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Abstract
For a semigroup 𝑆 whose universal right congruence is
finitely generated (or, equivalently, a semigroup satis-
fying the homological finiteness property of being type
right-𝐹𝑃1), the right diameter of 𝑆 is a parameter that
expresses how ‘far apart’ elements of 𝑆 can be from each
other, in a certain sense. To be more precise, for each
finite generating set𝑈 for the universal right congruence
on 𝑆, we have a metric space (𝑆, 𝑑𝑈) where 𝑑𝑈(𝑎, 𝑏) is
the minimum length of derivations for (𝑎, 𝑏) as a con-
sequence of pairs in 𝑈; the right diameter of 𝑆 with
respect to 𝑈 is the diameter of this metric space. The
right diameter of 𝑆 is then the minimum of the set of
all right diameters with respect to finite generating sets.
We develop a theoretical framework for establishing
whether a semigroup of transformations or partitions on
an arbitrary infinite set𝑋 has a finitely generated univer-
sal right/left congruence, and, if it does, determining its
right/left diameter. We apply this to prove results such
as the following. Each of the monoids of all binary rela-
tions on 𝑋, of all partial transformations on 𝑋, and of
all full transformations on 𝑋, as well as the partition
and partial Brauer monoids on 𝑋, have right diameter
1 and left diameter 1. The symmetric inverse monoid on
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𝑋 has right diameter 2 and left diameter 2. The monoid
of all injective mappings on 𝑋 has right diameter 4, and
its minimal ideal (called the Baer–Levi semigroup on𝑋)
has right diameter 3, but neither of these two semigroups
has a finitely generated universal left congruence. On
the other hand, the semigroup of all surjectivemappings
on 𝑋 has left diameter 4, and its minimal ideal has left
diameter 2, but neither of these semigroups has a finitely
generated universal right congruence.

MSC 2020
20M20 (primary), 20M10

1 INTRODUCTION

This paper is concernedwith the semigroup finiteness condition of the universal right congruence
being finitely generated, and the related parameter of right diameter, as well as the left–right duals
of these notions.
For a semigroup 𝑆 whose universal right congruence is generated by a finite set 𝑈, the right

diameter of 𝑆 with respect to 𝑈 is, informally, the supremum of the minimum lengths of deriva-
tions for pairs (𝑎, 𝑏) ∈ 𝑆 × 𝑆 as a consequence of those in 𝑈. The right diameter of 𝑆 is the
minimum of the set of all right diameters with respect to finite generating sets. Thus, a semi-
group has finite right diameter if its universal right congruence is finitely generated and there is
a bound on the length of sequences required to relate any two elements. More precise definitions
regarding the notion of diameter will be given in Section 2.
The property of having finite right (resp., left) diameter is also known as being right (resp., left)

pseudo-finite. Left pseudo-finite semigroups were first studied by White in [21] in the context of
Banach algebras. This work was motivated by a conjecture of Dales and Żelazko, stating that a
unital Banach algebra in which every maximal left ideal is finitely generated is necessarily finite-
dimensional. It was also noted in [21] that for weakly right cancellative monoids, which include
groups, being left pseudo-finite coincides with being finite.
Dandan et al. undertook the first comprehensive study of semigroups with a finitely generated

universal left congruence, with appropriate specialisations to left pseudo-finite semigroups [4].
The former class of semigroups was shown to be equivalent to a number of previously studied
classes, including those semigroups satisfying the homological finiteness property of being type
left-𝐹𝑃1 [4, Theorem 3.10] (the equivalence of some of these conditions had previously been estab-
lished by Kobayashi [15]). An interesting question raised in [4, Open Question 8.10] is whether
every (left) pseudo-finite semigrouphas a completely simpleminimal ideal. The article [10] sought
to address this question systematically. It found that for pseudo-finite semigroups lying in some
important classes, such as orthodox semigroups, completely regular semigroups and commutative
semigroups, having a completely simple minimal ideal is necessary, but in general a pseudo-finite
semigroup may have a minimal ideal that it not completely simple, or may have no minimal ideal
at all.
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ON THE DIAMETER OF SEMIGROUPS OF TRANSFORMATIONS AND PARTITIONS 3 of 34

The notion of right/left diameter was introduced in [10] as a useful tool for proving that certain
semigroups are right/left pseudo-finite. It was observed that the property of having right diameter
1 is equivalent to a certain well-studied notion, namely that of the diagonal right act being finitely
generated [10, Proposition 3.6]. For a semigroup 𝑆, the diagonal right 𝑆-act is the set 𝑆 × 𝑆 under
the right action given by (𝑎, 𝑏)𝑐 = (𝑎𝑐, 𝑏𝑐). Diagonal acts first appear, implicitly, in [1], and they
were then formally defined and studied in [20]. A systematic investigation into generation of diag-
onal acts was undertaken in [9], and some of themost intriguing results concerned certain infinite
semigroups of transformations and relations [8]. In particular, it was shown that, for any infinite
set𝑋, the diagonal right and left acts are monogenic for the monoids𝑋 of all binary relations on
𝑋, the monoid 𝑋 of all transformations on 𝑋, and the monoid 𝑋 of all partial transformations
on 𝑋.
Given the above findings concerning certain transformation semigroups, it is natural to con-

