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ABSTRACT
We report on a new technique for measuring the dynamic Young’s modulus, E, of quantum materials at low temperatures as a function of
static tuning strain, ϵ, in piezoactuator-driven pressure cells. In addition to a static tuning of stress and strain, we apply a small-amplitude,
finite-frequency AC (1 Hz ≲ ω ≲ 1000 Hz) uniaxial stress, σac, to the sample and measure the resulting AC strain, ϵac, using a capacitive
sensor to obtain the associated modulus E. We demonstrate the performance of the new technique through proof-of-principle experiments
on the unconventional superconductor Sr2RuO4, which is known for its rich temperature–strain phase diagram. In particular, we show that
the magnitude of E, measured using this AC technique at low frequencies, exhibits a pronounced nonlinear elasticity, which is in very good
agreement with previous Young’s modulus measurements on Sr2RuO4 under [1 0 0] strain using a DC method [Noad et al., Science 382,
447–450 (2023)]. By combining the new AC Young’s modulus measurements with AC elastocaloric measurements in a single measurement,
we demonstrate that these AC techniques are powerful in detecting small anomalies in the elastic properties of quantum materials. Finally,
using the case of Sr2RuO4 as an example, we demonstrate how the imaginary component of the modulus can provide additional information
about the nature of ordered phases.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0210777

I. INTRODUCTION

Recent years have witnessed a surge in the study of the elastic
properties of quantum materials, driven by the discovery of novel
collective electronic phases that exhibit a strong coupling to the
underlying crystal lattice. A prominent example is the observation of
nematicity in a number of unconventional superconductors.1,2 Here,
measurements of the elastic constants have revealed a huge lattice
softening,3 which has served as a unique experimental fingerprint of
nematic fluctuations.

Similarly, the strong coupling of electronic and lattice degrees
of freedom makes such electronic systems particularly susceptible
to tuning by physical pressure. Driven by novel developments in
pressure-cell technology for tuning quantum materials by hydro-
static and uniaxial pressure,4,5 important discoveries have been
made in the field of quantum materials. Since the application of pres-
sure does not introduce additional disorder into the system, pressure
tuning has been instrumental in exploring the fundamental prop-
erties of quantum materials, such as superconducting Tc, in clean
systems.6
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As a result, the combination of the two—the ability to measure
elastic properties while tuning the physical pressure—has proven to
be a powerful addition to the toolbox for studying quantum mate-
rials. Recently, measurements of the lattice elasticity as a function
of pressure have led to important insights into the fundamental
question of the role of the lattice in electronic matter7–9 and the
identification of possible functionalities.10 For example, in corre-
lated quantum materials subjected to pressure tuning, nonlinear
elastic behavior has been observed. This experimental observation
was taken as a strong indication that the lattice profoundly affects
the properties of the electronic system and vice versa. Notable exper-
imental examples in this respect include the observation of the
breakdown of Hooke’s law11,12 around the finite-temperature crit-
ical endpoint of the Mott metal–insulator transition in an organic
conductor. A huge lattice softening has also been observed13 at the
pressure-induced electronic Lifshitz transition14 in Sr2RuO4.

The conclusions above were obtained from measure-
ments of stress–strain relationships under continuously tuned
pressure,4,5,15–17 e.g., in piezoactuator-driven pressure cells,5 per-
formed in the demanding cryogenic environment required for
the study of quantum materials. These measurements were made
possible by several recent advances in measuring both the applied
stress, σ, and the resulting strain, ϵ, with high precision. In general,
stresses and strains are tensor quantities (σij and ϵkl) and are related
by the compliance matrix Sijkl (or the inverse elastic constant matrix
Cijkl), i.e., σij = ∑k,l Sijklϵkl. When stress, σ, is applied along a specific
direction and the deformation, ϵ, is measured along the same
direction, i = j = k = l, and the corresponding modulus, Siiii (or Sii
in Voigt notation),18 is the Young’s modulus, which we denote as
E throughout this paper. It is obtained experimentally from the
measured stress–strain relationships via

E =
dσii

dϵii
. (1)

E remains unchanged with ϵ in linear elastic systems, i.e., in sys-
tems that obey Hooke’s law of elasticity. In contrast, the hallmark
of nonlinear elastic systems is that E varies with strain.11,13

In this paper, we introduce a new method to measure E(ϵ) in
piezoactuator-driven uniaxial pressure cells. In our new approach,
we make use of low-frequency AC stresses and strains19,20 to
determine the AC Young’s modulus. In fact, at ambient pres-
sure, so-called Dynamical Mechanical Analyzer (DMA) spec-
troscopy measurements, in which the real and imaginary elastic
moduli, E′ and E′′, are determined by the application of low-
frequency, low-amplitude forces and measurements of the result-
ing strains (see Fig. 1), are well-established (see, e.g., Ref. 21).
In general, as shown schematically in Fig. 1, a sinusoidal AC
stress, σac(t) = σac,0 sin(ωpt), induces an AC strain response, ϵac(t)
= ϵac,0 sin(ωpt − δ), with a phase lag, δ. δ can take different val-
ues (see Fig. 1): for purely elastic behavior, an instantaneous
strain response is expected (δ = 0○ and E′ ≠ 0, E′′ = 0), whereas liq-
uids are characterized by a purely viscous behavior with δ = 90○

and E′ = 0, E′′ ≠ 0. When δ takes values between 0○ and 90○, the
stress–strain response is classified as viscoelastic, and both E′ and
E′′ are finite. These DMA methods are used intensively in the study
of viscoelastic properties22,23 of soft materials, tissues, biomateri-
als, or polymers, e.g., to extract characteristic energies of glassy

