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SUMMARY  

Understanding how drugs work in vivo is critical for drug design and for maximizing the 

potential of currently available drugs. 5-nitrofurans are a class of pro-drugs widely used to 

treat bacterial and trypanosome infections, but despite relative specificity 5-nitrofurans often 

cause serious toxic side-effects in people. Here, we use yeast and zebrafish, and human in vitro 

systems to assess the biological activity of 5-nitrofurans, and identify a conserved interaction 

between aldehyde dehydrogenase (ALDH) 2 and 5-nitrofurans across these species. In 

addition, we show that the activity of nifurtimox, a 5-nitrofuran anti-trypanosome pro-drug, 

is dependent on zebrafish Aldh2 and is a substrate for human ALDH2. This study reveals a 

conserved and biologically relevant ALDH2–5-nitrofuran interaction that may have 

important implications for managing the toxicity of 5-nitrofuran treatment.  

 

HIGHLIGHTS 

• Zebrafish provide a viable assay for the biological toxicity of 5-nitrofurans  

• ALDH2 inhibitors prevent 5-nitrofuran toxicity in zebrafish and yeast  

• Genetic dependence on ALDH2 for 5-nitrofuran toxicity in zebrafish and yeast systems 

• 5-Nitrofurans bind to and are substrates of human ALDH2 
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INTRODUCTION 

Drugs often have multiple targets in vivo that can lead to unintended side-effects. Identifying 

unintended drug targets and their in vivo relevance is a fundamental challenge in chemical biology. 

5-Nitrofurans are a class of drugs that save thousands of lives as front line treatments for parasitic 

trypanosome infections in Latin America and Africa, and are also effective antibiotics in human and 

veterinary medicine (Castro, et al., 2006; Coura, 2010; Nussbaum, et al., 2010; Priotto, et al., 2009). 

5-Nitrofurans are of such importance to human health that the World Heath Organization deems the 

5-nitrofuran, nifurtimox, an essential medicine and Bayer HealthCare provides nifurtimox free of 

charge for trypanosome infections. 5-Nitrofurans are pro-drugs, and their relative specificity comes 

from parasitic and bacterial specific nitroreductases (NTRs) that reduce the 5-NO2 functional group 

to a toxic anion radical thereby generating reactive oxygen species and inducing cell death. Despite 

their wide-spread use 5-nitrofurans have serious toxic side-effects (Castro, et al., 2006). For 

nifurtimox, toxic side-effects lead to treatment cessation in over 30% of patients with Chagas 

disease, caused by Trypanosoma cruzi infection (Castro, et al., 2006). Clinical side-effects are 

complex and can vary between populations but include polyneuropathy, depression, forgetfulness, 

alcohol intolerance and headaches, as well as gastrointestinal complications. There is currently no 

treatment strategy available to reduce the off-target toxic side-effects of 5-nitrofurans.  

Decades of research have identified multiple human enzymes capable of 5-nitrofuran 

reduction in vitro, in cells or tissues (Dubuisson, et al., 2001; Rao, et al., 1987; Rao and Mason, 

1987). However, whether these enzymes are relevant to 5-nitrofuran side-effect activity and the 

potential for therapeutic intervention to inhibit their activity in vivo is undetermined. Drug 

mechanism of action is readily examined in the zebrafish model system, in which clinically active 

compounds can be directly assayed in the transparent embryo (Zon and Peterson, 2005). Within two 

to five days of zebrafish development most tissues and organs have formed thereby enabling the 

identification of tissue-specific drug activities and/or bioactivation. These features allow facile 

phenotypic chemical screens within the whole animal. Phenotypic small molecule screens in 

zebrafish have enabled the identification of new biological pathways, novel bioactive chemicals, 

and unexpected potential for known drugs (Taylor, et al., 2010). Drugs often have multiple targets 

in vivo and examining the effects of small molecules on the developing zebrafish can also identify 

unintended drug targets (Ishizaki, et al., 2010; Ito, et al., 2010; Laggner, et al., 2012; Rihel, et al., 

2010).  

Here, we use a multi-species approach to identify ALDH2 as a mediator of 5-nitrofuran 

toxicity in yeast and zebrafish, and show that 5-nitrofurans are substrates for human ALDH2 in 

vitro. In a zebrafish phenotypic screen, we found that 5-nitrofurans are melanocytotoxic. We 

exploited this highly visible in vivo activity to generate a 5-nitrofuran probe, identify ALDH2 as a 
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5-nitrofuran target, and validate the interaction in vivo. This interaction is conserved from yeast to 

human, and is also relevant for the clinically active 5-nitrofuran, nifurtimox. We propose that this 

new interaction may be relevant to some of the 5-nitrofuran toxicity observed in the clinic.  

 

 

RESULTS 

5-Nitrofurans are active in zebrafish 

Melanocytes are pigment producing cells that generate black melanin, and pigmented melanocytes 

are clearly visible in the developing zebrafish beginning at 28 hours post fertilization (hpf; Fig. 

