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1  |  INTRODUC TION

Understanding phenotypic diversity and adaptation is a key goal of 
evolutionary and ecological research. Most phenotypes have a com-
plex genetic basis that depends on the effects of a large number of 

genetic loci (sometimes thousands; Barton, 2022; Boyle et al., 2017), 
which are expressed in interaction with the environment. Gene 
transcription represents the first step towards translating genotype 
information into phenotypes, and its products interact in complex 
gene regulatory networks and signalling cascades. Moreover, the 
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Abstract
RNA	 sequencing	 (RNAseq)	methodology	 has	 experienced	 a	 burst	 of	 technological	
developments in the last decade, which has opened up opportunities for studying 
the mechanisms of adaptation to environmental factors at both the organismal and 
cellular	level.	Selecting	the	most	suitable	experimental	approach	for	specific	research	
questions	and	model	systems	can,	however,	be	a	challenge	and	researchers	in	ecology	
and evolution are commonly faced with the choice of whether to study gene expres-
sion	variation	 in	whole	bodies,	specific	 tissues,	and/or	single	cells.	A	wide	range	of	
sometimes polarised opinions exists over which approach is best. Here, we highlight 
the advantages and disadvantages of each of these approaches to provide a guide 
to help researchers make informed decisions and maximise the power of their study. 
Using	illustrative	examples	of	various	ecological	and	evolutionary	research	questions,	
we	guide	the	readers	through	the	different	RNAseq	approaches	and	help	them	iden-
tify the most suitable design for their own projects.

K E Y W O R D S
bulk	RNAseq,	cellular	heterogeneity,	deconvolution,	gene	expression,	single-	cell	RNAseq,	
transcriptomics
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transcriptome integrates a range of genetic, environmental and phys-
iological signals (e.g. Buchberger et al., 2019; Everett et al., 2020; Hill 
et al., 2021).	Accordingly,	evolutionary	change	in	spatial	and	tempo-
ral patterns of gene expression is one of the main drivers of phe-
notypic differentiation (e.g. Barbosa- Morais et al., 2012; Brawand 
et al., 2011;	Fukushima	&	Pollock,	2020; Gerhart & Kirschner, 2007; 
Mantica et al., 2024;	Shapiro	et	al.,	2004;	Steiner	et	al.,	2007). Gene 
expression	 analyses	 based	 on	 RNA	 sequencing	 (RNAseq)	 provide	
a powerful tool to study a wide range of ecological and evolu-
tionary	 questions	 (reviewed	 e.g.	 in	Oppenheim	 et	 al.,	 2015;	 Stark	
et al., 2019),	 in	 particular	 since	 they	 allow	 quantification	 of	 gene	
expression	 in	 organisms	 without	 high-	quality	 reference	 genomes	
(Chalifa- Caspi, 2021; Cheng et al., 2018; Haas et al., 2013).	 Still,	
RNAseq	 analyses	 certainly	 profit	 from	 the	 availability	 of	 genome	
references.	For	instance,	quantification	of	gene	expression	strongly	
depends	on	the	quality	of	the	available	genome	assembly	and	anno-
tation	(Torres-	Oliva	et	al.,	2016).

Isolation	 of	 RNA	 is	 the	 starting	 point	 for	 any	 RNAseq	 experi-
ment.	 For	many	organisms,	 such	 as	 vertebrates	 and	plants,	RNA	 is	
usually isolated from specific organs, body parts or tissue samples for 
RNAseq	because	the	whole	body	is	too	large.	For	smaller	organisms,	
such as small arthropods or other invertebrates, one can also choose 
to	 conduct	 gene	 expression	 analysis	 on	 RNA	 extracted	 from	 the	
whole	body.	Although	possible	and	also	done,	tissue-	specific	RNAseq	
is often more technically challenging for small organisms, and whole 
body	RNAseq	has	 therefore	been	common	practice.	 In	either	case,	
one major complication of gene expression analyses in multicellular 
organisms lies in the large number of different cell types present 
within whole bodies, body parts and even specific tissues. For in-
stance, the small nematode worm Caenorhabditis elegans is composed 
of	959	somatic	cells,	and	the	302	cells	of	the	nervous	system	fall	into	
128	different	neuron	types	(Taylor	et	al.,	2021).	The	human	body	con-
sists	of	more	than	3 × 1013 cells (Bianconi et al., 2013), and the first 
400 cell types of 24 different tissues have only recently been char-
acterised	(Tabula	Sapiens	et	al.,	2022).	Accordingly,	RNAseq	of	whole	
bodies,	 body	parts	 or	 tissues	 (i.e.	 bulk	RNAseq)	 is	 based	on	 a	mix-
ture	of	cells	with	specific	expression	patterns.	This	implies	that	bulk	
RNAseq	analyses	reflect	the	gene	expression	averaged	across	multi-
ple cell types with distinct expression patterns. Recently developed 
single-	cell	RNAseq	(scRNAseq)	approaches	allow	quantifying	expres-
sion at the cellular level to elucidate differences among multiple cell 
types,	thereby	presenting	an	alternative	to	bulk	RNAseq	approaches	
(e.g.	Alfieri	et	al.,	2022;	Nguyen	et	al.,	2018;	Wang,	Sun,	et	al.,	2021).