FIG. 1. Schematic representation of a dynamic elastic modulus measurement. An
AC stress (dotted line) is applied to a sample, and the resulting AC strain (dashed
line) is measured. The phase difference, δ, between the applied stress and the
measured strain characterizes the degree of viscous and elastic behavior. For
(a) δ = 0○ [(c) δ = 90○], a system exhibits purely elastic (viscous) behavior. If
0○ < δ < 90○, a material is viscoelastic, i.e., it shows an elastic response similar
to that of solids and liquids simultaneously (b). Note that viscoelastic deforma-
tion is still fully recoverable, whereas plastic deformation is characterized by
unrecoverable deformation.

freezing processes of structural entities. In the context of rigid
solids, the study of the dynamic moduli, E′ and E′′, has mainly
been employed to study ferroelastic phase transitions, where strain
acts as the primary order parameter. From the frequency, ampli-
tude, and temperature dependence of E′ and E′′, the contribution
of microstructural changes to the macroscopic elastic Young’s mod-
ulus has been deduced (e.g., due to domains). In this respect, the
observation of superelasticity in ferroelastic materials was a particu-
larly relevant discovery.24–26 Here, the stress-induced movement of
domain walls25 triggers significant length changes and, thus, results
in a large “superelastic” softening.

The new setup described in this paper combines the concepts of
DMA measurements with the ability to precisely apply static tuning
uniaxial pressures in piezoactuator-driven uniaxial pressure cells.5,15

At the present time, these cells are widely used in the field of quan-
tum materials because they are compatible with a low-temperature
and high-magnetic field environment and allow for in situ DC and
AC stress tuning.5,19 In this context, DMA-type measurements are
very promising to investigate, e.g., the character of phase transitions,
the role of stress-induced domain dynamics,27 or other collective
effects.28,29 In Sec. II, we first describe the experimental setup used
for the dynamic Young’s modulus measurements and the data anal-
ysis procedure. Then, we show in Sec. III our proof-of-principle
experiments on Sr2RuO4, where we demonstrate that the magnitude
of the Young’s modulus obtained in our setup is in very good agree-
ment with the previous literature results from a DC technique.13 We
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conclude the paper by discussing the experimental results of a finite
imaginary part of the Young’s modulus under high uniaxial com-
pression in the magnetic phase of Sr2RuO4 as an illustration of the
DMA-type analysis, which is now possible with our setup.

II. EXPERIMENTAL SETUP AND DATA ANALYSIS
A. The uniaxial pressure cell and determination
of the static Young’s modulus

We use a uniaxial pressure cell, which is shown schematically
in Fig. 2 and is similar to the one described in Ref. 15, for in situ
control of the pressure applied to the sample. Here, we briefly review
the working principle of the pressure cell.

The cell uses piezoelectric actuators to apply the force to the
sample. In the piezocartridge, three piezoelectric actuators are com-
bined to either apply compressive or tensile forces to the sample,
depending on the sign of the applied voltage. In the present design,
the two outer actuators apply compression to the sample upon appli-
cation of a positive voltage, whereas the inner one applies tension
(see Fig. 1 of Ref. 15). Accordingly, we refer to the two actuators
(one actuator) as compression (tension) stacks (stack) throughout
the paper.

The piezoelectric actuators drive the motion of the moving
block A (see Fig. 2), which is guided by flexures with a low longitudi-
nal spring constant. This changes the size of the gap between blocks
A and B. When a sample is mounted between these two blocks, it is
either compressed or stretched. In the present case, we mount our
sample on a sample carrier that connects between moving blocks
A and B (details on the sample carrier design and implications for
the data analysis will be provided in Sec. II D). The purpose of the
sample carrier is to facilitate sample exchange (see, e.g., Ref. 30).
A capacitive sensor is mounted below the gap between the moving
blocks A and B to measure the relative displacement of the moving
blocks, which is related to the sample strain.

FIG. 2. Piezoactuator-controlled uniaxial pressure cell15 used to measure the
stress–strain relationship in quantum materials. In this cell, a set of piezoelectric
actuators (green) generates a displacement across a gap between moving block
A (highlighted in red) and moving block B (highlighted in blue). The sample carrier,
on which the sample is mounted, connects A and B so that the displacement is
transmitted to the sample. The displacement of the gap is measured by a capaci-
tive sensor mounted under a shield. In addition, the cell houses a capacitive force
sensor, which is used for DC stress–strain measurements. The cell’s spring con-
stant is determined by that of the moving blocks (kA and kB) as well as that of the
actuators (kP,tot).

The cell contains a second capacitive sensor that acts as a force
sensor. The moving block B is connected to the frame of the cell
by flexures having a larger longitudinal spring constant compared
to the flexures of the moving block A (see Appendix A for details).
The capacitor measures the displacement of these flexures, which
can then be converted into the applied force using the known spring
constant of these flexures.

The DC capacitances of the displacement and force sensors can
be measured separately using high-precision capacitance bridges,
such as the model AH2550A from the company Andeen–Hagerling.
As described in detail in Ref. 13, these measurements, together with
precise knowledge of the sample dimensions, can be used to calculate
the applied stress, σ, and the resulting strain, ϵ, along the direction of
the applied force. Taking the derivative of σ with respect to ϵ in the
post-processing analysis then yields the Young’s modulus, E(ϵ); see
Eq. (1). Since these measurements are based on static measurements
of σ and ϵ, we will refer to them throughout the text as static Young’s
modulus measurements, or, in short, the DC method.

B. Working curve of the piezoactuator-driven
stress cell

The working principle of our new AC technique is based on
the fact that piezoelectric actuators themselves can be used to mea-
sure the spring constant of the spring on which they exert force,
called the “load spring.” This capability is rooted in their character-
istic working curve,15 where key working parameters of piezoelectric
actuators, such as the supplied force and the created displacement,
depend on the spring constant of the load spring.

