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Abstract

This thesis explores the development and application of model-agnostic interpretabil-

ity methods for deep neural networks. I introduce novel techniques for interpreting

trained models irrespective of their architecture, including Centroid Maximisation,

an adaptation of feature visualisation for segmentation models; the Proxy Model

Test, a new evaluation method for saliency mapping algorithms; and Hierarchical

Perturbation (HiPe), a novel saliency mapping algorithm that achieves performance

comparable to existing model-agnostic methods while reducing computational cost

by a factor of 20. The utility of these interpretability methods is demonstrated

through two case studies in digital pathology. The first study applies model-agnostic

saliency mapping to generate pixel-level segmentations from weakly-supervised

models, while the second study employs interpretability techniques to uncover

potential relationships between DNA morphology and protein expression in CD3-

expressing cells.
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Chapter 1

Introduction

1.1 Introduction

As machine learning is applied to increasingly high-stakes domains, the ability to accurately

explain model behaviour in a human-interpretable way is becoming evermore important [9, 109,

154]. If we are to enable the safe and widespread adoption of powerful and potentially life-saving

AI applications in medicine and beyond, we must develop interpretability methods that can

identify, for example, if a model classifies a biopsy image as malignant due to cell morphology

or due to a smudge on the slide [39, 21]. Moreover, better understanding models during training

and deployment is vital to improving them – interpretability methods can flag biases or spurious

correlations learned from training data that standard evaluation metrics miss. Machine learning

interpretability can also be used for knowledge discovery[38, 14]. If a model can be trained

to perform some task that humans cannot, some pattern must exist in the data that humans do

not yet understand – and with robust interpretability techniques, it becomes possible to parse

what the model has learned. In this way deep learning can be re-framed, not just as a tool for

automation, but as a lens through which complex patterns can be made visible to humans.

In Chapter 1 I introduce deep learning and provide some background information about deep

learning, applications in digital pathology, and approaches to interpretability – with particular

emphasis on model-agnostic methods (techniques that do not make assumptions about or require

23



24 CHAPTER 1. INTRODUCTION

access to the model’s underlying architecture, and so can be applied to any machine learning

model). Chapter 2 explores model-agnostic global interpretability, specifically feature visuali-

sation. I introduce the concept of learned class prototypes and use toy models to demonstrate

how a model’s architecture affects what it learns during training. I also propose an adaptation

of the standard feature visualisation algorithm, enabling its application to segmentation models.

In Chapter 3, I explore model-agnostic local interpretability in the form of saliency mapping,

identify some current limitations of different saliency mapping techniques, and explain the

difficulty of objectively assessing interpretability methods of this kind. Chapter 5 introduces a

new evaluation metric to address this difficulty, and Chapter 4 presents Hierarchical Perturbation,

a novel model-agnostic saliency mapping algorithm. This algorithm is evaluated against existing

saliency mapping methods, and demonstrates comparable results on standard benchmarks with

significantly faster performance.

The remainder of this thesis is given over to two case studies in which I apply these inter-

pretability methods to machine learning tasks in digital histopathology. Chapter 6 demonstrates

how saliency mapping can be employed to generate high-resolution pixel-level segmentation

from weakly-supervised images. Chapter 7 shows how interpretability techniques can be used

for knowledge discovery in both segmentation and classification tasks, identifying heretofore

unknown morphological features with high discriminative power in Hoechst [119, 35] stained

slides. Finally, I summarise the overall significance of this research and briefly discuss limitations,

future work, and clinical translation potential in Chapter 8.

1.2 Deep Learning and Digital Pathology

Digital Pathology

Pathology is the study of disease. It involves examining bodily fluids, tissues, and organs, and

plays a key role in the diagnosis, management and treatment of diseases [77]. The process begins

with the collection of a sample from a patient. This could be a tissue biopsy, a swab, bodily fluids
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like blood or urine, or even an entire organ – the method of collection depends on the suspected

disease and its location in the body. These samples then undergo a process of fixation to preserve

cellular structures and prevent degradation. Formalin, a solution of formaldehyde in water, is

the most commonly used fixative. Following fixation, the tissue is embedded in paraffin wax,

and cut into very thin sections which are placed on to glass microscope slides. These sections

are typically 4-5 micrometers thick, allowing for the visualisation of cellular structures under a

microscope.

These slides are then stained, to highlight specific cellular components and structures. Hema-

toxylin and Eosin (H&E) is the most commonly used stain in histopathology. As shown in

Figure 1.1 Hematoxylin stains cell nuclei blue, while eosin stains the cytoplasm and extracellular

matrix pink.

Figure 1.1: Examples of hematoxylin and eosin (H&E) staining of healthy tissues (A), ulcerative
colitis (B), adenomas (C) and adenocarcinomas (D) (magnification ×100) from Cammarota et
al. [31].
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Pathologists then manually analyse these stained slides under a microscope. They look at

cellular architecture, the morphology of individual cells, and the presence or absence of specific

structures to arrive at a diagnosis. In some cases, further specialised techniques might be required,

such as immunohistochemistry (IHC) to detect specific proteins, as described in more detail in

Chapter 7.

Once the examination is complete, the pathologist compiles their findings into a pathology

report describing the observed microscopic features and providing a diagnosis. It may also

include recommendations for further tests or treatments, and in complex cases, slides might be

reviewed by more than one pathologist or sent for consultation to experts in specialised areas of

pathology.

The slides are then labelled and stored in a specialised physical cabinet for future reference

or research projects. Slides must be kept in a controlled environment to prevent degradation of

the tissue samples. Factors like temperature, humidity, and light exposure need to be regulated,

and some facilities might even use climate-controlled rooms or cabinets for this purpose [110].

This method has clear limitations: physical slides are costly to store, they can degrade, and are

difficult to share [13].

With the advent of digital pathology, this workflow has seen significant changes. Once

the tissue is fixed, embedded, sectioned, and stained, it is then scanned using high-resolution

slide scanners to produce digital images. These images can be viewed on a computer screen,

eliminating the need for a physical microscope [11]. This digitisation offers several advantages,

including the ability to easily and quickly share images, facilitating collaboration between

researchers or consultations between pathologists; and to store images efficiently at scale on

servers or cloud platforms for future reference [157, 13].

Furthermore, digital pathology has facilitated the introduction of advanced image analysis

tools. These tools can not only make the visual examination of the tissue easier, quicker and

more physically comfortable for pathologists [54], but even automatically identify and quantify

specific structures or patterns in the tissue, aiding pathologists in their diagnostic process. For
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instance, algorithms can be designed to recognise cancerous cells, measure tumour margins, or

quantify specific biomarkers. This not only enhances the accuracy of the diagnosis but can also

speed up the diagnostic process [108, 49].

This transition has also led to the creation of large private and public repositories of digital

slides. The United States National Cancer Institute’s Cancer Imaging Archive (TCIA) is one

such, holding 30.9 million radiology images from 37,568 patients [7]. Cancer Image Europe

aims to do something similar in Europe [1]. The Image Data Resource (IDR) is another, hosting

364 TB consisting of over 13.5 million images from 121 published scientific studies to date,

predominantly human tissue [5, 165]. Other, smaller but no less rich datasets abound: one

example is The Pathology Atlas [6, 156], which hosts survival information for nearly 8000

cancer patients covering 17 major types of cancer, plus examples of protein expression patterns

for 216 tumours representing the 20 most common forms of human cancer – but there are many

more [57]. These are incredibly rich resources, and it is this volume of accessible digitised

information that has made made the application of machine learning and deep learning possible

in pathology [11].

Deep Learning

Machine learning (ML) is a subset of artificial intelligence that focuses on the development

of algorithms and statistical models that enable computers to perform tasks without explicit

instructions. Instead, these systems learn to make predictions based on patterns in their training

data. The core idea behind machine learning is to train a model using a dataset. This model,

once trained, can then make predictions or decisions without being explicitly programmed to

do so. The "learning" in machine learning refers to the ability of the algorithm to improve its

performance over time as it is exposed to more data [76], as described in Section 7.3.

There are various types of machine learning, including supervised learning, unsupervised

learning, and reinforcement learning. In supervised learning, the algorithm is trained on a

labeled dataset, meaning that each data sample is accompanied by the correct output – i.e., what
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the model should output in response to that sample. This thesis is concerned with supervised

learning of this kind. In contrast, unsupervised learning deals with unlabeled data and seeks to

find patterns or relationships within it. Reinforcement learning involves an agent that learns to

make decisions by taking actions in an environment to maximise a reward [132].

Deep learning (DL) is a subset of machine learning that employs neural networks with

many layers (hence ‘deep’). The primary advantage of deep learning models is their ability to

automatically identify relevant features from data, without manual feature extraction (where data

scientists decide which parts of a dataset are relevant for a prediction task). This is particularly

useful for tasks involving images, where manual feature extraction is challenging, and for very

large, rich datasets, where it may not be clear ahead of time which parts of a raw data sample are

most relevant for a given task.

Training Neural Networks

Given a neural network and a dataset, the training process happens through the iterative adjust-

ment of the network’s parameters to minimise the discrepancy between the network’s output and

the true label. This process involves several key steps: Initialisation: The training commences

with the initialisation of the network’s parameters, (also known as weights), which are typically

set to small random values.

Forward Propagation: In each training iteration, a batch of input samples is fed into the

network. The network processes these inputs layer by layer. Each layer consists of nodes (or

neurons) that apply linear transformations followed by non-linear activation functions, resulting

in an output.

Loss Calculation: The output of the network is then compared to the labels for that batch

of data using a loss function, which quantifies the error between the model’s predictions and the

true labels.
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Backpropagation: The gradient of the loss function with respect to each parameter in the

network is calculated to determine how each parameter should be adjusted to minimise the loss.

Parameter Update: The network’s parameters are then updated, using optimisation algo-

rithms like stochastic gradient descent (SGD) or its variants, in a direction that minimises the

loss.

Iteration and Convergence: The above steps are repeated for multiple iterations, often across

all examples in the training dataset (an epoch), until the performance of the network stabilises or

meets some predetermined criterion.

Regularisation: Techniques like dropout (when some parameters are randomly zeroed out) or

L2 regularisation (when a penalty is added to the loss function to penalise very large parameters)

are employed to prevent overfitting.

Validation: The network’s performance is periodically evaluated on a validation dataset to

monitor its ability to generalise during the training process.

One important objective in training a neural network is to minimise both overfitting and underfit-

ting to the training data, in order to ensure the model’s ability to generalise well to new, unseen

data. Underfitting is when the model fails to learn meaningful patterns, and therefore has no

predictive power even on the training set. This can occur when the model is too simple or not

trained for long enough. For example, a linear model trying to fit a complex, nonlinear pattern in

the data would likely underfit.

Overfitting is when the model’s parameters are too highly optimised for the specific patterns

in the training data, in such a way that they do not generalise to unseen samples. This often
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happens when the model is excessively complex relative to the training data (e.g. having too

many layers or neurons in a neural network), or is trained for too many iterations. An overfit

model may achieve very high accuracy on the training set, but perform poorly on the validation

set or in deployment.

Therefore, the goal is to train a model such that it learns only relevant, generalisable patterns

from the training data. Several techniques can help mitigate overfitting and underfitting:

Adjusting model complexity: Choosing an appropriate model architecture with the right

level of complexity for the task and dataset size. This may involve experimenting with

different numbers of layers, units, etc.

Early stopping: Monitoring the model’s performance on a validation set during training

and stopping the training process when the validation performance starts to degrade, even

if training performance continues improving. This prevents the model from starting to

memorise noise in the training data.

Regularisation: Adding penalty terms to the model’s loss function that discourage large

parameter values and thus limit the model’s complexity. Common regularisation techniques

include L1 and L2 regularisation, dropout, and weight decay.

Data augmentation: Either gathering more data, or artificially increasing the size and

diversity of the training set by applying random transformations (e.g. rotations, flips, crops

for images), making it harder for the model to overfit.

By carefully tuning model architecture, training procedure and regularisation, and leveraging

techniques like early stopping and data augmentation, neural networks can be trained to achieve

good generalisation performance.

Hyperparameter Selection

The training of a neural network involves several hyperparameters and architectural choices that

can significantly influence the network’s performance and generalisation ability. Key decisions
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include:

Learning Rate: The learning rate determines the size of the steps taken by the optimisation

algorithm when adjusting the network’s parameters in response to the calculated gradients.

A higher learning rate means larger steps, which can lead to faster convergence but may

also cause the optimiser to overshoot the optimal solution. A lower learning rate means

smaller steps, which can lead to slower convergence but may allow the optimiser to find a

better solution. The ideal learning rate strikes a balance between convergence speed and

solution quality.

Batch Size: The batch size is the number of training examples used in one iteration of

the training process. A larger batch size allows for more stable gradient estimates and can

lead to faster computation due to parallelisation. However, it also requires more memory.

A smaller batch size can introduce more noise into the gradient estimates but may allow

the optimiser to escape from local minima. The choice of batch size often depends on the

available computational resources and the specific problem.

Number of Epochs: An epoch is a complete pass through the entire training dataset. The

number of epochs determines how many times the network will see the entire dataset during

training. More epochs can lead to better performance but also increase the risk of overfitting.

The optimal number of epochs depends on the complexity of the problem and the size of

the dataset.

Network Architecture: The architecture of the network, including the number of layers,

the number of nodes in each layer, and the type of layers (e.g., convolutional, recurrent,

etc.). Deeper and wider networks can learn more complex features but are also more prone

to overfitting. The choice of architecture often depends on the specific problem and the

available computational resources – some widely used architectures are discussed later in

this section.
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Activation Functions: The choice of activation functions, which introduce non-linearity

into the network, can also affect the network’s performance. Common choices include

sigmoid, tanh, ReLU, and their variants. ReLU has become popular due to its simplicity

and ability to mitigate the vanishing gradient problem (in which the gradients become too

small in later layers of deep networks).

Regularisation Parameters: Regularisation techniques, such as L1 and L2 regularisation,

add penalty terms to the loss function to discourage large parameter values. The strength of

these penalties is controlled by regularisation parameters. Higher values of these parameters

lead to more regularisation and can help prevent overfitting, but if too high, they can lead to

underfitting.

Optimiser: The choice of the optimisation algorithm, such as SGD, Adam, RMSprop, etc.,

and their associated hyperparameters (e.g., momentum for SGD), can affect the convergence

speed and the quality of the found solution.

The optimal values for these hyperparameters are problem-specific and are often found

through a process of hyperparameter tuning, which can involve techniques like grid search,

random search, or more advanced methods like Bayesian optimisation. The interplay between

these hyperparameters is complex, and it’s often hard to know the optimal configuration ahead

of time.

Neural Network Architectures

It is also possible to use many different kinds of neural networks, depending on the task at hand –

and we have seen rapid evolution in terms of different model architectures tailored for specific

types of tasks. Some key architectures include:

Recurrent Neural Networks (RNNs): RNNs are designed for sequential data tasks, making

them suitable for time series analysis, natural language processing, and speech recognition.
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Unlike traditional neural networks, RNNs have loops to allow information persistence,

meaning they have a memory of previous inputs in their internal structure [123].

Autoencoders: these are unsupervised neural networks used for data compression and

noise reduction. They work by compressing the input into a compact internal representation

and then reconstructing the output from this representation [37].

Deep Belief Networks (DBNs): DBNs are generative models that consist of multiple layers

of stochastic, latent variables. They stack multiple Restricted Boltzmann Machines (RBMs)

to create a deep architecture, making them suitable for tasks like feature reduction and

generative tasks [37].

Generative Adversarial Networks (GANs): This architecture involves two neural net-

works, namely the generator and the discriminator, which are trained together. The

generator tries to produce data, while the discriminator tries to distinguish between real

and generated data. This setup is primarily used for generative tasks, such as creating new

images that resemble a set of training images [60].

Transformers: Transformer models have recently emerged as a dominant architecture for

tasks related to natural language processing (NLP). The transformer architecture leverages

self-attention mechanisms to weight different regions of the input, allowing for more flexible

and context-aware representations of data. This architecture has led to state-of-the-art results

in a variety of NLP tasks, including machine translation, text generation, and sentiment

analysis, and there has been increasing interest in vision applications too. [144].

Residual Neural Networks (ResNets)

ResNets introduce the concept of "skip connections" or "shortcuts" that allow the activation

from one layer to bypass one or more layers and be summed up with the activation of a

later layer. This architecture was developed to address the vanishing gradient problem,

allowing for the training of much deeper networks. This approach has shown significant
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improvements in training deep networks, leading to better performance in various tasks,

especially in image classification [166].

Convolutional Neural Networks (CNNs)

CNNs are primarily used for tasks related to image processing, such as image classification,

object detection, and facial recognition. The architecture is characterised by its convolutional

layers that automatically and adaptively learn spatial hierarchies of features from input

images [15].

This thesis is primarily concerned with image-based tasks, and so of the above architectures,

convolutional and residual networks are the most relevant. Although there has been increasing

interest of late in the application of transformers to vision tasks [40]), CNNs are still the

most widely used for a number of reasons. They inherently possess inductive biases, such as

translational equivariance and locality. These biases enable them to process spatial hierarchies in

images efficiently [141]. Vision Transformers (ViTs) often necessitate substantial amounts of

training data to achieve competitive outcomes, but CNNs can frequently yield satisfactory results

with relatively smaller datasets [127]. From a computational standpoint, CNNs offer greater

efficiency for image data, attributed to their weight-sharing mechanism and local connectivity –

in contrast to ViTs, where the self-attention mechanism exhibits quadratic complexity concerning

input length [61]. For this reason, CNNs remain widely used in digital pathology.

The Application of Deep Learning to Digital Pathology

Pathologists are experiencing an escalating workload, increasingly complex tasks (due to devel-

opments in testing), and a vacancy rate that has reached 10-12% in the United Kingdom, and

continues to climb. Since 2007, there has been an average annual increase of approximately

4.5% in histopathology requests to labs [153]. Considering this alongside the advent of deep

learning and the availability of digital data, the growing interest in applying AI to automating

parts of digital pathology is unsurprising [159].
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Current applications of deep learning to digital pathology include various combinations of

image segmentation, tumour detection and classification (often by subtype), and cell counting

and detection, among others [92, 118, 33, 67, 12, 56, 91, 169, 71, 66, 28, 130, 174, 25, 168]. As

described in the previous section, convolutional neural networks (CNNs) are the most widely

used architecture for these kinds of image tasks [86] – for example, Hameed et al. [62] trained a

CNN to classify malignant and benign tissue from breast histology images, achieving an accuracy

of 98%.

As work in this field progresses, we are beginning to see deep learning systems outperform

human pathologists at predictive tasks where the ground truth is available after the fact [66, 28] –

tasks like predicting patient mortality or response to treatment, the presence of genetic disease

prior to genetic testing, the presence of malignancy prior to biopsy, et cetera. We are also

beginning to see deep learning systems outperform the predictions of generalist pathologists,

when the predictions of specialist pathologists in that particular area are available: for example,

Nagpal et al. built a deep learning system for Gleason grading of prostate biopsies that agreed

far more often with specialists in urologic pathology than it did with a cohort of general

pathologists [107].

However, using these advances to benefit patients in practice is problematic due to concerns

about the generalisation ability and interpretability of these models, along with ethical and legal

issues surrounding the use of these systems in diagnostic decision-making. As such, robust

interpretability is critical to making deep learning systems in digital pathology practically useful.

Additionally, interpretability is important for ensuring that the model does not make predictions

based on spurious or biased features, and that it will generalise to new patients and populations.

If we are to use these powerful systems to inform life-and-death decisions, we must understand

what they have learned and why any given prediction is made.
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1.3 What Is Interpretability?

The field of machine learning interpretability research is relatively recent and, as such, is

yet somewhat ill-defined: the terms ‘interpretability’ and ‘explainability’ are typically used

interchangeably, and there is a lack of consensus regarding formal definitions of either [106, 84,

97], although there have been a few attempts to taxonomise the field [55, 84, 21].

It is also important to recognise that explanations can take many forms, and not all of them

are equally meaningful or helpful to human users. For instance, a low-level, neuron-by-neuron

tracing of a network’s activations could be considered a form of explanation, but it may not

provide the kind of insight that is actionable or understandable for most people. The usefulness

of an explanation depends heavily on the specific context, the intended audience, and the purpose

for which the explanation is being sought. Ultimately, what counts as a good explanation is

largely determined by the needs and background knowledge of the user. An explanation that is

illuminating for a machine learning researcher might be completely opaque to a non-technical

stakeholder. The challenge is to provide explanations that are not only technically accurate but

also useful.

The complexity of this issue is highlighted by the growing body of work examining the notion

of interpretability and explainability from various angles. Some researchers critically examine

the very concept of interpretability, arguing that it is often poorly defined and may not always be

achievable or desirable [75]. Others provide overviews of different definitions, methods, and

applications of interpretable machine learning, underscoring the diversity of approaches and

the lack of standardization in the field [106]. The concept of interpretability is also sometimes

invoked in vague and inconsistent ways [85], further complicating the discourse.

For the purpose of this work, we can think about interpretability methods as tools for

answering questions about model behaviour – just as we might use the tools of biology to answer

questions about the workings of the human body – and the project of interpretability research

is then to design reliable, accurate tools for this task: the microscopes of machine learning.

Selecting which tool to use – that is, which of the many contemporary interpretability methods
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are best suited to understand a given model – is primarily determined by the architecture of that

model, the nature of the data it is trained on, and the task it is trained to perform.

Intrinsically Interpretable Models

Some simpler models are considered intrinsically interpretable [131]. One such model is the

decision tree. Decision trees split the data based on feature values. Each node in the tree

represents a feature in the dataset, and each branch represents a decision rule. However, they

can easily overfit to the training data, especially when the tree is deep, necessitating pruning

techniques [104]. Another model is linear regression. It models the relationship between

a dependent variable and one or more independent variables by fitting a linear equation to

the observed data. The primary limitation of linear regression is its assumption of a linear

relationship between variables, and it is also sensitive to outliers. Logistic regression is used for

binary classification problems. It estimates the probability that a given instance belongs to a

particular category. Like linear regression, it assumes a linear decision boundary, which might

not be the case for all datasets [2]. Lastly, the k-Nearest Neighbors (k-NN) model classifies a data

point based on how its neighbors are classified. It looks at the ’k’ nearest data points and assigns

a label based on the majority class among them. However, it is computationally expensive for

large datasets and is sensitive to irrelevant features and the choice of distance metric [104].

