
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. XX, XXXX 1

ScissionLite: Accelerating Distributed Deep
Learning with Lightweight Data Compression for

IIoT
Hyunho Ahn, Munkyu Lee, Sihoon Seong, Gap-Joo Na, In-Geol Chun,

Blesson Varghese, and Cheol-Ho Hong

Abstract— Industrial Internet of Things (IIoT) applica-
tions can benefit from leveraging edge computing. For ex-
ample, applications relying on deep neural network (DNN)
models can be sliced and distributed across the IIoT device
and the edge of the network for decreasing the latency
of inference. However, low network performance between
IIoT devices and the edge is often a bottleneck. In this
study, we propose ScissionLite, a holistic framework for
accelerating distributed DNN inference using lightweight
data compression. For the compression method, we im-
plement a new lightweight down/upsampling network for
performance-limited IIoT devices, which is inserted at the
slicing point of a DNN model in order to decrease the out-
bound network traffic without a significant accuracy drop.
We also develop a benchmarking tool to accurately find
the optimal slicing point of the DNN for the best inference
latency. ScissionLite improves the inference latency by up
to 15.7x with a minimum accuracy degradation.

Index Terms— Edge computing; IIoT; deep neural net-
works; model slicing; inference

I. INTRODUCTION

EDGE computing is gaining a growing interest in Indus-
trial Internet of Things (IIoT) applications [1]. Recent

advances in edge computing for IIoT are best exemplified by
deep neural network (DNN) model slicing for product surface
inspection [2]. This research employs a surface inspection
camera on an automated assembly line and captures the surface
of products one by one for DNN inference. However, as IIoT
devices have limited computational capability, the inspection
time can be continuously delayed, resulting in a significant
decline of outcomes. To address this issue, the entire DNN
model can be split to assign the initial layers onto the IIoT
device and the later layers to an edge server. Leveraging both

Hyunho Ahn and Munkyu Lee contributed equally to this work. Corre-
sponding author: Cheol-Ho Hong

Hyunho Ahn is with the School of Electrical and Electronics Engineer-
ing, Chung-Ang University, Seoul, Korea. e-mail: hanid842@cau.ac.kr

Munkyu Lee, Sihoon Seong, and Cheol-Ho Hong are with the Depart-
ment of Intelligent Semiconductor Engineering, Chung-Ang University,
Seoul, Korea. e-mail: dse112@cau.ac.kr; seongsihoon7@cau.ac.kr;
cheolhohong@cau.ac.kr

Gap-Joo Na and In-Geol Chun are with Electronics and Telecommuni-
cations Research Institute, Daejeon, Korea. e-mail: funkygap@etri.re.kr;
igchun@etri.re.kr

Blesson Varghese is with the School of Computer Science, University
of St Andrews, United Kingdom. e-mail: bv6@st-andrews.ac.uk

device and edge resources for DNN inference has the benefit of
reducing inference time by leveraging the computation power
of the edge [3].

The benefit of multi-access edge computing (MEC) for IIoT
is clear - enabling cloud computing at the edge of the cellular
network [4]. However, the overhead of data transfer from the
local to the edge is problematic for IIoT applications. 5G
cellular networks provide high download bandwidth ranging
from 600 to 1,700 Mbps [5], whereas the upload speed is com-
paratively low (30 – 60 Mbps) owing to weak cellular radio
power on local devices. Therefore, when DNN model slicing
is applied in an MEC environment, transferring intermediate
DNN data of an IIoT device to the multi-access edge can be
a significant bottleneck.

To overcome this limitation, existing research presents
methods to reduce the volume of data transferred between
the local device and the edge by applying data encoding
at the split point of the DNN [6]–[9]. However, they are
limited in the following ways: (1) The adopted compres-
sion techniques are not integrated into the original DNN [6]
and incur high computational costs [7]. These compression
techniques are a further bottleneck on IIoT devices that are
already performance-limited. (2) The encoding techniques are
validated on lightweight DNN models with relatively few
layers and small datasets [6]–[8], such as CIFAR1. These
data encoding methods may result in a significant accuracy
drop when used with large models and high resolution images
typical for IIoT. (3) The existing methods do not find the
optimal split point of the DNN, and therefore the overall
performance improvement cannot be maximized. The methods
find the split point arbitrarily or based on estimations rather
than actual measurements [8], [9].

In this paper, we propose ScissionLite, a framework to ac-
celerate edge-based distributed deep learning inference based
on a down/upsampling (DU) neural network for IIoT. The
primary design goal of ScissionLite is to develop a lightweight
compression method for performance-limited IIoT devices that
incurs a negligible accuracy drop. Our method employs a
simple DU neural network seamlessly integrated into the target
DNN. Therefore, it does not require specialized hardware
owing to low computational requirements. In addition, this

1https://www.cs.toronto.edu/~kriz/cifar.html

https://www.cs.toronto.edu/~kriz/cifar.html

2 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. XX, XXXX

Edge CloudDevice1
34

Device

Cloud

01-2
3 sec6 sec

01-2
2 sec4 sec

01-2
1 sec2 sec

Edge

0 1-2 3 41st
8 sec

Edge CloudDevice

0 1-2 3 42nd
9 sec

EdgeDevice

0 1-2 3 43rd
11 sec

Profiling & Slicing Benchmarking Ranking

0

3

2

4

1
-
2

0

3

4

Layers with parallel branches
are considered as a block.

Fig. 1: Profiling, slicing, benchmarking, and ranking in Scis-
sion.

simple network does not lose a significant amount of infor-
mation during data compression and inherently results in a
small accuracy drop even for large DNN models. The second
goal is to decide the best slicing point of the target DNN for
achieving optimal performance. For this purpose, we develop
an automated benchmarking tool based on previous research,
Scission [3]. ScissionLite accurately finds the optimal slicing
point based on empirical data whereas other studies employ
an approximate solution with estimations [9].

We evaluate ScissionLite in an emulated MEC environment
using large-scale production DNNs with two high-precision
datasets. The datasets include a subset of ImageNet [10]
called ILSVRC2 proposed for large-scale visual recognition
and the Xsteel Surface Defect Dataset (X-SDD) [11] for
product quality control in steel industry. ScissionLite can
increase the performance of deep learning inference by up
to 15.7x and 3.29x compared to the local device execution
and ScissionLite without data compression, respectively. In
addition, ScissionLite only incurs 0.51 – 1.36% of an accuracy
drop with ImageNet and 0 – 1.82% with X-SDD.

The rest of this paper is organized as follows: Section II
presents the background and related work. Section III proposes
ScissionLite. Section IV highlights the performance evaluation
results. Section V presents discussion points. Finally, the paper
is concluded in Section VI.

II. BACKGROUND AND RELATED WORK

In this section, we present the background research on
which ScissionLite’s benchmarking tool is based and then
present an overview of the related research.

A. Scission
In ScissionLite, the automated benchmarking tool is based

on Scission3 [3], a framework that determines the optimal
slicing point for distributed deep learning inference. Scis-
sionLite extends the capabilities of Scission by considering
the time spent on data compression, data serialization, and
communication between the device and the edge.

The following design choices drove the development of
Scission: (1) DNN slicing must identify optimally performing
slices that can be distributed across the device, edge, and
cloud resources, (2) DNN slicing must be based on empirical
data rather than estimations because layers are extremely
performance sensitive and cannot be easily predicted with

2https://image-net.org/challenges/LSVRC/
3Scission is available at https://github.com/qub-blesson/

Scission

estimations, and (3) DNN slicing should account for user-
defined constraints, such as the target overall latency.