sider similar kinds of semigroups when searching for semigroups with finite right/left diameter.
Indeed, the first example found of a right pseudo-finite semigroupwith aminimal ideal that is not
completely simple was the Baer–Levi semigroup on an infinite set𝑋 [18, Remark 7.3], and another
such example is the monoid of all injective mappings on 𝑋 [10, Proposition 4.4]. Moreover, the
first example exhibited of a right (and left) pseudo-finite semigroup with nominimal ideal was a
certain transformation monoid denoted𝑋 [10, Example 8.1].
A class of semigroups that exhibit some similar behaviour to transformation semigroups is that

of the so-called diagram monoids, which have recently come into prominence; see [6]. In par-
ticular, the partition monoid on a set 𝑋, denoted 𝑋 , contains natural copies of many ‘classical’
transformation monoids, including the symmetric group 𝑋 , the full transformation monoid 𝑋
and the symmetric inverse monoid 𝑋 . The importance of these classical monoids derives mainly
from the well-known Cayley theorems, stating that every group embeds into some 𝑋 and every
semigroup into some 𝑋 [12, Theorem 1.1.2], and theWagner–Preston theorem, stating that every
inverse semigroup embeds into some 𝑋 [12, Theorem 5.1.7]. Thus, a common theme in papers
on partition monoids is the extent to which their behaviour resembles those of classical trans-
formation monoids; for example, see the article [5], which classifies all congruences on 𝑋 and
the partial Brauer monoid 𝑋 , where 𝑋 is an arbitrary infinite set. Given the aforementioned
results concerning certain classical transformationmonoids in relation to diameter, it is natural to
explore monoids of partitions as a potential source of further examples of semigroups with finite
right/left diameter.
The purpose of this article is to systematically investigate, for various infinite semigroups

of transformations and partitions, whether each such semigroup has a finitely generated uni-
versal right/left congruence, and, if so, determine its right/left diameter. The main results are
summarised in Table 1.
The paper is organised as follows. In Section 2, we provide the necessary prelimary material

and summarise the main results of the paper. Various transformation semigroups are considered
in Sections 3 and 4. Section 3 is concerned with the universal right congruence and right diam-
eter, and Section 4 is the left–right counterpart of Section 3. In both these sections, we aim to
prove general results that can be applied to a number of transformation semigroups of concern.
Particularly noteworthy results are obtained for certain subsemigroups of the monoids nj𝑋 of all
injective mappings on 𝑋 and urj𝑋 of all surjective mappings on 𝑋. In particular, we prove that:

∙ the minimal ideal 𝑋 of nj𝑋 , called the Baer–Levi semigroup on 𝑋, has right diameter 3
(Theorem 3.14);

∙ a submonoid 𝑆 of nj𝑋 containing the symmetric group 𝑋 has right diameter 4 if and only if
it contains 𝑋 (Theorem 3.16);
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4 of 34 EAST et al.

TABLE 1 Summary of results. Throughout ‘f.g.’ stands for ‘finitely generated’.

Semigroup 𝑺 𝑺𝒓 f.g.? 𝝎𝒓
𝑺
f.g.? 𝑫𝒓(𝑺) 𝑺𝒍 f.g.? 𝝎𝒍

𝑺
f.g.? 𝑫𝒍(𝑺)

𝑋 Yes Yes 1 Yes Yes 1
𝑋 Yes Yes 1 Yes Yes 1
𝑋 Yes Yes 2 Yes Yes 2
𝑋 Yes Yes 1 Yes Yes 1
𝑋 Yes No n.a. Yes No n.a.
𝑋 Yes Yes 1 Yes No n.a.
nj𝑋 Yes Yes 4 Yes No n.a.
𝑋,𝑞, 𝑞 < |𝑋| Yes No n.a. No No n.a.
𝑋 Yes Yes 3 No No n.a.
1

𝑋
Yes Yes 3 Yes No n.a.

𝑋 ∪𝑋 Yes Yes 4 Yes No n.a.
urj𝑋 Yes No n.a. Yes Yes 4
𝑋,𝑞, 𝑞 < |𝑋| No No n.a. Yes No n.a.
𝑋 No No n.a. Yes Yes 2
1

𝑋
Yes No n.a. Yes Yes 3

𝑋 ∪𝑋 Yes No n.a. Yes Yes 4
𝑋 ⧵ nj𝑋 No No n.a. Yes Yes 2
𝑋 ⧵ urj𝑋 Yes Yes 2 No No n.a.
𝑋 Yes Yes 1 Yes No n.a.
𝑋 Yes No n.a. Yes No n.a.
𝑋 Yes Yes 1 Yes Yes 1
𝑋 Yes Yes 1 Yes Yes 1

∙ the minimal ideal𝑋 of urj𝑋 , called the dual Baer–Levi semigroup on𝑋, has left diameter
2 (Theorem 4.11);

∙ the monoid urj𝑋 has left diameter 4 (Theorem 4.17).

Finally, in Section 5 we prove that both the partition monoid 𝑋 and the partial Brauer monoid
𝑋 have right diameter 1 and left diameter 1. It is perhaps intriguing that all diameters computed
in this paper and shown in Table 1 are ‘small’, specifically ⩽ 4. At this point, we do not know any
examples of ‘natural’ semigroups of transformations or partitions whose diameters are finite and
greater than 4.

