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Abstract

In this paper, we study the graph induced by the 2-swap permutation (also
known as a transposition) on words with a fixed Parikh vector. Informally, a
2-swap is a permutation which swaps exactly two symbols in a word, leaving
all others unchanged. With these permutations, we define the Configuration

Graph, G(P ) for a given Parikh vector. Each vertex in G(P ) corresponds to
a unique word with the Parikh vector P , with an edge between any pair of
words v and w if there exists a 2-swap s such that v ◦s = w. We provide sev-
eral key combinatorial properties of this graph, including the exact diameter
of this graph, the clique number of the graph, and the relationships between
subgraphs within this graph. Additionally, we show that for every vertex in
the graph, there exists a Hamiltonian path starting at this vertex. Finally,
we provide an algorithm enumerating these paths from a given input word
of length n with a delay of at most O(σ logn) between outputting edges,
requiring O(n logn) preprocessing.
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1. Introduction

In information theory and computer science, there are several well-known
edit distances between strings which are based on insertions, deletions and
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substitutions of single characters or various permutations of several char-
acters, including swaps of adjacent or non-adjacent characters, shuffling,
etc. [1, 2, 3].

These operations are well motivated by problems in physical science, for
example, the biological swaps which occur at a gene level are non-adjacent
swap operations of two symbols (mutation swap operator) representing gene
mutations [4]. In recent work on Crystal Structure Prediction the swap op-
eration on a pair of symbols in a given word representing layers of atomic
structures was used to generate new permutations of those layers, with the
aim of exploring the configuration space of crystal structures [5]. In computer
science string-to-string correction has been studied for adjacent swaps [6] and
also in the context of sorting networks [7], motion on graphs and diameter of
permutation groups [8]. In group theory, the distance between two permuta-
tions (the Cayley distance) measures the minimum number of transpositions
of elements needed to turn one into the other [9].

A configuration graph is a graph where words (also known as strings) are
represented by vertices and operations by edges between the strings. For
example, one may define the operations as the standard suite of edits (inser-
tions, deletions, and substitutions), with each edge corresponding to a pair
of words at an edit distance of one. In such a graph, the distance between
any pair of words corresponds to the edit distance between these words. In
this paper, we study the structural properties of such graphs defined by swap
operations of two symbols on a given word (2-swap permutations), a permu-
tation defined by a pair of indices (i, j) and changing a word w by substituting
the symbol at position i with that at position j, and the symbol at position
j with that at position i. As the number of occurrences of each symbol in a
given word can not be changed under this operation, we restrict our work to
only those words with a given Parikh vector1. We focus on studying several
fundamental properties of the structure of these graphs, most notably the
diameter, clique number, number of cliques, and the Hamiltonicity of the
graph. Similar problems have been heavily studied for Cayley graphs [9],
and permutation graphs [10]. It has been conjectured that the diameter of
the symmetric group of degree n is polynomially bounded in n, where only
recently the exponential upper bound [11] was replaced by a quasipolynomial

1The Parikh vector of a word w denotes a vector with the number of occurrences of
the symbols in the word w.
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upper bound [12]. The diameter problem has additionally been studied with
respect to a random pair of generators for symmetric groups [13]. In general,
finding the diameter of a Cayley graph of a permutation group is NP-hard
and finding the distance between two permutations in directed Cayley graphs
of permutation groups is PSPACE-hard [14].

We also build upon previous work done into Combinatorial Gray Codes
which, in general, give an ordering of some objects with two consecutive ob-
jects differ by a “small change”, The original Gray codes lists strings with
subsequent strings having an edit distance of one. An extensive introduction
to Combinatorial Gray codes can be found in [15]. In [16] Takoaka provides
a combinatorial Gray code for multiset permutations (i.e. words) with con-
stant delay however we wish to start from any word which is not a feature
of their algorithm. Further, in Section 13.2.4 of [17] there is a O(n) time al-
gorithm for generating a combinatorial Gray code of multiset permutations
with transpositions/2-swaps however this is provided without formal proof.

To develop efficient exploration strategies for these graphs it is essen-
tial to investigate its structural and combinatorial properties. As mentioned
above the problem is motivated by problems arising in chemistry regarding
Crystal Structure Prediction (CSP) which is computationally intractable in
general [18, 19]. In current tools [5, 20], chemists rely on representing crystal
structures as a multiset of discrete blocks, with optimisation performed via
a series of permutations, corresponding to swapping blocks. Understanding
reachability properties under the swap operations can help to evaluate and
improve various heuristic space exploration tools and extend related combi-
natorial toolbox [21, 22].

1.1. Our Results

We provide several key combinatorial properties of the graph defined by
2-swap permutations over a given word. First, we show that this graph is
locally isomorphic, that is, the induced subgraph of radius r centred on any
pair of vertices w and u are isomorphic. We strengthen this by providing an
exact diameter on the graph for any given Parikh vector. Finally, we show
that, for every vertex v in the graph, there is a Hamiltonian path starting
at v. We build upon this by providing a novel algorithm for enumerating
the Hamiltonian path starting at any given vertex v in a binary graph with
at most O(logn) delay between outputting the swaps corresponding to the
transitions made in the graph, after O(n logn) preprocessing. We extend this
to general alphabets, providing an algorithm enumerating the Hamiltonian
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path with O(σ logn) delay between outputs after O(n logn) preprocessing.
Our enumeration results correlate well with the existing work on the enu-
meration of words. This includes work on explicitly outputting each word
with linear delay [23, 24], or outputting an implicit representation of each
word with either constant or logarithmic delay relative to the length of the
words [25, 26, 27, 28, 29]. The surveys [30, 31] provide a comprehensive
overview of a wide range of enumeration results.

2. Preliminaries

Let N = {1, 2, . . .} denote the set of natural numbers, and N0 = N∪{0}.
We denote by [n] the set {1, 2, . . . , n} and by [i, n] the set {i, i + 1, . . . , n},
for all i, n ∈ N0, i ≤ n. An alphabet Σ is an ordered, finite set of symbols.
Tacitly assume that the alphabet Σ = [σ] = {1, 2, . . . , σ}, where σ = |Σ|. We
treat each symbol in Σ both as a symbol and by the numeric value, i.e. i ∈ Σ
represents both the symbol i and the integer i. A word is a finite sequence
of symbols from a given alphabet. The length of a word w, denoted |w|, is
the number of symbols in the sequence. The notation Σn denotes the set of
n-length words defined over the alphabet Σ, and the notation Σ∗ denotes the
set of all words defined over Σ.

For i ∈ [|w|], the notation w[i] is used to denote the ith symbol in w,
and for the pair i, j ∈ [|w|], w[i, j] is used to denote the sequence w[i]w[i +
1] . . . w[j], such a sequence is called a factor of w. We abuse this notation by
defining, for any pair i, j ∈ [|w|] such that j < i, w[i, j] = ε, where ε denotes
the empty string.

