
Optimization towards Efficiency and Stateful of dispel4py
Liang Liang

*
, Heting Zhang

†
, Guang Yang

*
, Thomas Heinis

*
, Rosa Filgueira

†

* Imperial College London

† University of St Andrews

ABSTRACT
Scientific workflows bridge scientific challenges with computa-

tional resources. While dispel4py, a stream-based workflow sys-

tem, offers mappings to parallel enactment engines like MPI or

Multiprocessing, its optimization primarily focuses on dynamic

process-to-task allocation for improved performance. An efficiency

gap persists, particularly with the growing emphasis on conserving

computing resources. Moreover, the existing dynamic optimization

lacks support for stateful applications and grouping operations.

To address these issues, our work introduces a novel hybrid

approach for handling stateful operations and groupings within

workflows, leveraging a new Redis mapping. We also propose an

auto-scaling mechanism integrated into dispel4py’s dynamic op-

timization. Our experiments showcase the effectiveness of auto-

scaling optimization, achieving efficiency while upholding perfor-

mance. In the best case, auto-scaling reduces dispel4py’s runtime

to 87% compared to the baseline, using only 76% of process resources.

Importantly, our optimized stateful dispel4py demonstrates a re-

markable speedup, utilizing just 32% of the runtime compared to

the contender.

KEYWORDS
scientific workflow, stream-based workflow, workflow optimization,

auto-scaling, stateful application, dispel4py

ACM Reference Format:
Liang Liang

*
, Heting Zhang

†
, Guang Yang

*
, ThomasHeinis

*
, Rosa Filgueira

†
,

* Imperial College London, † University of St Andrews . 2023. Optimization

towards Efficiency and Stateful of dispel4py. In Proceedings of 18th Workshop
on Workflows in Support of Large-Scale Science (WORKS 2023). ACM, New

York, NY, USA, 12 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Powerful computing infrastructures and platforms have evolved

to handle the increase in large-scale data and highly computing-

intensive applications [14]. However, navigating these computing

resources to tackle data-intensive scientific problems can be over-

whelming for scientists from various disciplines. The challenge

lies not just in choosing the proper infrastructure but also in un-

derstanding and managing it. Therefore, workflow communities

are promoted as a means to design and propose various workflow

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

WORKS 2023, November 12 2023, Denver, CO
© 2023 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Figure 1: dispel4py overview. From abstract workflow design
to automatic concrete workflow generation and execution.

systems, effectively concealing intricate technical details, in order

to bridge the divide between scientific challenges and computing

technologies [3]. Workflow systems automatically handle low-level

computing processing, allowing scientists to focus on their research.

When building workflows within dispel4py, users engage in
the design, composition, and interconnection of various processing

elements (PEs), which serve as the fundamental computational

building blocks of the system [8]. These PEs are linked together by

users to form graphs, also known as abstract workflows.

Subsequently, dispel4py smoothly converts the composed ab-

stract workflows into concrete implementations using the chosen

mapping (or enactment engine). These concrete implementations

are then executed on the specified computing platform, as depicted

in Figure 1. This process is underscored by the strategic decou-

pling of abstract workflows from underlying communicationmecha-

nisms, empowering adaptability across diverse computing resources

and resonating with dispel4py’s intuitive processing methodology

that aligns harmoniously with the principles of streaming comput-

ing, capturing significant interest from researchers for its adeptness

in managing dynamic and time-sensitive data [7, 8].

While dispel4py has substantial merits, performance limita-

tions are evident. A notable concern is its basic and static workload

allocation, where processing elements (PEs) are pre-assigned to

available computing resources in a static deployment of workflows.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


WORKS 2023, November 12 2023, Denver, CO

To address these challenges, previous efforts [12, 13] introduced

static optimizations (naive assignment and staging) and a dynamic

optimization (dynamic scheduling). naive assignment and staging
strategies optimize resource allocation for static deployment, while

dynamic scheduling enhances adaptability by dynamically distribut-

ing resources among PEs, eliminating operational halts, collectively

enhancing scalability and adaptability.

In the current context of increasing significance towards effi-

ciency, encompassing performance and cost-effectiveness, consid-

eration of monetary and energy costs is crucial. Aligning with

sustainability and green computing principles, efficient systems

lead to significant energy savings and reduced carbon footprint

[4, 17]. Auto-scaling emerges as a pertinent solution, dynamically

adjusting resources based on real-time demands, ensuring avoid-

ance of underutilization or over-provisioning [20]. Driven by these

principles, this work introduces auto-scaling techniques to elevate

dispel4py’s capabilities, dynamically adjusting resources in re-

sponse to real-time requirements. This advancement empowers

dispel4py to enhance its efficiency, conserve energy, and bolster

its adaptability to contemporary demands.

Moreover, a rising trend in stateful applications [5] presents

a challenge. While dispel4py’s static deployment accommodate

such applications, compatibility with dynamic scheduling becomes

complex when processes randomly handle tasks, potentially caus-

ing inconsistent task states. To address this, we propose the hybrid
method, enabling dynamic schedulingmappings to proficiently man-

age both stateless and stateful applications within dispel4py. In
essence, our contributions seamlessly integrate the auto-scaling and
hybrid techniques, enhancing dispel4py’s versatility, and leverag-

ing three real-world workflows for performance evaluation.

The rest of the paper is structured as follows. Section 2 provides

the necessary background context. Section 3 delves into the intro-

duced mappings and optimizations. The use cases are presented in

Section 4, while Section 5 highlights the potential and effectiveness

of our introduced techniques. Lastly, Section 6 concludes with final

thoughts.

2 BACKGROUND
2.1 dispel4py
dispel4py is a stream-based data-intensive workflow written in

Python [8]. Key concepts in dispel4py include:

• Processing elements (PEs) represent computational entities

responsible for task processing or data transformationwithin

the workflow graph. In the context of dispel4py, various
types of PEs are available. Unlike file-based interactions

common in task-based workflow systems, data is seamlessly

exchanged between connected PEs in a streaming fashion.

• Instance denotes an executable copy of a PE. A single PE can

have multiple instances depending on the configuration and

the number of processes.

• Connection transmits data from one PE instance’s output

port to one or more input ports of another PE instance.

• Mapping is the process of ‘translating’ workflows onto execu-
tion systems. This encompasses Simple mapping for sequen-

tial workflow execution, MPI , alongside parallel alternatives

like Multiprocessing1, MPI [15] and Storm [18]. Those map-

pings eliminate the need for manual workflow modifications.

• Abstract workflow consists of several PEs in the form of a

directed acyclic graph (DAG), which is designed and defined

by the user for solving specific problems.

• Concrete Workflow, also referred to as the executable work-

flow, is a directed acyclic graph that dispel4py automat-

ically constructs from the abstract workflow taking into

account the selected mapping specified by the user. The

concrete workflow is the actual workflow executed by the

compute infrastructure.

• Grouping governs how processing elements (PEs) communi-

cate during input connections in dispel4py. It offers a range
of grouping choices available, each with distinct behaviors.

For instance, group-by operates akin to ‘MapReduce,’ direct-

ing data units with matching values (e.g ‘state’ in Figure 7)

in the specified element to the same PE instance. Employing

these grouping strategies bolsters both data distribution and

the efficiency of communication within the workflow.

• Stateless & Stateful: In the context of dispel4py, process-
ing elements (PEs) can exhibit either stateless or stateful

behavior. A stateless PE relies solely on its current input

for operation, while a stateful PE retains information from

previous inputs to influence subsequent outputs.

• Workload Allocation: Originally, dispel4py supported only

static deployment, distributing workloads without consider-

ing workflow features. In our previous work [12], we intro-

duced dynamic scheduling for adaptive resource allocation to

PEs without halting their execution, addressing data-rate and

workload variations. Nonetheless, dynamic scheduling exclu-

sively manages stateless PEs and lacks support for grouping.

Further details regarding dynamic scheduling are elaborated

in Section 2.2.