Scission is underpinned by a methodology involving profil-
ing, slicing, benchmarking, and ranking as shown in Figure 1
and described below:

Profiling: The DNN is profiled to find suitable slicing
points. Each layer in the sequential DNN is considered a
potential slicing point. However, for a DNN model in which
there are parallel branches, the layers within the parallel
branch are considered as a block and not sliced individually.

Slicing: The DNN is sliced into distinct sub-models con-
sisting of individual layers or blocks for benchmarking.

Benchmarking: Each layer or block is benchmarked
against hardware resources for obtaining the average execution
time between the layers and blocks.

Ranking: The DNN slices are ranked based on user-defined
constraints, and a suitable DNN slice configuration can be
chosen for deployment across the edge-cloud environment.

While Scission supports the device-edge-cloud continuum,
this article primarily focuses on the device and edge tiers.
As modern edge servers provide powerful computational re-
sources such as GPUs, the research presented in this article
leverages these resources at the edge without transmitting data
to the cloud, resulting in improved inference performance.

B. Related Work
Slicing and distributing DNNs across a combination of

the device, edge, or cloud resources have performance ben-
efits [12]. Slicing approaches rely on identifying a sequence
of layers and mapping them onto resources so that the dis-
tributed DNN is optimized against the overall latency, ingress
bandwidth, or a combination of these.

Existing research has proposed methods to reduce the
inter-layer traffic in distributed deep learning inference. Bot-
tleNet [6] compresses the output layer of a mobile device
by using conventional compressors such as JPEG before
sending the data to the cloud. The research was evaluated with
ResNet50 and VGG19 in 3G, 4G, and WiFi environments that
offer 1.1, 5.85, and 18.88 Mbps for the upload bandwidth,
respectively. Data compressors based on an autoencoder are
presented [7], [8]. An autoencoder is an artificial neural
network that duplicates its inputs to its outputs through several
convolutional layers and incurs additional computational costs
compared to the original DNN. Lee et al. [13] proposed a
reconfigurable neural architecture for real-time object detec-
tion and suggested an autoencoder to reduce network traffic.
The study introduces a splittable architecture enabling model
division at different extractor layers by consolidating diverse
splittable models into a single-weight reconfigurable model.
However, the study’s autoencoder is somewhat heavy for
execution on IIoT devices, and there are constraints on the
split points where the reconfigurable neural architecture can
divide.

Slicing requires the identification of the optimal slicing
point, which in the literature is based on two different ap-
proaches.

The first is an estimation-based approach in which the
slicing point is determined based on an estimation of the

https://image-net.org/challenges/LSVRC/
https://github.com/qub-blesson/Scission
https://github.com/qub-blesson/Scission

AUTHOR et al.: TITLE 3

Deployment

Benchmark & Predict

Embedding

options
0 1-2 3 4

Model

DNN Preparation

Training

Slicing

Pretrained
Model

0 1-2 3 4D
U

D
U

Optimal split point

IIoT Device Edge

Fig. 2: Overall design of ScissionLite.

performance of the layers on a target hardware platform [9],
[14]–[16]. This approach does not require running the model
directly on hardware for profiling, offering the benefit of faster
initial execution times. However, it is not trivial to identify
the optimal slicing point using estimation-based approaches
as DNN models become deeper and more complex. Gao et
al. [17] present an estimation-based model designed to reduce
time and energy expenses during task offloading. However,
the cost estimation model relies solely on profiling data from
AlexNet. This raises concerns as it may significantly differ
for non-vision models or heavier models. Liao et al. [18]
developed the Optimal Partition Point (OPP) algorithm, which
uses an estimation model to predict the computational load
of convolution and dense layers in each layer of a DNN to
determine slice points. This research can identify split points
where inference time and energy are optimized. However,
if the DNN’s layers are composed of elements other than
just convolution and dense layers, the estimation may not be
accurate.

The second is a benchmarking based approach for slicing
DNNs. This measurement-based approach gathers empirical
data on the performance of each layer from target hardware
resources. Scission, an underlying approach of the benchmark-
ing tool presented in this paper, adopts this approach [3]. The
advantage of the benchmark-based approach is its ability to
precisely predict the execution time for each layer, allowing for
optimal determination of split points. However, its downside
is the need for offline profiling for each model, which involves
considerable profiling time before the model can be executed.
For example, profiling about 10 models with ScissionLite takes
about an hour.

Compared to existing research, ScissionLite offers a
lightweight compression technique using a down/upsampling
network and a method to obtain the optimal slicing point
in response to the network traffic change. In addition, it is
evaluated by large-scale DNN models such as DenseNet169
and ResNet101 with a large visual image database as well as
a realistic industrial dataset in an MEC environment.

III. DESIGN

In this section, we present the architecture of ScissionLite,
which is a framework to accelerate edge-based distributed deep
learning inference for IIoT.

A. Overall Design

ScissionLite inserts an additional data compression layer
at the optimal split point of the DNN for decreasing the
latency of inference as shown in Figure 2. For this purpose,
ScissionLite develops two components including a new neural
network layer for data compression and a Scission-based
benchmarking tool. The new layer decreases the amount of
data transfer between the device and the edge by adopting a
down/upsampling (DU) neural network layer. The Scission-
based tool automatically determines the optimal model slicing
point when the DU layer is applied. After the optimal slicing
point is identified, ScissionLite prepares a new DNN model
that employs the DU layer with embedding, training, and
slicing phases.

B. Down/Upsampling Neural Network Layer

The down/upsampling (DU) layer is a small neural network
that is embedded at the split point of the DNN for reducing
the amount of data exchanged during communication. The DU
layer is composed of the Down and Up layers for the device
and edge resources, respectively. The Down layer compresses
the feature maps of the end layer of the sliced DNN on the
IIoT device. The compressed data is then transferred through
the cellular network connection. The Up layer expands the
received data and passes the data to the starting layer of the
remaining DNN on the edge. In this manner, the DU layer can
decrease the amount of data transferred.

For a compression method, previous research utilizes an
existing raw data encoding method such as a traditional
image compression technique [19] (e.g., JPEG compression)
or an autoencoder-based coding scheme [20]. These methods
are a good candidate for realizing communication-efficient
inference in edge-based machine learning systems. However,
we identify that the former generally requires specialized
hardware based on an application-specific integrated circuit
(ASIC) to boost the compression and expansion process [21],
and the latter demands significant training time for adapting
the autoencoder and computation resources during inference
due to the complexity of the autoencoder [20]. Since IIoT
devices may have relatively performance-limited resources, a
more efficient method is required for a compression method.

To address this issue, we develop a new lightweight com-
pression method for the Down and Up layers. We focus on the
utilization of down/upsampling neural networks in recent DNN
models to reduce the number of parameters and computational
load without significantly impacting accuracy [22]. By apply-
ing the same scheme to the DU layer, we expect that the data
transfer amount will be decreased due to reduced parameters,
and the DU layer will only cause a minimum accuracy drop.
In addition, as down/upsampling neural networks have no
weights that need to be trained, training time for adapting
the DU layer itself would not be required. Partial re-training
of the DNN that embeds the DU layer is needed for better
accuracy, though. This will be explained in Section III-D.