All of these models share some overarching limitations: firstly, they often make strong

assumptions about the underlying data distribution. For instance, both linear and logistic

regression assume a linear relationship between the features and the target variable [27]. While

this assumption simplifies the model and enhances interpretability, it can lead to sub-optimal

performance when the true relationship is nonlinear. Secondly, these models can be sensitive

to outliers and noise in the data. Anomalies in the dataset can disproportionately affect the

performance of models like linear regression and k-NN. For instance, a few mislabeled examples

can significantly alter the decision boundary in k-NN [104]. Another shared limitation is the

potential for overfitting, especially when the models are not regularised or constrained. Decision
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trees, in particular, are notorious for creating overly complex trees that perfectly fit the training

data but perform poorly on unseen data [104].

While intrinsic interpretability is a useful property, in real-world applications these models

often lack the expressive power needed to capture intricate patterns in the data, leading to far

inferior predictive performance compared to the deep learning models described in Section 1.2.

For this reason, interpretability techniques that enable humans to understand powerful models

that are not considered intrinsically interpretable are particularly useful [2].

1.4 Global and Local Interpretability

Interpretability methods can be either global (what has the model learned from the dataset?) or

local (why has the model produced a specific output for a specific sample?) [102, 133]. Global

methods aim to explain how a model makes predictions holistically, identifying which features

are important across the whole dataset and how model outputs are distributed based on the data,

learned parameters and model architecture. For complex models, this is hard to achieve in a way

that is interpretable by humans, so in practice, most global methods focus only on some parts of

the model – such as the learned weights in a convolutional layer – to explain which features the

model has learned to identify during training.

Feature visualisation [43] is an example of this kind of global interpretability method, in

which a single input sample is optimised to maximise the activation of a particular node, layer, or

output. This optimised input can then be inspected to identify the kinds of features a particular

node or layer in a network has learned to identify.

Local methods, by contrast, are concerned only with individual data samples and aim to

explain why the model produces the output that it does given that particular input [101]. These

methods are typically much easier for humans to parse as they answer questions which can be

easily visually interpreted – ‘Which pixels of this image influenced the prediction most?’. This

kind of local explanation is also known as attribution [175] – that is, the identification of the

portions of a given input to which the model’s output can be attributed.
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Both global and local interpretability methods fall into one of two broad categories – those

which are model-specific and depend on access to the structure and internal state of the trained

model, and those which are model-agnostic, and only require access to the input and output of

the model [103]. For example, gradient-based attribution is a local, model-specific method, as it

uses gradient information (which is model-specific) to explain a single (local) prediction.

Model-specific local methods are typically much more efficient, as they work by inspecting

the internal state of the model and, as such, do not require iteration over different permutations

of the input – but, they can only be used when the trained architecture of the model in question is

both accessible, and of a suitable type, which limits their application [101]. They cannot be used

at all for models in which the internal state and structure are unknown or inaccessible, such as

when accessing a third-party model through an API.

In contrast, model-agnostic local methods work by iteratively perturbing different regions of

the input and inspecting the change in the model output relative to each perturbation, irrespective

of the internal state of the model – and so can be used for any type of model at all, including

ensemble methods which could combine both white- and black-box models. However, existing

techniques of this kind are slow, as they build up an empirical estimation of regional importance

through many iterations – and require several hyperparameters to be specified – the optimal values

of which are difficult to know ahead of time for new datasets, necessitating computationally

expensive heuristic tuning [170].

Some interpretability methods, such as feature visualisation, can be applied in both model-

specific and model-agnostic contexts depending on whether they are applied to output logits

(un-normalised raw model outputs) or internal activations.

1.5 Model-Agnosticism

There are several applications of artificial intelligence in which interpretability is very important,

but where the model architecture is inaccessible or unsuitable for the application of gradient-

and activation-based model-specific explanatory methods, or those methods would result in
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saliency maps too coarse for the task at hand. For example, healthcare triage using ensemble

architectures taking both clinical data and high-resolution medical imaging; very high-resolution

image inputs in general; legal tasks using very large textual or tabular datasets, or autonomous

vehicle decision-making combining video, sensor and time-series input, to name a few [95, 101].

By definition, model-agnostic interpretability methods can be applied to any model, and so

research in this area is particularly valuable as the resulting algorithms are not limited to a single

type of data or architecture.

More practically, in the course of designing a machine learning solution to an applied problem,

testing a number of different types of model and model architecture is almost always necessary.

Using model-specific interpretability methods can quickly become a burden, as each model or

architecture will require different implementations and likely separate hyperparameter tuning.

Adopting a model-agnostic approach to interpretability significantly reduces engineering over-

head, speeding up development and drastically lowering the barrier to including interpretability

techniques in day-to-day applied AI work. Moreover, using the same interpretability method for

all different types of models tested allows for easy, objective, and often illuminating comparison

of learnt features and salient regions between models. Being able to tell if two equally performing

models have learned the same features or if they find the same input regions salient is valuable

for model selection. If model A has learned a feature that humans find meaningful, and model

B has learned some other, less obviously sensible feature, it is helpful to know that prior to

deployment.

At the time of writing, state-of-the-art transformer models can have hundreds of billions of

parameters [142]. Scaling laws predict that performance is likely to continue increasing as the

number of parameters does [72]. Interestingly, model performance is far more strongly associated

with scale than shape (i.e. depth or width), even as model architectures for all data types have

evolved over time [152]. Nonetheless, state-of-the-art model architectures do keep evolving,

and so another key benefit of model-agnostic approaches is their flexibility and robustness to

this evolution – they remain valuable tools for objective and comparative interpretation even
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as the underlying architecture may vary wildly and continue increasing in size as AI research

progresses. However good a model-specific interpretability method might be, it can never be

future-proof in the same way.

Finally, unlike model-specific methods, model-agnostic interpretability methods can be

directly and objectively evaluated and compared using the Proxy Model Test, which I propose in

Chapter 5.





Chapter 2

Feature Visualisation

One intuitive way to understand what a model has learned is by using feature visualisation [100,

105, 43, 117, 112] (sometimes also called activation maximisation, input optimisation, or similar).

This method generates an input to the model that maximises a selected output logit or internal

activation. This input can be initiated as all zeros, as the mean of the training data, as some input

sample from the dataset, as noise, or by some other method; this prior can have a substantial

effect on the result [117]. Stochastic Gradient Descent (SGD) or a variant is then used to

iteratively adjust this input, to maximise the output in question. In order to produce a range of

diverse inputs that maximally activate the output in question, a diversity term can be used which

penalises input examples similar to those already generated [117].

Regularisation of one form or another is often used to constrain the input to the dataset

distribution and impose a more natural structure upon it, to avoid generating inputs which

artificially maximise the output by exploiting out-of-distribution behaviour, and to limit high

frequency patterns related to the network architecture, rather than to the learned features with

which we are concerned. Limiting this kind of noise in order to more clearly visualise what the

model responds to, whilst limiting the introduction of human biases is a key concern in feature

visualisation research. This problem is similar in spirit to the accuracy-interpretability trade-off

discussed in Chapter 3.4: we want to find a balance between accurately visualising what truly

maximises some output for a given model, and doing so in a way that is interpretable by humans.

43
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Three main kinds of regularisation have been used in this pursuit: frequency penalisation,

transformation robustness, and learned priors. Frequency penalisation is achieved by either

explicitly penalising variance between adjacent elements [93] or by simply blurring the input

prior to each SGD step [112]. Transformation robustness is achieved via the application of

various stochastic transformations to the input during the optimisation procedure, typically

including scaling, small translational offsets and rotation. While simple, these approaches to

regularisation have produced convincing and distinct visualisations [105].

Using learned priors is a different approach altogether, which works by attempting to learn a

model of the real dataset and enforcing that model upon the input during optimisation. This can

be enacted by training a generative model, such as a Generative Adversarial Network (GAN)

or a Variational Auto-Encoder (VAE), to learn a mapping from the data to some latent space

and then constraining the input to that latent space during optimisation [111]. Inputs generated

in this way typically look very realistic and convincing to humans, but can no longer claim to

represent what truly maximally activates a given output, as the optimised input is now reliant to

an unknown degree on the latent space and the model that learned it.

Feature visualisation can be used in both model-specific and model-agnostic contexts. In the

former, we designate an internal node, channel or layer output for which we wish to generate an

input, while in the latter, we select an output logit. Note that the raw logit is maximised, rather

than the softmax class probability – the most direct way to increase the softmax probability for

a given class is to make the other classes less likely, which typically results in very noisy and

indistinct feature visualisations [117].

2.1 Exploring Learned Prototypes

I propose that in the context of feature visualisation for image classification models, when

optimising an input for a particular output class, we can understand the optimised input as the

model’s prototypical concept for the output class in question. We can see what the model has

learned to respond to from its training on the dataset – what the model ‘thinks’ the most predictive
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features of some class are. This can be useful and diagnostic – we might find interesting (or

spurious) correlations. Perhaps the optimised input for ‘lawnmower’ is mostly grass, or for

‘risk-of-coronary-event’, the presence of a pacemaker.

It is hard to objectively assess the trustworthiness of learned prototypes (that is, how well

they reflect what a model has truly learned), as they are inherently dependent on heuristically

chosen hyperparameters and regularisation efforts. Minor changes to the input initialisation,

learned prior, regularisation protocol or gradient descent algorithm can significantly affect the

optimised image. How ‘accurate’ a feature visualisation is, and how close the hyperparameters

are to optimal – that is, how close the optimised input is to the true maximally activating input –

is difficult to quantify in practice. However, one thing we can do is hold those hyperparameters

fixed and use feature visualisation in a comparative manner across different outputs of a single

model, or a set of different models. If multiple inputs are generated with a range of different

feature visualisation algorithms, and they all contain similar features, this suggests that those

visualised features are approaching the true learned prototype for that class. This is explored in

practice in Chapter 7.

In this chapter, I will explore some of these ideas using a few simple neural networks

trained on the MNIST dataset. The following class prototypes were generated using a feature

visualisation algorithm proposed by Erhan et al. [43], to generate one prototype X̂c for a model h

for each output class c, such that

X̂c = argmax
X

hc

(
X−min(X)

max(X)−min(X)

)
. (2.1)

This is done by performing gradient ascent on X with respect to hc(X), i.e. computing the

gradient of hc(X) and moving X in the direction of this gradient. In this case I initialised X as a

1×28×28 zero matrix (the size of each MNIST image the model was trained on), and at each

iteration normalised X to constrain it within the bounds of the MNIST dataset.
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Architectural Artefacts

Figure 2.1: Feature visualisation for two classification models trained to 97% accuracy on
MNIST data: a simple convolutional model (above) and a completely linear model (below).

Here I will briefly revisit the high frequency noise mentioned in Section 2. What does it

mean, and where does it come from? Olah et al. [117] describe it as high frequency patterns that

result from strided convolutions and pooling operations – what I shall call architectural artefacts.

I performed an experiment to see if this was the case, in which I trained two different

models to classify images from the MNIST dataset. The results of this experiment are shown in

Figure 2.1. Both models were simple neural networks with two layers. The first model’s layers

were convolutional and had 16 and 32 channels respectively (both with a kernel of size 3×3),

with each followed by max-pooling, while the second’s layers were entirely linear (each with

1024 nodes). Rectified Linear Units (ReLUs) were used after all layers except the last, as defined

in Equation 2.2. Both were trained using SGD with a learning rate of 0.001 and momentum of

0.9, using cross entropy loss as the criterion, until 97% classification accuracy was reached.

ReLU(X) = max(0,X) (2.2)

I used stochastic gradient descent (SGD) for these experiments with a learning rate of 0.1. The

only regularisation used was normalisation of the input prior to each optimisation step as shown

in Equation 2.1, to constrain the input to X ∈ [0 . . .1] as per the MNIST training data.

The optimised input images for each model are quite different. While both clearly show

relevant features which are present in the training data, what each model has learned is distinct

due to the difference in architecture. Notably, the digits visible in the optimised inputs for

the model with only linear layers are centered are thickly outlined and centered in the input
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Figure 2.2: Feature visualisation for five classification models with slightly different architectures
trained to 97% accuracy on MNIST data. K1: Kernel dimension (n×n) of first convolutional
layer, K2: Kernel dimension (n×n) of first convolutional layer, FC: Number of nodes in the
fully connected linear layer.

region, while the convolutional model’s are thinner, and are frequently doubled and offset. The

linear model pays little attention to the outer pixels – we can see that they are noisy, and close

to the mean – while the convolutional model has learned high contrast features and expects a

dark background. This is as expected: convolutional layers in neural networks identify features

location-independently, while linear layers cannot. What can we take away from this experiment?

It seems like chequerboard artefacts are indeed architectural – they are visible in the convolutional

model’s optimised inputs, but not in the linear – but that is not the most interesting thing about this

little experiment. Firstly, it shows that it is possible for us to access information about a model’s

architecture, given access only to its inputs and outputs. Secondly, it shows that different models

trained on the same data, performing equally well, may have learnt quite different features. This

underlines the importance of feature visualisation specifically and the use of interpretability

methods in general. In Chapter 3.4, I argue that we cannot assume that a deep learning model

has learned to perform well by using the same features that a human would. Here I show that we

cannot assume that two models, alike in performance, have learnt the same features.

Other information about the model is accessible, too: in Figure 2.2, I show the optimised in-

puts for five more convolutional models with slightly different architectures. The only difference
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Figure 2.3: Feature visualisation for five classification models trained with different protocols,
all trained to 97% accuracy on MNIST data.

between them and the first convolutional network is the kernel size used at each convolutional

layer, and the number of nodes in the final layer (necessarily adjusted to accommodate the new

kernel sizes). Small kernel sizes lead to more fragmented visualisations, and larger kernel sizes

to smoother ones (this is particularly apparent due to the shallow nature of this toy model), which

makes sense as larger kernels will learn to identify larger features than small ones during training.

The optimised inputs for the models with mixed filter sizes ((K1=3, K2 = 7) and (K1 = 3,

K2 = 11)) are more difficult to interpret. They appear more diffuse, disjointed and noisy: it

seems that following 3×3 kernel with one of a larger size is not ideal for this dataset. Looking

inside the black box to visualise the trained model’s learned kernels supports this, with increased

noise and lower inter-filter variation evident in ((K1=3, K2=7) and (K1=3, K2=11)), as shown in

Figure 2.4.

It is clear that the choice of kernel size has a significant effect on the learned prototype, as

would be expected. However, it is not just architectural choices that change what the model

learns: how the model learns also plays a large part. For example, in Figure 2.3, I compare three

further models, all with exactly the same architecture, but each trained in a slightly different way.

The first was trained with a higher learning rate, the second without momentum, and the third

using Adam optimisation instead of vanilla SGD. The differences here are striking.

We can conclude that feature visualisation can be a powerful tool for use during model



2.2. CENTROID MAXIMISATION 49

Figure 2.4: Learned convolutional filter kernels for five classification models trained with slightly
different architectures trained to 97% accuracy on MNIST data. K1: Kernel dimension (n×n) of
first convolutional layer, K2: Kernel dimension (n×n) of first convolutional layer, FC: Number
of nodes in the fully connected linear layer.

design, not just for post-hoc interpretability. Optimising for clean, distinct class prototypes that

are aligned with human knowledge during training could go a long way towards producing robust

and interpretable AI systems.

2.2 Centroid Maximisation

Research in feature visualisation to date has focused almost exclusively on image classifiers [137].

However, in Chapter 7, I adapt feature visualisation for use with a semantic segmentation model.

Segmentation models are trained to classify each pixel of an input image according to which

class (or object, et cetera) it belongs to – thereby partitioning an image into multiple segments,

where each segment corresponds to a specific class or object [65], as shown in Figure 2.5. This

means that for each input image, in contrast to image classifiers, segmentation models do not

just produce a probability for each class – but for each pixel of that image, for each class. They

therefore typically output a matrix of size d×d×C, where d is the input image dimension (in

this case assuming it’s the same for width and height) and C is the number of classes. This

presents a new challenge if we wish to understand what a segmentation model has learned in
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Figure 2.5: Example of different tasks in computer vision from Lin et al. [83]. Consider that the
output format of the model varies significantly between the two tasks we are concerned with:
in image classification (a), the model predicts the probability of each class being present in the
image as a whole; whereas for semantic segmentation (c), the model predicts the probability that
each pixel belongs to each class.

terms of class prototypes.

A naive approach would be to use the method defined in Section 2.1, and simply optimise the

input image X to maximise the model’s output for class c (denoted hc) for every pixel (denoted

hi, j,c for the model’s output for class c for the pixel at location i, j) such:

X̂c = argmax
X

d−1

∑
i=0

d−1

∑
j=0

hi, j,c

(
X−min(X)

max(X)−min(X)

)
. (2.3)

In practice (at least on MNIST), this does yield patterns which are identifiable as being relevant

to the class in question (see Figure 2.6). However, these patterns are quite dissimilar to the

distinct prototypical concepts we are able to uncover in classification models.

Here I will present a more sophisticated prototype generation method for visualising features

learned by segmentation models – that of centroid maximisation. Instead of optimising an input
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Precision Recall F1 Accuracy
0.6618 0.6563 0.6556 0.9941

Table 2.1: Segmentation model performance on MNIST test set. Metric formulas can be found
in Equation 7.5.

X to maximise the models prediction for class c for all output pixels as above, I select just the

centre pixel of the output (denoted h d
2 ,

d
2 ,c
(X)) and optimise the input to maximise only it, leaving

the surrounding pixels to change through gradient ascent as necessary without penalisation –

essentially allowing the class prototype X̂c to ‘grow’ around this centroid:

X̂c = argmax
X

h d
2 ,

d
2 ,c

(
X−min(X)

max(X)−min(X)

)
. (2.4)

Figure 2.6: Feature visualisation for two segmentation models trained on MNIST data. The
first (above) using centroid-only optimisation, and the second (below) optimising for high class
predictions on all outputs.

To test this idea, I built another convolutional model and adapted it for the segmentation task

by changing the number of nodes in the final linear layer to equal (C+1)×d×d. The output of

this linear layer is then reshaped. As per the base convolutional model in the previous experiments,

both convolutional layers used a 3×3 kernel and had 16 and 32 channels respectively. I trained

this model for ten epochs using cross entropy loss, which resulted in test set performance as

shown in Table 2.1:

This practice produces far more distinct feature visualisations, as shown on MNIST in

Figure 2.6. Greater high-frequency noise is evident when all pixel outputs are maximised per

class – this is inevitable as SGD attempts to maximise all outputs concurrently. In Chapter 7.5, I

use this kind of feature visualisation via centroid maximisation to identify immune cell prototypes

learned from a real-world histopathology dataset.





Chapter 3

Saliency Mapping and The Ground Truth

Problem

A popular approach to interpretability, particularly for computer vision tasks, is saliency mapping

(sometimes also called ‘attribution’) – that is, the generation of a heat map assigning colour or

brightness to regions or elements of the input according to how much each region or element con-

tributed to the model’s output. Saliency mapping of this kind is widely used in machine learning,

particularly for image classification tasks, but also for language modelling [44], prediction from

tabular data [164], and other tasks including time series prediction [122] that require the use

of large and complex neural networks, which are troublesome to interpret otherwise. Saliency

maps are intuitive to interpret, and are typically used to validate that models are learning to use

sensible features to make predictions, to debug mistakes, and to identify biases and spurious

correlations, which is not only crucial for safety as AI is increasingly applied to high stakes

domains such as medicine and autonomous vehicles, but also a valuable tool for increasing trust

in and adoption of these powerful technologies.

53
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Figure 3.1: Examples of saliency maps generated by: Hierarchical Perturbation (HiPe, pro-
posed herein); Random Input Sampling for Explanation (RISE) [124]; Extremal Pertur-
bation (ExtP) [46]; Guided Backpropagation (Guid.) [147]; Gradient (Grad) [143]; Grad-
CAM (GCAM) [138]; Contrastive Excitation Backpropagation (cMWP) [172]; Deconvnet
(DConv) [171]; and Excitation Backpropagation (MWP) [172].

3.1 Model-Specific Saliency Mapping Methods

Model-specific methods typically leverage network architecture to visualise explanations by

using gradients, activations, or some combination of the two. They are efficient, and often

produce convincing results, but have a few important limitations:

Gradient (Grad)

The Gradient method, sometimes referred to as vanilla gradient or simply backpropagation,

is one of the most straightforward approaches for saliency map generation. By calculating the

gradient of the model’s output for a particular class with respect to the input image, it determines

how small changes in input pixels would affect the prediction for that class. A high gradient

value for a pixel indicates its importance in the model’s decision. While this method provides a

direct measure of pixel importance, it often results in extremely noisy saliency maps – this is

because all possible pathways in the model that can influence the output are captured, leading to
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non-localised and scattered maps [143].

Guided Backpropagation (Guid.)

Guided Backpropagation is an enhancement of the standard backpropagation algorithm. In this

method, only positive gradients are propagated back to the input, effectively filtering out the

pixels that would decrease the model’s output if they were increased. This results in saliency

maps that are generally clearer and more focused than those produced by the Gradient method.

However, it is prone to producing high-frequency patterns, which can make the saliency maps it

produces hard to interpret and understand [147].

Grad-CAM (GCAM)

Grad-CAM stands for Gradient-weighted Class Activation Mapping. Grad-CAM uses the

activations from the last convolutional layer of a CNN to determine which regions in the image

were most influential for a specific output. By computing the gradients of the output class

with respect to these activations, Grad-CAM produces a coarse heatmap that highlights the

important regions of the image for the model’s decision. This method offers spatially coherent

visualisations, making it easier to identify the regions of interest in the image, but is incapable of

capturing details. [138].

Excitation Backpropagation (MWP, Marginal Winning Probability)

Excitation Backpropagation propagates the ‘excitation’ (or, activation) of a target output back-

ward through the network, and uses a probabilistic Winner-Take-All process to determine which

neurons propagate their excitation to the preceding layer. By emphasizing only the most in-

fluential paths in the network, it produces maps that highlight distinct and isolated regions of

importance – but this can also produce saliency maps that are overly sparse, with their granularity

determined by the model’s architecture [172].
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Contrastive Excitation Backpropagation (cMWP, contrastive Marginal

Winning Probability)

Contrastive Excitation Backpropagation builds upon the idea of Excitation Backpropagation,

and has the may of the same properties. In this case, the difference in excitation between the

target class and other classes is used to inform the saliency map. This results in even sparser

saliency maps, which highlight only features unique to the target class [172].

Deconvnet (DConv)

Deconvnet is a visualisation technique that aims to reverse the operations of a CNN. By mapping

the feature activations back to the input space, it reconstructs the patterns in the input that led to

specific feature activations. This method is particularly useful for understanding what individual

neurons in a CNN are looking for. However, the process of reconstruction often introduces

artifacts - specifically, due to the unpooling and deconvolution steps, the resulting saliency maps

often contain checkerboard patterns or other high-frequency noise, which can make them harder

to interpret [171].