In Fig. 3(a), we show a simplified version of our experimental
setup to illustrate the concept. The cell with spring constant kcell,
which contains the piezoelectric actuators, pushes against a load
spring with spring constant kmeas. kmeas is the key quantity that is
to be determined in the experiment, which can be converted to the
Young’s modulus, E, of the sample. The working curve of the cell is
determined by kcell and is shown by the brown line in Fig. 3(b). At
no load, i.e., kmeas = 0, the cell provides a large displacement, Δddc,0,
at essentially no force for a given, fixed piezoactuator voltage, Vdc. In
the case of an infinitely stiff sample with kmeas →∞, the cell provides
a maximum force of F0 = kcellΔddc,0 for the same Vdc but no dis-
placement. Accordingly, the displacement, Δddc, which is generated
by the cell and delivered to the load spring, is a function of kmeas. For
illustration, we also include in Fig. 3(b) two stress–strain curves cor-
responding to two different load springs, kmeas,1 and kmeas,2 > kmeas,1.
The applied force (displacement) is greater (smaller) for kmeas,2 com-
pared to kmeas,1. We note here that the linearity of the working
curve for this specific type of cell, within the ranges of forces and
displacements relevant to these experiments, has been previously
experimentally verified in Ref. 15.

This simplified picture describes the working characteristic of
a cell at a fixed piezoactuator voltage for different values of kmeas. In
our experiment, we want to measure the changes in kmeas of a single
sample with changing stress and strain, which is achieved by varying
the static voltage on the piezoelectric actuator.

In particular, we are interested in obtaining the dynamic mod-
uli from an AC experiment. To this end, we apply a small AC voltage
to the piezoelectric actuators, which creates oscillating stresses and
strains. Whereas the AC component serves to probe the Young’s
modulus, we use the DC voltages on the piezoelectric actuators to
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FIG. 3. (a) Simplified schematic diagram of the uniaxial pressure cell and its working principle. The cell with spring constant kcell applies varying forces to the “load”
spring kmeas, whose magnitude is to be determined in the experiment (see the text for details). The displacement of the load spring, Δd, can be measured by a capacitive
displacement sensor, and its magnitude is identical to the displacement created by the cell. (b) Working curve of applied force, F, vs generated displacement, Δddc , of the
piezoactuator-driven uniaxial pressure cell at a constant supply voltage on the piezoelectric actuators, Vdc. The working curve is determined by the parameters kcell, the
maximum displacement at this Vdc without a load, Δddc,0, and the maximum generated force, F0, in the case of an infinite load. It is shown by the brown line following the
form F = F0 − kcellΔddc . The magnitude of the load spring constant, kmeas, determines the force/displacement provided by the cell at this particular voltage, as seen from
the working curve. This is illustrated by showing two linear stress–strain relationships, corresponding to two different values of kmeas. The intersection of these stress–strain
relationships with the working curve determines the applied force and created displacement. The larger kmeas, the smaller (larger) the created displacement (applied force)
will be. (c) Working curve of the piezoactuator-driven uniaxial pressure cell when an AC voltage, Vac, is applied in addition to the DC voltage, Vdc. The working range is
now delineated by the two working curves at Vdc ± Vac. The alternating Vac causes an alternating displacement, Δdac,0, created at zero force. The alternating displacement,
Δdac, induced by Vac at a finite load spring constant, kmeas, is related to the magnitude of kmeas; see the text for details.

tune a given material. The extended working curve illustrating the
situation in our experiment is shown in Fig. 3(c). The working range
of the cell in the presence of an AC voltage, Vac, is now delineated by
two parallel lines, corresponding to the working curves at Vdc ± Vac
(see brown area). In analogy to the previous discussion, the AC dis-
placement is given by Δdac,0, when kmeas = 0, and will be zero when
kmeas →∞. Consequently, Δdac is directly related to kmeas for the
constant amplitude of Vac. In particular, the larger kmeas, the smaller
Δdac will be. Since the AC voltage is used to measure kmeas, the DC
voltage can be used independently to tune the elastic properties of
the material under investigation.

C. Electronic setup for determining the dynamic
Young’s modulus using the new AC method

Thus, to directly measure kmeas, our technique relies on the
accurate determination of Δdac, which is a mechanical modulation
induced by a finite piezoactuator voltage Vac, through a capacitive
measurement. To this end, we have designed a home-built capaci-
tance bridge that allows Δdac to be measured simultaneously with
Δddc from a single displacement capacitor. The ability to measure
both is important to determine the probing strain (related to Δdac)
separately from the tuning strain (related to Δddc).

The detailed working principle of the bridge is shown in Fig. 4.
A small AC voltage is superimposed on the DC voltage of one
of the stacks. In our case, the voltage on the compression stacks
is superimposed by an AC modulation with a frequency of ωp,
i.e., V(t) = Vdc + Vac sin(ωpt). This, in turn, induces a mechanical
displacement of the gap, which is measured through a capacitive
displacement sensor with capacitance Cdispl. The distance of the
capacitor plates then follows the form d = ddc + Δdac sin(ωpt + δ),
with ddc = ddc,0 + Δddc and ddc,0 the initial distance of the capac-
itor plate. Accordingly, the time dependence of Cdispl follows as

Cdispl = Cdc + Cac sin(ωpt + δ). In the first approximation, if Δdac
≪ ddc, these capacitances are related to the displacements by

Δdac

ddc
=

Cac

Cdc
. (2)

To extract Cac and Cdc from Cdispl, we use a circuit consist-
ing of a voltage source operating at a second frequency, ωc, and
two lock-in amplifiers from Stanford Research Systems: in partic-
ular, a SR830 model and a SR860 model (see Fig. 4). In general,
applying an AC voltage with a frequency of ωc to a capacitor with
a time-independent value of Cdc generates an AC current with a fre-
quency of ωc. In our present case, where Cdispl is time-dependent,
the returned current, with a characteristic frequency of ωc, will
be further modulated by ωp. This modulated current is passed
through a resistor with Rc, where it produces a voltage, VR, which
reads as

