
1

ON THE DIFFERENCE OF THE ENHANCED POWER GRAPH
AND THE POWER GRAPH OF A FINITE GROUP

SUCHARITA BISWAS, PETER J. CAMERON, ANGSUMAN DAS,
AND HIRANYA KISHORE DEY

Abstract. The difference graph D(G) of a finite group G is the difference of
the enhanced power graph of G and the power graph of G, where all isolated
vertices are removed. In this paper we study the connectedness and perfectness
of D(G) with respect to various properties of the underlying group G. We also
find several connections between the difference graph of G and the Gruenberg-
Kegel graph of G. We also examine the operation of twin reduction on graphs,
a technique which produces smaller graphs which may be easier to analyse.
Applying this technique to simple groups can have a number of outcomes, not
fully understood, but including some graphs with large girth.

1. Introduction

The study of graphs related to various algebraic structures has been a topic of
increasing interest during the last two decades. This kind of study helps us to (1)
characterize the resulting graphs, (2) characterize the algebraic structures with
isomorphic graphs, and (3) also to realize the interdependence between the alge-
braic structures and the corresponding graphs. Many different types of graphs,
including among many others the commuting graph [6], generating graph [21],
power graph [15, 28], enhanced power graph [1, 3, 4], and comaximal subgroup
graph [18], have been introduced to explore the properties of algebraic structures
using graph theory. The concept of a power graph was introduced in the context
of semigroup theory by Kelarev and Quinn [27].

Definition 1.1. Let G be a group. The power graph Pow(G) is an undirected
simple graph defined on G as the set of vertices, in which two distinct vertices a
and b are adjacent if a is a power of b or b is a power of a, i.e., a ∈ 〈b〉 or b ∈ 〈a〉.

The enhanced power graph of a group was introduced by Alipour et al. in [1]
as follows.

Definition 1.2. Let G be a group. The enhanced power graph EPow(G) is an
undirected simple graph defined on G as the set of vertices and two distinct
vertices a and b are adjacent if there exists c ∈ G such that both a and b are
powers of c, i.e., a, b ∈ 〈c〉, i.e., if 〈a, b〉 is a cyclic group.
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Recently, in a survey, Cameron [9] introduced various open questions on graphs
defined on groups. One of them is regarding the difference of enhanced power
graph and power graph of a group.

From Proposition 2.6 in [9], we see that both Pow(G) and EPow(G) are graphs
on same vertex set G and E(Pow(G)) ⊆ E(EPow(G)). EPow(G)−Pow(G) denotes
the graph with G as the set of vertices and two vertices a and b are adjacent if
they are adjacent in EPow(G) but not adjacent in Pow(G). Motivated by Section
3.2 of [9], we define the following graph;

Definition 1.3. Let G be a group. The difference graph D(G) is defined to be
the graph EPow(G)− Pow(G), with isolated vertices removed.

Given this, we need to understand the set of isolated vertices which are re-
moved, that is, vertices which have the same neighbourhoods in Pow(G) and
EPow(G). This is done in the next two sections, where we also note a connection
between D(G) and the Gruenberg–Kegel graph of G. (This graph, sometimes
called the prime graph, is connected with several graphs defined on G, as dis-
cussed in the survey [10].)

The next main result of this work shows the universality of the difference
graph D(G). Theorem 4.7 shows that given any finite graph Γ, there exists a
finite abelian group G such that Γ is an induced subgraph of D(G).

We next concentrate on the connectedness of the difference graph. There have
been many works on connectivity of various graphs in recent times. The authors
Aalipour et al. in [1, Question 40] asked about the connectivity of power graphs
when all the dominating vertices are removed. Later, Cameron and Jafari [11]
answered this question for power graphs and Bera et.al. [4] answered this question
for enhanced power graphs. Regarding connectedness of D(G), our main results
are:

• If G is a finite group which is not a p-group and with non-trivial center,
then D(G) is connected and diam(D(G)) ≤ 6. (This is Theorem 5.1.)
When G is nilpotent and not a p-group, we showed that the diameter is
≤ 4.
• The difference graph of the symmetric group Sn is connected if and only

if n ≥ 8 (Theorem 6.1) and the difference graph of the alternating group
An is connected for n ≥ 12. (Theorem 6.10)
• If G1, G2, G3 are three finite nontrivial groups such that G1 ×G2 ×G3 is

not a p-group, then D(G1 ×G2 ×G3) is connected. (Theorem 7.1)
• D(Dn) is a connected graph if and only if n is not a prime power. (This

is Theorem 5.5). D(Dn ×Dm) is disconnected if and only if n and m are
powers of same odd prime. (Theorem 7.4)

Moving on, we are also interested in the perfectness of the difference graph
D(G). The motivation for studying the perfectness stems from the fact that
the power graph of a finite group is always perfect (Theorem 5, [2]) but the
question that for which finite groups, the enhanced power graph is perfect is still
unresolved, although the chromatic number of the enhanced power graph is now
known [13], and these graphs are weakly perfect.

In this context we prove the following results:
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• D(Zn) is perfect. (Theorem 9.2)
• Let G be a group of order pq, p2q, p2q2, p3q or pqr, where p, q, r are distinct

primes. Then D(G) is perfect. (Theorem 9.4)
• We also classify the finite nilpotent groups G for which D(G) is perfect.

(Theorem 9.6)
• We give several further examples of groups whose difference graphs are per-

fect, and others whose difference graphs are imperfect, including a number
of finite simple or almost simple groups. Here are some examples.

Perfect difference graph: Sn (n ≤ 7), An (n ≤ 8), PSL(2, q) (q ≥ 4),
Sz(q) (q ≥ 8), PSU(3, q) for q = 3, 4, 5, all simple groups smaller than
J1 (the first Janko sporadic group);

Imperfect difference graph: Sn (n ≥ 8), An (n ≥ 9), J1 (and all
sporadic groups containing J1), groups of Lie type of rank at least 3
over the field of q elements if q − 1 has at least three distinct prime
divisors.

The final section concerns the operation of twin reduction, which can produce
smaller graphs while preserving some properties of interest; we apply this to the
difference graphs of several simple or almost simple groups.

2. Isolated vertices

It is proved in Aalipour et al. [1] that the power graph and enhanced power
graph of G are equal if and only if every element of G has prime power order.
Groups with these properties are known as EPPO groups. After pioneering work
by Higman [25] (who classified the soluble ones in the 1950s) and Suzuki [35] (who
classified the simple ones in the 1960s), Brandl [5] gave a description of EPPO
groups in 1981. The paper was not well-known, and several authors published
similar results. An accessible account appears in the survey [10].

EPPO groups are those groups G for which D(G) has no edges. The next
obvious question is: Which are the isolated vertices which are deleted in the
construction of D(G)? To simplify the discussion, in this section and the next
we usually consider the graph D(G) before deleting isolated vertices.

For any element a in a group G, o(a) denotes the order of the element a in the
group G.

Proposition 2.1. Let G be a group with order greater than 1. Then the non-
identity element g is an isolated vertex in D(G) if and only if either 〈g〉 is a
maximal cyclic subgroup of G, or every cyclic subgroup of G containing g has
prime-power order.

Proof. If 〈g〉 is a maximal cyclic subgroup, and g and h are joined in D(G),
then 〈g, h〉 is cyclic, so h ∈ 〈g〉, so g and h are joined in the power graph, a
contradiction.

If every cyclic subgroup of G containing g has prime power order, and g and h
are joined in D(G), then 〈g, h〉 has prime power order, whence g and h are joined
in the power graph, again a contradiction.

Conversely suppose that 〈g〉 is properly contained in a cyclic subgroup 〈h〉 of
G whose order is not a prime power. Then there is a prime p such that the p-part
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of o(h) is greater than that of o(g). We may also assume that, if o(g) is a power
of a prime q, then p 6= q. Let k be an element in 〈h〉 whose order is the p-part of
o(h). Then g and k are joined in the enhanced power graph but not in the power
graph, so they are joined in D(G). �

Since every finite group has a maximal cyclic subgroup, we see that the set of
isolated vertices which are deleted in the definition is non-empty.

3. Connection with the Gruenberg–Kegel graph

The Gruenberg–Kegel graph (or GK-graph, for short) of a finite group G is the
graph whose vertices are the prime divisors of |G|, with primes p and q joined by
an edge if and only if G contains an element of order pq.

This was introduced by Gruenberg and Kegel in their study of the integral
group ring of a finite group, and showed that the augmentation ideal is decom-
posable if and only if the GK-graph is disconnected. They proved a structure
theorem for graphs with disconnected GK-graph, but did not publish it; a proof
was given by Gruenberg’s student Williams [36], and refined by subsequent au-
thors. We note a connection with the preceding section:

Assertion 3.1. The finite group G is an EPPO group if and only if its GK graph
has no edges.

We omit the proof as it is clear.
The GK graph of a finite group has several connections with various graphs

defined on groups (some of these are listed in [10]). We can add another one here.

Theorem 3.2. Let G be a finite group whose order is divisible by the prime p.
Then the following are equivalent:

(a) every element of order p is an isolated vertex in D(G);
(b) every element of p-power order is an isolated vertex in D(G);
(c) p is an isolated vertex in the GK graph of G;
(d) the centralizer of every element of order p is a p-group.