1A).  We identified four 5-nitrofuran compounds (NFN1 [Maybridge BTB05727], NFN2 

[SEW00138], NFN3 [BTB13657], NFN4 [BR00087]) in a chemical screen for modulators of 

melanocyte development in zebrafish embryos (Fig. 1A, C; see Methods). We also found zebrafish 

were sensitive to the clinically active 5-nitrofuran nifurtimox (Fig. 1B, C). 5-Nitrofuran treatment 

directly affected the melanocyte and melanocyte progenitor viability in a dose-dependent manner, 

and was independent of tyrosinase activity (Fig. S1, Movie S1). Thus, 5-nitrofurans are 

melanocytotoxic in zebrafish, and unlike prodrugs that are bioactivated by pigmentation enzymes 

(Jawaid, et al., 2009; Yang and Johnson, 2006) their activity is independent of tyrosinase. Altered 

pigmentation is not a feature of 5-nitrofuran toxicity in humans, however, melanocyte specificity in 

zebrafish provided a rapid, convenient and highly visible assay to study 5-nitrofuran activity in an 

animal model, independent of trypanosome infection. 

 

5-Nitrofuran activity requires the 5-NO2 moiety 

5-Nitrofurans are pro-drugs, and the 5-NO2 moiety is essential for bioactivation in parasites and 

bacteria (Maya, et al., 2007). We modified NFN1 by replacing the NO2 moiety with a hydrogen 

atom (Fig. 1C; NFN1.1; Table 1; Supplemental Information). In contrast to NFN1, treatment with 

NFN1.1 had no effect on zebrafish melanocytes, and the melanocyte remained pigmented and intact 

(Fig. 1A; Table 1). Nitrofuran activity in melanocytes is therefore dependent upon the 5-NO2 

functional group. As in humans, zebrafish do not have NTRs (which are present in trypanosomes) 

to process the 5-NO2 functional group, and thus the effects of NFN1 on zebrafish melanocytes may 

provide information about alternative methods of 5-nitrofuran processing.  

 

Nitrofurans bind ALDH2 in zebrafish  

To identify the possible targets of the 5-nitrofurans, we performed affinity purification to capture 5-

nitrofuran interacting proteins in zebrafish extracts. First, we generated a series of 5-nitrofuran 

derivatives and tested their activity on zebrafish (Table 1; Supplemental Information). Importantly, 
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5-nitrofuran derivatives containing a phenyl ring (NFN5, 5.1, 5.2) effectively targeted zebrafish 

melanocytes (Table 1). As substitution at the para-position of the phenyl ring in NFN5.1 and 

NFN5.2 was tolerated, a 5-nitrofuran probe was generated by linking to biotin through the para-

position of the phenyl ring (Pr-NFN; Fig. 2A). Next, the 5-nitrofuran probe was bound to 

streptavidin beads and protein complexes captured from zebrafish extract derived from 3-day 

embryos were subjected to tandem mass spectrometry. A 57-kD binding protein was identified as 

aldehyde dehydrogenase (Aldh) 2b (Fig. 2B; Table S1). Zebrafish have two aldh2 (Lassen, et al., 

2005; Song, et al., 2006) genes (a and b) that are orthologs of human ALDH2 (Fig. S2); aldh2b is 

expressed in neural crest derived cells, including presumptive melanocytes (Thisse, 2001). To 

confirm the identity of the 57-kD protein, we repeated our affinity purification protocol, and 

performed western blotting with anti-Aldh2 zebrafish antibodies raised against both Aldh2 a and b 

forms (Lassen, et al., 2005) (Fig. 2C). As a control, we generated a furan probe that was identical to 

the nitrofuran probe except that it lacked the 5-NO2 functional group (Pr-FN; Fig. 2A). Aldh2 

(either 2a or 2b) bound more strongly to the 5-nitrofuran probe than to the control probe, and not to 

streptavidin beads alone (Fig. 2C). These experiments validate Aldh2 as a 5-nitrofuran binding 

protein.  

 
Aldh2 is required for 5-nitrofuran activity in zebrafish  

Aldh2 catabolizes toxic aldehydes in the liver after alcohol consumption (Druesne-Pecollo, et al., 

2009), in the heart after ischemia (Chen, et al., 2008), and in dopamine metabolism (Yao, et al., 

2010). We asked if the 5-nitrofuran toxicity was dependent on Aldh2 in zebrafish. The natural 

product daidzin, found in the Kudzu vine (Pueraria lobata), is a potent and specific inhibitor of 

human ALDH2 and has long been used in traditional medicines as an antidipsotropic (Keung and 

Vallee, 1993; Keung and Vallee, 1993; Lowe, et al., 2008). More recently, ALDH2 inhibitors have 

been shown to reduce anxiety associated with treatment of cocaine and alcohol addiction (Arolfo, et 

al., 2009; Yao, et al., 2010). We reasoned that ALDH2 inhibitors were likely to prevent the toxicity 

of 5-nitrofurans in zebrafish because i) human ALDH2 is closely related to zebrafish Aldh2 (a and 

b) (Fig. S2), and ii) computational modeling of zebrafish Aldh2b bound to daidzin suggested that 

critical drug-protein interactions are conserved between species (Fig. 3A). Treatment of zebrafish 

embryos with daidzin protected melanocytes from the cytotoxicity of the co-administered 5-

nitrofuran NFN1 (Fig. 3B), as well as the clinically active 5-nitrofuran, nifurtimox (Fig. 3C). Thus, 

co-administration of the Aldh2 inhibitor daidzin abrogates the activity of NFN1 and nifurtimox in 

zebrafish. 

