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Abstract

User-mode Dynamic Binary Translation (DBT) has recently
received renewed interest, not least due to Apple’s transi-
tion towards the Arm ISA, supported by a DBT compatibil-
ity layer for x86 legacy applications. While receiving praise
for its performance, execution of legacy applications through

Apple’s Rosetta 2 technology still incurs a performance penalty

when compared to direct host execution. A particular limi-
tation of Rosetta 2 is that code is either executed exclusively
as native Arm code, or as translated Arm code. In particular,
mixed mode execution of native Arm code and translated
code is not possible. This is a missed opportunity, especially
in the case of shared libraries where both optimized x86 and
Arm versions of the same library are available. In this paper,
we develop mixed mode execution capabilities for shared li-
braries in a DBT system, eliminating the need to translate
code where a highly optimised native version already ex-
ists. Our novel execution model intercepts calls to shared
library functions in the DBT system and automatically redi-
rects them to their faster host counterparts, making better
use of the underlying host ISA. To ease the burden for the de-
veloper, we make use of an Interface Description Language
(IDL) to capture library function signatures, from which rel-
evant stubs and data marshalling code are generated auto-
matically. We have implemented our novel mixed mode exe-
cution approach in the open-source QEmu DBT system, and
demonstrate both ease of use and performance benefits for
three popular libraries (standard C Math library, SQLite, and
OpenSSL). Our evaluation confirms that with minimal de-
veloper effort, accelerated host execution of shared library
functionality results in speedups between 2.7x and 6.3X on
average, and up to 28x for x86 legacy applications on an
Arm host system.
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1 Introduction

Until recently, the number of Instruction Set Architectures
(ISAs) in wide-spread use has been relatively stable, and
computing platforms have generally invested in a particular
one. It is clear that the x86 ISA dominates the desktop and
server market, whereas Arm dominates the mobile and em-
bedded space. A notable exception to this ISA stability is Ap-
ple, who have cycled through three different ISAs on their
commodity computing platforms: PowerPC, x86, and now
Arm. This change has necessitated a complete overhaul of
many existing applications that were originally developed
for the x86 ISA, but must now support the Arm ISA. To mit-
igate this, Apple have introduced a Dynamic Binary Trans-
lation (DBT) platform (Rosetta 2 [1]) that allows developers
to gradually port their applications over to the Arm ISA.

This DBT platform is not without its limitations, however.
In particular, there is no support for mixed-mode execution,
i.e. mixing ISAs at runtime, and there are features missing in
the emulated x86 guest ISA, such as x86 AVX instructions.

Whilst DBT systems are necessary to execute existing
codebases on a different ISA, the translations are rarely as
optimised as native code, and so software experiences major
performance penalties. DBT can be avoided by porting the
application to the new ISA, but for legacy codebases this
would be difficult or even impossible if the source-code is
not available.

A particular source of portability comes in the form of
shared libraries, where reusable application code is devel-
oped for a particular purpose, and shared amongst all the
applications that want to use it.

However, existing state-of-the-art DBT systems choose
not to support this functionality directly, but instead del-
egate this job to the guest platform’s dynamic linker. This
means that the DBT does not have to care about dealing
with shared libraries, at the expense of having to translate
the dynamic linker and the shared library itself throughout
the execution of the main application.

By observing the fact that applications may rely on com-
mon or popular shared libraries, there exists the opportunity
to improve the performance of an application under DBT by
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-
#include <stdio.h>

#include <stdlib.h>
extern int fib(int n); // From shared library

int main(int argc, char x*xargv) {
if (argc < 2) return 1;
int n = atoi(argv[1]);
printf("fib(%d) = %d\n", n, fib(n));
10 return 0;

1|}
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Figure 1. An application that uses a library implementa-
tion of the Fibonacci function to perform its main oper-
ation.

transferring control to a native (i.e. host) version of a shared
library, rather than translating and emulating a guest ver-
sion.

In this paper, we overcome these challenges and perfor-
mance issues by introducing a technique for supporting mixed-
mode execution of a DBT system, where calls to shared li-
brary functions by the guest application are intercepted by
the DBT runtime, and redirected to the respective native im-
plementations.

