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Abstract. Colorectal cancer is the second leading cause of cancer death
worldwide. Its high incidence and mortality rate highlight the critical role
of advanced diagnostics and early detection methods. Advancements in
computational pathology can significantly enhance diagnostic precision
and treatment personalisation, ultimately improving patient outcomes.
Hospitals and labs globally are transitioning toward routine whole slide
image (WSI) digitisation. This digitisation process generates large vol-
umes of data, offering an opportunity to enhance diagnostic capabilities
through the use of machine learning techniques such as weakly super-
vised learning and self supervised learning (SSL). This study evaluates
the performance of state-of-the-art self-supervised learning (SSL) feature
extractor foundation models—CTransPath, Phikon, and UNI—against
a pretrained ResNet-50, which serves as a benchmark. Our Transformer
network analyses these feature vectors, focusing on their efficacy in pre-
dicting key colorectal cancer biomarkers within a small dataset contain-
ing 423 WSIs with only 8% of cases exhibiting mismatch repair (MMR)
deficiency. The CTransPath model achieved the highest validation AU-
ROC of 0.9466 for MMR classification but exhibited a test AUROC of
0.6880, demonstrating significant variability. In contrast, the UNI model
demonstrated greater consistency and robustness, achieving a test AU-
ROC of 0.7136, which additionally represents a 6.3% improvement over
ResNet-50’s test AUROC of 0.6709. The results highlight the feasibility
of using advanced machine learning models with smaller, sparsely anno-
tated datasets, though the variability noted in some models underscores
the challenges at the edge of data scarcity. Code and experimental frame-
work available at https://github.com/CraigMyles/SurGen-CRC-Arena.
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1 Introduction

Colorectal cancer is the third most common cancer globally, and is the second
leading cause of cancer related death worldwide[2]. The clinical management
of colorectal cancer heavily relies on accurately identifying diagnostic biomark-
ers such as mismatch repair (MMR) protein status and microsatellite instabil-
ity (MSI), pivotal in predicting immunotherapy efficacy and diagnosing Lynch
syndrome[22]. However, traditional methods of assessing these biomarkers in-
volve time-consuming and expensive immunohistochemistry or molecular tests.
The advancements in digital pathology and whole slide imaging (WSI) position
biomarkers as prime targets for machine learning, which holds the potential to
dramatically enhance their detection and interpretation.

The shift toward routine digitisation of pathology slides has led to an un-
precedented exponential increase in the quantity and quality of whole slide im-
age (WSI) data, with hospitals and healthcare providers generating substantial
quantities of data daily [7,24,26]. These images, rich in histological detail, are
invaluable for diagnostic purposes. However, their utility for automated anal-
ysis is often limited by the absence of detailed annotations. Pathologists can
generate these annotations, which may delineate regions of interest or classify
histopathological features, essential for training and evaluating automated diag-
nostic systems.

Self-supervised learning (SSL), a variant of unsupervised learning, offers a so-
lution to this limitation by training models to recognise patterns and features in
data without the need for manually annotated slide, patch, or patient labels. In
digital pathology, generating such labels typically requires significant expertise
from pathologists or the execution of time-consuming and costly immunohisto-
chemistry (IHC) assays to identify specific biomarkers. Given the rapid produc-
tion of WSI data, such labelling is increasingly impractical for processing large
cohorts efficiently.

SSL techniques can be utilised to develop foundational models in digital
pathology that generate rich, self-learned feature vector embeddings from whole
slide images (WSIs). These embeddings capture intricate patterns and details
across various tissue types, enhancing the accuracy and efficiency of cancer di-
agnostics and prognostics without requiring expert labels. For example, UNI[4]
is trained on over one hundred million WSI patches and produces feature vec-
tors of 1024 dimensions. These foundational models serve as robust bases for
downstream tasks such as cancer detection or biomarker prediction by leverag-
ing their deep understanding of histological patterns. This approach not only
reduces reliance on extensive manual annotations and costly lab tests but also
could streamline the diagnostic process, facilitating more personalised and timely
treatment strategies that ultimately improve patient outcomes.