Creating dispel4py workflows entails user-designed PEs and

connections within graphs. PEs are defined with Python classes

and linked by specifying inputs and outputs. Upon composition,

the (abstract) workflow forms a DAG, where nodes signify PEs and

edges depict data flow. Users then choose a mapping to execute

the (abstract) workflow on a computing platform, with dispel4py
automatically generating the suitable concrete workflow.

To illustrate dispel4py’s mapping mechanism, we are going

to examine the abstract workflow and concrete workflow shown

in Figure 1. In this example, the abstract workflow is mapped us-

ing Multiprocessing mapping across 12 cores, with the first PE ex-

clusively assigned to a single process. Subsequently, each of the

remaining PEs is allocated 3 (

⌊
12−1
3

⌋
) instances, leaving 2 cores

unutilized (as shown in the concrete workflow). This inefficient

allocation, leading to two idle cores, prompted our exploration into

the hybrid and auto-scaling optimizations explained in section 3.

2.2 Adaptive Optimizations for dispel4py
In [13], we pioneered several optimization for dispel4py, leading
to the inclusion of an optimization module within the dispel4py
framework. The module includes two static optimizations and one

1
https://docs.python.org/3/library/multiprocessing.html

https://docs.python.org/3/library/multiprocessing.html


Optimization towards Efficiency and Stateful of dispel4py WORKS 2023, November 12 2023, Denver, CO

dynamic optimization. The static methods, namely, naive assign-
ment and staging, are designed to ensure a compact PE allocation

to minimize communication costs while maintaining workflow bal-

ance. Specifically, naive assignment consolidates all interconnected
PEs whose communication times surpass their execution times by

analyzing execution logs, while staging clusters operations that do

not require data shuffling based on the abstract workflow.

Figure 2: dispel4py’s dynamic scheduling mapping. Pro-
cesses retrieve PEs dynamically from ‘Global Queue’ and
return results.

Dynamic optimization, in contrast, targets the execution phase.

Unlike static optimizations that assign PEs to distinct processes

upfront, the dynamic approach allocates the entire workflow graph

to all processes, without predefined tasks. This shift transforms

the fixed one-to-one mapping into a dynamic PE-Process mode,

where task execution depends on both the PE ID and the process.

Processes possess an abstract workflow map, fetching tasks and

data from a global queue, referencing their maps for operations,

and returning results to the global queue (as depicted in Figure 2).

Although this shift does not affect dispel4py end-users, it holds
vital implications for developers seeking to advance the framework.

Though the optimization module functions independently of the

mapping module, the ideal scenario is for the optimization methods

to be compatible with various mapping techniques after certain

modifications. While static optimizations seamlessly fit with differ-

ent mappings since they optimize the abstract workflow prior to

actual mapping, dynamic optimizations depend on the capabilities

and design of the chosen mapping method. For instance, dynamic
scheduling is ineffective with Simple mapping, where tasks are exe-

cuted sequentially. MPI was primarily designed for SIMD (Single In-

struction, Multiple Data) parallel processing, emphasizing efficient

and predictable communication patterns among processes. How-

ever, this structure is at odds with the adaptive and unpredictable

communication inherent to dynamic scheduling. Traditional MPI

lacks support for a queue-based system crucial for dynamic task as-

signments.While dynamic scheduling involves regular inter-process
communication for task balancing, MPI’s protocols aim to mini-

mize such communications for efficiency. Consequently, the MPI
mapping is not suited for the demands of dynamic scheduling.

The existing dynamic optimization of dispel4py encounters

challenges when adapted to novel computational demands, par-

ticularly in handling stateful applications. These applications ne-

cessitate maintaining consistent states across tasks, a task that

dispel4py’s random task and data selection approach struggles

with. As a solution, this work introduces a hybrid strategy (see Sec-

tion 3.1.2) to effectively address this limitation and enable seamless

handling of stateful applications.

2.3 Redis
Redis [6] is as an open-source, in-memory data structure store,

renowned for its efficiency in managing a diverse array of data

tasks. Supporting various data structures such as strings, lists, sets,

and hashes, Redis has found widespread application in caching,

real-time analytics, and messaging systems due to its rapid data

access and low latency. Its minimalist yet high-performance design

philosophy enables it to handle substantial data volumes seam-

lessly. Notably, Redis offers advanced functionalities like replica-

tion, clustering, and pub/sub messaging, bolstering its adaptability

and robustness for modern data-intensive applications.

This work delves into Redis’s potential (see Section 3.1) to am-

plify the performance and resource management of dispel4py
workflows. Particularly, the integration of Redis Stream

2
, a novel

data type introduced in Redis 5.0, emerges as a focal point. Re-

dis Stream empowers Redis with dynamic capabilities, enabling

streamlined management of message and event streams. This fos-

ters collaborative message consumption by multiple clients from

a unified stream. With distinctive message entries and real-time

data processing, Redis Stream seamlessly aligns with dispel4py’s
dynamic scheduling objectives.

2.4 Related Work
Within this subsection, we delve into relevant literature, with a par-

ticular focus on two key dimensions of optimization: auto-scaling

and the management of stateful applications.

2.4.1 Auto-scaling. Auto-scaling mechanisms find application in

various domains: (1) Cloud service providers[16] like AWS, Google

Cloud, and Azure offer auto-scaling for efficient resource allocation

of VM instances while ensuring optimal user experience; (2) Big

Data processing[2, 19]: Apache Spark and Apache Flink dynami-

cally allocate resources during runtime; (3) Databases[9]: Amazon

Aurora and Azure Cosmos DB leverage auto-scaling to maintain

peak performance amidst varying workloads; (4) Workflow systems:

Tools like Celery
3
possess auto-scaling capabilities, extendable with

external tools. While dispel4py and Celery share the domain of

workflow systems, their distinct objectives lead to different consider-

ations when integrating auto-scaling. dispel4py targets data-flow

applications, while Celery caters to task-based ones.

2.4.2 Stateful Applications. Stateful computing in distributed com-

puting remains a popular topic. There are multiple areas that con-

cern statefulness: (1) Traditional relational databases such asMySQL

and PostgreSQL support states across transactions. (2) NoSQL databases

such as MongoDB [10] support states across nodes, ubiquitous in

modern web and mobile application demands. (3) Middleware and

Message Brokers: systems such as RabbitMQ maintain stateful in-

formation about messages, ensuring reliable and ordered message

delivery. (4) Stream processing frameworks: Checkpointing is a

2
https://redis.io/docs/data-types/streams/

3
https://docs.celeryq.dev/en/stable/

https://redis.io/docs/data-types/streams/
https://docs.celeryq.dev/en/stable/


WORKS 2023, November 12 2023, Denver, CO

prevalent strategy for state management. Global snapshot is a state-

of-the-art periodic checkpointing solution which captures the holis-

tic state of execution. For instance, Apache Flink has introduced a

sophisticated distributed asynchronous snapshot mechanism [5].

This ensures a low-cost state management mechanism; however,

it depends on Apache Flink’s distinct data flow, which guarantees

the ordering. Another check-pointing method for state manage-

ment is the localized state used by Apache Storm Trident [11]. Both

checkpointing methods require ordering, a guarantee that dynamic

dispel4py cannot provide.

3 MAPPINGS AND OPTIMIZATIONS
In this work, we have directed our efforts towards two primary

objectives: leveraging the potential of the Redis framework to in-

tegrate the dynamic scheduling optimization and introducing an

innovative auto-scaling strategy. The upcoming subsections explain

in detail the proposed techniques.

3.1 Redis Mappings
The incorporation of Redis into dispel4py brings the potential for

optimizing data-intensive workflows, as discussed in Section 2.3. Re-

dis, recognized for its effective data management, introduces trans-

formative features through Redis Stream. This real-time sequence

maintenance aligns with the dispel4py dynamic optimizations.

In our pursuit of integrating dispel4py with Redis, we initially

introduced the dynamic Redis mapping. Yet, to enhance support for

groupings and stateful applications within dynamic optimization,

we have introduced the hybrid Redis mapping. This addition further

extends dispel4py’s capabilities to accommodate a broader range

of optimization scenarios

3.1.1 Dynamic Redis Mapping. The dynamic Redis mapping draws

inspiration from the original dynamic scheduling forMultiprocessing
mapping. In this adaptation, the multiprocessing queue is replaced

with the powerful Redis stream, seamlessly incorporating Redis’s

inherent features. This alteration is exemplified in Figure 2, where

the previous ‘Global Queue’ utilizing a multiprocessing queue has

been replaced by the Redis streammechanism for this newmapping.

