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Abstract
A recent discussion (Yelagandula, 2023) of waves in a magnetic flux tube questions the
use of the normal velocity continuity condition in the derivation of the standard dispersion
relation. We re-assert this condition here.
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1. Introduction

A recent discussion by Yelagandula (2023) of the dispersion relation describing linear mag-
netoacoustic waves in a magnetic flux tube raises for further consideration this important
topic. Magnetic waves are now routinely observed in solar structures, and the nature of such
waves allows a local seismology of the objects (Roberts, Edwin, and Benz, 1984; Aschwan-
den et al., 1999; Nakariakov et al., 1999; Nakariakov and Ofman, 2001); for reviews, see
Nakariakov and Verwichte (2005), De Moortel and Nakariakov (2012), Nakariakov et al.
(2021), Roberts (2008, 2019), and Nakariakov and Kolotkov (2020).

We argue here that Yelagandula (2023) is incorrect in the claim that the normal velocity
across the flux-tube boundary is discontinuous but the normal component of the magnetic
perturbation is continuous. On the contrary, we re-assert that the dispersion relation govern-
ing magnetoacoustic waves in a magnetic flux tube follows appropriately from continuity
of the radial velocity component and the total pressure perturbation; the radial component
of the perturbed magnetic field is, in general, discontinuous across the boundary of the flux
tube.

The dispersion relation for magnetoacoustic waves in a magnetic flux tube was raised in
independent studies by Zaitsev and Stepanov (1975) and Edwin and Roberts (1983). The
detailed study by Edwin and Roberts (1983) builds on related earlier work by Roberts and
Webb (1978), Roberts (1981) and Spruit (1982). A general overview is given in Roberts
(2019).
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2. Wave Equations

Consider the small-amplitude (linear) modes of oscillation of a magnetic flux tube, modelled
as a straight magnetic field aligned with the z-axis of a cylindrical polar coordinate system
r,φ, z. The equilibrium magnetic field B0 is of strength B0 and is structured radially in r :

B0 = B0(r)ez, (1)

where ez denotes the unit vector in the z-direction (the longitudinal axis of the flux tube).
The equilibrium plasma pressure p0(r) and density ρ0(r) are also structured in r ; pressure
balance in the equilibrium state requires that

d

dr

(
p0(r) + B2

0 (r)

2μ

)
= 0, (2)

where μ denotes the magnetic permeability.
We assume ideal conditions as represented in the equations of ideal magnetohydrody-

namics under adiabatic conditions; viscous or ohmic effects are not considered. Small-
amplitude motions u(r,φ, z) = (ur , uφ,uz) about the equilibrium 2 may then be shown to
satisfy the equation (see, for example, Roberts, 2019)

∂2u
∂t2

− c2
A

∂2u
∂z2

= −ezc
2
A

∂

∂z
(div u) − 1

ρ0
grad

(
∂pT

∂t

)
, (3)

where cA(r) (= B0(r)/(μρ0(r))
1/2) denotes the Alfvén speed within the field. Equation 3

follows from the time derivative of the momentum equation combined with the induction
equation.

Additionally, we need to describe the evolution of the perturbation in the total pressure:

pT(r,φ, z) = p + B0Bz/μ, (4)

the sum of the plasma pressure perturbation p and the magnetic pressure perturbation. The
perturbation in the magnetic field is B = (Br,Bφ,Bz), satisfying the solenoidal condition
div B = 0. A combination of the isentropic equation and the induction equation leads to the
evolution equation

∂pT

∂t
= ρ0c

2
A

∂uz

∂z
− ρ0(c

2
s + c2

A)div u, (5)

where cs(r) (= (γp0(r)/ρ0(r))
1/2) is the sound speed within the plasma.

The components of the wave-like Equation 3 give (Roberts, 2019)

∂2ur

∂t2
− c2

A(r)
∂2ur

∂z2
= − 1

ρ0(r)

∂2pT

∂r∂t
, (6)

∂2uφ

∂t2
− c2

A(r)
∂2uφ

∂z2
= − 1

rρ0(r)

∂2pT

∂φ∂t
, (7)

∂2uz

∂t2
− c2

t (r)
∂2uz

∂z2
= −( c2

s (r)

c2
s (r) + c2

A(r)

) 1

ρ0(r)

∂2pT

∂z∂t
, (8)
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where

ct(r) =
(

c2
s (r)c

2
A(r)

c2
s (r) + c2

A(r)

)1/2

(9)

defines the slow magnetoacoustic speed ct.
Finally, from Equation 5 the evolution of pT(r,φ, z) is given by