Proof. If (a) fails, then some element of order p is contained in a cyclic subgroup
whose order is not a power of p, and hence contains an element of order q 6= p;
so (c) and (d) also fail. If (a) is true, then no element of order p can commute
with any element of order coprime to p, so (b), (c) and (d) hold also. Moreover,
clearly (b) implies (a). �

Groups satisying (d) of the above theorem have had a lot of attention, especially
in the case p = 2, where they are called CIT groups (the centralizer of an invo-
lution is a 2-group). The simple CIT groups were determined by Suzuki [34, 35].
For odd p, when such groups are known as Cpp groups, Higman and his students
have a number of results, for some of which we refer to [26, 10]. In particular,
the non-solvable C33 groups were classified in [33], and the C55 groups in [19].

Theorem 3.3. Let G be a finite group which is not of prime power order, and
suppose that D(G) is connected. Then the Gruenberg–Kegel graph of G is con-
nected, apart from possibly some isolated vertices.
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Proof. Let {g, h} be an edge of D(G). Then g and h are contained in a cyclic
group, and neither of o(g) and o(h) divides the other. So there is a prime p
dividing o(g) to a higher power than o(h), and a prime q dividing o(h) to a
higher power than o(g). Put g′ = go(g)/p and h′ = ho(h)/q. Then g′ has order p, h′

has order q, and {p, q} is an edge in the GK graph of G.
Now let (g, h, k) be a path of length 2 in D(G). Then there are elements g′

and h′ of orders p and q as in the above paragraph, and elements h′′ and k′′ of
prime orders r and s so that {h′′, k′′} is an edge of D(G). If r = q then we can
assume that h′ = h′′ and we have a path of length 2; otherwise, {h′, h′′} is an
edge of D(G), since h′, h′′ ∈ 〈h〉. Thus we can replace the path of length 2 by a
walk of length 2 or 3 all of whose vertices have prime order; their orders are the
vertices of a walk in the GK graph.

Now suppose that D(G) is connected. Choose two primes p and q which divide
|G|, and take elements x and y of orders p and q respectively. We may assume that
x and y are not isolated in D(G) (If they are isolated, then their corresponding
orders are isolated vertices in GK). By hypothesis, there is a path from x to y,
which by the previous construction gives us a walk from p to q in the GK graph.
So the GK graph is connected. �

We note that the converse of this result is false. For example, consider the
group G = S3 × S3. The GK graph has two vertices, the primes 2 and 3, joined
by an edge. The vertices of D(G) are the non-identity elements of the two direct
factors, and the graph consists of a complete bipartite graph on the elements of
order 2 in the first factor and those of order 3 in the second, and another complete
bipartite graph where the roles of the two factors are reversed.

4. Independence Number, Clique Covering Number and
Universality

We recall a few results and prove some lemmas that will be crucial in the
forthcoming sections.

4.1. Cyclic groups. Suppose that G = Zn, the cyclic group of order n. Then
the enhanced power graph of G is complete, and so D(G) is the complement of
the power graph. We can use this to read off some parameters of D(G), using
results from [28, Section 8.2].

• The independence number and clique cover number of D(G) are equal to
the clique number and chromatic number of Pow(G). These numbers are
equal, since Pow(G) is perfect, and the common value is given by f(n),
where f is defined by the recursion

f(n) =

{
1 if n = 1,

φ(n) + f(n/p) if n > 1,
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where φ is Euler’s totient and p is the smallest prime divisor of n. It
satisfies φ(n) ≤ f(n) ≤ cφ(n), where

c =
∑
n≥0

n∏
i=1

1

pi − 1
,

where p1, p2, . . . are the primes in order; so c = 2.6481017597 . . . . (We note
that these values include the isolated vertices; the number of these should
be subtracted to get the values in the graph D(G) as we have defined it.)
• The clique number and chromatic number of D(G) are equal to the inde-

pendence number and clique cover number of Pow(G), which are equal,
and equal to the size of the largest antichain of divisors of n, as we discuss
later.
• D(G) is perfect. (This follows from the weak perfect graph theorem of

Lovász [29].)

See [28, 13] for proofs and further details.

4.2. Commuting elements and nilpotency.

Proposition 4.1. A finite group G is nilpotent if and only if for all x, y ∈ G
with gcd(o(x), o(y)) = 1 we have xy = yx.

We omit the proof as it is straightforward.

Proposition 4.2 ([4], Lemma 2.5). Let G be a finite group and let a, b be non-
identity elements of G such that ab = ba and gcd(o(a), o(b)) = 1. Then a ∼ b in
D(G).

From the above two propositions, we have the following corollary

Corollary 4.3. In a finite nilpotent group G, if gcd(o(x), o(y)) = 1, then x ∼ y
in D(G).

Lemma 4.4. Let H be a subgroup of a group G. Then D(H) is an induced
subgraph of D(G).

Proof. If the statements “y is a power of x” and “〈x, y〉 is cyclic” are true in G
then they are true in any subgroup of G containing x and y. �

Proposition 4.5. Let p be a prime. Then the set of elements of p-power order
in D(G) contains no edges.

Proof. Suppose that {x, y} is an edge, where both x and y have prime power
order. Then x and y are contained in a cyclic group of prime power order, so one
is a power of the other, a contradiction. �

Lemma 4.6. Let G be a group and x ∈ G be a (non-isolated) vertex in D(G).

(a) If o(x) = pα for some prime p, then there exists a prime q(6= p) and y ∈ G
such that o(y) = qβ and x ∼ y in D(G).

(b) If o(x) is not a prime power, then there exists a prime p and y ∈ G such
that o(y) = pα and x ∼ y in D(G).
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Proof. As x is not isolated, from Proposition 2.1 we have that 〈x〉 is not a maximal
cyclic subgroup and not every cyclic subgroup of G containing x is of prime-power
order. Therefore there exists a cyclic subgroup H of G containing x and which
is not of prime-power order. Hence H must contain an element y of order qβ for
some prime q and clearly, x ∼ y. If o(x) is pα, we will of course get such a y
where p 6= q. This completes the proof. �

4.3. Universality.

Theorem 4.7. The class of difference graphs of groups is universal: that is,
given any graph Γ, there exists a finite abelian group G such that Γ is an induced
subgraph of D(G).

Proof. The proof is by induction on the number of vertices of Γ. For a graph with
a single vertex, it is obvious. Assume that the result holds for all graphs with
n− 1 vertices. Now let Γ be a graph with vertex set {1, 2, · · · , n}, and Γ′ be its
induced subgraph on the vertices {1, 2, . . . , n − 1}. From induction hypothesis,
let ϕ be an isomorphism from Γ′ to an induced subgraph of D(G), for a finite
abelian group G.

Let p be a prime not dividing the order of G, and let H = 〈a, b〉 be an el-
ementary abelian group of order p2. Consider the group G × H and the map
ϕ̃ : Γ→ G×H given by

ϕ̃(i) =

 (ϕ(i), a) if i < n and (i, n) /∈ E(Γ)
(ϕ(i), e′) if i < n and (i, n) ∈ E(Γ)

(e, b) if i = n

where e, e′ are the identity elements of the groups G and H respectively.
Since p - |G|, for any z ∈ G we have 〈(z, e′), (e, b)〉 = 〈(z, e′)〉×〈(e, b)〉, which is

cyclic and not generated by either element. So the embedding of {1, 2, · · · , n−1}
given by the restriction of ϕ̃ is still an isomorphism to an induced subgraph.
Moreover, 〈(ϕ(i), e′), (e, b)〉 is cyclic while 〈(ϕ(i), a), (e, b)〉 is not, so we have the
correct edges from (e, b) to the other vertices, and the result is proved. �

5. When G has non-trivial center

In this section, we deal with D(G) when G has a non-trivial center. If G is a
finite p-group, then its every cyclic subgroup has prime power order and hence
by Theorem 3.2, EPow(G) = Pow(G), i.e., D(G) is the null graph. So, we focus
on non p-groups.

Theorem 5.1. Let G be a finite group which is not a p-group. If G has non-trivial
center, then D(G) is connected and diam(D(G)) ≤ 6.

Proof. As |Z(G)| > 1, there exists a prime p such that p | |Z(G)|. Thus there
exists z ∈ Z(G) with o(z) = p. We show that any vertex in D(G) is joined by
a path to z. Let x ∈ V (D(G)). Then by Lemma 4.6, there exists y ∈ V (D(G))
such that x ∼ y and o(y) = qα. If p 6= q, we have x ∼ y ∼ z. If p = q, as
y ∈ V (D(G)), again by Lemma 4.6, there exists a prime r 6= p and an element
y′ ∈ V (D(G)) such that y ∼ y′ and o(y′) = rβ. Thus x ∼ y ∼ y′ ∼ z, i.e.,
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d(x, z) ≤ 3. Similarly, for another vertex x′, d(x′, z) ≤ 3. (Note that z is same in
both the cases) Hence for two arbitrary vertices x, x′, we have d(x, x′) ≤ 6 �

Remark 5.2. The bound in the above theorem is tight. Take G = Z7oZ12 (GAP
ID: (84,1)) [20]. It is a non-nilpotent, super-solvable group with |Z(G)| = 2 and
diam(D(G)) = 6. If G is a finite nilpotent group which is not a p-group, then G
has a non-trivial center, and as a result, by Theorem 5.1, D(G) is connected and
diam(D(G)) ≤ 6. However, for nilpotent groups this bound can be improved to
4.