Our implementations of the Down and Up layers are as
follows:

4 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. XX, XXXX

Up Layer

1 1 2 2

1 1 2 2

3 3 4 4

3 3 4 4

Down Layer

0 0 0 2

0 1 1 1

224 x 224 112 x 112 112 x 112 224 x 224

1 2
3 4

1 2
3 4

Max pooling Upsampling

Split point’s output

N
ext layer’s input

Fig. 3: Max pooling and upsampling of a neural network.

TABLE I: Latency and top-5 accuracy of the ResNet101 model
at split point 49 with varying kernel sizes in max pooling.

Kernel size Latency (s)
(60 Mbps)

Latency (s)
(30 Mbps) Top-5 accuracy

Original 0.242 0.456 0.928
2x2 0.082 0.135 0.923
3x3 0.050 0.072 0.909
4x4 0.041 0.055 0.9

The Down layer compresses the output of the local IIoT
device by adopting a downsampling network. The Down layer
implements a max pooling layer [22] for downsampling, which
sub-samples (or shrinks) each feature map of the last layer of
the IIoT device. In max pooling, a 2×2 kernel moves back and
forth across the feature map and only selects the maximum
value in the kernel for an output neuron value as shown in
Figure 3. Other neurons lower than the maximum value in the
kernel are dropped. The Down layer thus obtains sub-sampled
feature maps whose size is a quarter of the original layer. Max
pooling drops 75% of the input values, but this information
loss offers some level of position invariance [23], which is
useful for image classification tasks.

A larger kernel size in max pooling can improve the
compression ratio but may incur a significant accuracy drop
owing to information loss. Table I demonstrates the network
transmission latency and top-5 accuracy in the ResNet101
model with a split point at 49 in the layer, based on different
pooling kernel sizes, at network bandwidths of 60Mbps and
30Mbps. As shown in the table, increasing the kernel size leads
to a reduction in latency; however, it also results in a decrease
in top-5 accuracy. In consideration of this tradeoff relationship,
ScissoinLite opted to utilize a 2x2 pooling kernel size for each
slice point to minimize accuracy drops.

The Up layer expands the received data from the IIoT
device by an upsampling neural network. The Up layer im-
plements a nearest-neighbor interpolation method layer [22]
for upsampling. This interpolation method selects the value
from the nearest pixel and copies the selected value into
the dropped neurons, as shown in Figure 3. This algorithm
is computationally efficient and suitable for decreasing the
latency of inference. We have also considered other interpola-
tion methods including bilinear and bicubic interpolation, but
they resulted in greater accuracy degradation than the nearest-
neighbor interpolation.

C. Benchmarking Tool

As described in Section II-A, Scission automatically bench-
marks DNN models on a target set of the device, edge, and
cloud resources for determining the optimal slicing point. In

this study, we develop a new benchmarking tool4 based on
Scission for automated benchmarking of DNNs that embed
a data compression layer including the DU layer. Our bench-
marking tool adopts a general approach and can be also applied
to DNNs employing other data encoding methods.

We first present a comparative analysis on Scission and
our benchmarking tool and later show how our tool finds the
optimal slicing point. The target DNN model consisting of n
layers is denoted by L = {L1 , L2, · · · , Ln}. Then, tDevice

i

represents the latency of executing layer Li of the DNN in the
local device, and tEdge

i denotes the latency in the edge server.
The DU layer in ScissionLite is an additional neural network

that demands computation resources such as CPUs and GPUs
during inference. The execution time for processing all layers
of the distributed DNN including the DU layer in ScissionLite
is denoted by ESL. The DU layer is composed of the Down
and Up layers. When the DNN slicing point is layer Lj ,
the latency values of executing the Down and Up layers
are indicated by tDown

j and tUp
j , respectively. Then, ESL is

calculated as follows:

ESL =

j∑
k=1

tDevice
k + tDown

j + tUp
j +

n∑
k=j+1

tEdge
k (1)

As explained in Section III-B, we apply a lightweight max
pooling and upsampling mechanism for the DU layer. Then,
the computation cost of the DU layer, which is tDown

j +tUp
j , is

expected to be low. However, the computation burden would
be high when a compute-intensive data encoding method such
as an autoencoder is adopted.

The original execution time for processing all layers of the
distributed DNN in Scission is denoted by EOrig. When the
DNN slicing point is layer Ll in Scission, we obtain EOrig

as follows:

EOrig =

l∑
k=1

tDevice
k +

n∑
k=l+1

tEdge
k (2)

Before network transmission, data or neurons compressed
by the Down layer should be serialized to an appropriate
data format such as Protocol Buffers (Protobuf) or JavaScript
Object Notation (JSON). At the edge, the received data will be
deserialized. This also requires CPU resources. The execution
time regarding (de)serialization in ScissionLite is indicated by
SSL. Then, tSerialDU

j and tDeserialDU
j represent the latency

values of serializing the data, which is compressed by the
Down layer at split point j, on the device and deserializing
the data on the edge, respectively. SSL is then calculated as
follows:

SSL = tSerialDU
j + tDeserialDU

j (3)

Original Scission’s (de)serialization time, SOrig, is calcu-
lated in the same way. tSerial

l and tDeserial
l denote the latency

values of serializing the output data at layer l on the device
and deserializing the data on the edge, respectively. We then

4The benchmarking tool will be made available as open source in an
accepted version, but is not presented in this version due to double-blind
review.

AUTHOR et al.: TITLE 5

obtain SOrig as follows:

SOrig = tSerial
l + tDeserial

l (4)

The communication time between the device and the edge
in ScissionLite is denoted by CSL, when the DU layer is
applied. sSerialDU

j denotes the size of the serialized data from
the output of the Down layer at split point j. CSL is then
calculated as follows:

CSL = Latency +
sSerialDU
j

Bandwidth
(5)

where the network latency is Latency, and the network
bandwidth is Bandwidth.

The communication time in Scission, COrig, is then calcu-
lated in the same way. When sSerial

l denotes the size of the
serialized data at layer Ll, COrig is then obtained as follows:

COrig = Latency +
sSerial
l

Bandwidth
(6)

Both communication times are affected by inherent network
latency and the data transfer time, which can be obtained by
dividing the size of the data by the network bandwidth. In the
5G cellular network, the upload bandwidth is as low as be-
tween 30 and 60 Mbps. Therefore, to decrease communication
time, it is essential to reduce the amount of data transfer.

Consequently, ∆t, which is the benefit of adopting the DU
layer, is calculated as follows:

∆t = (EOrig + SOrig + COrig)− (ESL + SSL + CSL) (7)

The performance improvement that will be achieved is
shown in Section IV.

Our benchmarking tool executes all possible split points
individually for deciding the optimal slicing point as with
Scission, which performs the profiling, slicing, benchmarking,
and ranking phases as presented in Figure 1. The profiling
and slicing phases of our benchmarking tool are identical
to those of Scission. In the benchmarking phase, our tool
benchmarks each layer, the Down layer, the Up layer, and
the (de)serialization function, and obtains the values of ESL,
SSL, and CSL for each slicing point. In the ranking phase,
our tool grades each DNN slice based on the sum of ESL,
SSL, and CSL and finds the optimal slicing point.

For IIoT, our benchmarking tool takes a privacy enhance-
ment mechanism into account. The user can indicate that the
slicing point needs to be above a certain layer so that the
original industrial image cannot be easily inferred at the edge
side. A recent study proposing a privacy-preserving medical
platform reports that when a medical image passes through
a small number of DNN layers, it is difficult to distinguish
a specific data item in the processed image [24], because
the convolutional and max pooling operations apply non-
linear and non-reversible effect to the image. As data privacy
in IIoT is also crucial, our benchmarking tool supports this
privacy enhancement, and its performance implication will be
presented in Section IV-B.