Definition 1 (2-swap). Given a word w ∈ Σn and pair i, j ∈ [n], i < j
such that w[i] 6= w[j], the 2-swap of w by (i, j), denoted w ◦ (i, j), returns
the word

w[1, i− 1]w[j]w[i+ 1, j − 1]w[i]w[j + 1, n].

Example 1. Given the word w = 11221122 and pair (2, 7), w ◦ (2, 7) =
12221112.

Given a word w ∈ Σn, the Parikh vector of w, denoted P (w) is the σ-
length vector such that the ith entry of P (w) contains the number of occur-
rences of symbol i in w, formally, for i ∈ [σ], P (w)[i] = |{j ∈ [n] | w[j] = i}|,
where n = |w|. For example, the word w = 11221122 has Parikh vector
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11122

11212

1122112112

12121

12211

21112

21121 21211

22111

Figure 1: The configuration graph G(3, 2) with Hamiltonian path shown in red.

(4, 4). The set of words with a given Parikh vector P over the alphabet Σ is
denoted Σ∗|P , formally Σ∗|P = {w ∈ Σ∗ | P (w) = P}. Unless stated other-
wise we define n :=

∑

i∈[σ] P [i]. It is notable that |Σ∗|P | = n!∏
i∈[σ] P [i]!

since it

means the configuration graph (defined below) is of exponential size in n.

Definition 2. For a given alphabet Σ and Parikh vector P , the configuration
graph of Σ∗|P is the undirected graph G(P ) = {V (P ), E(P )} where:

• V (P ) = {vw | w ∈ Σ∗|P }.

• E(P ) = {{vw, vu} ∈ V (P )× V (P ) | ∃i, j ∈ [n] s.t. w ◦ (i, j) = u}.

Informally, the configuration graph for a given Parikh vector P is the
graph with each vertex corresponding to some word in Σ∗|P , and each edge
connecting every pair of words w, u ∈ Σ∗|P such that there exists some 2-swap
transforming w into u. Figure 1 provides an example of the configuration
graph when P = (3, 2).

A path (also called a walk) in a graph is an ordered set of edges such
that the second vertex in the ith edge is the first vertex in the (i+1)th edge,
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i.e. p = {(v1, v2), (v2, v3), . . . , (v|p|, v|p| + 1)}. Note that a path of length i
visits i + 1 vertices. A path p visits a vertex v if there exists some edge
e ∈ p such that v ∈ e. A cycle (also called a circuit) is a path such that the
first vertex visited is the same as the last. A Hamiltonian path p is a path
visiting each vertex exactly once, i.e. for every v ∈ V , there exists at most
two edges e1, e2 ∈ p such that v ∈ e1 and v ∈ e2. A cycle is Hamiltonian
if it is a Hamiltonian path and a cycle. A path p covers a set of vertices
V if, for every v ∈ V , there exists some e ∈ p such that v ∈ e. Note that
a Hamiltonian path is a path cover of every vertex in the graph. and a
Hamiltonian cycle is a cycle cover of every vertex in the graph. We use the
notation max<iA to denote the largest value in A which is less than i. And
similarly min>i A denotes the smallest value in A which is greater than i.

The distance between a pair of vertices v, u ∈ V , denoted D(v, u) in the
graph G is the smallest value d ∈ N0 for which there exists some path p of
length d covering both v and u, i.e. the minimum number of edges needed to
move from v to u. If v = u, then D(v, u) is defined as 0. The diameter of a
graph G is the maximum distance between any pair of vertices in the graph,
i.e. maxv,u∈V D(v, u).

Given two graphs G = (V,E) and G′ = (V ′, E ′), G is isomorphic to G′

if there exists a bijective mapping f : V 7→ V ′ such that, for every v, u ∈ V ,
(v, u) ∈ E if and only if (f(v), f(u)) ∈ E ′. The notation G ∼= G′ is used
to denote that G is isomorphic to G′, and G 6∼= G′ to denote that G is not
isomorphic to G′. A subgraph of a graph G = (V,E) is a graph G′ = (V ′, E ′)
such that V ′ ⊆ V and E ′ ⊆ E. A clique G′ = (V ′, E ′) is a subgraph, G′ ⊆ G
which is complete (i.e. for all u, v ∈ G′, (u, v) ∈ E ′). And the clique number
ω of a graph G is the size of the largest clique in G.

3. Basic Properties of the Configuration Graph

In this section, we provide a set of combinatorial results on the configu-
ration graph. We first show that every subgraph, Gr(v), of the configuration
graph G(P ) = (V,E) with the vertex set V ′(v) = {u ∈ V | D(v, u) ≤ ℓ} for
v ∈ V , and edge set E ′ = (V ′ × V ′) ∩ E are isomorphic. We build on this
by providing a tight bound on the diameter of these graphs. We start by
considering some local structures within the graph.

Lemma 1. Given a Parikh vector P with associated configuration graph

G(P ), each vertex v ∈ V (P ) belongs to
∑

j∈Σ

∏

i∈Σ\{j} P [i] maximal cliques,

with the size of each such clique being in {P [i] + 1 | i ∈ Σ}.

6



Proof. Consider first the words with Parikh vector P = (k, 1). Note that
every word in Σ∗|P consists of k copies of the symbol 1, and one copy of the
symbol 2. Therefore, given any pair of words w, u ∈ Σ∗|P such that w[i] =
u[j] = 2, the 2-swap (i, j) transforms w into u and hence there exists some
edge between w and u. Hence G(P ) must be a complete graph of size k+ 1.

In the general case, consider the word w ∈ Σ∗|P where P = (k1, k2,
. . . , kσ), and n =

∑

ki∈P
ki. Let Pos(w, i) = {j ∈ [n] | w[j] = i}. Given

i, j ∈ [σ], i 6= j, let i1, i2 ∈ Pos(w, i) and j1 ∈ Pos(w, j) be a set of indices.
Let v1 = w ◦ (i1, j1) and v2 = w ◦ (i2, j1). Then, v1[i1] = v2[i2], v2[i2] = v1[i1],
and v1[j1] = v2[j1]. Further, for every ℓ ∈ [n] such that ℓ /∈ {i1, i2, j1},
v1[ℓ] = v2[ℓ] as these positions are unchanged by the swaps. Therefore,
v1 = v2 ◦ (i1, i2), and hence these words are connected in G(P ). Further, as
this holds for any j1 ∈ Pos(v, j), the set of words induced by the swaps (j, ℓ),
for some fixed ℓ ∈ Pos(w, i) correspond to a clique of size P [j]+1. Therefore,
there exists

∏

i∈Σ\{j} P [i] cliques of size P [j] + 1 including w, for any j ∈ Σ.