It is often difficult to decide whether it is advantageous to study 
gene expression in specific tissues, body parts, a collection of organs, 
entire bodies or individual cells. In this opinion article, we highlight 
major technical and methodological advantages and limitations of 
gene expression studies based on whole bodies, organs and tissues 
(bulk	RNAseq),	as	well	as	of	recent	scRNAseq	methods.	We	propose	
guidelines	for	typical	 research	questions	 in	ecology	and	evolution,	
and	we	highlight	how	scRNAseq	can	enhance	the	merit	of	future	and	
existing	 bulk	 RNAseq	 datasets,	 in	 particular	when	 combined	with	
whole	body	RNAseq.

2  |  WHOLE BODY RNA SEQ FOR 
A SYSTEMIC OVERVIE W OF GENE 
E XPRESSION

Bulk	RNAseq	methods	depend	on	the	principle	that	RNA	is	isolated	
from a heterogeneous set of cells, such as whole bodies or parts 
of	it,	and	then	sequenced	in	bulk.	Whole	body	RNAseq	has	been	
especially popular in studies of small organisms (e.g. Bouvaine 
et al., 2012; Crawford et al., 2010;	 Teets	 et	 al.,	2013; Winbush 
et al., 2012), as it is cost- effective and it can be challenging to 
obtain	 sufficient	high-	quality	RNA	 from	only	a	 specific	 tissue	of	
an	individual.	As	whole	body	RNAseq	provides	an	overview	of	the	
averaged gene expression patterns across all cells within an indi-
vidual, the major advantage of this approach lies in the potential to 
provide a systemic overview of gene expression across the entire 
organism (Figure 1).	Whole	body	RNAseq	 is	 therefore	especially	
powerful when studying the evolutionary or ecological responses 
of phenotypes without a priori expectations about affected tis-
sues, cell types, or specific physiological mechanisms. For exam-
ple, studies of evolved and plastic responses underlying thermal 
adaptation have uncovered a diversity of physiological processes, 
which suggests broad systemic effects that depend on different 
tissues and cell types (e.g. Hsu et al., 2020; Kankare et al., 2016; 
Koniger & Grath, 2018; Mallard et al., 2020;	Parker	et	al.,	2021). 
In this case, focussing on specific tissues not only results in an 
incomplete analysis, but it could also potentially introduce a sub-
stantial bias if a non- representative tissue is selected, affecting 
subsequent	 interpretation.	 Nevertheless,	 whole	 body	 RNAseq	
also comes with its specific challenges and considerations, which 
we briefly discuss below.

2.1  |  Genetic heterogeneity and pooling

Depending on the size of the organism (parts of) multiple indi-
viduals	may	be	pooled	prior	to	RNAseq	 library	preparation.	 If	all	
individuals have an identical genotype and are derived from the 
same environment, pooling clearly provides a benefit because 
stochastic	 inter-	individual	 variation	 is	 reduced.	Pooling	 individu-
als	with	different	genotypes	is	frequently	done	when	genetically	
identical individuals are not available. If many genetically distinct 
individuals are pooled, a reliable and representative average gene 
expression	level	of	the	population	can	be	obtained.	The	drawback	
of this approach is that information about the heterogeneity in 
gene expression in the population, or differences in heterogene-
ity between populations, is lost. Reliable estimates of variance 
require	very	 large	population	samples,	however,	which	are	often	
not possible due to limited access to material and restrictions in 
research	budget.	We	assume	that	pooling	individuals	for	RNAseq	
approaches	comes	with	challenges	that	also	apply	for	Pool-	Seq	of	
genomic	DNA	(e.g.	Futschik	&	Schlötterer,	2010) and we propose 
that expression variation due to genetic heterogeneity warrants 
more attention in future research.
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2.2  |  Sensitivity

