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Abstract 119 

The biodiversity impacts of agricultural deforestation vary widely across regions. Previous 120 

efforts to explain this variation have focused exclusively on the landscape features and 121 

management regimes of agricultural systems, neglecting the potentially critical role of 122 

ecological filtering in shaping deforestation tolerance of extant species assemblages at large 123 

geographical scales via selection for functional traits. Here we provide a large-scale test of 124 

this role using a global database of species abundance ratios between matched agricultural 125 

and native forest sites that comprises 71 avian assemblages reported in 44 primary studies, 126 
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and a companion database of ten functional traits for all 2,647 species involved. Using meta-127 

analytic, phylogenetic, and multivariate methods, we show that beyond agricultural features, 128 

filtering by the extent of natural environmental variability and the severity of historical 129 

anthropogenic deforestation shapes the varying deforestation impacts across species 130 

assemblages. For assemblages under greater environmental variability – proxied by drier 131 

and more seasonal climates under greater disturbance regime – and longer deforestation 132 

histories, filtering has attenuated the negative impacts of current deforestation by selecting 133 

for functional traits linked to stronger deforestation tolerance. Our study provides a 134 

heretofore largely missing piece of knowledge in understanding and managing the 135 

biodiversity consequences of deforestation by agricultural deforestation. 136 
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MAIN TEXT 

As the earliest and most dominant form of human land use 1, agriculture has transformed almost 

40% of the Earth’s ice-free land area 2. Among its many environmental impacts 3, deforestation 

for agriculture poses one of the gravest direct threats to biodiversity via habitat loss, 

fragmentation and degradation 4, with existing evidence overwhelmingly showing negative 

biodiversity responses 5,6. However, the severity of these impacts appears to vary widely 7, with 

reports of substantial biodiversity loss following even small-scale forest conversions 8 contrasted 

by cases of agricultural landscapes providing positive conservation outcomes 9. Understanding 

which factors underlie this apparent variation is fundamental in predicting the future biodiversity 

impacts of agricultural land use and informing conservation planning, including associated forest 

protection and restoration 6. The urgency of such understanding is evident, given the ongoing 

expansion of agriculture globally (which saw ~107 million hectares of deforestation and natural 

vegetation conversion to croplands in 2003–2019 alone 10) and the competing demands on 

limited land resources from food security and forest conservation 11.  

Studies have traditionally focused on the landscape features and management regimes of 

agricultural systems to explore reasons for the varying biodiversity impacts of agricultural 

deforestation 7,12,13. These efforts have generated a broad consensus on the ameliorating roles of 

higher landscape heterogeneity 14,15 and lower management intensities 16, providing useful 

guidance to minimise the biodiversity impacts of agriculture at the local scale 17. However, these 

findings are focused on present-day factors and have neglected the potentially critical roles of 

natural and anthropogenic filtering in shaping biodiversity responses. At large geographical 

scales, natural habitat features and historical human impacts are well known to determine current 

species distributions via the selection for certain combinations of functional traits that govern 

species’ persistence in the local environment (Fig. 1a) 18–23. If such filtering affects species’ 

inherent tolerance to habitat change because of their pre-existing or acquired functional traits, it 

could conceivably render inherently different tolerance to agricultural deforestation in extant 

species and their assemblages across different ecosystems. Yet despite the wide recognition of 

filtering 18–23, how it may underlie the tolerance of extant species and assemblages to agricultural 

deforestation has not been explicitly assessed beyond a handful of local studies 21,24, severely 

limiting the scope of inference attainable. Overall, the lack of a filtering perspective in existing 

large-scale assessments potentially omits a key process responsible for the observed variation in 

biodiversity responses to agricultural deforestation. 

At large geographical scales, two sets of factors with clear geographical patterns are 

particularly likely to shape biodiversity responses to agricultural deforestation via filtering: 

natural variability of environmental conditions and historical anthropogenic deforestation 

(“environmental variability” and “historical deforestation” hereafter). In forest ecosystems where 

the environment is variable in such a way that vegetation bears natural resemblance to non-forest 

habitat, such as sparse canopy (whose interspersion of forest and non-forest conditions begets 

spatial environmental variability) or recurrent structural changes (e.g. seasonal defoliation or 

other structural changes linked to disturbance regime), species assemblages are naturally exposed 

to non-forest conditions. As such, they may be pre-adapted to deforestation including that 

associated with conversion to agriculture. This possibility has been demonstrated for avian 

assemblages in Central America and the Himalayas, where those in drier or more seasonal forest 

ecosystems are more tolerant of forest conversion to agriculture 24,25. On the other hand, 

historical deforestation may further select against species sensitive to deforestation via extinction 

and adaptation 26,27. In both cases, there should be a trait signature of filtering, whereby species 

assemblages under greater environmental variability or historical deforestation assume trait 
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profiles corresponding to greater deforestation tolerance (Fig. 1b). Filtering linked to this trait 

signature would thus predict less severe biodiversity impacts of current agricultural deforestation 

at the assemblage level, independent of the features of agricultural systems. Despite strong 

theoretical underpinnings 18 and empirical evidence of their influence on biodiversity responses 

to other anthropogenic threats 28,29, these filtering mechanisms and particularly the trait signature 

of such filtering have not been tested in large-scale assessments of the biodiversity impacts of 

agricultural deforestation. 

Here, we combine meta-analytic, phylogenetic, and multivariate methods to test the 

hypothesis that filtering by environmental variability and historical deforestation explains global 

variations in the biodiversity impacts of agricultural deforestation, and that these filtering effects 

are reflected by the trait signatures of species assemblages. We use birds as a single, most data-

rich representative taxon to avoid taxonomic identity confounding biodiversity responses, 

considering that different taxa may have inherently different responses to habitat change 30. 

Through extensive compilation of paired data between matched agricultural and reference native 

forest sites (“agriculture-forest pair” hereafter), we constructed a global database of species-

specific abundance records (individuals ha-1; corrected for sampling effort) for entire avian 

assemblages 31; we broadly defined agricultural land as including croplands, pastures, and 

agroforestry (Methods; Extended Data Fig. 1; Extended Data Table 1). For each record, we 

calculated an abundance response ratio of agricultural over native forest sites (on the natural log 

scale; “RR” hereafter) to represent the impact of agricultural deforestation on each species (and 

by extension, species’ tolerance to agricultural deforestation), with more negative RRs indicating 

stronger negative impacts and lower deforestation tolerance (Methods).  

For each assemblage, we additionally calculated the means of RR across all species 

(“assemblage RR” hereafter) to represent assemblage-level impacts. For the agricultural sites in 

each study, we also quantified remnant forest cover, distance to the nearest continuous forest, 

and surrounding human population density (people km-2) to represent their landscape features. 

Our compilation yielded 7,625 RRs covering 2,647 bird species 31. These records contained 71 

agriculture-forest pairs – each involving an entire avian assemblage – reported in 44 primary 

studies from 25 countries, and they accounted for ~72% of all suitable primary studies identified 

(Fig. 2; Extended Data Table 2). For each bird species, we also compiled data on ten functional 

traits 31 – spanning the morphological, life-history, behavioural, and other ecological dimensions 

– that are considered predictive of species tolerance to forest loss or degradation 29,32–36 

(Extended Data Tables 3 and 4; Methods). 