We now show that the cliques induced by the set of swaps S(i, j) =
{(i′, j) | i′ ∈ Pos(w,w[i])} are maximal. Let C(i, j, w) = {w} ∪ {w ◦ (i′, j) |
(i′, j) ∈ S(i, j)}, i.e. the clique induced by the set of swaps in S(i, j). Con-
sider a set of swaps, (i1, j1), (i2, j1), (i1, j2) and (i2, j2), where i1, i2 ∈ Pos(w, i)
and j1, j2 ∈ Pos(w, j). Let v1,1 = w◦(i1, j1), v2,1 = w◦(i2, j1), v1,2 = w◦(i1, j2)
and v2,2 = w ◦ (i2, j2). Note that {w, v1,1, v2,1} ⊆ C(i, j1), {w, v1,1, v1,2} ⊆
C(j, i1), {w, v2,1, v2,2} ⊆ C(i, j2) and {w, v2,1, v2,2} ⊆ C(j, i2).

We now claim that there exists no swap transforming v1,1 in to v2,2. Ob-
serve first that, for every ℓ ∈ [|w|] such that ℓ /∈ {i1, i2, j1, j2}, v1,1[ℓ] = v2,2[ℓ].
As v1,1[i1] = v2,2[j1], and v1,1[j1] = v2,2[i2], exactly two swaps are needed to
transform v1,1 into v2,2. Therefore, for any pair of swaps (i1, j1), (i2, j2) ∈
Pos(i, w) × Pos(j, w), such that i1 6= i2 and j1 6= j2, the words w ◦ (i1, j1)
and w ◦ (i2, j2) are not adjacent in G(v). Similarly, given a set of indices
i′ ∈ Pos(i, w), j′ ∈ Pos(j, w) and ℓ′ ∈ Pos(ℓ, w) and swaps (i′, j′), (i′, j′), ob-
serve that as w[j′] 6= w[ℓ′], the distance between w ◦ (i′, j′) and w ◦ (i′, ℓ′) is
2. Therefore, every clique induced by the set of swaps S(i, j) = {(i′, j) | i′ ∈
Pos(w,w[i])} is maximal.

Corollary 1. Let v ∈ V (P ) be the vertex in G(P ) corresponding to the word

w ∈ Σ∗|P . Then, v belongs only to the maximal cliques corresponding to the

set of words {w ◦ (i, j) | i ∈ Pos(w, x)} for some fixed symbol x ∈ Σ and

position j ∈ [|w|], w[j] 6= x, where Pos(w, x) = {i ∈ [|w|] |, w[i] = x}.
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Now since the edges in each maximal clique only swap two types of sym-
bols we have the following corollary for the number of cliques.

Corollary 2. There are
∑

(i,j)∈Σ×Σ

(
∑

k∈Σ\{i,j} P [k])!
∏

k∈Σ\{i,j} P [k]!
maximal cliques in G(p).

Corollary 3. The clique number ω(G(P )) is equal to maxi∈Σ P [i] + 1.

Lemma 2. Let Gr(v) be the subgraph of G(P ) induced by all vertices of dis-

tance at most r away from a given vertex v. Then, for any pair of vertices

u, v ∈ V and given any r ∈ Z
+, Gr(u) ∼= Gr(v).

Proof. Let π ∈ Sn be the permutation such that u ◦ π = v. We use
the permutation π to define an isomorphism f : Gr(u) → Gr(v) such that
f(w) = w ◦ π. In order to show that f is an isomorphism we need to
show that it preserves adjacency. We start by showing that for every word,
w ∈ G1(u), f(w) ∈ G1(v).

Let τ = (τ1, τ2) be the 2-swap such that w = u◦τ . We now have 3 cases for
how π and τ interact, either none of the indices in τ are changed by π, just one
of τ1 or τ2 are changed by π, or both τ1 and τ2 are changed by π. In the first
case, f(w) is adjacent to v as v ◦ τ = f(w). In the second case, let (τ1, τ2) be
a swap that that π[τ1] = τ1, i.e. τ1 is not changed by the permutation π. We
define a new swap τ ′ such that v ◦ τ ′ = f(w). Let x, y ∈ [n] be the positions
in v such that π[x] = τ2 and π[τ2] = y. Now, let τ ′ = (τ1, y). Observe that
v[y] = w[τ2], and v[τ1] = w[τ1]. Therefore, the word v ◦ τ ′ = u ◦ τ ◦ π. Note
that as the ordering of the indices in the swap does not change the swap,
the same argument holds for the case when π[τ2] = τ2. In the final case,
let τ ′ = (π[τ1], π[τ2]). Note that by arguments above, u[π[τ1]] = v[τ1] and
u[π[τ2]] = v[τ2], and hence v ◦ τ ′ = u ◦ τ ◦ π. Repeating this argument for
each word at distance ℓ ∈ [1, r] proves this statement.

We now provide the exact value of the diameter of any configuration
graph G(P ). Theorem 3 states the explicit diameter of the graph, with the
remainder of the section dedicated to proving this result.

Theorem 3. The diameter of the Configuration Graph, G(P ) for a given

Parikh vector P is n−maxi∈Σ P [i].

Theorem 3 is proven by first showing that the upper bound matches
n−maxi∈Σ P [i] (Lemma 4). We then show that the lower bound on the diame-
ter matches the upper bound (Lemma 6), concluding our proof of Theorem 3.
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Lemma 4 (Upper Bound of Diameter). The diameter of the Configu-

ration Graph, G(P ) for a given Parikh vector P is at most n−maxi∈Σ P [i].

Proof (Proof of Upper Bound). This claim is proven by providing a
procedure to determine a sequence of n−maxi∈[σ] P [i] swaps to transform any
word w ∈ Σ∗|P into some word v ∈ Σ∗|P . We assume, without loss of general-
ity, that P [1] ≥ P [2] ≥ · · · ≥ P [σ]. The procedure described by Algorithm 1
operates by iterating over the set of symbols in Σ, and the set of occurrences
of each symbol in the word. At each step, we have a symbol x ∈ [2, σ] and
index k ∈ [1, P [x]]. The procedure finds the position i of the kth appearance
of symbol x in w, and the position j of the kth appearance of x in v. Formally,
i is the value such that w[i] = x and |{i′ ∈ [1, i− 1] | w[i′] = x}| = k and j
the value such that v[j] = x and |{j′ ∈ [1, j − 1] | v[j′] = x}| = k. Finally,
the algorithm adds the swap (i, j) to the set of swaps, and then moves to the
next symbol.

Algorithm 1 Procedure to select 2-swaps to generate a path from w to v.

1: S ← ∅ ⊲ Set of 2-swaps
2: for x ∈ Σ \ {1} do
3: for 1 ≤ k ≤ Px do
4: i← index of kth occurrence of x in w
5: j ← index of kth occurrence of x in v
6: S ← S ∪ (i, j)
7: end for
8: Apply all 2-swaps in S to w and set S ← ∅
9: end for

This procedure requires one swap for each symbol in w other than 1, giv-
ing a total of n−maxi∈[σ] P [i] swaps. Note that after each swap, the symbol at
position j of the word is the symbol v[j]. Therefore, after all swaps have been
applied, the symbol at position j ∈ {i ∈ [1, |w|] | v[i] ∈ Σ \ {1}} must equal
v[j]. By extension, for any index i such that v[i] = 1, the symbol at position i
must be 1, and thus equal v[i]. Therefore this procedure transforms w into v.