Sanity Checks

Adebayo et al. and others [10, 136, 113] found that visual inspection is not a reliable guide in

determining whether an explanation is sensitive to the underlying model and data. The authors

demonstrate that even when the parameters of a model are randomised (essentially turning

the model into a non-informative random classifier), some gradient-based saliency methods

(guided backprop and deconvnet, in particular) still produce visually appealing and seemingly

meaningful explanations. This raises concerns about the validity of such methods, as they appear

to be insensitive to the model’s parameters, producing outputs that are strikingly similar to basic

edge detectors. These saliency mapping methods appear to be highlighting generic features in

the image, rather than features specifically relevant to the model’s decision. This observation
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underscores the risk of confirmation bias, where human observers might mistakenly interpret

these highlighted features as meaningful explanations for the model’s prediction. This risk

is decreased with model-agnostic methods due to their perturbation-based nature: there is an

explicit mapping from a perturbed input to a change in output.

Aside from confirmation bias concerns, which are discussed further in Section 3.4, model-

specific saliency-mapping methods share a number of limitations. The resolution of the saliency

maps they generate is architecture dependent, irrespective of what the actual size of the most

salient features in the input might be. Moreover, as noted by Fong et al. [47], these kinds of

methods are fundamentally ungrounded in what makes some region of the input more or less

salient – their explanatory power is assessed a posteriori. At present, even the most successful

methods of this kind are only applicable to a limited subset of architectures and only when

the trained model’s internal state is accessible – see Section 1.5 for further discussion of the

benefits of model-agnosticity and why we might care about the transferability of interpretability

approaches to arbitrary models.

3.2 Model-Agnostic Saliency Mapping Methods

Model-agnostic saliency mapping methods work by iteratively perturbing regions of the input

sample [124, 171] and using the sensitivity of the model output to these perturbations to generate

a saliency map. These methods have the nice property of direct interpretability (i.e. a perturbation

in the input can be directly mapped to a change in the output), but are computationally expensive

due to their iterative nature – they must query the model many times to build up a saliency

map for a single image. These methods also require heuristic parameter selection (for example,

selecting the size of the perturbation kernel or the number of masks to generate) to produce

informative visualisations, which may necessitate many trials, and thereby also prove costly

and fall prey to biased tuning to generate attractive, rather than informative maps. Zeiler et

al. [171] outline an early form of this approach, in which a perturbation kernel of fixed size is

iteratively applied to the input, and the difference in output at each kernel location is collated to
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form a saliency map. This is intuitive but very time consuming, as it relies on running potentially

many trials with different kernel dimensions to generate informative visualisations, since it is

impossible to know the scale of the most salient features learned by the model ahead of time.

Other techniques include training a second model using a saliency criterion to generate

attribution maps directly from the input sample [128, 36]. This approach is very fast once the

saliency model has been trained. However, applying this approach to a new dataset and model

would necessitate not only training a predictive model to succeed at the task at hand, but also

training a separate second model for saliency, which may not be trivial. This effective doubling

of the hyperparameter and architecture tuning burden and computational cost of training an

additional interpretability model for every predictive model deployed is likely to discourage the

widespread adoption of this technique. More importantly, explanations generated in this way

are by their nature fundamentally divorced from the model in question, and invite biased tuning

to generate saliency maps that look sensible to humans rather than optimising for explanatory

power.

Extremal Perturbation (ExtP)

Extremal Perturbation uses gradient descent to localise the smallest region in the image, that

when perturbed, causes the most significant change in the model’s output. While it provides a

clear visualisation of the most critical regions in the image for the model’s decision, its iterative

nature makes it computationally intensive [46]. More specifically, ExtP uses gradient descent to

learn a perturbation mask which minimises (or conversely, maximises) the model’s prediction

for the target class when applied to the input. This method produces binary segmentations which

look appealing but obscure any difference in feature salience within the broadly salient region of

pre-specified size. Furthermore, because it uses gradient descent, Extremal Perturbation requires

the selection of many hyperparameters (learning rate, momentum, number of iterations, mask

upsampling factor, mask areas, et cetera), which are chosen empirically and may not generalise

to novel models or datasets – once more raising the lengthy and uncertain prospect of manual
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tuning to generate informative, interpretable saliency maps. (Unlike Random Input Sampling

and Hierarchical Perturbation, which do not use gradient descent and so do not require the same

extent of hyperparameter tuning.) The published settings for PASCAL VOC and COCO result in

excellent performance but take an extremely long time compared to other methods (over fifty

seconds using an NVIDIA GeForce RTX 2060, compared to sub-second performance for most

other methods).

Random Input Sampling for Explanation (RISE)

Random Input Sampling for Explanation [124] is also perturbation based, and works by gen-

erating a number of low resolution random binary masks, upsampling them using bilinear

interpolation, using them to mask the input, and weighting each mask by the model’s output for

the correspondingly masked input (the perturbation, in this case, being the zeroing-out of random

regions of the input). The weighted masks are then aggregated and normalised, producing a

saliency map. The dimensions of the low resolution masks, and the number of masks used,

are chosen empirically (8000 7× 7 masks were used for ResNet50). The fact that the masks

are randomly generated means that RISE must always use a large enough number of masks

relative to the size of the input and the salient feature size in order to avoid biasing the saliency

map with unevenly distributed perturbations, especially when there are several salient regions

of varying sizes contained in the input. The larger the input dimension, the larger the number

of masks must be; crucially, although we might be able to make reasonable guesses based on

domain knowledge of the model’s training data, we cannot know fur sure the number of masks

and the resolution of those masks required to generate an accurate saliency visualisation. (This

is because we do not know the dimensions of the features that the model has learned – hence

the need for interpretability methods in the first place.) Decreasing the resolution of the initial

binary mask before interpolation decreases the number of masks necessary – however, the lower

resolution this mask is, the coarser the final saliency map will be, making RISE prohibitively

expensive for high resolution data which demands high resolution saliency. These limitations are
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explicitly mentioned in the original publication [124], which calls for future work to address this

by intelligently selecting a smaller number of masks.

3.3 Perturbation Substrates

A key consideration in perturbation-based saliency mapping methods and their evaluation is the

fact that the choice of perturbation substrate (what is used to replace any perturbed regions in the

model input) has a significant effect on output [30], and is very hard to generalise across different

datasets for benchmarking purposes. For example, if a dataset consists of various features on

a black field, as per the Hoechst stained slide data introduced in Chapter 7, perturbing input

regions by replacing them with black pixels (or whatever the minimum element value of the

input is after standardisation) makes sense – it essentially removes features by replacing them

with the ‘background’ colour. However, performing the same type of perturbation on a dataset

containing more natural images can be problematic, as replacing some input region with zeros in

an RGB image essentially introduces a strange black artefact to the image, when our hope was to

seamlessly remove information from it.

A number of different substrates have been tried, with blurred, noisy, or zero substrates used

most commonly. Other methods such as inpainting offer the potential remove information from

images while minimising out-of-distribution artefacts. During the course of my experimentation

with Hierarchical Perturbation (HiPe), a novel saliency mapping algorithm which I introduce in

Chapter 4, I found that using the local mean results in marginally superior performance to a zero

substrate or to a Gaussian blurred substrate. This is likely because the zero substrate introduces

confounding artefacts which unpredictably affect the model’s output, and the Gaussian substrate

may not remove sufficient information to get an accurate estimate of the blurred region saliency.
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Blurred Substrate

By replacing the perturbed region with its blurred version, some original information is retained,

albeit in a less distinct manner. The degree of blurring can be influenced by parameters such as

the kernel size and the Gaussian function’s standard deviation. A larger kernel size or a higher

standard deviation results in more pronounced blurring, potentially erasing more information

from the perturbed region. However, excessive blurring might introduce patterns unfamiliar to

the model, leading to unpredictable outcomes.

Noisy Substrate

Introducing noise to perturbed regions is another strategy – this can be achieved using various

noise distributions, such as Gaussian, uniform, or salt-and-pepper noise. The noise type and

intensity can be controlled by parameters like mean, variance, and noise type. While noise can

effectively obscure certain image features, high noise levels can introduce out-of-distribution

patterns, causing the model to base decisions on these artificial patterns rather than the image’s

inherent features.

Inpainting Substrate

Inpainting involves replacing perturbed regions with content that appears natural given the

surrounding context. Deep learning models trained for inpainting tasks typically achieve this.

Inpainting can generate content coherent with the surrounding regions, minimizing out-of-

distribution artifact introduction. However, inpainting quality can vary, and if not executed

correctly, it can introduce confounding artifacts. The results may also vary based on the

inpainting model used.
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Local Mean Substrate

Using the local mean of the perturbed region as the substrate involves calculating that region’s

average pixel value per channel and replacing all its pixels with this mean value – I introduce

this in Chapter 4. My aim with this method was to erase specific local details while maintaining

the region’s general color or intensity, and thereby minimise confounding or out-of-distribution

information. In practice I found that this substrate only marginally increased the accuracy of

the Hierarchical Perturbation technique I introduce in Chapter 4, by around 1% on the pointing

game benchmark.

For perturbation based methods in general, model sensitivity to perturbation substrate can lead

to suboptimal saliency maps, particularly when the perturbation method introduces confounding

artifacts. More work is needed to identify perturbation methods that are robust across a wide

range of datasets and models, and to quantify the affect of different substrates in different

domains. For now, choice of perturbation substrate should be informed by domain knowledge.

3.4 The Ground Truth Problem

Consider the example of classifying general categories like cats versus trees, contrasted with the

more nuanced task of distinguishing between two similar cat breeds, such as a British Shorthair

and an American Shorthair. For a model trained to perform the first classification task, the

features it learns are likely to be broad – like the presence or absence of leaves. In contrast, a

second model trained to perform the breed-specific task would need to learn more subtle features,

such as fur texture or ear shape. When asked to classify a photograph of a cat, the features that

each model would use – the features that each model would find salient – would likely be quite

different.

The distinction between differential and absolute classification is also relevant here. While

many machine learning models, especially in domains like medical diagnosis, might operate on

a differential basis (identifying a condition by excluding others), our focus is on the absolute
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identification of salient features as determined by the model, regardless of the classification

task’s differential (or otherwise) nature. In fact, accurate saliency mapping can be a powerful

tool in determining whether a model has learned to determine the presence of one class by the

absence of another others.

The concept of ‘true’ or ‘actual’ saliency as I use it here, is then model-dependent – it denotes

the regions or features of an input that a specific model finds most influential for its prediction.

This is distinct from a human-centric or universally ideal perspective of an object’s defining

features in a platonic sense. We are interested in understanding what ML models have learned,

which may be quite different from what humans would learn, given the same task. In order to do

that, we need saliency mapping methods that effectively capture what the model finds salient,

irrespective of what the human does.

It is essential to recognise that while human vision is unparalleled in many aspects, machine

learning models operate differently. They might reach correct classifications and excellent

performance using criteria distinct from human reasoning, and so find very different regions of a

given input salient, when compared to a human. Thus, while human judgment provides valuable

insights, it isn’t an appropriate benchmark for determining how accurate a saliency mapping

method is. In order to do that, we need to know what the model actually finds salient, so we can

see if a given saliency mapping method accurately identifies it. Unfortunately, this ground truth

saliency does not exist – and because of this, the evaluation of saliency mapping algorithms (and

indeed, all interpretability methods) is inherently problematic. We have no ground truth to which

we can compare our explanations.

A perfect explanation of a model’s prediction is provided by that model’s architecture,

parameters and hyperparameters, along with the input. But we cannot understand it: it is

accurate, in that it precisely describes the model’s behaviour, but it is not interpretable, in that

we cannot use it to make sense of what a model has learned. Saliency maps and other ways of

visualising model behaviour are far more interpretable – but are they accurate? Moreover, how

could we tell?
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Imagine two saliency maps, each generated by a different saliency mapping method, with

respect to the same input (a photograph of a cat) and the same model (a cat classifier). Saliency

map A indicates that the most salient regions are the ears and whiskers. Saliency map B indicates

the eyes and tail. Both are equally easy to interpret, both look sensible to humans, but which

algorithm produces saliency maps that most accurately show what the model actually finds most

salient? Which is closest to the true saliency of the input, according to that model? Which

saliency mapping method is more accurate?

In this chapter, I describe two widely used metrics (the Pointing Game, and Insertion and

Deletion) for saliency mapping evaluation and explain how they fail to capture this crucial idea

of accuracy adequately – of faithfulness to the true saliency of the input with regard to the model.

I then propose a new test, which circumvents these issues and allows for a direct, objective

comparison of saliency mapping methods through the use of a proxy model.

3.5 The Pointing Game

The pointing game measures the accuracy of a given saliency map by examining the correlation

between the most salient point on that map and the location of the object in question. This is

done by generating a saliency map for some class prediction for a given image, and comparing

the location of the actual class object in the image with the maximum (therefore, most salient

point) on that map. If the maximum point falls within the boundary of the object annotation, one

point is gained, and the overall accuracy is calculated as the number of hits divided by the total

number of saliency maps generated.

As observed by Zeiler et al. [171], the pointing game is something of a flawed metric: it

relies on the assumption that models classify inputs based on the same features or objects that a

human would, and so a good saliency map would highlight those same features or objects. It

uses the human annotation as a proxy for the ground truth of what the model actually finds most

salient in a given input.

This means that it rewards saliency maps that show what a human being would consider to
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be salient, rather than those which accurately capture what is salient to the model in question

– i.e. what we would want a good saliency mapping algorithm to highlight. In practice, these

two things often overlap, but when a model has learned some other feature – for example, if it

uses the presence of green fields to identify cows – and a saliency mapping method correctly

identifies this – the pointing game would count this as a failure of the saliency mapping method

in question, because the human annotator would expect the cow, not the field, to be salient.

Similarly, an important distinction must be made between saliency and segmentation.

Saliency mapping identifies only the input regions to which the model’s output is sensitive

– on a local level, there is no guarantee that these regions will contain the object in question.

Indeed, the absence of salient features for some class can be just as relevant to a model’s pre-

diction as their presence. This is quite different to the task of localisation, where the goal is to

identify the location of objects of each class within the input, or segmentation, where the aim

is to classify all input regions according to the class they belong to, whether the prediction is

sensitive to their perturbation or not. As such, it is unwise to assess saliency maps as if they were

segmentations – although this is not to say that saliency mapping techniques cannot be useful for

segmentation, as shown in Chapter 6.

Note also that this method requires at least bounding-box annotations and ideally pixel-level

annotations of objects or features in the test dataset. These can be prohibitively expensive and

time-consuming for humans to create, and as described above, are at best a proxy for the ground

truth of model-specific saliency.

3.6 Insertion and Deletion Metrics

Proposed by Petsiuk et al. [124], the motivation behind the insertion and deletion metrics is

grounded in the intuitive notion that a model’s confidence in its prediction should be directly

influenced by the presence or absence of salient features in the input. Unlike like the pointing

game, these metrics solely focus on the relationship between the saliency values assigned to

pixels and the corresponding change in model output. There is no attempt to find a ground truth



66 CHAPTER 3. SALIENCY MAPPING AND THE GROUND TRUTH PROBLEM

Figure 3.2: Example of the insertion and deletion metrics using HiPe for the class ‘baseball
glove’. The area under the curve (AUC) is used to benchmark the accuracy of the saliency maps:
lower is better for deletion, and higher is better for insertion.

saliency to compare with the generated saliency map, rather, this is a self-contained evaluation

metric which attempts to provide a measure of a saliency method’s internal consistency.

The deletion metric gauges the impact on the model’s confidence as salient pixels, as

determined by the saliency map under assessment, are progressively removed from the image.

The expectation is that as these crucial pixels are eliminated, the model’s confidence in its

prediction should diminish. A rapid decline in confidence, resulting in a small area under the

probability curve, suggests that the saliency map has accurately identified the influential regions.

To implement this metric, there are various strategies for pixel removal – see Section 3.3 for

further discussion of this. Petsiuk et al. argue that setting regions to constant values is more

effective for the deletion metric, as blurring small regions might not sufficiently fool a well-

trained classifier, which can often infer missing details from surrounding regions, and so a zero

substrate is used for the deletion metric.

Conversely, the insertion metric measures the increase in the model’s confidence as increas-

ingly more salient pixels are introduced into an initially obscured image. The rationale is that as

salient regions are revealed, the model’s confidence in its prediction should rise. A steep increase

in confidence, leading to a large area under the curve, indicates a saliency map that aligns well

with the model’s decision-making process. Implementing the insertion metric presents its own
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challenges. Pixels can be introduced onto a constant canvas, but this can sometimes introduce

misleading evidence that confounds the classifier. For instance, introducing an oval-shaped

region onto a blank canvas might erroneously lead a classifier to predict ’balloon’. To mitigate

such issues, Petsiuk et al. propose starting with a highly blurred image and gradually revealing

regions, as this approach preserves some low-level details without introducing sharp, potentially

misleading boundaries.

The exact number of pixels manipulated at each step isn’t explicitly mentioned in the

publication. Pixels could be added or removed one at a time, starting from the most salient pixel

and proceeding in descending order of saliency. This would produce the most fine-grained AUC,

but would be quite computationally expensive depending on the input size. Instead, we could

set a certain percentage of the most salient pixels are added or removed in each iteration. For

instance, 5% or 10% of the most salient pixels might be removed or added at each step. The

public codebase from Petsiuk et al. [125] uses this approach, taking a ‘steps’ parameter. The

total number of pixels in the input is divided by this to give the number of pixels to insert or

delete at each step. The default number of steps is 100.

As neural networks are known to capture hierarchical and non-linear relationships in their

training data, the relationship between individual input features or regions and a model’s output

might not be straightforward [59] – causing non-smooth and potentially confusing changes in

the output when any region of the input is perturbed. Consider a task where a model is trained to

identify emotions. An image of a face displaying a smile might be classified as ‘happy’. Now,

if a saliency mapping method identifies the corners of the mouth (where the smile forms) as

highly salient, it seems intuitive. However, when using the deletion metric, as we progressively

remove the pixels around the mouth, we might expect the model’s confidence in the ‘happy’

classification to decrease. But what if it doesn’t decrease as sharply as anticipated –– or even

increases?

It could be that our saliency mapping method is poor, and the pixels we are removing actually

don’t matter. Or, it could be that something else is going on: facial recognition models often
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learn to recognise emotions based on a combination of features, not just the mouth. The eyes, for

instance, play a crucial role in emotion recognition. A genuine smile, often termed a Duchenne

smile, involves not just the mouth but also the eyes [42] – so, even as the salient pixels of

the mouth are removed, the model might still detect happiness based on the eyes – or even

find the eye region more salient than before, as the mouth is obscured. This could cause a

higher-than-expected AUC, even if the original saliency map happened to perfectly capture the

saliency of the un-perturbed image – the act of perturbing the input changes its salient regions

with respect to the model.

3.7 Summary

This chapter explored the use of saliency mapping in AI interpretability, particularly with respect

to its applications in image classification, as an important tool for identifying biases, validating

feature usage for predictions, and enhancing overall model transparency. I drew attention to

the important distinction between model-specific and model-agnostic methods, and discussed

their relative strengths and limitations: Model-specific methods, which include techniques

like Gradient, Guided Backpropagation, Grad-CAM, and others, exploit network architecture,

utilizing gradients and activations for visualisation. However, these methods are often hampered

by their dependency on specific architectures and potential for noisy or coarse maps. Model-

agnostic methods, such as Extremal Perturbation and Random Input Sampling for Explanation

(RISE), focus on input perturbation to quantify model output sensitivity. These methods offer

more direct interpretability and don’t assume specific architectures, so can be used with any

model – but they have high computational demands and require heuristic parameter selection.

I also discussed a key issue with all saliency mapping methods: ‘The Ground Truth Problem’.

This hampers assessment of different saliency mapping methods due to the difficulty in defining

what constitutes ’true’ saliency, as it varies from model to model and can diverge from human

perceptions. I argue that we cannot assume that a given model has learned to use the same

features in the input that a human would do, and therefore that saliency maps agreeing with
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human annotations is not guaranteed to be a reliable measure of their accuracy.

I then covered existing methods for the evaluation of saliency maps, such as the Pointing

Game and Insertion and Deletion metrics. These metrics, while useful, have inherent limitations

such as over-reliance on human judgment and potential inconsistencies in model responses to

input perturbations.





Chapter 4

Hierarchical Perturbation

In this chapter I propose Hierarchical Perturbation (HiPe), a novel approach to perturbation-based

saliency mapping, which identifies salient regions regardless of scale, largely removes the need

for heuristic parameter selection, and dramatically reduces computational cost whilst maintaining

accurate saliency identification. It provides these benefits by iteratively identifying salient sub-

regions and disregarding relatively unimportant ones in increasing resolution. This approach is

compared to other saliency mapping methods on the established pointing game benchmark [172]

and the causal insertion/deletion metric [124], and evaluated on the commonly-used MSCOCO

and VOC2007 validation and test datasets. HiPe is over 20× faster than existing model-agnostic

methods while achieving comparable performance on these benchmarks.

Hierarchical Perturbation is a natural extension of iterative occlusion [171] and the random

masking of RISE [124] described in Chapter 3, in which the same principles of empirical saliency

estimation are adopted, but here applied in a more directed fashion to minimise computational

cost and thereby make model-agnostic saliency mapping a realistic prospect for large samples or

datasets. The critical insight is that a large amount of superfluous computation is performed by

current methods when regions with little effect on the model output are iteratively perturbed, or

when random perturbation region selection results in spatially similar or overlapping regions.

By avoiding this unnecessary cost through saliency thresholding, it is possible to perform

model-agnostic saliency mapping an order of magnitude faster than existing methods.

71
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Algorithm

As shown in Figure 4.1, HiPe works by focusing on perturbing the most salient regions with

increasing resolution whilst ignoring regions which do not change the model’s output. Note that

although the following explanation uses an image as the model input for clarity, HiPe does not

require the input to be any specific shape.

Figure 4.1: Saliency Mapping with Hierarchical Perturbation

Let f be the trained model, which takes X, a matrix of size 3×h×w (in this case, a three

channel colour image with variable height and width), and returns a scalar output. S is instantiated

as the saliency map, initially a zero matrix of size h×w, and iteratively populated as follows.

First, a set of masks is generated (denoted P = {M1,M2, . . .}), such that:

1. Each is matrix of size d×d, where d = ⌈log2(min(h,w))⌉. This results in a mask dimen-

sion that is always neatly divisible by two, ensuring that the perturbation regions will

overlap evenly.