All	 bulk	 RNAseq	 approaches	 measure	 average	 mRNA	 abundance	
among	all	cells	 in	a	whole	body	or	specific	tissue.	Thus,	changes	af-
fecting only a small number of cells might be difficult to detect against 
the background of the rest of the body (or tissue) with no expression 
changes (Kuhn et al., 2012). For example, a comparative analysis of 
expression patterns of honey bee sting glands and digestive tract ver-
sus	whole	abdomen	demonstrated	that	81%	and	69%	of	significantly	
differentially expressed genes in these two tissues, respectively, 
were not detected as differentially expressed in the composite tissue 
(Johnson et al., 2013).	Likewise,	in	a	study	on	diabetes	in	humans,	35%	
of	eQTLs	identified	from	pancreatic	islet	data	could	not	be	detected	
when analysing whole pancreas data (Vinuela et al., 2020). In both 
cases, a plausible explanation is that some expression differences are 
limited to particular cell types, which become more difficult to detect 
when	other	cell	types	are	present	in	the	RNA	extract.

One possible solution to improve sensitivity is to increase 
either coverage or, preferentially, the number of biological rep-
licates. For example, Jaksic et al. (2020) measured whole body 
gene expression in Drosophila simulans that had been experi-
mentally evolved under either warm or cool conditions. Using a 
relatively large sample size of 20 populations (10 warm- evolved, 
5	 cool-	evolved	 and	 5	 ancestral)	 from	 which	 they	 sequenced	 a	
pooled	RNA	sample	from	the	whole	body	of	50	males	each,	they	
identified differences in gene expression in dopaminergic neu-
rons	in	the	brain.	Although	these	neurons	constitute	only	a	small	
percentage of the cells of the entire body, significant differences 
in gene expression could be identified and functionally validated 
using	 RNA	 interference	 mediated	 knockdown	 and	 pharmaco-
logical intervention (Jaksic et al., 2020). Hence, given sufficient 
power	to	detect	small	changes,	bulk	RNAseq	of	whole	bodies	can	
be a promising discovery tool even if only a subset of the cell 
population is affected.

F I G U R E  1 Advantages	and	disadvantages	of	RNAseq	approaches,	and	opportunities	for	deconvolution.	Each	RNAseq	approach,	using	
either	whole	bodies,	body	parts	or	specific	tissues	(i.e.	bulk	RNAseq),	or	single	cells	(i.e.	single-	cell	RNAseq),	has	unique	advantages	and	
disadvantages	that	make	them	more	or	less	suitable	to	address	particular	questions	in	the	fields	of	ecology	and	evolution.	Integrating	
different approaches can provide additional advantages, by harnessing the strengths of each approach. Here, we highlight deconvolution, 
by	combining	bulk	and	single-	cell	RNAseq	data,	as	a	promising	opportunity	that	has	recently	opened	up	for	ecological	and	evolutionary	
research.
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2.3  |  Masking of signals in opposite directions

Many genes have pleiotropic functions, and are expressed in multi-
ple cell types. For example, systematic studies of yeast found that 
more	 than	50%	of	 tested	mutations	 affected	 two	or	more	 organ-
ismal phenotypes (Dudley et al., 2005; Mattiazzi Usaj et al., 2020). 
Given widespread pleiotropy, in combination with transcriptional 
heterogeneity among cell types, it is conceivable that the experi-
mental conditions studied might affect gene expression in multiple 
tissues	or	cell	types,	but	in	opposite	directions.	As	bulk	RNAseq	only	
provides average expression levels of transcripts across all tissues 
and cells, such changes may partly or completely mask one another, 
essentially cancelling each other out so that no overall expression 
difference	can	be	detected	for	a	certain	gene.	Although	this	scenario	
is possible and warrants a careful interpretation of the outcomes of 
bulk	 RNAseq	 experiments,	 we	 expect	 that	 the	 exact	 cancellation	
of	expression	differences	 is	unlikely	 in	most	cases.	The	previously	
discussed comparative study on honey bees indicated that a small 
proportion (<3%) of the differentially expressed genes exhibited an 
opposite differential expression pattern in the tissue- specific sam-
ples versus the whole abdomen, which could theoretically obscure 
interpretation of the results if the expression patterns cancel each 
other out completely (Johnson et al., 2013). However, if differences 
in gene expression are only partially masked by cell type heteroge-
neity	 in	bulk	RNAseq	experiments,	 it	will	often	still	be	possible	 to	
detect these differences when a sufficiently powerful experimental 
design	(number	of	replicates	and	sequencing	depth)	is	used.