Theorem 5.3. If G is a finite nilpotent group which is not a p-group, then D(G)
is connected and diam(D(G)) ≤ 4.

Proof. Let π(G) denote the set of prime divisors of |G|. As G is a not a p-
group, |π(G)| ≥ 2. Again, as G is a finite nilpotent group, G is the direct
product of its Sylow subgroups, say P1, P2, . . . , Pk, where k ≥ 2. Also, Z(G) =
Z(P1)× Z(P2)× · · · × Z(Pk), i.e., |Z(G)| has atleast two distinct prime factors.

Let x, x′ ∈ V (D(G)). Then by Lemma 4.6, there exists y, y′ ∈ V (D(G)) such
that x ∼ y, x′ ∼ y′ and o(y) = pα, o(y′) = qβ for primes p and q. If p 6= q, then by
Corollary 4.3, y ∼ y′ and d(x, x′) ≤ 3. If p = q, as |Z(G)| has atleast two distinct
prime factors, there exists an element z ∈ Z(G) of prime order r(6= p) such that
y ∼ z ∼ y′. In this case, we have d(x, x′) ≤ 4. �

Remark 5.4. The bound in the above theorem is strict: Take G = Z4×Z4×Z6.
Then using GAP it can be checked that diam(D(G)) = 4 and (0, 2, 4), (2, 2, 4)
are two antipodal vertices in D(G).

Theorem 5.5. Let Dn be the dihedral group of order 2n, then

• D(Dn) is an empty graph, if n = pr for some prime p.
• D(Dn) is a connected graph, if n is not a prime power.

Proof. Let Dn = 〈a, b : an = b2 = 1; bab = a−1〉. As elements of the form aib
in Dn are of order 2 and only cyclic subgroup containing aib is {e, aib}, aib are
isolated vertices in EPow(Dn) and hence they are also isolated vertices in D(G).
Thus the remaining vertices in D(Dn) are the elements of the cyclic group of
order n generated by a. Thus, by Theorem 5.3, if n is not a prime power, then
D(Dn) is connected. On the other hand, if n is a prime power, then by using
Theorem 3.2, we have D(Dn) to be the empty graph. �

6. Symmetric group and Alternating group

In the earlier section, we proved that groups with trivial center has connected
difference graphs. In this section, we start with an important family of groups
with trivial center, namely Sn, the symmetric group on n symbols. The first main
result of this section is:

Theorem 6.1. D(Sn) is connected if and only if n ≥ 8.
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Let n be a natural number and λ be a partition of n, which we denote as λ ` n.
Write a partition in frequency notation as

λ = 〈1m12m2 . . . nmn〉. (6.1)

Here mi denotes the number of parts of length i in λ. The following result is
well-known which tells about the size of the centralizer of a given permutation.

Lemma 6.2. Let σ ∈ Sn has cycle type λ = 〈1m12m2 . . . nmn〉. Then, the central-
izer of σ, denoted as C(σ), has the cardinality

|C(σ)| =
n∏
j=1

jmjmj! (6.2)

Remark 6.3. If [σ] = n − 1 or n, o(σ) is a prime power (say pr), and all the
cycles in the decomposition of σ have distinct lengths, then all the mj’s are 0 or
1. Moreover, if j is not a power of p then mj = 0. Thus, from (6.2), we get that
the centralizer of σ has cardinality pt for some t and hence the centralizer is a
p-group.

For a permutation σ ∈ Sn, σ can be written as σ1 · σ2 · · · σl · f1 · f2 · · · fr where
σi’s are cycles of length > 1 and fi’s are cycles of length 1 or fixed points. In
the above case, we say that σ is a product of l disjoint nontrivial cycles and r
fixed points. For the ease of writing, we write σ as σ1 · σ2 · · ·σl ignoring the fixed
points and it is understood that the remaining points are fixed.

Let σ ∈ Sn. Define {σ} = {i : σ(i) 6= i} and [σ] = |{σ}|, i.e., [σ] is the number
of integers in {1, 2, . . . , n} which are not fixed by σ.

Lemma 6.4. Let σ ∈ Sn be a vertex in D(Sn), where n ≥ 8. If o(σ) = pα for
some odd prime p, then there exists a path joining σ and a transposition (a1a2)
in D(Sn).

Proof. If [σ] ≤ n − 2, then there exists a1, a2 ∈ {1, 2, . . . , n} which are fixed by
σ. Then as o(σ) is odd, by Proposition 4.2, σ ∼ (a1a2) in D(Sn). Therefore we
assume [σ] = n− 1 or [σ] = n. By Remark 6.3, we can see that if all the cycles in
the decomposition of σ have distinct lengths, the centralizer of σ is a p-group and
σ is isolated. Otherwise, there are two cycles of length > 1 in the decomposition
of σ with same cycle length. Now, we can construct path. Let σ = σ1 · σ2 · · ·σl
where l ≥ 2. Without loss of generality, let σ1 and σ2 be of length pα. Now, let
σ = (a1a2 · · · apα)(b1b2 · · · bpα)σ3 · · ·σl. Let y = (a1a2 · · · apαb1b2 · · · bpα). Clearly
yp

α
is in the centralizer of σ and is of order 2. Hence σ ∼ yp

α
in D(Sn). As

n ≥ 8, either yp
α

is a product of r (≥ 3) disjoint transpositions, or there exists
a, b, c ∈ {1, 2, . . . , n} \ {ypα}.

If yp
α

is a product of r ≥ 3 transpositions, say yp
α

= (c1c2)(c3c4)(c5c6)τ4 · · · τr,
where τis are disjoint transpositions, then z = (c1c3c5)(c2c4c6) is in the centralizer
of yp

α
. Again, as n ≥ 8, there exist a1, a2 ∈ {1, 2, . . . , n} \ {z}. Combining we

get the path σ ∼ yp
α ∼ z ∼ (a1a2).

In the other case, there exists a, b, c ∈ {1, 2, . . . , n} \ {ypα}. Now, we see that
gcd(o(abc), o(yp

α
)) = gcd(3, 2) = 1 and (abc) commutes with yp

α
,. By Proposition
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4.2, we have yp
α ∼ (abc) in D(Sn). Hence, we get the following path σ ∼ yp

α ∼
(abc) ∼ (a1a2). �

Now, we are in a position to prove Theorem 6.1.
Proof of Theorem 6.1: Let σ1, σ2 be two vertices in D(Sn). By Lemma 4.6
there exists σ′1 and σ′2 ∈ Sn having prime power order such that σ1 ∼ σ′1 and
σ2 ∼ σ′2. If σ′1 or σ′2 has even order, then again by Lemma 4.6, we can find σ′′1
or σ′′2 of odd prime power order such that σ′1 ∼ σ′′1 or σ′2 ∼ σ′′2 . So without loss
of generality we can assume that σ′1 and σ′2 are of odd prime power order. Hence
by Lemma 6.4, there exist transpositions (a1b1) and (a2b2) such that there exists
a path P1 joining σ1 and (a1b1) and a path P2 joining σ2 and (a2b2).

As n ≥ 8, therefore there exists a 3-cycle (a3b3c3) which is disjoint with both
(a1b1) and (a2b2). Thus we have (a1b1) ∼ (a3b3c3) ∼ (a2b2), and hence we get a
path joining σ1 and σ2 in D(Sn), and D(Sn) is connected for n ≥ 8.

On the other hand, it can checked by direct computation that D(Sn) is discon-
nected for n = 5, 6, 7 and D(Sn) is empty for n ≤ 4. For the sake of completeness,
one can check that there is no path joining (1 2) and (1 3) inD(S5). ForD(S6) and
D(S7), it can be shown that there is no path joining (1 2 3) and (1 2 3)(4 5 6). �

We next concentrate on a family of simple groups An, the alternating group on
n symbols.

We know that the sign of a permutation σ can be defined from its decomposition
into the product of transpositions as sign(σ) = (−1)m where m is the number of
transpositions in the decomposition. The following alternative definition of sign is
known, see for example Nelson [31]: sign(σ) = (−1)n−cyc(σ) where cyc(σ) denotes
the number of cycles of σ. That is, if we write σ as σ1 ·σ2 · · ·σl ·f1 ·f2 · · · fr (where
σis are nontrivial cycles and fis are fixed points), the sign of σ is (−1)n−l−r. From
this, the following lemma is immediate.

Lemma 6.5. For a positive integer n and σ = σ1 · σ2 · · ·σl ∈ Sn where σis are
nontrivial cycles, the permutation σ ∈ An if and only if [σ]− l is even.

Proof. We observe that σ ∈ An if and only if n− l− r is even. Using n− r = [σ],
the proof is complete. �

Remark 6.6. Let n ≥ 10. Let π = (a1a2)(a3a4) and σ = (a5a6a7) where ai 6= aj
for i 6= j. Then π ∼ σ in D(An). Thus, any two 2 3-cycles are connected by a
path of length 2 in D(An). Thus, if a permutation π ∈ D(An) is connected to a
particular 3-cycle (abc) by a path of length t, then it is connected to any 3 cycle
by a path of length ≤ t+ 2.

We now prove some other lemmas which will be crucial for our result on alter-
nating group.