D. DNN Preparation
After the benchmarking tool identifies the optimal slicing

point, ScissionLite prepares a new DNN model that employs
the DU layer with the following three steps: embedding,
training, and slicing.

Embedding: This step injects the DU layer in the split point
of the pre-trained DNN model (e.g., production DNNs from
Keras Applications5). ScissionLite divides the target model
into two and inserts the DU layer between them. Afterward,
it joins the sub-models for re-training, which is explained in
the next sub-section.

Training: We use a pre-trained DNN model for generating
the new DNN, but the pre-trained weights are not aware of
the DU layer, which can lead to a significant accuracy drop.
Existing neurons then need to learn how to cooperate with new
neurons in the DU layer. This step retrains the new DNN for
reducing the drop in accuracy. As the DU layer is lightweight,
existing layers can be adapted to the DU layer fast during
re-training. The top-k accuracy and re-training time will be
presented in Section IV-C.

Slicing: Slicing divides the newly trained model into two
for the IIoT device and the edge. For the device-side model,
this step piles up the layers until the Down layer and exports
them as a single Keras model. Similarly, the edge-side model
starts from the Up layer and ends at the last fully-connected
layer.

E. Deployment
In the IIoT device, we use the TensorFlow runtime to

execute the sliced DNN. On the edge side, we utilize the
NVIDIA Triton inference server6, which is open-source serv-
ing software and optimized for edge deployment, for executing
the remaining DNN.

For communication between the IIoT device and the edge,
both REST and gRPC protocols can be utilized as a com-
munication method. We adopted gRPC because it is based
on HTTP/2 and is faster than REST with HTTP/1.1. gRPC
uses Protocol Buffers (Protobuf) as the message interchange
format. ScissionLite implements the Down and Up converters
in order to serialize the output of the Down layer to Protobuf
and deserialize the Protobuf to the input data of the Up layer,
respectively.

IV. EVALUATION

We present the performance evaluation results of Scission-
Lite in this section.

A. Experimental Environment
We implemented ScissionLite with two IIoT devices and an

edge server for distributed inference. For the first IIoT device,
we utilized the NVIDIA Jetson TX2 that features an NVIDIA
Pascal-family GPU with 8 GB of memory. As for the second
IIoT device, we employed the NVIDIA Jetson AGX Xavier

5https://keras.io/api/applications/
6https://developer.nvidia.com/

nvidia-triton-inference-server

https://keras.io/api/applications/
https://developer.nvidia.com/nvidia-triton-inference-server
https://developer.nvidia.com/nvidia-triton-inference-server

6 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. XX, XXXX

TABLE II: Test bed configurations.

Configuration name Local device Edge
LocalTX2_CPU NVIDIA Jetson TX2 CPU N/A
LocalTX2_GPU NVIDIA Jetson TX2 GPU N/A
EdgeTX2_GPU NVIDIA Jetson TX2 GPU NVIDIA RTX 3090 GPU
EdgeAGX_CPU NVIDIA Jetson AGX CPU NVIDIA RTX 3090 GPU
EdgeAGX_GPU NVIDIA Jetson AGX GPU NVIDIA RTX 3090 GPU

De
ns
eN
et1
69

De
ns
eN
et2
01

Re
sN
et1
01

Inc
ep
tio
nR
es
Ne
tV
2

Inc
ep
tio
nV
3

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

Ex
ec

ut
io

n
tim

e
(s

)

LocalTX2_CPU LocalTX2_GPU EdgeTX2_GPU

Fig. 4: Best performance of various DNN models ob-
tained from the LocalTX2_CPU, LocalTX2_GPU, and Ed-
geTX2_GPU configurations.

that is equipped with an NVIDIA Volta-family GPU with 32
GB of memory. The edge server is an Intel Xeon E5-2698 CPU
platform with twenty 2.2 GHz cores and an NVIDIA GeForce
RTX 3090 GPU having 24 GB of memory. Each IIoT device
is directly connected to the edge server via 1 GbE link. We
adjusted the upload bandwidth of the network connection as 60
Mbps for 5G environments and 30 Mbps for 4G environments.
We set the latency as 28 ms by exploiting the Linux Traffic
Control tool. These values emulate the commercial 5G and 4G
network environment based on the latest research [5].

We employed the TensorFlow runtime version 2.3 in the
IIoT devices and NVIDIA Triton as an inference server in
the edge. We obtained deep learning models with pre-trained
weights from Keras Applications7. We used 10 pre-trained
production DNNs for evaluation, namely DenseNet169,
DenseNet201, ResNet101, InceptionResNetV2, InceptionV3,
VGG16, VGG19, MobileNetV2, RegNetX004, and Efficient-
NetB0v2. We also employed a subset of ImageNet [10] called
ILSVRC and the Xsteel Surface Defect Dataset (X-SDD) [11]
as image databases. They are utilized for checking the infer-
ence accuracy of ScissionLite with a large high-quality image
database and a realistic industrial dataset, respectively. The test
bed configurations reflecting an operational IIoT environment
are presented in Table II. We combined possible hardware
resource types in the IIoT devices and the edge server.

B. Inference Latency

ScissionLite accelerates distributed deep learning inference
by inserting the DU layer at the split point. This section high-
lights the performance of ScissionLite in terms of inference
latency.

7https://keras.io/api/applications/

Feasibility of distributed inference: Figure 4 shows the
best inference latency of the five DNN models executed
in the LocalTX2_CPU, LocalTX2_GPU, and EdgeTX2_GPU
configurations in Table II. The first two configurations do not
employ DNN model slicing so that the DNN models were
run in the local IIoT device using its embedded CPU and
GPU. The last configuration utilizes DNN model slicing with
ScissionLite. As shown in the figure, ScissionLite improves
the performance of the DNN models up to 15.7 and 3.9 times
compared to the LocalTX2_CPU and LocalTX2_GPU con-
figurations, respectively. This result shows that DNN model
slicing is effective in edge-based IIoT.

Slice-by-slice analysis: In this experiment, we present a
slice-by-slice analysis of VGG16, VGG19, DenseNet169, and
InceptionResNetV2 on the Jetson TX2 GPU (EdgeTX2_GPU).
The analysis was conducted with a 60 Mbps connection as
depicted in Figure 5, and with a 30 Mbps connection as
illustrated in Figure 6. Additionally, we provide a slice-by-
slice analysis of MobileNetV2, VGG16, RegNetX004, and Ef-
ficientNetV2B0 on the Jetson AGX CPU (EdgeAGX_CPU) for
MobileNetV2 and VGG16, and on the GPU (EdgeAGX_GPU)
for RegNetX004 and EfficientNetV2B0. This analysis was
performed with a 60 Mbps connection, as shown in Figure 7,
and with a 30 Mbps connection, as shown in Figure 8. In
the figures, we denote ScissionLite without compression as
baseline 1, which is identical to Scission. We also introduce
another baseline, denoted as baseline 2, which naively sets
the split point to Layer 1 and offloads the entire model to the
edge. This is done to demonstrate the importance of selecting
the optimal slice point for reducing inference latency. Each
sub-figure presents the total end-to-end latency when the split
point or layer changes from the first to the last layer; less
important split points are not shown in the figure. In the case
of ScissionLite, the profiling result of each split point is shown
as a stacked column chart. The optimal split point decided
by ScissionLite is denoted by a blue circle. In addition, we
exclude Layer 1 as a valid split point if it performs zero
padding. This is because the feature maps after zero padding
are almost identical to the input image, and transmitting them
to the edge would compromise privacy, particularly in IIoT
scenarios where commercially sensitive input data is involved.