In order to prove the lower bound on the diameter (i.e. that diam(G) ≥
n−maxi∈[σ] P [i]) we introduce a new auxiliary structure, the 2-swap graph.
Informally, the 2-swap graph, defined for a pair of words w, v ∈ Σ∗|P and
denoted G(w, v) = {V (w, v), E(w, v)} is a directed graph such that the edge

9
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Figure 2: The graph G(aaabbc, bcbaaa) with the edge (i, j) labelled by the symbol w[i](=
v[j]).

(ui, uj) ∈ V (w, v)×V (w, v) if and only if w[i] = v[j]. Note that this definition
allows for self-loops.

Definition 3 (2-swap Graph). Let w, v ∈ Σ∗|P be a pair of words. The
2-swap graph G(w, v) = {V (w, v), E(w, v)} contains the vertex set V (w, v) =
{u1, u2, . . . , u|w|} and edge set E(v, w) = {(vi, vj) ∈ V (w, v)×V (w, v) | w[i] =
v[j] or v[i] = w[j]}. The edge set, E, is defined as follows, for all i, j ∈ Σ
there exists an edge (i, j) ∈ E if and only if w[i] = v[j].

An example of the 2-swap graph is given in Figure 2.

Lemma 5. Let G(w, v) be a graph constructed as above for transforming w
into v using 2-swaps. Then, there exists a procedure to convert any cycle

cover of G(w, v), C, into a w − v path in G(P )

Proof. Let C ∈ C be a cycle where C = (e1, e2, . . . , e|C|) and ei2 = e
i+1 mod |C|
1 .

The w−v path (i.e. a sequence of 2-swaps) is constructed as follows. Starting
with i = 1 in increasing value of i ∈ [|C| − 1], the 2-swap (e11, e

i
2) is added to

the set of 2-swaps S. Where ei1 and ei2 are the endpoints of edge e
i for each i.

Assume, for the sake of contradiction, that S does not correspond to a
proper set of 2-swaps converting w into v. Then, there must exist some sym-
bol at position i such that the symbol w[i] is placed at some position j such

10



that w[i] 6= v[j]. As wi must be placed at some position that is connected to
node i by an edge, there must be an edge between i and j, hence wi = vj ,
contradicting the construction of G(w, v). Therefore, S must correspond to
a proper set of 2-swaps.

Corollary 4. Let C be a cycle cover of G(w, v). Then there exists a set of
∑

c∈C |c| − 1 2-swaps transforming w in to v.

Corollary 5. Let S be the smallest set of 2-swaps transforming w in to v,
then S must correspond to a vertex disjoint cycle cover of G(w, v).

Proof. For the sake of contradiction, let S be the smallest set of 2-swaps
transforming w into v, corresponding to the cycle cover C where C is not ver-
tex disjoint. Let c1, c2 ∈ C be a pair of cycles sharing some vertex u. Then,
following the construction above, the symbol wu must be used in two separate
positions in v, contradicting the assumption that v can be constructed from
w using 2-swaps. Hence S must correspond to a vertex disjoint cycle cover.

Corollary 6. Given a pair of words w, v ∈ Σ∗|P , the minimum set of 2-

swaps transforming w into v S corresponds to the vertex disjoint cycle cover

of G(w, v) maximising the number of cycles.

Lemma 6 (Lower Bound). The diameter of G(p) is at least n−maxi∈Σ P [i].

Proof. We assume w.l.o.g. that P [1] ≥ P [2] ≥ · · · ≥ P [σ]. Let w, v ∈ Σ∗|P

satisfy:

w = (123 . . . σ)P [σ](123 . . . σ − 1)P [σ−1]−P [σ] . . . 1P [1]−P [2]

and
= (23 . . . σ1)P [σ](23 . . . (σ − 1)1)P [σ−1]−P [σ] . . . 1P [1]−P [2],

i.e. w is made up of P [1] subwords, each of which are of the form 12...k,
and v is made up of the same subwords as w but each of them has been cycli-
cally shifted by one (for example when P = (3, 2, 1) we have w = 123121 and
v = 231211). Following Corollary 6, the minimum number of 2-swaps needed
to convert w into v can be derived from a vertex disjoint cycle cover of G(w, v)
with the maximum number of cycles.

Observe that any occurrence of symbol σ must have an outgoing edge in
G(w, v) to symbol 1, and an incoming edge from symbol σ − 1. Repeating
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this logic, each instance of σ must be contained within a cycle of length σ.
Removing each such cycles and repeating this argument gives a set of P [1]
cycles, with P [σ] cycles of length σ, P [σ − 1]−P [σ] cycles of length σ−1, and
generally P [i]−P [i+ 1] cycles of length i. This gives the number of 2-swaps
needed to transform w to v being a minimum of n−P [1] = n−maxi∈Σ P [i].

Theorem 3 follows from Lemmas 4 and 6.

4. Hamiltonicity

In this section, we prove that the configuration graph contains Hamilto-
nian paths and we provide an efficient algorithm for enumerating the vertices
of a Hamiltonian path. We first show that every configuration graph of a
Parikh Vector over a binary alphabet is Hamiltonian. This is then generalised
to alphabets of size σ, using the binary case to build Hamiltonian paths with
alphabets of size σ.

4.1. Binary Alphabets

For notational conciseness, given a symbol a, in a binary alphabet Σ,
the notation a is used to denote a ∈ Σ, a 6= a, i.e. if a = 1, then a = 2.
We prove Hamiltonicity via a recursive approach that forms the basis for
our enumeration algorithm. Our proof works by taking an arbitrary word
in the graph w, and constructing a path starting with w. At each step of
the path, the idea is to find the shortest suffix of w such that both symbols
in Σ appear in the suffix. Letting w = ps, the path is constructed by first
forming a path containing every word ps′, for every s′ ∈ Σ∗|P (s), i.e. a path
from w transitioning through every word formed by maintaining the prefix
p and permuting the suffix s. Once every such word has been added to the
path, the algorithm repeats this process by performing some swap of the
form (|p|, i) where i ∈ [|p|+ 1, |w|], i.e. a swap taking the last symbol in the
prefix p, and replacing it with the symbol w[|p|] from some position in the
suffix.

This process is repeated, considering increasingly long suffixes, until every
word has been covered by the path. Using this approach, we ensure that every
word with the same prefix is added to the path first, before shortening the
prefix. The algorithm HamiltonEnumeration outlines this logic within
the context of the enumeration problem, where each transition is output
while constructing the path.
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Theorem 7. For every Parikh vector P ∈ N
2
0 and word w ∈ Σ∗|P , there

exists a Hamiltonian path starting at w in the configuration graph G(P ) =
(V (P ), E(P )).