To represent environmental variability, we used mean annual precipitation (“MAP” 

hereafter; mm y-1), the standard deviation of mean monthly temperature (“seasonality” hereafter; 

°C), and the frequency of forest disturbance regime involving any of four disturbance types: 

storm, wildfire, flood, and drought (“disturbance regime” hereafter; in two categories: “no 

disturbance” versus “with regular disturbance”) 28. Native forests under lower MAP tend to have 

sparser canopy cover 37, while those under more seasonal climates or more frequent disturbance 

regime typically exhibit more pronounced defoliation or other structural change cycles 24,28 – 

features that both resemble non-forest habitat conditions associated with environmental 

variability. To represent the severity of historical deforestation, we calculated the length of 

agricultural history (“agricultural history” hereafter; y), considering that agricultural land use 

constitutes the dominant agent of anthropogenic deforestation 1,18, and that its filtering effect 

would most likely begin with the onset of agricultural land conversion 38. We obtained data on 
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MAP, seasonality, and agricultural history from existing databases 39,40, and we scored 

disturbance regime by consulting authors of primary studies and the literature (Methods). In all, 

the study systems included in our database spanned wide ranges of variable values representing 

environmental variability (100–4,964 mm y-1 in MAP, 0.2–14.1 °C in seasonality, and varying 

disturbance regime scores; the 100-mm-y-1 MAP and 14.1-°C seasonality were both from a 

desert ecosystem with riparian forests), agricultural history (142–9,018 y), and agricultural 

landscape features (Fig. 2; Extended Data Figs. 2 and 3; Extended Data Table 2; ref 31). 

 

Results  

Biodiversity impacts of agricultural deforestation are less severe in study systems under 

greater environmental variability and historical deforestation 

Meta-analyses of assemblage RR indicated that while the impacts of agricultural 

deforestation on avian abundance were overall negative, they depended on the type of agriculture 

and species considered (Figs. 3a and 3b; Methods). Whereas average impacts on whole 

assemblages were hardly negative (Fig. 3a, upper row), this pattern was a result of the mostly 

positive impacts of agroforestry (Fig. 3a, middle row) counteracting the overall negative impacts 

of open agriculture (Fig. 3a, lower row). More importantly, this pattern was clearly driven by a 

set of “winner” species that were absent from native forests but were found at agricultural sites: a 

separate set of meta-analyses on sub-assemblages that comprised only species present at the 

native forest sites showed clear negative impacts of agriculture (Fig. 3b, upper row), regardless 

of whether it was agroforestry (Fig. 3b, middle row) or open agriculture (Fig. 3b, lower row).  

The above meta-analyses also showed that the impacts of agricultural deforestation on 

avian assemblages varied widely across study systems, as indicated by the consistently high 

values of I2, the measure of heterogeneity of meta-analytic data 41 (Figs. 3a and 3b; Methods). 

Applying meta-regressions on assemblage RR to further assess such variation, we found that 

impacts were less negative in assemblages under higher remnant forest cover (β: 0.205, 95% 

confidence interval [“CI” hereafter]: 0.064–0.347) and in fact tended to be positive at high 

covers (Fig. 3c; Methods). Crucially, impacts were also less negative at lower MAP (β: -0.320, 

95% CI: -0.650–0.009; Fig. 3d) and longer agricultural history (β: 0.227, 95% CI: 0.033–0.420; 

Fig. 3e). These results were robust to potential confounding effects of the types of agriculture 

and native forests being compared and the season of study (Extended Data Fig. 4), as well as to 

publication bias (Extended Data Fig. 4; Supplementary Information Table S1) and a set of 

sensitivity analyses involving map-extracted data, data scaling, outlier handling, and weighting 

schemes (Supplementary Information Tables S2–4; Methods). In sum, the negative biodiversity 

impacts of current agricultural deforestation were less severe in study systems subjected to 

greater filtering by historical deforestation and – to a lesser extent – environmental variability.  

The trait signature of filtering: functional traits predicting greater deforestation tolerance 

We further assessed the trait signature of such filtering effects by testing whether avian 

assemblages under greater environmental variability and historical deforestation had trait profiles 

predictive of greater tolerance to agricultural deforestation (Fig. 1b). To do this, we first asked 

what traits would predict species’ greater tolerance to agricultural deforestation (represented by 

larger species-level RRs), using phylogenetically controlled mixed-effect modeling and 

accounting for the potential influence of covariates as informed by preliminary analyses 

(Methods). Our analyses showed all ten traits tested to be relevant, in ways consistent with 
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expectations (Extended Data Table 3): species’ greater tolerance to deforestation was clearly 

associated with larger clutch sizes, shorter generation lengths, lower diet specialisation, lower 

foraging heights, weaker forest associations, larger natural ranges, and lower dependence on 

forest structures for nest placement, and to a lesser extent associated with lower body masses, 

larger hand-wing indices (representing stronger dispersal abilities 29), and being migratory (Fig. 

4a; Supplementary Information Table S5). These “tolerance traits” thus depicted a clear trait 

profile of species that were more tolerant of agricultural deforestation. 

The trait signature of filtering: assemblage trait profiles in relation to filtering 

Based on the above trait profile, we next derived the “tolerance trait profile” for 

individual assemblages, and assessed its relationship with environmental variability and 

historical deforestation. We represented the tolerance trait profile of a given assemblage by its 

“centroid” of each trait, i.e. the mean trait value weighed by the relative abundance of each 

species (pooled across agricultural and native forest sites, after correcting for potentially unequal 

sampling effort between the two habitat types; Methods). Thus, an assemblage more tolerant of 

agricultural deforestation had a trait profile involving lower assemblage-level centroid values for 

six traits: body mass, generation length, diet specialisation, foraging height, forest association, 

and dependence on forest structures for nest placement, as well as higher centroid values for the 

four other traits: hand-wing index, clutch size, migratory status, and natural range size (as shown 

in Fig. 4a). Mixed-effect models for the assemblage-level centroid of each trait indicated that 

they had clear relationships with seasonality and, to a lesser extent, MAP, disturbance regime, 

and agricultural history (Fig. 4b; Methods). Importantly, the directions of these relationships 

predominantly linked more tolerant assemblage trait profiles to greater environmental variability 

and historical deforestation. Take forest association as an example: its lower centroid values – 

indicating greater assemblage tolerance of deforestation (the top dashed box in Fig. 4a) – were 

linked to lower MAP, higher seasonality, and more frequent disturbance, all corresponding to 

greater environmental variability; they were also to a lesser extent linked to longer agricultural 

history that signifies more severe historical deforestation (Fig. 4b, the row corresponding to the 

top dashed box in Fig. 4a).  

These relationships were not an artefact of multiple testing, according to a further 

analysis of the top principal component (“PC1” hereafter) of all ten trait centroids, which 

accounted for 49.0% of the total variance in principal component analysis (“PCA” hereafter; 

Supplementary Information Table S6; Methods). Variable loadings of PCA indicated that lower 

PC1 overwhelmingly corresponded to assemblage trait profiles more tolerant of agricultural 

deforestation, as evidenced by the negative loadings of traits that predicted greater tolerance to 

agricultural deforestation (e.g. hand-wing index) and vice versa (e.g. forest association; 

Supplementary Information Table S6). Mixed-effect models indicated that MAP, seasonality, 

disturbance regime, and agricultural history were all predictive of PC1 (Fig. 4c; Methods), in 

ways that linked lower PC1 to greater environmental variability – as represented by lower MAP 

(Fig. 4c, top panel), higher seasonality (Fig. 4c middle panel), and more frequent disturbance 

(Fig. 4c, slate blue over purple data points and fitted line in all panels) – and more severe 

historical deforestation (i.e. longer agricultural history; Fig. 4c, bottom panel).  