Furthermore, these foundational models present the opportunity to utilise
smaller, specialised datasets effectively, significantly reducing the traditional
barriers associated with extensive data requirements. By leveraging the sophis-
ticated feature vectors derived from foundational models, it may be possible to
lessen the need for vast annotated datasets, making machine learning applica-
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tions more feasible for smaller labs or studies focusing on less common condi-
tions. Our research specifically explores whether these models can be used in
conjunction with Transformer networks[28] to accurately classify MMR status
within a dataset consisting of 423 hematoxylin and eosin (H&E) stained WSIs,
within which only 8% of cases (n=32) are positive, challenging the convention
that extensive data is a prerequisite for effective machine learning applications.
The effectiveness of these models is evaluated through rigorous testing of their
ability, in conjunction with Transformers, to handle sparse labels in our small
dataset. While the definitive capability of these models to handle sparse labels in
small datasets is still being explored, this approach could significantly democra-
tise the use of advanced machine learning techniques, making them accessible
even to studies with limited resources or specialised needs.

2 Literature Review

Feature Extractors in Digital Pathology. The transition to digital and computa-
tional pathology has significantly increased the need for machine learning (ML)
tools capable of processing large datasets from WSIs[7]. Feature extractors can
be leveraged in this context, as they convert raw histological data into structured
feature vectors, for efficient ML training. This section evaluates prominent fea-
ture extractors such as CTransPath[31], Phikon[11], UNI[4], and ResNet-50[14].
Due to the nature of whole slide images being very large, and in some cases in
excess of 100,000×100,000 pixels, feature extractors play an important role in in
the computational pathology pipeline.

The Constrained Attention Multiple Instance Learning (CLAM) model, which
incorporates a modified ResNet-50 for feature extraction, demonstrates the adapt-
ability of these tools to digital pathology[21]. By transforming patches sized
256×256 into a 1024-dimensional feature embedding, CLAM effectively utilises
clustering within its multiple instance learning framework for weakly supervised
slide-level classification. This methodology shows significant promise in enhanc-
ing diagnostic accuracy without extensive manual annotation.

Similarly, adaptations of previously trained models such as the Inception-v3
network have been reconfigured for use in histology. Removing the final classi-
fication layer of the Inception-v3 model allows it to serve as a powerful feature
extractor, configured to produce a 715-dimensional feature vector from each im-
age tile extracted from WSIs[16].

While these ImageNet[27] trained models were not originally designed to pro-
cess histopathological data, they demonstrate a remarkable ability to adapt to
this domain[21]. Nonetheless, significant differences exist between natural im-
ages and histopathological images. Objects and structures typical in ImageNet
datasets differ vastly in texture and structure from the cellular formations found
in pathology slides. These discrepancies pose challenges for direct application, as
models pretrained on natural images may be limited in their ability to accurately
interpret the unique textural and semantic features inherent in histopathological
data.
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To mitigate these challenges, transfer learning from large-scale labelled datasets
such as ImageNet is often proposed. Though effective in some cases, this strategy
is inherently limited due to the substantial domain shift[31]. A more effective
approach involves either training from scratch on pathology-specific datasets or
employing self-supervised learning methods that do not require manual labels.
Such strategies allow for the development of visual representations more aligned
with the requirements of histopathological analysis.

Slide-Level Classification and SSL. Slide-level classification in pathology lever-
ages multiple instance learning (MIL), where diagnoses or other predictions are
derived from collections of image patches. Self-supervised learning (SSL) en-
hances model ability by enabling learning from unlabelled data, which is vital
given the scarcity of detailed annotations in digital pathology. SSL frameworks
like Momentum Contrast (MoCo)[13] and Simple Framework for Contrastive
Learning of Visual Representations (SimCLR)[5] have revolutionised this field by
enabling robust feature extraction without extensive labelled datasets, demon-
strating their utility across various diagnostic tasks[17].

Breakthroughs in SSL and Their Impact. Whilst self supervised visual represen-
tation learning is not a new area of research[12], recent breakthroughs in SSL,
including the introduction of Momentum Contrast (MoCo)[13] and Simple Con-
trastive Learning (SimCLR)[5], have considerably advanced various fields by en-
abling robust feature extraction without the need for extensive labelled datasets.
Although originally benchmarked on natural images using datasets such as Im-
ageNet, these techniques have demonstrated exceptional utility across a variety
of domains, particularly in computational pathology[31,11,29,9,4,17,20].