As stated in [32] the binary reflected Gray code gives an ordering for the
words over a Binary alphabet restricted to a certain Parikh Vector (k, n− k)
with a single 2-swap between each subsequent word. This does indeed prove
Theorem 7 by providing a Hamiltonian Circuit for a given binary Parikh
vector (it is worth noting that following a Hamiltonian Circuit starting at
w gives a Hamiltonian path from w.) However, we also present our own
inductive proof for this case to provide an explanation of our enumeration
algorithm.

Proof. We prove this statement in a recursive manner. As a base case, con-
sider the three vectors of length 2 as our Parikh Vector, namely (2, 0), (0, 2)
and (1, 1). Note that there exists only a single word with the Parikh vectors
(2, 0) or (0, 2), and thus the graph must, trivially, be Hamiltonian. For the
Parikh vector (1, 1), there exists only the words 12 and 21, connected by the
2-swap (1, 2) and therefore is also a Hamiltonian path and it can be found
starting at either word.

In the general case, assume that for every Parikh vector P ′ = (P ′
1, P

′
2) with

P ′
1+P ′

2 < ℓ, the graph G(P ′) contains a Hamiltonian path, and further there
exists such a path starting at every word in Σ∗|P ′ . Now, let P = (P1, P2) be
an arbitrary Parikh vector such that P1+P2 = ℓ. Given some word w ∈ Σ∗|P ,
observe that there must exist some Hamiltonian path starting at the word
w[2, ℓ] in the subgraph G′(P ) = (V ′(P ), E ′(P )) where V ′(P ) = {u ∈ V (P ) |
u[1] = w[1]} and E ′(P ) = (V ′(P ) × V ′(P )) ∩ E(P ). Let w′ be the last
word visited by the Hamiltonian path in G′(P ), and let i be some position
in w′ such that w′[i] = w[1]. Note that there must exist Hamiltonian path
starting at (w ◦ (1, i))[2, ℓ] in the subgraph G′′(P ) = (V ′′(P ), E ′′(P )) where
V ′′(P ) = {u ∈ V (P ) | u[1] = w[1]} and E ′′(P ) = (V ′′(P )× V ′′(P )) ∩ E(P ).
As every vertex in G(P ) is either in the subgraph G′(P ) or G′′(P ), the
Hamiltonian paths starting at w in G′(P ) and at w′ ◦ (1, i) in G′′(P ) cover
the complete graph. Further, as these paths are connected, there exists a
Hamiltonian path starting at the arbitrary word w ∈ Σ∗|P , and therefore the
Theorem holds.

Enumeration. We now provide our enumeration algorithm. Rather than
output each word completely, we instead maintain the current state of the
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word in memory and output the swaps taken at each step, corresponding to
the edges traversed in the path. This way, at any given step the algorithm
may be paused and the current word fully output, while the full path can
be reconstructed from only the output. There are two key challenges behind
this algorithm. First is the problem of deciding the next swap to be taken
to move from the current word in the graph to the next word. Second, is
the problem of minimising the worst-case delay in the output of these swaps,
keeping in mind that the output is of constant size.

High-Level Idea.

From a given word w with Parikh vector,P , the algorithm works by first
finding the shortest suffix s of w such that there exists some pair of indices
i, j for which s[i] 6= s[j]. Using this suffix and letting w = us, we find a
path through every vertex in G(P ) with the prefix u. Note that following
the same arguments as Theorem 7, such a path must exist. Once every word
in G(P ) with the prefix u has been visited by the path, the algorithm then
enumerates every word with the prefix u[1, |u| − 1], extending the current
path. When adding every word with the prefix u[1, |u| − 1] to the path, note
that every word with the prefix u has already been added, thus all that is
left is to add those words with the prefix u[1, |u|− 1]u[|u|], which is achieved
via the same process as before.

The swaps are determined as follows. From the initial word w, let R1 be
the last occurrence of the symbol 1 in w, and let R2 be the last occurrence
of 2 in w. The first swap is made between min(R1, R2) and min(R1, R2) + 1,
with the algorithm then iterating through every word with the Parikh vector

P [w[min(R1, R2), |w|]]− P
[

w[min(R1, R2)]
]

.

In the general case, a call is made to the algorithm with a Parikh vector
P = (P1, P2), with the current word w fixed, and the assumption that no word
with the prefix w[1, |w|−(P1+P2)] has been added to the path other than w.
The algorithm, therefore, is tasked with iterating through every word with
the current prefix. Let R1 be the last occurrence of the symbol 1, and R2 be
the last occurrence of the symbol 2 in the current word. The algorithm first
enumerates every word with the prefix w[1,min(R1, R2) − 1]. Noting that
there exists only a single word with the prefix w[1,min(R1, R2)], it is sufficient
to only enumerate through those words with the prefix w[1,min(R1, R2)− 1]
w[min(R1, R2)]. The first swap made by this algorithm is
(min(R1, R2),min(R1, R2)+1), allowing a single recursive call to be made to

14



Algorithm 2 Algorithm for enumerating a Hamiltonian path in the config-
uration graph defined by a Parikh vector P . Note that the pointer last state
is used to return at the state in the stack at position last state to avoid
needless recursion. The function CurrentState() is used to get the current
state in the stack. The trees T1 and T2 are balanced binary search trees such
that every node in T1 corresponds to a position of symbol 1 in the current
state of w, and every node in T2 corresponds to a position of the symbol 2
in w.
1: Global Variables:
2: Word w ∈ Σn

3: Balanced Binary Search Tree T1

4: Balanced Binary Search Tree T2

5: function HamiltonianEnumeration((P1, P2) ∈ N0 × N0, pointer
last state)

6: if P1 = 0 or P2 = 0 then Return To last state
7: else if (P1, P2) = (1, 1) then
8: Output: (n− 1, n)
9: Remove(Tw[n−1], n− 1), Insert(Tw[n−1], n)
10: Remove(Tw[n], n), Insert(Tw[n], n− 1)
11: w ← w ◦ (n− 1, n)
12: ReturnTo last state
13: else % Note that P1 + P2 ≥ 3
14: R1 ← max(T1)
15: R2 ← max(T2)
16: for i ∈ min(R1, R2),min(R1, R2)− 1, . . . , n− (P1 + P2 − 1) do
17: j ← minj′∈[i+1,n] Tw[j′]

18: Output: (i, j)
19: Remove(Tw[i], i), Insert(Tw[i], j)
20: Remove(Tw[j], j), Insert(Tw[j], i)
21: w ← w ◦ (i, j)
22: P ′ ← (P1, P2)− P (w[i])
23: HamiltonianEnumeration(P ′, CurrentState())
24: end for
25: % As the Parikh vector must have at least one value for each

symbol, there is a valid swap from n − (P1 + P2 − 1) to i, for some
i > n− (P1 + P2 − 1)

26: j ← mini∈[n−(P1+P2−1),n] Tw[i]