2. Each M ∈ P contains a unique 2×2 region of ones, with all other elements set to zero (this

is to ensure an overlap of perturbation to capture features on the border of regions), and;

3. For all M ∈ P, t(S,M) = 1, where t is a step function using the mid-range of the current

saliency map as a threshold to identify regions of high salience for higher-resolution map-
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ping: thus (where ◦ denotes the Hadamard (element-wise) product, and u an upsampling

operation using proximal interpolation which resizes the d×d mask to h×w):

t(S,M) =

1, i f max(S◦u(M))≥min
(

S+ max(S)−min(S)
2

)
0, otherwise

(4.1)

The mid-range of the current saliency map is used in preference to some arbitrary threshold

as it allows us to handle varying saliency distributions across different samples. Selecting an

optimal threshold for all samples would require either knowledge about the saliency distribution

beforehand, or costly heuristic trials – whilst manually selecting one for each sample would

optimise for achieving visually pleasing saliency maps, and render comparing the relative saliency

of different samples across the dataset difficult. The mid-range is used for this rather than the

mean or some other aggregate of the current map, as the mid-range is extremely sensitive to

outliers. This sensitivity allows us to focus on the most salient regions quickly in cases where

only a small region of the input is salient, significantly improving performance compared to the

mean. An example of this is shown in Figure 4.2.

Note that the first time this thresholding operation is applied, t(S,M) = 1 in every case,

because both M and S are initialised as zero matrices, so the first set of masks contains every

possible unique position of the 2×2 region of ones.

Next, a copy of the input X is made, in which the pixels that correspond to the non-zero

region of each upsampled mask u(M) are perturbed, by replacing all pixels therein with the mean

pixel values of that region. Call this perturbation operation p. The saliency map S is then updated

with the difference between the model’s output given this perturbed input f (p(X,u(M))), and

its output given the original unperturbed input f (X):

S′ = S+ ∑
M∈P

ReLU( f (X)− f (p(X,u(M)))◦u(M)). (4.2)

This means that the region of the saliency map which corresponds to the perturbed region in the

input has the difference in the model output added to it.
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ReLU (as defined in Equation 2.2) is used so that the saliency map is updated only in response

to perturbations which decrease the confidence of the target class, and therefore only highlights

regions that, when available to the model, increase the target class prediction. d is then doubled,

halving the size of each perturbed region with respect to the input, and the above steps (generating

a new set of masks, applying them to the input, updating the saliency mask with the change in

the model’s output, increasing d) repeated while d ≤ min(h,w)
4 . This effectively means that HiPe

can consider features as small as 2×2 pixels in size, as the minimum perturbation region size is

4×4, with a 50% overlap.

Usage of the local mean as a perturbation substrate is further discussed in Chapter 3.3,

although it is quite possible to use any perturbation substrate with HiPe – this is an advantageous

property, because how best to perturb the input for perturbation-based saliency mapping methods

remains an open question [30] as discussed in Section 3.3.

To summarise intuitively, as described in algorithm 1, HiPe begins by perturbing large,

overlapping regions and using the difference in the model output for each of these perturbations

to update the saliency map. All regions of the saliency map that exceed the saliency threshold

are split into smaller overlapping regions, which are then each perturbed, and the saliency map

updated in turn – and so on – until either the minimum perturbation size is reached or no region

remains above the saliency threshold. By discarding regions with little impact on the model’s

output and focusing only on the more salient areas, it is possible to generate saliency maps

of comparable quality to the state-of-the-art for model-agnostic methods at a fraction of the

computational cost.

4.1 Experiments

In this section, I compare HiPe to popular alternatives from the literature using two widely

adopted saliency mapping benchmarks – the pointing game and insertion/deletion causal metrics,

which are described in detail in sections 3.5 and 3.6 respectively. As discussed in Chapter 3.5,

the pointing game is something of a flawed metric – it relies on the assumption that if a model
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Algorithm 1 Hierarchical Perturbation Algorithm (HiPe)
Require: model f , input image X of size 3×h×w

Initialise saliency map S as a zero matrix of size h×w.
Set d← ⌈log2(min(h,w))⌉.
while d ≤ min(h,w)

4 do
Initialise an empty list for set of perturbation masks P.
Calculate the mid-range threshold t of S.
t←min(S)+ max(S)−min(S)

2
for each unique 2×2 region within d×d do

Initialise mask M as a zero matrix of size d×d.
Set the 2×2 region of M to ones.
Upsample M to size h×w using proximal interpolation.
if max(S◦M)≥ t then

Add M to the set P.
end if

end for
for each mask M ∈ P do

Create perturbed input p(X,M) by perturbing the region in X corresponding to the
non-zero region in M.

Compute the model output difference ReLU( f (X)− f (p(X,u(M)))).
Update saliency map: S← S+ReLU( f (X)− f (p(X,M))◦M).

end for
Double d.

end while
return Saliency map S

performs well, it has learned the same features that a human would, and so an accurate saliency

map would highlight those same features. This means that it rewards saliency maps that highlight

what a human would expect to be salient, rather than what is in fact salient to the model, which

might well be different. Nonetheless, given a well trained model it can be considered a reasonable

proxy, and since it is a standard comparator I include it here. I used a publicly available pre-

trained ResNet50 model [64] for these experiments, along with the MSCOCO 2014 validation

set and the VOC 2007 test set, to allow for comparison with previous works. Further evaluation

in Chapter 5 follows using the Proxy Model Test.

https://pytorch.org/docs/stable/torchvision/models.html
https://pytorch.org/docs/stable/torchvision/models.html
https://cocodataset.org/
http://host.robots.ox.ac.uk/pascal/VOC/voc2007/
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COCO14 Val VOC07 Test
Method All Diff Time (s) All Diff Time (s)

cMWP [172] 58.5 53.6 0.08 90.6 82.2 0.09
GCAM [138] 57.3 52.3 0.03 90.4 82.3 0.03

MA
ExtP [46] 55.7 46.9 53.4 86.3 73.4 53.5

RISE [124] 55.6 – 25.87 88.9 – 23.61
HiPe 54.6 49.6 0.94 85.6 75.1 0.95

MWP [172] 49.6 43.9 0.06 84.4 70.8 0.06
Guid. [147] 42.1 35.3 0.1 77.2 59.5 0.1
Grad [143] 35.0 29.4 0.06 72.3 56.8 0.06

DConv [171] 30.0 21.9 0.06 68.6 44.7 0.06

Table 4.1: Pointing Game: Mean accuracy and time on full and difficult validation/test sets of
VOC07 and COCO14 defined by by Zhang et al. [173], with the difficult subset containing only
"images that meet two criteria: 1) the total area of bounding boxes (or segments in COCO) of
the testing category is smaller than 1/4 the size of the image and 2) there is at least one other
distracter (sic) category in the image."). Best results are highlighted within the model-agnostic
(MA) subset. As the computational cost of rerunning saliency map generation on the entire
COCO and VOC datasets was prohibitive, accuracy results for methods other than HiPe are
taken from Fong et al. [47], and RISE results taken from Petsiuk et al. [124] (which excluded
the difficult subset). Average saliency map generation times are calculated using Torchray
implementations with default settings for 1000 random samples (one random class per sample)
using an NVIDIA GeForce RTX 2060.

The Pointing Game

Table 4.1 shows that HiPe is competitive with existing model-agnostic saliency mapping methods

Extremal Perturbation (ExtP) and RISE, whilst averaging under a second to produce a saliency

map. In contrast, RISE requires over 23 seconds, and Extremal Perturbation takes nearly a

minute per image. Both of these methods could be made faster by decreasing the number of

random masks, or the number of iterations respectively – but at the cost of increasing noise in

the saliency map generated.

Insertion and Deletion Metrics

In Table 4.2, I show that HiPe is competitive with all methods across both metrics and datasets,

and marginally outperforms all methods on the insertion metric. This is expected, because

unlike the model-specific methods, the saliency maps generated by HiPe are products of directly

https://github.com/facebookresearch/TorchRay


4.1. EXPERIMENTS 77

COCO14 Val VOC07 Test
Method Insertion Deletion Insertion Deletion

MA HiPe 0.68 0.43 0.67 0.42
GCAM 0.67 0.41 0.67 0.39
Guid. 0.66 0.39 0.65 0.38

cMWP 0.66 0.39 0.65 0.38

MA
RISE* 0.65 0.40 0.65 0.39
ExtP 0.63 0.45 0.62 0.45
MWP 0.62 0.38 0.62 0.34
DConv 0.62 0.39 0.62 0.44
Grad 0.62 0.46 0.61 0.44

Table 4.2: Insertion and Deletion AUC: A comparison of mean Area Under Curve for insertion
(higher is better) and deletion (lower is better) causal metrics described by Petsiuk et al. [124] on
1000 randomly selected samples, for: HiPe (proposed herein); Random Input Sampling for Expla-
nation (RISE) [124]; Extremal Perturbation (ExtP) [46]; Guided Backpropagation (Guid.) [147];
Gradient (Grad) [143]; Grad-CAM (GCAM) [138]; Contrastive Excitation Backpropagation
(cMWP) [172]; Deconvnet (DConv) [171]; and Excitation Backpropagation (MWP) [172]. As
in Table 4.1, superiority within the subset of model-agnostic (MA) methods is highlighted. The
percentage of pixels removed or added at each step is set to 1%, the blurred substrate is used for
insertion, and the zero substrate for deletion as per the literature.

perturbing the input in a comparable way to the causal metrics used here. This is also the case

for RISE – the small decrease in comparative performance is due to the stochasticity inherent in

this method.

Figure 4.3 shows examples of saliency maps generated with HiPe, and Figure 4.4 compares

saliency maps across all methods for a single image for the class ‘fork’. HiPe, Grad-CAM and

cMWP identify the fork in the image as salient, but the other methods do not. It has been shown

that deconvnet and guided backpropagation are in some cases invariant to reparameterisation in

later layers [113], and essentially act as image reconstructors – this is particularly evident in the

guided backpropagation (Guid.) map here. The failure of RISE and Extremal Perturbation to

localise the fork in the image is due to the small size of the features in question – both RISE and

Extremal Perturbation rely on heuristic hyperparameters which dictate the size of salient regions

to be localised. HiPe, by contrast, performs well on inputs containing salient regions of all sizes.

Figure 4.5 shows an example of HiPe applied to a segmentation task – that of immune

cell segmentation from Hoechst-stained whole slide images (WSIs) using a deep residual U-
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net, which will be discussed in more detail later in this work. This example showcases the

applicability of this model-agnostic method to arbitrary architectures, and leverages the speed

and robustness of HiPe in a use case where other perturbation-based techniques would have been

prohibitively slow for multiple large WSI images, and gradient-based methods too indistinct for

the relatively small and sparse salient features (as shown in the benchmark experiments – see

Figure 4.4).

As shown by Adebayo et al. [10] and Kindermans et al. [73], robust saliency mapping

algorithms must be sensitive to input with respect to their target output class – for example, given

an image containing both a cat and a dog, and a trained neural network that classifies cats and

dogs, one would expect that a saliency map generated with respect to the ‘cat’ output would look

very different to that of ‘dog’ – given of course, that the neural network has successfully learned

‘cat’ and ‘dog’ specific features.

In order to investigate this property, class-specific HiPe saliency maps are generated using a

simple model trained on the MNIST dataset. MNIST is used in this case partly because it is a

common sanity-checking dataset in the literature and therefore allows for easy comparison with

other saliency-mapping experiments [73], but primarily because due to its simplicity, it is free

from potentially confounding spurious correlations in the input. Therefore one can confidently

expect a well-trained model to classify digits based only on the digits themselves.

A simple three layer convolutional network was trained using cross entropy loss and SGD

with a learning rate of 0.001 and momentum of 0.9. The network had two convolutional layers

(the first having 16 channels and the second 32), each with a kernel size of 3, a stride of 1, and

zero padding. Each was followed with a ReLU and maximum pooling with kernel size 2. The

final was a standard linear layer. This network was trained to 97% accuracy, and HiPe applied to

each class output in turn. Figure 4.6 shows the results of this experiment on a randomly chosen

sample for each digit. The saliency maps for each digit are distinct and sensible. This image

confirms that HiPe is sensitive to the target class for each map, and can be interpreted intuitively

– the zero input has high saliency for the zero class around the entirety of the digit. For other
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class saliency maps on the zero input, HiPe finds portions of the input salient – for example, the

upper curve for class 9, the lower curve for classes 3 and 5, and the leftmost curve for class 6.

4.2 Discussion

Unlike RISE [124], which generates masks randomly, and methods which learn secondary

models through gradient descent such as those of Fong et al., Ribeiro et al. and Dabwoksi et

al. [47, 128, 36], HiPe contains no random elements. However, HiPe is not able to capture

instances where the salience of two spatially distinct features in combination is greater than the

sum of each feature individually.

An example of this is shown in Figure 4.7. Because HiPe only perturbs one location at a time,

it is unable to take into account how the model output changes if two or more separate relevant

areas are perturbed. As RISE is able to capture this (if one of more of its the random masks

happens to cover both areas), in this case it seemingly highlights not only the area around the

fridge, but also the rest of the kitchen. It is hard to say this definitively, as we do not have ground

truth saliency beyond human annotation, which, as discussed in Section 3.4, may not accurately

reflect what the model finds salient. In any case, the saliency map generated by HiPe does not

show the rest of the kitchen area to be as salient as that generated by RISE, and fails to assign

the highest saliency to the fridge. In fact, the most salient point produced by HiPe is far from the

fridge. This is likely due to the permutation method used – in this case the local mean – which

replaces the perturbed region with the mean pixel values of that region (per channel). Looking at

the bottom right corner of the image, where the highest saliency marker is located for HiPe, we

can see that replacing a square region with the local mean there would result in a pale square –

something that, combined with the other features HiPe has highlighted that appear in the image,

perhaps appears to the model as a fridge, leading to the erroneous saliency assignation.

The perturbation method chosen for any perturbation-based saliency mapping method is

important, as discussed in Section 3.3 – and this example suggests that HiPe is vulnerable to

failure in edge-cases like these when the perturbation method introduces confounding artefacts.
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The lack of ground-truth saliency information for any complex model makes these edge cases

hard to predict ahead of time, and so selecting a perturbation method is difficult – the model

might mistake a pale square for a fridge and so make attribution mistakes like this, or it may have

learned other features entirely. Feature visualisation, discussed in Section 2 offers one route to

understand which features a model is sensitive to, and may provide some evidence for or against

a particular choice of perturbation method –– for example, if a learned prototype for a fridge

contains a pale square region, we might be able to predict that perturbation methods that can

result in pale square artefacts will confound saliency mapping methods generated using them,

making the perturbed region more likely to be salient, if the target class has similar features

to those introduced by the perturbation method. Note that for this particular image RISE will

not be confounded in the same way, as but default it a) blurs the masks it generates to remove

hard edges, and b) zeros out the masked regions, rather than using the local mean perturbation

method.

Another potential failure mode of HiPe, shown in Figure 4.8, is if the model in question

finds many separate regions equally salient. Due to HiPe’s thresholding process, any region less

salient than the mid-range of the total saliency is not perturbed at greater depth – but this will

result in ignoring regions that are only marginally less salient. This can also be the case with

Extremal Perturbation, as it necessitates the selection of a number of mask area sizes – if these

are set too small, the optimiser will focus on a subset of the salient regions [46]. RISE should

not be limited by this, given a sufficient number of random masks, although it is affected by the

probability of a cell within the mask being set to zero, which is also a hyperparameter [124].

HiPe’s threshold could be adjusted to allow it to capture salient areas that are less salient than the

current mid-range – indeed, the threshold could be set to perturb all regions that have a positive

effect on the target class prediction, but at great computational cost.

As discussed, HiPe is model-agnostic and, as such, can be applied to any model which maps

an input to an output, irrespective of the architecture. HiPe does not apply any smoothing, either

to the perturbed region (typically done to make the perturbation appear more natural) or to the
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resulting saliency map (which some methods do purely for the sake of visual appeal rather than

for a fundamental theoretical reason). Using a similar method to RISE in which a low resolution

mask is upsampled using bilinear interpolation in order to generate smooth perturbations actually

resulted in a slight decrease in performance when using HiPe – this is in contrast to RISE and

Extremal Perturbation, which explicitly apply smoothing. A possible hypothesis for the appeal

of smooth perturbations, and resulting smooth saliency maps, is simply human visual preference

(sharp artefacts are more visually disturbing than smooth ones [47]) rather than explanatory

power – it may be assumed that smooth perturbations are less confounding, but this is not borne

out by these results.

Most state of the art work in saliency mapping focusses on model-specificity, assuming

a certain subset of architectures and requiring access to the model’s internal state. The few

model-agnostic methods that do exist perform well on the benchmarks herein examined, but

can be very slow – prohibitively so for large samples. HiPe is able to create model-agnostic

saliency maps so quickly because it is saliency-aware in a way that existing perturbation-based

saliency mapping algorithms are not, iteratively focussing perturbation only on regions where

saliency has been established. Petsiuk et al., Fong et al., and Zeiler et al.[124, 48, 171] require a

pre-specified number of iterations – whether that is epochs, number of random masks generated,

or occlusion kernel size and step – which fix the amount of computation required for an input of

given size irrespective of the proportion of the input that is actually salient. It is also impossible

to know ahead of time what the optimal value for these parameters might be in order to trade

off accuracy and efficiency, and finding the optimal parameters (for one input sample or across

an entire dataset) requires many trials. Additionally, these parameters can also limit the size

of the salient region that can be detected, which can lead to omissions, as in Figure 4.4. The

proposed method, by contrast, continually disregards regions which have little impact on the

model output and by doing so inherently limits the amount of computation required – without

imposing restrictions on the size of the salient region it is possible to detect.

In summary, this chapter introduced hierarchical perturbation (HiPe), a novel model-agnostic
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saliency mapping method designed to identify salient regions at any scale, minimise heuristic

parameter selection, and reduce computational costs – while making no assumptions about

the model’s underlying architecture. HiPe works by perturbing large regions initially, and

progressively focussing on smaller, more salient regions, disregarding regions which have little

impact on the model’s prediction. It uses the local mean as a perturbation substrate, which is

adjustable to suit different domains. HiPe’s performance was validated on the pointing game and

insertion/deletion benchmarks using standard datasets, demonstrating comparable accuracy to

existing methods but with significantly ( 20×) reduced computational cost.

HiPe’s limitations include its inability to capture the combined salience of separate features,

and potential susceptibility to perturbation method artifacts. It is also sensitive to the choice of

perturbation method, as demonstrated in examples where local mean perturbation introduced

misleading saliency.

Overall, HiPe offers a robust, efficient alternative for model-agnostic saliency mapping,

applicable to various architectures without requiring access to the model’s internal state. It ad-

dresses the computational efficiency concerns of existing methods while maintaining comparable

accuracy.
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Figure 4.2: Here 256×256 images are generated with a central blurred ‘salient’ region of two
sizes (diameter 4 above and diameter 32 below) to demonstrate the saliency maps produced by
HiPe. I use a summation operation as a proxy model (see Chapter 5) and compare RISE with
default parameters against HiPe with two different saliency threshold methods.
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Figure 4.3: Examples of saliency maps generated with Hierarchical Perturbation. Note that more
salient regions are of higher resolution - for example, for the "sink" class, the most salient region
on the right has more finely-grained saliency than the less salient regions on the left.
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Figure 4.4: Examples of saliency maps for the class ‘fork’. This example was chosen to highlight
the surprising variation in maps generated with different methods.
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Figure 4.5: Use of HiPe for an immune cell segmentation task using a deep residual U-net on
Hoechst-stained biopsy slides. Here HiPe enables fast and detailed saliency map generation for
high resolution images with small, sparse features.
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Figure 4.6: HiPe saliency on MNIST. Each row comprises saliency maps for each class on a
single randomly chosen sample image. The top left to bottom right diagonal contains the saliency
of the correct class for each sample. The probabilities shown here are the model output logits
normalised to sum to one and rounded to the nearest percentage point.
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(a) HiPe saliency map (left) and input image (right).

(b) RISE Saliency map (left) and input image (right).

Figure 4.7: Saliency maps for RISE and HiPe with respect to the ‘fridge’ class, for an image
from the MSCOCO dataset. The location of the most salient point in the saliency map is marked
with a red cross.
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ExtP RISE

HiPe Annotated Image

Figure 4.8: Saliency maps with respect to the ‘bird’ class, for an image from the MSCOCO
dataset. The location of the most salient point in the saliency map is marked with a red cross.
The lower right image shows the human-annotated bounding boxes for that class. Note that
while we do not have ground-truth saliency for this model, since the model correctly classified
the image and the image itself contains little else except birds, we can cautiously assume that
the most salient regions are truly the birds themselves. Both HiPe and ExtP, and to a certain
extent RISE (although more diffuse), show the birds on the left to be the most salient – which is
surprising, since there is little visual difference between them and the birds on the right. Is this a
failure of the model or the saliency mapping methods?





Chapter 5

The Proxy Model Test

In this chapter, I describe a new method for objectively evaluating model-agnostic saliency

mapping methods. This method is motivated by the limitations of existing saliency mapping

assessment methods discussed in the previous chapters – and by the observation that, in order to

accurately assess the accuracy of a saliency map with respect to some input and some model,

ideally we need access to the ground truth – to which regions of that input are actually salient

to that model – so that we can compare it with the map generated by some proposed saliency

mapping method.

However, such a ground truth is not typically available, because the models that we are

interested in generating saliency maps for are too complex – we cannot just inspect the model

architecture and parameters in order to verify that some region identified as salient by the saliency

mapping method is actually salient to that model – we don’t know what the model has learned to

look for, and this is why we need saliency maps in the first place.

Crucially, if a given model is so complex that saliency mapping methods are required to

understand which input regions are salient, then the ‘ground truth’ saliency is by definition made

opaque by the complexity of the model – which means we don’t have a ground truth saliency

available to check if those saliency mapping methods are accurate!

But, what if we replace this model with one which is transparent, so that we know the ground

truth saliency map?

91
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This is the key insight of the proxy model test: for the purpose of assessing the accuracy of

model-agnostic saliency mapping methods, the model could be anything – and so we may as

well select a transparent proxy model, for which the ground truth is available.

Consider a very simple model that simply outputs the sum of its input. This model is simple

enough that it is completely interpretable. Crucially, given some input, we can easily calculate

what this model’s output will be. Moreover, we know the exact saliency of each element in that

input – how much each input element contributes to the output.

When using the summation operation as the proxy model, the ground truth saliency becomes

immediately apparent: it is the input itself. The saliency of each input element, with respect to

the proxy model, is precisely equal to the value of that element. Furthermore, the cumulative

saliency of a specific region is the sum of all elements within that region. Other explicit proxy

models could also be used – for example, a product proxy model would capture the ability of

saliency mapping methods to identify multiple features that are salient individually, but much

more so in combination. Other interpretable proxies could be designed to mirror behaviours of

real-world models, and thereby evaluate the ability of different saliency mapping methods to

accurately capture them.