1.1 Motivating Example

Consider the program in Figure 1. This program uses a shared
library (1ibfib) that provides an implementation of the Fi-
bonacci function (Figure 2). If this application were to be

compiled for the x86 ISA, and ran through a DBT system

(such as Qemu [3]) on an Arm host, the entirety of its ex-
ecution (including an x86 version of a dynamic linker, and

the corresponding x86 version of the shared library) would

be translated and emulated by the DBT runtime. However,
if 1ibfib were available as a shared library on the host ma-
chine already compiled and optimized for the Arm architec-
ture, then utilizing this implementation would eliminate the

overhead associated with translating and running the guest

version.

Figure 3 shows that with this simple program, a speed-up
of 10X can be achieved by invoking a native version of the li-
brary, vs. emulating it. This speed-up arises because the host
native code is of much higher quality than the code gener-
ated by the DBT. For programs that are compute-bound in
shared library execution, using host libraries (if available)
can be highly effective.

Unfortunately, however, supporting this kind of mixed-
mode execution in a DBT system is non-trivial, since typi-
cally the DBT runtime would be in complete control of the
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1l int fib(int n) {
2 return n < 2 ? n : fib(n-1) + fib(n-2);
3| }

Figure 2. An implementation of the fib(n) function in
the shared library.

x86 Guest Library
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Figure 3. An illustration of the speed-up achievable
when using a host native implementation of a shared li-
brary. Lower is better.

execution environment and so understand exactly how the
execution of guest code progresses. But, not only does the
runtime need to transfer control between translated code
and native code, as soon as external code is used the runtime
needs to make sure that the execution environment is cor-
rect. This effectively means that function parameters need
to be translated correctly, and emulated resources (such as
memory or file descriptors) are correctly managed.

1.2 High-Level Overview

Figure 4 shows how the state-of-the-art DBT system QEMuU [3]
supports shared library execution in the guest, and how our
accelerated scheme changes the execution flow. Unmodified
QEMU translates everything about the guest program. This
includes the application binary itself, the guest dynamic linker
(1d.so), and the guest shared library. Qemu performs on-
demand translation; when new (i.e. previously unseen) basic-
blocks of guest code are encountered, they are immediately
translated from the guest ISA to the host ISA, and stored in
a code cache for future re-use. The translated block is then
executed.

Our proposed execution scheme intercepts the guest pro-
gram’s call to the shared library function, and redirects it
directly to the native host shared library’s implementation.
This means that the guest program is still translated as nor-
mal until a shared library call is detected, but instead of
following the guest execution into the dynamic linker, the
translation transfers control directly to the native implemen-
tation. Once the native function returns, control is trans-
ferred back to translated code.

The need for accelerating shared library calls in a DBT
system has already been recognized, notably by the box86/64
[8, 9] DBT system. They term their approach “wrapped li-
braries”, and boast impressive speed-ups that they claim arise
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Figure 4. A high-level overview of how QEmuU handles shared libraries in guest applications, and how our scheme accelerates

them.

due to this scheme. However, the approach that box86/64
takes requires hard-coding a “glue” layer for every supported
library and function within, whereas we strive for automa-
tion and minimal developer effort.

2 Background on Shared Libraries

A shared library is an external piece of software that sup-
ports the execution of an application. When a program that
uses shared libraries is compiled, it will be linked to a par-
ticular version of the library, and when the program is exe-
cuted a dynamic linker will load the shared library into the
same address space, and resolve any calls by the main appli-
cation to shared library functions. In this paper, we will fo-
cus on how shared libraries are implemented on platforms
that use the Executable and Linkable Format (ELF) binary
format.

With the ELF standard, invoking a shared library function
call involves a certain amount of indirection in the main ap-
plication binary. This is implemented through a Procedure
Linkage Table (PLT) and Global Offset Table (GOT). The PLT
is used as a trampoline from the main application code into
the shared library code, and together with the GOT contains
information to instruct the dynamic linker on how to re-
solve the function call. Typically, shared library functions
are resolved lazily, i.e. they will only be resolved on first
invocation.

In the application binary, the .plt section contains en-
tries for each of the shared library functions in use, as well
as a special resolver entry. These entries are small sequences
of code that read an entry from the . got section, and jump
to that location. Initially, the .got entry contains the ad-
dress of an instruction that transfers control to the resolver
.plt entry, which in turn transfers control to the dynamic
linker. Upon first invocation, the dynamic linker will load
the shared library, set-up relocations, and modify the .got
entry to point directly to the resolved function, so that fu-
ture invocations bypass the dynamic linker and jump di-
rectly into the corresponding code. Figure 5 shows how this
works in practice.