Lemma 6.7. Let π ∈ An be a product of k 2-cycles and n−2k fixed points where
n ≥ 10 and k ≥ 4. Then there exists a, b, c, d such that there is a path of length
2 between π and (ab)(cd). Thus, there exists e, f, g such that there is a path of
length 3 between π and (efg).

Proof. Let π = (c1c2)(c3c4)(c5c6)(c7c8)τ5 · · · τk where τis are disjoint transposi-
tions. Clearly, the element z = (c1c3c5)(c2c4c6) is in the centralizer of π. Again,
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as n ≥ 10, there exist a, b, c, d ∈ {1, 2, . . . , n} \ {z}. Hence z ∼ (ab)(cd). Com-
bining we get the path π ∼ z ∼ (ab)(cd). This proves the lemma. �

Lemma 6.8. Let π ∈ An be a product of k 3-cycles and n−3k fixed points where
n ≥ 10 and k ≥ 2. Then there exists a, b, c such that there is a path between π
and (abc).

Proof. If π is a product of exactly two 3-cycles and n − 6 fixed points, say, π =
(c1c2c3)(c4c5c6), then we of course have π ∼ (a, b)(c, d) ∼ (e, f, g) where a, b, c, d ∈
[n] \ {c1, c2, c3, c4, c5, c6} and {e, f, g} ∈ [n] \ {a, b, c, d}.

If π is a product of exactly three 3-cycles and n − 9 fixed points, say, π =
(c1c2c3)(c4c5c6)(c7c8c9), then π is an isolated if n = 10 and for n ≥ 11, we have
π ∼ (c1c4)(c2c5)(c3c6)(a, b) where a, b ∈ [n] \ {c1, c2, . . . , c9}.

If π is a product of k ≥ 4 3-cycles and n − 3k fixed points, we must have
n ≥ 12 and here we have π = (c1c2c3)(c4c5c6)(c7c8c9)(c10c11c12)τ5 · · · τk where
τis are cycles of length 3, then the centralizer of π contains the element z =
(c1c4)(c2c5)(c3c6)(c7c10)(c8c11)(c9c12). Thus π ∼ z in D(An). By Lemma 6.7, the
proof is complete. �

Lemma 6.9. Let σ ∈ An be a vertex in D(An), where n ≥ 10. If o(σ) = pα for
some prime p 6= 3, then there exist a, b, c ∈ [n] such that there is a path joining σ
and the 3-cycle (abc). Thus, there is a path joining σ and any 3-cycle.

Proof. If σ has > 2 fixed points, we get a 3 cycle which is adjacent to σ. So, we
assume σ to have at most 2 fixed points. We consider the centralizer of σ in Sn
and we have the following cases:
Case 1: Suppose, all the cycles (including the cycles of length 1) in the decom-
position of σ have distinct length. By Remark 6.3, we get that the centralizer of
σ is a p-group and σ is isolated.
Case 2: Suppose σ has exactly 2 cycles of same length and all the other cycles
are of distinct length. If σ has 2 fixed points and all the other cycles of distinct
length, then the centralizer of σ in An is a p-group and hence σ is isolated. So let
σ has exactly 2 cycles of length l1 > 1 and all the other cycles of distinct length.
We now claim that this case can not happen if p = 2. Let p = 2 and σ ∼ x. Then
there exists y such that both σ ∈ 〈y〉 and x ∈ 〈y〉. As none of the cycles of σ
has been repeated more than twice, each cycle length of y is also a power of 2,
and thus the order of x is also a power of 2. Thus the order of any neighbor of
σ is a power of 2 which contradicts Lemma 4.6. Hence p > 3. In this case, the
centralizer of σ in Sn is of cardinality 2pj for some j and hence the centralizer in
An is a p-group and σ is isolated.
Case 3: Suppose none of the cycles of σ has been repeated more than twice but
there are 2 cycles of length l1 and 2 cycles of length l2 in the decompostion of σ.
If p = 2, then by a similar argument as in Case 2, we can show that the order of
any neighbor of σ is a power of 2 which contradicts Lemma 4.6. Hence p > 3.

If both l1 > 1 and l2 > 1, without loss of generality, we can write σ =
(a1a2 · · · apα1 )(b1b2 · · · bpα1 )(c1c2 · · · cpα2 )(d1d2 · · · dpα2 )σ5 · · ·σl. The centralizer of
σ (in An) contains z = (a1, b1)...(apα1 , bpα1 )(c1, d1)...(cpα2 , dpα2 ). Now z commutes
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with (a1a2a3)(b1b2b3) and (a1a2a3)(b1b2b3) commutes with the element (w, x)(y, z)
where w, x, y, z ∈ [n] \ {a1, a2, a3, b1, b2, b3}.

Now, we consider the case when one of l1 and l2 is 1 and the other one is
> 1. In this case, we have σ = (a1a2 · · · apα1 )(b1b2 · · · bpα1 )σ5 · · ·σl and moreover
σ has atleast two fixed points say c, d. The centralizer of σ (in An) contains
z = (a1, b1)...(apα1 , bpα1 )(c, d). Now z commutes with (a1a2a3)(b1b2b3) and we are
done.
Case 4: In the decomposition of σ, there exists some length for which there
are ≥ 3 cycles. If σ has three fixed points, we are done. Otherwise, let σ =
(a1a2 · · · apα)(b1b2 · · · bpα)(c1c2 · · · cpα)σ4 · · ·σl. This commutes with the element
y = (a1b1c1)(a2b2c2) · · · (apαbpαcpα). As y is a product of ≥ 2 disjoint 3 cycles, by
Lemma 6.8 we get a path from σ to a 3-cycle (abc).

This completes the proof. �

Theorem 6.10. If n ≥ 10, then D(An) is connected.

Proof. Let σ1, σ2 be two vertices in D(An). By Lemma 4.6, there exists σ′1 and
σ′2 ∈ An having prime power order such that σ1 ∼ σ′1 and σ2 ∼ σ′2. If σ′1 or σ′2 has
order 3β1 or 3β2 then again by using Lemma 4.6 we have σ′′1 or σ′′2 ∈ An having
order pα1

1 or pα2
2 for some prime p1, p2 6= 3 such that σ′1 ∼ σ′′1 or σ′2 ∼ σ′′2 . So

without loss of generality, we can assume that σ′1 and σ′2 have order pα1
1 and pα2

2

for some primes p1, p2 6= 3. By Lemma 6.9, for n ≥ 10, we have a path joining σ′1
to a 3-cycle (abc) and a path joining σ′2 to the same 3-cycle (abc).

On the other hand, it can checked by direct computation that D(An) is discon-
nected for n = 7, 8, 9 and D(An) is empty for n ≤ 6. For the sake of completeness,
one can check that neither of (123) and (456) are isolated vertices in D(A7) and
D(A8) and there is no path joining (123) and (456) in D(A7) and D(A8). More-
over, there is no path joining (12)(34)(56)(78) and (789) in D(A9) and neither of
(12)(34)(56)(78) and (789) are isolated vertices. This completes the proof. �

7. Groups with trivial center

It has been observed that if G is a finite group with non-trivial center, then
D(G) is connected. So, the natural question is to enquire about the connectedness
of D(G) when Z(G) is trivial. It was shown that D(Sn) is connected if and only
if n ≥ 8. Thus, it is not possible to have a general answer to this question. So,
we investigate the connectedness of some special families of groups with trivial
center.

Theorem 7.1. Let G1, G2, G3 be three finite non-trivial groups such that G1 ×
G2 ×G3 is not a p-group, then D(G1 ×G2 ×G3) is connected.

Proof. Let a = (a1, a2, a3), b = (b1, b2, b3) be two vertices in D(G1×G2×G3). As
G1 × G2 × G3 is not a p-group then there exists at least two prime divisers of
|G1×G2×G3|. Regardless of whether the orders of a and b are prime powers or
not, by Lemma 4.6 there exist elements of prime power order with which a and
b are adjacent. So without loss of generality we can start with elements of prime
power order and call them a and b.
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By Lemma 4.6, there exist a′ = (a′1, a
′
2, a
′
3), b

′ = (b′1, b
′
2, b
′
3) ∈ D(G1 ×G2 ×G3)

such that a ∼ a′ with o(a′) = pα (with α > 0), and b ∼ b′ with o(b′) = qβ (with
β > 0), for some primes p and q. Note that a and a′ are of coprime order as well
as b and b′). If p = q then there exists another prime divisor r, so we can procced
similarly. Therefore we can consider p 6= q.

Since o(a′) = pα, therefore one of o(a′1), o(a
′
2), o(a

′
3) is pα. Without loss of

generality, let o(a′1) = pα. As (a1, a2, a3) and (a′1, e2, e3) are of coprime order and
a ∼ a′, we have that (a1, a2, a3) and (a′1, e2, e3) are adjacent.

Again, one of o(b′1), o(b
′
2), o(b

′
3) is qβ. If o(b′2) = qβ or o(b′3) = qβ, say o(b′2) = qβ,

then we have (e1, b
′
2, e3) ∼ (b1, b2, b3) inD(G1×G2×G3). Again, as o((a′1, e2, e3)) =

pα and o((e1, b
′
2, e3)) = qβ and they commute, we have (a′1, e2, e3) ∼ (e1, b

′
2, e3).