2.4  |  Allometric changes

Expression	differences	in	whole	body	RNAseq	samples	could	have	
two different causes, which are not mutually exclusive and could 
both represent adaptive responses: expression might differ within 
one or more cell types, or the relative proportion of different cell 
types in the whole body might be different. Relative size, in other 
words pleiotropy, allometry, of specific tissues (each differing in 
their gene expression profiles) can therefore be a key determinant of 
whole	body	RNAseq	results,	which	is	important	to	consider	along-
side	 transcriptional	 regulation.	 A	 frequently	 observed	 allometric	
change in evolutionary and ecological studies concerns, for example, 
the relative size of reproductive tissues. Here the allometric changes 
can be a mechanism by which an organism adapts to its environ-
ment; for example, males of polygamous species regularly increase 
testes size under increased sperm competition (Montgomery & 
Mank, 2016	and	references	therein).	A	point	of	concern	is	that	allo-
metric relationships could also lead to false negatives, when changes 
in	expression	occur	but	are	offset	by	decreases	in	tissue	size	(Abell	
et al., 2022).

Hsu et al. (2020) proposed an approach to disentangle the ef-
fects of allometry versus transcriptional regulation on expression 
levels.	They	observed	that	ovaries	of	female	flies	that	had	evolved	in	
a novel warm environment were enlarged, which made it difficult to 

draw	conclusions	on	the	evolution	of	transcriptional	regulation.	To	
overcome this limitation, Hsu et al. (2020) measured gene expression 
in gonads and carcasses of the same flies and determined a measure 
for allometric change, which was then used to correct the whole 
body	expression	data.	This	example	shows	that	whole	body	RNAseq	
alone	or	in	conjunction	with	tissue-	specific	RNAseq	can	be	a	power-
ful, unbiased approach to identify evolutionary or ecologically rele-
vant	expression	changes,	which	tissue-	specific	RNAseq	alone	might	
fail	to	identify.	Alternatively,	tissue-	specific	RNAseq	in	conjunction	
with	quantitative	estimates	of	the	relative	contribution	of	that	tissue	
between conditions (e.g. populations, environments and treatments) 
could also distinguish between regulatory evolution and allometric 
differences (Buono et al., 2021).	This	could	be	achieved	with	fluo-
rescent imaging (e.g. immunohistology) or transgenic cell labelling 
methods in combination with fluorescence- activated cell sorting. In 
either case, it is important to recognise that both allometric and gene 
regulatory mechanisms can account for observed differences in 
whole	body	RNAseq	data,	but	both	mechanisms	represent	a	genuine	
adaptive	response	that	can	be	uncovered	by	whole	body	RNAseq.

3  |  FROM SYSTEMIC TO 
HYPOTHESIS-  DRIVEN RNA SEQ

The	evolution	of	complex	body	plans	of	multicellular	organisms	and	
their functions are intricately linked to tissue- specific transcriptomic 
differentiation (Barbosa- Morais et al., 2012; Brawand et al., 2011; 
Fukushima	&	Pollock,	2020; Mantica et al., 2024). For some types 
of	 research	questions,	a	defined	morphological	 structure	or	 tissue	
may be of interest, in particular when specific target tissues respon-
sible for the adaptive mechanism(s) have already been identified. In 
these	cases,	RNAseq	of	specific	 tissues	and	cell	 types	may	be	the	
most logical step because the smaller number of different cell types 
increases the power to detect relevant gene expression differences 
(Figure 1).	Also,	complex	phenotypic	adaptations	can	depend	on	di-
vergent transcriptional changes in different tissues, which might be 
missed	when	using	a	whole	body	RNAseq	approach.	For	example,	
Salvador-	Martinez	 et	 al.	 (2018) analysed spatial gene expression 
patterns from different D. melanogaster embryonic anatomical struc-
tures, which indicated that genes expressed in the digestive system 
and ectoderm- derived structures are under selective constraint, 
while genes expressed in the germ line showed high rates of adap-
tive substitution.