27: Output (n− (P1 + P2 − 1), j)
28: Remove(Tw[n−(P1+P2−1)], n − (P1 + P2 − 1)), In-

sert(Tw[n−(P1+P2−1)], j)
29: Remove(Tw[j], j), Insert(Tw[j], n− (P1 + P2 − 1))
30: w ← w ◦ (n− (P1 + P2 − 1), j)
31: P ′ ← (P1, P2)− P (w[n− (P1 + P2 − 1)])
32: HamiltonianEnumeration(P ′, last state) % Note that this skips

over the current state when returning
33: end if
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HamiltonianEnumeration(P (w◦(min(R1, R2),min(R1, R2)+1))[min(R1, R2)+
1, |w|], current call), where current call denotes the pointer to the
current call on the stack. From this call the algorithm enumerates every
word with the prefix w[1,min(R1, R2) − 1] w[min(R1, R2)]. As every word
with the prefix w[1,min(R1, R2)] has already been output and added to the
path, once this recursive call has been made, every word with the prefix
w[1,min(R1, R2)− 1] will have been added to the path. Note that the word
w is updated at each step, ending at the word w′.

After every word with the prefix w′[1,min(R1, R2)−1] has been added to
the path, the next step is to add every word with the prefix w′[1,min(R1, R2)−
2]] to the path. As every word with the prefix w[1,min(R1, R2) − 1] is al-
ready in the path, it is sufficient to add just those words with the prefix
w′[1,min(R1, R2)−2]w[min(R1, R2)] to the path. This is achieved by making
the swap between min(R1, R2)−2, and the smallest value i > min(R1, R2)−2
such that w[i] 6= w′[min(R1, R2)−1], then recursively enumerating every word
with the prefix w′[1,min(R1, R2)− 2]. This process is repeated in decreasing
prefix length until every word has been enumerated.

To efficiently determine the last position in the current word w containing
the symbols 1 and 2, a pair of balanced binary search trees are maintained.
The tree T1 corresponds to the positions of the symbol 1 in w, with each
node in T1 being labelled with an index and the tree sorted by the value of
the labels. Analogously, tree T2 corresponds to the positions of the symbol
2 in w. Using these trees, note that the last position in w at which either
symbol appears can be determined in O(logn) time, and further each tree
can be updated in O(logn) time after each swap.

Lemma 8. Let P be a Parikh vector of length n, and let w ∈ Σ∗|P be a

word. HamiltonianEnumeration outputs a path visiting every word in

Σ∗|P starting at w.

Proof. This lemma is proven via the same tools as Theorem 7. Explicitly,
we show first that the algorithm explores every suffix in increasing length,
relying on the exploration of suffixes of length 2 as a base case, then provide
an inductive proof of the remaining cases. We assume that the starting word
has been fully output as part of the precomputation. With this in mind,
note that there are two cases for length 2 prefixes, either the suffix contains
two copies of the same symbol or one copy of each symbol. In the first case,
as w has been output, so has every permutation of the length 2 prefix of
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w. Otherwise, the algorithm outputs the swap (n− 1, n) and returns to the
previous call.

In the general case, we assume that for some ℓ ∈ [n], every permutation
of w[n − ℓ + 1, n] has been visited by the path. Further, we assume the al-
gorithm can, given any word v, visit every word of the form v[1, n− ℓ]u, for
every u ∈ Σ∗|P (v[n−ℓ+1,n]), i.e. the algorithm is capable of taking any word v
as an input, and visiting every word with the same Parikh vector P (v) and
prefix v[1, n−ℓ+1]. Note that in the case that w[n−ℓ, n] = w[n−ℓ]ℓ, the al-
gorithm has already visited every word in Σ∗|P (w) with the prefix w[1, n− ℓ].
Otherwise, as the algorithm has, by this point, visited every word of the
form w[1, n − ℓ + 1]u, for every u ∈ Σ∗|P (v[n−ℓ−1,n]), it is sufficient to show
that the algorithm visits every word of the form w[1, ℓ − 1]w[ℓ]u, for every
u ∈ Σ∗|P ′ , P ′ = P (w[n− ℓ, n])− P (w[ℓ]).

Let w′ be the last word visited by the algorithm with the prefix w[1, n−
ℓ+1]. Note that the first step taken by the algorithm is to determine the first
position j in w′[n−ℓ+1, n] containing the symbol w[ℓ]. Therefore, by making
the swap (n − ℓ, j), the algorithm moves to some word with a suffix in ΣP ′

,
where P ′ = P (w[n− ℓ, n])−P (w[n− ℓ]). As the algorithm can, by inductive
assumption, visit every word with a suffix of length ℓ−1, the algorithm must
also be able to visit every word with a suffix of length ℓ, completing the proof.

Lemma 9. Let P be a Parikh vector, and let w ∈ Σ∗|P be a word. The path

output by HamiltonEnumeration does not visit any word in w ∈ Σ∗|P

more than once.

Proof. Note that this property holds for length 2 words. By extension, the
length at most 2 path visiting every word with the prefix w[1, n−2] does not
visit the same word twice before returning to a previous call on the stack.

Assume now that, given any input word v ∈ Σ∗|P , the algorithm visits
every word in Σ∗|P with the prefix v[1, n− l+ 1] without repetition, and has
only visited words with this prefix. Further, assume that P (v[n − ℓ, n]) 6=
(0, ℓ−1) or (ℓ−1, 0). Then, after every such word has been visited by the path,
the algorithm returns to the previous state, with the goal of enumerating
every word with the prefix v[1, n− ℓ]. As every word in Σ∗|P with the prefix
v[1, n− ℓ+ 1] has been visited, it is sufficient to show that only those words
with the prefix v[1, n− ℓ]v[n− ℓ+ 1] are enumerated. The first swap made
at this state is between ℓ and the smallest index j ∈ [n− ℓ+ 1, n] such that
v[n−ℓ] 6= v[j], which, as the algorithm has only visited words with the prefix
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v[1, n− l+1], has not previously been visited. After this swap, the algorithm
enumerates every word with the prefix v[1, n− ℓ− 1]v[n− ℓ], which, by the
inductive assumption, is done without visiting the same word. Therefore, by
induction. every word with the prefix v[1, n−ℓ] is visited by the path output
by HamiltonianEnumeration exactly once.

Theorem 10. Given a Parikh vector P = (P1, P2) such that P1 + P2 =
n, and word w ∈ Σ∗|P , HamiltonianEnumeration outputs a Hamilto-

nian path with at most O(logn) delay between the output of each edge after

O(n logn) preprocessing.

Proof. Following Lemmas 8 and 9, the path outputted by HamiltonEnu-
meration is Hamiltonian. In the preprocessing step, the algorithm con-
structs two balanced binary search trees T1 and T2. Every node in T1 is
labelled by some index i1 ∈ [n] for which w[i1] = 1, and sorted by the values
of the labels. Similarly, every node in T2 is labelled by some index i2 ∈ [n]
for which w[i2] = 2, and sorted by the values of the labels. As each of these
constructions requires at most O(n logn) time, the total complexity of the
preprocessing is O(n logn).