As shown in Figure 5 to 8, ScissionLite generally out-
performs baseline 1 (Scission) due to its implementation of
the DU layer based on down/upsampling at the split point.
Compared to baseline 1, ScissionLite achieves a speedup of
up to 3.48 in InceptionResNetV2 on EdgeTX2_GPU with a
60 Mbps connection. Please note that the optimal split point
of VGG19 in both baseline 1 and ScissionLite is the same,
and this layer does not involve significant data transfer. As
a result, speedups are not achieved for VGG19. In addition,
ScissionLite outperforms baseline 2, which naively configures
the split point as Layer 1. The speedup values achieved by
ScissionLite compared to baseline 1 and 2 are summarized in
Table III.

Furthermore, we show a comparison between the
estimation-based methods, Neurosurgeon [14], and the
Optimal Partition Point (OPP) algorithm [18], along with
ScissionLite, in Figure9. For an accurate comparison,

https://keras.io/api/applications/

AUTHOR et al.: TITLE 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 22
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

Ex
ec

ut
io

n
tim

e
(s

)

VGG16
1 2 3 4 5 6 7 8 9 10111213141516171819202125

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

Ex
ec

ut
io

n
tim

e
(s

)

VGG19
2 3 4 5 48 49 50 51 13

6
13

7
13

8
13

9
36

4
36

5
36

6
36

7
59

2
59

3
59

4
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ex
ec

ut
io

n
tim

e
(s

)

DenseNet169

1 4 7 10 13 16 105171237305353401449497545593664712760778
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

Ex
ec

ut
io

n
tim

e
(s

)

InceptionResNetV2

Baseline 2 (First layer split)Bassline 1 (Scission) Data transmission Edge inferenceScissionLite Device inference Optimal split point

Fig. 5: Slice-by-slice analysis of four models using the Jetson TX2 GPU, with a 60 Mbps connection.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 22
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ex
ec

ut
io

n
tim

e
(s

)

VGG16
1 2 3 4 5 6 7 8 9 10111213141516171819202125

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Ex

ec
ut

io
n

tim
e

(s
)

VGG19
2 3 4 5 48 49 50 51 13

6
13

7
13

8
13

9
36

4
36

5
36

6
36

7
59

2
59

3
59

4
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ex
ec

ut
io

n
tim

e
(s

)

DenseNet169

1 4 7 10 13 16 105171237305353401449497545593664712760778
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ex
ec

ut
io

n
tim

e
(s

)

InceptionResNetV2

Baseline 2 (First layer split)Bassline 1 (Scission) Data transmission Edge inferenceScissionLite Device inference Optimal split point

Fig. 6: Slice-by-slice analysis of four models using the Jetson TX2 GPU, with a 30 Mbps connection.

1 3 5 7 9 11 13 15 26 28 30 32 34 53 54 56 58 60 89 91 93 9511
5
11

7
11

9
12

1
12

3
14

3
14

5
14

7
14

9
15

1
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ex
ec

ut
io

n
tim

e
(s

)

MobileNetV2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

Ex
ec

ut
io

n
tim

e
(s

)

VGG16
1 2 14 26 36 48 58 68 78 88 9810

8
12

0
13

0
14

0
15

0
16

0
17

0
18

0
19

0
20

0
21

0
22

0
23

0
0.0

0.1

0.2

0.3

Ex
ec

ut
io

n
tim

e
(s

)

RegNetX004

1 3 5 7 9 18 20 22 31 33 35 42 74 76 78 85 14
7
15

1
15

8
26

6
0.0

0.1

0.2

0.3

0.4

Ex
ec

ut
io

n
tim

e
(s

)

EfficientNetV2B0

Baseline 2 (First layer split)Bassline 1 (Scission) Data transmission Edge inferenceScissionLite Device inference Optimal split point

Fig. 7: Slice-by-slice analysis of four models using the Jetson AGX CPU for MobileNetV2 and VGG16, and GPU for
RegNetX004 and EfficientNetV2B0, with a 60 Mbps connection.

1 3 5 7 9 11 13 15 26 28 30 32 34 53 54 56 58 60 89 91 93 9511
5
11

7
11

9
12

1
12

3
14

3
14

5
14

7
14

9
15

1
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ex
ec

ut
io

n
tim

e
(s

)

MobileNetV2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ex
ec

ut
io

n
tim

e
(s

)

VGG16
1 2 14 26 36 48 58 68 78 88 9810

8
12

0
13

0
14

0
15

0
16

0
17

0
18

0
19

0
20

0
21

0
22

0
23

0
0.0

0.1

0.2

0.3

0.4

0.5

Ex
ec

ut
io

n
tim

e
(s

)

RegNetX004

1 3 5 7 9 18 20 22 31 33 35 42 74 76 78 85 14
7
15

1
15

8
26

6
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ex
ec

ut
io

n
tim

e
(s

)

EfficientNetV2B0

Baseline 2 (First layer split)Bassline 1 (Scission) Data transmission Edge inferenceScissionLite Device inference Optimal split point

Fig. 8: Slice-by-slice analysis of four models using the Jetson AGX CPU for MobileNetV2 and VGG16, and GPU for
RegNetX004 and EfficientNetV2B0, with a 30 Mbps connection.

ScissionLite’s DU layer compression technique was applied
to Neurosurgeon and OPP. This figure demonstrates the
difference between the actual inference execution time on
real hardware and the benchmarked or estimated time for the
optimal split points chosen differently in VGG16, VGG19,
and DenseNet169 models. OPP showed discrepancies between
actual execution time and estimated time of 67%, 62.4%, and
98.9% in each model. OPP exhibits severe discrepancies with
deeper models, as the calculation of the computation amount
for execution time prediction does not consider the execution
times of layers other than convolution and dense layers.
Neurosurgeon showed discrepancies between actual execution
time and estimated time of 33.2%, 33.4%, and 13.2% in

each model. Neurosurgeon designs a regression model that
infers latency based on the size and computational load of
the input tensor, thus accurately predicting the overall model
latency. However, dealing with complex layers associated
with numerous parameters and blocks of layers with skip
connections is challenging. Compared to ScissionLite, each
baseline tends to choose a later layer as the optimal split
point. This difference in split point decision, due to inaccurate
estimation values, means that ScissionLite can reduce latency
by an average of 21.9% in the case of OPP, and by an average
of 8.8% for Neurosurgeon.

As explained in Section III-C, data privacy can be enhanced
if the slicing point is a later layer than Layer 1. To formally

8 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. XX, XXXX

VGG16 VGG19 DenseNet169
0.0

0.1

0.2

0.3

0.4

0.5

T
im

e
(s

)
ScissionLite (actual)

ScissionLite (benchmarked)

OPP (actual)

OPP (estimated)

Neurosurgeon (actual)

Neurosurgeon (estimated)

Fig. 9: Latency comparison at the optimal split points selected
by benchmark and estimation-based baselines.

1 2 3 4 5 48 49 50 51 13
6
13
7
13
8
13
9
36
4
36
5
36
6
36
7
59
2
59
3
59
4

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

UQ
I

Maximum valueAverage value

1 4 7 10 13 16 10
5
17
1
23
7
30
5
35
3
40
1
44
9
49
7
54
5
59
3
66
4
71
2
76
0
77
8

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

UQ
I

Maximum valueAverage value

DenseNet169 InceptionResNetV2

Fig. 10: Slice-by-slice average and maximum universal image
quality index (UQI) values of DenseNet169 and InceptionRes-
NetV2.