3 Supporting Shared Library Calls

Since the natural interface between an application and a
shared library is a function call, this is the boundary at which
our scheme operates. The key idea is to capture the point
at which a guest program makes a call into a shared library,
and instead of emulating the guest dynamic linker and guest
shared library, use the existing host shared library directly.
Pure shared library functions (i.e. those that only operate
on their input arguments) are the easiest to handle, as at
call time we can simply copy the value of the function argu-
ments from the emulated guest representation into the host
representation, and then perform the call directly. More com-
plex functions may not operate in isolation, and will require
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Figure 5. An application begins the call sequence for a shared library function (puts), and at (1) control is transferred to the
PLT entry corresponding to this function. The function offset is read from the GOT, which at (2) currently points to the next
instruction in the PLT (address 0x401036). Then, at (3) control is transferred to the resolver function, which extracts further
information from the GOT and invokes the dynamic linker at (4). The dynamic linker writes back the address of the puts
function into the GOT, and at (5) transfers control to the routine. Finally, when puts finishes, control is returned at (6) to the
main application. Solid lines indicate control-flow, and dashed lines indicate data-flow.

additional functions to be accelerated. Both of these cases,
however, are supported by our proposed scheme.

The primary concern is being able to determine what a
function signature looks like, so that the correct values can
be transferred from guest to host. Function signatures are
not defined in the instruction set, nor do they (normally)
exist as metadata within the application binary, therefore
we introduce a C-like Interface Description Language (IDL)
to describe the functions that should be accelerated. We call
this description file a Library Interface Definition (LID)
file, and it contains the information required by the DBT
runtime to transfer function arguments from guest to host.

3.1 The LID Interface Description Language

An IDL is necessary for our scheme because of how func-
tion call argument marshalling must be performed. It is not
immediately clear from inspecting the guest machine code
what a particular function’s signature might look like, and
in some cases it is impossible to determine the semantics of
a particular parameter, e.g. is the parameter just a plain inte-
ger, or a function pointer? This is an important distinction,
because even though the underlying type is the same, the
semantics associated with that parameter cause the value to
be marshalled differently.

To overcome this, we introduce LID files that are used to
describe the signature of the functions that are to be acceler-
ated. The signature encodes both type and semantic informa-
tion that can be used by the DBT runtime to automatically
generate the appropriate marshalling code. Figure 6 shows
an example LID file that defines a range of shared library
functions.

library "libc.so";

# String utilities

si32 puts([string] const ui8 =*s);

void *memcpy([size=n] void =*dest, [size=n]
const void *src, ui64 n);

g s w N =

6

7| # System wutilities

8| si32 close([fd] si32 fd);
9

10| # Maths

11| library "libm.so";
12| f64 exp(f64 v);
13| f64 log(f64 v);

Figure 6. An example of how shared library functions are
defined in a LID file. Function definitions closely mirror C-
style function definitions, but notably attributes (in square
brackets) indicate the semantic properties of a parameter.

A function definition allows attributes to be placed on pa-
rameters to indicate the semantic behavior of that argument
(see Lines 4, 5, and 8 in Figure 6 for examples). These se-
mantics alter how the underlying type is transferred from
guest to host, by possibly mapping values between two dif-
ferent domains. The types in use are also more explicit than
C types; Table 1 gives an overview of the types available.
Each parameter is given a name, and although named pa-
rameters serve no purpose at marshalling time, they are im-
portant in the LID file for (a) readability, and (b) referencing
other parameters in semantic attributes.
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Type Name C equivalent | Description

void void No type

uil _Bool Boolean

ui8, si8 char (Un)signed 8-bit integer
uil6, silé short (Un)signed 16-bit integer
ui32, si32 int (Un)signed 32-bit integer
ui6e4, si64 long long (Un)signed 64-bit integer
uword, sword | long (Un)signed word size

f32, f64 float/double | 32/64 -bit floating-point
fcomplex _Complex Floating-point complex number
struct struct Variable sized composite type
struct(N) struct N-byte sized composite type

* * Pointer notation: void *
const const Const modifier

Table 1. Types available for function definitions.

For example, a function may operate on a range of mem-
ory, and in order to instruct the marshalling code the size of
that memory, the value may be taken from another param-
eter. See line 5 in Figure 6 for an example of this.

4 Implementation

We implement our scheme in the state-of-the-art DBT sys-
tem QeEMU [3]. When QEMU starts, the LID file is parsed,
and each function definition is stored in a function map-
ping table. The corresponding native shared library is also
loaded (with dlopen), and a pointer to the function is re-
solved (with d1sym). The function mapping table entry con-
tains the following information: The name of the function
(in string form), an in-memory representation of the func-
tion signature as defined in the LID file, and a pointer to the
native implementation of the function (from d1sym).