During each call, we have one of three cases. If either value of the Parikh
vector is 0, then the algorithm immediately returns to the last state with-
out any output. If the Parikh vector is (1, 1), then the algorithm outputs
a swap between the two symbols, updates the trees T1 and T2, requiring
at most O(logn) time, then returns to the last state. In the third case,
the Parikh vector (P1, P2) satisfies P1 > 0, P2 > 0. First, the algorithm
determines the last position in the current state of the word w containing
the symbol 1 and the last position containing the symbol 2, i.e. the values
R1 = maxj∈[1,n]w[i1] = 1 and R2 = maxj∈[1,n]w[i2] = 2. These values can be
determined in O(logn) time using the trees T1 and T2. Using these values, the
algorithm iterates through every length from min(T1, T2) to n−(P1+P2−1),
enumerating every word in Σ∗|P (w) with the prefix w[1, n− (P1+P2−1)]. For
each ℓ ∈ [min(T1, T2), n−(P1+P2−1)], the algorithm outputs the swap (ℓ, j),
where j ∈ [n− ℓ, n] is the largest value for which w[j] = w[ℓ]. After this has
been output, the algorithm updates the trees T1 and T2. Note that both find-
ing the value of j and updating the trees require O(logn) time. After this
swap, the algorithm makes the next call to HamiltonianEnumeration.
Note that after this call, HamiltonianEnumeration must either return
immediately to the last state or output some swap before either returning
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or making the next recursive call. Therefore, ignoring the time complexity
of returning to a previous state in the stack, the worst case delay between
outputs is O(logn), corresponding to searching and updating the trees T1

and T2.
To avoid having to check each state in the stack after returning from a

recursive call, the algorithm uses tail recursion. Explicitly, rather than re-
turning to the state in the stack from which the algorithm was called, the
algorithm is passed a pointer to the last state in the stack corresponding
to a length ℓ such that some word with the prefix w[1, n − ℓ] has not been
output. To do so, after the swap between n − (P1 + P2 − 1) and j is made,
for the value j as defined above, the algorithm passes the pointer it was
initially given, denoted in the algorithm as last state to the call to Hamil-
tonianEnumeration, allowing the algorithm to skip over the current state
during the recursion process.

4.2. General Alphabets.

We now show that the graph is Hamiltonian for any alphabet of size
σ ≥ 2. The main idea here is to build a cycle based on recursively group-
ing together sets of symbols. Given a Parikh vector P = (P1, P2, . . . , Pσ),
our proof operates in a set of σ − 1 recursive phases, with the ith step cor-
responding to finding a Hamiltonian path in the graph G(Pi, Pi+1, . . . , Pσ),
then mapping this path to one in G(P ). The paths in G(Pi, Pi+1, . . . , Pσ) are
generated in turn by a recursive process. Starting with the word w, first, we
consider the path visiting every vertex corresponding to a permutation of the
symbols i+1, . . . , σ in w. Explicitly, every word v in this path is of the form:

v[i] =

{

w[i] w[i] ∈ {1, 2, . . . , i}

xi ∈ {i+ 1, . . . , σ} w[i] /∈ {1, 2, . . . , i}
,

where xi is some arbitrary symbol {i, i+1, . . . , σ}. Further, every such word
is visited exactly once.

After this path is output, a single swap corresponding to the first swap
in G(Pi, (Pi+1+Pi+2, . . . , Pσ)) is made, ensuring that this swap must involve
some position in w containing the symbol i. After this swap, another path
visiting exactly once every word corresponding to a permutation of the sym-
bols i + 1, . . . , σ in w can be output. By repeating this for every swap in
G(Pi, (Pi+1+Pi+2, . . . , Pσ)), inserting a path visiting exactly once every word
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corresponding to a permutation of the symbols i+1, . . . , σ in w between each
such swap, note that every permutation of the symbols i, i+ 1, . . . , σ in w is
output exactly once. In other words, every word v ∈ Σ∗|P of the form

v[i] =

{

w[i] w[i] ∈ {1, 2, . . . , i− 1}

xi ∈ {i, i+ 1, . . . , σ} w[i] ∈ {i, i+ 1, . . . , σ}
,

where xi is some symbol in {i, i+1, . . . , σ}. Further, each such word is visited
exactly once. Using the binary alphabet as a base case, this process provides
an outline of the proof of the Hamiltonicity of G(P ).

Theorem 11. Given an arbitrary Parikh vector P ∈ N
σ, there exists a

Hamiltonian path starting at every vertex v in the configuration graph G(P ).

Proof. This is formally proven using the outline above via an inductive
argument with the base case of binary alphabets, the Hamiltonicity of which
is proven in Theorem 7.

We assume now that there exists, for any Parikh vector p ∈ N
ℓ−1
0 and word

w ∈ Σ∗|P , there exists some Hamiltonian path in G(P ) starting at w. Let
q = (q1, q2, . . . , qℓ) be a Parikh vector, and let v ∈ Σ∗|q be an arbitrary word
with the Parikh vector q. To construct the Hamiltonian path starting at v in
G(q), we first form a Hamiltonian path P1 in G(q2, q3, . . . , qℓ) starting at the
word v′ formed by deleting every symbol 1 from v. We assume that we have a
table T such that T [i] returns the index in [1, |v|] for which v′[i] = v[T [i]]. To
avoid any repetition, we require T [1] < T [2] < · · · < T [|v′|]. With this table,
each swap (s1, s2) in the path P1 can be converted to the swap (T [s1], T [s2])
in the graph G(q) swapping the same symbols in v as in the reduced word v′.
With this conversion, P1 constructs a path in G(q) visiting exactly once each
word where the symbol 1 appears only at the position {i ∈ [1, |v|] | v[i] = 1}.

Next, we construct a Hamiltonian path P2 in the graph G(q1, q2+q3+· · ·+

qℓ) starting at the word v′ where v′[i] =

{

1 v[i] = 1

x v[i] 6= 1
, for some new symbol

x. This graph can be seen as an abstraction of G(q), considering only swaps
between some position labelled 1 and any position with a different symbol.

The first swap in P2 is applied to the current word, however, rather than
proceeding along this path, a new set of swaps is inserted corresponding to
some Hamiltonian path in G(q2, q3, . . . , qℓ) generated in the same manner as
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before. Again, this new path corresponds to a permutation of every sym-
bol in the set {2, 3, . . . , σ}, while fixing the positions of the symbol 1 in the
word. This is repeated by taking a single swap from the path P2, followed
by a complete path corresponding to a Hamiltonian path in G(q2, q3, . . . , qℓ).
By combining these paths, the new path must visit exactly once every word
in Σ∗|q2,q3,...,qℓ where the positions of symbol 1 are fixed, each time a word w
with a new permutation of the symbol 1 is visited. Similarly, every word in
Σ∗|q1,q2+q3+···+qσ is visited exactly once, corresponding to a path through every
permutation of the positions of the symbols 1 in the word. Therefore, the
output path is Hamiltonian.