(a) UQI: 1.0 (b) UQI: 0.48 (c) UQI: 0.24

Fig. 11: Changes in image distortion according to UQI values.

1 2 3 4 5 48 49 50 51 13
6

13
7

13
8

13
9

36
4

36
5

36
6

36
7

59
2

59
3

59
4

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Tr
an

sf
er

 a
m

ou
nt

 (M
B)

Baseline 1 (Scission) ScissionLite

1 4 7 10 13 16 10
5

17
1

23
7

30
5

35
3

40
1

44
9

49
7

54
5

59
3

66
4

71
2

76
0

77
8

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0

Tr
an

sf
er

 a
m

ou
nt

 (M
B)

Baseline 1 (Scission) ScissionLite

DenseNet169 InceptionResNetV2

Fig. 12: Volume of data transferred in DenseNet169 and
InceptionResNetV2 at each split point in baseline 1 (Scission)
and ScissionLite.

define the privacy constraint, we employ the universal image
quality index (UQI) metric [25], which is widely used in
image processing studies. UQI measures any image distortion
using three factors including loss of correlation, luminance
distortion, and contrast distortion. When the UQI value is
1, the original and target images are the same. When the
two images become more dissimilar, the UQI value converges
to 0. We measure the average and maximum UQI values
of the feature maps at each split point in DenseNet169 and
InceptionResNetV2 and provide this information in Figure 10.
In ScissionLite, a user can demand a split point that has

TABLE III: Speedup achieved by ScissionLite compared to
baseline 1 (Scission) and baseline 2 (first layer split).

Model Configuration Bandwidth
(Mbps)

Speedup
(baseline 1)

Speedup
(baseline 2)

VGG16 EdgeTX2_GPU 60 1.50 6.37
VGG19 EdgeTX2_GPU 60 1.02 5.89

DenseNet169 EdgeTX2_GPU 60 2.61 1.13
InceptionResNetV2 EdgeTX2_GPU 60 3.11 1.21

VGG16 EdgeTX2_GPU 30 2.15 11.81
VGG19 EdgeTX2_GPU 30 1.05 10.94

DenseNet169 EdgeTX2_GPU 30 3.09 1.32
InceptionResNetV2 EdgeTX2_GPU 30 3.48 1.38

MobileNetV2 EdgeAGX_CPU 60 1.27 1.33
VGG16 EdgeAGX_CPU 60 2.16 3.16

RegNetX004 EdgeAGX_GPU 60 1.27 1.34
EfficientNetV2B0 EdgeAGX_GPU 60 1.20 1.31

MobileNetV2 EdgeAGX_CPU 30 1.24 1.66
VGG16 EdgeAGX_CPU 30 2.53 4.29

RegNetX004 EdgeAGX_GPU 30 1.31 1.68
EfficientNetV2B0 EdgeAGX_GPU 30 1.21 1.63

average and maximum UQI values under a certain threshold.
In enforcing privacy constraints on ScissionLite, it should be
done according to the following procedure. The first step is to
create a candidate list of split points in order of low inference
latency. The next step involves traversing the candidate list in
order of low inference latency and selecting the optimal split
point where both the average and maximum UQI values are
below a certain threshold.

We configure the average Universal Quality Index (UQI)
value to be below 0.25 and the maximum value to be below
0.5. As shown in Figure 11, when the UQI is around 0.5, the
image is distorted to an extent that the original image cannot
be accurately inferred. Furthermore, when the UQI is about
0.25, the distortion is so severe that it becomes impossible
to guess the shape of the original image. Therefore, when
a layer contains multiple feature maps, setting the average
and maximum UQI to 0.25 and 0.5 ensures that, on average,
the images are distorted to the point where the shape of the
original image cannot be guessed, and even the image with the
highest UQI cannot accurately determine the original image.
Then, considering the privacy constraint, the optimal slicing
points are determined to be 51 for DenseNet169 and 13 for
InceptionResNetV2 at 30 Mbps and 60 Mbps on the Jetson
TX2 GPU.

C. Inference Accuracy

In order to prevent an accuracy drop, ScissionLite retrains
the split model embedding the DU layer, as explained in
Section III-D. ScissionLite employs the stochastic gradient
descent (SGD) optimizer with 0.001 of a learning rate for
re-training. The existing neurons in the pre-trained model are
adapted to the new neurons in the DU layer during re-training
and converge to minimum loss rapidly. This takes between 5
and 10 hours for ImageNet and less than one hour for X-SDD
with a single NVIDIA GeForce RTX 3090 GPU. The training
speed can be boosted by using multiple GPUs in a cloud data
center.

Accuracy with ImageNet: The subset of ImageNet called
ILSVRC has a very large image database with more than 1.2
million high-quality images and one thousand categories. Such
a huge dataset is suitable for training and evaluating advanced

AUTHOR et al.: TITLE 9

TABLE IV: Top-1 and top-5 accuracy of the original Keras model and the retrained DNN at the top 5 split points suggested
by ScissionLite with the ImageNet dataset.

Split
point

Top-1
accuracy

(drop)

Top-5
accuracy

(drop)

Split
point

Top-1
accuracy

(drop)

Top-5
accuracy

(drop)

Split
point

Top-1
accuracy

(drop)

Top-5
accuracy

(drop)

Split
point

Top-1
accuracy

(drop)

Top-5
accuracy

(drop)

Split
point

Top-1
accuracy

(drop)

Top-5
accuracy

(drop)
DenseNet169 0.762 0.932 51 0.741 (2.08) 0.923 (0.90) 2 0.739 (2.32) 0.922 (0.97) 3 0.740 (2.19) 0.922 (1.00) 4 0.739 (2.31) 0.921 (1.14) 5 0.739 (2.32) 0.921 (1.11)
DenseNet201 0.773 0.936 51 0.752 (2.15) 0.928 (0.79) 2 0.747 (2.60) 0.927 (0.89) 3 0.749 (2.39) 0.926 (1.01) 4 0.747 (2.61) 0.926 (1.05) 5 0.747 (2.59) 0.926 (0.99)

ResNet101 0.764 0.928 49 0.735 (2.92) 0.923 (0.51) 91 0.730 (3.42) 0.919 (0.90) 59 0.740 (2.40) 0.921 (0.73) 101 0.728 (3.60) 0.916 (1.18) 69 0.743 (2.07) 0.924 (0.45)
InceptionResNetV2 0.803 0.953 10 0.775 (2.83) 0.939 (1.36) 11 0.782 (2.14) 0.942 (1.13) 12 0.778 (2.55) 0.941 (1.13) 13 0.777 (2.56) 0.942 (1.06) 61 0.776 (2.74) 0.941 (1.16)

InceptionV3 0.779 0.937 10 0.753 (2.60) 0.928 (0.89) 11 0.755 (2.42) 0.930 (0.73) 12 0.755 (2.42) 0.930 (0.71) 13 0.755 (2.43) 0.930 (0.69) 1 0.754 (2.55) 0.928 (0.88)

 ScissionLite (4th) ScissionLite (5th)

Model
Original
Top-1

accuracy

Original
Top-5

accuracy

 ScissionLite (1st) ScissionLite (2nd) ScissionLite (3rd)

TABLE V: Accuracy of the original model and the retrained
DNN at the top 5 split points suggested by ScissionLite with
the X-SDD dataset.