4.1 ELF Parsing

After the function mapping table has been populated, our
modifications to the built-in ELF loader enable us to figure
out which .plt entries correspond to which shared library
functions. This is a complex operation that requires multiple
structures from the ELF file, as well as decoding some host
machine instructions, to figure out the name of the function
that a .plt entry actually points to.

Once this information has been determined, the name of
the function is checked against the mapping table to see if
there is a corresponding mapping table entry. If no such
mapping exists, i.e. no function names matched, then it was
not present in the LID file and will not be accelerated. If
the mapping table entry was found, an entry in the trans-
lation hook table is inserted that maps the virtual address
of the .plt entry, to the corresponding function mapping
table entry.

4.2 Call Detection

Since QEmU compiles basic-blocks on-demand, there exists
a point in time when a block of code is not yet compiled, i.e.
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the first invocation of that block (or if the code cache has
been invalidated). Taking advantage of this, we can hook
into QEMU’s translation routines, and determine which vir-
tual address is about to be translated. A .plt entry will al-
ways be the start of a basic-block, because they are invoked
directly from the guest application by a call instruction.

Before a basic-block is translated, we look up the virtual
address of the start of the block in the translation hook ta-
ble. If an entry exists, instead of translating the basic-block
as usual, we generate specialized code that performs the ac-
tual transfer of control-flow to the native library. Like a reg-
ular translation, the translated code is cached so that the
marshalling code will always be used. If the code cache is
cleared for whatever reason, the .plt entry will simply be
re-translated in this manner again.

It is important to note that the actual contents of the .plt
entry are never actually used in this case. Instead, we simply
use the address of the .plt entry as a handy mechanism for
detecting calls to shared libraries.

4.3 Generation

Once we have determined that we are translating a call to a
shared library function, we use QEMU’s existing code gener-
ator infrastructure (Tiny Code Generator (TCG)) to gener-
ate the marshalling code. This generation is specialized for
each guest architecture, as it needs to implement the argu-
ment marshalling for the guest calling convention. The gen-
eration remains host architecture agnostic due to the use of
the existing TCG function call infrastructure.

5 Marshalling

Marshalling is the process of translating the parameter and
return values of function calls (at runtime) from the seman-
tics of the guest machine to the semantics of the host ma-
chine. In general, this is mapping the function call Appli-
cation Binary Interface (ABI) from the guest to the host by
moving function arguments from guest registers into host
registers (or the equivalent storage mechanism, e.g. stack).
However, in addition to copying data around, the underly-
ing semantics of these values needs to be taken into account.
For example, a file descriptor is normally represented as a
simple integer value, but the DBT system may maintain an
internal mapping table to provide the guest with an isolated,
virtual view of file descriptors.

5.1 Calling Convention

In order to correctly prepare the activation record for a par-
ticular function, the calling convention in use by both the
guest and the host needs to be known. This is so that the
function arguments can be transferred from the emulated
guest register state, into the host’s native register state.

In our example, for x86-64 we are using the standard Sys-
tem V ABI [7], and for Arm we are using the Procedure
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Purpose | x86-64 (System V) | Arm (PCS)
Ret. Val. | rax x0
Arg1 rdi X0
Arg 2 rsi x1
Arg 3 rdx X2
Arg 4 rex x3
Arg5 ré x4
Arg6 ro9 x5

Table 2. A simplified mapping of integer function argu-
ments for the x86 System V and Arm PCS calling conven-
tions.

Call Standard for the Arm 64-bit Architecture [2]. Table 2
shows a simplified mapping of x86 function arguments to
Arm function arguments, for integer types.

In the case of the x86 guest, the first six (integer) argu-

ments are passed inregisters rdi, rsi, rdx, rcx, r8, ro.

The return value is passed back in rax. For the Arm host, the
first six (integer) arguments are passed in registers x0, x1,
x2, x3, x4, x5 and the return value is passed back in x@.
The situation becomes more complex when floating-point
registers are in use, as interleavings of integer and float reg-
isters are used. Furthermore, as the number of parameters
exceeds the number of registers available, values are spilled
to the stack.

Once a call to a shared library has been detected, mar-
shalling code is generated to move the function arguments
from the representation of the guest registers, into the host
registers, and a call directly into the native library is emit-
ted. After the call instruction, code is emitted to marshal the
return value into guest registers — if appropriate. This tech-
nique works for platforms that dictate argument passing on
the stack too - instead of copying from guest register state
to host register state, values are taken from the guest stack
and marshalled into the appropriate locations on the host,
which could also use a stack-based calling convention.