Thus, we get a path:

(a1, a2, a3) ∼ (a′1, e2, e3) ∼ (e1, b
′
2, e3) ∼ (b1, b2, b3) in D(G1 ×G2 ×G3).

If none of o(b′2) or o(b′3) is qβ, then we must have o(b′1) = qβ. Then (b1, b2, b3) ∼
(b′1, e2, e3). If there exists a prime r other than p and q which divides |G2| or |G3|
then we get a path joining a and b.

Now consider the case when |G2| and |G3| have no prime factors other than p
and q. Without loss of generality, let q divides |G2|. Then there exists c2 ∈ G2

with o(c2) = q. Thus we get a path (a1, a2, a3) ∼ (a′1, e2, e3) ∼ (e1, c2, e3). As
(b′1, e2, e3) is not isolated and o((b′1, e2, e3)) = qβ, by Lemma 4.6, there exists a
prime r( 6= q), i.e., r = p, and (d1, d2, d3) ∈ G1×G2×G3 such that o((d1, d2, d3)) =
pγ and (b′1, e2, e3) ∼ (d1, d2, d3) in D(G1 ×G2 ×G3).

If o(d1) or o(d3) is pγ, say o(d1) = pγ, then we get the following path in
D(G1 ×G2 ×G3):

(a1, a2, a3) ∼ (a′1, e2, e3) ∼ (e1, c2, e3) ∼ (d1, e2, e3) ∼ (b′1, e2, e3) ∼ (b1, b2, b3).

If o(d1), o(d3) 6= pγ, we must have o(d2) = pγ.
As p and q are the only possible distinct prime factors of |G3|, G3 must contain

an element f3 of order p or q.

• If o(f3) = p, then we get the following path in D(G1 ×G2 ×G3):

(a1, a2, a3) ∼ (a′1, e2, e3) ∼ (e1, c2, e3) ∼ (e1, e2, f3) ∼ (b′1, e2, e3) ∼ (b1, b2, b3).

• If o(f3) = q, then we get the following path in D(G1 ×G2 ×G3):

(a1, a2, a3) ∼ (a′1, e2, e3) ∼ (e1, e2, f3) ∼ (e1, d2, e3) ∼ (b′1, e2, e3) ∼ (b1, b2, b3).

Thus, summing up all the cases, we have shown that D(G1×G2×G3) is connected.
�

Remark 7.2. In light of Theorem 7.1, if Gi’s are groups with trivial centers,
then the difference graph of their direct product is connected. So, Theorem 7.1
gives us a natural way to construct infinitely many finite groups G with trivial
center such that D(G) is connected.

Remark 7.3. It is to be noted that Theorem 7.1 can be generalized to direct
product of n groups where n ≥ 3 in a similar way. However, we add an word
of caution that Theorem 7.1 may not be true for direct product of two groups.
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For example, D(S3 × S3) is a disconnected graph of order 10 with 2 isomorphic
components of order 5 each.

In the next theorem, we identify some families of graphs which can be expressed
as direct product of two groups G1 and G2 such that Z(G1), Z(G2) are trivial
but D(G1 ×G2) is connected.

Theorem 7.4. D(Dn ×Dm) is disconnected if and only if n and m are powers
of same odd prime.

Proof. If any of n or m is even, then Z(Dn ×Dm) is non-trivial and as a result
D(Dn × Dm) is connected. Note that if both n and m are powers of 2, i.e.,
Dn×Dm is a 2-group, then D(Dn×Dm) is empty, which is vacuously connected.
Thus we deal only with the case when both m and n are odd. Let Dn = 〈r1, s1 :
rn1 = s21 = e, s1r1s1 = r−11 〉 and Dm = 〈r2, s2 : rm2 = s22 = e, s2r2s2 = r−12 〉. Clearly
any element of the form (ri1s1, r

j
2s2) is not a vertex of D(Dn × Dm). Therefore

any vertex (a, b) of D(Dn ×Dm) is one of the three forms: (ri1, r
j
2s2), (r

i
1s1, r

j
2) or

(ri1, r
j
2).

Case 1: Let (a, b) = (ri1, r
j
2s2) ∈ D(Dn × Dm). By Lemma 4.6, (ri1, r

j
2s2) is

adjacent to some (a1, b1) of order pα in D(Dn×Dm). Hence (a1, b1) ∈ 〈(ri1, r
j
2s2)〉.

If p is odd then b1 = e and therefore (a, b) ∼ (rx1 , e) for some rx1 ∈ 〈ri1〉. If p = 2,
then similarly we can have (a, b) ∼ (a1, b1) ∼ (rx1 , e) where o(rx1) = qβ, q being an
odd prime. If (a, b) = (ri1s1, r

j
2) then we proceed similarly to get a path joining

(a, b) and a vertex of the form (e, ry2).
Case 2: Let (a, b) = (ri1, r

j
2) ∈ D(Dn × Dm). By Lemma 4.6, there exists an

element (a1, b1) ∈ D(Dn × Dm) such that (a, b) ∼ (a1, b1) and o((a1, b1)) = pα.
As n and m are not powers of same prime, there exists a prime q(6= p) such that
q|n or q|m. Let q|n. Then there exists an element rx1 ∈ Dn of order q and we get
the following path (a, b) ∼ (a1, b1) ∼ (rx1 , e).

Thus combining the above two cases, we have shown that any vertex (a, b) ∈
D(Dn×Dm) is joined by a path to either an element of the form (rx1 , e) or (e, ry2)
in D(Dn × Dm). Now, we construct a path between two vertices of the form
(rx1 , e) and (e, ry2) in D(Dn ×Dm) as follows:

(rx1 , e) ∼ (e, s2) ∼ (rz1, e) ∼ (e, rw2 ) ∼ (s1, e) ∼ (e, ry2),

where we choose w and z such that o(rz1) and o(rw2 ) are powers of different primes.
Thus, if n and m are not powers of same odd prime, D(Dn ×Dm) is connected.

Now if n and m are powers of same odd prime, we can easily show that there
is no path joining (r1, e) and (e, r2) in D(Dn ×Dm), completing the proof. �

8. The clique number of D(G)

If S is a set of elements of a group G such that every two elements of S generate
a cyclic group, then S generates a cyclic group (see [1, Lemma 32]). Hence every
maximal clique in EPow(G) is a maximal cyclic subgroup; thus every maximal
clique in D(G) is contained in a maximal cyclic subgroup of G. So we first need
to find the clique number of D(Zn) for an integer n.
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Proposition 8.1. The clique number of D(Zn) is equal to the maximum size of
an antichain in the lattice of divisors of n.

Proof. Two elements of Zn which are joined in D(Zn) must have different orders,
and neither divides the other; conversely, two elements with this property are
joined in D(Zn). �

The maximum size of an antichain in the lattice of divisors of n was found by
de Bruijn et al. [8]; this is a generalization of Sperner’s lemma. Define the degree
of n to be the number of prime divisors of n, counted with multiplicity. Let m
be the degree of n. Then an antichain of maximal size consists of all the divisors
of n of degree m/2, if m is even; or either all divisors of degree (m− 1)/2 or all
divisors of degree (m+ 1)/2, if m is odd.

For example, a clique of maximal size in C360 is obtained by choosing elements
of orders 8, 12, 18, 20, 30, 45.

Proposition 8.2. The clique number of D(G) is equal to the maximum clique
number of a cyclic subgroup of G, so is determined by the set of orders of elements
of G.

This is now clear from our earlier remarks.

Corollary 8.3. The graph D(G) is triangle-free if and only if the order of every
element of G is of the form pkq where p, q are primes.

Proof. Let g be an element of G of order n. If n is not of the forms in the
Corollary, either it has three prime divisors p, q, r, or it is divisible by p2q2 for
some prime q. In the first case, elements of orders p, q, r in 〈g〉 form a triangle;
in the second, elements of orders p2, pq, q2 form a triangle. �

Note that a triangle requires at least three colours.
The chromatic number of D(G) may be larger than the clique number. This

example is taken from [13]. In the symmetric group S8, the orders of elements
are 1, 2, 3, 4, 5, 6, 7, 8, 10, 12 and 15. By the Corollary above, the clique number
of D(S8) is 2. But D(S8) is not bipartite, since it contains a 5-cycle

{(1, 2), (3, 4, 5), (6, 7), (1, 2, 3), (4, 5, 6, 7, 8)}.

9. Perfectness and other properties

It is known that the power graph of a finite group is perfect (see [2]). On
the other hand, the question “For which groups is the enhanced power graph
perfect?” is still unresolved. In this section, we discuss perfectness of D(G). We
also say something about the related problem of when D(G) is a cograph.

9.1. Graph classes, induced subgraphs and twin reduction. The clique
number of a graph is the size of the largest complete subgraph, and the chromatic
number is the smallest number of colours required to colour the vertices so that
adjacent vertices are given different colours. The clique number does not exceed
the chromatic number since, in a proper colouring, all vertices of a clique are
given different colours. A graph Γ is perfect if every induced subgraph of Γ has



16 BISWAS, CAMERON, DAS, AND DEY

clique number equal to chromatic number. The strong perfect graph theorem,
conjectured by Berge and proved by Chudnovsky et al. [16], states that a graph
is perfect if and only if it does not contain either an odd cycle or the complement
of an odd cycle as an induced subgraph. It follows that a graph is perfect if and
only if its complement is perfect. This statement, known as the weak perfect graph
theorem, was proved earlier by Lovász. A number of graph classes are known to
be perfect, including bipartite graphs and comparability graphs of partial orders.