Taken together, the above analyses (also robust to a suite of sensitivity analyses; 

Supplementary Information Tables S7–10; Methods) showed that the observed filtering effects 

of greater environmental variability and historical deforestation had a clear trait signature of 

“shifting” avian assemblages toward trait profiles that correspond to greater tolerance to 
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deforestation. Such shifts could occur in a number of ways. First, they could be the result of the 

filtered assemblages occupying a larger, more divergent trait space, particularly in regions of the 

trait space that correspond to greater tolerance of deforestation (“trait space expansion”; Fig. 1b, 

sub-panel (i)). Alternatively – and in the absence of trait space expansion – such shifts could 

occur by constituent species in filtered assemblages shifting collectively toward or clustering in 

the regions of the same trait space that correspond to greater tolerance (“trait shift” and “trait 

clustering” respectively; Fig. 1b, sub-panels (ii) and (iii)).  

To assess how the above shift in assemblage trait profiles could have occurred, we used a 

set of multivariate trait metrics to measure the trait space occupation of each avian assemblage, 

which we then related to the PC1 of assemblage trait centroids, the metric we used in the above 

analyses to measure the trait profile and its shift for each assemblage. We used functional 

richness (corrected for species richness) to measure the hypervolume of the trait space occupied 
42, functional dispersion to measure the divergence of trait profiles among species 43, and 

functional redundancy to measure the clustering of species around certain trait profiles 44 

(Methods). Linear regressions indicated that lower PC1 – corresponding to more tolerant 

assemblage trait profiles (Supplementary Information Table S6) and associated with filtering by 

greater environmental variability and historical deforestation (Fig. 4c) – was strongly correlated 

with an increase in both functional richness and functional dispersion, but it was unrelated to 

functional redundancy (Fig. 5). These results suggested that in assemblages subjected to filtering 

by greater environmental variability and historical deforestation, the trait signature of filtering 

most likely occurred by constituent species exhibiting more divergent trait profiles, particularly 

those corresponding to greater tolerance of deforestation (i.e. via trait space expansion). 

 

Discussion 

Drawing on an extensive database of species abundance responses to agricultural 

deforestation for entire avian assemblages compiled from 25 countries, we demonstrated high 

levels of variation in the severity of assemblage-level deforestation impacts across a large 

collection of primary studies. Crucially, beyond features of the agricultural systems, this 

variation was linked to the filtering effects of environmental variability and historical 

anthropogenic deforestation, which operated on species’ functional traits to render inherently 

different tolerances to deforestation across extant assemblages. Previous efforts to explain the 

varying impacts of agricultural deforestation on biodiversity were overwhelmingly limited to the 

features of agricultural systems 7,12, or were regionally focused so as to severely limit the ranges 

of filter types or filtering intensities testable 21,24. Building on theoretical underpinnings 18,20 and 

empirical evidence in other contexts 19,28,29, our study provides a large-scale test of the roles of 

natural and anthropogenic filtering in shaping biodiversity responses to agricultural 

deforestation. The evidence we uncovered for such roles highlighted a heretofore largely 

neglected explanation for the observed variation in biodiversity responses, including the 

apparently more negative responses found in tropical assemblages 7, whose possible reasons 

were yet to be formally tested.  

Enhancing such understanding enables better anticipation and management of 

biodiversity consequences of future agricultural land-use change. Globally, agricultural land use 

is predicted to shift and expand, with deforestation hotspots predicted particularly for sub-

Saharan Africa, South and Southeast Asia, and to a lesser extent Central and South America 45. 

Most of these hotspots are of high precipitation, low temperature seasonality, little disturbance 
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regime, and/or short agricultural histories (Extended Data Fig. 3), which likely render their 

extant biodiversity less tolerant to the negative impacts of deforestation. Such a prospect, 

combined with the fact that much of existing agricultural deforestation has happened in more 

“filtered” ecosystems 1,10 (i.e. ecosystems less subject to the filtering effects of high 

environmental variability or long deforestation histories), means that global biodiversity loss 

linked to future agricultural deforestation may be even more severe than has happened to date 4. 

This is a grave possibility, and it underscores the need for managing agricultural landscapes 

using the best knowledge and practices available 12,17, and crucially, for proactive land-use 

planning to reduce deforestation in inherently high-impact regions – in ways sensitive to the 

livelihood and rights of the rural populations involved. The latter strategy should employ a range 

of approaches including reducing the footprint of agricultural land use – via optimizing land 

allocation among alternative production regimes 46 and/or relocating production to more cost-

efficient regions 47 – and prioritizing already deforested land for agricultural expansion in 

coordination with forest restoration 48. 

The trait signature of filtering we found further provided insights into how natural and 

anthropogenic filtering occurs to shape present-day biodiversity responses to anthropogenic 

environmental change, and it highlighted several functional traits as key determinants of such 

responses. Previous studies on the role of filtering in explaining the geographical variation of 

biodiversity responses are restricted to demonstrating the effect of filtering, stopping short of 

testing its potential trait signatures 19,28, although two recent species-level studies on avian 

tolerance of urbanisation 49 and forest fragmentation 29 have gone a step further to assess the 

relevance of traits to such tolerance and crucially, the geographical variation in this relevance. 

These studies mark an important advance toward understanding varied biodiversity responses to 

environmental change from a filtering perspective. Nevertheless, they do not test the signature of 

filtering on the level of entire species assemblages, which is critical for elucidating the role of 

filtering by bridging with the logic and expectations of the underlying ecological theory 18,20,23. 

In addition, despite growing recognition of the links between species’ tolerance to anthropogenic 

impacts and their functional traits 32,50, there is yet to be a rigorous large-scale test of these links 

for agricultural deforestation 33,35, particularly based on globally synthesised empirical data 

rather than the coarse proxy of IUCN threat levels 32,34. Our study filled the above important 

gaps, and expanded current understanding of the conservation relevance of ecological filtering 23. 

While based on paired data and robust to a suite of sensitivity analyses, our conclusions 

could be affected by several factors we could not account for. These include the management 

intensity of agricultural systems 7, potential pre-existing differences in biophysical conditions or 

anthropogenic pressures (e.g. hunting) between agricultural and native forest sites, and biotic 

factors capable of further filtering species assemblages in addition to the factors we considered 
20, notably competition, a process recognised to shape community assembly via functional traits 
51. The first issue should be lessened by the fact that our analyses accounted for remnant forest 

cover at agricultural sites as well as the types of agriculture and native forests being compared, 

given the tendency for intensive agriculture to be associated with reduced remnant forest cover 

and non-agroforestry systems. The influence of the second issue should also be limited to that of 

noise rather than bias, because we have no reason to expect that potential differences in within-

pair site conditions co-varied with MAP, seasonality, disturbance regime, or agricultural history 

to contradict our findings. For the third issue, while we were not able to explicitly account for the 

influence of competition and other biotic filters, we note that at large geographical scales – 

which is the scale our study is concerned with – these factors and processes are likely to be 
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ultimately shaped by such abiotic factors as the ones we tested 23. Nevertheless, conclusions from 

our study should be interpreted with the caveat that we have not explicitly considered some 

potentially relevant filters. Finally, the lack of region-specific data on avian functional traits 

limited our assessment of the trait signature of filtering to the species level, regardless of how 

widely distributed a species may be. This forced us to neglect potential intraspecific trait 

variations across regions that may predict different deforestation tolerances even within the same 

species 52. As the spatial resolution of trait data improves, future studies should incorporate 

intraspecific trait variations in assessing the trait signature of filtering. 