5.2 Primitive Types

Primitive types are regular integer or floating-point types,
whose values can be directly copied from the guest machine
to the host machine. For example, consider the following C
function signature:

[int test(int a, float b, int c); )

For an x86-to-Arm translation, the following mapping will
be used:

a: arm host: x0 « x86 guest: rdi
b: arm host: g0 <« x86 guest: xmm@
c: arm host: x1 « x86 guest: rsi
ret: x86 guest: rax « arm host: x©

Then Qemu will generate following host instructions:

(ldr x0, [x19, #0x38]1 ; a: x0 « rdi W
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ldr q0, [x19, #0x320] ; b:
ldr x1, [x19, #0x30] ; c:
adrp x30, #oxfffff7fbe00o
add x30, x30, #0x640

blr x30 ; call native test function
str x0, [x19] ; ret: rax « x0

q0 <« xmmo0
x1 « rsi

5.3 Memory Pointers

Memory addresses are simply integer values, and so are mar-
shalled as a plain value. But, the actual pointers themselves
may not be valid host/guest pointers if the DBT system em-
ploys a memory mapping scheme.

Fortunately, in the case of user-mode DBT in Qemu, we
can take advantage of the fact that on 64-bit host systems
both the host and guest memory spaces are shared, and so
memory pointers generated by either system are interchange-
able. If the situation is different, and translations between
host/guest memory addresses are required, then the appro-
priate mapping would happen during argument and return
value marshalling as calls to the appropriate DBT runtime
helpers.

5.4 Strings

Strings are essentially normal memory addresses, however
we can assume that they behave in particular ways - namely
strings are NULL-terminated. This enables us to compute the
length of the string through normal string length counting
methods, should this be required for memory pointer mar-
shalling purposes.

5.5 File descriptors

File descriptors are generated by system calls, and are man-
aged by the DBT runtime as a mapping from guest to host.
For example, if a guest program wishes to open a file (using
the open system call), the request is sanitized and passed
directly through to the host operating system’s system call.
However, the resulting file descriptor number (which is typ-
ically a 32-bit integer) may be translated to an opaque guest
value. This is to prevent the guest program from interacting
with file descriptors that exist in the DBT’s namespace, but
to which the guest program should not be able to access.

QEemU does not perform any mapping of file descriptors,
so it is safe to treat them as simple integers in our case. This
also removes the complexity of mapping file descriptors that
may be presented indirectly to shared library functions, e.g.
through opaque structures.

5.6 Function pointers

One of the more complex marshalling operations are func-
tion pointers, as they present a control-flow target to host
code, which if invoked directly by native code would cause
the host machine to jump to raw (untranslated) guest in-
structions — almost certainly causing an illegal instruction
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exception. Currently, our prototype implementation does
not yet support marshalling function pointers from guest to
host, although the current (manual) solution is to generate
a “trampoline” for the particular function pointer argument,
which will transition from native code back into emulated
guest mode for the duration of the function.

5.7 Limitations: Variadic function parameters

One particular edge case of function argument marshalling
is when a function employs variadic arguments. The most
common examples of these are the printf and scanf (and
associated) routines.

In general, this cannot be solved perfectly, because it is
not possible to determine from the guest binary which ar-
guments are active. Worse, since it is not known what types
of arguments are active either, it is not possible to know
whether arguments are passed in general purpose registers,
or floating-point registers. The final issue is that in the x86
ABI, if the number of arguments exceeds the number of ded-
icated argument registers, the stack is used.

Our current implementation does not support host exe-
cution of functions with variadic parameters, but such func-
tions are translated and executed as guest code.

6 Application Pre-Processing

Running a guest application with host shared libraries re-
quires an offline step to determine which functions should
be accelerated, and to write the function definitions in the
LID file. This involves identifying the libraries involved, se-
lecting the functions necessary to support acceleration, and
inputting the function signatures into a LID file.

Given that function signature recovery can be performed
by static analysis, it is possible to automate the entire pro-
cess of generating a LID file, by simply analyzing the pro-
gram binary to determine the shared library functions in
use, then using a suitable binary lifting tool to generate the
function signature definition.