We could do this with any existing dataset. Figure 5.1 shows the results on some randomly

selected MSCOCO images. By comparing the generated saliency maps with the ground-truth

obtained from a summation proxy model, we can use any distance metric to measure how well

different saliency mapping methods recreate the input. Results on 1000 randomly selected images

from MSCOCO (COCO14 validation set) using Hierarchical Perturbation (HiPe, which I propose

in Chapter 4), Random Input Sampling for Explanation (RISE) and Extremal Perturbation (ExtP)

are shown in Table 5.1 We can see that HiPe narrowly outperforms the other two methods across

all metrics.

However, results on these kinds of natural image datasets are difficult to draw more specific

conclusions from, because we haven’t captured anything specific about the properties of the

saliency mapping methods. For this reason, the proxy model test is best used to evaluate saliency
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MAE MSE CS
HiPe 0.19 0.06 0.92
ExtP 0.23 0.08 0.81
RISE 0.24 0.09 0.67

Table 5.1: Mean Absolute Error (MAE), Mean Squared Error (MSE) and Cosine Similarity (CS)
for 1000 randomly selected images from MSCOCO (COCO14 validation set) and their corre-
sponding saliency maps generated by Hierarchical Perturbation (HiPe), Extremal Perturbation
(ExtP), and Random Input Sampling for Explanation (RISE) using the Proxy Model Test.

mapping methods with synthetic data, which we can generate to capture various properties of

saliency maps that we care about.

Figure 5.1: Examples of the Proxy Model Test performed on Hierarchical Perturbation (HiPe),
Extremal Perturbation (ExtP) and Random Input Sampling for Explanation (RISE) using random
images from the MSCOCO (COCO14 validation set) dataset.



94 CHAPTER 5. THE PROXY MODEL TEST

5.1 Synthetic Data for the Proxy Model Test

Existing natural datasets are of limited utility when it comes to the proxy model test, and are

only really useful as a sanity-check, as shown above. However, we can also generate synthetic

datasets, to test and compare specific capabilities and sensitivities of different saliency mapping

methods. When developing a saliency mapping method, or selecting one for a particular use-

case, we typically want the saliency maps it generates to have a number of properties. For

example, perhaps we want particularly fine-grained saliency within broadly salient regions, or

high sensitivity to very small regions of saliency, or maybe coarse saliency maps are sufficient,

as long as they are fast to generate. Using synthetic data with the proxy model test allows us to

make these properties and trade-offs explicit, allowing us to choose the best saliency mapping

method for the task at hand.

For example, if we have a model that classifies medical scans and wish to provide saliency

maps for each prediction it makes (either for use by clinicians in deployment, or during training

of the model to check that it is learning to look at sensible features), we might prefer one saliency

mapping technique over another depending on our domain knowledge. That is, if the morphology

of the disease that the model identifies is concentrated in one region only, we could perhaps select

a faster, but coarser saliency mapping method to quickly identify the most salient region. If,

however, the presentation of the disease takes the form of multiple lesions all over the input scan,

we might select a slower saliency mapping method that is able to identify multiple small salient

regions accurately. The proxy model test allows us to objectively compare different saliency

mapping methods on data that captures our use-case specific concerns, for example:

Multiple Salient Regions

Different saliency mapping methods can be more or less effective at identifying multiple salient

regions in an input. Tests like the pointing game (see Section 3.5) do not capture this property,

but if we wish to explain predictions made by a model that is likely to use a number of spatially

separate features in the input, we probably want our saliency mapping method to capture those
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separate regions reliably. We can evaluate this by generating a synthetic dataset with samples

that contain a range of distinct salient regions.

Precision and Recall

To test for high precision in saliency maps, synthetic data can be generated with clearly defined,

small salient regions against a uniform background. This would challenge the saliency mapping

method to pinpoint the exact location of saliency without spilling over into non-salient regions.

For high recall, the synthetic dataset might include inputs with subtle salient features that are

widely distributed, or many different salient regions. This setup would test the method’s ability

to detect all relevant features without missing any, even if some regions are less pronounced than

others.

Granularity

Some applications may require fine-grained saliency maps where the level of detail is paramount,

to validate that the model has learned to use sensible features for prediction in high-stakes

domains such as cancer detection. Others may be satisfied with coarse representations that

provide a general indication of salient regions, if other constraints such as time are more

important. For scenarios where a broad understanding of saliency is sufficient, such as in initial

stages of content filtering, synthetic images with large, distinct salient areas may be generated.

This would evaluate the saliency mapping method’s efficiency in quickly providing an overall

picture of saliency without the need for detail.

Salient Region Size

Some methods may perform well on large salient regions but fail to detect smaller ones. By

creating a synthetic dataset with images that contain very small but critical salient regions, the

saliency mapping methods can be evaluated on their sensitivity. The dataset can be varied with a

range of sizes to see at which point the methods begin to fail.
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Saliency Variation

In complex visual tasks, not all salient features contribute equally to the final decision. Some

areas might be crucial while others less so, but still relevant (and so possibly still of interest).

This hierarchical importance is significant in domains like scene recognition, where certain

objects may be more critical than others, but where many contribute the model’s prediction –

for example, beach umbrellas, sea, and sand are likely all salient to a scene classifier predicting

’beach’, but may contribute different amounts to the ultimate prediction. If we wish to identify

these different contributions, we must use a saliency mapping method that is capable of capturing

this. To evaluate this, synthetic datasets can be designed with salient features that have varying

levels of intensity or contrast. The saliency mapping method’s ability to differentiate between

these levels and appropriately rank the salient areas can then be assessed. For instance, in an

image, a few small, highly salient objects could be surrounded by larger, less salient ones to

mimic the varying importance of visual features in a scene.

Shape

Real-world data often contains salient features of various shapes and sizes, from elongated

roadways in navigation tasks to irregularly shaped tumours in medical imaging. Due to the use

of differing masks, kernels etc in saliency mapping methods, they may vary in their ability to

identify differently shaped salient regions. Synthetic datasets with a variety of geometric shapes

or irregular patterns can be created to test how well a saliency mapping method can adapt to the

diversity of shapes. These datasets would contain inputs with elliptical, linear, and free-form

salient regions to challenge the method’s flexibility in shape recognition.

Texture

Sometimes, saliency is not just about color or shape but about texture. Certain applications, such

as material sorting in recycling, require identifying textures to determine saliency. A synthetic

dataset could include images with varying textures where saliency is defined by a particular
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texture pattern. The ability of the saliency mapping method to detect salient regions based on

texture rather than color or shape can thus be evaluated.

By creating synthetic data that specific real-world requirements and employing the proxy

model test in this way, we can evaluate and select saliency mapping methods that are best suited

for a particular task, with a level of granularity that isn’t possible with existing saliency mapping

evaluation methods, such as the pointing game and insertion/deletion metrics (described in

Sections 3.5 and 3.6 respectively).

In the next section, I demonstrate the use of the proxy model test with synthetic data to

characterise some properties of model-agnostic saliency mapping methods.

I created a synthetic dataset consisting of 1000 inputs each of size 224×224, each containing

between 1 and 10 non-overlapping salient regions. These regions are each square, and in total

for each sample occupy between 10 and 80 percent of the total input – e.g., for a sample where

the total salient region size is 50%, this could consist of five separate salient areas each covering

approximately 10% of the input, or two each covering 25%, or a single salient region covering

50%. The spatial distribution of these salient regions within each image is randomised. The

salient regions are randomly placed such that they do not overlap, with 1000 placement attempts.

This results in fewer samples with multiple large salient regions, as we run out of space in the

input image. The generation algorithm is described in Algorithm 2 and the distribution of the

resulting total salient region coverage (as % of total input) and number of samples per image

over the dataset is described in Figure 5.2.

Salient regions are set to 1 (with the rest of the input set to zero), as shown in Figure 5.3.

This dataset is designed to measure the following properties of saliency mapping methods:

sensitivity to the amount of the images that is salient, and the number of salient regions (so, both

the proportion of the input that is salient, and how many distinct salient regions it is split between).

I chose the input dimension of 224× 224 to match the input dimensions used in previously

published evaluations of saliency mapping methods (see Section 4.1 for further details), as the

default settings for these methods are optimised for input of this dimension.
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Algorithm 2 Synthetic Data Generation
Require: num_samples, dim, min_coverage, max_coverage, max_salient_regions

Initialise empty list for samples, salient region sizes, and number of salient regions.
num_covg← num_samples / max_salient_regions
Generate coverage values from min_coverage to max_coverage evenly spaced for num_covg
values.
Generate salient region counts from 1 to max_salient_regions.
for each coverage in coverage values do

for each count in salient region counts do
Initialise a base matrix of zeros with dimensions dim.
Calculate region size based on coverage and count.
for each region up to count do

Initialise start positions and attempts counter.
while start positions are invalid or region overlaps do

Randomly choose start positions within bounds.
Increment attempts counter.
if attempts exceed maximum allowed then

Break the loop.
end if

end while
Set the region in the base matrix to 1.

end for
Append the base matrix to samples.
Calculate and append the mean of the base matrix to salient region sizes.
Append the count to the number of salient regions.

end for
end for
return samples, salient region sizes, num_salient_regions

5.2 Experiments

Using the synthetic dataset described in the previous section, I compare Hierarchical Perturbation

(HiPe, proposed in Chapter 4), Extremal Perturbation (ExtP) and Random Input Sampling for

Explanation (RISE) (both introduced in Section 3.2), plus a random baseline. For ExtP and RISE,

default parameters are used as in the experiments described in Section 4.1. This experiment was

performed using Google Colab hardware consisting of an NVIDIA A100 with 80GB RAM.
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Figure 5.2: Plots describing the distribution of the two key properties of the synthetic dataset,
salient region size (as % of total input) and number of salient regions.

True Saliency ExtP Saliency HiPe Saliency RISE Saliency

Figure 5.3: Randomly selected examples of synthetic data used for the Proxy Model Test, and the
saliency maps generated for them using Hierarchical Perturbation (HiPe), Extremal Perturbation
(ExtP) and Random Input Sampling for Explanation (RISE).

Evaluation Metrics

To quantify the performance of saliency mapping methods using the proxy model test on synthetic

data, the pointing game framework as described in Section 3.5 could be used, if identification

of the most salient region is of more importance than overall accuracy – but because the proxy

model test provides pixel-level ground truth, more fine-grained metrics can be employed that

more accurately capture different properties of the method. I use a number of metrics to capture

different aspects of accuracy in evaluating saliency maps: the Mean Absolute Error (MAE); Mean
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Squared Error (MSE); Cosine Similarity (CS); Precision (P), Recall (R) and F1, as described

below. For saliency maps P and ground truths G of n×m dimensions:

MAE =
1

n×m

n−1

∑
i=0

m−1

∑
j=0
|Pi j−Gi j|

MSE =
1

n×m

n−1

∑
i=0

m−1

∑
j=0

(Pi j−Gi j)
2

For calculation of the cosine similarity, the saliency maps are first flattened into vectors p and g

of length n×m:

CS =
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MAE provides an understanding of the absolute differences between the predicted saliency

map and the ground truth, without giving higher weight to larger errors, thus offering a straightfor-

ward measure of overall difference. MSE squares the errors before averaging, penalizing larger

discrepancies more heavily than smaller ones. CS measures the cosine of the angle between the

predicted and ground truth vectors of flattened saliency maps, focusing on the orientation rather

than the magnitude – so assessing how closely the predicted saliency map follows the pattern

or structure of the actual saliency. Unlike metrics that focus on the magnitude of errors, CS

emphasizes the similarity in the spatial distribution and relative importance of salient features.

Precision and Recall are metrics often used to evaluate the performance of classification

systems, and in the context of saliency maps, they can be adapted to measure the accuracy of the

salient regions detected by the saliency mapping method against a ground truth, which is not

usually available, but which the proxy model provides.

Ground Truth refers to the actual salient regions in a synthetic dataset, while Predicted Map

(PM) is the output from the saliency mapping method, highlighting the areas it deems salient. To

calculate the Precision and Recall of a saliency map, we need:
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• True Positives (TP): these are the pixels that are correctly identified as salient by the

saliency mapping method (i.e., they are salient in both the GT and the PM);

• False Positives (FP): the pixels that the saliency mapping method incorrectly identifies as

salient (i.e., they are not salient in the GT but are salient in the PM);

• False Negatives (FN): the pixels that are salient according to the GT but were missed by

the saliency mapping method (i.e., they are salient in the GT but not in the PM).

Precision is then calculated as the fraction of predicted salient pixels that are truly salient:

Precision =
T P

T P+FP

This measures the accuracy of the saliency map in identifying salient regions. High precision

means that the saliency map has a high rate of true salient predictions out of all salient predictions

it made.

Recall is the fraction of actual salient pixels that were identified correctly:

Recall =
T P

T P+FN

This measures the completeness of the saliency map in identifying salient regions. High

recall means that the saliency map is able to identify most of the true salient regions in the ground

truth.

Both precision and recall are important: precision of 1 shows that everything the saliency

mapping method identifies as salient is actually so, while recall of 1 shows that the method

captures all salient regions that are present. Precison and recall are often combined into a single

metric called the F1 score, which is the harmonic mean of precision and recall:

F1 = 2× Precision×Recall
Precision+Recall
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5.3 Discussion

Method Time MAE MSE CS Precision Recall F1
ExtP 3.4670 0.2408 0.1235 0.7028 0.1659 0.7786 0.2454
HiPe 0.1978 0.1420 0.0536 0.8906 0.2429 0.7440 0.3182
Random 0.0005 0.5000 0.3334 -0.0001 0.0696 0.4992 0.1040
RISE 0.4700 0.2756 0.1174 0.7328 0.1582 0.7606 0.2256

Table 5.2: Mean Absolute Error (MAE), Mean Squared Error (MSE), Cosine Similarity (CS),
precision, recall and F1 score between predicted saliency and ground truth saliency of synthetic
dataset. For time, MAE and MSE lower is better, for other metrics higher is better. Note poor
precision from all methods.

Table 5.2 shows these metrics over the three different saliency mapping methods, plus a

random baseline.

HiPe emerges as the most proficient overall method, with MAE, MSE, cosine similarity

scores of 0.14, 0.05, and 0.89. These metrics collectively suggest that HiPe is quite accurate

in approximating the ground truth, with minimal errors and a strong alignment in the spatial

distribution of salient features. RISE and Extremal Perturbation (ExtP) also show good perfor-

mance on most metrics, and both exceed HiPe performance on recall. However, all methods

show notably poor precision, with the highest score (from HiPe) being just 0.24. This indicates

numerous false positives (where pixels that are not salient are falsely highlighted).

Figure 5.4 shows the same metrics in box plot format, allowing us to understand the spread

of performance on each metric. All methods (except the random baseline) show wide spreads

with many outliers, suggesting that the performance of these saliency mapping methods is

actually quite dependent on the size and number of salient regions in the input. It seems there

is further work to be done, either in terms of tuning the hyperparameters of these methods to

better suit the task, or in developing more reliable saliency mapping methods overall. For cases

where fine-grained, precise saliency maps are of particular importance (such as AI for medical

diagnostics), none of these methods are reliable in their current form.

Further investigation, shown in Figure 5.5 shows that precision is correlated with the size

of the salient regions, with far worse performance on small salient regions across all methods.
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This is also evident upon visual examination of samples from the synthetic dataset, as shown

in Figure 5.3, where we can observe that the predicted salient regions from all methods extend

outside of the true salient regions. Figure 5.6 shows that precision also appears to correlate with

the number of salient regions present in an input. However, because of the way the synthetic data

is generated (described in Section 5.1) we know that these two properties are not independent, as

inputs where the salient regions are small have room for more of them (see Figure 5.2).

Figure 5.7 therefore shows precision by salient region size for inputs with a single salient

region only, demonstrating that as the proportion of the input that is salient to the model increases,

so does the precision of the saliency mapping methods.

These results provide evidence that in cases where we a single region is salient, and takes up

more than 20% of the input, we can expect HiPe to perform with 75% precision or higher. RISE

and ExtP are not far behind, but take approximately 2× and 10× longer to run respectively (as

shown in Table 5.2).

Unlike RISE and ExtP, the time taken to generate a saliency map with HiPe varies depending

on the distribution of salient pixels in the image. Because, by using a proxy model, we have

access to information about the true saliency distribution, we can test this empirically. Note that

this is at best an approximation of HiPe’s performance on real-world data and models, as the true

saliency distributions are likely to be much more complex. Figure 5.8 shows how the time taken

to generate saliency maps on synthetic data varies with the size and number of salient regions.

We can see that, as expected, time increases with salient region size (as there are more salient

regions that require exploring).

In summary, this chapter demonstrates how the proxy model test can be used in conjunction

with constructed synthetic datasets to identify strengths and weaknesses of arbitrary saliency

mapping methods, with respect to specific use cases. The results underline the utility of the proxy

model test for more comprehensive evaluation of saliency mapping methods – if, for a specific

domain, high-precision saliency maps that capture multiple salient regions are necessary, none of

the methods here are well-suited. This might be improved with post-processing of the saliency
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maps to remove lower-saliency pixels, or by tuning their hyperparameters for this specific task.

For other use cases, synthetic data can be constructed to capture desirable properties of saliency

mapping methods for that particular use case. More generally, the Proxy Model Test provides a

flexible quantitative evaluation metric for arbitrary model-agnostic saliency mapping methods,

without requiring human data annotation and the assumptions inherent therein (as discussed in

Section 3.4).
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Figure 5.4: Results on synthetic dataset. For mean absolute error (mae) and mean squared error
(mse) lower is better, for cosine similarity (cos), precision, recall and F1 score higher is better.
Note high variance of performance across all methods, and poor precision over all.
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Figure 5.5: Saliency map precision by salient region size, across all salient region counts.

Figure 5.6: Saliency map precision by number of salient regions, across all salient region sizes.

Figure 5.7: Precision by salient region size for inputs with a single salient region only.
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Figure 5.8: Time taken by HiPe to generate saliency maps, over different salient region coverage
% and distinct salient region counts. This experiment was performed using Google Colab
hardware consisting of an NVIDIA A100 with 80GB RAM.





Chapter 6

Weakly Supervised Saliency Segmentation

As introduced in Chapter 1, digital pathology has emerged as a promising alternative to tra-

ditional microscopy for disease diagnosis, leveraging whole slide imaging and computerised

analysis methods [51]. Deep learning, especially convolutional neural networks (CNNs), have

been applied to applications ranging from nuclei segmentation, to tissue classification, disease

detection, and survival prediction [87, 161]. However, state-of-the-art deep learning algorithms

often require large-scale datasets with detailed per-pixel annotations for training, which are

expensive and time-consuming to collect in the medical domain [19] – and so much recent work

focusses on developing weakly supervised approaches that do not require detailed labels.

In this chapter and the following one I consider two case studies in applied deep learning

for digital pathology. I also show how the interpretability methods proposed in earlier chapters

can be applied to improve human understanding of model behaviour. I discuss interpretability

in the context of weakly supervised WSI classification, taking an existing model trained using

weakly supervised data and applying feature visualisation to explain the predictions made and

identify distinct morphologies learned by the model to differentiate between tissue classes. I also

demonstrate how saliency mapping can be used to generate very detailed pixel-level saliency

segmentations. Then, in Chapter 7, I train a residual neural network to identify a specific immune

cell subtype from Hoechst-stained slides only – a task that was previously not thought to be

possible. I do this using both classification and segmentation paradigms, and then demonstrate

109
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how interpretability methods can be used for knowledge discovery by identifying the trained

model’s learned class prototypes in both cases.

Semantic Segmentation

One application of deep learning in digital histopathology (and in computer vision in general) is

semantic segmentation – that is, given some input image, producing class labels for each pixel in

that image. For example, given a set of biopsy slides which have been divided into cancerous

and non-cancerous regions by a human annotator, one could train a neural network model to

label each pixel in the image as cancerous or non cancerous [155, 78, 80, 33]. This is distinct

from classification tasks, in which a single label is provided for an entire slide or region, and

pixel-level labels are not required (see Figure 4.5).

Convolutional and Fully-Convolutional Neural Networks (CNNs & FCNNs)

Traditional CNNs, used in segmentation tasks, typically consist of convolutional layers followed

by fully connected layers. Each convolutional layer applies a series of filters to extract features

from the input image, and the fully connected layers perform classification based on these

features (see section 1.2). In segmentation tasks, the output layer is modified to produce a

pixel-wise classification. In digital pathology, CNNs are used to differentiate between various

tissue types, identify disease markers, and segment regions of interest within histopathological

images, and can be adapted to a wide range of segmentation tasks in digital pathology. However,

the pooling layers in CNNs can lead to a loss of resolution. The U-Net architecture is a notable

example [129] of this approach. It consists of a contracting path to capture context and a

symmetric expanding path for precise localisation, resulting in a ’U’ shaped architecture – more

on this in the next chapter.

Fully Convolutional Networks (FCNs) are a modification of CNNs where fully connected

layers are replaced by convolutional layers [89]. This architecture enables the network to directly

output spatial maps instead of classification scores, allowing for native pixel-wise segmentation.
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FCNs are particularly suited for segmenting images in domains where fine-grained segmentation

is important – by retaining spatial information throughout the network, they can achieve more

precise segmentation compared to traditional CNNs.

Generative Adversarial Networks (GANs)

GANs consist of two competing neural network models: a generator and a discriminator (see

also section 1.2). The generator creates images (or segmentations) that mimic the real data, while

the discriminator evaluates them against actual data. For semantic segmentation, the generator

learns to produce segmented images, and the discriminator assesses whether the segmentation is

real (ground truth) or fake (generated). This adversarial process continues until the generator

produces segmentations indistinguishable from real annotations[145, 146].

GANs can generate highly detailed and accurate segmentations, and can also be used for

generating synthetic training data. Unfortunately, GANs are notoriously difficult to train due

to the delicate balance required between the generator and discriminator, and often suffer from

mode collapse (where the generator produces limited varieties of output, reducing the diversity

of the segmentation) [134]. Despite their ability to generate data, the effectiveness of GANs still

heavily relies on the availability of high-quality ground truth for initial training.

The above approaches all require pixel-level semantic segmentations for training, which are

costly and time-consuming to obtain in digital histopathology – hence the widespread interest in

weakly-supervised methods.

Weakly Supervised Learning in Digital Pathology

Fully supervised learning (i.e., at the pixel or region level) is often not possible due to the

considerable cost and time investment necessary for experts to manually annotate each slide.

Weakly supervised learning approaches relieve a large part of this burden by either reducing the

number of slides required to effectively train a predictive model, or by removing the necessity of

pixel or region level labels. However, predicting only slide level labels decreases the amount
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of explicit information available to clinicians when considering the model’s prediction, which

is undesirable in this medical context where understanding what in the input influenced a

classification is crucial – hence the need for interpretability. Weak supervision takes various

forms, from patch or bounding-box labels to whole slide or image labels, and different approaches

have been proposed to enable learning predictive models from this data.