 To provide additional evidence that the action of daidzin was by inhibition of Aldh2 and not 

an additional unintended target, zebrafish embryos were co-treated with NFN1 and a second 
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ALDH1/2 inhibitor, disulfiram (DSF). DSF, also called Antabuse and Antabus, is used to treat 

chronic alcoholism by preventing the ALDH2 dependent metabolism of alcohol and producing 

enhanced sensitivity to alcohol. DSF also chelates copper, and we and others have found that DSF 

prevents pigmentation of zebrafish melanocytes prior to melaninization most likely due to inhibition 

of copper dependent pigmentation enzymes (Fig. S3; O'Reilly-Pol and Johnson, 2008). Treatment 

of three dpf embryos with fully pigmented melanocytes with DSF had no effect on melanocyte 

integrity, while DSF prevented melanocyte toxicity upon co-treatment with NFN1 (Fig. 3B). Taken 

together, these experiments with two chemically independent ALDH2 inhibitors support a 

biological role for Aldh2 in the bioactivation of 5-nitrofuran melanocytotoxicity in zebrafish.   

ALDH2 is regulated in a tissue specific manner, and in particular εPKC can directly 

modulate ALDH2 during ischemic preconditioning in the heart (Chen, et al., 2008; Chen, et al., 

2010). We identified the PKC inhibitors PKC412 and Ro318220 as chemical suppressors of 5-

nitrofuran activity in zebrafish by screening a library of 80 known kinase inhibitors. Treatment of 3 

dpf zebrafish embryos with PKC412 or Ro318220 had no effect on melanocyte viability (Fig. 3B). 

However, treatment with PKC412 or Ro318220 prevented NFN1 activity in melanocytes (Fig. 3B). 

We tested a third PKC inhibitor GF109203X, that can inhibit ethanol or dopamine D2 receptor 

agonist NPA induced intracellular translocation of εPKC (Yao, et al., 2008). GFX109203X had no 

effect on melanocytes alone, but we found that it could also suppress NFN1 melanocytotoxicity 

(Fig. S3). GFX109203X was also effective at preventing the activity of nifurtimox in zebrafish 

melanocytes (Fig. 3C). Although we do not know if PKC directly enhances Aldh2b activity or 

expression in zebrafish, these results suggest that PKC activity is important for 5-nitrofuran 

cytotoxicity within the melanocyte.   

 

ALDH2 contributes to background adaptation in zebrafish melanocytes 

We wanted to understand why zebrafish melanocytes were sensitive to 5-nitrofuran treatment, when 

this is not a feature of 5-nitrofuran toxicity in patients. Unlike human melanocytes, zebrafish 

melanocytes respond to environmental conditions by concentrating or dispersing their melanosomes 

in light or dark conditions respectively (Logan, et al., 2006). This effect is termed background 

adaptation, and is a dopaminergic response (Logan, et al., 2006). A role of Aldh2 in zebrafish 

background adaptation has not been previously identified, however, aldh2b is specifically expressed 

in developing pigment cells (Thisse, 2001), and ALDH2 is required for dopamine metabolism in 

mammals (Chen, et al., 2010). We tested the effects of ALDH2 inhibition on background adapation 

in zebrafish and found that daidzin treatment blocked dispersal of melanin in zebrafish melanocytes 

in the dark (Fig. 3D). These observations suggest Aldh2 activity is required for regulation of 

zebrafish background adaptation and explain the melanocyte sensitivity to 5-nitrofurans. 
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Multi-species conservation of the 5-Nitrofuran-ALDH interaction  

Chemical-genetic and chemical-chemical interactions identified in yeast are often conserved in 

multi-cellular species including zebrafish and mammals (Ishizaki, et al., 2010). Budding yeast have 

five aldehyde dehydrogenase genes (ALD2-6) that all share 42-48% similarity with human ALDH 

1/2 (Fig. S2). Yeast also have two fungal-specific nitroreductase-like proteins, but these share little 

similarity with the nitroreductases that are known to reduce nitrofurans (de Oliveira, et al., 2007). 

To establish that 5-nitrofurans also showed activity in yeast, liquid cultures were treated with 

increasing concentrations of NFN1 (Fig. 4A). Yeast were highly sensitive to NFN1, which inhibited 

growth even at a sub-micromolar concentrations. In contrast, treatment with the control furan 

compound, NFN1.1, had no effect on yeast growth, even at 100 µM. These data indicate that the 

toxicity of 5-nitrofurans in yeast is dependent on the 5-NO2 moiety. To test if NFN1 toxicity was 

dependent on ALDH activity, we tested drug combinations in yeast cultures. Increasing 

concentrations of daidzin rescued the effects of 50 µM NFN1 on yeast growth rate in a dose-

dependent fashion, whereas daidzin alone had no effect on growth (Fig. 4B).   

Mutations that render yeast resistant to a specific compound can provide direct links to the 

target pathway (Ishizaki, et al., 2010). We determined if yeast strains bearing deletions in each of 

the ALD genes (orthologs of human and zebrafish ALDH1/2) were resistant to 5-nitrofuran 

treatment. The ald2∆, ald3∆, ald4∆ and ald5∆ deletion strains each exhibited the same sensitivity to 

NFN1 as wild type (data not shown). In contrast, an ald6∆ strain was significantly less sensitive to 

NFN1 treatment, as was an ald2∆ald3∆ double deletion strain (Fig. 4C, D). These effects of 

different ald mutations appeared to be additive as a triple ald2∆ ald3∆ ald6∆ deletion strain was 

almost completely resistant to 50 µM NFN1 treatment (Fig. 4D). Once activated 5-nitrofurans cause 

DNA damage, and consistent with this we find chemical-genetic profiles in yeast indicate that 

disruption of DNA damage repair pathways causes hypersensitivity to 5-nitrofurans (Fig. S4). 