2 NOTATION AND SUMMARY OF RESULTS

In this section, we provide the necessary preliminary material on semigroups and summarise the
main results of the article. We refer the reader to [12] for a more comprehensive introduction to
the basic semigroup concepts defined here.

2.1 Diameter of semigroups

Let 𝑆 be a semigroup. We denote by 𝑆1 the monoid obtained from 𝑆 by adjoining an identity if
necessary (if 𝑆 is already a monoid, then 𝑆1 = 𝑆).
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ON THE DIAMETER OF SEMIGROUPS OF TRANSFORMATIONS AND PARTITIONS 5 of 34

A right ideal of 𝑆 is a subset 𝐼 such that 𝐼𝑆 ⊆ 𝐼. A subset 𝑈 of a right ideal 𝐼 is a generating set
for 𝐼 if 𝐼 = 𝑈𝑆1; 𝐼 is said to be finitely generated if it has a finite generating set. Of course, 𝑆 is a
right ideal of itself. When considering 𝑆 being generated by a set as a right ideal, we shall write 𝑆
as 𝑆𝑟. Thus, ‘𝑆𝑟 is generated by 𝑈’ means 𝑆 = 𝑈𝑆1.
An equivalence relation 𝜌 on 𝑆 is a right congruence if (𝑎, 𝑏) ∈ 𝜌 implies (𝑎𝑠, 𝑏𝑠) ∈ 𝜌 for all

𝑠 ∈ 𝑆. For 𝑈 ⊆ 𝑆 × 𝑆, the right congruence generated by 𝑈 is the smallest right congruence on 𝑆
containing 𝑈; we denote this right congruence by ⟨𝑈⟩.
Lemma 2.1 [14, Lemma I. 4. 37]. Let 𝑆 be a semigroup, let 𝑈 be a subset of 𝑆 × 𝑆, and let 𝜌 be the
right congruence generated by 𝑈. For any 𝑎, 𝑏 ∈ 𝑆, we have (𝑎, 𝑏) ∈ 𝜌 if and only if either 𝑎 = 𝑏 or
there exists a sequence

𝑎 = 𝑢1𝑠1, 𝑣1𝑠1 = 𝑢2𝑠2, … , 𝑣𝑛𝑠𝑛 = 𝑏

for some 𝑛 ∈ ℕ, where (𝑢𝑖, 𝑣𝑖) ∈ 𝑈 or (𝑣𝑖, 𝑢𝑖) ∈ 𝑈, and 𝑠𝑖 ∈ 𝑆1, for each 𝑖 ∈ {1, … , 𝑛}.

A sequence of the form given in Lemma 2.1 is referred to as a 𝑈-sequence from 𝑎 to 𝑏 of length
𝑛. If 𝑎 = 𝑏, we consider that 𝑎 and 𝑏 are related by a𝑈-sequence of length 0. If the generating set
𝑈 consists of a single pair (𝑢, 𝑣), we may speak of (𝑢, 𝑣)-sequences rather than 𝑈-sequences.
The universal relation 𝜔𝑆 = 𝑆 × 𝑆 is certainly a right congruence on 𝑆. When viewing this rela-

tion as a right congruence, we shall denote it by 𝜔𝑟
𝑆
. If 𝑈 is a generating set for 𝜔𝑟

𝑆
, we shall write

𝜔𝑟
𝑆
= ⟨𝑈⟩.
Consider a set 𝑈 ⊆ 𝑆 × 𝑆 such that 𝜔𝑟

𝑆
= ⟨𝑈⟩. For any 𝑎, 𝑏 ∈ 𝑆, let 𝑑𝑟

𝑈
(𝑎, 𝑏) denote the least

non-negative integer 𝑛 such that there is a 𝑈-sequence of length 𝑛 from 𝑎 to 𝑏. It is easy to see
that 𝑑𝑟

𝑈
∶ 𝑆 × 𝑆 → {0, 1, 2, … } is a metric on 𝑆.

Definition 2.2. Let 𝑆 be a semigroup.

∙ If 𝜔𝑟
𝑆
= ⟨𝑈⟩, we call the diameter of the metric space (𝑆, 𝑑𝑟

𝑈
) the right 𝑈-diameter of 𝑆 and

denote it by 𝐷𝑟(𝑈, 𝑆); that is,

𝐷𝑟(𝑈, 𝑆) = sup{𝑑𝑟𝑈(𝑎, 𝑏) ∶ 𝑎, 𝑏 ∈ 𝑆}.

∙ If 𝜔𝑟
𝑆
is finitely generated, we define the right diameter of 𝑆 to be

𝐷𝑟(𝑆) = min{𝐷𝑟(𝑈, 𝑆) ∶ 𝜔
𝑟
𝑆 = ⟨𝑈⟩ where |𝑈| < ℵ0}.

Note that if 𝑈 and 𝑈′ are two finite generating sets for 𝜔𝑟
𝑆
, then 𝐷𝑟(𝑈, 𝑆) is finite if and only if

𝐷𝑟(𝑈
′, 𝑆) is finite [4, Lemma 2.5]. We make the following easy observation.