3.1.2 Hybrid Redis Mapping. To address the requirements of state-

ful applications and dynamic optimization, we introduce the hybrid
Redismapping (illustrated in Figure 3). This novel mapping strategy

is designed to efficiently handle both stateless and stateful tasks.

Key to its operation is the direct mapping of stateful PE instances to

dedicated processes, ensuring the maintenance of local states and

private task input queues (refereed as ‘Private Queues’ in Figure 3 ).

Meanwhile, outputs from these stateful PE instances can be routed

to different queues based on connections, eliminating the need for

continuous state synchronization and enhancing performance in

comparison to traditional global state management approaches.

In various stateful applications, tasks can exhibit either a stateful

or stateless nature. To maximize the advantages offered by the dy-
namic scheduling mapping strategy, the hybrid mapping introduces

a mechanism where stateless PE instances are assigned to the avail-

able processes that are not dedicated to stateful tasks. This alloca-

tion is determined by calculating𝑁−number of stateful PE instances,

where 𝑁 represents the total number of available processes. These

Figure 3: dispel4py’s hybrid Redis mapping. Processes cate-
gorized into stateless and statefulmanage corresponding PEs,
optimizing workflow execution. Stateful processes maintain
dedicated private queues.

stateless processes function similarly to the conventional dynamic

methods, acquiring inputs from the ‘Global queue’ and returning

completed tasks to it. However, a subtle distinction arises: these

stateless tasks possess the additional capability of depositing their

outputs into private queues specifically designated for stateful tasks,

enhancing the efficiency of the overall workflow execution.

3.2 Auto-scaling Optimizations
The auto-scaling optimization addresses the efficient allocation of

computational resources in response to the varying workload. auto-
scaling makes the system responsible for workload spikes, and

reduces resource wastage during low workload periods, thereby im-

proving the efficiency of dispel4py. We implement auto-scaling op-
timization for Multiprocessing and dynamic Redis (see Section 3.1.1)

mappings for handling stateless workflow, namely dynamic auto-
scaling Multiprocessing and dynamic auto-scaling Redis.

Within the framework of dispel4py, auto-scaling extends the

capabilities of dynamic scheduling, as depicted in Figure 4. This

enhancement introduces two processor statuses: active and idle.

Active processes are allocated to the abstract workflow and actively

participate in task execution. They retrieve PE IDs and associated

data from the queue, process them, and return the results, similar

to the original dynamic scheduling behavior.

However, a notable distinction arises when the queue experi-

ences a reduced workload. In the conventional dynamic scheduling
framework (introduced in Section 2.2), certain processes continu-

ously monitor the queue, anticipating new tasks. This operation,

however, proves to be both resource-intensive and redundant. auto-
scaling introduces an optimized approach to address this issue. Pro-

cesses without immediate tasks are transitioned into an idle state,

operating in a low-energy standby mode. This efficient mechanism

not only curbs energy consumption but also offers the potential

for reallocating these idle processes elsewhere. When a surge in

workload is detected, auto-scaling can swiftly activate these dor-

mant processes. Conversely, during periods of low demand, surplus

processes are deactivated and returned to an idle state. This dy-

namic activation and deactivation process is orchestrated by the



Optimization towards Efficiency and Stateful of dispel4py WORKS 2023, November 12 2023, Denver, CO

Figure 4: dispel4py’s auto-scaling. Idle processes conserve
energy and can be reactivated when workload surges.

auto-scaler, working in tandem with a monitoring framework and

various auto-scaling strategies.

3.2.1 Auto-scaler. Algorithm 1 shows how the auto-scaler works.
It sets parameters like the maximum pool size and workload thresh-

old upon initialisation; by default, the 𝑎𝑐𝑡𝑖𝑣𝑒_𝑠𝑖𝑧𝑒 is half of the

maximum of total processes (𝑚𝑎𝑥_𝑝𝑜𝑜𝑙_𝑠𝑖𝑧𝑒). The configurable

𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is used in auto-scaling strategies. The shrink
and grow methods decrease and increase the active processes, re-

spectively, and are controlled by the central logicmethods auto_scale.
It implements auto-scaling strategies (introduced in the Section 3.2.2),

which monitor the system state, and control the resource adjust-

ments. Tasks are dispatched through the startmethod and finished

by the done methods; those two methods are also responsible for

updating the active count denoted as 𝑎𝑐𝑡𝑖𝑣𝑒_𝑐𝑜𝑢𝑛𝑡 used to avoid

over-use of processes. The entry method process continually eval-

uates and scales resources before activating processes by calling

start. Overall, the auto-scaler can schedule the resources dynami-

cally, ensuring efficiency and responsiveness.

3.2.2 Auto-scaling andMonitoring Strategy. Auto-scaling is not just
about dynamically reallocating resources; striking the right balance

between performance and efficiency is also the crux of chosen auto-

scaling strategies. These strategies have two important decisions:

‘when to scale’ and ‘how to scale’. The former is about metrics

from the monitoring framework, while the latter determines the

magnitude of scaling. For instance, a question might be whether we

should rapidly scale up when we observe a task burst. In this work,

we adopt a simple incremental approach: incrementing the active

size by 1 or -1. Given dynamic auto-scaling Multiprocessing and

dynamic auto-scaling Redis have different monitoring frameworks,

we use a different strategy for each:

• dynamic auto-scaling Multiprocessing: This approach em-

ploys queue size to gauge the current workload. When the

queue size increases compared to the previous state, indicat-

ing higher task volume, additional processes are activated.

Conversely, processes are deactivated during reduced work-

load, while a minimum threshold prevents unnecessary scal-

ing during low demand.

• dynamic auto-scaling Redis: Here we utilize Redis’s consumer

group’s average idle time as a metric. Unlike queue size, idle

Algorithm 1 Auto_scaler for Dynamic Optimization

1: Class Auto_scaler:
2: Parameters : 𝑚𝑎𝑥_𝑝𝑜𝑜𝑙_𝑠𝑖𝑧𝑒 , 𝑝𝑜𝑜𝑙 , 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , 𝑞𝑢𝑒𝑢𝑒 ,

𝑎𝑐𝑡𝑖𝑣𝑒_𝑠𝑖𝑧𝑒 , 𝑎𝑐𝑡𝑖𝑣𝑒_𝑐𝑜𝑢𝑛𝑡

3:

4: procedure Constructor(Parameters)
5: Initialize member parameters

6: By default 𝑎𝑐𝑡𝑖𝑣𝑒_𝑠𝑖𝑧𝑒 ←𝑚𝑎𝑥_𝑝𝑜𝑜𝑙_𝑠𝑖𝑧𝑒/2

7: end procedure
8:

9: procedure shrink(𝑠𝑖𝑧𝑒_𝑡𝑜_𝑠ℎ𝑟𝑖𝑛𝑘)
10: Decrease 𝑎𝑐𝑡𝑖𝑣𝑒_𝑠𝑖𝑧𝑒 by 𝑠𝑖𝑧𝑒_𝑡𝑜_𝑠ℎ𝑟𝑖𝑛𝑘 (with a minimum

of 1)

11: end procedure
12:

13: procedure grow(𝑠𝑖𝑧𝑒_𝑡𝑜_𝑔𝑟𝑜𝑤 )

14: Increase 𝑎𝑐𝑡𝑖𝑣𝑒_𝑠𝑖𝑧𝑒 by 𝑠𝑖𝑧𝑒_𝑡𝑜_𝑔𝑟𝑜𝑤 (with a maximum of

𝑚𝑎𝑥_𝑝𝑜𝑜𝑙_𝑠𝑖𝑧𝑒)

15: end procedure
16:

17: procedure is_terminiated
18: Return BOOL depending on Termination Methods
19: end procedure
20:

21: procedure auto_scale
22: 𝑐𝑢𝑟𝑟_𝑠𝑡𝑎𝑡𝑒𝑠 ←Monitor
23: if 𝑐𝑢𝑟𝑟_𝑠𝑡𝑎𝑡𝑒𝑠 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
24: grow(1)

25: else
26: shrink(1)

27: end if
28: end procedure
29:

30: procedure start(𝑓 𝑢𝑛𝑐, 𝑎𝑟𝑔𝑠)
31: while 𝑎𝑐𝑡𝑖𝑣𝑒_𝑐𝑜𝑢𝑛𝑡 >= 𝑎𝑐𝑡𝑖𝑣𝑒_𝑠𝑖𝑧𝑒 do
32: Wait

33: end while
34: Increment 𝑎𝑐𝑡𝑖𝑣𝑒_𝑐𝑜𝑢𝑛𝑡

35: return 𝑃𝑜𝑜𝑙 .apply_async(𝑓 𝑢𝑛𝑐 , 𝑎𝑟𝑔𝑠 , callback=done())

36: end procedure
37:

38: procedure done(𝑟𝑒𝑠𝑢𝑙𝑡 )
39: Decrement 𝑎𝑐𝑡𝑖𝑣𝑒_𝑐𝑜𝑢𝑛𝑡

40: end procedure
41:

42: procedure process(𝑔𝑟𝑎𝑝ℎ)
43: while True do
44: auto_scale

45: if is_terminiated( )then
46: Get results from 𝑟𝑒𝑠𝑢𝑙𝑡𝑠

47: Return
48: else
49: 𝑐𝑝_𝑔𝑟𝑎𝑝ℎ ← DeepCopy(𝑔𝑟𝑎𝑝ℎ)

50: Initialize worker’s 𝑎𝑟𝑔𝑠 with 𝑞𝑢𝑒𝑢𝑒 and 𝑐𝑝_𝑔𝑟𝑎𝑝ℎ

51: start(worker.process, 𝑎𝑟𝑔𝑠)

52: end if
53: end while
54: end procedure
55: end Class



WORKS 2023, November 12 2023, Denver, CO

time directly reflects process states. We employ a threshold

for the average idle time of active processes. If a process’s

idle time exceeds the time needed for reactivation and rede-

ployment, it is logically deactivated. The reactivation time

is influenced by computational resources and the specific

workflow, requiring proper configuration for practical use

The experimental results in Section 5 show that these preliminary

strategies are effective. While they currently serve our purpose, we

will dive deeper to refine and optimize them in future work.

3.2.3 Termination Strategy. As mentioned earlier, with the shift

to dynamic optimization, how tasks are executed and terminated

significantly changes. Instead of the static pre-assignment of PEs to

specific processes, dynamic optimization assigns the entire work-

flow graph to all processes and takes a task from the queue without

order. Such changes results in the failure of traditional static termi-

nation methods. In the static context, the "poison pills" termination

method was employed, where the source PE would signal the end

of its input to all subsequent instances. However, in the dynamic

setting, the task processing order is not reserved; it is based on

availability rather than any specific order in the abstract workflow.

This makes the "poison pills" method ineffective, as it can unex-

pectedly halt processes and leave tasks unfinished in the queue.

To solve this, the native dynamic approach relies on checking the

emptiness of the global queue for termination. While this method is

generally effective, it is not foolproof and could lead to unexpected

exits in some extreme cases. Additionally, constant checks from all

processes on the queue’s status could be inefficient.

We use a retry mechanism combined with "poison pills" to miti-

gate these challenges. If the queue appears empty, processes will

wait for a configurable threshold duration and retry a specified

number of times before deciding on termination. Once a process

determines to stop based on these parameters, it broadcasts "poi-
son pills" to other processes, speeding up their termination check,

thereby reducing overall waiting time.

4 USE CASES
In this section, we introduce three real scientific dispel4py work-

flows, including two stateless workflows and one stateful workflow.

These workflows will be used in the experiment to evaluate our

proposed mappings and optimizations.

4.1 Internal Extinction of Galaxies
The Internal Extinction of Galaxies workflow has been implemented

to calculate the extinction metric within galaxies, which is a sig-

nificant property in astrophysics. This property reflects the dust

extinction of the internal galaxies and is used for measuring optical

luminosity. The workflow contains four PEs, as shown in Figure 5.

The first PE, read RaDec, reads the coordinator data for galaxies in
an input file. Then, these data are used in getVO Table to download
the VOTables. These VOTables in filter Columns are filtered by

specified columns used in the internal extinction computation. The

last PE (internal Extinction) will perform the computation. It

is important to note that all PEs here are stateless.

To introduce variability in the workload, we adjusted the read
RaDec PE. For a standard workload (denoted as 1X), it reads data for
100 galaxies. This reading scales to 300 galaxies for 3X, 500 for 5X,

Figure 5: Internal Extinction of Galaxies workflow.

and 1000 for 10X. In addition to varying the stream length, we also

varied the PE’s workload. By using a random sleep time sampled

from a beta(2,5) distribution, we added delays ranging from 0 to 1

second within the getVO Table PE and filter Columns PE. This

modification is labeled as "heavy". Therefore, the experiment based

on Internal Extinction of Galaxies now has both standard and heavy

workloads varying from 1X to 10X.

4.2 Seismic Cross-Correlation
The Seismic Cross-Correlation workflow is engineered to moni-

tor and analyze the vast geological waveform data gathered from

FDSN
4
stations. Its primary goal is to evaluate and predict the risk

and likelihood of volcanic eruptions and earthquakes in real-time.

The original workflow consists of two phases (in Figure 6): the

initial stage involves pre-processing data collected from stations,

and the second phase deals with reading the pre-processed data

and executing the cross-correlation computations.

Notably, the second phase has a grouping mechanism. Given that

the auto-scaling cannot handle stateful applications, we want to

focus on the first phase of our experiments (all PEs in the first phase

are stateless). For testing the hybrid, we selected another represen-

tative workflow. The first phase comprises nine interconnected PEs:

the initial PE reads the data, the intermediate PEs process the raw

data, and the final PE writes the data to disk. There are more im-

balanced workloads among PEs; for example, the intermediate PEs

only do calculations in main memory, but the last PE writes data

into the disk, which involves IO operations. A detailed description

of the setup can be found in [12, 13].

4.3 Sentiment Analyses for News Articles
This workflow analyses newspaper articles data by implementing

a sentiment analysis of the news
5
. This workflow applies two dis-

tinct sentiment analyses on articles, subsequently aggregating these

sentiment scores based on the published location. Such workflow

complicates the graph by having various types of grouping com-

pared with the first two workflows. The news articles employed

the source data from public News Articles datasets on Kaggle
6
.

The workflow shown in Figure 7 unfolds as follows. The initial

PE (read Articles) sequentially reads and parses articles from

input files. Each parsed article then undergoes dual processing by

two downstream PEs. The sentiment AFINN PE computes sen-

timent scores utilizing the AFINN lexicon
7
, while concurrently,

tokenize WD and sentiment SWN3 PEs tokenize the articles and
derive sentiment using the SWN3 lexicon [1]. Post-processing, the

data from both pathways convene within their respective find

4
https://www.fdsn.org

5
https://github.com/NoPuzzle/dispel4py_autoscaling/tree/main/dispel4py/examples/

article_sentiment_analysis

6
https://www.kaggle.com/datasets/asad1m9a9h6mood/news-articles

7
https://github.com/fnielsen/afinn

https://www.fdsn.org
https://github.com/NoPuzzle/dispel4py_autoscaling/tree/main/dispel4py/examples/article_sentiment_analysis
https://github.com/NoPuzzle/dispel4py_autoscaling/tree/main/dispel4py/examples/article_sentiment_analysis
https://www.kaggle.com/datasets/asad1m9a9h6mood/news-articles
https://github.com/fnielsen/afinn


Optimization towards Efficiency and Stateful of dispel4py WORKS 2023, November 12 2023, Denver, CO

Figure 6: Seismic Cross-Correlation workflow.

State - happy State - top 3 happiest sequence. These three

PEs identify, group, and display the top three happiest locations

with their scores.