Transfer Learning

Transfer learning involves leveraging a pre-trained model on a large, annotated dataset from a

different domain where data acquisition is less costly, and fine-tuning it for the target domain on

limited labeled data. Sharma et al. demonstrated this approach by adapting a models pre-trained

on natural images for histopathology tasks[140]. The goal is for the pre-trained network to

adapt to the specifics of histopathological imagery, significantly reducing the need for large

annotated datasets in the target domain, by using the generic feature-detection capabilities of

models trained on more extensive datasets. However, the success of this approach relies on the

similarity between the source and target domains. When features in the target domain differ

substantially from the features present in the pre-training dataset, the effectiveness of transfer

learning may be limited.

Semi-Supervised Learning

Semi-supervised learning is a hybrid approach that uses a combination of labeled and unlabeled

data for training. In pseudo-labeling, a model’s own predictions are used to augment the training

set [96]. In digital pathology, this involves initially training a model on a small set of annotated

slides and then using it to label a larger, unlabeled set. Pseudo-labeling effectively utilises large

volumes of unlabeled data, which is particularly useful in digital pathology due to the abundance

of such data – however, the quality of pseudo-labels is crucial. Inaccurate labels can reinforce

errors, leading to model drift.

Consistency regularisation is another semi-supervised technique that works by encouraging
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the model to produce consistent predictions for perturbed versions of the same input[148, 22].

In pathology, this could involve applying transformations (like rotations, shifts, or changes in

saturation) to slide images, ensuring that the model’s predictions are invariant to such changes.

This approach forces the model to learn robust features that are invariant to minor variations, a

desirable trait in histopathological analysis – but if the perturbations are not carefully chosen,

they might obscure important features or create confounding artefacts.

Multiple-Instance Learning (MIL)

MIL is a form of weakly supervised learning where labels are provided for bags (collections)

of instances (e.g., patches) rather than individual instances. In digital pathology, a whole slide

image (WSI) is treated as a bag, with patches as instances.

MIL approaches typically involve aggregating instance-level features to predict the bag-

level label[32]. Attention-based MIL further refines this by weighing instances differently,

highlighting areas most indicative of the pathology [69]. Multiple instance learning (MIL) is

a weakly supervised approach that assigns a single label to a group of instances, e.g. patches

from a whole slide image. The original MIL algorithm was restricted to binary classification,

assuming that if at least one patch is positive, the whole slide is positive, while if all patches are

negative, the slide is negative. This assumption leads to using the maximum patch probability

for the slide-level prediction. However, this rigid aggregation function limits MIL for multiclass

and more complex binary tasks [69]. Recent works have developed more flexible aggregation

methods for better accuracy, such as attention-based MIL [69], which uses a weighted average

of patch predictions.

Other MIL aggregation methods include ranking patches by probability [32] and passing

top patches sequentially to an RNN for the slide prediction. Weakly supervised approaches

have also been proposed using patch-based networks and context-aware feature selection [162].

The clustering-constrained attention MIL method resolves limitations of earlier approaches

for multiclass subtype prediction [91]. The model used in this chapter employs a clustering-
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constrained attention MIL approach, which extends MIL for multiclass subtyping[91]. While

state-of-the-art performance in this domain still requires full supervision, weakly supervised

methods have shown competitive performance for realistic triage settings.

Attention Mechanisms

Attention mechanisms are typically used to enhance model performance by enabling higher

weighting of relevant parts of the input data, rather than treating all data uniformly. However,

including attention mechanisms typically increases the complexity of the network, which can

lead to longer training times and higher computational requirements. Attention can be integrated

into models in various ways, to selectively emphasize important features and suppress irrelevant

ones [167], achieved through mechanisms like spatial attention (focusing on specific regions)

and channel attention (focusing on relevant feature channels) [115]. A notable example in the

medical domain is the Attention U-Net proposed by Oktay et al., which incorporates attention

gates into the U-Net architecture [116].

Although attention is primarily a mechanism to improve model performance, it is often

considered useful for interpretability – but attention maps differ from saliency maps in a few

key ways. Attention is an explicit mechanism in certain neural architectures, to enable models

to weight specific parts of a larger input more highly. In contrast, saliency maps are generated

using external interpretability techniques that assign importance values to input features post-hoc.

The aim is to explain model predictions by highlighting relevant parts of the input, rather than

modeling attention explicitly. Recent work (in language [70, 18], where attention mechanisms

are predominantly employed, and in image classification [120, 88]) has shown that attention

maps are often unreliable as interpretability methods, as imposing random different attention

scores on a model can lead to the same prediction. It is possible that this is due to ‘combinatorial

shortcuts’ [18], in which the attention weights are used by the model to express extra information

to be used by downstream layers – it could be that attention mechanisms don’t do what we

assume they do. A key work exploring this concern with image models by Liu et al demonstrates
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that attention often incorrectly identifies the direction (positive or negative) of a feature’s impact

on predictions: higher attention weights do not reliably mean features are contributing to, rather

than suppressing, model outputs [88]. This calls into question the faithfulness of attention-based

explanation techniques in representing true influences – contrary to common assumptions, higher

attention on features does not necessarily imply higher positive attribution regarding their role

in predictions – and has lead to calls for renewed focus on saliency mapping methods as more

reliable alternatives to attention for the purposes of model interpretability [23, 26].

6.1 Model and Data

Figure 6.1: Weakly supervised Whole Slide Image classification using Clustering-constrained
Attention Multiple instance learning (CLAM) [91].

Dr Mahnaz Mohammadi of the School of Medicine at St Andrews kindly provided the model

architecture and learned parameters that I used for this experiment. Full details of the data

collection and training protocol for this model are available in the published work [99]. The

model is based on the Clustering-Constrained Attention Multiple Instance Learning (CLAM)

method proposed by Lu et al. [91], discussed above and illustrated in Figure 6.1. This model

was trained to classify WSIs as either ‘Malignant’, ‘Other/Benign’, or ‘Insufficient’ with over

87% test accuracy on a dataset consisting of around 3000 endometrial WSIs, obtained from four

hospitals in Glasgow, Scotland.
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The images vary in size, resolution, tissue thickness and staining laboratory, and also vary in

colour, as H&E staining intensity and hue varies across different labs. No colour normalisation

was applied to ensure that the trained model would generalise to unseen hue and intensity in the

test set, which was from a further lab. Additionally, each slide is from a different patient to ensure

robustness to inter-patient application of the trained model. Due to all of these factors, the dataset

exhibits a wide variance. The slides were labelled by one of four participating pathologists, who

assigned a slide-level classification to each:

1. Malignant: Slides containing any endometrial carcinoma, carcinosarcoma, uterine sarcoma,

or endometrial hyperplasia with atypia).

2. Insufficient: Slides which do not contain sufficient tissue to make a diagnosis, often

containing blood, mucus, and very small amounts of tissue.

3. Other/Benign: All other slides, typically containing menstrual/shedding endometrium,

inactive/atrophic endometrium, evidence of hormonal change, proliferative endometrium

or secretory endometrium.

6.2 Saliency Segmentation

As discussed above, a considerable problem in machine learning from WSIs is the lack of pixel-

level annotations available for training. Classifying slide regions requires many hours of expert

annotation, which is often prohibitively costly and time-consuming – hence the widespread

interest in weakly supervised approaches.

One way of obtaining class-specific segmentation in this context, without the need for human

annotators, would be by inspecting the attention apportioned to each patch by the attention

backbone component of the classifier model. This approach may be helpful for validating model

predictions, as it enables easy inspection of smaller regions and insight into which areas were

more or less important in producing the final slide prediction. However, it can tell us little about

smaller learned features present within patches, other than whether they are present or not, and
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can produce only patch-level segmentations. Additionally, questions have been raised about the

trustworthiness of using attention map visualisation for interpretability, as discussed in section 6.

In order to create more detailed and reliable saliency maps to aid in understanding and validating

the model’s behaviour, I here demonstrate the use of a saliency mapping algorithm to generate

pixel-level segmentations, without the need for training a segmentation model on pixel-level

annotations (which are typically unavailable).

For this, I use Hierarchical Perturbation (HiPe) as described in Chapter 4, a saliency mapping

method which is both model-agnostic and highly computationally efficient. This is necessary in

order to mitigate the substantial computational cost of pixel-level attribution on gigapixel input

images. Furthermore, given that the classification model is two-stage (consisting of a feature

extraction step, followed by a classification network), HiPe’s model-agnosticism was key in this

choice of saliency algorithm.

As the goal is to generate saliency segmentation maps for interpretability purposes, in this

chapter I adapt HiPe to focus on perturbing regions not with higher saliency as before, but with

lower saliency variance between classes. This focusses the most fine-grained saliency mapping

on the edges between regions that are salient to different classes.

Thus, I optimise for more detailed mapping in regions where the model is less certain which

class is predominant by adapting HiPe to operate over all classes simultaneously, and replacing

the standard threshold function:

t(S,M) =

1, i f max(S◦u(M))≥min
(

S+ max(S)−min(S)
2

)
0, otherwise

(6.1)

with the following:

t(S,M) =


1, if max(Var(Sc ◦u(Mc)) for c = 0, . . . ,C−1)

≤ Var
(

min
(

Sc +
(max(Sc)−min(Sc)

2

)
for c = 0, . . . ,C−1

)
0, otherwise

(6.2)



118 CHAPTER 6. WEAKLY SUPERVISED SALIENCY SEGMENTATION

where S and M have an additional dimension of size C (the number of classes), and Var is the

saliency variance for that class. This means that the resulting saliency maps are more fine-grained

where there is high variance between classes – such as the borders of segmented areas, where a

single perturbed region contains more than one class. This results in fine-grained segmentation

maps (see Figure 6.2) which identify similar regions to those labelled by experts, as shown in

Figure 6.3 (although with some interesting divergences, as I will discuss later).

Figure 6.2: High-resolution saliency segmentation of a malignant slide.

Figure 6.3: Comparison of areas identified as malignant (in red) by a human expert (left) and by
the HiPe-based segmentation method (right).

As discussed in Chapter 3.4, evaluating saliency mapping methods on complex models is

difficult due to the lack of ground truth – we don’t know what the model actually finds salient.

However, if we hope to use saliency mapping for segmentation, some measure of accuracy must

be obtained. Evaluating the accuracy of saliency maps on this kind of data is difficult, as at
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high resolution, the human expert annotations are actually far coarser than the saliency-based

segmentation, so we do not have access to a 1:1 comparator. Similarly to the weakly-supervised

slides, any region of tissue may contain cells that are actually benign, yet still labelled malignant

by humans, as visible in Figure 6.3.

Conceptually, segmentation is not the same as saliency, as there is no guarantee that the

model has learned all the features that are part of a particular class. For example, if a model

was trained to classify images of cats and fish, the only feature it would really need to learn is

‘fur’ – if there’s fur in the image, output ‘cat’, otherwise, output ‘fish’ (assuming all cats have fur,

and all fish don’t). If we generated saliency maps for each class with respect to this model, it

seems unlikely that those maps would accurately segment the cat or the fish. This is borne out

by the figures in Chapter 4 (see Figures 4.8 and 4.4 in particular) – what the model finds most

salient for a given class prediction hopefully bears some relation to what humans would consider

relevant for that class, but the resulting saliency maps don’t look much like segmentation. Or

at least, this seems to be the case in natural images like the ones used in previous chapters.

However, the features present in histopathology images are quite different from those in natural

images – possibly more akin to textures, and with potentially less variation within a single class

(although this is very domain dependent). I thought perhaps the features learned by models

trained on histopathology data would be quite different to those learned by models trained on

natural images, which lead me to wonder if saliency maps generated from histopathology models

might approximate semantic segmentation far better than one would expect.

Unlike segmentation maps produced by semantic segmentation models, saliency maps for

models that predict more than one class are typically not mutually exclusive. In saliency mapping,

it can be sensible for the same region to contribute significantly to the saliency maps for both

class A and class B – for example, if a model trained to classify different scenes was presented

with a photograph of a street with a car on it, might assign high saliency to the car with respect

to both the ‘car park’ and ‘road’ classes – and this is quite reasonable. However, segmentation

models (and human expert annotators) typically do not do this, and conceptually treat each pixel
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as being part of one class or another. So how should we adapt saliency maps for segmentation

purposes?

Post-Processing

Softmax

For classification models, a softmax function is typically used as the activation function of the

final layer, in order to convert the raw model outputs to probabilities:

σ(z)c =
ezc

∑
C−1
c=0 ezc

(6.3)

where σ(z)c is the softmax function applied to the vector of logits z for class c, and C is the total

number of classes.

We could treat a set of saliency maps (one for each class) as raw model outputs for a given

image, and apply softmax over each pixel location to obtain a probability distribution over the

classes for each pixel. However, in regions where two (or more) classes have high saliency, this

would artificially decrease the prediction for both classes - for example, if pixel a has saliency

[10,10,0] over three possible classes, and pixel b has saliency [0,0,1] for the same three classes,

using softmax would result in pixel a having scores [0.5, 0.5, 0.0], and pixel b approximately

[[0.2, 0.2, 0.6]].

Using softmax artificially increases the importance of the first two classes for pixel b, which

weren’t actually salient at all. It also assigns the third class for pixel b a value of 0.6, which is

lower than that assigned to the first two classes of pixel a – even though their saliency values

were 10× higher.

Normalisation

Another route would be normalisation, where we subtract the minimum saliency value and then

divide the saliency maps by their range (over all classes). For a matrix X of size (C,d,d) where
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C is the number of classes, and d is the saliency map dimension (assuming a square saliency

map), the function normalise(X) subtracts the minimum value of X, denoted as min(X), from

each element in X. The resulting values are then divided by the maximum of two values: the

difference between the maximum and minimum values of X, denoted as max(X)−min(X), and

a small constant ε to avoid division by zero errors. The formula for normalisation is given by:

normalise(X) =
X−min(X)

max(X)−min(X)+ ε
. (6.4)

Importantly, the normalisation is applied over the entire matrix including all saliency maps, not

per-map, to ensure relative differences in saliency between classes are retained. This results in

the saliency maps for all classes being in the range [0, 1], and proportionately scaled across all

classes. However, expert semantic segmentation annotations are binary – a region is typically

part of one class or another, without overlap or uncertainty – and the purpose of semantic

segmentation is to segment an image into distinct regions.

Max

To get a binary mask for each class, as a human expert annotator would provide, there are a

number of possible strategies. One approach is, for each pixel, to set the class with the highest

saliency value to 1 and the others to zero. This ensures distinct binary masks with no overlap –

but disregards a lot of information. For instance, if two classes have very close saliency values

for a given pixel, the one with the larger value will appear artificially inflated, and the other

diminished.

Rounding

Another way to enforce distinct segmentation would be to apply a step function to the saliency

maps, such as rounding the saliency maps after normalisation. Rounding has similar properties

to taking the max, such as providing distinct binary saliency maps for each class – although they

may overlap, if more than one normalised class saliency value is greater than 0.5.
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Rounding Up

Rounding up the normalised saliency map also provides distinct segmentation – for each class,

a pixel is either part of that class or is not. However, maps will overlap if more than one class

saliency value is greater than 0. Recall, these saliency maps were produced by Hierarchical

Perturbation, and so only capture regions that positively contribute to a class prediction – so all

saliency map values are zero or greater in the first place.

This method retains the most saliency information, in that, for a given class, any region that

contributes to that class positively at all will be captured in the saliency map, even if that region

also contributes to other classes. Despite this issue, I found that rounding up normalised saliency

values to produce overlapping, binary maps for each class resulted in very similar maps to expert

annotations, at least on this small test set. For visualising these saliency maps, where a pixel is

associated with more than one class, I show the class with the highest saliency value.

A comparison of these different saliency map post-processing methods is shown in Figure 6.4.

Rounding up produced the most accurate saliency maps when compared to human expert

annotations, with the highest recall and F1 scores averaged across classes, at the cost of somewhat

lower precision. This makes sense, as rounding up registers every pixel that results any increase

in a class prediction as part of that class.

6.3 Results

A comparison of saliency-generated and expert-annotated segmentations, using standard seg-

mentation metrics as defined in Equation 7.5, to 261,290 patches (described in Table 6.1) from

six ‘malignant’ slides is shown in Table 6.2 and Figure 6.5. Note that only very tiny regions

are labelled ‘insufficient’ by either saliency-generated or expert-annotated segmentations, so

precision, recall and F1 are correspondingly low for that class. These results also show that the

saliency-generated segmentations consistently overestimate the amount of benign coverage (as a

proportion of the total image, ‘saliency %’) when compared to expert annotations (‘expert %’),
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Figure 6.4: Comparing saliency-generated and human expert annotations of ‘benign’, ‘insuffi-
cient’ and ‘malignant’ regions in whole slide images, using different saliency map post-processing
methods. Note that precision, recall and F1 for the ‘insufficient’ class are very low, due to mini-
mal representation of that class in the images tested.

Slide Total Segmented Insufficient Benign Malignant Empty
Slide 1 12054 0 1196 8820 54299
Slide 2 55329 751 15513 12748 70470
Slide 3 36324 1054 3302 26469 79299
Slide 4 29291 9470 4110 9827 52505
Slide 5 99390 0 27012 26402 46878
Slide 6 28902 0 6046 12564 52781
Total 261290 11275 57179 96830 356232

Table 6.1: Number of patches segmented per slide by (expert labelled) type. 261,290 patches
were used in total. Empty patches (those containing no tissue whatsoever) were not used in
training the model and were set to zero in the expert annotations. No saliency-based segmentation
was performed on them.

but are very close for ‘insufficient’ and ‘malignant’ classes, with 97% and 92% average accuracy

respectively.

These results suggest that HiPe-generated saliency maps can be effectively transformed into

segmentation maps that closely resemble those drawn by expert pathologists, even without any

dedicated training for segmentation. This is a significant finding, as it opens up the possibility

of generating accurate segmentations without the need for expensive and time-consuming

pixel-level annotations. I found that post-processing of saliency maps was important, with the

accuracy of the final results varying widely between different methods. Among the various
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Figure 6.5: Accuracy, precision, recall and F1 scores comparing semantic segmentations obtained
from expert human annotators and from HiPe-generated saliency maps, using ‘round-up’ post-
processing as described in section 6.2.

class expert % saliency % accuracy precision recall f1
benign 0.10 0.29 0.79 0.26 0.81 0.37
insufficient 0.02 0.01 0.97 0.02 0.00 0.00
malignant 0.18 0.22 0.92 0.73 0.88 0.79

Table 6.2: Comparison of saliency-generated segmentation (with ‘round-up’ post-processing)
and human expert annotations, averaged over 261,290 patches from six slides. ‘expert %’ and
‘saliency %’ refer to the portion of the slide image covered by the expert and saliency-generated
segmentations respectively.

post-processing techniques tested, rounding up the normalised saliency maps yielded the most

accurate segmentations, particularly for the "malignant" and "insufficient" classes. This suggests

that capturing even weak positive contributions to class predictions is important for accurate

segmentation in histopathology images. However, the saliency-based segmentation consistently

overestimated the extent of "benign" regions compared to expert annotations. This discrepancy

could be due to several factors, such as the model’s sensitivity to subtle features that human

experts deem less relevant for classifying a region as "benign," potential variability in expert

annotations, or thresholding effects in the post-processing step as discussed above. Despite

this overestimation, the overall accuracy for the "malignant" and "insufficient" classes suggests

that saliency-based segmentation maps are a promising approach when automated semantic

segmentation is practically useful (for example, to support human experts performing diagnostic

tasks, or to provide data for training segmentation models) but pixel-level labels are costly to
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obtain.

6.4 Discussion

To better understand what a this model has learned to look for, as discussed in detail in Chapter 2,

learned features for each class can be visualised via input optimisation. In this case, we begin

with a zero input matrix of size 3× 256× 256 (equal to the slide patch size), and optimise it

using gradient ascent to maximise the output logit for each class in turn, using a learning rate of

0.01. This is done for 1000 steps for each class.

Figure 6.6 presents two example patches – one labeled "malignant" and one "other/benign" –

alongside their corresponding feature visualisations. Examining these images reveals that, rather

than focusing on specific objects or shapes, the model appears sensitive to textural patterns

within the patches. This aligns well with the nature of histopathology, where diagnostic features

often lie in the arrangement and texture of cells and tissues, rather than readily distinct objects.

The malignant patch (Figure 6.6a) exhibits irregular cell shapes, a common feature of cancer

cells [45]. This is also evident in the feature visualisation (Figure 6.6b), where the pattern appears

to capture irregularly shaped cells with granular and indistinct nuclei. This hints at nuclear atypia

– a key feature of malignancy characterised by enlarged, misshapen nuclei with altered chromatin

distribution [41].

The other/benign patch (Figure 6.6c) displays more homogeneous, circular cells, a feature

captured by the feature visualisation (Figure 6.6d). While individual nuclei are not visibly

distinct, the smoother, more organised pattern implies recognition of regular nuclear shapes and

sizes, characteristic of healthy tissue [45].

Overall, this model appears to be identifying malignant regions primarily by through irregu-

larly shaped calls with granular and indistinct nuclei. In contrast, benign tissue appears to be

identified by more regular, circular cells. These are sensible features that are diagnostically

relevant to human experts, suggesting that this model has learned sensible features. These feature

visualisations may also help to explain why the saliency-based segmentation overestimates the
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(a) ‘malignant’ patch (b) ‘malignant’ feature visualisation

(c) ‘other/benign’ patch (d) ‘other/benign’ feature visualisation

Figure 6.6: (a) and (c) show example ‘malignant’ and ‘other/benign’ labelled patches, for
reference. (b) and (d) show input images optimised to maximise output logits for each class, as
described in Chapter 2.

proportion of benign pixels. We can see that the model will assign salience for the benign class

to regions containing regular circular features, and as shown in Figure 6.6a some cells within a

‘malignant’ patch do seem to have circular features of this kind.

Figure 6.8 highlights an interesting failure mode of saliency-based segmentation mapping

with this model. In these benign slides, the saliency maps show that the model finds epithelial

structure (both glandular and surface) highly salient for the malignant class – even though the

tissue is not malignant, according to expert annotation. This is so pronounced that it could be

mistaken for an epithelium segmentation model (see Figure 6.7 for context). Endometrial cancer
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Figure 6.7: Example annotated endometrial tissue with epithelium and stroma labelled. Stroma
is connective tissue. Epithelium is a thin layer of cells that cover body surfaces and line cavities,
and is seen here forming the lining of glands that appear as tubes cut in cross section.

is an epithelial tumour, typified by glandular abundance and complexity [94], so it is reassuring

that the model appears to have learned this and so finds epithelial cells salient. However, it does

demonstrate a failure of the saliency-based segmentation method on benign slides.