Lemma 2.3. Let 𝑆 be a non-trivial semigroup. If 𝜔𝑟
𝑆
= ⟨𝑈⟩ then, letting

𝑉 = {𝑣 ∈ 𝑆 ∶ ∃𝑢 ∈ 𝑆 such that (𝑢, 𝑣) ∈ 𝑈 or (𝑣, 𝑢) ∈ 𝑈},

we have 𝜔𝑟
𝑆
= ⟨𝑉 × 𝑉⟩ and 𝐷𝑟(𝑉 × 𝑉, 𝑆) ⩽ 𝐷𝑟(𝑈, 𝑆). Furthermore, we have 𝑆 = 𝑉𝑆1. In particular,

if 𝜔𝑟
𝑆
is finitely generated then so is 𝑆𝑟.
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6 of 34 EAST et al.

We shall often abuse terminology by saying that 𝜔𝑟
𝑆
is generated by a subset 𝑉 of 𝑆 to mean

that 𝜔𝑟
𝑆
is generated by 𝑉 × 𝑉, and also write 𝐷𝑟(𝑉, 𝑆) in place of 𝐷𝑟(𝑉 × 𝑉, 𝑆). It follows from

Lemma 2.3 that if 𝜔𝑟
𝑆
is finitely generated then there exists a finite subset𝑉 ⊆ 𝑆 such that𝐷𝑟(𝑆) =

𝐷𝑟(𝑉, 𝑆).
We now provide some results that will be useful later in the paper.

Lemma 2.4. Let 𝑆 be a monoid and let 𝐼 be a right ideal of 𝑆. If 𝜔𝑟
𝐼
is finitely generated, then 𝜔𝑟

𝑆
is

finitely generated. Moreover, we have 𝐷𝑟(𝑆) ⩽ 𝐷𝑟(𝐼) + 2.

Proof. This result essentially follows from the proof of [4, Lemma 2.11]. We provide a proof here
for completeness.
Let 𝑈 ⊆ 𝐼 be a finite generating set for 𝜔𝑟

𝐼
such that 𝐷𝑟(𝑈, 𝐼) = 𝐷𝑟(𝐼). Choose any 𝑢 ∈ 𝑈. For

any 𝑎, 𝑏 ∈ 𝑆, as 𝑢𝑎, 𝑢𝑏 ∈ 𝐼, there exists a 𝑈-sequence

𝑢𝑎 = 𝑢1𝑠1, 𝑣1𝑠1 = 𝑢2𝑠2, … , 𝑣𝑘𝑠𝑘 = 𝑢𝑏

in 𝐼, where 𝑘 ⩽ 𝐷𝑟(𝐼). Thus, letting 𝑉 = 𝑈 ∪ {1}, we have a 𝑉-sequence

𝑎 = 1𝑎, 𝑢𝑎 = 𝑢1𝑠1, 𝑣1𝑠1 = 𝑢2𝑠2, … , 𝑣𝑘𝑠𝑘 = 𝑢𝑏, 1𝑏 = 𝑏

from 𝑎 to 𝑏 of length 𝑘 + 2 ⩽ 𝐷𝑟(𝐼) + 2. We conclude that 𝜔𝑟𝑆 is generated by 𝑉, and 𝐷𝑟(𝑆) ⩽
𝐷𝑟(𝑉, 𝑆) ⩽ 𝐷𝑟(𝐼) + 2. □

Corollary 2.5. If 𝑆 is a monoid with a left zero, then 𝐷𝑟(𝑆) ⩽ 2.

Green’s relations , , ,  and  are standard tools for describing the ideal structure of a
semigroup. The relation  on 𝑆 is given by (𝑎, 𝑏) ∈  if and only if 𝑆1𝑎 = 𝑆1𝑏, that is, if 𝑎 and 𝑏
generate the same principal left ideal. The relations  and  are defined analogously in terms
of principal right ideals and principal two-sided ideals, respectively. Finally, we have =  ∩

and =  ∨ (= ◦ = ◦).
We call 𝑆 left/right simple if it has a single∕-class, and simple if it has a single  -class. There

is a natural partial order on the set of  -classes of 𝑆, given by 𝐽𝑎 ⩽ 𝐽𝑏 if and only 𝑆1𝑎𝑆1 ⊆ 𝑆1𝑏𝑆1.
There is at most one minimal  -class under this ordering; if it exists, it is called theminimal ideal
of 𝑆, and is a simple subsemigroup of 𝑆.
The equivalence relation ∗ on 𝑆 is defined by the rule that (𝑎, 𝑏) ∈ ∗ if and only 𝑎, 𝑏 are -

related in some oversemigroup𝑇, that is,𝑎𝑇1 = 𝑏𝑇1.We say that 𝑆 is∗-simple if it has a single∗-
class.We dually define the relation∗ and the notion of being∗-simple. By [10, Proposition 3.4],
an∗-simple semigrouphas finite right diameter if and only if it is finite.We provide a proof of this
result here using a more general argument, which also shows that, for any ∗-simple semigroup,
being countable is necessary for the universal right congruence to be finitely generated.

Proposition 2.6. Let 𝑆 be an ∗-simple semigroup. If 𝜔𝑟
𝑆
is finitely generated, then 𝑆 is countable.

Moreover, 𝑆 has finite right diameter if and only if it is finite.