To further validate the genetic dependence of 5-nitrofuran bioactivity on Aldh2, we used 

morpholino oligonucleotides (MOs) to knockdown aldh2b in zebrafish. Single-cell embryos were 

injected with a splice-site blocking aldh2b MO, and at 2 dpf were treated with NFN1. PCR analysis 

of the splice-site MO indicated that aldh2b morphants had reduced levels of correctly spliced 

aldh2b transcript in addition to a mis-spliced transcript indicating that the aldh2b morphants are 

hypomorphic for aldh2b (Fig. S4). We consistently found that the splice-site blocking aldh2b MO 

conferred partial resistance to a low treatment dose (0.8µM) of NFN1 melanocytotoxicity (Fig. 4E). 

An aldh2b translation block MO also conferred partial resistance to a short NFN1 treatment (Fig. 

S4). We conclude that there is a genetic dependence on Aldh2b for 5-nitrofuran activation in 

zebrafish, in line with genetic studies in yeast. 
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5-Nitrofurans are substrates for human ALDH2  

There are 19 ALDH enzymes in humans, each with specific targets and additional activities 

(Marchitti, et al., 2008). To determine if the 5-nitrofuran-ALDH2 interaction is conserved in 

humans we asked if human ALDH2 could bind 5-nitrofurans directly. Purified human ALDH2 was 

added to the 5-nitrofuran probe (Pr-NFN), a furan control probe (Pr-FN), or streptavidin beads 

alone. In an analogous manner to the experiments using zebrafish extracts, human ALDH2 binding 

was strongly enriched in association with the 5-nitrofuran, while the control furan and the 

streptavidin beads alone did not bind ALDH2 (Fig. 5A). 

Given our results with diadzin in yeast and zebrafish, we proposed that NFN1 was probably 

a substrate of ALDH enzymes. ALDH2 enzymes have reducing potential as well as dehydrogenase 

activity (Chen, et al., 2002; Marchitti, et al., 2008), and ALDH2 has been shown, in the absence of a 

reducing agent, to inactivate itself during the bioactivation of substrates such as nitroglycerine 

(GTN) (Chen, et al., 2010; Wenzel, et al., 2007). Consistent with this, we found that in the absence 

of a reducing agent, NFN1, but not the no-nitro NFN1.1, inactivated recombinant human ALDH2 in 

vitro (Fig. 5B-D). Likewise, we found that following 10 minutes incubation with nifurtimox, 

ALDH2 activity was reduced by 39.6% (at 5µM nifurtimox), 77.6% (at 16.7µM nifurtimox), and by 

96.5% (at 50µM nifurtimox) (Fig. 5C). Importantly, like the zebrafish studies, these experiments 

were performed with nifurtimox at concentrations that are within the range of those recorded in the 

serum of nifurtimox-treated patients (Paulos, et al., 1989; Saulnier Sholler, et al., 2011). For both 

NFN1- and nifurtimox-inactivated ALDH2, the subsequent addition of a reducing agent (TCEP) led 

to partial reactivation of the enzyme in line with literature studies using the accepted substrate GTN 

(Fig. 5D). We observe that the NFN1-ALDH2 interaction is stronger than the nifurtimox-ALDH2 in 

zebrafish and in our biochemical assay. This raises the possibility that the mechanism of action of 

nifurtimox is more complex than NFN1, or that NFN1 may in fact be a more effective 5-nitrofuran 

compound than nifurtimox.   

 

Daidzin does not affect nifurtimox trypanocidal activity  

In an attempt to develop a clinically testable hypothesis, we examined the genome sequence of the 

trypanosomatids to identify possible ALDH enzymes in T. brucei, T. cruzi and Leishmania (Fig. 

S2) (Aslett, et al., 2010; Cross, 2005; Lowe, et al., 2008; Marchitti, et al., 2008; Sobreira, et al., 

2011). Given the absence of an obvious ALDH2 in Trypanosoma we hypothesized that while Aldh2 

inhibition would protect the zebrafish melanocytes and yeast cells from 5-nitrofuran activity, 

ALDH2 inhibitors might not protect trypanosomes from 5-nitrofuran sensitivity (Fig. 6A). We grew 

the bloodstream-form T. brucei (strain 427) in HMI9 media, and determined the trypanocidal 
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activity of nifurtimox in the absence and presence of daidzin. Trypanosomes were stained with an 

Alamar Blue vital dye as an indicator of Trypanosoma survival. We found nifurtimox was equally 

effective in the absence (ED50 = 2.12 ± 0.17 µM; slope 1.00) and presence (ED50 = 2.18 ± 0.10 µM; 

slope 0.98) of daidzin (Fig. 6B). The trypanocidal effect of nifurtimox against bloodstream T. 

brucei obtained in these assays was comparable to previously observed effects (Priotto, et al., 2009; 

Sokolova, et al., 2010). Daidzin treatment alone showed no trypanocidal affect up to 100µM (data 

not shown). We conclude that daidzin does not interfere with 5-nitrofuran trypanocidal activity, 

consistent with a lack of an ALDH2 in trypanosomes. 