Several other classes of graphs also have characterizations in terms of forbidden
induced subgraphs. Among these, we will only consider the class of cographs,
graphs which contain no induced subgraph isomorphic to the 4-vertex path P4.
Since P4 is isomorphic to its complement and any cycle of length greater than
4 contains an induced P4, we see that cographs are perfect. Cographs form
the smallest class of graphs which can be built from the 1-vertex graph by the
operations of complementation and disjoint union.

Any class of graphs defined by forbidden induced subgraphs is subgraph-closed.
We will use two tools to investigate when difference graphs are perfect or belong
to one of the other classes:

(a) If H is a subgroup of G, then the induced subgraph of D(G) on the set H,
after removing isolated vertices, is D(H). So the class of groups for which
the difference graph belongs to one of the above classes is subgroup-closed.

(b) Two vertices of a graph are twins if they have the same neighbours (possi-
bly excluding each other). The process of twin reduction involves finding
a pair of twins and identifying them, and continuing until no further twins
remain. The result of twin reduction is (up to isomorphism) independent
of the process of reduction, and is called the cokernel of the graph (since Γ
is a cograph if and only if its cokernel is the 1-vertex graph). The cokernel
is an induced subgraph of the original graph and (in the cases we consider)
is often much smaller and more amenable to analysis. The important fact
is given in the next result.

Proposition 9.1. ([9, Theorem 7.5]) Let F be a class of finite graphs, and sup-
pose that no graph in F possesses a pair of twin vertices. Then a graph Γ has no
induced subgraph in F if and only if the same applies to the cokernel of Γ.

This is because twin reduction cannot destroy an induced subgraph isomorphic
to a graph in F , whereas the cokernel is an induced subgraph of the original
graph. This result applies, for example, to perfect graphs. Since the cokernel of
D(G) may be much smaller than G, it is easier to show that the cokernels are
perfect. The groups G at the end of Section 9 are examples; the cokernel of D(G)
is bipartite, so D(G) is perfect, for these groups (including M11 and M12).

9.2. Perfect difference graphs. Since an induced subgraph of a perfect graph
is perfect, but difference graphs of groups are universal, it is clear that there are
groups whose difference graph is not perfect. In this section we give some explicit
examples of perfect and imperfect difference graphs.

Proposition 9.2. The difference graph of a cyclic group is perfect.
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Proof. The enhanced power graph of a cyclic group is complete, so the difference
graph is simply the complement of the power graph, which as we saw is perfect.
Now we can invoke the Weak Perfect Graph Theorem. �

Moreover, we can determine the cyclic groups for which the difference graph
is a cograph: for the class of cographs is self-complementary, and the nilpotent
groups whose power graph is a cograph were determined in [30, Theorem 12].
The result is:

Proposition 9.3. The difference graph of a cyclic group Zn is a cograph if and
only if either n is a prime power or n is the product of two distinct primes.

This result does not extend to abelian groups. We saw that the difference
graphs of abelian groups, even those which are direct products of two isomorphic
cyclic groups, are universal, and in particular, we can find one which embeds a
5-cycle.

Theorem 9.4. Let G be a group of order pq, p2q, p3q, p2q2, or pqr, where p, q, r
are distinct primes. Then D(G) is perfect.

Proof. By Theorem 9.2, we may assume that G is not cyclic. Also, we may assume
that G is not an EPPO group (one with all elements of prime power order), since
for such a group G the graph D(G) has no edges.

Let G be a group of order pq. Then either G is cyclic or it is an EPPO group,
and the result follows.

Let G be a group of order p2q. We may assume that G is non-cyclic but has
elements of order pq. We claim that elements of order pq are isolated in D(G). If
not, let x be an element of order pq which is adjacent to a vertex y. Then from
the adjacency condition of difference graph, o(y) = p2. But this implies 〈x, y〉 is
a cyclic group of order p2q in G, a contradiction. Thus any edge in E(G) must
join elements of orders p and q. So E(G) is bipartite (with the sets of elements
of these orders as bipartite sets) and hence perfect.

Next let G be a group of order p3q, and suppose that G is not cyclic. The
possible orders of elements of G are p, p2, p3, q, pq, or p2q. Elements of order p2q
cannot be adjacent to elements of order dividing p2q, or to elements of order p3;
so they are isolated. Thus any edge of E(G) must join a vertex of order a power
of p with one of order q or pq; so the graph is bipartite, and hence perfect.

Now let G be a non-cyclic group of order p2q2, where p > q. There is no element
of order p2q2, and arguing as above we see that elements of orders p2q or pq2 are
isolated, and elements of orders p2 and q2 cannot be adjacent. We can assume
that G is not an EPPO group; so it contains elements of order pq. Moreover, we
can assume there are elements of orders p2 and q2. For, if there are no elements
of order q2, then all edges join elements with order divisible by q to elements
with order a power of p, and the graph is bipartite, and hence perfect. Hence the
Sylow subgroups of G are cyclic. Now there is a normal q-complement, which is
cyclic of order p2. Now an element of order q or q2 which acts nontrivially on a
cyclic group of order p2 must have trivial centralizer there. So either the group G
is cyclic, or there is no element of order pq2. So elements of order q2 are isolated,
and D(G) is bipartite by the same argument as before.
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Finally, let G be a non-cyclic group of order pqr. As in the previous cases, we
can show that elements of order pq, pr and qr are not in D(G). (If an o(x) = pq
and x is joined to y, then if r | o(y) then 〈x, y〉 is cyclic of order pqr, while if
r - o(y) then y is a power of x.) So all edges join elements of distinct prime
orders. If D(G) contains elements of order at most two of p, q, r then the graph
is bipartite, and hence perfect; so we assume that elements of order all three
primes exist in D(G). Now if p > q > r, then G contains a unique cyclic Sylow
p-subgroup P . Let C be an induced odd cycle in D(G). Clearly, neither the
vertices of C are of same prime order nor their orders alternate among any two
primes. Thus, C contains vertices of orders p, q and r each. As P is a unique
subgroup of order p, C has a unique vertex of order p and orders of rest of the
vertices in C alternates between q and r. Thus we get four consecutive vertices
a1, a2, a3, a4 ∈ C such that o(a1) = r, o(a2) = p, o(a3) = q and o(a4) = r, where
o(g) denotes the order of g. Thus 〈a1, a2〉 is a cyclic group of order pr, 〈a2, a3〉
is a cyclic group of order pq and 〈a3, a4〉 is a cyclic group of order qr. Now, G,
being a group of order pqr with cyclic subgroups of orders pq, qr and pr, must be
cyclic, a contradiction. �

9.3. Imperfect difference graphs. Now we show that some groups have im-
perfect difference graphs.

Proposition 9.5. (a) For any three distinct primes p, q, r, the group Zpqr×Zp
has imperfect difference graph.

(b) For two distinct odd primes p and q, the group Q8 × Zpq, where Q8 is the
quaternion group of order 8, has imperfect difference graph.

(Note that all proper subgroups of these groups have perfect difference graphs.)

Proof. (a) Let a, b, c be elements of Zpqr with orders p, q, r respectively, and a′

an element of Zp. Then the set

{(c, e), (b, e), (ac, e), (bc, e), (b, a′)}

induces a 5-cycle in D(G).
(b) Let a, a′ be non-commuting elements of order 4 in Q8, and b and c elements

of orders p and q. Then the set

{x1 = (e, c), x2 = (e, b), x3 = (a, c), x4 = (e, bc), x5 = (a′, b)}

induces a 5-cycle inD(G), where o(x1) = q, o(x2) = p, o(x3) = 4q, o(x4) = pq, and
o(x5) = 4p. Note that, as o(x1) divides o(x3) and o(x4), so x1 is not adjacent to
x3 or x4. Other adjacencies and non-adjacencies follow in the similar manner. �

Now we can determine which nilpotent groups have perfect difference graph.
Let π(G) be the number of distinct prime divisors of G. We may assume that
π(G) > 1.

Theorem 9.6. Let G be a finite nilpotent group.

(a) If π(G) ≥ 3, then D(G) is perfect if and only if G is cyclic.
(b) If π(G) = 2, then D(G) is a comparability graph, and hence perfect.
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Proof. Suppose that π(G) ≥ 3. If G is cyclic then the theorem follows from The-
orem 9.2. If G has a generalized quaternion Sylow 2-subgroup, then it contains a
subgroup Q8×Zpq for odd primes p and q. Otherwise, by [23, Theorem 4.10(ii)],
at least one Sylow subgroup contains commuting elements of prime order (say p),
and G contains a subgroup Zpqr × Zp. In either of the last two cases, D(G) is
imperfect, by the preceding Proposition.

If π(G) = 2, then G ∼= H ×K where H is the Sylow p-subgroup and K is the
Sylow q-subgroup of G. Thus any element of g ∈ G can be uniquely expressed as
ab, where a ∈ H and b ∈ K. Also, order of any element in G is either a power of
p or a power of q or product of powers of p and q. In the first two cases, we call
it a element or vertex of type-I and the last case is denoted by type-II.