The	 key	 prerequisite	 for	 a	 successful	 tissue-	specific	 RNAseq	
analysis is sufficient biological knowledge to select the relevant 
tissues	 for	 the	question	of	 interest.	An	example	comes	 from	anal-
yses of post- mating gene expression changes in female fruit flies, 
triggered by the male ejaculate. Various studies have focussed on 
detecting differential expression in the female reproductive tract 
and the ovaries, which is extensive and can even be specific for dis-
tinct sub- tissues (e.g. Kapelnikov et al., 2008; Veltsos et al., 2022). 
At	 the	 same	 time,	 receptors	 for	 sex	 peptide,	 one	of	 the	most	 im-
portant components of the ejaculate triggering female post- mating 
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effects, have been found throughout the female body, including 
in	the	abdominal	ganglia	and	the	brain.	This	 indicates	that	key	tar-
gets of sex peptide are located in tissues outside the female repro-
ductive system (e.g. Gioti et al., 2012;	Pasquier	&	Robichon,	2022; 
Yapici	et	al.,	2008)	and	would	be	missed	by	a	tissue-	specific	RNAseq	
study. Hence these examples illustrate the power of a combined 
application	of	whole	body	and	 tissue-	specific	RNAseq.	As	with	all	
bulk	 RNAseq	 approaches,	 tissue-	specific	 RNAseq	 estimates	 gene	
expression of mixed cell types, and hence the technical limitations 
discussed	above,	also	apply	to	tissue	specific	RNAseq,	although	to	
a lesser extent due to lower cellular heterogeneity within tissues as 
compared to whole bodies.

4  |  SINGLE-  CELL RNA SEQ: C APTURING 
GENE E XPRESSION DIFFERENCES AMONG 
CELL S

Recent	 single-	cell	 sequencing	 methods	 (scRNAseq)	 can	 address	
some	of	the	limitations	of	bulk	RNAseq	by	measuring	gene	expres-
sion	 in	 large	 numbers	 of	 individual	 cells	 (e.g.	 Alfieri	 et	 al.,	 2022; 
Nguyen	et	al.,	2018; Wang, He, et al., 2021). By revealing the het-
erogeneity in expression between cells, as well as variation in tran-
scriptional profiles among species, populations and experimental 
conditions,	 scRNAseq	 has	 great	 potential	 to	 uncover	mechanisms	
underpinning ecologically or evolutionarily salient phenotypic vari-
ation (Figure 1).	For	instance,	scRNAseq	was	recently	applied	to	fat	
bodies in fruit flies to uncover the cellular mechanisms underlying 
the trade- off between reproduction and immunity. It was demon-
strated that limitations in the capacity of a specific subset of fat 
body cells to produce proteins constrains the immune response in 
reproducing females (Gupta et al., 2021). Despite its promises, scR-
NAseq	 comes	 with	 challenges	 that	 warrant	 careful	 consideration	
during the project planning phase.

4.1  |  Sample availability and preparation

A	typical	scRNAseq	workflow	requires	access	to	at	 least	50,000	
live	cells	(Pollen	et	al.,	2014) and the availability of fresh material 
is often limited in ecological or evolutionary studies that deal with 
field	samples.	Potential	solutions	could	be	the	sequencing	of	sin-
gle	nuclei	(snRNAseq),	which	can	be	isolated	from	flash	frozen	tis-
sue samples to allow some level of tissue conservation (Denisenko 
et al., 2020; Wiegleb et al., 2022).	Similarly,	simultaneous	cell	dis-
sociation and fixation has been applied to preserve tissue samples 
for	scRNAseq	(Garcia-	Castro	et	al.,	2021). However, obtaining suf-
ficient	material	for	small	organisms	or	tiny	tissue	samples	requires	
pooling of multiple individuals, which potentially introduces bias 
due	 to	genetic	heterogeneity	 (see	Section	2.1	 above).	As	 the	ef-
ficiency of capturing different cell types from a heterogeneous tis-
sue varies considerably due to differences in cell size or cell shape, 
technical bias in cell type composition is expected (Darmanis 

et al., 2015;	Yim	et	al.,	2022).	Thus,	accurate	and	repeatable	out-
comes depend critically on the workflow used for sample prepara-
tion. Optimal parameters are highly tissue-  and species- specific, 
which may necessitate laborious and often costly empirical optimi-
sation,	especially	for	non-	model	organisms	(Svensson	et	al.,	2018).