 
 

DISCUSSION 

We have used a multi-species, chemical-biology approach to identify 5-nitrofurans as new 

substrates for ALDH2. We have identified a series of 5-nitrofuran compounds by phenotypic 

screening in zebrafish, and shown that 5-nitrofuran specific melanocytotoxicity in vivo is mediated 

at least in part by Aldh2 (Fig. 1, 3). Zebrafish gene products are usually conserved in humans and 

are often sensitive to clinically active drugs at physiological concentrations (Zon and Peterson, 

2005). As shown here, phenotypic chemical screens in zebrafish are effective because i) the rapid 

and cell type specific toxicity of 5-nitrofurans can be visualized in real time (Movie S1), ii) the 

whole animal is amenable to pharmacological studies (Fig. 1A, B), and iii) initial structure activity 

relationships can be determined to enable the design of biologically relevant probes for affinity 

purification (Fig. 2; Table 1).  

Despite the benefits of phenotypic screens in zebrafish, target identification remains a 

challenge in chemical biology (Laggner, et al., 2012; Taylor, et al., 2010; Zon and Peterson, 2005). 

Here, we use parallel approaches to enable identification of an important new target of 5-

nitrofurans. First, we used affinity chromatography to identify Aldh2 as a 5-nitrofuran binding 

partner, and confirmed the dependence on the 5-NO2 functional group using an inactive furan probe 

(Fig. 2). Second, we used computational modelling to predict that the ALDH2 inhibitor daidzin 

would be active in zebrafish (Fig. 3A), and used two chemically distinct ALDH2 inhibitors (daidzin 

and DSF) to confirm the biological relevance of the 5-nitrofuran-Aldh2 interaction in vivo (Fig. 

3B,C). Third, we showed cross-species conservation of the drug-drug interactions in the 

evolutionarily distant budding yeast system (Fig. 4A, B). Fourth, we used genetic mutants in yeast 

and gene knockdowns in zebrafish to validate a genetic dependence on ALDH activity for 5-

nitrofuran activity in vivo (Fig. 4C-E). Fifth, we show that the 5-nitrofuran-ALDH2 interaction is 

maintained with human ALDH2 (Fig. 5A). Finally, using a literature-precedent method, we show 

that 5-nitrofurans are direct substrates of human ALDH2 (Fig. 5B-D).  
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We find that zebrafish melanocytes are sensitive to the 5-nitrofurans because unlike human 

melanocytes, zebrafish melanocytes use ALDH2 to elicit a melanocyte background adaptation 

response (camouflage; Fig. 3D). While additional host enzymes, including the possibility of other 

ALDHs, may bioactivate 5-nitrofurans in patients, we speculate that, in line with our studies in 

zebrafish and yeast, daidzin may protect cells that specifically express ALDH2, such as the liver 

and dopaminergic neuronal cells (Fig. 6A). Although 500 million individuals worldwide have an 

ALDH2 inactive variant (Druesne-Pecollo, et al., 2009), it is unknown if these genetic variants 

contribute to the variability of 5-nitrofuran associated side effects; our chemical-genetic data in 

yeast and zebrafish (Fig. 4) suggest that this hypothesis could be examined in the clinic. 5-

Nitrofurans have also recently become anti-cancer agents, and nifurtimox is currently in clinical 

trials for relapsed/refractory pediatric neuroblastoma and medulloblastoma (Saulnier Sholler, et al., 

2011). It is possible that 5-nitrofuran bioactivation by ALDH2 explains the sensitivity of these 

dopaminergic cancers to nifurtimox. We find that human melanoma cells are also sensitive to 

nitrofurans, that DNA damage occurs, and that this activity is dependent on the NO2 functional 

group present in NFN1 (Fig. S4). Taken together with the hypersensitivity of yeast DNA damage 

mutants to NFN1, these results suggest that once activated, the cytotoxic effects of 5-nitrofurans 

arise through a similar DNA damage-dependent mechanism across species. Although, it is unclear 

at this time whether NTR- and ALDH2-mediated activation of 5-nitrofurans leads to exactly the 

same toxic intermediates. 

We argue that NFN1, but not the no-nitro NFN1.1, is a substrate for recombinant human 

ALDH2 in vitro (Fig. 5). Analogous observations have been made in ALDH2 bioactivation of 

nitroglycerin (Chen, et al., 2010; Wenzel, et al., 2007), thereby raising the interesting question of 

how 5-nitrofurans are bioactivated by ALDH2. ALDH2 enzymes have reducing potential as well 

as dehydrogenase activity (Chen, et al., 2002; Marchitti, et al., 2008), and we envision that 

ALDH2 may reduce the nitro group of 5-nitrofurans potentially generating nitroso-, 

hydroxylamine and/or amine intermediates with concomitant oxidation of the enzyme. 

Interestingly, DTT can react with 5-nitrofurans leading to oxidation of DTT to the corresponding 

disulfide (L.Z., N.W. unpublished data). As DTT contains two thiols in close proximity, in an 

analogous manner to the active site of ALDH2, we suggest that the reaction of 5-nitrofurans with 

ALDH2 and DTT may be linked by a common mechanism.   