Contrastive learning most commonly operates by training models to distin-
guish between pairs of similar and dissimilar data points, generated through
various augmentations, using a loss function that minimises the distance be-
tween similar pairs while maximising the distance between dissimilar ones in
the feature vector space[13,5]. These techniques leverage data augmentations to
generate multiple views of the same image, effectively enhancing the model’s
ability to learn discriminative features from unlabelled data. This mechanism,
combined with the use of augmentations, facilitates the extraction of more gen-
eralised and robust features, suitable for application in complex diagnostic tasks
in the healthcare domain. Such advancements in SSL have led to a paradigm
shift in computational pathology pipelines, enhancing diagnostic accuracy and
streamlining processing, thereby marking a significant milestone in the applica-
tion of artificial intelligence in healthcare.

A comparative analysis of various feature extractors reveals their distinct
capabilities in handling specific diagnostic tasks, from MMR to RAS mutation
classification. While ResNet-50 serves as a valuable benchmark due to its exten-
sive use in image recognition, SSL-based models like UNI and CTransPath offer
promising alternatives that might better capture the features within medical
imaging due to their training on pathology-specific datasets.
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Building a computational pathology pipeline to classify MMR status using
CTransPath, Wagner et al. [30] experiment on a cohort of size 13,689, showing
that this problem can be tackled with scale. Additionally, they experiment with
smaller subsets of data, notably training on 250 cases and achieve an AUROC
score of 0.923. However, it is unclear if the label distribution in these smaller
datasets is consistent with that of the larger cohort, which could influence the
results.

Analysis of Feature Extractors. ResNet-50[14] stands out among these other
models as it is the only model among the previously mentioned which is pre-
trained on natural images. ResNet, short for Residual Network, is a type of
convolutional neural network (CNN) that was introduced to address the vanish-
ing gradient problem in very deep networks. It utilises skip-connections which
can bypass layers enabling the direct flow of gradients. This architecture has
proven highly effective at image classification and recognition and is regularly
used as a benchmark across various domains.

Model and Data Availability. A growing number of SSL foundation models are
being developed, though many remain proprietary either with respect to the data
used to train and/or the model weights themselves. Open-source models are gen-
erally trained on publicly available datasets, which promotes reproducibility and
transparency in research. However, models including UNI[4], RudolfV[9], and
Virchow[29] are trained on proprietary datasets, posing challenges in validating
their effectiveness on unrelated test sets. This review includes an assessment on
an independent dataset across a variety of biomarkers to test the generalisability
of these models.

Future of SSL in Digital Pathology. As the field of SSL models continues to ad-
vance with the introduction of new techniques and expanded training datasets,
the potential for clinical application grows. Innovative models such as CONCH[20],
which are trained on both vision and language data, significantly enhance in-
terpretability and feature understanding—key aspects for clinical deployment.
Future research should concentrate on establishing the robustness and efficacy
of these models to meet the rigorous demands of clinical use. This effort should
involve rigorous validation across diverse datasets, population groups, and cru-
cially, a variety of downstream diagnostic tasks to ensure broad applicability
and reliability in real-world clinical settings. Moreover, the development of more
open-source models would encourage continual technological advancements, fos-
tering greater collaboration and potentially accelerating improvements in clinical
outcomes and patient care.

3 Method

3.1 Dataset

We utilise the SR386 subset of the SurGen dataset, consisting of 423 patients,
for which a single WSI is provided in Carl Zeiss Image (CZI) format. Slides were
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Table 1. Comparison of feature extractors detailing the architecture, training dataset
size, and computational resources. Note: “M” denotes million and “K” denotes thou-
sand. Training images for CTransPath comprise 15,580,262 patches from 32,220 WSIs
at ×20 magnification (1024×1024 pixels). Phikon was trained on 43,374,634 patches
from 6,093 WSIs at ×20 magnification (224×224 pixels). ResNet-50 utilised 1,281,167
natural images from ImageNet. UNI was trained on 100,130,900 patches from 100,426
WSIs coined as Mass-100K. Mass-100K is a closed source proprietary dataset consisting
of 75,832,905 images at 256×256 pixels at ×20 magnification in addition to 24,297,995
images at 512×512 pixels at ×20 magnification.