Note that while the model sees both benign and malignant epithelium as salient for malig-

nancy at the pixel level, which may seem counter-intuitive, it is also very accurate in its slide-level

classifications, as shown in the published work [99]. This suggests that while the model sees all

epithelial cells as relevant for a prediction of malignancy, it is also able to distinguish between a

normal arrangement of epithelium and an abnormal one. Pathologists do this by looking at the

proportion of epithelium to stroma (connective tissue) and the architecture and complexity of

glands present in the tissue [4] – and based on the emphasis on epithelium and glands shown by

the saliency maps, it seems likely that this model has learned to do something similar.

In summary, this chapter introduced deep learning in digital pathology, with a particular
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(a) Benign tissue. (b) Saliency-based segmentation.

(c) Benign tissue. (d) Saliency-based segmentation.

Figure 6.8: Tissue ((a) and (c)) and saliency segmentations ((b) and (d)) cropped from two benign
slides – malignant saliency shown in red, ‘other/benign’ in blue. Note the distinct epithelium
segmentation associated with the malignant class: although the model correctly classified both
slides as benign, it has appears to have learned, also correctly, that epithelium is highly salient
for endometrial malignancy [94]. (Epithelium is a thin layer of cells that cover body surfaces and
line cavities, visible in (a) and (b) as the lining of glands, that appear as cross-sectioned tubes.)

emphasis on weakly-supervised approaches which mitigate the need for costly expert annotations.

I demonstrated a novel method to generate pixel-level segmentations from a weakly-supervised

model trained on a diverse dataset of endometrial WSIs, in which a saliency-mapping algorithm

(HiPe, introduced in Chapter 4) is adapted to focus on regions with lower saliency variance,

enabling fine-grained segmentation at the pixel-level. Saliency maps generated by the modified
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HiPe were transformed into segmentation maps using post-processing. These saliency-generated

segmentations were compared to expert annotations, and showed a close resemblance for malig-

nant and insufficient classes, but overestimation in benign areas. These maps also highlighted

this model’s emphasis on epithelial structures, a key feature in endometrial cancer, demonstrating

the model’s learning in line with expert knowledge. However, a limitation of this approach was

also highlighted, as the model found epithelial cells salient for the malignant class even in benign

slides, leading to inaccurate segmentation maps in that context.





Chapter 7

Hoechst Is All You Need

Supervised machine learning is typically used to automate tasks that humans already know how

to do. The previous chapter presented one example of a task of this kind, where human experts

provide labels for the data, and a neural network is trained to replicate that ability. In this chapter,

I take a different approach – training a neural network to perform a task that humans cannot do.

Multiplex immunofluorescence and immunohistochemistry benefit patients by allowing can-

cer pathologists to identify proteins expressed on the surface of cells, enabling cell classification,

better understanding of the tumour microenvironment, more accurate diagnoses, prognoses,

and tailored immunotherapy based on the immune status of individual patients [79, 139, 160].

However, they are relatively expensive and time consuming processes which require complex

staining and imaging techniques by expert technicians. Hoechst staining is much cheaper and

easier to perform, but as it binds to DNA rather than to the proteins targeted by immunofluores-

cence techniques [35, 34], it has not been used for immune cell classification. In this chapter I

show that through the use of deep learning it is in fact possible to identify immune cell subtypes

without immunofluorescence, training a deep convolutional neural network to identify cells

expressing the T lymphocyte marker CD3 from Hoechst 33342 stained tissue only. This model

learns previously unknown morphological nuclear features associated with expression of this

protein, which can be used to identify CD3 expressing cells for use in key prognostic metrics

such as assessment of immune cell infiltration [17]. Immune cells and analysis of the immune

131
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contexture are described in more detail in Section 7.1.

For image segmentation tasks Convolutional Neural Networks (CNNs) are most widely

used [149]. One type of CNN is the U-Net [129] – a type of residual neural network [63] – so

named for its ’U’ shaped architecture. Residual neural networks in general, and the U-Net in

particular, are well suited for segmentation tasks as they allow spatial information from the input

to propagate directly to the output. Recent work using U-Nets has shown great promise for

digital pathology applications [118, 114, 78, 92, 74], but publications to date have focused on

automating tasks that human experts can already do. In this work a different approach is taken,

asking instead – can a deep neural network learn to do something that human experts cannot?

7.1 The Immune Contexture

Among patients with cancers of the same stage, clinical outcomes vary widely [29]. This is

thought to be in large part due to the complex interaction between tumour cells and the immune

response of individual patients, as the proportion, location, and sub-type of immune cells present

in the tissue has been shown to have important implications for patient prognosis [29, 98].

The immune contexture refers to the this complex interplay and organisation of the immune

cells present within the microenvironment of a tumour.

The immune system is composed of various cell types, each with specialised functions. These

cells can be broadly classified into two categories: innate and adaptive immune cells [8]. Innate

immune cells respond rapidly to a wide array of pathogens in a non-specific manner. They lack

the ability to remember past infections, leading to a consistent response to repeated exposures to

the same pathogen. Adaptive immune cells, comprising T-cells and B-cells, mount a slower but

highly specific response against pathogens, recognising and targeting specific antigens. A key

feature of adaptive immunity is its memory; upon re-encounter with the same pathogen, these

cells can mount a more efficient and robust response [50].
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Innate Immune Cells

Neutrophils

Neutrophils are the most abundant type of white blood cells in mammals, playing a key role in

the early phase of fighting infections. They respond rapidly to infection and engulf pathogens to

eliminate them from the body.

Macrophages

Macrophages are large cells that engulf and digest pathogens and cellular debris. They are also

important in antigen presentation, a process critical for activating the adaptive immune response.

Dendritic Cells

Dendritic cells act as messengers between the innate and adaptive immune systems. They capture

antigens from pathogens and present them on their surface, stimulating T-cells.

Natural Killer (NK) Cells

NK cells are a type of lymphocyte which identifies and destroys other cells that display signs of

infection, stress, or abnormality, such as virus-infected cells or tumour cells. Upon recognition

of a target cell, NK cells release cytotoxic (cell killing) granules containing enzymes that induce

apoptosis (programmed cell death) in the target cell. NK cells also secrete cytokines (small

proteins or signaling molecules) that can modulate the immune response and enhance the activity

of other immune cells.

Mast Cells

Mast cells are involved in wound healing and defense against pathogens. They also have roles in

allergy and anaphylaxis, releasing histamine and other mediators.
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Eosinophils and Basophils

Eosinophils and basophils are involved in the body’s response to parasites and allergens. They

release enzymes and toxic proteins against parasites but also contribute to allergic reactions.

Adaptive Immune Cells

T-Cells

T-cells originate from bone marrow but mature in the thymus (a small, specialised organ of the

immune system, located in the upper anterior part of the chest cavity, just behind the sternum),

for which they are named. They recognise antigens through T-cell receptors and come in various

types: Helper T-cells (CD4+) that activate other immune cells and aid in antibody production,

Cytotoxic T-cells (CD8+) that directly destroy infected or cancerous cells, and Regulatory T-cells

which help maintain immune tolerance and prevent autoimmune diseases.

B-Cells

B-cells are produced in bone marrow and mature in lymphoid follicles in lymph nodes throughout

the body. They are responsible for antibody production, and can differentiate into plasma cells to

secrete large amounts of antibodies. They also serve roles in antigen presentation and cytokine

secretion. Memory B-cells, a subset of B-cells, provide a faster immune response upon re-

exposure to an antigen.

Memory Cells

Memory cells are a subset of T and B cells that remain in the body after an infection has cleared,

to provide a rapid response to subsequent infections by the same pathogen.
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Key Factors

Characterisation of the immune contexture looks specifically at the type of immune cells in-

filtrating the tumour, the density of these cell populations, the location and distribution of the

cells within the tumour, and the functional orientation of the cells, in terms of being activated or

suppressed. Critical immune populations examined typically include T-cells (and their subsets

like cytotoxic, helper, regulatory T cells), B-cells, natural killer cells, macrophages, dendritic

cells and more. High densities of certain cell types like cytotoxic T lymphocytes and natural

killer cells tend to correlate with more favorable clinical outcomes.

By understanding the immune landscape of an individual’s tumour, the contexture provides

insight into the dynamic immune response against that cancer, including whether the response

is eliminating cancer cells or promoting tumour tolerance and growth. This can significantly

impact tumour progression and prognosis. A "hot" immune contexture with abundant activated T

cells is often associated with better prognosis, while a "cold" contexture with suppressed immune

response signifies poor outcomes [163].

The immune contexture can also be predictive of patient response to cancer therapy: certain

immunotherapies, rely on a pre-existing active immune response within the tumour microenvi-

ronment for their efficacy. Analyzing the immune contexture can help predict which patients are

most likely to benefit from these therapies, and enables oncologists to select treatments better

matched to the existing immune conditions for each patient [24].

Analysing the Immune Contexture

Researchers employ various techniques to assess the immune contexture. Staining tissue sections

with antibodies against specific immune cell markers allows for visualisation and quantification

of different immune cell populations within the tumour.

There exist proprietary methods to assess immune cell infiltration, which formally quantify

CD3+ and CD8+ T cell lymphocytes both in the centre of tumour and in the invasive margin, as

proposed by Galon et al. [52]. Combining their evaluation with T-and B score (CD8+ T cell and
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CD20+ B cell) as per Mlecnik et al. had significant predictive power for colorectal cancer patient

survival [158, 98], and compared to to the latest guidelines of the American Joint Committee on

Cancer/ Union for International Cancer Control (AJCC/ UICC) tumour-node-metastasis (TNM)

classification, immune cell infiltration evaluation alone has shown superior prognostic value

in international studies of stage I-IV colon cancer patients, and has life-saving applications in

clinical decision-making [150, 151, 126, 121, 29, 52, 53].

In order to identify the cells necessary to calculate these valuable metrics, either multiple

immunohistochemistry (IHC) or multiplexed immunofluorescence (mIF) are required – both of

which are time consuming and expensive protocols [158, 16].

These techniques are used to analyse the immune contexture through visualizing immune

cells and proteins in tumour tissues. They work by using antibodies to detect and analyse proteins

in tumour tissue in order to visualise and characterise the tumour immune microenvironment. In

IHC, antibodies are tagged with enzymes that catalyze a colorimetric reaction when they bind

to target proteins, allowing 1-3 proteins to be visualised as colored stains under a microscope

in each tissue sample. In contrast, mIF uses antibodies tagged with fluorescent labels that emit

signals of varying wavelengths. Using specialised microscopes and computational analysis, mIF

allows simultaneous visualisation and quantification of 5-50+ different fluorescently labeled

proteins within a single undivided tissue sample. While more technologically complex, mIF

expands the ability to profile a diversity of immune cell types/states and spatial organisation by

multiplexing more protein targets compared to traditional IHC assays.

Using contemporary equipment, three simultaneous rounds of immunohistochemistry takes

around three hours and costs approximately $20 in reagents, whilst multiplex immunofluores-

cence requires 9 hours and the associated reagents cost upward of $70 for a single slide.

CD3 Expression

CD3 is a protein complex and T-cell co-receptor that plays an important role in the adaptive

immune system. It is present on all T-cells, and found only on the surface of T-cells, and so
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is used as a target for these imaging techniques to identify T-cells within tissue sections. The

number of CD3-positive cells in tissue samples can provide valuable insights into the state of

the immune response in various diseases. For example, an increased number of CD3-positive

T-cells in a tissue may suggest an ongoing immune response, while a lack of CD3-positive cells

might be indicative of an immunodeficient state or specific types of lymphomas where T-cells

are absent or abnormal.

7.2 Data

Figure 7.1: Labelled immune cell mask from immunofluorescence image (right) and correspond-
ing Hoechst 33342 stained patch (left).

The data in this study comprised thirty WSIs taken from lung cancer biopsies. The slides

were provided by NHS Lothian and were deidentified to preserve patients’ anonymity. The

thirty slides were randomly selected from three larger cohorts of consenting patients, and each

slide was from a different patient. Ten slides were from lung cancer patients, ten from colon

cancer patients, and ten from kidney cancer patients. These different tissue locations were

used to ensure that the model is unlikely to overfit on any spuriously correlated features unique

to individual organs, rather than learning to identify the actual features of CD3 expressing
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cells. These were imaged using Hoechst 33342, and also using immunofluorescence targeting

CD3 expressing immune cells, with a Zeiss Zen Axioscan scanner. Individual cells were then

labelled in the immunofluorescence images based on the stain intensity, the results of which were

quality controlled by direct visual inspection to ensure label accuracy. These labels were used to

create segmentation maps, which were then paired with the Hoechst images, as in Figure 7.1.

Additionally, a cell classification dataset was generated by extracting individual images of each

cell and pairing them with the immunofluorescence-generated labels.

Immunofluorescence (IF) Protocol and Image Acquisition

Thanks to my colleague Dr In Hwa Um for performing the tissue preparation, imaging and

post-processing necessary to obtain the data for this study, and for providing the following two

paragraphs, which outline the immunofluorescence protocol she used.

Leica BOND RX automated immunostainer (Leica Microsystems, Milton Keynes, UK)

was utilised to perform mIF. The sections were dewaxed at 72◦C using BOND dewax solution

(Leica, AR9222) and rehydrated in absolute alcohol and deionised water, respectively. The

sections were treated with BOND epitope retrieval 1 (ER1) buffer (Leica, AR9961) for 20

min at 100◦C to unmask the epitopes. The endogenous peroxidase was blocked with peroxide

block (Leica, DS9800), followed by serum free protein block (Agilent, x090930-2). Then the

sections were incubated with the primary antibody (CD3, Agilent, A045229-2, 1:70 dilution),

followed by biotinylated anti-rabbit secondary antibodies (Thermo Fisher, 65-6140), which was

visualised by Alexa flour 750 conjugated streptavidin (Thermo Fisher, S21384). Cell nuclei were

counterstained by Hoechst 33342 (Thermo Fisher, H3570, 1:100) and the sections were mounted

with prolong gold antifade mountant (Thermo Fisher, P36930).

Zeiss Zen Axioscan was used to capture fluorescent images. Two different fluorescent

channels, Hoechst3334 and AF750 were simultaneously used to capture individual channel

images under 20× object magnification. The exposure time of the channels were 8 and 800

milliseconds, respectively. The images were saved in Carl Zeiss Image (CZI) format (a file
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format developed by Carl Zeiss Microscopy, used for storing microscopy images and metadata

in a single file) [3] and then opened in QuPath v.0.2.3 [20] (a widely used open-source image

analysis program for whole-slide digital pathology images).

Image Post-Processing

QuPath’s implementation of the segmentation algorithm StarDist [135] was used to segment

cell nuclei, with the probability threshold of cell detection, pixel size and cell expansion set

to 0.6, 0.2270 and 1.0 respectively. StarDist is a deep learning method for 2D and 3D image

segmentation, particularly designed for the segmentation of star-convex shapes in microscopy

images. Star-convex shapes are shapes in which at least one point exists within the shape exists,

from which any other point within the shape can be reached with a straight line that lies entirely

within the shape’s boundaries. StarDist uses convolutional neural networks (CNNs) to predict the

shape of objects in the form of star-convex polygons for 2D images or polyhedra for 3D images.

It segments objects by predicting distances from the object’s centroid to its boundary, in a fixed

set of directions resembling a star shape, and is particularly effective at segmenting densely

packed or overlapping objects [135]. All segmented cells with an intensity of greater than 2200

in the AF750 channel were classified as CD3 expressing. QuPath automatically captures a

number of different measurements from these segmented and classified cells, as described in the

following section.

Data Analysis

The total number of labelled cells present across all slides was 8,160,203. These were unequally

distributed across the slides, ranging from 16,991 to 723,458 labelled cells per slide. Of these

cells, 1,167,715 expressed CD3, representing 14.3% of the total.

As shown in Table 7.1, the circularity, size, and nucleus density of the CD3 expressing cells

also varied somewhat, both inter- and intra-slide. To test whether these simple morphological

features alone had predictive power, I attempted to train a number of different binary classification
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Figure 7.2: Cell counts per slide. Colon and lung slides (shown in yellow and green respectively)
formed the training and validation set. Kidney cancer slides (shown in blue) exclusively formed
the holdout test set. This is to ensure that the model is validated on its ability to identify CD3
expressing immune cells based on their own morphological features, guarding against overfitting
to any correlated features unique to specific tissues.

mean std min 25% 50% 75% max
Nucleus: Area µm2 29.70 21.23 6.00 16.20 24.33 35.83 1,084.42
Nucleus: Length µm 19.74 6.40 8.84 15.28 18.58 22.84 252.07
Nucleus: Circularity 0.88 0.10 0.15 0.84 0.91 0.95 0.99
Nucleus: Solidity 0.99 0.03 0.32 0.99 1.00 1.00 1.00
Nucleus: Max diameter µm 7.39 2.57 2.95 5.59 6.86 8.65 60.04
Nucleus: Min diameter µm 4.90 1.65 1.23 3.76 4.67 5.71 47.91
Cell: Area µm2̂ 48.21 26.95 6.28 30.36 41.97 57.66 1,200.90
Cell: Length µm 25.35 6.52 9.56 20.76 24.23 28.58 258.87
Cell: Circularity 0.89 0.08 0.16 0.85 0.91 0.95 0.99
Cell: Solidity 0.98 0.03 0.39 0.98 0.99 1.00 1.00
Cell: Max diameter µm 9.22 2.58 3.56 7.42 8.70 10.50 62.15
Cell: Min diameter µm 6.56 1.71 1.84 5.35 6.33 7.43 48.78
Nucleus/Cell area ratio 0.58 0.09 0.27 0.52 0.58 0.64 1.00

Table 7.1: Cell and nucleus statistics for all data.

models to discriminate between the labelled CD3 data and an equal number of randomly selected

other cells, based on nucleus and cell area, length, circularity, maximum and minimum diameter,

and solidity.

Models tested included logistic regression, support vector machines (SVM), k-nearest neigh-

bours (kNN), naive bayes, a simple neural network, decision trees, and random forests, imple-

mented with scikit-learn (an open-source statistical modelling library). I partitioned the data into
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Figure 7.3: Cell feature box plots for CD3-expressing and ’Other’ cells in the dataset.

a training set, constituting 70% of the data, a validation set, constituting 15% of the data, and

a test set with the remaining 15% . Feature scaling via standardisation was applied to ensure

similar feature magnitude to aid convergence. I also used gridsearch for hyperparameter tuning.

However, none of these classifiers achieved more than chance accuracy, suggesting that the cell

measurements lack the necessary discriminative power for this classification task.

Model Accuracy Precision Recall F1 Score
LogisticRegression 0.5003 0.5003 0.5003 0.5003
SVM 0.4985 0.4980 0.4988 0.4422
kNN 0.5003 0.5003 0.5003 0.5003
NaiveBayes 0.5003 0.4999 0.4999 0.4485
MLP 0.5005 0.2503 0.5000 0.3336
DecisionTree 0.4998 0.5009 0.5002 0.3848
RandomForest 0.4997 0.4996 0.4996 0.4944

Table 7.2: Tabular model evaluation results on holdout test set data. The cell measurements
alone do not appear sufficient to discriminate between CD3-expressing cells and others.

The results of these experiments are shown in Table 7.2.

As it was not possible to achieve above-chance performance on these features alone, I turned
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to more complex convolutional neural networks to enable direct representation learning from

images. From the data, I created two different tasks: cell classification, and patch segmentation.

For the segmentation task, patches of dimension 256 × 256 were extracted from each of the

Hoechst 33342 stained slides at full resolution and paired with the per pixel labels from the

immunofluorescence intensity classifier as shown in Figure 7.1.

For the cell classification task, in order to create a balanced dataset, from the Hoechst

stained slides all CD3 expressing cells and an equal number of randomly selected non-CD3

expressing cells were exported at full resolution. Individual cells were isolated by masking

out the background such that each sample contained one cell only. Each of these single-cell

images was of dimension 64× 64. Each Hoechst image (from both the segmentation and

classification dataset) was normalised by applying min-max scaling individually prior to training.

Normalisation was used instead of standardisation to counteract variability in pixel value range

between slides, and to ensure that all input features (pixel values) were on a similar scale, thereby

facilitating more stable and faster convergence during the training process. From the thirty slides,

all ten kidney cancer slides were held out as test set. Two slides were selected randomly from

each of the remaining lung and colon cancer cohorts for use in validation, and the remaining

eight from each were used for training.

Due to differing numbers of patches available per slide, this provided a total of 174,388

training patches from eight colon slides and eight lung slides, 66,259 validation patches from

two colon slides and two lung slides, and 142,189 test patches from all ten kidney slides.

7.3 Model Architecture and Training

For the cell classification dataset, I used a standard resnet50 [63]. For the segmentation dataset, I

used a U-Net backbone [129] with a resnet50 encoder [63].

All computation was performed using eight NVIDIA Tesla V100 GPUs (high-end computing

GPUs designed for deep learning and high-performance computing), running on a GNU/Linux

operating system. All model training code was written in Python, using Pytorch (an open-source
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machine learning library) for model training, plus pandas (an open-source library providing high-

performance data structures and data analysis tools) for data logging and Matplotlib (another

open-source library providing plotting utilities) for plot generation.

The classification model was trained for up to 100 epochs using Adam optimisation [90],

with a batch size of 512 and a learning rate of 0.000001. Early stopping was performed to limit

overfit, with training halted if no decrease in validation loss was observed for 10 epochs – this

resulted in the model being trained for 34 epochs in total. In order to directly optimise for a

balance of precision and recall, I used the F1 score as the loss function. In the equations below,

τc is the true class label (encoded in binary form) and ρc is the softmaxed model prediction for

that class. Precision and recall for a class c are defined as Pc and Rc respectively. ε is a small

constant (0.0001) to avoid division by zero.

Pc =
τcρc

τcρc +(1− τc)ρc + ε
(7.1)

Rc =
τcρc

τcρc + τc(1−ρc)+ ε
(7.2)

The F1 score for class c, denoted as F1c, is calculated using Pc and Rc:

F1c = 2 · Pc ·Rc

Pc +Rc
(7.3)

The overall F1 loss (L) to be minimised is expressed as:

L = 1− 1
C

C−1

∑
c=0

F1c (7.4)

I found that using this F1 loss instead of the more usual cross entropy loss resulted in an increase

in accuracy of around 7%.

The segmentation model was also trained using the F1 loss, but with a batch size of 128. The

same early stopping protocol was used, resulting in the segmentation model being trained for 29

epochs, also using Adam optimisation. An initial learning rate of 0.001 was used, and a learning
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rate decay protocol employed in which the initial learning rate was divided by the current number

of epochs, at each epoch. This was found to improve performance, as it enabled the model to

quickly learn the ‘background’ features before fine-tuning the more complex cellular features.