Human activities continue to profoundly shape the Earth’s ecosystems and the life forms 

therein. As we seek to understand the extent and nature of such impacts and manage them, it is 

critical to recognise that the observed impacts are influenced not just by current and ongoing 

human activities, but also by the nature and strength of historical legacies pertaining to 

ecosystems’ evolutionary histories and past human impacts 28, including undocumented 

historical extinctions 53. This legacy perspective particularly underscores humans’ obligations to 

conserve the rapidly disappearing ecosystems so far spared of human impacts – the Earth’s last 

strongholds of complete species assemblages. The otherwise inevitable filtering and loss of their 

sensitive species not only erodes the integrity of these ecosystems per se, but also spells further 

erosion of the Earth’s life forms to aggravate the historical legacies humans leave. By illustrating 

this case for how agricultural deforestation – a leading threat to global biodiversity – impacts 

extant biodiversity, our study suggests the potentially strong relevance of natural and 

anthropogenic filtering to understanding and managing the biodiversity impacts of other forms of 

anthropogenic environmental change. 

 

Methods  

Data Collection 

Data inclusion criteria: We targeted empirically measured abundance data for matched 

agricultural and native forest sites (i.e. “agriculture-forest pair”) on the level of individual bird 

species for entire avian assemblages. We focused on species-level abundance to allow more 

nuanced assessment of deforestation impacts on biodiversity than is possible from coarser 

metrics such as species richness or presence/absence 54, and to relate species responses to 

functional traits. We considered a species part of an assemblage only if it was recorded at either 

the agricultural or native forest sites, or both. 

As a benchmark for agricultural land, we included three types of native forest: old-growth 

forests that had not been anthropogenically degraded in extended recent history (i.e. ≥400 years), 

“generic native forests” that may have been degraded but had not been deforested in extended 

recent history, and secondary forests that had been regenerating after deforestation for ≥40 years 
55. For agricultural land, we included cropland of a wide range of food crops (mostly cereal and 

vegetables but also coffee, tea, and cocoa; we did not include oil palm and other orchard tree 

crops because unlike the shrub-like structure of coffee, tea, or cocoa plantations, plantations of 

oil palm or other orchard trees tend to have a much more tree-cover-like vegetation structure), 

pasture land for domestic livestock grazing, and agroforestry of crops or pasture (i.e. 

silvopasture). We considered coffee, tea and cocoa plantations as agroforestry (as opposed to 

cropland) only if they were noted by primary studies to be shade-grown, considering the 

generally open vegetation structure of sun-grown coffee, tea or cocoa. 
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While the true benchmark for agricultural land should be old-growth forests, we also 

accepted generic native forests and secondary forests as benchmarks because old-growth forests 

no longer existed in many study systems. We ensured that the use of these “degraded” 

benchmarks did not bias our findings (see “Statistical analysis: meta-analyses and meta-

regressions” below), and we note that this use almost certainly rendered more conservative 

estimates of the negative impacts of agricultural deforestation. We considered a native forest as 

old-growth only when the primary studies explicitly labelled a forest as “primary”, “old-growth”, 

“pristine”, or otherwise undisturbed by humans, and when we had no reason to doubt such 

labelling. For secondary forests, we used 40 years as the minimum acceptable regeneration age 

to allow a reasonable degree of biodiversity recovery in these forests 55. This threshold age was 

nonetheless young and potentially rendered the native forest benchmark a highly degraded one, 

but secondary forests concerned only three out of the 71 avian assemblages studied (Extended 

Data Table 2). They therefore should not have driven our findings, and we tested for their 

potential influence on our findings via a set of sensitivity analyses (see “Sensitivity analyses” 

below). 

We required the paired agricultural and native forest sites to provide matching abundance 

data capable of representing their habitat values for entire avian assemblages. Accordingly, we 

followed five criteria to assess the suitability of each primary study. (1) The avian assemblages 

studied (typically termed “communities” in primary studies) must not be defined by criteria 

potentially relevant to species’ abundance response to habitat change (e.g. large body size or 

needing cavities for nesting). (2) The avian assemblages studied must include ≥6 species, and 

≥10% of constituent species must have been recorded. (3) Sampling efforts for agricultural and 

native forest sites must be equivalent or known, such that abundance raw counts could be 

adjusted for equal sampling effort, or the quality and comparability of density estimates could be 

confirmed. (4) The size of the native forest patches sampled must be ≥5 ha such that the species-

specific abundance data could be considered as reflecting the habitat value of the native forests 

being studied, although such data are still potentially affected by the wider landscapes 56 (as 

explained below, we have accordingly devised a “habitat certainty score” as part of the weight 

scheme used in meta-analyses and meta-regressions, to account for potential influences of the 

wider landscapes: 1 for “low habitat certainty”, if the native forest sampled were fragmented or 

otherwise <50 ha in size; 2 for “high habitat certainty”, if it was ≥50 ha in size; see “Data search 

and compilation”). Similarly, if the agricultural sites studied were in the form of agricultural 

patches situated in a forest landscape, we required the agricultural patches to be ≥5 ha. (5) The 

matching between agricultural and native forest sites concerned all biophysical (e.g. elevation, 

slope, landscape context) and study (sampling methods) conditions that may affect the measured 

species abundance. Correspondingly, we discarded data pairs that were obviously incomparable 

(i.e. major differences in biophysical or study conditions, or different sampling methods). 

Provided the above criteria were met, we allowed a range of data formats for species-specific 

abundance: raw counts, estimated density (e.g. individuals ha-1), or abundance indices; we did 

not admit indices based on occurrence frequencies because they are fundamentally about species’ 

presence / absence rather than abundance. Because of varied sampling designs and methods, data 

compiled from primary studies did not allow accounting for imperfect detection.  

Data search and compilation: We conducted an extensive search for suitable primary 

studies up to 7th December 2021, using a combination of keyword searches and indexing from 

published syntheses and databases (Extended Data Fig. 1; Extended Data Table 1). In all, we 
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screened 5,899 abstracts and subsequently 451 full-text articles, through which we identified 61 

suitable primary studies.  

We extracted species-specific abundance data directly from these studies where available, 

and we corresponded with the first and corresponding authors of the other studies to request 

abundance data. Of the 61 suitable primary studies identified, we were able to compile species-

specific abundance data for entire assemblages for 44 studies. We streamlined the resolution of 

abundance data such that a given primary study provided one set of species-specific abundance 

data (i.e. corresponding to an avian assemblage) for each agriculture-forest pair, which could 

consist of multiple sampling units. For abundance data in formats other than density, we adjusted 

their values by sampling effort (measured in the unit used in the primary studies) to ensure that 

data for agricultural land and native forests corresponded to equal sampling effort 54. We 

assumed that density estimates were already corrected for sampling effort, and for studies that 

simultaneously reported raw counts and density estimates, we used the latter, assuming that they 

had accounted for factors that may affect the comparability of raw counts. In calculating RR for 

species-specific abundance, for data pairs involving zero abundance values (which would make 

it impossible to calculate RR), we handled zero values separately for each assemblage, by first 

identifying the smallest non-zero abundance value for any species in the assemblage, and adding 

half of that value to each zero value following 57.  