∂pT

∂t
= −

(
ρ0(r)c

2
s (r) + ρ0(r)c

2
A(r)

)(
1

r

∂

∂r
(rur) + 1

r

∂uφ

∂φ

)
−ρ0(r)c

2
s (r)

∂uz

∂z
. (10)

3. Ordinary Differential Equations

The wave equations 6 – 8 coupled with the evolution equation 10 describe the linear mo-
tions of a cylindrically symmetric magnetic flux tube. We can Fourier analyse these partial
differential equations by taking the radial component of the motion to be of the form

ur(r,φ, z, t) = ur(r) exp i(ωt − mφ − kzz), (11)

with similar forms for all other perturbation quantities. The mode number m (= 0,±1,

±2, . . .) describes the geometrical form of the perturbation. The symmetry of the equilib-
rium state allows us to consider zero or positive integers only. The case m = 0 corresponds to
symmetric motions of the tube, disturbances being independent of φ. In addition to torsional
Alfvén waves that have pT = 0, there are compressible (pT �= 0) motions that disturb the
tube symmetrically; these are the sausage modes (m = 0). Modes with m = 1 are the kink
modes, giving a global disturbance of the tube, and there are also fluting (m ≥ 2) modes.

All these motions may be described by the coupled pair of first-order ordinary differential
equations (see Roberts (2019) for details)

iω
dpT

dr
= −ρ0(r)(k

2
z c

2
A(r) − ω2)ur , (12)

ρ0(k
2
z c

2
A(r) − ω2)

1

r

d

dr
(rur) = −

(
m2(r) + m2

r2

)
iωpT, (13)

where m2(r) is defined by

m2(r) = (k2
z c

2
s (r) − ω2)(k2

z c
2
A(r) − ω2)

(c2
s (r) + c2

A(r))(k2
z c

2
t (r) − ω2)

. (14)

The nature of m2(r) proves important in determining the physical nature of the modes that
the system supports.

The differential equations 12 and 13 are the principal equations governing the behaviour
of waves in our system; the behaviour of any of the other quantities, such as the radial
magnetic-field component Br , may be determined once these equations are solved.

We may eliminate one or other variable between the pair of first-order differential equa-
tions 12 and 13 to produce a second-order ordinary differential equation. Eliminating pT

between these equations yields

d

dr

{
ρ0(r)(k

2
z c

2
A(r) − ω2)(

m2(r) + m2

r2

) 1

r

d

dr
(rur)

}
= ρ0(r)(k

2
z c

2
A(r) − ω2)ur , (15)
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whereas eliminating ur in favour of the pressure perturbation pT yields

ρ0(r)(k
2
z c

2
A(r) − ω2)

1

r

d

dr

{
1

ρ0(r)(k2
z c

2
A(r) − ω2)

r
dpT

dr

}
=

(
m2(r) + m2

r2

)
pT. (16)

Equation 15 is a form of the Hain–Lüst equation (Hain and Lüst, 1958), presented here for
an untwisted equilibrium magnetic field.

4. Continuity Conditions

We can draw an important observation from Equations 12 – 16. Consider an equilibrium state
ρ0(r), B0(r) that changes smoothly in r . Suppose that in a specific location the equilibrium
varies rapidly in r and in the limit may become discontinuous in r : ρ0(r) and B0(r) may
jump from one value to another. This describes the boundary of a discrete flux tube. What
happens to ur?

Suppose that ur is discontinuous at some radial location, forming a step function there.
Then, at that location dur/dr contains a delta function δ, arising from the derivative of a
step function, and so d2ur/dr2 (arising on the left-hand side of Equation 15) consequently
contains the derivative of a δ-function. Such generalised functions are discussed in detail
in, for example, Lighthill (1958). However, this cannot be matched by the term on the right-
hand side of Equation 15, which contains at most step functions. Hence, our initial assump-
tion that ur is discontinuous must be false: ur is continuous at all locations in r . A similar
argument applies to pT, using Equation 16. Hence, we conclude that both ur and pT are
continuous across the boundary of a magnetic flux tube.

It may also be argued on physical grounds that the two quantities ur and pT are contin-
uous in r (and in particular across the boundary of a flux tube). The radial displacement ξr

(and hence the radial motion ur (= ∂ξr/∂t )) can be expected to change smoothly from one
side of the tube boundary to the other, as otherwise there would be a mismatch between the
fluid elements either side of the tube boundary. Furthermore, any jump in the pressure pertur-
bation pT would imply an unbalanced force acting on the tube boundary. Hence, physically,
we expect continuity of ur and pT across the tube boundary of a flux tube.1

Of course, it might also be considered that a flux tube with a discontinuous equilibrium
longitudinal magnetic field is unphysical. Certainly, in reality we can expect a smoothly
changing profile in such an equilibrium quantity; diffusive processes will ensure that, al-
though the spatial change may occur over a short distance. However, treating an abrupt
change in an equilibrium quantity as the limit of a smoothly but rapidly changing equilib-
rium profile is a legitimate and useful mathematical approach.