5-Nitrofurans are important therapeutic agents, yet many patients suffer from unacceptable 

drug induced toxic side effects. One approach to solving this problem is to identify new anti-

trypanosome drug targets, such as the recently identified N-myristoyltransferase inhibitors 

(Frearson, et al., 2010) that have been validated in mouse trypanosomiasis models. Based on our 

studies in model systems and in vitro, we propose a complementary approach that involves 
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targeting and minimizing the toxic side effects of current therapies, thereby allowing more patients 

to benefit from approved treatment regimes that are already available (Fig. 6A). If the 5-nitrofuran-

ALDH2 interaction is conserved in patients, then combination therapy to treat 5-nitrofuran toxic 

side-effects may be testable because i) ALDH2 is a targetable enzyme, ii) the ALDH2 inhibitors 

daidzin and DSF are both currently available at low cost and show activity in humans with limited 

toxicity, and iii) our analysis indicates that T. brucei and T. cruzi have neither a close ALDH2 

homolog (Fig. S2) nor is T. brucei protected from nifurtimox by daidzin (Fig. 6B). Our findings 

provide impetus for addressing the role of ALDH2 in 5-nitrofuran activation in the pre-clinical and 

clinical setting. 

 

SIGNIFICANCE  

How drugs work in vivo and identifying unintended drug targets is a fundamental challenge in 

chemical biology. Nifurtimox is one of only two drugs used to treat Chagas disease caused by 

Trypanosoma cruzi infection, which is estimated to affect over 10 million people per year and to 

kill between 15,000 and 50,000 annually. Like other 5-nitrofurans, nifurtimox is a pro-drug that is 

activated by parasite specific nitroreducatases to a toxic form.  Despite the absence of 

nitroreductases in humans, 5-nitrofurans cause significant clinical off-target toxic side-effects in 

patients that interfere with the ability to complete the treatment course. There has been no 

significant improvement in trypanosome disease treatment for 40 years, and there is currently no 

treatment strategy to reduce the burden of these toxic side-effects of existing drugs in patients. 

Here, we use model organism chemical-genetics to explore the basis for this toxicity. We 

use the zebrafish model system to 1) identify toxic effects of 5-nitrofuran compounds, 2) as a 

platform for structure-activity relationships and target identification, and 3) to show that the toxicity 

of 5-nitrofurans in zebrafish can be prevented with the co-treatment of ALDH2 inhibitors. We then 

show that the ALDH2-5-nitrofuran interaction is conserved in yeast and with human ALDH2, and 

argue that 5-nitrofurans are a direct substrate of human ALDH2. We extend these finding to show 

that the 5-nitrofuran, nifurtimox, also has Aldh2 dependent activity in zebrafish, and that it is a 

direct substrate of human ALDH2. Thus, we show in model systems that combination drug 

treatments of ALDH2 inhibitors with 5-nitrofurans block the 5-nitrofuran unintended biological 

activity, and propose that similar treatments based on a readily available combination of 

inexpensive approved drugs may prevent some of the clinical side-effects caused by 5-nitrofurans.  
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FIGURE LEGENDS 

Figure 1. 5-Nitrofurans promote melanocytotoxicity in zebrafish. (A) Examples of two day old 

zebrafish embryos treated for 48 hours with DMSO as a control, 5 µM NFN1, 5 µM NFN1.1, or (B) 

50 µM nifurtimox. Black melanocytes (red arrows) and melanocytes detritus are indicated (blue 

arrows). (C) Chemical structures of the four 5-nitrofurans (NFN1-4; Maybridge compounds 

BTB05727, SEW00138, BTB13657, BR00087) identified in a chemical screen for modulators of 

melanocyte development. The 5-NO2-furan functional group shared between the 5-nitrofurans, 

including nifurtimox, is indicated (red). Chemical structure of NFN1.1. is identical to NFN1 but 

lacks the 5-NO2 functional group required for activity (blue). See also Figure S1, Movie S1. 

Figure 2. 5-Nitrofurans bind Aldh2 in zebrafish. (A) Biotinylated probes linked to a 5-nitrofuran 

(Pr-NFN) and a control furan (Pr-FN). Biotin is labelled in blue, and the 5-nitro or modification 

moeity in red. (B) Silver stain of protein bands identified using Pr-NFN probe, or streptavidin beads 

alone as a control (No Probe). The red box indicates the region of the gel that was isolated for mass 

spectrometry analysis (arrow) at 57 kD.  (C) Western blot of zebrafish protein bound to the no 

probe control, the furan (Pr-FN) control or the 5-nitrofuran probe (Pr-NFN), and probed with 

zebrafish anti-Aldh2 antibodies. A band corresponding to 57 kDa is indicated (arrow). MW: 

molecular weight. See also Fig. S2, Table S1. 