Once this information is encoded in the LID file, the prepa-
ration is complete, and the guest program can be executed
with accelerated function calls.This process is currently man-
ual, however we anticipate that LID files could be automat-
ically generated statically from shared library header files,
by using a parsing framework (such as that available with
Clang) to extract function definitions.

7 Evaluation

To evaluate our system, we use an Armv8-A host machine
described in Table 3, running both an unmodified and our
modified version of QemuU [3] (based on version 5.2.90). The
emulated guest machine is the default x86-64 platform built-
in to QEMU.

In order to make meaningful evaluations of our execution
scheme, we choose two popular open-source projects that
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Make | Gigabyte R181-T92-00
Model | Dual Cavium ThunderX2 CN9980
Architecture | Armv8-A

# Processors | 2 Frequency | 2.2 GHz
# Cores | 64 # Threads | 256
Memory | 256 Gb L1I/D$ | 1 Mb/ 1Mb
L2$ | 8 Mb L3$ | 32 Mb

Table 3. Host machine used for experiments.
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Figure 7. Speed-up of the sqlite3 benchmarks when using
our execution scheme, vs. vanilla Qemu. Two styles of invo-
cation were used: bulk; where one shared library call was
issued with all SQL statements, and per statement; where
a shared library call was issued for each SQL statement.

provide a shared library to the application developer for im-
plementing functionality: sqlite3 for database functions,
and openssl for cryptography functions.

7.1 SQLite

sqlite3 [6] is a library implementation of a relational data-
base management system, which is designed to be embed-
ded directly into a program. In these experiments, we use
the speed testing scheme as described on the official sqlite3
website (https://www.sqlite.org/speed.html).

Each test includes a series of SQL statements, and so we
took two approaches to executing the tests:

1. Bulk execution: one call to sqlite3_exec with a single
string containing all SQL statements.

2. Per statement execution: multiple callsto sqlite3_exec
— one for each statement.

Figure 7 shows that nearly every test (except Test 16) per-
forms better when using our execution scheme. The average
speed-up of the benchmark is 2.8%, and we achieve a max-
imum speed-up of 8.54X in Test 5. The difference in perfor-
mance between bulk and per statement execution is mini-
mal, with an average overhead of executing per statement
of 3%. This shows that any overhead introduced through the
marshalling code does not significantly affect performance.

The two notable exceptions here are Test 1, where there
is little or no performance improvement, and Test 16 where
there is a performance degradation. To better understand
this result, we also ran the benchmark natively on the host
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Figure 8. Speed-up of certain openssl algorithms when
using our accelerated execution scheme, vs. unmodified
QEMU.

machine and observed that in fact our scheme is operating
almost exactly at native speed. This means that QEmU is ac-
tually running this test faster than the native library. Both
tests are primarily I/O-bound, and so it appears that QEmU’s
interaction with the OS inadvertently outperforms the na-
tive I/O performance for these two specific benchmarks.

7.2 OpenSSL

openssl [13] is a popular cryptography library that imple-
ments a wide range of cryptographic algorithms, primarily
targeted at securing communications.

For this experiment, we use the x86 compiled version of
the openssl application with its built-in speed tests, run-
ning it through both unmodified Qemu, and QEmU with our
accelerated execution scheme. The benchmarks are designed
to run for a predetermined amount of time, and measure the
rate of operations per second, i.e. the throughput.

Figure 8 shows that for the built-in speed tests, every op-
eration performs better when using our execution scheme.
Across these speed tests, on average there is a 6.26X speed-
up, but interestingly the characteristics of the speed-up dif-
fer by class of algorithm. On the left of the graph, are the
RSA algorithms (with key sizes ranging from 1024-bit to
4096-bit), all of which show a consistent speed-up of around
6.2Xx. However, the md5 and sha1 blocks yield a different in-
sight. md5 shows a steady decrease in speed-up, as the block
size increases, whilst shal shows the opposite — a steady
increase in speed-up as the block size increases. This behav-
ior can be attributed to the characteristics of the particular
algorithms, which we will discuss in subsection 7.4.

7.3 Comparison against native execution

Since the native host shared library is now being used di-
rectly by the guest program, we also measure the perfor-
mance of the native host application, i.e. the native Arm
version of the openssl application, to see how our scheme
compares to a fully native run. Figure 9 shows that on aver-
age we are within 20% of native execution, and for routines
such as RSA we are effectively executing at native perfor-
mance.

Spink and Franke
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Figure 9. Speed-up of certain openss1 algorithms when us-
ing our accelerated execution scheme, vs. native execution
on the host machine.