Proof. As 𝑆 is ∗-simple, by [19, Theorem 1] there exists an oversemigroup 𝑇 of 𝑆 such that 𝑆 is
contained in a single-class of𝑇. (One can take𝑇 to be the dual of the full transformationmonoid
on 𝑆1, in which maps are composed from right to left.)
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ON THE DIAMETER OF SEMIGROUPS OF TRANSFORMATIONS AND PARTITIONS 7 of 34

Now, suppose that 𝜔𝑟
𝑆
is finitely generated, and let 𝑈 ⊆ 𝑆 be a finite generating set for 𝜔𝑟

𝑆
such that 𝐷𝑟(𝑈, 𝑆) = 𝐷𝑟(𝑆). For each pair 𝑢, 𝑣 ∈ 𝑈, as 𝑢 and 𝑣 are -related in 𝑇 we can choose
𝛼(𝑢, 𝑣) ∈ 𝑇 such that 𝑢 = 𝛼(𝑢, 𝑣)𝑣. Fix 𝑏 ∈ 𝑆. Let

𝑉 = {𝛼(𝑢1, 𝑣1) …𝛼(𝑢𝑘, 𝑣𝑘)𝑏 ∶ 𝑢𝑖, 𝑣𝑖 ∈ 𝑈, 𝑘 ⩽ 𝐷𝑟(𝑆)} ⊆ 𝑇.

Clearly 𝑉 is countable, and if 𝐷𝑟(𝑆) is finite then so is 𝑉. We claim that 𝑆 ⊆ 𝑉; then 𝑆 is
countable, and it is finite if it has finite right diameter. So, let 𝑎 ∈ 𝑆. Then there exists a
𝑈-sequence

𝑎 = 𝑢1𝑠1, 𝑣1𝑠1 = 𝑢2𝑠2, … , 𝑣𝑘𝑠𝑘 = 𝑏

where 𝑘 ⩽ 𝐷𝑟(𝑆). Letting 𝛼𝑖 = 𝛼(𝑢𝑖, 𝑣𝑖), we have

𝑎 = 𝑢1𝑠1 = 𝛼1𝑣1𝑠1 = 𝛼1𝑢2𝑠2 = 𝛼1𝛼2𝑣2𝑠2 =⋯ = 𝛼1 …𝛼𝑘𝑣𝑘𝑠𝑘 = 𝛼1 …𝛼𝑘𝑏 ∈ 𝑉,

as required. Clearly, if 𝑆 is finite then it has finite right diameter. □

Remark 2.7. Combining Proposition 2.6 and [4, Proposition 2.7], it follows that any finitely gen-
erated infinite group 𝐺 has the property that 𝜔𝑟

𝐺
is finitely generated, but 𝐷𝑟(𝐺) is infinite. Also, a

slight modification of the proof of Proposition 2.6 shows that an ∗-simple semigroup 𝑆 is count-
able if and only if 𝜔𝑟

𝑆
is countably generated (where countably generated means being generated

by a countable set).

The above definitions and results have obvious left–right duals, and we use analogous
nomenclature and notation: left ideal, 𝑆𝑙, 𝜔𝑙

𝑆
, left diameter, and so on.

2.2 Semigroups of transformations and relations

In this subsection, we introduce the transformation semigroups of concern in this article. First,
we recall some basic terminology regarding relations and mappings.
Throughout the paper, 𝑋 will stand for an arbitrary infinite set.
A (binary) relation on 𝑋 is a subset of 𝑋 × 𝑋. We denote the identity relation {(𝑥, 𝑥) ∶ 𝑥 ∈ 𝑋}

by 1𝑋 . For a relation 𝛼 on 𝑋 and a subset 𝑌 ⊆ 𝑋, we define

𝑌𝛼 = {𝑥 ∈ 𝑋 ∶ (𝑦, 𝑥) ∈ 𝛼 for some 𝑦 ∈ 𝑌},

and we abbreviate {𝑦}𝛼 to 𝑦𝛼. The domain and image of 𝛼 are, respectively,

dom𝛼 = {𝑥 ∈ 𝑋 ∶ (𝑥, 𝑦) ∈ 𝛼 for some 𝑦 ∈ 𝑋} and im𝛼 = 𝑋𝛼,

and the inverse of 𝛼 is the relation

𝛼−1 = {(𝑦, 𝑥) ∶ (𝑥, 𝑦) ∈ 𝛼}.
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8 of 34 EAST et al.

The composition of two relations 𝛼 and 𝛽 on 𝑋 is the relation

𝛼𝛽 = {(𝑥, 𝑦) ∶ ∃𝑧 ∈ 𝑋 such that (𝑥, 𝑧) ∈ 𝛼 and (𝑧, 𝑦) ∈ 𝛽}.

A partial transformation on 𝑋 is a relation 𝛼 on 𝑋 satisfying the condition

(𝑥, 𝑦), (𝑥, 𝑧) ∈ 𝛼 ⇒ 𝑦 = 𝑧.