The batch sizes between the two models differ in order to take advantage of available memory

–– the samples for the classification task are 64×64 pixels in size, versus the 256×256 patches

used for the segmentation model, allowing the classification batch size to be far larger.

This protocol was designed after significant experimentation, considering a range of architec-

tures and hyperparameters, as shown in Figure 7.4. These deeper encoders, as implemented in

the Segmentation Models Pytorch library [68] failed to improve performance over the resnet50.

7.4 Evaluation

To assess model performance I use several metrics for both the classification and segmentation

task: precision (P), recall (R), F1 score (F), accuracy (A), and intersection over union (IOU) as

defined in Equation 7.5.

For the segmentation task, the ground truth (denoted as τ) is a matrix of the same dimensions

as the input image, where each element is either 0 or 1 indicating the absence or presence of a

CD3-expressing cell in each pixel in the input. The model output (ρ) is a matrix of the same

size, containing probability values ranging from 0 to 1, representing the model’s prediction for

each pixel. The precision, recall, F1 score, accuracy, and IOU are computed for all pixels, and

the mean of all pixel scores across all images used as the metric.

For the classification task, the same metrics are used, but the mean is taken over the ground

truth and class predictions for each image, (rather than for each pixel in each image.

tp = ∑(τ ·ρ)

tn = ∑ [(1− τ) · (1−ρ)]
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(a) Training configuration for the cell classification task. weighted_ce_loss is standard cross entropy loss,
weighted proportionately with the number of CD3 expressing cells in the training dataset. Models tested
for the classification task were, from top to bottom, wide-resnet50, resnet50, resnet34 and resnet18.

(b) Training configuration for the cell image segmentation task. ce_loss refers to cross entropy loss;
f1_combined_loss is calculated as the mean of cross entropy loss and the F1 loss described in Section 7.3;
and ce_focal_loss is the focal loss for imbalanced datasets, proposed by Lin et al. [82]. All models
consisted of a U-Net backbone, with a number of different encoders. Encoders tested for the segmentation
task were, from top to bottom, vgg19, resnet50, resnet34, resnet18, resnet152, resnet101 and inception-
resnet2.

Figure 7.4: Training runs with different models, loss functions, batch sizes and learning rates for
the segmentation and classification tasks.



146 CHAPTER 7. HOECHST IS ALL YOU NEED

fp = ∑ [(1− τ) ·ρ]

fn = ∑ [τ · (1−ρ)]

P =
tp

tp+ fp

R =
tp

tp+ fn

F1 =
2 ·P ·R
P+R

A =
tp+ tn

tp+ tn+ fp+ fn

IOU =
tp

∑(ρ + τ)− tp

(7.5)

Evaluation metrics: tp is true positive classifications, tn is true negative classifications, fp is

false positive classifications, and fn is false negative classifications. These are aggregated over

all pixels for semantic segmentation tasks.

P is precision, R is recall, A is accuracy, and IOU is the Intersection Over Union. τ is the true

label, ρ is the model’s prediction.

Table 7.3 shows the performance of the classification and segmentation models according to

these metrics. The cell classification model achieved over 80% precision, recall and F1 score on

F1 Precision Recall Accuracy IOU
Segmentation Training 0.630 0.579 0.693 0.971 0.460

(Pixel) Validation 0.570 0.511 0.648 0.962 0.399
Test 0.599 0.596 0.605 0.976 0.429

Segmentation Training 0.826 1.0 0.704 0.968 0.704
(Centroid) Validation 0.827 1.0 0.705 0.705 0.705

Test 0.789 1.0 0.652 0.652 0.652
Classification Training 0.802 0.806 0.803 0.802

Validation 0.773 0793 0.776 0.776
Test 0.805 0.807 0.805 0.805

Table 7.3: Performance on training, validation and test slides for both segmentation and classifi-
cation models. Pixel-based performance uses all pixels in the segmentation mask for evaluation,
while centroid-based uses only the labelled cell centroids.
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the test set, showing excellent generalisation to unseen slides. Moreover, since the test slides

were from kidney cancer slides and the training and validation sets from only lung and colon

cancer slides, this shows that the model has successfully learned to identify CD3 expressing

cells based on their own features, rather than from features specific to a single cancer type or

location. This suggests that the ability to identify CD3 expressing cells from morphological

features made visible by Hoechst staining is not limited to lung and colon cancer patients, and

can be generalised from them to patients with other cancers.

Figure 7.5: Visualisation of where the segmentation model prediction differs from the true CD3
pixel labels. Note that, while the model correctly identifies most of the CD3 expressing cells, it
often misses pixels around the cell boundaries.

At first glance the segmentation model does not fare as well, with F1 scores around 60%.

However, when the evaluation metrics are computed using the cell centroids – that is, comparing
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the label and model prediction at the centre point of each labelled cell only – the performance

improves significantly, approaching that of the classification model with an F1 score of nearly

80% on the test dataset, and perfect precision (although the recall is slightly diminished). This is

due to the fact that the per-pixel metrics are calculated against segmentation masks generated

from immunofluorescence images using StarDist, which only estimates the cell boundaries

(details of the entire image acquisition protocol can be found in Chapter 7.2). This means that

there is likely some inaccuracy in the pixel labels around the cell boundaries. As such, we would

expect the segmentation model to perform poorly around the edges of cells. This can be seen in

Figure 7.5, and explains the performance increase when the model is evaluated based only on the

labels and predictions for pixels corresponding to the cell centroids.

Figure 7.6 shows a number of example cells from the test set, along with their ground-truth

classification and the model’s prediction. Figure 7.7 shows the cell classification confusion ma-

trices for training, validation and test sets, demonstrating robust and generalisable classification

ability with little evidence of overfit.

Inspection of the dataset and statistics in the previous chapter (see Figure 7.3) shows that

CD3 expressing cells are on average smaller, and exhibit a higher degree of nuclear solidity

than other cells in Hoechst imaging. Since each cell image was individually normalised prior to

training and inference, any relative difference in intensity between cells of different types would

be mitigated to a large extent. However, most of these differences in distribution would remain

even after normalisation, so to explore whether this higher solidity and difference in size is used

by the classification model in preference to morphological features, training and validation were

repeated using the same slides at 2x lower magnification level. This preserves shape, relative

size and relative intensity but obscures fine-grained features at a cellular level. On this training

data the model performance on validation was far lower, indicating that small features visible at

the highest magnification level were necessary to achieve these results.
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Figure 7.6: Example cell samples, model predictions and actual classifications from the test set.

7.5 Interpretability

To explore how each trained model is able to distinguish between different lymphocytes, I

generated prototypical input images for the CD3 class, as described in Chapter 2, by optimising

an input image to maximise the output logit for the CD3 class. To encourage the optimisation

process to modify only those pixels necessary for a positive classification, I used a regularisation

term consisting of the sum of the absolute value of the pixels in the input, multiplied by a

hyperparameter r.

For the segmentation model, this technique was extended to isolate learned features for

individual cells, by maximising the CD3 output logit of a single central pixel, as proposed in

Chapter 2.2. This results in clearer visualisations than naively optimising the input to maximise
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Figure 7.7: Confusion matrices for training, validation and test sets, along with Receiver Operator
Characteristic (ROC) curve from test set only.

Transforms
Gaussian Blur (applied to input, with a 3×3 kernel, and sigma of 1.0) True/False
Rotation (randomly rotate, between 0 and 360 degrees) True/False
Jitter (shift input in a random direction by one pixel at each step) True/False
Sigmoid (applied to input) True/False
Clamp (clamp input pixel values between 0 and 1) True/False
ReLu (applied to input) True/False
Loss Function
Which output pixel logit to maximise (only applicable to segmentation model) Centroid/All
Hyperparameter r for the regulariation term (which is multipled by the sum
of the absolute value of the input pixels)

0/0.5/1

Optimiser
Gradient Descent SGD/Adam
Learning Rate 0.1/0.01/0.001
Optimisation Steps 100/200/500
Initialisation
Initial input pixel values (‘random’ is random noise uniformly distributed
between 0.0 and 1.0)

0/0.5/1.0/random

Table 7.4: The range of different transformations applied to inputs prior to inference at each
step, regularisation strategies, and hyperparameters explored for prototype generation. Clamp
and sigmoid are used to reduce the inherent tendency of this kind of feature visualisation to
optimise for adversarial inputs, as the actual Hoechst patches used in training and inference are
normalised between 0 and 1.

the CD3 logit for every pixel in the output, as shown in Figure 7.10.

I experimented with a range of different protocols for prototype generation, as described in

Table 7.4 - however, I found that even given a broad range of hyperparameter exploration, the

variation in the outputs was typically small. This suggests that the models have learned fairly
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robust features.

Figure 7.8: Comparing actual CD3 expressing cells from the training data with a selection of
the segmentation model’s learned CD3 prototypes, generated with a range of hyperparameters,
as outlined in Table 7.4. These prototypes were generated using centroid logit maximisation
(proposed in Chapter 2.2) and result in >99% probability of CD3 classification for the model’s
central output pixel.

Figure 7.10 shows CD3 prototypes for both the segmentation and classification models. These

were generated for 100 steps, using SGD or Adam optimisation; a learning rate of 0.01; and the

initial input set uniformly to zero. These optimised inputs show that using centroid maximisation

effectively generates the model’s learned prototypical CD3 cell around the optimised pixel in the

output. These generated cells have distinct textural quality which is somewhat also observable

in the CD3 labelled cells themselves, and are of a slightly smaller radius than the average

CD3 expressing cell, as shown in Figure 7.8. In all generated cells, a small darker region is

evident, with two lighter regions of unequal size on either side. These lighter regions have a

marked striped quality, with alternating lines of dark and light pixels. I initially thought that
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Figure 7.9: CD3 prototypes with Gaussian blur used during the optimisation process, with a
kernel size of 3×3 and sigma of 1.0.

this was an architectural artefact due to the convolutional layers in the model, as discussed in

Chapter 2, but after further experimentation I determined this is unlikely to be the case – these

high contrast regions persist even when Gaussian blur and jitter are applied during generation,

which effectively remove chequerboard artefacts associated with convolutional networks, as

shown in Figure 7.9. Additionally, these high contrast stripes also appear in the learned CD3

prototype of the classification model, as shown in Figure 7.10.

To gain further insight into the learned features, HiPe was used to generate saliency maps for

both the classification and segmentation tasks, as shown in Figures 7.11 and 7.12 respectively.

The standard implementation of HiPe described in Chapter 4.2 was used on the softmaxed output

of the model, with a zero perturbation substrate (where perturbed portions are replaced with

zeros, as described in Chapter 3.3. Zero substrate is a natural choice in this case, as during

training and inference inputs to the model are normalised so that all pixels are between 0 and

1, and the ‘background’ of Hoechst stained images are typically black. Input saliency based

methods like HiPe are more transparently interpretable than input optimisation, as they explicitly

show which areas of the input image were more or less important in determining the output

for each class for a specific input. HiPe was used in preference to other input saliency based

explanatory techniques as it is much quicker than similar perturbation-based saliency methods for
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Figure 7.10: CD3 Prototypes for the segmentation model (above) and the classification model
(below), comparing the effect of regularisation and different optimisers on the optimised input.
All generated prototypes shown here result in >99% probability of CD3 classification (of the
center pixel in the case of the segmentation model).

large images containing relatively small salient features, and is more precise than gradient-based

methods which are often indistinct. This is particularly important in this case, as the generated

prototypes suggest that key learned features are relatively small.

For the purposes of comparison, I also apply standard iterative occlusion [171] (ItP) with

kernel sizes of 2×2 and 1×1. Saliency maps generated with both HiPe and ItP for a selection

of CD3 cells are shown in Figures 7.11 and 7.12, for the classification and segmentation models

respectively. The HiPe saliency maps for the maximum depth (i.e. at the smallest kernel size)
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were retained before aggregation and are displayed in addition, in order to visually isolate the

smallest, most salient features. The resulting saliency maps show that larger salient regions

comprised the cell nuclei themselves, as would be expected. In all cases, the most salient regions

highlighted texture in the centre of the cell nucleus. This saliency pattern is similar in cases

where the model made incorrect classifications. The outer edges of nuclei do not appear salient

at all, indicating that the model did not learn to use the circumference, circularity or size of the

nuclei to make predictions, as suspected based on my previous attempt to train a tabular classifier

model from these measurements (details in Section 7.2). It is natural that the salient regions in

the saliency maps are the cell nuclei, rather than the cell surface or cytoplasm, which are not

visible in Hoechst-stained images.

7.6 Discussion

Hoechst 33342 binds to cell DNA. More specifically, it attaches to the minor groove [35]

(DNA has two grooves – the major and the minor – which are formed due to the geometrical

arrangement of the two strands of DNA as they spiral around the double helix.) Hoechst dyes

bind most strongly to A-T (adenine-thymine) pairs in the minor groove, and less strongly to

other pairs – meaning that A-T rich regions have more pronounced fluorescence.

Because Hoechst makes DNA visible, it is commonly used for cell quantification (locating

and counting cells in tissue) [81] and DNA quantification (measuring the DNA content of cells,

which can be predictive of cell health and cell cycle stage) [58]. It is never used in practice to

identify which proteins a cell expresses – indeed, it was surprising to all of the pathologists

that I spoke to that the models are able to accurately classify CD3 expressing cells based on the

features made visible by Hoechst. So, what could the models be using to make predictions?

It is possible that the model is simply exploiting a spurious correlation in the data, which

might be due to technical artefacts or biases in image acquisition, labelling or annotation. For

example, the CD3-expressing cells might appear smaller and have different texture due to the

spatial resolution or contrast of the images, or the way in which the tissue samples are prepared.
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These technical factors might be confounded with CD3 expression, leading the model to exploit

them as proxies for CD3 expression, even though they might not be biologically relevant. If this

were the case, the model’s performance might not generalise to unseen data, and the findings

might not be of biological significance. However, I think this is unlikely – model accuracy

was evaluated on a holdout test set from a different set of patients and a different tissue type;

analysis of cell measurements did not show any correlations of this kind; and attempts to train

statistical models based on cell measurements failed (as discussed in Section 7.2). In addition,

both saliency mapping and prototype generation suggest that it is morphological features in the

cells’ DNA structure that are used for prediction.

In the absence of spurious correlation, the fact that these models make accurate predictions

suggests they are capturing some underlying biological pattern or relationship between Hoechst

staining and CD3 expression – a previously unknown feature of cell morphology or staining

patterns. The models seem to infer CD3 presence without direct evidence of the protein itself,

finding a signal within the nuclear patterns as highlighted by the saliency maps – perhaps related

to the density or spatial arrangement of chromatin or other nuclear structures, or differences in

the pattern or intensity of Hoechst binding to DNA sequences. This could be indicative of a

deeper and currently unknown biological link between nuclear morphology and T-cell function.

The identification of such features has potential implications for our understanding of T-cell

biology, and might shed light on the relationship between molecular and cellular phenotype

in the immune system. This would require further experimentation and validation, e.g., by

exploring the relationship between chromatin structure, gene regulation and CD3 expression

using additional experimental techniques, such as comparing the nuclear features of T-cells with

other cell types in a controlled setting.

In summary, in this chapter I trained two deep neural network models to identify CD3

expressing cells from Hoechst stained images – something that was not previously considered

possible, as Hoechst does not make proteins visible, binding instead to DNA in the cell nucleus.

This is valuable in and of itself, because immune contexture analysis currently requires
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expensive and time-consuming imaging protocols (as discussed in Section 7.1), whereas Hoechst

staining is far cheaper and quicker. Furthermore, the use of interpretability makes it possible to

see how the model is able to do this task. Saliency mapping and prototype generation suggest

that there is a relationship between protein expression and nuclear morphology that humans are

currently unaware of, but that is robust enough to predict one from the other. Further experiments

by domain experts will be necessary to fully understand what the model has learned in this case.

Primarily, I see this chapter as a proof-of-concept of a new approach to knowledge discovery

– in which models are trained to perform tasks that humans can’t do, and then interpretability

methods are leveraged to help us understand how.
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Figure 7.11: Saliency maps generated by Hierarchical Perturbation (HiPe) at both all depths and
maximum depth only, plus saliency maps generated by standard Iterative Perturbation (ItP) with
kernel sizes of 1 and 2.
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Figure 7.12: Examples of model predictions on five test set images – here I show the Hoechst
33342 stained input image, the ground truth segmentation mask, the predicted segmentation
output, and HiPe saliency maps.



Chapter 8

Conclusion

8.1 Summary

In this thesis, I have explored the application of model-agnostic interpretability methods in

deep learning, with a particular focus on their use in digital pathology. I began by introducing

the concept of learned prototypes and demonstrating how feature visualisation can be used

to understand what a model has learned from its training data. I showed that the choice of

model architecture influences the features learned, and proposed a novel adaptation of feature

visualisation to enable its application to segmentation models.

I then addressed the challenge of evaluating saliency mapping methods, proposing the Proxy

Model Test as a way to objectively compare different approaches. This test uses a transparent

proxy model for which the ground truth saliency is known, allowing for direct assessment of the

accuracy of saliency maps. I introduced Hierarchical Perturbation (HiPe) as a novel saliency

mapping technique that achieves state-of-the-art performance while being significantly (20×)

faster than existing methods.

I demonstrated the practical utility of these interpretability methods through two case studies

in digital pathology. The first showed how saliency mapping can be used to generate pixel-level

segmentations from weakly-supervised models, providing a cost-effective alternative to manual

annotation. The second case study demonstrated how interpretability techniques can lead to new

159
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insights, by training a model to identify CD3-expressing cells from Hoechst stained images – a

task previously thought to be impossible.

8.2 Contributions

The main contributions of this thesis are:

1. Demonstrating the influence of model architecture on learned features through feature

visualisation, and proposing an adaptation of feature visualisation for segmentation models.

2. Introducing the Proxy Model Test as a way to objectively evaluate and compare saliency

mapping methods.

3. Proposing Hierarchical Perturbation (HiPe), a novel model-agnostic saliency mapping

method that achieves state-of-the-art performance while being significantly (20×) faster

than existing techniques.

4. Demonstrating the practical utility of interpretability methods in digital pathology, through

case studies on weakly-supervised segmentation and the identification of CD3-expressing

cells from Hoechst stained images.

Looking ahead, the potential for interpretability methods to enable discovery in digital

pathology is particularly exciting. As I demonstrated in Chapter 7, interpretability techniques can

uncover previously unknown relationships in data – in this case, between cellular morphology

and protein expression – opening up new avenues for biomarker discovery and mechanistic

understanding of disease. By providing a window into the learned representations of deep

learning models, interpretability tools can help to bridge the gap between artificial and human

intelligence in the analysis of complex medical data.

In conclusion, this work has advanced the state-of-the-art in model-agnostic interpretability

for deep learning, with a particular focus on applications in digital pathology. The methods

and case studies I have presented demonstrate the potential for these techniques to enhance
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the transparency, reliability, and discovery power of AI in healthcare. While further validation

and translation work is needed, I believe the work I have presented here contributes to a more

interpretable and impactful future for deep learning in medicine.

8.3 Limitations and Future Work

I see several promising directions for future work building on this thesis.

Firstly, while I demonstrated the influence of model architecture on learned features in

Chapter 2, my experiments were limited to a small set of architectures and hyperparameters. A

more comprehensive exploration of the design space, including different layer types, activation

functions, and regularisation techniques, would provide a more complete understanding of how

these factors impact learned representations. While somewhat outside the scope of this work, I

think figuring out exactly how different architectures affect the kinds of features a model is able

to learn from its training data is fascinating and important, as it has the potential to inform future

model architecture design. Similarly, although I demonstrated the potential of interpretability

methods for uncovering novel insights, I did not systematically explore how these insights

could be used to improve model performance or robustness. Future work could investigate

how both model-agnostic and model-specific interpretability can be integrated into the model

development process, for example, by informing data augmentation strategies or guiding the

selection of architectures and hyperparameters. This could lead to models that are inherently

more interpretable, reducing the need for post-hoc explanations.

More broadly, while model-agnostic methods have a number of nice properties, there is

scope for further work exploring the trade-offs between model-agnostic and model-specific inter-

pretability techniques in different application domains. For knowledge discovery in particular, it

would have been interesting to apply model-specific interpretability methods – i.e. visualising

filters in the convolutional layers – to improve understanding of the model’s learned features.

One limitation of this work is the lack of extensive clinical validation of the findings. While

my results demonstrate the potential of interpretability methods in digital pathology, further work
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is needed to assess their robustness and generalisability across a wider range of datasets and

clinical contexts, as well as collaborations with clinical partners to explore how interpretability

techniques can be integrated into real-world diagnostic workflows. While my focus has been on

digital pathology, the techniques I introduced could also potentially be applied to other types of

computer vision in medicine, as well as to problems beyond healthcare where interpretability is

important, such as autonomous vehicles or financial decision-making.

Additionally, while I demonstrated the potential of interpretability methods for generating

insights and explanations, I did not conduct user studies to assess their practical utility for domain

experts, such as pathologists. User studies could provide valuable feedback on the usability and

effectiveness of the proposed methods in real-world settings and guide future refinements.

While these limitations are important to acknowledge, they also highlight the many oppor-

tunities for future work in this area. By addressing these challenges and continuing to develop

more robust, efficient, and reliable interpretability methods, we can unlock the full potential of

deep learning in digital pathology and beyond.

8.4 Clinical Assessment and Translation Potential

The methods and results I have presented in this thesis have significant potential for clinical

translation in the field of digital pathology. The ability to generate pixel-level segmentations

from weakly-supervised models, demonstrated in Chapter 6, could greatly reduce the time and

cost associated with manual annotation of histopathology images. This could in turn accelerate

the development and deployment of AI-based diagnostic tools, by enabling the creation of

large-scale training datasets with reduced manual effort.

The discovery that CD3-expressing cells can be identified from Hoechst stained images, as

I showed in Chapter 7, also has important clinical implications. This finding suggests that it

may be possible to perform certain types of immune profiling using a much simpler and cheaper

staining protocol than is currently standard. If validated on a larger scale, this could make

immune profiling more widely accessible, potentially enabling more personalised treatment



8.4. CLINICAL ASSESSMENT AND TRANSLATION POTENTIAL 163

strategies for cancer patients.

However, it is important to note that further validation work is needed before the methods I

have proposed can be translated into routine clinical use. The robustness and generalisability

of the techniques need to be assessed across a wider range of datasets, representing different

cancer types, staining protocols, and imaging platforms. The regulatory requirements for clinical

deployment of AI-based tools would also need to be navigated, with rigorous evidence required

to demonstrate safety and efficacy.
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