The trend of the md5 and shal benchmarks in these re-
sults are to approach native performance as the block size
increases. This is due to the fact that the benchmarks are
running in native code for longer, as there is more data to
process. Our execution scheme performs best when the ma-
jority of execution takes place in highly optimized native
code, as this is where the gains are made, vs. poorly opti-
mized translated code.

7.4 Contributing Factors for Speed-up

In this section, we investigate what factors influence the ob-
served speed-ups, and focus on the openssl benchmark.

We consider three major factors that influence how the
speed-up is achieved: instruction count, branch misses, and
cache misses. We choose these metrics as typically native
code is shorter and denser than translated code, so instruc-
tion count plays a large role in obtaining performance im-
provements. QEMU translates on a basic-block basis, and chains
executions of these blocks to build the control-flow. Further-
more, each translated block involves an interrupt check in
its header, which results in additional control-flow. This re-
sults in very branch-heavy host machine code, and so ex-
ercises the branch predictor quite hard. Finally, through the
very nature of DBT, additional data accesses are required for
maintaining the execution state of the guest (e.g. the guest
register state). The interleavings of these accesses with real
data accesses creates a significant amount of cache pressure.

Figure 10a plots the instruction count overhead, i.e. the ra-
tio of instruction count in the original scheme vs. our ac-
celerated scheme, where a value > 1 indicates that more in-
structions are executed by the original scheme. Figure 10b
plots the branch miss overhead, where a value > 1 indicates
that the branch miss ratio is higher for the original scheme.
Similarly, Figure 10c plots the cache miss overhead, where a
value > 1 indicates that the cache miss ratio is higher for
the original scheme.

These graphs show that there is not one particular factor
that contributes to the speed-up, but is a combination of all
three characteristics.
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(a) Speed-up vs. Instruction Overhead.
Points to the right of the graph indicate a
reduction in executed instructions for our

accelerated scheme. celerated scheme.
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(b) Speed-up vs. Branch Miss Overhead.
Points to the right of the graph indicate
a reduction in branch misses for our ac-

Cache Miss Overhead

(c) Speed-up vs. Cache Miss Overhead.
Points to the right of the graph indicate
a reduction in cache misses for our accel-
erated scheme.

Figure 10. An evaluation of the factors contributing towards the observed speed-up. Gray lines are plotted at 1, to identify
zero overhead. Values > 1 on the X-axis indicate that the original scheme incurs overhead vs. our accelerated scheme.

shal. The shal benchmark achieves its performance solely
from a reduction in executed instruction count. This is be-
cause it reduces the number of executed instructions by 78%,
whilst incurring slightly more overhead from branch and
cache misses.

md5. The md5 benchmark reduces executed instructions
by 37%, and also reduces cache misses by 5.49%, thus the
speed-up arising from a combination of more streamlined
instruction execution, and improved cache performance.

rsaf{1024,2048,4096}. The rsa benchmarks show a slight
increase in the number of executed instructions, but they
all show significant gains in reducing the branch miss over-
head, with up to a 44.5X reduction in branch misses. Further-
more, they show between 2.2X and 18.7x improvements in
reducing cache misses. As noted previously the benchmarks
run for a fixed amount of time, and so these reductions in
branch misses and cache misses account for the reason why
more instructions can be executed in the same amount of
time — there are fewer CPU cycles spent on dealing with
cache and branch misses, and more cycles spent running
instructions pertaining to the algorithm, hence increasing
throughput.

7.5 Comparison to box64

box{86,64} [8, 9] is an open-source emulator, which imple-
ments a native host library “wrapping” technique. Similar
to Tan et. al. [12], the approach taken by box{86,64} re-
quires hard-coding a “glue” layer that contains the code nec-
essary to support guest-to-host transitions and argument
marshalling, whereas in our scheme this interface layer is
automatically generated from an interface description.

We compare our implementation of the shared library ac-
celeration scheme in QEMU against the box64 implementa-
tion, by running a compression benchmark relying on the
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Figure 11. A comparison of the performance of a compres-
sion benchmark (1ibz) between the box64 emulator, and
Qemu. The emulated version is where the guest shared li-
brary is translated by the DBT, and the accelerated version
is where the host shared library is used directly. Lower is
better.

zlib compression algorithm provided by the z1ib library.
For both box64 and QEmU we run the compression bench-
mark in both emulated and accelerated mode, and compare
performance.

