (97, 4, 12, 3, 8)-DPDF (97, 4, 12, 20, 16)-EPDF

97 2 48 (97, 48, 23, 24)-PDS 12 8 (97, 6, 8, 3, 4)-DPDF (97, 6, 8, 20)-EDF

97 2 48 (97, 48, 23, 24)-PDS 16 6 (97, 8, 6, 3, 2)-DPDF (97, 8, 6, 20, 22)-EPDF

97 2 48 (97, 48, 23, 24)-PDS 24 4 (97, 12, 4, 1, 2)-DPDF (97, 12, 4, 22)-EDF

97 2 48 (97, 48, 23, 24)-PDS 32 3 (97, 16, 3, 0, 2)-DPDF (97, 16, 3, 23, 22)-EPDF

97 2 48 (97, 48, 23, 24)-PDS 48 2 (97, 24, 2, 1, 0)-DPDF (97, 24, 2, 22, 24)-EPDF

101 2 50 (101, 50, 24, 25)-PDS 4 25 (101, 2, 25, 12)-DDF (101, 2, 25, 12, 13)-EPDF

101 2 50 (101, 50, 24, 25)-PDS 10 10 (101, 5, 10, 4, 5)-DPDF (101, 5, 10, 20)-EDF

101 2 50 (101, 50, 24, 25)-PDS 20 5 (101, 10, 5, 0, 4)-DPDF (101, 10, 5, 24, 21)-EPDF

101 2 50 (101, 50, 24, 25)-PDS 50 2 (101, 25, 2, 0, 1)-DPDF (101, 25, 2, 24)-EDF

109 2 54 (109, 54, 26, 27)-PDS 4 27 (109, 2, 27, 12, 14)-DPDF (109, 2, 27, 14, 13)-EPDF

109 2 54 (109, 54, 26, 27)-PDS 6 18 (109, 3, 18, 8, 9)-DPDF (109, 3, 18, 18)-EDF

109 2 54 (109, 54, 26, 27)-PDS 12 9 (109, 6, 9, 4)-DDF (109, 6, 9, 22, 23)-EPDF

109 2 54 (109, 54, 26, 27)-PDS 18 6 (109, 9, 6, 2, 3)-DPDF (109, 6, 9, 24)-EDF

109 2 54 (109, 54, 26, 27)-PDS 36 3 (109, 18, 3, 0, 2)-DPDF (109, 18, 3, 26, 25)-EPDF

109 2 54 (109, 54, 26, 27)-PDS 54 2 (109, 27, 2, 0, 1)-DPDF (109, 27, 2, 26)-EDF

113 2 56 (113, 56, 27, 28)-PDS 4 28 (113, 2, 28, 15, 12)-DPDF (113, 2, 28, 12, 16)-EPDF

113 2 56 (113, 56, 27, 28)-PDS 8 14 (113, 4, 14, 5, 8)-DPDF (113, 2, 28, 22, 20)-EPDF

113 2 56 (113, 56, 27, 28)-PDS 14 8 (113, 7, 8, 3, 4)-DPDF (113, 7, 8, 24)-EDF

113 2 56 (113, 56, 27, 28)-PDS 16 7 (113, 8, 7, 2, 4)-DPDF (113, 8, 7, 25, 24)-EPDF

113 2 56 (113, 56, 27, 28)-PDS 28 4 (113, 14, 4, 3, 0)-DPDF (113, 14, 4, 24, 28)-EPDF

113 2 56 (113, 56, 27, 28)-PDS 56 2 (113, 28, 2, 1, 0)-DPDF (113, 28, 2, 26, 28)-EPDF

121 2 60 (121, 60, 29, 30)-PDS 4 30 (121, 2, 30, 17, 12)-DPDF (121, 2, 30, 12, 18)-EPDF
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q ϵ ρ PDS Parameters e f DPDF Parameters EPDF Parameters