Figure 3. Aldh2 is responsible for 5-nitrofuran activity in zebrafish. (A) A predicted binding 

model of daidzin to zebrafish ALDH2b, based on key residues involved in the human ALDH2-

daidzin (PDB 2vle) protein-ligand interaction (Lowe, et al., 2008). The equivalent residues in 

zebrafish Aldh2b are shown. Human ALDH2 Zebrafish Aldh2 2b (Asp457 Asn473; Phe170 

Phe186; Trp177 Trp193; Val120 Val 136; Phe296 Phe312; Phe292 Ile308; Asp457 

Asn473; Cys303 Cys319). (B) Aldh2 and PKC inhibitors prevent 5-nitrofuran activity in 

zebrafish. Examples of 2 d pf zebrafish embryos treated with 20 µM of the ALDH inhibitors 

daidzin or DSF for one hour, or with 20 µM of the PKC inhibitors PKC412 or Ro318220, and then 

treated with 5 µM NFN1 or 0.1% DMSO alone for two days. Experiments were repeated at least 3 

times, with n > 10 embryos per condition. (C) Examples of 2 dpf zebrafish embryos pretreated with 
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DMSO, 30 µM of daidzin or the PKC inhibitor GFX 109203X for one hour, and then treated with 

50 µM nifurtimox for 7 hours. Punctate melanocytes are indicated. Experiments were repeated at 

least 3 times (n = 5-10 embryos per condition) and treatment condition cohorts blind scored. (D) 

Daidzin alters background adaptation in zebrafish embryos. (Left) Images of fixed zebrafish 

embryos (5 dpf) treated with 0.1% DMSO or 10 μM daidzin, and shifted from a dark environment 

to a light environment (light), or vice versa (dark). The average percentage of melanin coverage 

(within the area indicated by red dotted outline) for each treatment condition ± standard deviation is 

indicated. (Right) Box plot of melanin coverage (y-axis) for each embryo in different treatment 

conditions (x-axis). Individual values taken from one of three experiments are shown as red circles. 

The box depicts the lower quartile and the upper quartile, with the median depicted by the 

intersecting line. Whiskers extend between the minimum and maximum of all the data. In DMSO 

treated embryos, melanocytes are significantly contracted in the light and expanded in the dark 

(P<0.001, n=20 for each condition); ANOVA, [95% CI 11.081(5.966,16.195)]. Zebrafish treated 

with daidzin contract their melanin in response to light environment, but do not significantly expand 

their melanin in response to dark environments [95% CI 0.563(-4.552, 5.677)]. The experiment was 

repeated three separate times with embryos at 5 dpf  (n=5-20 embryos per condition) and once at 4 

dpf (n= 10 embryos per condition). See also Fig. S3. 

 

Figure 4. Cross-species conservation of 5-nitrofuran-ALDH2 interaction in yeast. (A) Yeast 

cultures were treated with NFN1 (red) or NFN1.1 (blue). OD values were normalized against 

DMSO treated controls. The mean of two experiments with three replicates is shown; error bars 

represent standard error. (B) Daidzin-NFN1 drug interaction was assessed by combination matrix 

assays in 96 well plates. Cultures were treated with NFN1 (red) or with daidzin in the absence 

(blue) or presence of 50 µM NFN1 (black). The average normalized growth of three experiments is 

shown; error bars represent standard error. (C) Normalized growth in the presence of NFN1 was 

determined for wild type (blue) and the Δald6 strain (red). Data points are the mean of four 

replicates; error bars represent standard error. (D) NFN1 dose response curves for Δald2 Δald3 

(red) and the Δald2 Δald3 Δald6 (black) strains, as well as wild type control (blue) were generated 

and normalized against DMSO-treated controls. The average of three replicates is shown; error bars 

represent standard error. (E) Three dpf control (n=24) or aldh2b splice-site morphants (n=62) 

without NFN1 treatment (left panels) or with 0.8μM NFN1 treatment (right). Embryos were scored 

as class I (strong) or class II (mild) sensitivity to NFN1 (bar graph). aldh2b morphant embryos were 

less sensitive to NFN1 treatment compared to control morphants [P=0.007; 95% CI (0.139, 0.528); 

Fisher's exact test]. See also Fig. S4. 
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Figure 5. 5-Nitrofurans bind and are substrates for human ALDH2 in vitro. (A) Binding of 

purified human ALDH2 by 5-nitrofuran probe (Pr-NFN), a furan control probe (Pr-FN) or 

streptavidin beads alone (No Probe). Arrow indicates ALDH2 protein, ALDH2 input lane (0.5µg). 

(B) Schematic overview of chemical reaction used to monitor recombinant human ALDH2 activity 

and experimental design. In experiment C (red arrow) ALDH2 was incubated with 1% DMSO, 

NFN1, NFN1.1 or Nifurtimox for 10 mins., and then ALDH2 activity was assessed. In experiment 

D (red + blue arrows), ALDH2 was incubated with 1% DMSO, NFN1, or Nifurtimox for 10 mins., 

incubated with 0.5mM TCEP or buffer alone for a further 15 mins., and then ALDH2 activity was 

assessed. (C) Bar graph of spectrophotometric analysis of the rate of production of NADH 

(monitored at 341nm) by ALDH2 (expressed as a percentage of DMSO control treatment) with 

DMSO, NFN1, NFN1.1 and Nifurtimox. (D) Bar graph of spectrophotometric analysis of the rate of 

production of NADH by ALDH2 after combined treatment of DMSO, NFN1, and Nifurtimox with 

TCEP or buffer. Enzyme buffer = 50 mM sodium phosphate, pH 7.4. Error bars are S.D.; 

experiments repeated in triplicate. 