4.2  |  RNA content and gene coverage

Each	individual	cell	comprises	very	little	RNA	per	gene	resulting	in	
high	sampling	variation	and	thus	uncertainties	for	transcript	quan-
tification.	This	limitation	means	that,	if	no	expression	of	a	gene	is	
detected in a certain cell, it is almost impossible to distinguish be-
tween a biological explanation (i.e. a gene is indeed not expressed) 
and	a	technical	one	(i.e.	no	reads	due	to	inefficient	sampling).	The	
occurrence of such null data (also called dropout events) is much 
higher	 in	 scRNAseq	 compared	 to	 bulk	 RNAseq	 data	 (Bacher	 &	
Kendziorski, 2016).	scRNAseq	methods	differ	significantly	 in	the	
number	of	genes	that	can	unequivocally	be	detected	per	cell	and	
the number of cells that can be analysed (Ziegenhain et al., 2017). 
For	 instance,	the	Smart-	Seq2	method	can	detect	many	genes	 in-
cluding low abundance transcripts in a few hundred cells in one 
run, while the 10× genomics method can process up to 10,000 
cells per run, but with a higher noise level for low abundance tran-
scripts (Wang, He, et al., 2021). While novel methods based on 
multiple rounds of in- cell barcoding (i.e. combinatorial indexing; 
e.g.	 split-	pool	 ligation-	based	 transcriptome	 sequencing	 (SPLiT-	
seq))	(Cao	et	al.,	2019; Conte et al., 2023; Rosenberg et al., 2018) 
may	mitigate	 this	 trade-	off	 in	 the	 near	 future,	 scRNAseq	 appli-
cations	are	still	 limited	for	comparative	transcript	quantification.	
This	is	especially	important	to	consider	if	the	expected	expression	
differences are rather small (Zhang et al., 2020), which is often the 
case in ecological or evolutionary research, for example, for stud-
ies examining environmental effects on individuals of the same 
species.

4.3  |  Need for well- annotated reference genomes

The	commonly	used	scRNAseq	methods	rely	on	sequencing	the	3-	
prime ends of captured fragments (Ziegenhain et al., 2017), which 
can only be linked to particular genes if a well- annotated reference 
genome	 is	 available.	 Moreover,	 in	 snRNAseq	 nascent	 RNA	 is	 se-
quenced	 as	well	 as	mature	mRNA,	 resulting	 in	 about	 one	 quarter	
of all reads originating from introns (Grindberg et al., 2013).	Those	
reads	can	only	be	unequivocally	assigned	to	a	gene	if	the	reads	are	
mapped against a well- annotated genome, which is often unavailable 
for non- model systems used in ecological or evolutionary research. 
This	 is	 in	contrast	 to	bulk	RNAseq	data,	which	covers	entire	 tran-
scripts facilitating the de novo assembly of reference transcriptomes 
for	subsequent	transcript	quantification	(Grabherr	et	al.,	2011; Haas 
et al., 2013; Raghavan et al., 2022), avoiding the need for a reference 
genome. Hence, differential gene expression analyses based on bulk 
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RNAseq	are	readily	applicable	for	non-	model	organisms	without	the	
need for a reference genome.

In light of the outlined technical limitations and significantly 
higher	costs,	we	think	that	scRNAseq	has	not	yet	reached	the	re-
quired	maturity	for	a	routine	application	in	most	research	in	ecol-
ogy and evolution. In the following section, however, we discuss 
how	single	cell	expression	atlases	obtained	by	shallow	sequencing	
of a large number of cells can be used to enhance the interpreta-
tion	of	existing	and	future	whole	body	or	tissue-	specific	RNAseq	
data.

5  |  DECONVOLUTION: MERGING T WO 
WORLDS

Biological interpretation of gene expression data from a heteroge-
neous	 cell	 population	 is	 the	biggest	 challenge	 for	 bulk	RNAseq.	To	
overcome this problem, various approaches to assess whether differ-
entially expressed genes are enriched for certain molecular or bio-
logical functions (i.e. gene ontology (GO) enrichment) (Gene Ontology 
et al., 2023;	Thomas	et	al.,	2022) or for specific signalling pathways 
(i.e. pathway enrichment) (Reimand et al., 2019) are routinely applied. 
Such	 functional	 enrichment	 analyses	 can	 help	 to	 extract	 biologi-
cally meaningful hypotheses or pinpoint candidate cell types or tis-
sues from the often large numbers of differentially expressed genes 
(e.g.	Stanford	et	al.,	2020).	These	analyses	can	readily	be	applied	 in	
many model organisms for which databases with gene- to- function 
information are available. For instance, a study on the evolution of 
gene expression variance in flies used this approach to show that a 
small set of genes with a significant loss in expression variance was 
over- represented among genes with catabolic function and expres-
sion in the gut, suggesting that gene expression evolved in response 
to	 a	 less	 variable	 diet	 in	 the	 laboratory	 (Lai	 &	 Schlotterer,	 2022). 
Similarly,	Green	et	al.	(2022) identified differentially expressed genes 
in	response	to	copper	exposure	using	whole	body	RNAseq	of	natu-
ral Drosophila melanogaster	 populations.	 A	 GO	 enrichment	 analysis	
identified the midgut as a candidate tissue and established a link be-
tween the preservation of gut acidity and tolerance to copper (Green 
et al., 2022). However, to leverage such functional databases for non- 
model organisms, a solid gene orthology assignment must be estab-
lished prior to the enrichment analyses. While functional enrichment 
analyses are often the only way to extract biological information from 
gene lists, they depend on current knowledge, which is inherently in-
complete	and	biased	(Dessimoz	&	Skunca,	2017).