Feature
Extractor

Training
Images

WSI
Count

Data
Source

Architecture
Backbone

Training
Regime

Feature
Dimension

Number of
Parameters

Time Resource

CTransPath[31] 15.58M patches 32.2K TCGA[32], PAIP[18] Swin-T/14[19]+CNN MoCoV3[6] 768 27,520,038 250h 48 V100s
Phikon[11] 43.37M patches 6.0K TCGA[32] ViT-B/16[10] iBOT[33] 768 85,798,656 1,216h 32 V100s
ResNet-50[14] 1.28M images n/a ImageNet[27] ResNet-50[14] ResNet-50[14] 2048 25,557,032 n/a n/a
UNI[4] 100.13M patches 100.4K Mass-100K[4] ViT-L/16[10] DINOv2[25] 1024 303,350,784 32h 32 A100s

hematoxylin-eosin (H&E) stained and digitised using a ZEISS Axioscan 7 at ×40
magnification (0.1112µm).

Immunohistochemistry (IHC) for MMR proteins were used to identify MLH1,
PMS2, MSH2, MSH6 by way of multiplex ligation-dependent probe amplification
(MLPA). Due to the sparsity in these labels and all samples belonging to no
MMR loss (n=391), MLH1+PMS2 loss (n=28), and PMS2 (n=4); These labels
were binarised to no loss; microsatellite stable (MSS)/ mismatch repair proficient
(pMMR) and loss; microsatelite instablilty (MSI)/ mismatch repair deficient
(dMMR).

Importantly, this dataset has not been used in the training of any founda-
tional models evaluated in this study, ensuring its suitability as an independent
test set for downstream classification tasks and for benchmarking foundational
models.

Data Availability The data used to support the findings of this study, includ-
ing the SR386 subset of the SurGen dataset, can be accessed at
https://github.com/CraigMyles/SurGen-CRC-Arena.

Ethics Board Approval This research and use of data has been approved
by the University of St Andrews School of Computer Science Ethics Committee
(Approval Code: CS16224). All patient data were anonymised prior to our ac-
cess, ensuring compliance with data protection regulations and maintaining the
confidentiality of patient information.

Data Structuring and Stratification To ensure a robust and valid analysis, the
dataset was carefully structured into training, validation, and test sets, with
splits stratified by age, sex, MMR status, BRAF mutation, RAS mutation, and
five-year survival. This stratification ensures that each set is representative of
the overall dataset, maintaining consistency across key demographic and clinical
characteristics. These variables were chosen based on their potential influence on

https://github.com/CraigMyles/SurGen-CRC-Arena
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treatment outcomes and prognosis in colorectal cancer. For a detailed breakdown
of the data distribution across the training, validation, and test sets, see Table
2.

Table 2. Breakdown of SurGen SR386 Cohort data distribution for train, validate,
and test sets. Each patient has precisely one associated whole slide image.

Category Total Train Validate Test

Origin Scotland Scotland Scotland Scotland
WSI file format CZI CZI CZI CZI
Magnification ×40 ×40 ×40 ×40
Microns per pixel (pixel width) 0.1112µm 0.1112µm 0.1112µm 0.1112µm

Number of patients 423 (100%) 255 (60%) 84 (20%) 84 (20%)
Mean age at diagnosis (std. dev.) 67.89 (±11.97) 67.98 (±12.12) 67.71 (±11.40) 67.80 (±12.20)

Male, n (%) 228 (54%) 138 (54.1%) 46 (54.7%) 44 (52.3%)
Female, n (%) 195 (46.0%) 117 (45.8%) 38 (45.2%) 40 (47.6%)

MSS/pMMR, n (%) 391 (92%) 235 (92%) 78 (93%) 78 (93%)
MSI/dMMR, n (%) 32 (8%) 20 (8%) 6 (7%) 6 (7%)