VR = CdcV0Rcωc cos (ωct) + CacV0Rc

×[ωc cos (ωct) sin (ωpt + δ) + ωp cos (ωpt + δ) sin (ωct)],
(3)

see Appendix B for details. The main task of the two lock-in setups is
to perform an electrical demodulation of the signal.31 The first term
is directly proportional to Cdc and, thus, to ddc. It corresponds to
the high-frequency signal represented by the blue curve in Fig. 4 (for
ωc ≫ ωp). We read out this component of the voltage in Eq. (3) by
locking the SR830 to ωc, such that VSR830 = CdcV0Rcωc. The second
and third terms in Eq. (3) are products of waves with the charac-
teristic side-band frequencies ∣ωc ± ωp∣ (see also the red line in the
Fourier transform in Fig. 4). To read out these voltages, we use the
SR860 in dual reference mode, which measures the voltage at the
frequency ∣ωc − ωp∣. It then follows that
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FIG. 4. Electronic setup for determining the AC displacement, Δdac, which is related to the sample Young’s modulus. The piezocartridge, which drives the uniaxial pressure
cell, consists of two compression stacks and one tension stack. A DC voltage is applied to all stacks to control the static uniaxial pressure on the sample. The DC voltage on
the compression stacks is superimposed by a small AC voltage with a frequency of ωp. The AC modulation of the voltages on the compression stack results in an AC change
in the capacitance of the displacement sensor, Cdispl(t) = Cdc + Cac(t), with the same frequency of ωp. To measure the contributions of Cdc and Cac to Cdispl independently,
a home-built capacitance bridge consisting of an AC voltage supply with a frequency of ωc, a resistance of Rc, and two lock-in amplifiers (Stanford Research SR860 and
SR830) is used. The voltage across the resistor (blue line) corresponds to the modulated signal of signals with frequencies of ωp and ωc (see the orange enveloping curve).
As a result, as shown in the Fourier transformation of the voltage signal, the signal is composed of signals at ωc (blue line) as well as at ∣ωc ± ωp∣ (red line). The SR830
reads out the component of the voltage signal at ωc, which is related to the DC capacitance value (blue line), whereas the SR860 in dual reference mode picks up the signal
at the beat frequency ωc − ωp, which is proportional to the AC capacitance; see the text for details. The input reference signal for the SR830 is taken from the AC voltage
source and has a frequency of ωc. The same reference signal is also used for the SR860 in dual reference mode, in addition to the second reference signal with ωp, which is
taken from the AC driving source of the piezoelectric actuators.

VSR860 =
CacV0Rc∣ωc − ωp∣

2
, (4)

which can be directly converted to Cac. The signal-to-noise ratio of
VSR860 will be larger, the greater the difference between ωp and ωc.

Using the known calibration of the displacement sensor, i.e.,
the functional form of Cdispl vs d, Δdac, and Δddc can now be cal-
culated from the measured voltages VSR830 and VSR860. In Fig. 5(a),
we show an example curve of Δdac vs tuning displacement, Δddc,
taken on Sr2RuO4. We will discuss the implications of the data in
detail below in Sec. III. For now, the plot clearly shows that Δdac is
not constant when Δddc is changed, and that the changes in Δdac
can be clearly resolved in our setup with a resolution of ≈0.2 nm. As
explained above, the changing Δdac reflects the changing kmeas (or,
in other words, the changing Young’s modulus, E, of the sample).

As an aside, we would like to remark that the precise determina-
tion of Δdac and hence ϵac, which we demonstrate here, is also crucial
for quantitative measurements of the elastocaloric effect,19,20 where
the temperature change, ΔT, induced by a finite ϵac, is measured.

D. Data analysis
We now discuss how to convert the measured Δdac(Δddc)

into absolute values of the Young’s modulus E(ϵ). This requires
two main steps: (i) converting Δdac to the measured spring con-
stant, kmeas; and (ii) extracting the sample’s spring constant from
kmeas. This second step is necessary because kmeas contains con-
tributions from, e.g., the mounting glue and the sample carrier,

in addition to the contribution of the sample. This part of the
analysis is also required when analyzing the data from the DC
method and is described in detail in the supplementary material in
Ref. 13.

For the first step, we refer back to the working curve of the cell,
which has been introduced in Sec. II C and is shown in Fig. 3(c).
For example, we can compare the AC displacement in the case of an
empty cell, Δdac,0, with the displacement, Δdac, when the cell works
against a load spring with kmeas. Clearly, Δdac < Δdac,0 and it can be
deduced that the ratio determines kmeas via

kmeas = kcell(
Δdac,0

Δdac
− 1). (5)

Thus, kmeas can be calculated for all values of Δdac when Δdac,0
is measured, e.g., when the sample is broken after an experiment.
Alternatively, any reference point with finite kmeas can be chosen, as
long as the value of kmeas at a particular strain is well known.