scRNAseq	data	provides	exciting	new	opportunities	 to	extract	
biological information from lists of differentially expressed genes ob-
tained	from	bulk	RNAseq	approaches.	The	assessment	of	transcrip-
tional profiles of distinct cell types has resulted in the development 
of single cell atlases across tissues, conditions, developmental stages 
(e.g.	Allen	et	al.,	2020;	Brunet	Avalos	et	al.,	2019; Chen et al., 2021; 
Corrales et al., 2022; Hu, Comjean, et al., 2021;	 Hu,	 Tattikota,	
et al., 2021; Karaiskos et al., 2017; Li et al., 2022;	Najle	et	al.,	2023; 
Papatheodorou	et	al.,	2020;	Suo	et	al.,	2022;	Wang,	Sun,	et	al.,	2021; 

Xu et al., 2021) and even for entire organisms (Li et al., 2022).	Such	
single cell atlases can directly be used to ask whether genes identi-
fied	 in	bulk	RNAseq	approaches	may	be	expressed	 in	 specific	 cell	
types. Moreover, deconvolution methods have been established, 
which estimate the relative contribution of different cell types in 
bulk	RNAseq	datasets	(Mohammadi	et	al.,	2017; Venet et al., 2001). 
When information about the gene expression profile of each cell 
constituting	a	bulk	RNAseq	sample	is	available,	it	is	possible	to	de-
compose the average gene expression value into the expression of 
individual cell types that share an expression profile (Figure 1). Most 
expression	deconvolution	methods	require	prior	information	about	
cell- type specific marker genes (Zaitsev et al., 2019) or expression 
profiles	 encompassing	 multiple	 genes	 (Avila	 Cobos	 et	 al.,	 2018, 
2020), whose expression level is directly correlated with the abun-
dance of that cell type in a heterogeneous tissue. While such cell- 
type specific marker genes or expression profiles are typically 
identified based on extensive prior knowledge in model organisms 
(e.g.	spatial	expression	data	and	functional	assays),	scRNAseq	now	
allows the identification of such markers for many non- model sys-
tems	too	(e.g.	Andrade	Barbosa	et	al.,	2021).

Expression deconvolution has successfully been applied to 
estimate the dynamics of cell type composition in evolving yeast 
populations exposed to environmental stress, the induction of 
extensive	DNA	damage	and	during	sexual	reproduction	(i.e.	spor-
ulation) (Lu et al., 2003). In another eco- evolutionary study, a 
scRNAseq	 analysis	 of	 three	 populations	 of	 three-	spined	 stickle-
back fish (Gasterosteus aculeatus) that exhibit natural variation in 
parasite resistance revealed differences in the composition and 
cell- type specific expression profiles of immune cells. Moreover, 
immune cell- type specific marker genes identified using the 
scRNAseq	data	were	used	 to	 re-	analyse	previous	 tissue-	specific	
RNAseq	datasets	of	F2 crosses to show that the response of gene 
expression in antigen- presenting cells to infection is most likely 
the result of regulatory variation and not due to an increase in 
the number of antigen- presenting cells (Fuess & Bolnick, 2023). 
Combining	single	cell	expression	atlases	with	bulk	RNAseq	data-
sets to estimate the expression profiles of individual cell types 
thus provides an important extra layer of biological insight that can 
be	obtained	from	whole	body	or	tissue-	specific	RNAseq	datasets.	
We argue that the impact of deconvolution methods is largest for 
complex tissues or even whole bodies, and can mitigate some of 
the	drawbacks	associated	with	bulk	RNAseq	approaches,	 as	dis-
cussed	above.	As	 such,	 the	 combination	of	whole	body	RNAseq	
with	scRNAseq	has	the	potential	to	bring	together	the	best	of	both	
worlds by combining a systemic overview of gene expression with 
cell- type specific information.