Split
point

 Accuracy
(drop)

Split
point

 Accuracy
(drop)

Split
point

 Accuracy
(drop)

Split
point

 Accuracy
(drop)

Split
point

 Accuracy
(drop)

DenseNet169 0.971 51 0.960
(1.09) 2 0.971

(0.00) 3 0.967
(0.36) 4 0.953

(1.82) 5 0.971
(0.00)

DenseNet201 0.975 51 0.960
(1.45) 2 0.975

(0.00) 3 0.975
(0.00) 4 0.975

(0.00) 5 0.975
(0.00)

ResNet101 0.971 49 0.971
(0.00) 91 0.967

(0.36) 59 0.971
(0.00) 101 0.964

(0.73) 69 0.960
(1.09)

InceptionResNetV2 0.986 10 0.967
(1.82) 11 0.971

(1.46) 12 0.967
(1.82) 13 0.975

(1.10) 61 0.971
(1.46)

InceptionV3 0.982 10 0.971
(1.09) 11 0.967

(1.45) 12 0.982
(0.00) 13 0.960

(2.18) 1 0.982
(0.00)

Model Original
accuracy

 ScissionLite (1st) ScissionLite (2nd) ScissionLite (3rd) ScissionLite (4th) ScissionLite (5th)

large-scale DNN algorithms used in this study. Table IV
compares the top-1 and top-5 accuracy for the top 5 split
points suggested by ScissionLite when the ImageNet dataset
is employed. In Table IV, different split points result in a
uniform and stable accuracy pattern in ImageNet, showing
little preference regarding the position of the DU layer. The
result shows that the retrained DNN provides an acceptable
inference accuracy with 0.51 – 1.36% of a top-5 accuracy drop
at the optimal split point (i.e., 1st). This highlights that the DU
layer does not deteriorate the overall accuracy significantly, as
discussed in Section III-B. For the top 5 split points, there was
an accuracy drop of 2.0% to 3.6% in top-1 accuracy, which is
not significant.

Accuracy with X-SDD: X-SDD is a surface defect image
database consisting of 1,360 images of hot-rolled steel strip
defects in seven types of categories. This dataset is employed
in order to identify whether ScissionLite incurs an accuracy
drop with a realistic industrial dataset. Table V compares the
top-1 accuracy of the original DNN model and the retrained
DNN in ScissionLite when the X-SDD dataset is employed.
In Table V, the X-SDD dataset shows a wider range of an
accuracy pattern than that of ImageNet. As the number of
images in X-SDD is small (i.e., 1,360 images), it seems that
each DNN model with X-SDD overfits the training data during
re-training. However, the result shows that the retrained DNN
provides an acceptable inference accuracy with 0 – 1.82% of
a drop at the optimal split point (i.e., 1st). This result shows
that ScissionLite is feasible for an industrial environment in
which the accuracy of a DNN model is crucial.

D. Comparison with Other Compression Methods

In this section, we compare the JPEG-based compression
method and the autoencoder approach, identified as motivation
examples for ScissionLite in Section III-B, based on compres-
sion time and accuracy. The JPEG-based compression employs
TensorFlow’s JPEG encode/decode API, while the autoencoder
uses Bottlenet++ [8]. Bottlenet++ implements a simple and

fast autoencoder, which consists of a convolution and a trans-
posed convolution layers. For an accurate comparison, at the
three split points—49, 91, and 59—selected by ScissionLite
for the ResNet101 model, we compared each compression
method at the same fourfold compression ratio as ScissionLite.

Compression time: Figure 13 shows the latency measured
during the encoding and decoding processes of each compres-
sion method, performed respectively on the device and at the
edge. According to the measured results, at all split points, the
compression time of the DU layer used in ScissionLite is the
shortest. In the case of Bottlenet++, the autoencoder structure
demands more computation compared to the max pooling and
upsampling structure of the DU layer, resulting in longer
encoding latencies on the device of 5.16ms, 6.17ms, and
5.37ms. Moreover, the JPEG compression technique requires
more computation than the lightweight DU layer, leading to
significantly longer times of 22.33s, 44.83s, and 22.75s. The
encoding and decoding of JPEG, which must be performed
separately for each channel of the feature map, can greatly
increase the latency when repeatedly performed on a device
with limited computational capacity.

Accuracy with Compression: Figure 13 shows the results
of measuring the top-1 and top-5 accuracy drops for the
entire ResNet101 model when each compression method was
applied at three split points. For Bottlenet++, the accuracy
drop was higher by 0.55%, 0.6%, and 0.06% for top-1 and
1.08%, 1.1%, and 0.22% for top-5 compared to ScissionLite.
This higher accuracy loss could be due to the use of the
ImageNet dataset instead of the CIFAR-100 dataset previously
used by Bottlenet++. Furthermore, Bottlenet++ requires a
separate training process for the autoencoder and a fine-tuning
process for the entire model, which is considerably time-
consuming [8]. Notably, training ResNet101 on Bottlenet++
with an NVIDIA RTX 3090 GPU takes approximately 45
hours per split point. JPEG experiences a greater accuracy
drop with top-1 accuracy drops of 3.93%, 1.49%, and 2.98%
and top-5 accuracy drops of 3.18%, 1.52%, and 2.02% higher
than those of ScissionLite.

V. DISCUSSION

This section discusses considerations for deploying Scis-
sionLite in a real IIoT environment.

Re-training of the DNN for the new slicing point: When
the device or network environment changes, leading to online
alterations in the slice point, ScissionLite has the drawback of
requiring re-training for that specific slice point. To address
this concern, we conducted an analysis of slice point rankings
based on inference latency for each device and network envi-
ronment. Through this assessment, we noticed instances where

10 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. XX, XXXX

Bottlenet++ JPEG ScissionLite

49 91 59
0
1
2
3
4
5
6
7
8

10,000
30,000
50,000

Split point

C
om

pr
es

si
on

tim
e

(m
s)

49 91 59
0

1

2

3

4

5

6

7

Split point

T
op

-1
ac

cu
ra

cy
dr

op
(%

)

49 91 59
0

1

2

3

4

Split point

T
op

-5
ac

cu
ra

cy
dr

op
(%

)

Fig. 13: Compression latency and accuracy drop for the top-3 split points in ResNet101.

a slice point ranked second or third in a specific environment
becomes the top-ranked slice point in a different environment.
This implies that one of the high-ranking split points in one
environment has a probability of becoming an optimal split
point in a different environment. Based on this observation,
we intend to retain a few retrained models for the predominant
split points consistently appearing in the top rankings across
various environmental configurations, thereby mitigating the
re-training overhead.

Potential constraints: Additionally, there are potential con-
straints to consider for deploying ScissionLite in a real IIoT
environment. Firstly, when applying ScissionLite to models
with lengthy skip connections like the YOLO model, the op-
tions for split point candidates are limited. Studies on optimal
split points, including ScissionLite, generally identify only
layers without skip connections to reduce data transmission.
YOLO has long skip connections that traverse many layers,
and the sections without skip connections are concentrated
in the earlier layers, thus reducing the number of potential
candidates for split points. Secondly, ScissionLite currently
lacks consideration for energy efficiency. It is focused solely
on reducing inference latency; therefore, consideration of
energy consumption on local devices should be added in future
developments.