The key parameter for converting Δdac to kmeas is the value of
the cell spring constant, kcell, which cannot be determined during
the experiment itself. In general, it can be determined from calibra-
tion experiments and simulations, as shown in Ref. 15 for a cell of
similar design. Following the same procedure, we determined the
cell spring constant of the present cell to be kcell = (3.4 ± 0.5) N/μm
(see Appendix A for details). Since the titanium, the material of the
cell, becomes stiffer upon cooling and calibration experiments were
performed at room temperature, we applied a correction factor of
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FIG. 5. (a) Experimental data of the AC displacement, Δdac, as a function of the
DC tuning displacement, Δddc, induced by the application of a DC and an AC volt-
age on the piezoelectric actuators. dac and ddc were obtained by reading out the
displacement capacitive sensor in the piezoactuator-driven pressure cell with our
home-built capacitance bridge. This example dataset was recorded on Sr2RuO4
at a temperature of T = 5 K, a frequency fp of 167 Hz, and an AC amplitude Vac

of 5 V. (b) Preparation and mounting of samples for stress–strain measurements
in uniaxial pressure cells. The sample (in the present case, Sr2RuO4) is cut into a
narrow neck with wide anchor tabs using a plasma focused ion beam. The anchors
are epoxied to the sample carrier. The sample shape ensures a rapid crossover
from the low-stress region in the anchor tabs to the high-stress region in the neck
and minimizes the stress in the mounting epoxy. (c) Due to the shape of the sam-
ple, the sample’s spring constant can be modeled to a good approximation as a
set of two discrete springs in series, i.e., the anchor (spring constant kanch) and the
neck spring (spring constant kneck). In addition, the small carrier spring constant,
kcar, contributes to the measured spring constant, kmeas, and is in parallel to the
kanch and kneck.

15% to kcell when analyzing low-temperature data.15 The exact value
of kcell will likely vary from cell to cell, even if the design is tech-
nically the same. Once kcell is determined for a specific cell, e.g., by
calibration measurements, it is not expected to change from experi-
ment to experiment and is, thus, not a free parameter in the analysis.
Equation (5) also shows that the ability to resolve changes in kmeas
also depends on kcell. As expected from the working curve, the setup
works best when kcell and kmeas are of similar magnitude.

The second step in obtaining E(ϵ) from the AC data is to extract
the spring constant of the sample from kmeas. Following the proto-
col established in Ref. 13, the samples are cut into a narrow neck
with wide anchor tabs using a Xe plasma focused ion beam [see
Fig. 5(b)]. The necking creates a rapid crossover between regions
of low stress in the anchors and high stress in the neck. The sam-
ple can, therefore, be approximated by two springs in series, which
we label as kneck and kanch. We also include the spring constant of
the mounting glue in kanch. In the two-spring approximation, kanch
can be calculated from the total measured signal kmeas around a
reference strain and an independently measured value of E at that
reference strain.13 The independently measured value of E can, e.g.,
be obtained from ultrasonic experiments.32 In the case of Sr2RuO4
over the range of displacements considered here, Ref. 13 shows
that kanch can indeed be taken as stress-independent to a good
approximation.

In addition, the sample carrier has flexures with spring con-
stants kcar, which are in series with kneck and kanch, as shown
schematically in Fig. 5(c). Consequently,

kneck(ϵ) = [
1

kmeas(ϵ) − kcar
−

1
kanch

]

−1

. (6)

The spring constant of the carrier, kcar ≈ 0.02 N/μm, is per design
much smaller than typical values of kmeas and can also be calibrated
experimentally.

Finally, the Young’s modulus is obtained from an exact knowl-
edge of the length of the necked region, lneck, and the cross-sectional
area of the sample, Acs, via E = knecklneck/Acs. The strain in the
neck, ϵxx, follows from the measured ddc values via (kmeas/kneck)

× (Δddc/lneck). The sample of Sr2RuO4 used for our proof-of-
principle measurements shown in Fig. 5(b) was cut to dimensions
of Acs = 102 ×120 μm2 and lneck = 717 μm, with the long edge of
the neck oriented along the x = [1 0 0] direction of the crystal, so
that kneck(ϵxx = 0) = 2.72 N/μm. The anchor spring constant in our
experiments was kanch = 2.36 N/μm.

E. Working parameters of the AC Young’s
modulus setup

In the following, we specify the working range of the AC
Young’s modulus setup, including accessible frequency, amplitude,
and temperature range.

The frequency range of operation is determined by the choice
of piezoelectric actuators and the mechanical resonances of the
cell. The multi-layer ceramic actuators33 typically used in the pres-
sure cells operate well in the low-frequency range of 1 Hz ≲ fp
= ωp/(2π) ≲ 1 kHz. Future technical developments might be able to
extend the frequency range significantly, e.g., by choosing different
types of actuators.

The second relevant frequency is that of the capacitance bridge,
fc. All measurements in this paper were taken with fc = ωc/(2π)
= 2.297 kHz, which is of the same magnitude as the frequency of
1 kHz used in the Andeen–Hagerling AH2550A capacitance bridges,
employed in the earlier DC work.

In terms of amplitude, the maximum voltage that can be
applied to the actuators is temperature dependent. At the low-
est temperatures, the voltage range can typically be extended15 to
−300 ≤ Vdc ≤ 400 V. With such large DC voltages, tuning strains of
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±1%–2% may be achieved for a sample of the previously mentioned
dimensions. Since the AC voltage produces the probing strain, its
magnitude must be chosen to be much smaller than the DC volt-
ages. In our proof-of-principle studies on Sr2RuO4, we used AC
voltages, Vac, up to 5 V at the lowest temperatures, corresponding to
typical values of stress and strain amplitude of σac ≈ 10−2 GPa and
ϵac ≈ 1 × 10−4. Vac and fp were chosen to optimize the signal-to-
noise ratio while ensuring that phase transition features were not
significantly smeared out by a large Vac. The smallest capacitance
that we can resolve with our bridge is estimated to be around
5 × 10−6 pF, corresponding to 0.2 nm, for our specific displacement
capacitor. In the case of the Sr2RuO4 sample used in this study
and the specific cell, this translates into a resolution of the Young’s
modulus of 0.1 GPa.