Define a relation → on V (D(G)) as follows:

• If x1, x2 are of type-I, then x1 → x2 if ◦(x1) is a power of p and ◦(x2) is a
power of q.
• If x1 = a1b1, x2 = a2b2 are of type-II, then x1 → x2 if 〈a2〉 ≤ 〈a1〉 and
〈b1〉 ≤ 〈b2〉 and at least one of the inequality is strict.
• If x1 is of type-I with o(x1) is a power of p and x2 = a2b2 is of type-II,

then x1 → x2 if 〈a2〉 < 〈a1〉.
• If x1 is of type-I with ◦(x1) is a power of q and x2 = a2b2 is of type-II,

then x2 → x1 if 〈b2〉 < 〈b1〉.
It is easy to check that → is anti-symmetric and transitive on V (D(G)). The
comparability graph of → on V (D(G)) is given by x ∼ y if and only if x→ y or
y → x. It can be checked that D(G) coincides with the comparability graph of
→ on V (D(G)). Hence the theorem follows. �

By arguments similar to those already given, the following results can be shown.
Suppose that q and r are primes with r | q− 1. Then Zq has an automorphism α
of order r. We define an action ϕ of Zr2 on Zq where the generator of Zr2 induces
the automorphism α. We say that a group G is minimal imperfect if its difference
graph is imperfect but, for all proper subgroups H of G, D(H) is perfect.

Theorem 9.7. (a) Let p, q, r be three distinct primes such that r|q− 1. Then
Zp×(ZqoϕZr2), where ϕ is defined as above, is a minimal imperfect group.

(b) Let q, r be two distinct primes such that r | q− 1. Then Zq2 × (Zqoϕ Zr2),
where ϕ is defined as above, is a minimal imperfect group.

Proof. (a) Let a, b, c be elements of order p, q, r2 in Zp,Zq and Zr2 respectively.
Then C : (e, e, c) ∼ (a, e, cr) ∼ (a, b, e) ∼ (e, e, cr) ∼ (a, e, e) ∼ (e, e, c) is
an induced five cycle in D(Zp × (Zq oϕ Zr2)), and hence it is not perfect.

Now, any proper subgroup of H of Zp× (ZqoϕZr2) is of order p, q, r, r2,
pq, pr, qr, pqr, pr2 or qr2. Again, by Theorem 9.4, D(H) is perfect.

(b) The proof is similar as above.
�

Now we turn to finite simple groups, and first show:

Theorem 9.8. The symmetric group S8, the alternating group A9, and the Janko
group J1 all have imperfect difference graphs.
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Proof. In the first two cases we can give an explicit induced 5-cycle:

• in S8, the set {(1, 2), (3, 4, 5), (6, 7), (1, 2, 3), (4, 5, 6, 7, 8)} induces a 5-cycle;
• in A9, the set

{(1, 2, 3), (4, 5)(6, 7), (8, 9, 1), (2, 3)(4, 5), (6, 7, 8), (9, 1)(2, 3), (4, 5, 6, 7, 8)}

induces a 5-cycle.

For J1 we proceed as follows. All information we require is given in the ATLAS
of Finite Groups [17].

The order of the group is 23.3.5.7.11.19, and the Sylow 2-subgroup is elementary
abelian. Elements of orders 7, 11 and 19 commute only with their powers, so are
isolated, and deleted in the difference graph; so all the vertices have orders 2, 3
and 5, and vertices which are joined must have different orders. So the graph is
tripartite (that is, has a 3-colouring). Moreover, there is no element of order 30,
so the clique number is 2. To show it is not perfect, we just have to show that it
is not bipartite.

The group contains a subgroup D3×D5, and so has a path of length 3 joining
two commuting involutions, with the elements having orders 2, 3, 5, 2. Note that
any two subgroups of J1 isomorphic to Klein groups are conjugate, since they are
contained in a Sylow 2-subgroup (Z2)

3 whose normaliser acts trivially on such
subgroups; and since J1 contains a subgroup A4, the three pairs of involutions
in a Klein group are permuted transitively by its normaliser. Take a subgroup
isomorphic to the Klein group, and join each pair of involutions by such a path.
This produces a closed walk of length 9, so indeed the graph is non-bipartite. �

9.4. Simple groups. We have some partial results on the question “Which fi-
nite simple groups have perfect difference graphs?” According to the preceding
section, any simple group which contains the symmetric group S8, the alternat-
ing group A9 or the Janko group J1 has imperfect difference graph. Among the
sporadic groups, this list includes the Fischer groups, the Baby Monster and
the Monster, the Harada–Norton group, the Conway group Co1, the Thompson
group, the Lyons group, the Higman–Sims group, and the O’Nan group. More-
over, of course, the alternating groups An for n ≥ 9, and the groups of Lie type
of rank at least 9 also contain S8 or A9 and so have imperfect difference graph.

On the other hand, we have the following theorem. (All quoted information
about subgroup structure and centralisers in these groups can be found in the
ATLAS [17], or in [7].)

Theorem 9.9. Let G be the simple group PSL(2, q) (for prime power q ≥ 4) or
Sz(q) (for q an odd power of 2). Then G has perfect difference graph.

Proof. The simplest cases to deal with are PSL(2, q) for q a power of 2 and Sz(q).
These groups have the property that the centralizer of any element is either cyclic
or a 2-group; and, moreover, distinct centralizers meet only in the identity. So
the difference graph consists of isolated vertices together with a disjoint union of
difference graphs of cyclic groups, and so (by Theorem 9.2) it is perfect.
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For the record, the maximal cyclic subgroups of PSL(2, q) have orders p (the
prime divisor of q) and (q ± 1)/ gcd(q ± 1, 2); those of Sz(q) have orders 4, q − 1,
and q ±

√
2q + 1.

Indeed, we also see that for these groups, the difference graph is a cograph (or
a threshold or split graph) if and only if the difference graphs of all the cyclic
subgroups are. So, if q is a power of 2, then

• D(PSL(2, q)) is a cograph if and only if each of q− 1 and q + 1 is a prime
power or the product of two distinct primes;
• For q an odd power of 2, D(Sz(q)) is a cograph if and only if each of q−1,
q+
√

2q+ 1 and q−
√

2q+ 1 is either a prime power or the product of two
primes.

Consider PSL(2, q) with q odd. In this group, if elements x and y have differ-
ent centralizers, then they are not adjacent in the difference graph; for, if they
commute but have different centralizers, they must both be involutions. Thus
it is again true that D(G) is the disjoint union of isolated vertices and the dif-
ference graphs of element centralizers (which are cyclic, dihedral, or elementary
abelian). Moreover, we have a similar characterization of the case where the dif-
ference graph is a cograph: both (q + 1)/2 and (q − 1)/2 must be prime powers
or products of two distinct primes. �

The result does not extend to all groups of Lie type of rank 1. For example, let
G be the Ree group 2G2(q) = R1(q), where q is an odd power of 3. Then (q+1)/2
is twice an odd number. Suppose that (q + 1)/2 has two distinct prime divisors
p and r. The centralizer of an involution t in G is isomorphic to Z2 × PSL(2, q),
and so contains a subgroup Z2 × Z2pr, whose difference graph is not perfect, by
Theorem 9.4. (It can be shown that, if (q + 1)/2 is twice an odd prime power,
then D(R1(q)) is perfect; but we do not give the argument here.)

Further, the difference graphs of the Ree groups are never cographs. For let t
be an involution in G = R1(q), so that CG(t) ∼= 〈t〉 × PSL(2, q). As noted above,
q is an odd power of 3, and (q−1)/2 (the order of a cyclic subgroup of PSL(2, q))
is twice an odd number. Let p be an odd prime dividing (q+ 1)/2, and let u and
v be elements of order p and 2 in a cyclic group of order (q + 1)/2; let s be an
element of order 3 in PSL(2, q). Then {s, t, u, v} induces a path of length 3.

This can be seen another way. The (non-simple) smallest Ree group R1(3) is
isomorphic to PΓL(2, 8), and is contained in all other Ree groups. Computation
shows that the cokernel of its difference graph is non-trivial. It has 147 vertices
and is bipartite, with bipartite sets of sizes 63 and 84; it has diameter 6 and girth
10.

We have not examined the fourth type of rank 1 group, the unitary groups
PSU(3, q), except to note that computation shows that their difference graphs
are perfect for q = 3, 4, 5.

Turning to groups of Lie type of rank greater than 1, we have the following:

Proposition 9.10. Let q be a prime power, and assume that q − 1 has at least
three distinct prime divisors. Then PSL(3, q) has imperfect difference graph.
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Proof. Let F be the field of q elements. The subgroup of diagonal matrices in
SL(3, q) is isomorphic to F× × F×, under the mapa b

c

 7→ (a, b)

(since abc = 1). This is also a subgroup of PSL(3, q) if 3 - q−1, whereas if 3 | q−1
then we take the quotient by the cyclic group of order 3. With our hypothesis, in
either case we have a subgroup Zplr × Zp, where p, l, r are distinct primes. The
result now follows from Theorem 9.4. �

We note that the argument shows also that, under the same hypothesis on q,
SL(3, q) has imperfect difference graph. Now many groups of Lie type contain
either PSL(3, q) or SL(3, q) as a subgroup; in particular, all those of rank at
least 3, as we may see by looking at the Coxeter–Dynkin diagrams. The relevant
information can be found in [14, Section 8.5]. A group of Lie type has a Levi
factor corresponding to any sub-diagram of its Coxeter–Dynkin diagram, which
is itself a group of Lie type or a central extension of one. So, if the diagram
contains two vertices with a single edge joining them, the corresponding Levi
factor is PSL(2, q) or SL(2, q). In addition, the group G2(q) contains SL(3, q).
So, under the same hypothesis on q, the difference graphs of these groups are
imperfect.