Stateful PEs play a crucial role in this workflow. For instance, the

happy State PE is strategically distributed across four instances

grouped by their ‘state’ (group-by), while the top 3 happiest PE
is confined to one instance under the global grouping 8

. In contrast,

other PEs lack these constraints and are classified as stateless. By

blending stateless and stateful PEs, this workflow stands as an ideal

testbed to explore the behavior of enhanced dynamic deployment

within the realm of a real stateful application.

Figure 7: Sentiment Analyses for News Articles workflow.

5 EVALUATIONS
In this section, we conduct a comparative experimental evalua-

tion of the workflows outlined in Section 4. Our primary focus lies

in assessing the performance and efficiency of the mappings and

optimization techniques proposed in Section 3. We introduce ab-

breviations and provide key insights into the evaluated techniques:

• multi: This represents the nativeMultiprocessingmapping [7].

this approach statically assigns PE instances to processes as

detailed in the background Section 2.1. Benefiting from its

inherent state maintenance capabilities,multi can effectively

manage both stateful and stateless applications, establishing

itself as an appropriate baseline for all experimentation.

• dyn_multi: This denotes the dynamic Multiprocessing map-

ping [12] introduced in the background Section 2.2 . It en-

ables processes to dynamically share the workload on-the-fly.

Being built upon the Multiprocessing mapping, dyn_multi
serves as a baseline for comparing the auto-scaling optimiza-

tion based on the same mapping.

8
This grouping enforces all instances of the previous PE (characterized by the ‘happy

state’) are directed towards a singular instance of the same PE (representing the ‘top 3

happiest’)

10

20

30

40

Ru
nt

im
e 

(s
)

1 X Standard Workload

100

200

300

To
ta

l P
ro

ce
ss

 T
im

e 
(s

) 1 X Standard Workload

25

50

75

100

125
Ru

nt
im

e 
(s

)
5 X Standard Workload

200

300

400

To
ta

l P
ro

ce
ss

 T
im

e 
(s

) 5 X Standard Workload

5 7 10 12 15
Processes

20

40

60

Ru
nt

im
e 

(s
)

1 X Heavy Workload

5 7 10 12 15
Processes

100

150

200

250

300

To
ta

l P
ro

ce
ss

 T
im

e 
(s

) 1 X Heavy Workload

dyn_multi
dyn_auto_multi

dyn_redis
dyn_auto_redis

multi
hybrid_redis

Figure 8: Workload Performance for Internal Extinction of
Galaxies using the server with up to 16 processes.

• dyn_auto_multi: This signifies the new dynamic auto-scaling
Multiprocessing mapping presented in Section 3.2.2. It will

be compared primarily with dyn_multi, aiming to evaluate

the efficiency gains achieved by incorporating auto-scaling.
• dyn_redis: This refers to the new dynamic Redis mapping

explained in Section 3.1.1. The performance of dyn_redis is
horizontally compared with dyn_multi, as both employ the

dynamic scheduling optimization.

• dyn_auto_redis: This stands for the new dynamic auto-scaling
Redis mapping introduced in Section 3.2.2. dyn_auto_redis is
mainly compared with dyn_redis to evaluate auto-scaling in

a vertical comparison, given their shared mapping founda-

tion. Additionally, it is compared with dyn_auto_multi for a
horizontal assessment over different mappings.



WORKS 2023, November 12 2023, Denver, CO

5

10

15

20

25

Ru
nt

im
e 

(s
)

1 X Standard Workload

50

100

150

200

To
ta

l P
ro

ce
ss

 T
im

e 
(s

) 1 X Standard Workload

20

40

60

80

100

120

Ru
nt

im
e 

(s
)

5 X Standard Workload

150

200

250

300

350

To
ta

l P
ro

ce
ss

 T
im

e 
(s

) 5 X Standard Workload

5 7 10 12 15
Processes

20

40

60

Ru
nt

im
e 

(s
)

1 X Heavy Workload

5 7 10 12 15
Processes

100

150

200

250

300

To
ta

l P
ro

ce
ss

 T
im

e 
(s

) 1 X Heavy Workload

dyn_multi
dyn_auto_multi

dyn_redis
dyn_auto_redis

multi
hybrid_redis

Figure 9: Workload Performance for Internal Extinction of
Galaxies using the cloud with up to 16 processes.

• hybrid_redis: This denotes the new hybrid Redis mapping

explained in Section 3.1.2, exclusively designed to support

stateful applications. The performance of hybrid_redis will
be comparatively evaluated with multi.

5.1 Experiment Setup
5.1.1 Platform. We have conducted our experiments on multiple

infrastructures/platforms, each with its distinct configurations:

• server : This is a virtual server for research groups supported

by Department of Computing, Imperial College London
9
. It

consists of 16-core with Intel E5-2690@2.60GHz processor

paired with 64GB of RAM and runs on Ubuntu 14.04. We

denote it as server for short. It runs all three workflows on
various processes: 4, 8, 12, and 16.

• cloud: This server is provided by Google Cloud Platform 10
. It

has 4 Intel(R) Xeon(R) CPU @ 2.20GHz (8vCPUs), and 16GB

of RAM running Ubuntu 20.04. For our experiments, we refer

this server to cloud, and its configuration for running the

experiment is identical to server .
• HPC: The HPC cluster we used is provided by HPC at Im-

perial
11
. The HPC servers provide multi-job classes, and

9
https://www.imperial.ac.uk/admin-services/ict/self-service/research-support/

private-cloud/

10
https://cloud.google.com/

11
https://www.imperial.ac.uk/computational-methods/hpc/

20

40

60

80

100

Ru
nt

im
e 

(s
)

5 X Standard Workload

200

300

400

500

600

To
ta

l P
ro

ce
ss

 T
im

e 
(s

) 5 X Standard Workload

100

200

300

Ru
nt

im
e 

(s
)

10 X Standard Workload

250

500

750

1000

1250

To
ta

l P
ro

ce
ss

 T
im

e 
(s

) 10 X Standard Workload

20 40 60
Processes

0

100

200

300

400

Ru
nt

im
e 

(s
)

5 X Heavy Workload

20 40 60
Processes

600

800

1000

1200

1400

To
ta

l P
ro

ce
ss

 T
im

e 
(s

) 5 X Heavy Workload

dyn_multi dyn_auto_multi multi

Figure 10: Workload Performance for Internal Extinction of
Galaxies using the HPC with up to 64 processes.

we use the short class in which the CPU and OS mode are

Intel E5-2680 v3 @ 2.50GHz and Centos 8, respectively. We

request up to 64 CPUs and 64 GB memory. Since Redis can-

not be deployed on the HPC, no mapping is based on Redis

running on HPC. We employed 4, 8, 16, 32, and 64 CPUs for

other experiments.

5.1.2 Metrics. We use two main metrics for evaluation: runtime

(runtime) and total process time (process time). runtime represents
the real-world execution time, while process time accounts for all ac-
tive process durations, reflecting overall efficiency. Typically, fewer

processes lead to shorter process time due to reduced synchroniza-

tion overhead, but may extend runtime. Our results are presented
as runtime and process time pairs for a comprehensive view.

Moreover, we calculate runtime and process time ratios between
methods to provide intuitive insights. For example, a runtime ratio
below 1 (shown in Table 1) between dyn_auto_multi and dyn_multi
implies that dyn_auto_multi completes tasks faster. Similarly, a

process time ratio below 1 suggests dyn_auto_multi is more efficient

than dyn_multi. To maintain consistency, we only include our pro-

posed optimizations (auto-scaling or hybrid_redis) in the numerator.

If both ratios are below 1, the proposed approach excels in both

performance and efficiency, although practical trade-offs may affect

ideal outcomes.

https://www.imperial.ac.uk/admin-services/ict/self-service/research-support/private-cloud/
https://www.imperial.ac.uk/admin-services/ict/self-service/research-support/private-cloud/
https://cloud.google.com/
https://www.imperial.ac.uk/computational-methods/hpc/


Optimization towards Efficiency and Stateful of dispel4py WORKS 2023, November 12 2023, Denver, CO

5.2 Ev. Internal Extinction of Galaxies
Different workloads based on Internal Extinction of Galaxies work-

flow are used on multiple platforms to provide a comprehensive

evaluation. On both server and cloud, we use three different work-
loads: the 1X standard workload (100 galaxies as input), the 5X

standard workload (500 galaxies), and the 1X heavy workload (100

galaxies with sleep synthetically added to the PEs). On HPC, which
offers more cores, we deploy a heavier workload than server and
cloud. HPC will be experimented with 5X, 10X standard and 5X

heavy workload.