Let 𝛼 be a partial transformation on 𝑋. For each 𝑥 ∈ dom𝛼, we interpret 𝑥𝛼 as an element of 𝑋
(rather than a singleton subset of𝑋). Note that for𝑌 ⊆ 𝑋 we have𝑌𝛼−1 = {𝑥 ∈ 𝑋 ∶ 𝑥𝛼 ∈ 𝑌}. The
kernel of 𝛼 is

ker 𝛼 = {(𝑥, 𝑦) ∈ dom𝛼 × dom𝛼 ∶ 𝑥𝛼 = 𝑦𝛼}.

Observe that 𝛼𝛼−1 = ker 𝛼 and 𝛼−1𝛼 = {(𝑥, 𝑥) ∶ 𝑥 ∈ im𝛼}. It follows that

𝛼𝛼−1 = 1𝑋 ⇔ [dom𝛼 = 𝑋 and 𝛼 is injective] and 𝛼−1𝛼 = 1𝑋 ⇔ 𝛼 is surjective.

We now define the semigroups of transformations and relations that will be considered in this
paper, with some relevant additional information.

𝑿 : The monoid of all binary relations on 𝑋 under composition, with identity 1𝑋 .
𝑿 , the partial transformationmonoid on 𝑿: The submonoid of 𝑋 consisting of all partial
transformations on 𝑋.
𝑿 , the symmetric inverse monoid on 𝑿: The submonoid of 𝑋 consisting of all injective
partial transformations (also known as partial bijections).
𝑿 , the full transformation monoid on 𝑿: The submonoid of 𝑋 consisting of all (full)
transformations on 𝑋, that is, 𝑋 = {𝛼 ∈ 𝑋 ∶ dom𝛼 = 𝑋}.
𝑿 , the symmetric group on 𝑿: The subgroup of 𝑋 consisting of all bijections.
𝑿 : The submonoid of 𝑋 consisting of all finite-to-one mappings, that is, 𝑋 = {𝛼 ∈ 𝑋 ∶|𝑥𝛼−1| < ∞ for all 𝑥 ∈ 𝑋}.
nj𝑿 : The submonoid of 𝑋 consisting of all injective mappings.
- nj𝑋 is right cancellative (that is, 𝛽𝛼 = 𝛾𝛼 implies that 𝛽 = 𝛾), and hence 1𝑋 is its only
idempotent.

𝑿,𝒒, the Baer–Levi semigroup of type 𝒒 on 𝑿: For an infinite cardinal 𝑞 ⩽ |𝑋|, it is the
subsemigroup of nj𝑋 defined by

𝑋,𝑞 = {𝛼 ∈ nj𝑋 ∶ |𝑋 ⧵ im𝛼| = 𝑞}.

- Each 𝑋,𝑞 is right cancellative, right simple and has no idempotents [3, Theorem 8.2].

𝑿 , the Baer–Levi semigroup on 𝑿: 𝑋,𝑞 for 𝑞 = |𝑋|.
- For any 𝛼, 𝛽 ∈ nj𝑋 , we have 𝛼 ∈ 𝛽(nj𝑋) if and only if 𝛼 ∈ (nj𝑋)𝛽(nj𝑋) if and only if|𝑋⧵im𝛼| ⩾ |𝑋⧵im𝛽|. Thus, the  (=)-classes of nj𝑋 form a chain

𝑋 > 𝐽1 > 𝐽2 >⋯ > 𝐽𝑛 >⋯ > 𝑋,ℵ0 > 𝑋,ℵ1 > ⋯ > 𝑋,|𝑋| = 𝑋,
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ON THE DIAMETER OF SEMIGROUPS OF TRANSFORMATIONS AND PARTITIONS 9 of 34

where 𝐽𝑛 = {𝛼 ∈ nj𝑋 ∶ |𝑋 ⧵ im𝛼| = 𝑛} (𝑛 ∈ ℕ), and 𝑋 is the minimal ideal of nj𝑋 [16,
Proposition 2.2, Theorem 2.3, Remark 2.4].


𝟏
𝑿
: The Baer–Levi semigroup with an identity adjoined.

𝑿∪𝑿 : The submonoid of 𝑋 consisting of all bijections and all Baer–Levi elements.
- For any subgroup 𝐺 of 𝑋 , the set 𝐺 ∪ 𝑋 is a submonoid of nj𝑋 ; see [3, Exercise 8.1.10]
for more information about such monoids.

urj𝑿 : The submonoid of 𝑋 consisting of all surjective mappings.
- urj𝑋 is left cancellative, and hence 1𝑋 is its only idempotent.

𝑿,𝒒, the dual Baer–Levi semigroup of type 𝒒 on 𝑿: For an infinite cardinal 𝑞 ⩽ |𝑋|, it is
the subsemigroup of urj𝑋 defined by

𝑋,𝑞 = {𝛼 ∈ urj𝑋 ∶ |𝑥𝛼−1| = 𝑞 for all 𝑥 ∈ 𝑋}.

- Each𝑋,𝑞 is left cancellative, left simple and has no idempotents [2, Theorem 3].
𝑿 , the dual Baer–Levi semigroup on 𝑿:𝑋,𝑞 for 𝑞 = |𝑋|.
- 𝑋 is the minimal ideal of urj𝑋 [17, Theorem 3.2].


𝟏
𝑿
: The dual Baer–Levi semigroup with an identity adjoined.