For each agriculture-forest pair, we recorded three metrics to calculate the weight of its 

RRs in subsequent analyses (see “Statistical analysis: meta-analyses and meta-regressions” 

below). First, we assigned a “match rigor score” to gauge the extent of matching between 

agricultural and native forest sites: 1 for “high match rigor”, if matching concerned most or all 

biophysical and methodological conditions; 2 for “likely or uncertain match rigor”, if matching 

was partial or if little information was provided despite data being presented as matched. We 

note that primary studies often cannot fully eliminate site differences – e.g. agricultural sites may 

often be on more productive land than native forests in the same area. Second, we scored the 

duration of fieldwork (in months; “study duration” hereafter) to approximate the sampling effort 

for abundance data and in turn, data quality. The fact that primary studies used a range of 

sampling designs (e.g. point counts versus transect surveys) precluded the use of sampling units 

to assess sampling effort. Third, we assigned a “habitat certainty score” to represent the extent to 

which abundance data for native forests reflected the habitat value of the forests per se rather 

than the influence of the wider landscapes: 1 for “low habitat certainty”, if the native forest 

sampled were fragmented or otherwise <50 ha in size; 2 for “high habitat certainty”, if it was ≥50 

ha in size. We gave greater weights to records with higher match rigor, longer study durations, 

and higher habitat certainty, by calculating the weight of the species-level RRs (and 

correspondingly, the assemblage-level RRs) for each agriculture-forest pair using Equation 1 (we 

ensured the robustness of our results to this weight formulation using a set of sensitivity 

analyses; see “Sensitivity analysis” below): 

 

Weight score =
√Study duration × Habitat certainty score

Match rigor score
                                       (Equation 1) 

 

For each agriculture-forest pair, we additionally extracted data on the season of study 

(“study season” hereafter), and for the agricultural site, the amount of remnant forest cover in the 
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landscape and the distance to the nearest large, continuous forest (“distance to the nearest 

continuous forest” hereafter). For study season, we differentiated between studies conducted 

during the non-breeding season of the avian assemblages studied versus those conducted during 

the breeding season or all-year, considering the possible shift of habitat needs during the 

breeding cycle for some species 9. We defined the study season as “non-breeding” if the primary 

study explicitly indicated as such, and otherwise as “breeding or all-year” (tropical studies in our 

database that did not specify their study season relative to the avian breeding cycle were 

therefore classified as the latter). For the amount of remnant forest cover at agricultural sites, 

because of varying and limited amounts of information provided across primary studies, we used 

an ordinal system of six categories represented by scores 0–5 in sequential order: 0, (0–5]%, (5, 

10]%, (10, 20]%, (20, 40]%, (40, 60]%; no study included in our database had >60% remnant 

forest cover in the agricultural landscapes.  

For distance of agricultural sites to the nearest continuous forest, we defined continuous 

forest as forest expanses ≥50 ha in size, and we measured this distance from the FROM-GLC 

Plus land-cover map (covering years 1982–2021, at a 30-m resolution; “FGP map” hereafter) 58, 

from layers matched to the year of the avian surveys. Our use of land-cover maps for extracting 

this information was again because of the lack of consistent, quantitative information from 

primary studies on distances between agricultural and forested sites. We selected the FGP map 

because it is the highest-resolution land-cover product that adequately covers the temporal extent 

of primary studies in our database. The only other land-cover product that covers a sufficiently 

wide temporal extent is the ESA CCI Land Cover time-series map (covering years 1992–2020) 
59, but its spatial resolution is 10 times coarser than that of the FGP map (30 m), which we 

deemed too coarse to provide reliable distance measures. The FGP map also shows higher 

overall accuracies than the ESA CCI maps 58. For the three primary studies whose avian surveys 

occurred outside the year range of these maps, we used the map layers for the years nearest to 

them. Considering potential limitations on data accuracy imposed by map resolution, we set all 

distance values below 30 m (the map pixel size) to 30 m. We additionally used an alternative size 

criterion of ≥100 ha for continuous forest 60 in a set of sensitivity analyses (see “Sensitivity 

analysis” below). Finally, considering potential map inaccuracies and its inclusion of plantations 

– by nature not “forests” that could serve as population sources – we also compiled the distance 

between agricultural sites and its matching native forest sites from primary study authors, as a 

complementary distance measure. For this measure, we again adopted a simplified classification 

system because of limited information reliability, based on the smallest distance between any 

sampling unit of the agricultural and native forest sites: “close” for distance ≤1 km, and “far” for 

distance >1 km. Because data on this measure were of coarse resolution and were sometimes 

noted by primary study authors to be uncertain, we used this measure only in a corroborative 

assessment (see “Sensitivity analysis” below).  

For each agriculture-forest pair, we obtained its corresponding MAP and the standard 

deviation of mean monthly temperature from WorldClim 2.1 39 based on study coordinates. For 

disturbance regime, authors of primary studies scored the frequency of each of four major 

disturbance types for the forest ecosystems in their studies: storms (including hurricanes), 

wildfires, floods, and droughts. Scoring was conducted for each agriculture-forest pair, and 

concerned three categories based on the following criteria:  

0: (Almost) never – i.e. the disturbance (almost) never happens, or its incidence is 

considered exceptional;  



 

 

15 

 

1: Occasional – i.e. the disturbance sometimes happens, but is not considered a regular 

phenomenon (below a 50% chance);  

2: Frequent – i.e. the disturbance regularly happens (above a 50% chance).  

We opted to obtain first-hand information from primary study authors rather than existing 

maps because the latter are typically of coarse resolutions 28. Of all 44 primary studies, we were 

able to get author-provided scores of the four disturbance types for 35 studies; for the remaining 

nine studies, two co-authors (FH and WW) independently scored the four disturbance types by 

consulting literature and web sources, then discussed to harmonise any discrepancies. For each 

agriculture-forest pair, we then took the highest score across the four disturbance types to 

produce an overall disturbance regime score, which represented the extent to which a given 

ecosystem was subject to regular disturbances of any kind. Finally, because only four primary 

studies had an overall disturbance regime score of 2, we converted their scores to 1 to avoid 

computational problems, thus effectively streamlining the disturbance regime variable into a 

two-category variable: 0 (i.e. almost no disturbance; “no disturbance” hereafter) versus 1 (i.e. 

occasional or more frequent disturbances; “with regular disturbance” hereafter).  

We additionally used study coordinates to derive the length of agricultural history for 

each agriculture-forest pair from the HYDE 3.2 database 40 (which covers the temporal span of 

year 10,000 BCE – 2017 CE), by calculating the number of years that had passed between the 

year when any form of agriculture (cropland or pasture, irrigated or non-irrigated) first appeared 

anywhere within a 10-km radius of the study location and the year when the primary study was 

conducted. We also used the HYDE 3.2 database to extract the average human population 

density within a 10-km radius of the study location in the year of the primary study.  

For each bird species in our database, we compiled data on ten functional traits, following 

the taxonomic nomenclature used in 61. These traits are all considered predictive of species 

sensitivity to forest loss and degradation 29,32–36, and they include the following: two 

morphological traits – body mass, hand-wing index (a measure of the relative elongation of a 

bird’s wing and a widely used proxy for dispersal capability 62; Extended Data Table 3), two life-

history traits – clutch size, generation length, and six ecological traits – diet specialisation, 

foraging height, forest association (the extent to which a species is associated with forest 

habitats), migratory status (whether or not a species is considered migratory), natural range size, 

nest placement (the extent to which a species depends on forest structures for nest placement); 

we provide detailed definition, reasons of inclusion into our study, and data sources for these 

traits in Extended Data Table 3. Our classification system for forest association went beyond the 

coarse “forest versus non-forest” classification of most studies (e.g. 33) by distinguishing among 

four categories: late-successional-forest, early-successional-forest, generalist, and open-country 

(Extended Data Tables 3 and 4), allowing for finer distinction of species’ forest association that 

was also specific to the study season. To ensure data quality, two co-authors (WW and SL) 

independently scored forest association for each species and discussed to harmonise any 

discrepancies, and we double-checked all extracted data to minimise data entry error. 