Figure 8 shows the performance metrics in terms of runtime (left)
and process time (right) for all six techniques introduced in Section 5.
All techniques show a decreasing trend for runtimewith an increase
in the number of processes, indicating they share good scalability in

dispel4py. With lower workloads, auto-scaling techniques achieve
shorter runtime, as they dynamically adjust the number of activated

processes, thereby lowering unnecessary synchronization costs.

However, as the workload increases, particularly in heavy-workload

scenarios, auto-scaling technique lags slightly behind pure dynamic
scheduling optimizations. This minor fault could be optimized with

a more refined auto-scaling strategy. Apart from this, auto-scaling
techniques still outperform native multi mapping in most cases.

Regarding process time, as the number of processes increases, the

process time rises due to the accumulated synchronization overhead

from more active processes. Unsurprisingly, both dyn_auto_multi
and dyn_auto_redis increase slightly, with both excelling over their

corresponding pure dynamic scheduling competitors.

Notably, in the race track of versatile methods (supporting both

stateless and stateful), hybrid_redis presents strong runtime perfor-
mance, but given we did not equip auto-scaling optimization to it,

hybrid_redis does not achieve the same efficiency, compared with

dyn_auto_redis. In terms of comparison between multi and Redis,
there is a common pattern trend across various experimental setups:

both runtime and process time metrics for the optimization using

the Redis mapping are larger than those of the multi mapping. The

reason can be attributed to the inherent characteristics of the two

mappings. Compared with Redis,multi is designed to be lightweight,
offering outstanding performance. However, Redis supports more

features regarding monitoring, reliable messaging and robust data

persistence, which render Redis more resource-intensive, thereby

affecting its performance.

Performance trends on the cloud platform are similar to those ob-

served on the server . However, since there are only 8 cores in cloud,
the performance slightly dips with 12 and 16 processes compared

to server . Despite this, the overall trends remain consistent across

different platforms, indicating the reproducibility and portability

of our experiments.

Experiments on HPC show how the performance metrics (both

process time and runtime) change with a larger scale in processes.

Experiments on HPC show how the performance metrics (both

process time and runtime) change with a larger scale in processes.

The runtime of all three methods based on multi mapping show a

quick drop when increasing the number of processes to 16, then

gradually becoming steady with a slight decrease. However, the pro-
cess time of dyn_multi and dyn_auto_multi show a linear increase

with the increase in the number of processes. In the meanwhile, the

Table 1: Performance comparison based Internal Extinction
of Galaxies workflow between techniques (A and B). The
runtime ratio is the runtime of mapping A over the runtime
of mapping B. Similarly, the process time ratio is the total
process time elapsed ratio between A and B. The ratios are
prioritized by the metric in the "Prioritized By" column, and
the [Mean, Std] shows the average and standard deviation
for all runtime and process time ratios.

Platform

Comparison

between A/B
Prioritized By Runtime Ratio Process Time Ratio

server

dyn_auto_multi
dyn_multi

runtime 0.87 0.76

process time 1.01 0.46

[Mean, Std] [1.39, 0.37] [0.77, 0.15]

dyn_auto_redis
dyn_redis

runtime 0.97 0.83

process time 2.26 0.74

[Mean, Std] [1.21, 0.39] [0.86, 0.06]

cloud

dyn_auto_multi
dyn_multi

runtime 1.00 0.87

process time 1.01 0.50

[Mean, Std] [1.36, 0.34] [0.77, 0.15]

dyn_auto_redis
dyn_redis

runtime 0.88 0.76

process time 0.88 0.76

[Mean, Std] [1.26, 0.66] [0.86, 0.08]

HPC dyn_auto_multi
dyn_multi

runtime 0.97 0.85

process time 1.83 0.36

[Mean, Std] [1.95, 0.83] [0.75, 0.20]

increase of dyn_auto_multi is at a slight upward slope. This differ-

ence strongly supports the effectiveness of auto-scaling, especially
when a large number of processes are involved.

5.2.1 Summary of the evaluation on Internal Extinction of Galaxies
with runtime and process time ratios. To provide an intuitive view

of the results, we calculate runtime and process time ratios to intu-

itively compare auto-scaling and dynamic scheduling techniques:

dyn_auto_multi and dyn_multi, dyn_auto_redis and dyn_redis. Ta-
ble 1 displays these ratios across various platforms, allowing anal-

ysis from different perspectives. For example, in the best runtime
case, dyn_auto_multi requires only 87% runtime and 76% process
time of dyn_multi. Prioritizing process time, the most efficient ratio

achieved is 0.46, with a 1.01 runtime ratio. Overall, auto-scaling tech-
niques demonstrate efficiency by slightly extending runtime while
reducing process time, highlighting their trade-offs and benefits.

5.3 Ev. Seismic Cross-Correlation
In the Seismic Cross-Correlation workflow, we adopt a consistent

workload (50 stations as input) across all platforms. Compared

with Internal Extinction of Galaxies, Seismic Cross-Correlation has

more number of PEs and characterises a more heterogeneously

distributed workload. It is worth pointing out that, unlike other

methods, which start with 4 processes, multi initiates with 12 pro-

cesses. Since the workflow contains 9 PEs, given the fixed allocation

of multi, 9 processes is the minimum requirement. This is a con-

straint of native static mappings.

As illustrated in Figure 11a and Figure 11b, runtime of all tech-
niques show a downward trend as the number of processes in-

creases. Conversely, process time exhibits an increased trend. No-

tably, the overall performance on server is slightly better than cloud
due to the different capacities of these two platforms. The pattern

observed includes different mappings and optimizations, various

platforms, and different metrics closely aligned with the experiment



WORKS 2023, November 12 2023, Denver, CO

5 7 10 12 15
Processes

25

50

75

100

125

150

175

Ru
nt

im
e 

(s
)

5 7 10 12 15
Processes

200

400

600

800

1000

To
ta

l P
ro

ce
ss

 T
im

e 
(s

)

dyn_multi
dyn_auto_multi

dyn_redis
dyn_auto_redis

multi
hybrid_redis

(a) Workload Performance for Seismic Cross-Correlation using the
server with up to 16 processes.

5 7 10 12 15
Processes

40

60

80

100

120

140

160

Ru
nt

im
e 

(s
)

5 7 10 12 15
Processes

200

400

600

800

1000

To
ta

l P
ro

ce
ss

 T
im

e 
(s

)

(b) Workload Performance for Seismic Cross-Correlation using
the cloud with up to 16 processes.

20 40 60
Processes

20

40

60

80

100

120

Ru
nt

im
e 

(s
)

20 40 60
Processes

200

400

600

800

To
ta

l P
ro

ce
ss

 T
im

e 
(s

)

(c) Workload Performance for Seismic Cross-Correlation using
the HPC with up to 64 processes.

Figure 11: Experiments on Seismic Cross-Correlation over
different platforms.

results from Internal Extinction of Galaxies. Given this consistency,

we avoid repeatedly mentioning these patterns. Instead, wewill con-

clude with insights from the findings in the subsequent summary

section (Section 5.6).

5.3.1 Summary of the evaluation on Seismic Cross-Correlation with
runtime and process time ratios. Statistics from Table 2 reveal that

the overall process time of this workflow surpasses that of Internal

Extinction of Galaxies. Notably, while optimal runtime ratios in the

previous workflow were generally under 1, they exceed 1 in this

case. This indicates that the auto-scaling optimization faces chal-

lenges with runtime in complex workflows. This could stem from

the limitations of the naive auto-scaling algorithm in accurately

gauging demand for intricate workflows. However, the process time

Table 2: Performance comparison based Seismic Cross-
Correlation workflow between techniques (A and B). The
runtime ratio is the runtime of mapping A over the runtime
of mapping B. Similarly, the process time ratio is the total
process time elapsed ratio between A and B. The ratios are
prioritized by the metric in the "Prioritized By" column, and
the [Mean, Std] shows the average and standard deviation
for all runtime and process time ratios.