𝑿∪𝑿 : The submonoid of 𝑋 consisting of all bijections and all dual Baer–Levi elements.
𝑿⧵nj𝑿 : The subsemigroup of 𝑋 consisting of all non-injective mappings.
𝑿⧵urj𝑿 : The subsemigroup of 𝑋 consisting of all non-surjective mappings.
𝑿 : The submonoid of 𝑋 defined by

𝑋 = {𝛼 ∈ 𝑋 ∶ |𝑌𝛼| = |𝑋| for all 𝑌 ⊆ 𝑋 with |𝑌| = |𝑋|}.
- 𝑋 is bisimple, meaning that it has a single-class. It was introduced by Higgins in [11] as a
means of proving that every semigroup embeds into some bisimple monoid.

- The following are subsemigroups of𝑋 :𝑋 ; nj𝑋 (and hence𝑋 ,𝑋,𝑞 whereℵ0 ⩽ 𝑞 ⩽ |𝑋|,
1𝑋 , and 𝑋 ∪𝑋) and 𝑋,𝑞 where ℵ0 ⩽ 𝑞 < |𝑋|. This is clear in the case of nj𝑋 ; for
the other semigroups we provide a brief explanation. Suppose that 𝑆 is either 𝑋 or 𝑋,𝑞
with 𝑞 < |𝑋|, and consider 𝛼 ∈ 𝑆 and 𝑌 ⊂ 𝑋 such that |𝑌𝛼| < |𝑋|. By definition, |𝑥𝛼−1| ⩽ 𝑞
for all 𝑥 ∈ 𝑋 (in fact, |𝑥𝛼−1| < ℵ0 if 𝑆 = 𝑋). Therefore, using the fact that 𝑌 ⊆ (𝑌𝛼)𝛼−1, we
have

|𝑌| ⩽ |(𝑌𝛼)𝛼−1| = ||| ⋃
𝑥∈𝑌𝛼

𝑥𝛼−1
||| ⩽ max(|𝑌𝛼|, 𝑞) < |𝑋|.

𝑿 : The submonoid of𝑋 defined by

𝑋 = {𝛼 ∈ 𝑋 ∶ |𝑋⧵im𝛼| < |𝑋|}.
All the semigroups in the above list are subsemigroups of 𝑋 , with the exception of 𝑋 , 𝑋

and 𝑋 . All these subsemigroups of 𝑋 have the following ‘transitivity’ properties, which will play
a key role in the paper.
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10 of 34 EAST et al.

Definition 2.8. Let 𝑆 be a subsemigroup of 𝑋 .

∙ Let 𝜅 ⩽ |𝑋| be a cardinal. We say that 𝑆 is 𝜅-transitive if for any partial bijection 𝜆 ∈ 𝑋 with|dom𝜆| ⩽ 𝜅 and |𝑋⧵dom𝜆| = |𝑋⧵im𝜆| = |𝑋|, there exists some 𝜃 ∈ 𝑆 extending 𝜆, that is,
𝜃|dom𝜆 = 𝜆.

∙ We call 𝑆 finitely transitive if it is 𝜅-transitive for every finite cardinal 𝜅 < ℵ0.

Remark 2.9. Let 𝑆 be a subsemigroup of 𝑋 , and let 𝜅 ⩽ |𝑋|.
(1) The semigroup 𝑆 is 𝜅-transitive if and only if it is 𝜇-transitive for every 𝜇 ⩽ 𝜅.
(2) If 𝜅 < |𝑋|, then 𝑆 is 𝜅-transitive if and only if for any partial bijection 𝜆 ∈ 𝑋 with |dom𝜆| ⩽ 𝜅

there exists some 𝜃 ∈ 𝑆 extending 𝜆.
(3) If 𝑆 contains a 𝜅-transitive (resp., finitely transitive) subsemigroup𝑇, then 𝑆 is also 𝜅-transitive

(resp., finitely transitive).

2.3 Summary of results, and diagonal acts

Our main goal in this paper is to answer the following questions for each semigroup 𝑆 listed in
Subsection 2.2, as well as the partition monoid 𝑋 and the partial Brauer monoid 𝑋 , which
will be defined in Section 5.

(Q1) Is 𝑆 finitely generated as a right ideal, that is, is 𝑆𝑟 finitely generated?
(Q2) Is the universal right congruence on 𝑆 finitely generated, that is, is 𝑤𝑟

𝑆
finitely generated?

(Q3) If 𝑤𝑟
𝑆
is finitely generated, what is the right diameter 𝐷𝑟(𝑆)?

(Q4) Is 𝑆𝑙 finitely generated?
(Q5) Is 𝑤𝑙

𝑆
finitely generated?

(Q6) If 𝑤𝑙
𝑆
is finitely generated, what is the left diameter 𝐷𝑙(𝑆)?

Our main results are summarised in Table 1.
For certain transformation semigroups 𝑆, we can quickly answer questions (Q1)–(Q6) using

known results regarding diagonal acts.
For a semigroup 𝑆, the diagonal right 𝑆-act is the set 𝑆 × 𝑆 on which 𝑆 acts on the right via

(𝑎, 𝑏)𝑐 = (𝑎𝑐, 𝑏𝑐). It is said to be generated by a set 𝑈 ⊆ 𝑆 × 𝑆 if 𝑆 × 𝑆 = 𝑈𝑆1, and it is finitely
generated ormonogenic if it is generated by a finite set or a singleton, respectively. Of course, one
can dually define the diagonal left 𝑆-act and its finite generation/monogenicity.
The importance of diagonal acts in relation to the notion of diameter is expressed in the

following result.