We summarise the situation for small simple groups. All simple groups of order
smaller than |J1| have perfect difference graphs. These results were obtained using
GAP [20], with the package GRAPE [32] for handling graphs. All these groups are
described in the ATLAS [17].

• Simple groups G for which D(G) has no edges: These are the simple
EPPO groups: PSL(2, q) for q = 4, 7, 8, 9, 17, Sz(q) for q = 8, 32, and
PSL(3, 4).
• Simple groups G for which D(G) has edges but is a cograph, so

that the cokernel has a single vertex: Some further PSL(2, q) and
Sz(q), depending on number-theoretic properties of q (e.g. in our range
PSL(2, q) for q = 11, 13, 16).
• Simple groups for which D(G) is not a cograph but its cokernel is

bipartite: some further PSL(2, q) (e.g. q = 23, 25), PSL(3, 3), PSU(3, 3),
M11, A8, PSU(4, 2), PSU(3, 4), M12, PSU(3, 5).

10. Twin reduction

We now describe a technique which should be useful in the study of various
types of graphs on large groups.

Two vertices v and w of a graph Γ are called twins if they have the same
neighbours except possibly for one another. (We sometimes distinguish closed
and open twins according as they are joined or not.) The process of twin reduction
on Γ consists of deleting one of a pair of twins repeatedly until no more twins
remain. Recall from Section 9 that the resulting graph is called the cokernel of
Γ; up to isomorphism, it is independent of the way the reduction is performed.
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Recall that a graph Γ is a cograph if it does not contain the 4-vertex path P4 as
an induced subgraph. A graph is a cograph if and only if its cokernel has a single
vertex. See [9] for discussion.

Twin reduction leaves some properties of a graph invariant.

Proposition 10.1. Twin reduction of a graph Γ leaves the following properties
unchanged:

(a) the number of connected components of a graph which are not cographs;
(b) the diameter of a connected component (if this is greater than 2);
(c) the girth of a connected component (if this is greater than 4);
(d) the property of containing an induced subgraph isomorphic to a fixed graph

∆ (which itself contains no twins);
(e) perfectness.

Proof. Consider a step in twin reduction, which identifies two vertices v and w.
Suppose that v and w are not isolated. Then they belong to the same connected
component, and their distances to any other vertex in this component are the
same. So the connected component simply loses a vertex but remains connected.
Moreover, if its diameter is at least 2, then we see that the diameter is unchanged
by the reduction. (If the diameter is 1, then the component is complete, and so
is a cograph; we have excluded this case.)

If Γ has diameter at least 3, or girth at least 5, then it contains a 4-vertex path,
and so it is not a cograph.

If ∆ is an induced subgraph of Γ \ {w}, then clearly it is an induced subgraph
of Γ. Conversely, if ∆ is an induced subgraph of Γ containing no pair of twins,
then twin reduction will have no effect on ∆.

A graph is perfect if and only if it contains no induced odd cycle or comple-
ment of one. These graphs have no twins so their absence is preserved by twin
reduction. (Note that a cograph is perfect.) �

Other properties may change. For example, if a graph Γ has girth g > 4, then
its cokernel also has girth g; this may fail if g = 4. The list below shows several
graphs with girth 4 whose cokernels have girth 6.

10.1. Twin reduction of difference graphs. Like most types of graphs defined
on groups, difference graphs tend to have many pairs of twins: if x and y generate
the same cyclic subgroup, then they are twins in the power graph, enhanced power
graph (and hence the difference graph), as well as commuting graph, generating
graph, and others. We have applied it to the difference graphs of various simple or
almost simple groups. The list below gives some results on the number, diameters
and girths of the connected components after removing isolated vertices, and
whether they are cographs.

• PSL(3, 3): connected, with 221 vertices, diameter 5 and girth 4; cokernel
with 169 vertices and girth 6.
• PSU(3, 3): connected, with 749 vertices, diameter 6 and girth 4; cokernel

with 217 vertices, same diameter and girth.
• PSL(3, 4): an EPPO group, no edges.
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• PSU(3, 4): connected with 5187 vertices, diameter 6 and girth 4; cokernel
with 481 vertices and girth 6.
• A7: a cograph with 35 components of size 5 and diameter 2.
• S7: one component with 1120 vertices, diameter 8 and cokernel with 322

vertices; seven isomorphic components with 55 vertices, diameter 6, and
cokernels with 35 vertices and girth 6.
• A8: two components, 1666 and 1225 vertices, diameters 8 and 6; cokernels

wth 182 and 665 vertices, each of girth 6.
• S8: connected, 5439 vertices, diameter 6; cokernel 1715 vertices.
• M11: connected, 605 vertices, diameter and girth 10, cokernel has 385

vertices.
• M12: two components, 2225 and 12540 vertices, diameters 6 and 8, both

with girth 4; cokernels 1375 and 2112 vertices, girths 4 and 6.
• J1: one component, 19019 vertices, diameter 6 and girth 4, cokernel with

7315 vertices and girth 6.

The examples show that the cokernel may be considerably smaller than the
original graph. The computations reported here were performed in the computing
system GAP [20], using the package GRAPE [32] for handling graphs. Generators
for large groups were obtained from the On-Line Atlas of Finite Groups [37].

The difference graph of M11 has diameter 10; this is the largest value we have
found for the diameter of the difference graph of any group. It is perhaps tempting
to speculate that 10 is an upper bound. (It is perhaps worth mentioning here the
surprising result of Giudici and Parker [22] that there is no upper bound for the
diameters of commuting graphs of groups; but the examples with large diameter
were of prime power order, and so their difference graphs are empty.)

Some interesting graphs arise as cokernels of difference graphs of simple groups.
Here are two examples.

• The Mathieu group M11: In this case, removal of isolated vertices and
twin reduction brings the number of vertices down from 7920 to 385. The
resulting graph is bipartite, with bipartite sets of sizes 165 and 220, and
the vertices in the two sets have valencies 4 and 3 respectively. The graph
has diameter 10 and girth 10; the girth is rather large for a graph of this
size. The automorphism group of the graph is just M11.
• The group PSL(3, 3): In this case, we found a very natural graph which

has not been studied, as far as we are aware. The vertices are the ordered
pairs (P,L), where P is a point and L a line of the projective plane of
order 3 (so 169 vertices). The pairs fall into two types, flags (P incident
with L) and antiflags (P not incident with L). The graph is bipartite:
each edge joins a flag to an antiflag. The rule for adjacency is as follows:
the flag (P,L) is incident with the antiflag (Q,M) if Q ∈ L and P ∈ M .
The automorphism of the graph is Aut(PSL(3, 3)).
• The Janko group J1: We saw that D(J1) is imperfect. But its cokernel

has a very interesting structure. As noted earlier, this graph has 7315
vertices, falling into three orbitsO1, O2, O3 under the automorphism group,
which have sizes 2926, 1463, 2926 respectively. Each of O1, O2, O3 is a
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coclique. The induced subgraph on O1 ∪ O2 is connected bipartite with
diameter 7, girth 6 and valencies 5 (for vertices in O1) and 10 (for vertices
in O2). The induced subgraph on O2 ∪ O3 is connected bipartite with
diameter and girth 10 and valencies 3 and 6. Both of these bipartite
graphs have automorphism group J1. The induced subgraph on O1∪O3 is
a matching. So we can find an induced odd cycle in the graph as follows.
Let {v, w} be an edge of the matching between O1 and O3. Take an edge
from w to x in O2, and then a shortest path from x to v (necessarily of
odd length). We see that the smallest odd cycle in the graph has length 7
or 9, though we have not decided which is the case.

11. Conclusion and Open Issues

In this paper, we studied the difference graph D(G) of a finite group G. The
study was mainly based on connectedness and perfectness of such graphs. Some
of the problems which arise from this work can be interesting topics of further
research.

For a finite group G with non-trivial center, it was shown that D(G) is con-
nected and with diameter less or equal to 6. However for groups G with trivial
center, D(G) may or may not be connected. So the question arises:

Question 11.1. If G has trivial center and D(G) is connected, can diam(D(G))
be greater than 10? More generally, does can any component of such a graph
have diameter greater than 10?

Question 11.2. Complete the classification of finite groups whose difference
graph is perfect.

Question 11.3. Find necessary and sufficient conditions on a complete graph
with edges coloured red, green and blue for it to be embeddable in a finite group
G such that

(a) red edges are adjacent in the power graph of G;
(b) green edges are adjacent in the difference graph (that is, in the enhanced

power graph but not in the power graph); and
(c) blue edges are non-adjacent in the enhanced power graph.

Necessary conditions are that the red edges form the comparability graph of a
partial order, and if x and y are joined by a green edge then there is a point z
joined to both by green edges. Are these conditions sufficient? (A similar result
for the enhanced power graph and commuting graph was proved in [9].)
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