Platform

Comparison

between A/B
Prioritized By Runtime Ratio Process Time Ratio

server

dyn_auto_multi
dyn_multi

runtime 1.10 0.89

process time 1.56 0.64

[Mean, Std] [1.48, 0.31] [0.75, 0.11]

dyn_auto_redis
dyn_redis

runtime 1.25 0.98

process time 1.82 0.73

[Mean, Std] [1.61, 0.30] [0.91, 0.12]

cloud

dyn_auto_multi
dyn_multi

runtime 1.18 0.62

process time 1.46 0.61

[Mean, Std] [1.30, 0.13] [0.69, 0.14]

dyn_auto_redis
dyn_redis

runtime 1.05 0.90

process time 1.50 0.60

[Mean, Std] [1.47, 0.40] [0.73, 0.13]

HPC dyn_auto_multi
dyn_multi

runtime 1.06 0.98

process time 2.34 0.66

[Mean, Std] [1.56, 0.51] [0.79, 0.15]

ratios, consistently below 1, affirm the efficiency of auto-scaling
even in complex scenarios.

5.4 Ev. Sentiment Analyses for News Articles
The goal of this workflow evaluation is to assess hybrid_redis’s
performance in stateful applications compared to the baselinemulti.
For this purpose, the happy state and top 3 happiest stateful
PEs have 4 and 2 instances, respectively. With 1 process reserved for

stateless PEs, hybrid_redis starts with 8 instances in the experiment.

In contrast, multi demands a minimum of 14 processes due to its

one-to-one instance-to-process mapping. As the upper process limit

is 16, we use finer increments of 8, 10, 12, 14, and 16 processes.

The results on the server , as shown in Figure 12a, demonstrates

that hybrid_redis significantly outperforms the multi in terms of

runtime. Additionally, hybrid_redis exhibits a speed-up as the num-

ber of processes increases. This can be attributed to the fact that

as more processes are added, the stateless workload can be shared

by more processes, thereby reducing the overall execution time.

Unexpectedly, the trend of process time is similar to runtime. Given
that auto-scaling is not applied into hybrid_redis, this efficiency

gain likely comes from the more efficient processing of stateless

tasks, which reduces the idle time for stateful processing awaiting

outputs from stateless PEs. Thus, even with the additional synchro-

nization overhead caused by the increasing number of processes,

this reduction in idle time still results in a net efficiency gain.

For the results on cloud which is limited to 8 cores, the drawbacks

of over-allocating processing become evident. While hybrid_redis
shows a downtrend in the runtime, its process time tells a different
story. Since available cores have to keep shifting to support an over-

sized number of processes, the latency introduced by the switching,

especially when stateful instances are left idle, leads to a dramatic

increase in total idle time. However, despite these, both runtime
and process time for hybrid_redis remain superior to the multi.



Optimization towards Efficiency and Stateful of dispel4py WORKS 2023, November 12 2023, Denver, CO

Table 3: Performance comparison based Sentiment Analyses
for News Articles workflow between techniques (A and B).
The runtime ratio is the runtime of mapping A over the
runtime of mapping B. Similarly, the process time ratio is
the total process time elapsed ratio between A and B. The
ratios are prioritized by the metric in the "Prioritized By"
column, and the [Mean, Std] shows the average and standard
deviation for all runtime and process time ratios.

Platform

Comparison

between A/B
Prioritized By Runtime Ratio Process Time Ratio

server ℎ𝑦𝑏𝑟𝑖𝑑_𝑟𝑒𝑑𝑖𝑠

𝑚𝑢𝑙𝑡𝑖

runtime 0.32 0.48

process time 0.32 0.48

[Mean, Std] [0.34, 0.02] [0.49, 0.01]

cloud ℎ𝑦𝑏𝑟𝑖𝑑_𝑟𝑒𝑑𝑖𝑠

𝑚𝑢𝑙𝑡𝑖

runtime 0.60 0.89

process time 0.60 0.89

[Mean, Std] [0.61, 0.01] [0.95, 0.09]

5 7 10 12 15
Processes

60

80

100

120

140

160

Ru
nt

im
e 

(s
)

5 7 10 12 15
Processes

600

800

1000

1200

To
ta

l P
ro

ce
ss

 T
im

e 
(s

)

multi hybrid_redis

(a) Workload Performance for Sentiment Analyses for News Articles
using the server with up to 16 processes.

5 7 10 12 15
Processes

90

100

110

120

130

140

Ru
nt

im
e 

(s
)

5 7 10 12 15
Processes

800

900

1000

1100

To
ta

l P
ro

ce
ss

 T
im

e 
(s

)

(b) Workload Performance for Sentiment Analyses for News Articles
using the cloud with up to 16 processes.

Figure 12: Experiments on Sentiment Analyses for News Ar-
ticles over different platforms.

5.4.1 Summary of the evaluation on Sentiment Analyses for News
Articles with runtime and process time ratios. In terms of the runtime
and process time ratios from various platforms and priorities, all

ratios are smaller than 1. This indicates that, with dynamic schedul-
ing optimization, hybrid_redis outperforms multi. This is especially
noteworthy, based on the observation that the Redis mapping is

overall slower than Multiprocessing with the same settings.

5.5 Analysis on auto-scaling
We experiment with the auto-scaler mechanism using the Internal

Extinction of Galaxies and Seismic Cross-Correlation workflows

on both server and HPC. In Figure 13, the left y-axis depicts the

active process count throughout runtime. The right y-axis repre-

sents the queue size for dyn_auto_multi and the average idle time

for dyn_auto_redis. The x-axis indicates iteration counts, recorded

when monitored metrics (right y-axis) change. Please note that

these iterations are not uniformly spaced in terms of time interval.

For dyn_auto_multi in Figure 13a, 13c, 13d and 13f, there is no-

ticeable positive correlation between the number of active processes

and queue size. It is in line with our expectations: a larger work-

load in the queue needs more active processes. Notably, in HPC,
especially, for the simple workflow, the active size rarely reaches

the maximum limit (64), even though the queue size consistently

remains at a high level. This is probably because the naive auto-
scaler of dyn_auto_multi adjusts the active size only by considering
the changes in the queue size without the absolute workload.

For dyn_auto_redis in Figure 13b and Figure 13e, there is an

inverse relationship between the number of active processes and

the average idle time. This means that the auto-scaler reduces the
active size when active processes have larger idle periods, indicat-

ing a reduced workload. The sub-figures reveal a consistent trend:

active process numbers lag behind metric changes due to inertia

in the naive auto-scaling strategy. This can result in mismatches

between actual needs and active process count. We recognize the

need for optimizing the auto-scaling strategy, enhancing its abil-

ity to accurately capture real requirements and predict workload

changes.

5.6 Key Insights
Summarizing our extensive experiments, key findings include:

• Consistent auto-scaling Efficiency: auto-scaling consis-

tently demonstrates efficiency across diverse platforms and

workflows. It achieves 87% runtime and 76% process time of
dynamic scheduling’s performance in optimal cases

• Complex Workflow Challenges: While generally effec-

tive, auto-scaling faces challenges with complex workflows.

Its auto-scaler can struggle to accurately predict needs, caus-

ing slight runtime extensions. However, process time effi-

ciency remains strong.

• Stateful Mapping Superiority: In the context of work-

flows involving stateful applications, hybrid_redis surpasses
its counterpart multi, achieving as low as 32% of runtime
compared to multi.
• Multiprocessing vs.RedisPerformance: The performance

achieved with the Multiprocessing optimizations (dyn_multi
and dyn_auto_multi) outperforms those of Redis (dyn_redis
and dyn_auto_redis), primarily attributed to the lightweight

nature of Multiprocessing - despite employing the same opti-

mization strategies for both Multiprocessing and Redis.