For each trait and each species assemblage (i.e. that corresponded to a given agriculture-

forest pair), we calculated its assemblage-level “centroid”, i.e. the assemblage mean value 

weighted by the relative abundance of each species (pooled across agricultural and native forest 

sites after correcting for sampling effort) following Equation 2: 
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Trait centroid = ∑ 𝑇𝑟𝑎𝑖𝑡 𝑣𝑎𝑙𝑢𝑒𝑖  ×  
𝐴𝑏𝑢𝑛𝑖,𝑎𝑔𝑟𝑖𝑐𝑢𝑙𝑡𝑢𝑟𝑒 + 𝐴𝑏𝑢𝑛𝑖,𝑛𝑎𝑡𝑖𝑣𝑒 𝑓𝑜𝑟𝑒𝑠𝑡

𝐴𝑏𝑢𝑛𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑎𝑔𝑒

𝑛
𝑖=1           (Equation 2) 

Where i represents each species in the assemblage that consists of n species, 

Abuni,agriculture and Abuni,native forest  refer to the abundance of species i at the agricultural and native 

forest sites (after being corrected for potentially unequal sampling effort between the two habitat 

types), respectively, and Abunassemblage refers to the total abundance (corrected for sampling 

effort) of all n species pooled across agricultural and native forests. 

 

Statistical Analysis 

Meta-analyses and meta-regressions: We conducted weighted multi-level meta-

analyses and meta-regressions 63 of assemblage RR using the “lme()” function of package 

“nlme” (version 3.1-157 64) in programme R (version 4.2.0 65). For meta-analyses, we used an 

intercept-only fixed effect, and we fitted a group of random intercept variables to account for 

potential shared variation and data non-independence, in descending order of nestedness as 

below (i.e. later variables were nested within earlier ones):  

Level 1: study season, involving two categories: breeding/all-year versus non-breeding; 

random effects with a small number of categories have been shown to not bias model estimates 
66, and we confirmed that our models did produce reasonable estimates for this variable; 

Level 2: the types of agriculture and native forest being compared (“comparison type” 

hereafter); for native forest, we combined generic native forests and secondary forests – both 

were degraded benchmarks – to form “non-old-growth forests”; this variable therefore involved 

six categories (three types of agriculture by two types of native forests); 

Level 3: the identity of the primary study. 

Finally, we added one more, lowest-tier variable to estimate I2, the measure of the 

heterogeneity of meta-analytic data that represents variation not due to sampling variance arising 

from differences in sampling efforts among effect sizes 41, following the method developed in 54.  

For meta-regressions on the relationship between assemblage RR and predictor variables, 

we conducted model selection based on small-sample-corrected Akaike Information Criterion 

(AICc) 67, then used the model(s) with the most complete set of predictor variables from within 

the top model set (ΔAICc ≤2) to make inference. We used the same random effect structure as in 

the above meta-analyses, and we calculated marginal R2 based on the lowest-tier random 

intercept variable 68. Fixed effects of the global models followed Equation 3: 

RR ~ remnant forest cover + distance to nearest continuous forest +               (Equation 3)   

                     surrounding human population density +                                                   

         MAP + seasonality + disturbance regime + agricultural history  

Where remnant forest cover (in ordinal values of 0–5), distance to the nearest continuous 

forest (in m), and surrounding human population density (in 100 persons km-2) represented 

features of the agricultural landscapes; MAP (in mm y-1), seasonality (in °C), and disturbance 

regime (“no disturbance” versus “with regular disturbance”) represented natural filtering; and 

agricultural history (in y) represented anthropogenic filtering. We modelled the effects of all 

continuous variables (i.e. all except for remnant forest cover) on the natural log scale, 
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considering that the same absolute difference in the lower range of their values (e.g. 100 versus 

300 m distance, or 300 versus 600 mm MAP) was most likely of much greater ecological 

magnitude than in the upper range (e.g. 2,100 versus 2,300 m distance, or 2,300 versus 2,600 

mm MAP). Pre-analysis assessment of collinearity indicated the absence of strong collinearity 

among all variables (all |rPearson| < 0.52). We therefore did not exclude any variable from 

analyses.  

For our meta-regression global models (one global model for each set of sensitivity 

analyses), we checked and confirmed that the random-effect variables of study season and 

comparison type did not have strong collinearity with the four filtering variables (MAP, 

seasonality, disturbance regime, and agricultural history), and therefore would not have 

confounded their relationship with assemblage RR (Extended Data Fig. 4a–d as an example for 

the main analysis). We then identified the top model set for each global model, i.e. models whose 

ΔAICc was ≤2 from the lowest AICc score of the full model set, using package “MuMIn” 

(version 1.47.5 69) in programme R. From the top model set, we adopted the model(s) with the 

most complete set of predictor variables to obtain predictor coefficients and their 95% CIs 

(“most complete top model” hereafter), admitting as many most complete top models as 

necessary to include all predictor variables present in the top model set. In reality, none of our 

meta-regressions entailed more than one most complete top model. 

In all meta-analyses and meta-regressions above, we applied the weight score calculated 

above in a weighting scheme (Equation 1). Because of the way the function “lme()” in package 

“nlme” works, we supplied the above weight scores in the form of ‘weights = ~I(1/weight score)’ 

in running the function “lme()”. The species-level RR format of our data did not allow us to 

follow the sampling-variance-based weighting scheme used in conventional meta-

analyses/regressions, because species-level abundance data reported rarely had sampling 

variance information. For all meta-analyses and meta-regressions, we visually assessed residual 

and QQ plots, which indicated general satisfaction of the assumption of residual normality 

(Extended Data Fig. 5). Concerns about any potential violation of this assumption should be 

alleviated by the fact that mixed-effect models are known to be generally robust to violations of 

model assumptions 70. Funnel plots produced using package “metafor” (version 3.4-0 71) in 

programme R and Egger’s test following 72 additionally indicated our meta-analytic findings to 

be generally free of publication bias: any apparent data asymmetry did not appear to be linked to 

studies with lower sampling efforts (Extended Data Fig. 4g), and the coefficient for the square-

root of data weight (inverse form, in accordance with the way we supplied weight scores in the 

above meta-analyses) in relation to RR was non-significant for all but one meta-analyses 

(Supplementary Information Table S1), further indicating a lack of data asymmetry.  

Other linear mixed models: To assess the relationship of assemblage-level trait 

centroids and their PC1 (from principal component analysis; see “Statistical analysis: 

multivariate analysis of trait data” below) with the filtering factors, we used the same regression 

approach followed by model selection and inference from the most complete top model as we 

used in the meta-regressions above, with two modifications. First, we did not include landscape 

features of agricultural sites as fixed effects (i.e. remnant forest cover, distance to the nearest 

continuous forest, and human population density) or the weighting scheme, because the response 

variables concerned the profile of the regional species pool rather than the comparison between 

agricultural and native forest sites. Second, we did not include the lowest-tier random intercept 

variable because conceptually, this set of analyses was not for meta-analytic synthesis. 
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Diagnostic residual and QQ plots showed the general satisfaction of the residual-normality 

assumption for these analyses. Fixed effects of the global models thus followed Equation 4: 

Trait centroids or PC1 ~ MAP + seasonality + disturbance regime +               (Equation 4) 

                                        agricultural history 

Phylogenetically controlled mixed-effect models: We used the function “MCMCglmm()” 

of package “MCMCglmm” (version 2.34 73) in programme R to conduct phylogenetically 

controlled mixed-effect models on the relationship between species-level RR and all ten 

functional traits, while considering the potential influence of covariates, i.e. the three variables 

representing landscape features of agricultural sites (remnant forest cover, distance to the nearest 

continuous forest, and surrounding human population density). Pre-analysis assessment of 

collinearity using Pearson correlations indicated the absence of strong collinearity (all |rPearson| 

<0.37) among all variables except between body mass and generation length (rPearson = 0.84 for 

centred-and-scaled values). We therefore conducted two sets of analyses, one dropping body 

mass and the other dropping generation length.  