Theorem 12. Given a Parikh vector P = (P1, P2, . . . , Pσ) such that
∑

i∈[1,σ] Pi = n, there exists an algorithm outputting a Hamiltonian path in

G(P ) with a delay of at most O(σ log n) between outputting each edge after

O(n logn) preprocessing.

Proof. See Algorithm 3 for the full pseudocode of this algorithm.
Our algorithmic results works using the same approach as for the binary

case, outlined in Theorem 10. The primary difference between these algo-
rithms is the use of a recursive proccess to enumerate the swaps between all
positions containing some symbol in (2, 3, . . . , σ), using the same algorithm
to enumerate the Hamiltonian path starting with the word formed by re-
moving every word containing the symbol 1. In the qth-step of the recursion,
after a swap is made between some position containing the symbol q, and
some position containing some symbol x ∈ [q+1, σ], a recursive call is made
to enumerate the Hamiltonian path starting at the word formed by removing
the every copy of the symbol q.

Our algorithm works as follows. We assume, at each step, we have the cur-
rent word w and σ balanced binary search trees, T1, T2, . . . , Tσ where Tq stores
all positions of the symbol q in w. When making a call to the function, Gen-
eralHamiltonianEnumeration, three parameters are passed, the Parikh
vector the the current prefix being considered, (P1, P2, . . . , Pσ), the smallest
symbol q on which swaps are allowed, and a pointer to the return state once
this proccess is exhausted. The swaps are determined in the same way as
Algorithm 2, with two key differences. Within each call, we only make swaps
between positions in the word w containing the symbol q, and positions con-
taining any symbol in [q+1, σ]. The swap is chosen in the same way as in the
binary case, swapping the positions Rq, the Rightmost position containing q,
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and Rp, the Rightmost position containing any symbol greater than q. We
note that, in order to determine the value of Rp we determine the rightmost
position of each symbol x ∈ [q+1, σ], the value of which is determined using
the trees Tq+1, Tq+2, . . . , Tσ, requiring in total σ logn time. Alongside this, we
store a set of positions pq, pq+1, . . . , pσ, where px stores the rightmost position
smaller than min(Rq, Rp) containing the symbol x, i.e. the value such that
px < min(Rq, Rp) and, for every p′x where w[p′x] = x, either p′x ≥ min(Rq, Rp)
or p′x < px. We use these to allow efficient update of the value i denoting the
largest position of the next swap. Once a swap has been made, two recursive
calls are made. First, to GeneralHamiltonianEnumeration with the
arguments P (w), q + 1, current state(), enumerating every permutation of
the positions in w containing some symbol x ∈ [q + 1, σ], before returning
to this call, then to GeneralHamiltonianEnumerationwith the argu-
ments (P1, P2, . . . , Pσ − P (w[i]), q, current state(), enumerating every suffix
of w of length P1 + P2 + · · · + Pσ − 1. Finally, once every permutation of
w[n−P1−P2−· · ·−Pσ +1, n] formed by swapping two positions containing
distinct symbols from the set [q, σ] has been enumerated, one last swap is
made between the position n−P1−P2−· · ·−Pσ and the symbol at position
j where j is the leftmost (smallest) position in [n − (P1 + P2 + · · · + Pσ, n]
that does not contain w[n− (P1 + P2 + · · ·+ Pσ], i.e. the value j such that
w[j] 6= w[n−(P1+P2+· · ·+Pσ] and, ∀j

′ ∈ [n−(P1+P2+· · ·+Pσ, j−1], w[j
′] =

w[n− (P1+P2+ · · ·+Pσ]. Once this swap has been made, the algorithm re-
turns to the state it was passed when called, avoiding unnecessary recursion.

Observe that the correctness of this algorithm follows from Theorems 10
(laying out the correctness of our choice of swaps to make at each step) and
11. Further, the worst case delay of O(σ logn) is due to determining the
values of Rp at the start of the function, and j during both the main loop
enumerating the permutations of the suffix, and in the final output. As each
value is computed at most twice between outputs, we arrive at the stated
worst case delay.

5. Conclusion

Following the work on 2-swap, the most natural step is to consider these
problems for k-swap based on two variants with exactly k and less or equal
to k. Note that a configuration graph for exactly k-swap permutation might
not have a single component. We also would like to point to other attractive
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directions of permutations on multidimensional words [19] and important
combinatorial objects such as necklaces and bracelets [21, 22]. For the 2-swap
graph specifically, we leave open the problem of determining the shortest path
between two given words w and v. We conjecture that the simple greedy
algorithm used to derive the upper bound in Lemma 4 can be used to find
the shortest path between any pair of vertices.
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Algorithm 3 Enumeration algorithm for general alphabets

1: Global Variables:
2: w ∈ Σn

3: Balanced Binary Search Trees T1, T2, . . . , Tσ

4: function GeneralHamiltonianEnumeration(P ∈ N
σ, q ∈ [σ],,

pointer last state)
5: if q = 2 then
6: HamiltonianEnumeration((Pσ−1, Pσ), CurrentState())
7: Return To: last state
8: else if Pq = 0 then
9: Return To: last state
10: else
11: Rq ← max(Tq)
12: Rp ← maxx∈[q+1,σ] Tx

13: i← min(Rq, Rp)
14: px ← max<i Tx, ∀x ∈ [q, σ]
15: while i > n− (P1 + P2 + · · ·+ Pσ) do
16: j ← 0
17: if w[i] = q then
18: j ← minx∈[q+1,σ] min≥i+1 Tx

19: else
20: j ← min≥i+1−(

∑
y∈[1,σ] Py) Tq

21: end if
22: Output: (i, j)
23: Remove(Tw[i],i), Insert(Tw[i], j)
24: Remove(Tw[j],j), Insert(Tw[j], i)
25: w ← w ◦ (i, j)
26: GeneralHamiltonianEnumeration(P (w), q +

1, current state())
27: P ′ ← (P1, P2, . . . , Pq)− P (w[i])
28: GeneralHamiltonianEnumera-

tion(P ′, q, current state())
29: i, x← maxx∈[q,σ] px
30: px ← max<i Tx

31: end while
32: m← n− (P1 + P2 + · · ·+ Pσ)
33: j ← minx∈[q,σ]\w[m]min≥m Tx

34: Output (m, j)
35: Remove(Tw[j], j), Insert(Tw[j], m)
36: Remove(Tw[m], m), Insert(Tw[m], j)
37: w ← w ◦ (m, j)
38: GeneralHamiltonianEnumeration(P (w), q +

1, current state())
39: P ′ ← (P1, P2, . . . , Pn)− P (w[m])
40: GeneralHamiltonianEnumeration(P ′, q, last state)
41: end if
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