6 CONCLUSIONS
This paper presents our work harnessing the capabilities of the Re-
dis framework to incorporate the dynamic scheduling optimization,

complemented by a new auto-scaling strategy. Furthermore, we



WORKS 2023, November 12 2023, Denver, CO

0 200 400 600 800
Iterations

2

5

7

10

12

15
Ac

tiv
e 

Pr
oc

es
se

s

0

50

100

150

200

250

300

Qu
eu

e 
Si

ze

(a) Internal Extinction of Galaxies running
on server with dyn_auto_multi.

0 200 400 600 800
Iterations

9

10

11

12

13

14

15

Ac
tiv

e 
Pr

oc
es

se
s

0

500

1000

1500

2000

2500

Av
g 

Id
le

 T
im

e 
(m

s)

(b) Internal Extinction of Galaxies running
on server with dyn_auto_redis.

0 500 1000 1500
Iterations

0

5

10

15

20

25

30

Ac
tiv

e 
Pr

oc
es

se
s

0

100

200

300

400

500

Qu
eu

e 
Si

ze

(c) Internal Extinction of Galaxies running
on HPC with dyn_auto_multi.

0 100 200 300 400
Iterations

2

5

7

10

12

15

Ac
tiv

e 
Pr

oc
es

se
s

0

10

20

30

40

50
Qu

eu
e 

Si
ze

(d) Seismic Cross-Correlation running on
server with dyn_auto_multi.

0 100 200 300 400
Iterations

2

5

7

10

12

15
Ac

tiv
e 

Pr
oc

es
se

s

0

1000

2000

3000

4000

5000

Av
g 

Id
le

 T
im

e 
(m

s)

(e) Seismic Cross-Correlation running on
server with dyn_auto_redis.

0 100 200 300 400
Iterations

20

30

40

50

60

Ac
tiv

e 
Pr

oc
es

se
s

0

10

20

30

40

50

Qu
eu

e 
Si

ze

(f) Seismic Cross-Correlation running on
HPC with dyn_auto_multi.

Figure 13: Active Size and the monitoring metrics (Queue Size, and Idle Time) running with Internal Extinction of Galaxies
workflow and Seismic Cross-Correlation workflow.

have expanded the horizon of dynamic scheduling optimizations

to accommodate stateful applications through the introduction of

a novel hybrid_redis approach. Through experiments across di-

verse workflows and platforms, we demonstrated that auto-scaling
achieves efficiency while preserving performance in most cases.

Notably, the stateful optimization (hybrid_redis) outperformed na-

tive mappings. While initial auto-scaling strategies have limitations,

our study lays a foundation for refining and enhancing auto-scaling

within dispel4py. This integration benefits dispel4py and offers

insights for enhancing other scientific workflows. Our contribu-

tions pave the way for future advancements and provide valuable

insights to the scientific community.

REFERENCES
[1] Muhammad Abdul-Mageed and Mona Diab. 2012. Toward building a large-scale

Arabic sentiment lexicon. In Proceedings of the 6th international global WordNet
conference. 18–22.

[2] Safaa Alkatheri, Samah Anwar Abbas, and Muazzam Ahmed Siddiqui. 2019. A

comparative study of big data frameworks. International Journal of Computer
Science and Information Security (IJCSIS) 17, 1 (2019), 66–73.

[3] Malcolm Atkinson, Sandra Gesing, Johan Montagnat, and Ian Taylor. 2017. Sci-

entific workflows: Past, present and future. , 216–227 pages.

[4] Salil Bharany, Sandeep Sharma, Osamah Ibrahim Khalaf, Ghaida Muttashar Ab-

dulsahib, Abeer S Al Humaimeedy, Theyazn HH Aldhyani, Mashael Maashi, and

Hasan Alkahtani. 2022. A systematic survey on energy-efficient techniques in

sustainable cloud computing. Sustainability 14, 10 (2022), 6256.

[5] Martijn de Heus, Kyriakos Psarakis, Marios Fragkoulis, and Asterios Katsifodimos.

2021. Distributed transactions on serverless stateful functions. In Proceedings of
the 15th ACM International Conference on Distributed and Event-based Systems.
31–42.

[6] Dirk Eddelbuettel. 2022. A Brief Introduction to Redis. arXiv:2203.06559 [stat.CO]

[7] Rosa Filgueira, Amrey Krause, Malcolm Atkinson, Iraklis Klampanos, Alessandro

Spinuso, and Susana Sanchez-Exposito. 2015. dispel4py: An agile framework for

data-intensive escience. In 2015 IEEE 11th International Conference on e-Science.
IEEE, 454–464.

[8] Rosa Filguiera, Amrey Krause, Malcolm Atkinson, Iraklis Klampanos, and Alexan-

der Moreno. 2017. dispel4py: A python framework for data-intensive scientific

computing. The International Journal of High Performance Computing Applications
31, 4 (2017), 316–334.

[9] Michael A Georgiou, Aristodemos Paphitis, Michael Sirivianos, and Herodotos

Herodotou. 2019. Towards auto-scaling existing transactional databases with

strong consistency. In 2019 IEEE 35th International Conference on Data Engineering
Workshops (ICDEW). IEEE, 107–112.

[10] Amit Gupta and Sushant Jain. 2022. Optimizing performance of Real-Time

Big Data stateful streaming applications on Cloud. In 2022 IEEE International
Conference on Big Data and Smart Computing (BigComp). IEEE, 1–4.

[11] Ankit Jain. 2017. Mastering apache storm: Real-time big data streaming using
kafka, hbase and redis. Packt Publishing Ltd.

[12] Liang Liang, Rosa Filgueira, Yan Yan, and Thomas Heinis. 2022. Scalable adap-

tive optimizations for stream-based workflows in multi-HPC-clusters and cloud

infrastructures. Future Generation Computer Systems 128 (2022), 102–116.
[13] Liang Liang, Rosa Filguiera, and Yan Yan. 2020. Adaptive optimizations for

stream-based workflows. In 2020 IEEE/ACM Workflows in Support of Large-Scale
Science (WORKS). IEEE, 33–40.

[14] Ji Liu, Esther Pacitti, Patrick Valduriez, and Marta Mattoso. 2015. A survey of

data-intensive scientific workflow management. Journal of Grid Computing 13

(2015), 457–493.

[15] openmpi [n. d.]. OpenMPI: Open Source High Performance Computing. https:

//www.open-mpi.org.

[16] EG Radhika and G Sudha Sadasivam. 2021. A review on prediction based autoscal-

ing techniques for heterogeneous applications in cloud environment. Materials
Today: Proceedings 45 (2021), 2793–2800.

[17] Biswajit Saha. 2014. Green computing. International Journal of Computer Trends
and Technology (IJCTT) 14, 2 (2014), 46–50.

[18] storm [n. d.]. Apache Storm. http://storm.apache.org.

[19] Kundjanasith Thonglek, Kohei Ichikawa, Chatchawal Sangkeettrakarn, and Api-

vadee Piyatumrong. 2021. Auto-scaling system in apache spark cluster using

model-based deep reinforcement learning. Heuristics for Optimization and Learn-
ing (2021), 347–360.

[20] Shveta Verma and Anju Bala. 2021. Auto-scaling techniques for IoT-based cloud

applications: a review. Cluster Computing 24, 3 (2021), 2425–2459.

https://arxiv.org/abs/2203.06559
https://www.open-mpi.org
https://www.open-mpi.org
http://storm.apache.org

	Abstract
	1 Introduction
	2 Background
	2.1 dispel4py
	2.2 Adaptive Optimizations for dispel4py
	2.3 Redis
	2.4 Related Work

	3 Mappings and Optimizations
	3.1 Redis Mappings
	3.2 Auto-scaling Optimizations

	4 Use Cases
	4.1 Internal Extinction of Galaxies
	4.2 Seismic Cross-Correlation
	4.3 Sentiment Analyses for News Articles

	5 Evaluations
	5.1 Experiment Setup
	5.2 Ev. Internal Extinction of Galaxies
	5.3 Ev. Seismic Cross-Correlation
	5.4 Ev. Sentiment Analyses for News Articles
	5.5 Analysis on auto-scaling
	5.6 Key Insights

	6 Conclusions
	References