VI. CONCLUSIONS

This paper presents ScissionLite, a framework to accelerate
edge-based distributed deep learning inference. ScissionLite
reduces the amount of data transferred between the DNN
slices across the device and the edge, but at the same time
finds the optimal DNN slicing point. A novel method that
uses a lightweight compression method using a down/up-
sampling network and an automated benchmarking tool for
performance-limited IIoT devices are developed. ScissionLite
demonstrates the feasibility of the edge-based distributed deep
learning approach for accelerating DNN inference for IIoT
applications.

REFERENCES

[1] E. Sisinni, A. Saifullah, S. Han, U. Jennehag, and M. Gidlund, “Indus-
trial internet of things: Challenges, opportunities, and directions,” IEEE
transactions on industrial informatics, vol. 14, no. 11, pp. 4724–4734,
2018.

[2] L. Zeng, E. Li, Z. Zhou, and X. Chen, “Boomerang: On-demand
cooperative deep neural network inference for edge intelligence on the
industrial internet of things,” IEEE Network, vol. 33, no. 5, pp. 96–103,
2019.

[3] L. Lockhart, P. Harvey, P. Imai, P. Willis, and B. Varghese, “Scission:
Performance-driven and context-aware cloud-edge distribution of deep
neural networks,” in Proceedings of the 13th IEEE/ACM 13th Interna-
tional Conference on Utility and Cloud Computing, 2020, pp. 257–268.

[4] T. Qiu, J. Chi, X. Zhou, Z. Ning, M. Atiquzzaman, and D. O. Wu,
“Edge computing in industrial internet of things: Architecture, advances
and challenges,” IEEE Communications Surveys & Tutorials, vol. 22,
no. 4, pp. 2462–2488, 2020.

[5] A. Narayanan, E. Ramadan, J. Carpenter, Q. Liu, Y. Liu, F. Qian, and Z.-
L. Zhang, “A first look at commercial 5g performance on smartphones,”
in Proceedings of the Web Conference 2020, 2020, pp. 894–905.

[6] A. E. Eshratifar, A. Esmaili, and M. Pedram, “Bottlenet: A deep
learning architecture for intelligent mobile cloud computing services,” in
Proceedings of the IEEE/ACM International Symposium on Low Power
Electronics and Design, 2019, pp. 1–6.

[7] D. Hu and B. Krishnamachari, “Fast and accurate streaming cnn
inference via communication compression on the edge,” in Proceedings
of the 5th IEEE/ACM International Conference on Internet-of-Things
Design and Implementation, 2020, pp. 157–163.

[8] J. Shao and J. Zhang, “Bottlenet++: An end-to-end approach for feature
compression in device-edge co-inference systems,” in Proceedings of the
IEEE International Conference on Communications Workshops, 2020,
pp. 1–6.

[9] S. Yao, J. Li, D. Liu, T. Wang, S. Liu, H. Shao, and T. Abdelzaher,
“Deep compressive offloading: Speeding up neural network inference
by trading edge computation for network latency,” in Proceedings of
the 18th Conference on Embedded Networked Sensor Systems, 2020,
pp. 476–488.

[10] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2009, pp. 248–
255.

[11] X. Feng, X. Gao, and L. Luo, “X-sdd: A new benchmark for hot rolled
steel strip surface defects detection,” Symmetry, vol. 13, no. 4, p. 706,
2021.

[12] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge
Intelligence: Paving the Last Mile of Artificial Intelligence With Edge
Computing,” Proceedings of the IEEE, vol. 107, no. 8, pp. 1738–1762,
2019.

[13] J. C. Lee, Y. Kim, S. Moon, and J. H. Ko, “A reconfigurable neural
architecture for edge–cloud collaborative real-time object detection,”
IEEE Internet of Things Journal, vol. 9, no. 23, pp. 23 390–23 404,
2022.

[14] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and
L. Tang, “Neurosurgeon: Collaborative Intelligence Between the Cloud
and Mobile Edge,” in Proceedings of the 22nd International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2017, pp. 615–629.

[15] M. Xu, F. Qian, M. Zhu, F. Huang, S. Pushp, and X. Liu, “DeepWear:
Adaptive Local Offloading for On-Wearable Deep Learning,” IEEE
Transactions on Mobile Computing, vol. 19, no. 2, pp. 314–330, 2020.

[16] R. Hadidi, J. Cao, M. Woodward, M. S. Ryoo, and H. Kim, “Musical
chair: Efficient real-time recognition using collaborative iot devices,”
arXiv preprint arXiv:1802.02138, 2018.

[17] M. Gao, R. Shen, L. Shi, W. Qi, J. Li, and Y. Li, “Task partitioning and
offloading in dnn-task enabled mobile edge computing networks,” IEEE
Transactions on Mobile Computing, 2021.

[18] Z. Liao, W. Hu, J. Huang, and J. Wang, “Joint multi-user dnn partitioning
and task offloading in mobile edge computing,” Ad Hoc Networks, vol.
144, p. 103156, 2023.

AUTHOR et al.: TITLE 11

[19] Z. Liu, T. Liu, W. Wen, L. Jiang, J. Xu, Y. Wang, and G. Quan, “Deepn-
jpeg: A deep neural network favorable jpeg-based image compression
framework,” in Proceedings of the 55th annual design automation
conference, 2018, pp. 1–6.

[20] S. Yao, Y. Zhao, H. Shao, S. Liu, D. Liu, L. Su, and T. Abdelzaher,
“Fastdeepiot: Towards understanding and optimizing neural network
execution time on mobile and embedded devices,” in Proceedings of
the 16th ACM Conference on Embedded Networked Sensor Systems,
2018, pp. 278–291.

[21] J. H. Ko, T. Na, M. F. Amir, and S. Mukhopadhyay, “Edge-host
partitioning of deep neural networks with feature space encoding for
resource-constrained internet-of-things platforms,” in Proceedings of the
15th IEEE International Conference on Advanced Video and Signal
Based Surveillance, 2018, pp. 1–6.

[22] A. Giusti, D. C. Cireşan, J. Masci, L. M. Gambardella, and J. Schmidhu-
ber, “Fast image scanning with deep max-pooling convolutional neural
networks,” in Proceedings of the IEEE International Conference on
Image Processing, 2013, pp. 4034–4038.

[23] J. Nagi, F. Ducatelle, G. A. Di Caro, D. Cireşan, U. Meier, A. Giusti,
F. Nagi, J. Schmidhuber, and L. M. Gambardella, “Max-pooling con-
volutional neural networks for vision-based hand gesture recognition,”
in 2011 IEEE international conference on signal and image processing
applications (ICSIPA). IEEE, 2011, pp. 342–347.

[24] Y. J. Ha, M. Yoo, G. Lee, S. Jung, S. W. Choi, J. Kim, and S. Yoo,
“Spatio-temporal split learning for privacy-preserving medical platforms:
Case studies with covid-19 ct, x-ray, and cholesterol data,” IEEE Access,
vol. 9, pp. 121 046–121 059, 2021.

[25] Z. Wang and A. C. Bovik, “A universal image quality index,” IEEE
signal processing letters, vol. 9, no. 3, pp. 81–84, 2002.

	Introduction
	Background and Related Work
	Scission
	Related Work

	Design
	Overall Design
	Down/Upsampling Neural Network Layer
	Benchmarking Tool
	DNN Preparation
	Deployment

	Evaluation
	Experimental Environment
	Inference Latency
	Inference Accuracy
	Comparison with Other Compression Methods

	Discussion
	blackConclusions
	References