Figure 11 shows that both box64 and our scheme perform
as good as native execution of the benchmark on the host
machine. This is to be expected for programs that spend the
majority of their time in native code, and shows that our ap-
proach can achieve the same performance as a hand-crafted
implementation.

Native execution speed is the maximum possible execu-
tion speed, and so this is the performance limit for any shared-
library acceleration strategy. Since both box64 and our mod-
ified QEmMU achieve native performance, we show that our
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Figure 13. Speed-up of floating-point operations when us-
ing the host 1ibm. so math library.

“user friendly” IDL-based strategy does not introduce any
runtime overhead.

7.6 Microbenchmarks

In this section, we drill-down into the performance and be-
havior of our scheme by looking at a series of microbench-
marks, that are designed to exercise the actual mechanism
of calling shared libraries.

7.6.1 OpenBLAS. OpenBLAS [14] is a framework for lin-
ear algebra, and implements the BLAS and LAPACK APIs.

Figure 12 shows that in all cases, our accelerated scheme
outperforms QEMU and on average achieves a speed-up of
10.26%, with the greatest speed-up of 138X from the syrk
benchmark. These results reinforce the claim that our sys-
tem performs best when the native library function runs
for a long time, in particular the complex BLAS operations
achieve the greatest speed-up, because they spend most of
their time executing in the kernel function.

7.6.2 Floating-point Performance. In QEmu, most FP
operations are emulated with a software floating-point im-
plementation. This means that for any floating-point instruc-
tion encountered in guest code, a function call is emitted
that transfers control from translated code into the Qemu
runtime to perform the operation. This results in well-known
severe performance implications [3, 5, 10] for floating-point
heavy code.

In guest programs, regular floating-point arithmetic oper-
ations (such as add, subtract, multiply, etc.) are implemented
directly as machine instructions (e.g. addss, subss, mulss
on x86), which are then translated by Qemu. However, some
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routines (such as the trigonometric functions) are calls to li-
brary functions. This gives us the opportunity to intercept
these library calls, and optimize them with the host imple-
mentation, rather than using the emulated guest implemen-
tation.

In this experiment, we target some common functions
from the Standard C math library (1ibm), and Figure 13 shows
that in all cases, using our accelerated scheme improves the
performance of these functions significantly.

8 Related Work

Microsoft employ binary translation for supporting x86 ap-
plications on the Arm ports of the Windows OS. This tech-
nology is part of the Windows-on-Windows (WoW) emula-
tion layer (originally for supporting x86-32 applications on
x86-64 hosts), and has been extended to support x86 appli-
cations on Arm hosts. In this technology, Microsoft identi-
fied the need for mixed-mode execution, and have chosen
to ease mode switches by supporting an ABI that is directly
compatible on both the host and guest platforms [11].

Tan et. al. [12] take a similar approach to our scheme,
except they use QEMU’s built-in helper function infrastruc-
ture, which adds an additional layer of indirection through
a nested function call, and requires the developer to hard-
code helper function implementations that perform argu-
ment marshalling directly into QEmU’s source-code. This ap-
proach requires a re-compilation of QEMU every time a new
function is added.

An older system, “DIGITAL FX!32” [4] pioneered the DBT
movement by introducing a dynamic binary translator for
running x86 Windows NT applications on Windows NT for
the Alpha architecture. Their implementation describes so-
called “jackets”, which are applied at program load time by
modifying the COFF Import Address Table (IAT) to redi-
rect library calls to the host native counterpart. The “jacket”
is the code necessary to perform function argument mar-
shalling between the two calling conventions. While con-
ceptually similar to our approach, their implementation re-
lies on handling an illegal x86 instruction to transition into
native code which adds an amount of overhead, whereas our
scheme generates efficient transition code directly.

9 Summary & Conclusions

In this paper we have shown that there exists both oppor-
tunity and demand for accelerating dynamic binary transla-
tion, and that significant gains can be made by redirecting
calls to shared library functions in guest code to native host
code. We introduce an interface description language for the
description of library APIs, which are then processed to au-
tomatically generate a “glue” layer for interfacing between
library function calls and host-native implementations. We
implement this scheme in the QEmuU user-mode DBT sys-
tem, and demonstrate that with minimal developer effort,
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average speed-ups of 2.8x and 6.26X can be achieved, with
over 25X on some individual benchmarks. We show that our
scheme introduces minimal runtime overhead, and in the
best case can operate at native (i.e. untranslated) speeds.

We plan to eventually eliminate the need for manual inter-
face description, and extract the relevant function signature
information through fully automated binary code analysis
and ML guided inference.
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