The piezoactuator-driven uniaxial pressure cells are designed
to operate down to very low temperatures, even down to dilution-
fridge temperatures. Typically, the lowest-accessible temperature is
limited by the cooling power of the fridge and by the heating created
by the piezoelectric actuators. In the AC setup, heating of the actua-
tors becomes a serious problem at higher frequencies and/or higher
AC voltage amplitudes. Thus, in practical terms, the lowest acces-
sible temperature may be a trade-off with the frequency/amplitude
range of interest.

The AC Young’s modulus measurements can also be performed
in a finite magnetic field, which then allows the simultaneous study
of the effect of different tuning parameters on the elastic properties
of quantum materials.

III. PROOF-OF-PRINCIPLE RESULTS
To demonstrate the functionality of our new AC Young’s mod-

ulus setup, we performed proof-of-principle experiments on the
ruthenate Sr2RuO4, whose Young’s modulus under finite strain has
recently been documented with high precision by DC stress–strain
measurements.13 Before discussing our proof-of-principle AC data
taken on Sr2RuO4, we first present the main aspects of the phase
diagram of Sr2RuO4 under uniaxial pressure that are relevant to the
present work.

The unconventional superconductor Sr2RuO4 has been exten-
sively studied in uniaxial pressure experiments6,13,14,20,30,34 in the last
decade. These studies have uncovered a rich phase diagram under
uniaxial stress, σxx, applied along the [1 0 0] axis of the tetragonal
lattice. Upon increasing compression, the Fermi surface of Sr2RuO4,
consisting of so-called α, β, and γ sheets (see sketches on top of
Fig. 6), becomes distorted. The γ sheet shows the strongest changes.
When a compressive [1 0 0] strain of ϵxx ≈ −0.45% is applied, the
γ sheet undergoes a Lifshitz transition, at which the Fermi surface
drastically changes its topology14 from a closed to an open config-
uration. Although the Lifshitz transition involves only a fraction
of the conduction electrons, it has recently been shown by Noad
et al.13 that these conduction electrons drive a very large lattice
softening. The significant renormalization of the Young’s modulus
upon crossing the Lifshitz transition, which is reported with high
accuracy, provides an excellent testbed to benchmark our new AC
method. In addition, a recent set of experiments,20,34 including ther-
modynamic measurements of the elastocaloric effect, suggests that
Sr2RuO4 undergoes a transition into a magnetically ordered state
for higher compression beyond the Lifshitz strain and temperatures

FIG. 6. (a) Young’s modulus, E, of Sr2RuO4 as a function of strain, ϵxx, at a
temperature of T = 4 K, extracted from the new AC method (open symbols) and
compared to results from the DC method (closed symbols) on the same sample.
The data in the AC method was taken at a frequency of fp = 167 Hz and a piezoac-
tuator AC voltage of Vac = 5 V. (b) Elastocaloric temperature oscillation amplitude,
ΔT , measured in the same experiment as the Young’s modulus data shown in (a).
In both panels, the dashed line indicates the strain at which Sr2RuO4 undergoes a
Lifshitz transition of the Fermi surface, which is schematically shown in the insets.
The dotted line indicates the strain at which Sr2RuO4 undergoes a transition to
magnetic order.

T ≲ 8 K. This additional phase transition is expected to lead to
anomalous behavior in E(ϵxx).

In the following, we first discuss the results of the magnitude
of the dynamic Young’s modulus of Sr2RuO4. For low-enough fre-
quencies, it may be expected that the magnitude of the AC Young’s
modulus agrees with the one inferred from DC measurements.
Afterward, we discuss our measurements of the phase shift in the
dynamic signal as we tune the material into its magnetically ordered
regime.

A. Results: Magnitude of the dynamic Young’s
modulus of Sr2RuO4, determined from the AC
technique

In Fig. 6(a), we compare the results of Young’s modulus mea-
surements conducted at a temperature of 4 K with the DC method13

(closed symbols) vs the new AC method (open symbols), taken on
the exact same sample of Sr2RuO4 in the same experimental run.
Clearly, the two datasets as a function of tuning strain, ϵxx, are in
very good agreement. The quantitative agreement is achieved by
using kcell = (3.7 × 1.15) N/μm in the analysis (see Sec. II D). This
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value is within the error bars of the simulation results for kcell (see
Appendix A).

Importantly, the data show a set of anomalies associated with
the rich phase diagram of Sr2RuO4 under [1 0 0] stress. The pro-
nounced softening of E at the electronic Lifshitz transition at around
−0.45% strain is clearly resolved. Upon further increasing compres-
sion, a second, although smaller, anomaly can be discerned in the
E(ϵxx) data around ϵxx ≈ −0.64%. Although the anomaly is visible
in both the DC and AC datasets, it is slightly more evident in the
AC dataset. The fact that this small drop in E(ϵxx) does indeed cor-
respond to a thermodynamic phase transition becomes clear when
comparing the results of elastocaloric measurements, which were
performed simultaneously with the E(ϵxx)measurements. The elas-
tocaloric temperature amplitude, ΔT, manifests an anomaly at the
same strain as where the small drop in E occurs. In the previous work
by Li et al.,20 this feature was associated with the transition into the
magnetically ordered phase34 of Sr2RuO4.