121 2 60 (121, 60, 29, 30)-PDS 6 20 (121, 3, 20, 13, 6)-DPDF (121, 3, 20, 16, 24)-EPDF

121 2 60 (121, 60, 29, 30)-PDS 8 15 (121, 4, 15, 10, 4)-DPDF (121, 4, 15, 19, 26)-EPDF

121 2 60 (121, 60, 29, 30)-PDS 10 12 (121, 5, 12, 5, 6)-DPDF (121, 5, 12, 24)-EDF

121 2 60 (121, 60, 29, 30)-PDS 12 10 (121, 6, 10, 9, 0)-DPDF (121, 6, 10, 20, 30)-EPDF

121 2 60 (121, 60, 29, 30)-PDS 20 6 (121, 10, 6, 5, 0)-DPDF (121, 10, 6, 24, 30)-EPDF

121 2 60 (121, 60, 29, 30)-PDS 24 5 (121, 12, 5, 4, 0)-DPDF (121, 12, 5, 25, 30)-EPDF

121 2 60 (121, 60, 29, 30)-PDS 30 4 (121, 15, 4, 1, 2)-DPDF (121, 15, 4, 28)-EDF

121 2 60 (121, 60, 29, 30)-PDS 40 3 (121, 20, 3, 2, 0)-DPDF (121, 20, 3, 27, 30)-EPDF

121 2 60 (121, 60, 29, 30)-PDS 60 2 (121, 30, 2, 1, 0)-DPDF (121, 30, 2, 28, 30)-EPDF

121 3 40 (121, 40, 15, 12)-PDS 6 20 (121, 2, 20, 11, 4)-DPDF (121, 2, 20, 4, 8)-EPDF

121 3 40 (121, 40, 15, 12)-PDS 12 10 (121, 4, 10, 9, 0)-DPDF (121, 4, 10, 6, 12)-EPDF

121 3 40 (121, 40, 15, 12)-PDS 15 8 (121, 5, 8, 3, 2)-DPDF (121, 5, 8, 12, 10)-EPDF

121 3 40 (121, 40, 15, 12)-PDS 24 5 (121, 8, 5, 4, 0)-DPDF (121, 8, 5, 11, 12)-EPDF

121 3 40 (121, 40, 15, 12)-PDS 30 4 (121, 10, 4, 3, 0)-DPDF (121, 10, 4, 12)-EDF

121 3 40 (121, 40, 15, 12)-PDS 60 2 (121, 20, 2, 1, 0)-DPDF (121, 20, 2, 14, 12)-EPDF

121 4 30 (121, 30, 11, 6)-PDS 12 10 (121, 3, 10, 9, 0)-DPDF (121, 3, 10, 2, 6)-EPDF

121 4 30 (121, 30, 11, 6)-PDS 24 5 (121, 3, 10, 4, 0)-DPDF (121, 3, 10, 7, 6)-EPDF

121 4 30 (121, 30, 11, 6)-PDS 60 2 (121, 15, 2, 1, 0)-DPDF (121, 15, 2, 10, 6)-EPDF

121 6 20 (121, 20, 9, 2)-PDS 12 10 (121, 2, 10, 9, 0)-DPDF (121, 2, 10, 0, 2)-EPDF

121 6 20 (121, 20, 9, 2)-PDS 24 5 (121, 4, 5, 4, 0)-DPDF (121, 4, 5, 5, 2)-EPDF

121 6 20 (121, 20, 9, 2)-PDS 60 2 (121, 10, 2, 1, 0)-DPDF (121, 10, 2, 8, 2)-EPDF
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Appendix C

Cyclotomic numbers of order 13

in the finite field GF(729)

In this Appendix, we have a table that presents the cyclotomic numbers of order

13 in the finite field GF(729). The purpose of this Appendix is to present these

cyclotomic numbers in a more readable format. Note that for a particular cyclo-

tomic number (i, j)e, the number indexing the row of the table denotes the value

of i and the number indexing the column of the table denotes the value of j.

0 1 2 3 4 5 6 7 8 9 10 11 12

0 7 6 4 6 4 4 4 2 2 6 4 2 4

1 6 4 6 4 1 2 5 2 6 4 8 2 6

2 4 6 2 2 2 6 6 6 6 5 5 2 4

3 6 4 2 4 8 5 6 2 2 4 6 6 1

4 4 1 2 8 6 4 5 4 6 6 2 6 2

5 4 2 6 5 4 2 6 6 2 6 2 6 5

6 4 5 6 6 5 6 2 2 6 2 4 6 2

7 2 2 6 2 4 6 2 4 5 6 2 6 5

8 2 6 6 2 6 2 6 5 4 2 6 5 4

9 6 4 5 4 6 6 2 6 2 4 1 2 8

10 4 8 5 6 2 2 4 2 6 1 6 4 2

11 2 2 2 6 6 6 6 6 5 2 4 4 6

12 4 6 4 1 2 5 2 5 4 8 2 6 6
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Appendix D

Cyclotomic number calculations

in GF(729)

In this Appendix, we run through the full proof that D13,6
0 = C13,6

0 ∪C13,6
4 ∪C13,6

10 ∪
C13,6

12 ⊆ GF(729) is a (729, 225, 63, 72)-PDS.