As preliminary analyses, we first used regular mixed-effect models without considering 

phylogeny, to identify relevant covariates to include in the formal phylogenetically controlled 

mixed-effect models. We followed the same model building, selection and inference approaches 

as used in previous meta-regressions (see “Statistical analysis: meta-analyses and meta-

regressions” above). Similarly, we followed the same random-effect structures as previous meta-

regressions, but we replaced the lowest-tier random effect with the identity of the agriculture-

forest pair (i.e. the identity of the assemblage to which each species belonged) to account for 

potential data non-independence among records from the same assemblage, and we removed 

study season because its estimates as could not be properly produced in subsequent 

phylogenetically controlled mixed-effect models. We instead modelled study season as a fixed 

effect variable. Fixed effects of our global model thus followed Equation 5: 

RR ~ remnant forest cover + distance to the nearest continuous forest +         (Equation 5) 

         surrounding human population density +        

         body mass (or generation length) + hand-wing index + clutch size +  

         diet specialisbation + foraging height + forest association + 

         migratory status + natural range size + nest placement 

We centred and scaled all continuous variables and remnant forest cover (distance to the 

nearest continuous forest and surrounding human population density were on natural-log scale 

before being centred and scaled); for the three categorical traits (forest association, migration 

status, and nest placement) and study season, we used open-country, non-migratory, and ground 

nest placement during the non-breeding season as baseline. For the two sets of analyses dropping 

either body mass or generation length, model selection indicated all fixed predictors to have 

entered the top model set except for the distance to the nearest continuous forest; we therefore 

included all variables except the distance variable in subsequent formal analyses that controlled 

for phylogenetic correlation. In subsequent sensitivity analyses (i.e. those involving alternative 

data on the distance to the nearest continuous forest, and on surrounding human population 

density; see “Sensitivity analysis” below), we again conducted model selection to decide the 

predictor variables to be included in phylogenetically controlled mixed-effect models. 



 

 

19 

 

For phylogenetically controlled mixed-effect models, we similarly conducted two sets of 

analyses, one dropping body mass and the other dropping generation length. Our models differed 

from the above preliminary analyses by (1) not including distance to the nearest continuous 

forest as a fixed variable, (2) modelling remnant forest cover on the original ordinal scale of 0–5, 

and (3) including the phylogenetic relationship among species as an additional random variable. 

Our fixed effects thus followed Equation 6: 

RR ~ remnant forest cover + surrounding human population density +           (Equation 6) 

         body mass (or generation length) + hand-wing index + clutch size +  

         diet specialisation + foraging height + forest association + 

         migratory status + natural range size + nest placement 

We used the default uninformative prior for fixed effects, the inverse gamma prior (V = 1 

and nu = 0.002) for the residual variance, and the parameter-expanded prior (V = 1, nu = 1, 

alpha.V = 1,000, alpha.mu = 0) for all random effects. We ran 120,000 iterations with a burn-in 

of 20,000 and a thinning value of 50. For each set of analyses, we conducted 100 model runs, 

each on a randomly drawn phylogenetic tree 61, and we obtained the coefficient and its 95% CIs 

for each predictor variable by averaging the outputs of all 100 model runs (note a previous 

simulation showed that using 50 trees is usually sufficient to account for the uncertainty of 

phylogenetic trees 74). Diagnostic plots indicated convergence for all model runs (Extended Data 

Fig. 6, as example for one model). 

Multivariate analysis of trait data: We calculated the assemblage-level centroid for 

each functional trait using weighted averaging, with weights being the abundance of each species 

summed across the agricultural and native forest sites in each agriculture-forest pair. For this 

purpose, we expressed the three categorical traits (forest association, migration status, and nest 

placement) in integer values: 1–4 respectively for open-country, generalist, early-successional-

forest, and late-successional-forest regarding forest association, 1 and 2 respectively for non-

migratory and migratory regarding migratory status, and 1–3 respectively for ground-nesting, 

elevated open-nesting, and cavity-nesting regarding nest placement. We conducted principal 

component analysis on the assemblage-level trait centroids (centred-and-scaled) using function 

“princomp()” in programme R.  

To calculate functional richness and functional dispersion for each species assemblage, 

we used the function “alpha.fd.multidim” of package “mFD” (version 1.0.1 75) in programme R 

and the first four axes of the Gower-based functional distance. Because functional richness is by 

definition closely linked to species richness 43, we corrected it using Equation 7 to remove the 

influence of species richness:  

 

Corrected functional richness =
𝑅𝑎𝑤 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑟𝑖𝑐ℎ𝑛𝑒𝑠𝑠 × 100

𝑆𝑝𝑒𝑐𝑖𝑒𝑠 𝑟𝑖𝑐ℎ𝑛𝑒𝑠𝑠
                         (Equation 7) 

 

Finally, we calculated functional redundancy for each species assemblage following 76, 

by first classifying each species into a “unique trait combination” (“UTC” hereafter) based on its 

trait profile. To do this, we followed 76 to bin the seven continuous traits using the Sturges 

algorithm. We then calculated functional redundancy by dividing species richness for each 
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assemblage by the number of UTCs 44,76. We conducted simple linear regressions between PC1 

and the three multivariate trait metrics. Diagnostic residual and QQ plots showed the general 

satisfaction of the residual-normality assumption for these analyses.  

Sensitivity analysis: We conducted six sets of sensitivity analyses where applicable. 

They concerned: (1) the radius for data extraction on agricultural history and surrounding human 

population density from the HYDE 3.2 database 40 (2 km and 50 km, versus the 10 km in main 

analyses); (2) the size criterion for defining continuous forest in measuring the distance between 

agricultural sites and the nearest continuous forest (100 ha, versus the 50 ha used in main 

analyses); (3) the mathematical scale on which seasonality, MAP, agricultural history, distance 

to the nearest continuous forest, and surrounding human population density were analysed 

(original scale, versus the natural log scale in main analyses; we divided MAP, agricultural 

history, distance to the nearest continuous forest, and surrounding human population density by 

100 such that results represented the effect of every 100-mm, 100-year, 100-m, and 100-person 

increase); (4) the removal of two primary studies – containing four avian assemblages – with 

extreme MAP 77,78 or seasonality 78 (versus their inclusion in main analyses); (5) the removal of 

two primary studies – containing three avian assemblages – that had secondary forest as the 

baseline against which agricultural sites were compared 79,80 (versus their inclusion in main 

analyses); and (6) weighting schemes in mixed-effect models (using simply the inverse of the 

match rigor score as weights and not using weights altogether, versus using Equation-1 derived 

weight scores in main analyses). The last set of sensitivity analyses was in light of the potential 

subjectivity and varying standards of reporting from primary studies involved in the calculation 

of the weight scores, and it applied only to the meta-analyses and meta-regressions.  