Five year survival (true), n (%) 159 (38%) 100 ( 39%) 30 (36%) 29 (35%)
Five year survival (false), n (%) 264 (62%) 155 (61%) 54 (64%) 55 (65%)

RAS mutation, n (%) 158 (37%) 97 (38%) 31 (37%) 30 (36%)
RAS wild type, n (%) 265 (63%) 158 (62%) 53 (63%) 54 (64%)

BRAF mutation, n (%) 47 (11.1%) 29 (11.4%) 9 (10.7%) 9 (10.7%)
BRAF wild type, n (%) 375 (88.6%) 225 (88.2%) 75 (89.2%) 75 (89.2%)
BRAF fail, n (%) 1 ( 0.2%) 1 (0.4%) 0 (0%) 0 (0%)

3.2 Pipeline

We implement background subtraction methods from [21] which utilises thresh-
holding and morphological operations in order to segment tissue regions and
remove holes across each WSI in the dataset. These are stored background
and non-background regions which are then tessellated across. We extract non-
overlapping tissue patches of size 224×224 at ×20 magnification or 1.0 microns
per pixel (MPP).

These extracted patches are then fed into the respective feature embedding
models in a frozen state, see table 1 for overview feature extractors. We deployed
CTransPath, Phikon, ResNet-50, and UNI to provide an effective comparison fea-
ture extractors. For the case of ResNet-50, the model is implemented as normal
but with the final fully-connected classification layer removed. This effort effec-
tively generates four additional datasets which are compressed and computed by
these foundation models.

These specialist feature vector embeddings are then benchmarked against
one another with the use of a Transformer Network, which has been shown to
be an effective method for computational pathology biomarker prediction[30].
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The extracted feature vectors serve as input for a Transformer Network. The
network is configured to operate with a batch size of one to manage compute
limitations effectively. This setup ensures that all available patches can be pro-
cessed in memory without reaching hardware limits. The performance of each
feature extractor model is evaluated against others by benchmarking their out-
puts using the Transformer Network. This comparative analysis helps determine
which model provides the most informative features for accurate biomarker pre-
diction. The specifics of the Transformer’s configuration, such as the number of
encoder layers and attention heads, are optimised through a grid search, details
of which are summarised in Table 3. See figure 1 for a pipeline overview.

Table 3. Grid search hyperparameters for optimising the transformer-based model.
This table includes both structural parameters that define the model’s architecture
and adjustable hyperparameters subject to optimisation. Model dimension (512) spec-
ifies the size of the input and output layers. Feedforward dimension (2048) indicates
the size of the inner layer of the feedforward networks within each transformer block.
Transformer Heads (4) enhance the model’s ability to attend to different aspects of the
input data simultaneously through multiple attention mechanisms. Encoder layers (6)
describe the number of sequential layers within the model, affecting depth and com-
plexity. The table also lists ranges for Activation function, Dropout, and Learning rate
to explore their impact on model performance, along with different Feature extractors
used to assess comparative effectiveness.

Parameter Values Justification

Epoch 200 Value determined after initial experimentation showed some models did
not converge within 50 epochs. ResNet-50 in particular was seen to take
longer to converge across runs, contradicting [3].

Model Dimension 512 Typical for transformer networks, and aligns with [30].
Feedforward Dimension 2048 The feedforward dimension of 2048, typically four times the model di-

mension, allows for a more expansive representation in the feedforward
layers of the transformer.

Transformer Heads 4 Whilst [30] use 8 heads, we reduce this slightly to find a balance with
the number of encoder layers.

Encoder Layers 6 Increase number of encoder layers compared to [30] in a conscientious
effort to account for the larger feature vectors generated by UNI (1024-
dim), and ResNet-50 (2048-dim), and any additional complexities con-
tained by these which the model may be able to pick up on.

Activation Function relu, gelu The inclusion of both ReLU and GELU activation functions in the
grid search provides options for non-linearity. ReLU is traditionally
used for its simplicity and effectiveness in avoiding vanishing gradient
issues, whereas GELU, as a smoother alternative, can potentially offer
better performance and convergence properties as indicated by recent
research[15][8].

Dropout 0.05, 0.1, 0.15,
0.2, 0.25, 0.5

Whilst [30] does not report utilising dropout in their experiments,
it is an effective tool for regularisation and can improve model
generalisability[1][8].