In Lemma 4.2.3, we determined the following expression for the multiset ∆(D13,6
0 )

∆(D13,6
0 ) =

12⋃
r=0

∑
l∈I

((r, l)13 + (r − 4, l − 4)13 + (r − 10, l − 10)13+

(r − 12, l − 12)13)C
13,6
r ∪ 2(S13,6

0 )− 224{0}.

We may write this as

∆(D13,6
0 ) =

12⋃
r=0

((r, 0)13 + (r − 4, 9)13 + (r − 10, 3)13 + (r − 12, 1)13

+(r, 4)13 + (r − 4, 0)13 + (r − 10, 7)13 + (r − 12, 5)13

+(r, 10)13 + (r − 4, 6)13 + (r − 10, 0)13 + (r − 12, 11)13

+(r, 12)13 + (r − 4, 8)13 + (r − 10, 2)13 + (r − 12, 0)13)C
13,6
r

+2(C13,6
0 ∪ C13,6

4 ∪ C13,6
10 ∪ C13,6

12 )− 224{0}.
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We now write this expression out in full.

∆(D13,6
0 ) = ((0, 0)13 + (9, 9)13 + (3, 3)13 + (1, 1)13 + (0, 4)13 + (9, 0)13

+(3, 7)13 + (1, 5)13 + (0, 10)13 + (9, 6)13 + (3, 0)13 + (1, 11)13

+(0, 12)13 + (9, 8)13 + (3, 2)13 + (1, 0)13 + 2)C13,6
0

∪((1, 0)13 + (10, 9)13 + (4, 3)13 + (2, 1)13 + (1, 4)13 + (10, 0)13

+(4, 7)13 + (2, 5)13 + (1, 10)13 + (10, 6)13 + (4, 0)13 + (2, 11)13

+(1, 12)13 + (10, 8)13 + (4, 2)13 + (2, 0)13)C
13,6
1

∪((2, 0)13 + (11, 9)13 + (5, 3)13 + (3, 1)13 + (2, 4)13 + (11, 0)13

+(5, 7)13 + (3, 5)13 + (2, 10)13 + (11, 6)13 + (5, 0)13 + (3, 11)13

+(2, 12)13 + (11, 8)13 + (5, 2)13 + (3, 0)13)C
13,6
2

∪((3, 0)13 + (12, 9)13 + (6, 3)13 + (4, 1)13 + (3, 4)13 + (12, 0)13

+(6, 7)13 + (4, 5)13 + (3, 10)13 + (12, 6)13 + (6, 0)13 + (4, 11)13

+(3, 12)13 + (12, 8)13 + (6, 2)13 + (4, 0)13)C
13,6
3

∪((4, 0)13 + (0, 9)13 + (7, 3)13 + (5, 1)13 + (4, 4)13 + (0, 0)13

+(7, 7)13 + (5, 5)13 + (4, 10)13 + (0, 6)13 + (7, 0)13 + (5, 11)13

+(4, 12)13 + (0, 8)13 + (7, 2)13 + (5, 0)13 + 2)C13,6
4

∪((5, 0)13 + (1, 9)13 + (8, 3)13 + (6, 1)13 + (5, 4)13 + (1, 0)13

+(8, 7)13 + (6, 5)13 + (5, 10)13 + (1, 6)13 + (8, 0)13 + (6, 11)13

+(5, 12)13 + (1, 8)13 + (8, 2)13 + (6, 0)13)C
13,6
5

∪((6, 0)13 + (2, 9)13 + (9, 3)13 + (7, 1)13 + (6, 4)13 + (2, 0)13

+(9, 7)13 + (7, 5)13 + (6, 10)13 + (2, 6)13 + (9, 0)13 + (7, 11)13

+(6, 12)13 + (2, 8)13 + (9, 2)13 + (7, 0)13)C
13,6
6

∪((7, 0)13 + (3, 9)13 + (10, 3)13 + (8, 1)13 + (7, 4)13 + (3, 0)13

+(10, 7)13 + (8, 5)13 + (7, 10)13 + (3, 6)13 + (10, 0)13 + (8, 11)13

+(7, 12)13 + (3, 8)13 + (10, 2)13 + (8, 0)13)C
13,6
7

∪((8, 0)13 + (4, 9)13 + (11, 3)13 + (9, 1)13 + (8, 4)13 + (4, 0)13

+(11, 7)13 + (9, 5)13 + (8, 10)13 + (4, 6)13 + (11, 0)13 + (9, 11)13

+(8, 12)13 + (4, 8)13 + (11, 2)13 + (9, 0)13)C
13,6
8
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∪((9, 0)13 + (5, 9)13 + (12, 3)13 + (10, 1)13 + (9, 4)13 + (5, 0)13