The AC Young’s modulus data in Fig. 6 were taken at fp = 167
Hz, fc = 2.297 kHz, and Vac = 5 V. In Fig. 7, we now show our data

FIG. 7. Dependence of the Young’s modulus, E, of Sr2RuO4 on frequency (a) and
stress amplitude (b), as obtained by the new AC method. The data are plotted
as a function of strain, ϵxx. In (a), different actuator frequencies, fp, are applied
in the range between 17 and 927 Hz at a temperature of 5 K and an AC voltage
of 5 V. This voltage induces a stress amplitude of σac = 0.027 GPa. In (b), the
data for different AC voltage amplitudes, Vac, between 2 and 5 V are shown at a
temperature of 2 K and an actuator frequency of 167 Hz. The corresponding stress
amplitudes, σac, vary between 0.011 and 0.027 GPa. All data shown were taken
with a capacitance-bridge frequency of fc = 2.297 kHz.

at different fp (a) and different Vac (b) to demonstrate experimen-
tally that our setup is operational over wider ranges of fp and Vac.
Both datasets demonstrate that the magnitude of Young’s modulus
is essentially independent of the exact frequency or amplitude within
the ranges of 17 Hz ≤ fp ≤ 927 Hz and 2 V ≤ Vac ≤ 5 V. In particular,
in Fig. 7(a), the feature of the Lifshitz transition, which is the promi-
nent feature at T = 5 K, is clearly visible in all datasets at different
fp, and the absolute value of E agrees between the datasets within
the signal-to-noise ratio. However, the latter is smaller at higher fre-
quencies, as expected, since the absolute signal depends on ωc − ωp,
as shown in Eq. (4).

We now demonstrate that the chosen Vac is small enough to
not smear out phase transitions. To this end, we show in Fig. 7(b)
the amplitude dependence of the Young’s modulus at a temperature
of 2.5 K, where the feature associated with the magnetic phase at
ϵxx ∼ −0.62% is more pronounced and, thus, serves as a good bench-
mark for this analysis. For the range of Vac between 2 and 5 V,
corresponding to a range of σac (ϵac) between 0.011 and 0.027 GPa
(6 × 10−5 and 1.5 × 10−4), no significant smearing of Young’s mod-
ulus anomalies can be detected. Overall, all the data agree quanti-
tatively very well, and only the signal-to-noise ratio changes with
decreasing Vac, as expected.

B. Results: Phase of the dynamic Young’s modulus
of Sr2RuO4

We now turn to the additional phase information that is pro-
vided by performing our measurements in AC mode. As introduced
in Sec. I, dynamic measurements reveal information on the real and
imaginary parts of the Young’s modulus (E′ and E′′). In particular,
the latter is of interest in investigating dissipative processes. In the
following, we describe our results in this respect by presenting the
Young’s modulus in terms of its magnitude and phase. Phase and
magnitude are related to the real and imaginary parts of the modu-
lus via E′ = ∣σac,0 ∣

∣ϵac,0 ∣ cos δ and E′′ = ∣σac,0 ∣
∣ϵac,0 ∣ sin δ, i.e., a finite δ corresponds

to a finite E′′.
Figure 8 summarizes our measurement results of δ in our

experiments on Sr2RuO4 at a probing frequency of fp = 167 Hz
and Vac = 5 V. To this end, we now compare the results at two
different temperatures, T = 2.5 K and T = 8 K. Whereas Sr2RuO4
was reported to enter a magnetically ordered phase at high com-
pression at T = 2.5 K, it remains non-magnetic at 8 K.20,34 This
is fully consistent with our thermodynamic data, as shown in
Fig. 8(a). At low compression, the magnitude of E as a function of
ϵxx shows the softening at the Lifshitz transition, and the soften-
ing is more pronounced at low temperatures, consistent with the
earlier reports.13 For higher compression, the data taken at 2.5 K
reveal an additional feature at ϵxx ≈ −0.62%, associated with the
transition into the magnetic state. In contrast, the dataset taken
at 8 K shows no features of additional phase transitions besides
the Lifshitz transition. The gray area in Fig. 8 marks the region of
magnetic order at 2.5 K, as determined by the simultaneous mea-
surements of E and the elastocaloric effect (see the gray line, right
axis).

In Fig. 8(b), we show the behavior of the phase, δ, as a function
of ϵxx for the same temperatures and at the same frequency. At 8 K,
no change in δ with strain is observed within the signal-to-noise level
over the entire strain range. In contrast, at 2.5 K, an increase in δ is
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FIG. 8. Magnitude (a) and phase (b) of the dynamic Young’s modulus of Sr2RuO4
under in-plane strain, ϵxx. Data on the dynamic modulus are shown at tempera-
tures of 2.5 and 8 K. The strain region, in which Sr2RuO4 is magnetically ordered
at 2.5 K, is indicated by the gray area. The transition into the magnetically ordered
phase at 2.5 K and ϵxx ≈ −0.62% is also clearly identified in the elastocaloric tem-
perature amplitude, ΔT , which is also included in (a) on the right axis. At 8 K,
Sr2RuO4 remains non-magnetic over the strain range shown here.20 The dashed
line indicates the position of the Lifshitz transition at 2.5 K. All data shown were
taken at a frequency of fp = 167 Hz and an amplitude of Vac = 5 V. Error bars
for the phase value are exemplarily indicated in (b) at a strain of ∼ −0.7%. Note
that ΔT shows multiple features at 2.5 K, related to the strain-induced entry and
exit into the superconducting state as well as the Lifshitz transition. No change of
phase is observed across these transitions.

observed at the strain, where Sr2RuO4 undergoes the transition into
the magnetically ordered state. Although the changes in δ are very
small, they exceed the signal-to-noise ratio by more than a factor of
two.

The result of a finite phase between applied stress and resulting
strain in the magnetic phase of Sr2RuO4 is a key new insight acces-
sible by extending stress–strain measurements to finite frequencies.
It implies that there is energy dissipation during the (un-)loading
stress cycle. Since this phenomenon occurs at low frequencies com-
pared to typical spin relaxation times, it is likely to be related to
interactions between the magnetic order and the crystal lattice, such
as domain walls or other collective effects. In elemental chromium
(Cr), for example, it was found that the pressure-dependent spin-
density wave vector shows a certain degree of irreversibility between
increasing and decreasing pressure.35 This observation was inter-
preted in terms of crystal-lattice domain-wall distortions,36 which
lock the wave vector for small distortions. A similar mechanism
may be at work here in Sr2RuO4. Further knowledge of the order-
ing vector and its strain dependence37 in Sr2RuO4 will be crucial for
understanding the low-frequency response of its elastic constants.