Learning Rate 1e-04, 1e-05,
1e-06, 1e-07

Covers ranges seen in [30] and covers values below and above.

Feature Extractor CTransPath,
Phikon,
ResNet-50,
UNI

Multiple models are evaluated to determine which offers the most useful
features for enhancing transformer performance on downstream tasks.
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Fig. 1. Preprocessing and Transformer Pipeline – Overview of the development
and processing pipeline with (a) Background removal and patch extraction, highlighting
tissue (in green) and voids (in red); (b) Feature extraction on tissue patches, iterating
across all 224×224 non-overlapping patches at ×20 magnification. Feature vectors for
each WSI are stored to disk to enable fast and iterative Transformer training later in
the pipeline; (c) Transformer network trained to predict binary biomarker labels.

Compute Resources. We utilised a NVIDIA DGX-1 with 8 V100-32GB GPUs
and 503GiB RAM. Incurring a total of 1775.5 GPU hours across tile feature
extraction and model training.

4 Results

The hyperparameter optimisation process and its impact on model performance
are illustrated in Figure 2, which displays a parallel coordinates plot for various
parameters against the validation area under the receiver operating characteristic
(AUROC) score.
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Table 4 compares the best-performing validation AUROC results from trans-
former models trained using feature embeddings from CTransPath, UNI, Phikon,
and ResNet-50. The model employing CTransPath feature vectors achieved the
highest validation AUROC of 0.9466 for mismatch repair (MMR) classification.
In light of this, CTransPath feature vectors were further utilised for downstream
tasks.

Additional performance metrics for models trained with CTransPath feature
embeddings across various tasks are detailed in Table 5.

Lastly, Figure 3 depicts the Receiver Operating Characteristic (ROC) curves
for the best-performing model configurations across all feature vectors on the test
set, providing a clear depiction of the models’ predictive accuracy in a clinical
context.

Fig. 2. Parallel coordinates plot illustrating the optimisation of hyperparameters for
mismatch repair (MMR) prediction, showing their impact on the validation AUROC
score. Each line represents an individual run. Highlighted runs represent best perform-
ing hyperparameter combination for each feature extractor respectively. Range bars
highlight the variance in model performance across runs by feature extractor. This
visualisation aids in identifying the most effective hyperparameter combinations for
model performance.

5 Discussion

The comparison between the UNI and CTransPath models highlights an intrigu-
ing aspect of model selection for digital pathology. The UNI model has shown
consistent robustness, with validation AUROC scores generally ranging between
0.9295 and 0.8483, as illustrated in the parallel coordinates plot (Figure 2). This
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Table 4. Comparative table displaying the best validation AUROC scores alongside
test AUROC scores for mismatch repair (MMR) prediction, achieved by Transformer
models trained with feature embeddings from CTransPath, UNI, Phikon, and ResNet-
50.LR = Learning Rate

Feature Extractor Task Tests AUROC Val AUROC Epoch LR Dropout Activation

CTransPath MMR 0.6880 0.9466 33 1e-05 0.2 gelu
UNI MMR 0.7136 0.9295 2 1e-04 0.15 gelu
Phikon MMR 0.7136 0.9188 7 1e-04 0.5 gelu
ResNet-50 MMR 0.6709 0.8846 77 1e-05 0.05 relu

Fig. 3. Receiver Operating Characteristic (ROC) curves for the optimal hyperparam-
eter settings across four feature extractor models tested on the test set, illustrating
their predictive performance and diagnostic accuracy.

Table 5. Table comparing the performance of Transformer models trained on
CTransPath feature embeddings for different diagnostic tasks. This table presents the
validation and test AUROC scores, demonstrating the models’ predictive accuracy
across tasks such as Mismatch Repair (MMR), BRAF Mutation, 5-Year Survival, and
RAS Mutation. LR = Learning Rate.