Finally, considering the potential data quality issue for the distance between agricultural 

sites and the nearest continuous forest extracted from the FGP maps, we checked whether greater 

assemblage RR was associated with lower distance between agricultural sites and their matching 

native forests, our complementary distance measure compiled from primary study authors. This 

assessment was to corroborate our formal analyses using distance data from the FGP maps 

(which may have potentially low data quality), and to rule out the possibility that variation in the 

impacts of agricultural deforestation found in our database was linked to the proximity of 

agricultural sites to native forests 7. We conducted this assessment with simple visualisation in 

light of the limited data quality of this complementary distance measure (Extended Data Fig. 4h).   
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Figure legends  

Fig. 1 | Conceptual diagrams of natural and anthropogenic filtering shaping the observed 

biodiversity responses to agricultural deforestation. (a) Filtering by natural habitat features 

(natural filtering; also termed “habitat filtering” 18,20) and historical human impacts 

(anthropogenic filtering) – both of which can operate via biotic and abiotic mechanisms 23 – 

selects for species with certain functional trait profiles (pre-existing or acquired in the process of 

adaptation) that allow them to persist in the local environment, such that present-day species 

assemblages studied for deforestation impacts contain only a subset of species that (could) have 

existed. Circles with different colours represent species with different trait profiles. (b) The trait 

signature of natural and anthropogenic filtering. Species of hypothetical assemblages (small gray 

dots) are displayed in three-dimensional trait space along with the trait centroid of each 

assemblage (large pink dots), calculated as the abundance-weighted mean for each trait. 

Compared to species assemblages under low filtering (upper left panel), assemblages under high 

natural or anthropogenic filtering (the three panels in dashed box) should in theory occupy trait 

spaces that correspond to greater deforestation tolerance. This contrast can be achieved through 

different mechanisms, such that strongly filtered assemblages (i) occupy a larger trait space, 

particularly in regions of the trait space that correspond to greater tolerance (“trait space 

expansion”), (ii) shift collectively toward regions of the trait space that correspond to greater 

tolerance while assuming the same trait space size (“trait shift”), and/or (iii) occupy the same 

trait space in size and location, but have a considerable portion of constituent species clustering 

in the regions of trait space that correspond to greater tolerance (“trait clustering”). 

 

Fig. 2 | The geographical distribution of paired abundance data in our database. Circles 

represent datasets of entire avian assemblages for agriculture-forest pairs contributed by each 

primary study, sized proportional to the number of assemblages (each representing an 

agriculture-forest pair) and coloured by agricultural history of the study system. Symbols 
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accompanying each circle indicate the type of agriculture (cropland, pasture, or agroforestry) 

involved in each primary study. Distributions of MAP and seasonality for primary studies are 

displayed as boxplot insets (n=44 primary studies). For each boxplot, the box demarcates the first 

quartile (i.e. Q1; left rim), median value (middle line), and third quartile (i.e. Q3; right rim), 

while the lower and upper whiskers reach the most extreme data points within the 1.5 

interquartile range (i.e. 1.5 times the difference between Q3 and Q1) as measured below Q1 and 

above Q3, respectively. 

 

Fig. 3 | Variation in assemblage-level impacts of agricultural deforestation across studies 

and their underlying factors. (a) Assemblage-level impacts of agricultural deforestation (upper 

row; n=71 assemblages), distinguished between agroforestry (middle row; n=16 assemblages) 

versus open agricultural systems (cropland or pasture; lower row; n=55 assemblages). Scattered 

points represent assemblage-level RRs (i.e. the abundance response ratios [RRs] of agricultural 

over native forest sites on the natural log scale, averaged across all species within an 

assemblage), with those involving pasture in the lower row indicated by darker dots. See dashed 

box in (b) for symbol legend. (b) Impacts of agricultural deforestation on sub-assemblages that 

comprised species present at the native forest sites (upper row), shown separately for 

agroforestry (middle row) and open agricultural systems (lower row). The clear contrasts 

between agricultural and native forest sites suggested that the less marked contrasts in panel (a) 

were driven by a set of “winner” species, which were absent from native forests but were found 

at agricultural sites. Sample sizes and symbols are the same as in panel (a). (c)–(e) The 

relationship between assemblage-level RR and remnant forest cover (c), MAP (d), and 

agricultural history (e), the three variables identified by model selection to be predictive of 

assemblage-level RR; MAP and agricultural history were analysed on a natural log scale 

(Methods). Sample size n=60 assemblages, after removing records with missing information on 

remnant forest cover. Each point represents an avian assemblage, sized proportional to its weight 

in analysis. Black lines and coloured bands represent fitted curves along with their 95% 

confidence bands, based on the mean (i.e. β in the upper right of each panel) and 95% CI (i.e. 

range in the parentheses after β) estimated for the slope of each focal variable, according to the 

model with the most complete set of predictor variables from within the top model set identified 

by model selection.  

 

Fig. 4 | The trait signature of filtering by environmental variability and historical 

deforestation. (a) Relationship of species-level RR with functional traits and other covariates, 

based on phylogenetically controlled mixed-effect models (n=5,866 RRs, after removing records 

with missing information). For the three categorical traits (indicated with dashed boxes) and 

study season, this relationship was based on the baseline of open-country, non-migratory, 

ground-nesting species during non-breeding season; for all continuous variables, this relationship 

was based on ordinal values for remnant forest cover (0–5) and centred-and-scaled values for 

others. Because of collinearity between body mass and generation length, effects displayed for 

all traits other than generation length were from the set of analyses dropping generation length, 

and they were similar to estimates by the alternative set of analyses dropping body mass 

(Supplementary Information Table S5). (b) Relationships between the assemblage-level centroid 

of individual traits and filtering factors, based on model selection (n=71 assemblages). 

Relationships are expressed as the coefficients of filtering factors, displayed in bubbles that are 

sized proportional to the absolute coefficient value and coloured by its sign and overlap of 95% 
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CI with zero; “–” indicates that the filtering factor concerned did not enter the top model set. 

Categorical traits were analysed as ordinal variables, with higher values corresponding to 

stronger forest association, being migratory, and stronger forest dependence for nest placement, 

respectively. (c) Relationships between PC1 of the assemblage-level trait centroids and filtering 

factors based on model selection (n=71 assemblages). Each point represents an avian 

assemblage. Black lines and coloured bands represent fitted curves and their 95% confidence 

bands, based on the mean (i.e. β in the upper right of each panel) and 95% CI (i.e. range in the 

parentheses after β) estimated for the slope of each filtering factor; assemblages and fitted lines 

are displayed separately for study systems deemed to not have (slate blue) or regularly have 

(purplish red) disturbance regime. *: According to variable loadings of PCA (Supplementary 

Information Table S6), PC1 had an overwhelmingly negative relationship with traits that 

predicted greater tolerance to deforestation, thus higher PC1 values corresponded to lower 

deforestation tolerance. 

 

Fig. 5 | How the “greater-tolerance shift” of assemblage trait centroids may have occurred 

under natural and anthropogenic filtering. We assessed possible mechanisms by testing, on 

the assemblage level, the relationship between PC1 of the PCA on assemblage-level trait 

centroids and three multivariate trait metrics, including (a) functional richness (after correcting 

for species richness), (b) functional dispersion, and (c) functional redundancy (n=71 

assemblages). Each point represents an avian assemblage, and black lines and coloured bands 

represent fitted lines along with their 95% confidence intervals from simple linear regressions, 

based on the mean (i.e. β in the upper right of each panel) and 95% CI (i.e. range in the 

parentheses after β) estimated for the slope of each multivariate trait metric. 
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