6  |  CONCLUSIONS AND 
RECOMMENDATIONS

In light of such exciting opportunities, but also the challenges of 
different	RNAseq	approaches,	 it	 is	often	not	easy	to	decide	which	
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strategy	is	best	suited	for	a	certain	research	question.	The	first	im-
portant consideration is the phenotype that is being studied. For 
instance, if one wants to identify genes underlying the evolution of 
the morphology of a specific organ, such as the formation of pigment 
spots on insect wings (Hanly et al., 2019; Wee et al., 2023) or the size 
and shape of beetle horns (Emlen et al., 2007; Ohde et al., 2018) it is 
logical	to	restrict	RNAseq	analyses	to	that	specific	tissue.	Similarly,	
the evolution of many behavioural traits is for an important part 
likely linked to variation in the composition and function of the cen-
tral	nervous	system	(CNS).	Therefore,	CNS-	specific	RNAseq	experi-
ments will be powerful to identify meaningful candidate genes (even 
though	 the	CNS	 itself	 is	 a	 complex	 tissue	with	multiple	 cell	 types	
performing distinct roles). We caution, however, that often pheno-
types	cannot	be	restricted	to	single	tissues.	A	nice	example	for	this	
challenge comes from phenotypes related to the stress response 
(Horvath et al., 2023) or life history (Rodrigues et al., 2021) of an 
organism, where more systemic transcriptomic changes involving 
multiple organs and tissues are expected. In such cases, whole body 
RNAseq	analyses	could	limit	the	bias	due	to	missing	biologically	im-
portant signals.

A	 second	 important	 consideration	 is	 the	 level	 of	 prior	 knowl-
edge, available tools and access to annotated genomes of the or-
ganism of study. While extensive mechanistic details are publicly 
available for many organs in model organisms, such data are often 
missing for non- model systems. If no hypotheses about specific tis-
sues or cell types underlying a certain phenotypic trait are available, 
a	whole	body	bulk	RNAseq	approach	provides	a	systemic	and	com-
prehensive overview of potential gene expression changes. If puta-
tive target tissues have been identified based on prior whole body 
expression data or based on similar phenotypes in other models, 
tissue-	specific	RNAseq	has	the	potential	to	assess	variable	expres-
sion of genes with minute differences in expression or lower overall 
expression	levels,	which	may	be	missed	in	whole	body	RNAseq.

A	 third	 consideration	 is	 the	 opportunity	 to	 combine	 different	
RNAseq	approaches	 to	 strengthen	 the	biological	 interpretation	of	
RNAseq	 data,	while	 diminishing	 the	 inherent	weaknesses	 of	 each	
individual	 approach.	 The	 combination	 of	 whole	 body	 RNAseq	 to	
establish first hypotheses followed by integration of tissue- specific 
expression information has been successfully applied in ecological 
and evolutionary research to identify mechanisms of phenotypic 
variation	 (Abbott	et	 al.,	2020;	 Lai	&	Schlotterer,	2022). Moreover, 
with increasing availability of single- cell expression data for model 
organisms and non- model organisms alike, existing and future bulk 
RNAseq	data	can	now	be	(re-	)interpreted	to	gain	novel	insights	into	
tissue-  and cell- type specific gene expression divergence. Most 
importantly, expression deconvolution methods have a great po-
tential to distinguish between regulatory evolution and allometric 
differences,	respectively,	observed	in	bulk	RNAseq	data.	We	argue	
that future eco- evolution research would profit from a community 
driven development of tissue databases and single cell atlases for 
entire small organisms or specific tissues to facilitate the identifi-
cation	 of	 cell-	type	 specific	 or	 condition-	dependent	markers.	 Such	
reference databases and markers will allow a better interpretation 

and	integration	of	future	bulk	RNAseq	data,	which	is	still	the	best	ac-
cessible	and	often	most	informative	technology	for	most	questions	
in eco- evolution research.

In	conclusion,	we	argue	that	both	bulk	RNAseq,	whether	whole	
body,	body-	part	or	 tissue-	specific,	and	scRNAseq	have	unique	ad-
vantages	and	disadvantages.	The	best	choice	of	RNAseq	approach	
depends strongly on the model system, prior knowledge of the phe-
notype, and the biological level of interest (e.g. gene regulatory net-
works, physiology, allometry or phylogenies). Integrating different 
RNAseq	methods	allows	to	harness	the	strengths,	versatility	and	op-
portunities	of	each	approach	to	study	research	questions	in	ecology	
and evolution.
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