Feature Extractor Task Test AUROC Val AUROC Epoch LR Dropout Activation

CTransPath MMR 0.6880 0.9466 32 1e-05 0.2 gelu
CTransPath BRAF M 0.4667 0.8074 39 1e-07 0.25 relu
CTransPath 5Y SUR 0.5724 0.7574 179 1e-07 0.1 relu
CTransPath RAS M 0.4031 0.6954 87 1e-04 0.25 gelu
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consistency suggests a higher reliability for clinical applications where variability
in performance could lead to significantly different diagnostic outcomes.

Conversely, while the CTransPath model achieved the highest validation AU-
ROC of 0.9466, it also showed a surprising breadth in performance during train-
ing, with some configurations dipping as low as 0.7244 AUROC. This variability
may pose a risk in clinical settings where consistent performance is crucial. The
best-performing configuration of CTransPath, however, was utilised for further
downstream tasks due to its peak performance, as detailed in Table 5.

Additionally, a critical examination of benchmark results from other studies,
such as those by Wagner et al. [30], raises questions about direct comparisons.
Whilst they achieved an AUROC of 0.9 with 250 samples for MMR status pre-
diction, their report lacks details on the distribution of labels in these subsets,
which makes it challenging to assess how well their findings relate to ours.

This analysis also revealed that ResNet-50, although traditionally used for
natural image processing, performed adequately and sometimes surpassed other
models under specific configurations. This adaptability suggests that even tradi-
tional architectures can be competitive when optimally tuned, though care must
be taken to manage potential overfitting, a common issue with ResNet-50 that
could be mitigated with strategies like early stopping.

Overall, the findings underscore the importance of not only considering the
highest accuracy or AUROC scores when selecting models but also assessing
their performance consistency and reliability. Future work will focus on refining
these models further, optimising their configurations for broader tasks within
digital pathology, and validating their effectiveness across different diagnostic
challenges. This approach will help ensure that the models not only achieve high
accuracy but are also robust and reliable enough for clinical application.

5.1 Future work

Scope for future work includes implementing and investigating methods such
as classification thresholding as well as techniques such as cosine annealing for
learning rates as well as gradient accumulation which could potentially improve
model convergence and generalisation capabilities on smaller whole slide image
datasets. Adjustments to the transformer network architecture, such as modi-
fying the number of layers and attention heads, could also be investigated to
optimise processing and improve learning efficiency for varied histopathologi-
cal features. Future foundational models may also improve upon the metrics
achieved in this study.

Additionally, improving diagnostic accuracy and model generalisability will
be crucial. This could involve implementing attention-based saliency mapping
[23] to provide deeper insights into the model’s decision-making processes, thereby
enhancing interpretability and clinical relevance.
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6 Conclusion

This research has explored the capabilities of state-of-the-art self-supervised
learning models for digital pathology, particularly focusing on their ability to
classify mismatch repair (MMR) status from whole slide images (WSIs) with
a sparse label distribution. The models investigated—CTransPath, Phikon, and
UNI—demonstrate significant potential to enhance the accuracy of diagnostic
predictions, with the UNI model showing exceptional promise due to its robust-
ness and stability as evidenced by its superior performance over the conventional,
ImageNet trained, ResNet-50.

The findings reveal that while achieving high AUROC scores on validation
datasets, such as CTransPath’s peak of 0.9466, the generalisation of these models
can be limited in scenarios where labels are sparse or have an significant imbal-
ance in distribution. The UNI model, however, with a test AUROC of 0.7136,
suggests a promising avenue for clinical use, showing an improvement of 6.3%
over ResNet-50’s performance, which underscores the viability of SSL models
trained on large-scale datasets to handle real-world complexities in diagnostic
tasks.

This study has demonstrated the efficacy of state-of-the-art self-supervised
learning models in classifying mismatch repair status from whole slide images,
its findings also underscore a broader applicability. Specifically, the techniques
and methodologies refined through this research hold promise for tackling diag-
nostic challenges associated with rarer diseases and conditions characterised by
smaller datasets. The ability to effectively utilise sparse data could significantly
enhance diagnostic accuracy and patient outcomes in less common pathologies,
thereby extending the benefits of advanced computational techniques to a wider
range of clinical scenarios. Such potential highlights the importance of continu-
ing to advance and adapt machine learning strategies to meet diverse and crit-
ical healthcare needs, ultimately driving forward the impact of computational
pathology in personalised medicine.
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