IV. CONCLUSION AND OUTLOOK
In this work, we describe a new experimental technique to

determine the dynamic Young’s modulus as a function of pres-
sure, frequency, and temperature in piezoactuator-driven uniax-
ial pressure cells. Our setup exploits the ability of piezoelectric
actuators to generate finite-frequency stresses and strains in the
Hz–kHz range through the application of an AC voltage. Using the
ruthenate Sr2RuO4 as a test-bed material for proof-of-principle mea-
surements, we have shown that the Young’s modulus data from
our low-frequency AC setup is in very good agreement with data
from static Young’s modulus measurements. Our AC setup is well
suited for detecting small anomalies in the strain dependence of
the modulus. Furthermore, our AC data contains information on
the phase between applied stress and resulting strain, which we
find to be finite in the magnetic phase of Sr2RuO4 under high
compression.

Our setup opens up the possibility of studying the finite-
frequency elastic response function in quantum materials that are
subjected to time-varying external stress fields and large, static tun-
ing stresses. This approach is akin to AC susceptibility studies,38,39

where a time-dependent magnetic field acts as the driving external
force to probe dynamics. Our method provides a new perspective
on the viscoelastic behavior and lattice dynamics of solids. Follow-
ing the fluctuation–dissipation theorem,40 the viscoelastic response
is related to the low-frequency lattice dynamics of systems when-
ever they are amenable to stress tuning. It can be expected that
the dynamics are governed by a range of intriguing phenomena,
such as the movement of domain walls under strain, slow order-
parameter dynamics, and collective effects in general. One of the
many potentially interesting applications of this new approach
is the study of the intrinsically low-frequency (≲1 kHz) dynam-
ics of frustrated magnets,38 which may be tunable by uniaxial
pressure.
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APPENDIX A: DETERMINATION OF THE SPRING
CONSTANT OF THE CELL

We follow the report of Barber et al.15 to determine the spring
constant of our cell, which is similar in design, but not identical,
to theirs. For the finite-element simulations, we used the software
COMSOL.41 Since the cell is made out of titanium, we use the room-
temperature Young’s modulus of 103 GPa and a Poisson’s ratio of
0.33 for the simulations.

The spring constant of the cell contains various contributions
(see Fig. 2): (i) the spring constant of the piezoelectric actuators,
kp,tot; (ii) the spring constant of the moving block B (the force block),
kB; and (iii) the spring constant of the moving block A, kA.

According to the data sheet of the actuators,33 the spring con-
stant of a single stack of type P-885.51 used here is kp = 50 N/μm
at room temperature. Combining the two compression actuators in
parallel with each other and in series with the tension actuator gives
kp,tot = 33 N/μm.

To simulate kB, we apply a force of 10 N to moving block B at
the position of the carrier mounting holes and measure its displace-
ment. The resulting longitudinal spring constant in the simulations
was kB = (7.6 ± 0.3) N/μm. We also determined this spring con-
stant experimentally by hanging various weights from block B and
measuring the resulting displacement. This procedure yielded an
experimental value of (7.7 ± 0.1) N/μm, which is within the error
bars and consistent with the simulated value.

The moving block A is designed to have a small spring constant
in the direction of the applied force and a large spring constant in
the orthogonal directions to avoid torque on the sample. These rota-
tional spring constants are a factor of 40 larger than the longitudinal
ones and, thus, dominate kA. For the simulations of the rotational
spring constant, we consider the application of a force of 10 N to
an infinitely stiff sample. Since the sample is infinitely stiff, there is
zero displacement between the carrier mounting points on blocks
A and B (Δd = 0) upon the application of 10 N. Due to the finite
rotational spring constant of block A, the actuators must apply a

slightly higher force than 10 N. Our simulations showed that a force
of 10.45 N is needed. We then evaluated the difference in actual dis-
placement between the carrier mounting holes on block A and the
actuator attachment area. Note that, even though there is zero rel-
ative displacement across the gap, block A is still displaced because
block B moves under applied force (see Ref. 15 for further details
on this simulation). The present simulation gives an estimate of the
rotational spring constant to be kA = (7.7 ± 2) N/μm.

Taking kp,tot, kA, and kB together in series yields kcell = (3.4
± 0.5) N/μm at room temperature.

APPENDIX B: VOLTAGE SIGNAL DETECTED
BY THE CAPACITANCE BRIDGE

In the following, we present the derivation for Eq. (3) in the
main text. The application of the voltage V(t) = Vdc + Vac sin(ωpt)
induces an AC stress on the sample, which then induces an AC
strain in the sample. As explained in the introduction, the induced
AC strain can be phase-shifted with respect to the applied AC
stress, and thus, the time dependence of the displacement capac-
itor reads as Cdispl = Cdc + Cac sin(ωpt + δ). In the bridge setup in
Fig. 4, an alternating voltage with different frequency ωc is applied
to the displacement capacitor, VC(t) = V0 sin(ωct). The current in
the circuit, I, reads as

I =
dQ
dt
=

d(Cdispl(t)VC(t))
dt

= ωcCdcV0 cos (ωct) + CacV0[ωp cos (ωpt + δ) sin (ωct)
+ ωc sin (ωpt + δ) cos (ωct)]

= ωcCdcV0 cos (ωct) +
1
2

CacV0[(ωc − ωp) sin ((ωp − ωc)t + δ)

+ (ωc + ωp) sin ((ωc + ωp)t + δ)].

Since the SR860 in dual reference mode detects the signal at
∣ωc ± ωp∣, the magnitude of the voltage is given by Eq. (4), and the
phase, δ, corresponds to the one between applied stress and resulting
strain.
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