+(12, 7)13 + (10, 5)13 + (9, 10)13 + (5, 6)13 + (12, 0)13 + (10, 11)13

+(9, 12)13 + (5, 8)13 + (12, 2)13 + (10, 0)13)C
13,6
9

∪((10, 0)13 + (6, 9)13 + (0, 3)13 + (11, 1)13 + (10, 4)13 + (6, 0)13

+(0, 7)13 + (11, 5)13 + (10, 10)13 + (6, 6)13 + (0, 0)13 + (11, 11)13

+(10, 12)13 + (6, 8)13 + (0, 2)13 + (11, 0)13 + 2)C13,6
10

∪((11, 0)13 + (7, 9)13 + (1, 3)13 + (12, 1)13 + (11, 4)13 + (7, 0)13

+(1, 7)13 + (12, 5)13 + (11, 10)13 + (7, 6)13 + (1, 0)13 + (12, 11)13

+(11, 12)13 + (7, 8)13 + (1, 2)13 + (12, 0)13)C
13,6
11

∪((12, 0)13 + (8, 9)13 + (2, 3)13 + (0, 1)13 + (12, 4)13 + (8, 0)13

+(2, 7)13 + (0, 5)13 + (12, 10)13 + (8, 6)13 + (2, 0)13 + (0, 11)13

+(12, 12)13 + (8, 8)13 + (2, 2)13 + (0, 0)13 + 2)C13,6
12 − 224{0}.

By then substituting in the individual cyclotomic number values obtained in

Propositions 4.2.6 and 4.2.9, we see that

∆(D13,6
0 ) = 63(C13,6

0 ) ∪ 72(C13,6
1 ) ∪ 72(C13,6

2 ) ∪ 72(C13,6
3 ) ∪ 63(C13,6

4 ) ∪ 72(C13,6
5 )

∪ 72(C13,6
6 ) ∪ 72(C13,6

7 ) ∪ 72(C13,6
8 ) ∪ 72(C13,6

9 ) ∪ 63(C13,6
10 ) ∪ 72(C13,6

11 ) ∪ 63(C13,6
12 )

−224{0}.

And so D13,6
0 is a (729, 225, 63, 72)-PDS. What is particular interesting about

this result is that, while all elements of D13,6
0 occur 63 times in the multiset

∆(D13,6
0 ), and all elements in GF(729)∗\D13,6

0 occur 72 times, there seem to be

no obvious relations between the cyclotomic number expressions for the different

cyclotomic classes contained in D13,6
0 . For example, it is clear from the above

calculations that there are

(0, 0)13 + (9, 9)13 + (3, 3)13 + (1, 1)13 + (0, 4)13 + (9, 0)13 + (3, 7)13 + (1, 5)13 + (0, 10)13

+(9, 6)13 + (3, 0)13 + (1, 11)13 + (0, 12)13 + (9, 8)13 + (3, 2)13 + (1, 0)13 + 2 = 63

copies of each element of C13,6
0 in the multiset ∆(D13,6

0 ). Notice that in this

expression for the number of copies of C13,6
0 there is 1 element from OrbR(0, 0)13,

there are 6 elements from OrbR(1, 1)13, there 3 elements from OrbR(4, 4)13 and 6

elements from the orbit OrbR(2, 3)13.
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If we repeat this same process for C13,6
4 , it follows from the above calculations

that there are

(4, 0)13 + (0, 9)13 + (7, 3)13 + (5, 1)13 + (4, 4)13 + (0, 0)13 + (7, 7)13 + (5, 5)13 + (4, 10)13

+(0, 6)13 + (7, 0)13 + (5, 11)13 + (4, 12)13 + (0, 8)13 + (7, 2)13 + (5, 0)13 + 2 = 63

copies of each element of C13,6
4 in the multiset ∆(D13,6

0 ). Notice that in this

expression for the number of copies of C13,6
4 there is 1 element from OrbR(0, 0)13,

there is 1 element from OrbR(4, 4)13, there are 2 elements from OrbR(4, 4)13,

there are 3 elements from OrbR(2, 2)13, there are 3 elements from OrbR(7, 7)13,

there are 2 elements from OrbR(6, 8)13 and there are 4 elements from OrbR(2, 3)13.

As these cyclotomic number expressions contain elements from distinct orbits,

there is no obvious mapping from the expression for the number of copies of C13,6
0

in ∆(D0)
13,6 and the number of copies of C13,6

4 in ∆(D0)
13,6. Therefore cyclotomy

does not give us the full picture of the underlying behaviour.