We should note that in this discussion we are not considering resonances associated with
the singularities of magnetohydrodynamic waves; a recent treatment of resonances in the
context of coronal magnetic flux tubes is given, for example, in Soler et al. (2013).

However, not all perturbations are continuous. In particular, the radial component Br of
the perturbed magnetic field B is discontinuous at any location where the applied magnetic
field B0 is discontinuous. To see this, consider the ideal induction equation for the magnetic

1These arguments and any derivation of the dispersion-relation governing waves (see Section 5) are here
specific to an equilibrium state of a flux tube in which flows are absent; the case of a tube with a basic flow
needs a separate consideration.
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perturbation B, namely

∂B
∂t

= curl (u × B0) = B0
∂u
∂z

− ez
[
B0div u + u · gradB0

]
. (17)

Note from Equation 17 that div B = 0 is satisfied for all time if it is satisfied initially. Now,
we are particularly interested in the radial component Br , for which

∂Br

∂t
= B0(r)

∂ur

∂z
. (18)

It follows from Equation 18 that if ur is continuous across r = r0, then so also is
Br/B0(r). However, if the equilibrium magnetic field B0(r) is a step function in r and ur is
continuous, then it follows that Br is discontinuous in r . Of course, if B0(r) is a constant, as
in a uniform field (as might arise in a low-β plasma), then both ur and Br are continuous,
as noted by Yelagandula (2023).

5. Dispersion Relation

We turn now to the application of the two continuity conditions. Consider a flux tube of
radius a that consists of a uniform interior, in which the plasma density and the sound and
Alfvén speeds inside the tube are constants, surrounded by a uniform environment. In a
uniform medium, the pressure equation reduces to a form of Bessel’s equation (Zaitsev and
Stepanov, 1975; Edwin and Roberts, 1983)

r2 d2pT

dr2
+ r

pT

dr
− (m2

0r
2 + m2)pT = 0, m2

0 = (k2
z c

2
s − ω2)(k2

z c
2
A − ω2)

(c2
s + c2

A)(k2
z c

2
t − ω2)

. (19)

The Bessel equation 19 has solutions of the modified Bessel functions Im(m0r) and
Km(m0r) (see Abramowitz and Stegun, 1965). For a solution that is finite at the centre
(r = 0) of a flux tube we take

pT(r) = A0Im(m0r), r < a, (20)

where A0 is an arbitrary constant.
In a similar fashion, we may apply Equation 19 to the environment of the flux tube, now

selecting

pT(r) = AeKm(mer), r > a, (21)

where Ae is an arbitrary constant and me is the value of m0 when calculated in the tube’s
environment (r > a) where the sound speed is cse and the Alfvén speed is cAe; explicitly,

m2
e = (k2

z c
2
se − ω2)(k2

z c
2
Ae − ω2)

(c2
se + c2

Ae)(k
2
z c

2
te − ω2)

, c2
te = c2

sec
2
Ae

c2
se + c2

Ae

. (22)

This solution has been selected to give pT → 0 as r → ∞, requiring that me > 0; under
these conditions, the external pressure disturbance decays exponential fast outside the tube.
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Finally, imposing the continuity conditions that pT and ur are continuous across r = a

results in the dispersion relation

1

ρ0(k2
z c

2
A − ω2)

m0a
Im

′(m0a)

Im(m0a)
= 1

ρe(k2
z c

2
Ae − ω2)

mea
Km

′(mea)

Km(mea)
, (23)

where a prime denotes the derivative of the function (so Im
′(x) is the derivative with respect

to x of the function Im(x), and Im
′(x0) denotes Im

′(x) evaluated at x = x0). This is the
dispersion relation presented by Edwin and Roberts (1983). Other forms are also possible
and are discussed in their paper. The nature of the solution of this complicated dispersion
relation is discussed in some detail by Edwin and Roberts (1983) and need not be explored
further here (see, for example, Nakariakov and Verwichte, 2005; Roberts, 2019; Nakariakov
and Kolotkov, 2020; Nakariakov et al., 2021).

6. Conclusion

We have argued why the standard model of waves in a magnetic flux tube, as given by Edwin
and Roberts (1983), remains appropriate with the dispersion relation derived therein remain-
ing valid. We have re-established the use of the boundary conditions requiring continuity of
the radial velocity and the total pressure perturbation, contrary to a claim by Yelagandula
(2023). An independent study by Goedbloed and Poedts (2024), arguing from a different
perspective from us, has reached a similar conclusion.
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