Figure 6. ALDH2 in trypanosomes. (A) Schematic of a 5-nitrofuran-daidzin combination 

treatment strategy. ALDH2 can cause 5-nitrofuran bioactivtion in ALDH2 expressing cells (e.g. 

zebrafish melanocytes), but not in trypanosomes because they lack ALDH2 (see also Fig. S2). We 

propose that co-treatment with an ALDH2 inhibitor such as daidzin could limit 5-nitrofuran toxicity 

without interfering with anti-trypanosome activity. (B) Viability of Trypanosoma brucei 

(bloodstream-form) at 37°C after 72 hour treatment with increasing concentrations of nifurtimox in 

the absence or presence of daidzin (100µM). Experiments were conducted twice in replicates of 

four; a representative set of data from one experiment containing four replicates is shown. ED: 

effective dose.  

 

Methods 

Zebrafish small molecule screens and treatments. The chemical library was a collection of 1576 

Maybridge compounds (Ishizaki, et al., 2010). Two 4-hpf embryos were arrayed in 96-well plates 

containing 10 µM of compound in 1% DMSO in 300 µl of E3 embryo medium. Embryos were 

assessed and imaged for phenotypic changes at 28, 36, 48 and 56 hpf. For the screening of The 

Screen-WellTM Kinase Inhibitor Library, (Enzo Life Sciences), 5 embryos (24 hpf) were placed into 

each well of a 24-well plate (Corning Incorporated) containing 20µM NFN1 (BTB05727, 

Maybridge Screening compounds) and 5, 10 or 20 µM of a corresponding compound (total volume 

1 ml per well). For co-treatments experiments, five 36-48 hpf embryos were arrayed in 24-well 
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plates in 600ul – 1ml of E3 embryo medium and pretreated with ALDH or PKC inhibitors (1 - 7 

hours), and then treated with 0.5 - 5 µM NFN1 or 50 µM nifurtimox.  

Affinity purification and co-immunoprecipitation with 5-nitrofuran beads. Lysate was 

generated from approximately 900 3 dpf zebrafish in 300 µL of RIPA buffer [2 M Tris pH 7.5, 5 M 

NaCl, 1% NP40, Na-deoxycholate, 10% SDS, 0.5 M NaF, 1 M β-glycosyl phosphate and protease-

inhibitor cocktail tablet (Roche)], centrifuged at 4oC (25mins), transferred to a new tube and kept on 

ice. Protein capture was performed using a pull-down biotinylated protein: protein interaction kit 

(Pierce) using the biotinylated chemical probe (5uL 10mg/mL DMSO solution), and bead 

complexes were washed with 0.1 M NaCl TBS buffer 4X to reduce non-specific binding. Beads 

were boiled in 3x Laemmli buffer with DTT for 5 minutes and run on 10% SDS-PAGE gel for 

electrophoresis. Captured proteins were visualized with Silverquest silver staining kit and/or 

Colloidal blue staining kit (Invitrogen). The mass spectroscopy was analysed in University of 

Dundee 'FingerPrints' Proteomics Facility. For western blotting, protein was detected using rabbit 

anti-zebrafish Aldh2 (1:1000) and goat anti-rabbit antibody (1.5:5000; Calbiochem).  

In vitro binding assay. ALDH2 Human Recombinant protein (ProSpec) was added to 4 µL 10 

mg/mL of chemical probe with 100 µL TBS buffer, and incubated at room temperature for 1 hour. 

50 µL streptavidin beads suspension was added to the mixture (room temperature; 1h), supernatant 

removed and beads washed with 4 x 0.1M NaCl TBS buffer, boiled in 3x Laemmli buffer with DTT 

for 5 minutes and run on 10% SDS-PAGE gel for electrophoresis. The bands were detected by 

silver staining (Invitrogen).  

Molecular modelling. Using analogous methods to those previously used (Medda, et al., 2009), the 

zebrafish Aldh2b homology model was generated using the Swiss model server using bovine 

ALDH2 (PDB code 2AG8). The daidzin structure was generated using the PRODRG server. The 

docking studies were performed using the program GOLD. All visualisation and analysis was 

performed using Pymol. 

Yeast growth assays 

Overnight S. cerevisiae BY4741 cultures in SC media were diluted ( OD600 0.025) and dispensed 

into 96-well Corning Costar assay plates. Quantitative growth curves were generated in Tecan 

Sunrise plate readers at 30˚C 564 rpm with automated absorbance reads every 15 minutes. Growth 

curve data was used to determine when control cultures reached late log phase and OD values of the 

entire plate at that time point were used to calculate normalized growth values. Data was analyzed 

with custom R scripts to generate plots. For the deletion strain growth curves, normalization was 
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performed against control wells for each strain. 

 

Trypanocidal studies  

The trypanocidal activity of nifurtimox in the absence and presence of daidzin (100 µM) against 

Trypanosoma brucei bloodstream-form (strain 427) were cultured at 37°C in HMI9 medium 

supplemented with 2.5 µg ml–1 G418, and viability determined using the Alamar BlueTM test as 

described previously (Mikus and Steverding, 2000). The data was fitted using GraFit software to 

obtain ED50 ± standard deviations and slope factors. 

 

Supplemental Methods 

The synthesis of all the NFNs and NFN-based affinity probes is described in the Supplementary 

Information.  
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