Proposition 2.10 [10, Proposition 3.6]. For a non-trivial semigroup 𝑆, the diagonal right 𝑆-act is
finitely generated if and only if 𝑆 has right diameter 1.

From the substantial body of results on generation of diagonal acts [7–9], the main findings
concerning natural semigroups of transformations and relations are summarised in Table 2.
We immediately deduce fromTable 2 and Proposition 2.10 that𝑋 ,𝑋 and 𝑋 each have both

right diameter 1 and left diameter 1, that 𝑋 has right diameter 1 but not left diameter 1, and the
remaining semigroups appearing in Table 2 have neither right diameter 1 nor left diameter 1. As
𝑋 has a zero (the empty map), we deduce, using Corollary 2.5 and its left–right dual, that 𝑋 has
right diameter 2 and left diameter 2.
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ON THE DIAMETER OF SEMIGROUPS OF TRANSFORMATIONS AND PARTITIONS 11 of 34

TABLE 2 Generation of diagonal acts of certain transformation semigroups. See [7, Theorem 7.1 and Lemma
7.2] for the results on infinite subsemigroups of urj𝑋 and nj𝑋 , and [9, Table 1.2] for the remaining semigroups.
Throughout ‘f.g.’ stands for ‘finitely generated’.

Semigroup Diagonal right act Diagonal left act
𝑋 Monogenic Monogenic
𝑋 Monogenic Monogenic
𝑋 Not f.g. Not f.g.
𝑋 Monogenic Monogenic
𝑋 Not f.g. Not f.g.
𝑋 Monogenic Not f.g.
Infinite subsemigroup of nj𝑋 Not f.g. Not f.g.
Infinite subsemigroup of urj𝑋 Not f.g. Not f.g.
𝑋 ⧵ nj𝑋 Not f.g. Not f.g.
𝑋 ⧵ urj𝑋 Not f.g. Not f.g.

3 TRANSFORMATION SEMIGROUPS: RIGHT DIAMETER

This section naturally divides into three parts, corresponding to questions (Q1), (Q2) and (Q3) of
Subsection 2.3. Specifically, we first determine for which of the transformation semigroups 𝑆 in
Table 1 we have 𝑆𝑟 is not finitely generated (and hence𝜔𝑟

𝑆
is not finitely generated).We then find a

number of semigroups 𝑆 with 𝑆𝑟 finitely generated but 𝜔𝑟
𝑆
not finitely generated. Finally, for each

of the remaining semigroups 𝑆, we prove that 𝜔𝑟
𝑆
is finitely generated and determine the right

diameter of 𝑆 (which turns out to be finite).
Now, it is certainly the case that 𝑆𝑟 is finitely generated if 𝑆 is a monoid or a right simple semi-

group. Moreover, it is straightforward to show that 𝑋 ⧵ urj𝑋 is generated as a right ideal of itself
by any 𝛼 ∈ nj𝑋 ⧵ 𝑋 . So, we are left to consider only 𝑋 ⧵ nj𝑋 and 𝑋,𝑞 (ℵ0 ⩽ 𝑞 ⩽ |𝑋|). It
turns out that these are not finitely generated as right ideals of themselves. In fact, we prove a
stronger result:

Theorem 3.1. If 𝑆 is a finitely transitive subsemigroup of 𝑋⧵nj𝑋 , then 𝑆𝑟 is not finitely generated.
In particular, the semigroups 𝑋⧵nj𝑋 and 𝑋,𝑞 (ℵ0 ⩽ 𝑞 ⩽ |𝑋|) are not finitely generated as
right ideals of themselves.

Proof. Consider any finite subset 𝑈 ⊆ 𝑆. For each 𝛼 ∈ 𝑈, choose (𝑥𝛼, 𝑦𝛼) ∈ ker 𝛼 with 𝑥𝛼 ≠ 𝑦𝛼
(such a pair exists because 𝛼 is not injective). As 𝑆 is finitely transitive, there exists 𝜃 ∈ 𝑆 such
that 𝑥𝛼𝜃 = 𝑥𝛼 and 𝑦𝛼𝜃 = 𝑦𝛼 for all 𝛼 ∈ 𝑈. Thus, for all 𝛼 ∈ 𝑈 we have (𝑥𝛼, 𝑦𝛼) ∉ ker 𝜃 and hence
𝜃 ∉ 𝛼𝑆1, so 𝑆 ≠ 𝑈𝑆1. Hence, 𝑆𝑟 is not finitely generated. □

We nowmove on to find certain transformation semigroups 𝑆 for which 𝑆𝑟 is finitely generated
but𝜔𝑟

𝑆
is not finitely generated. To this end, we first establish a general result regarding generation

of the universal right congruence on a subsemigroup of 𝑋 .
Let 𝑆 be a subsemigroup of 𝑋 . For a subset 𝑈 ⊆ 𝑆, we define

Σ(𝑈) =
{
𝛼1𝛽

−1
1 …𝛼𝑘𝛽

−1
𝑘
∶ 𝑘 ∈ ℕ, 𝛼𝑖, 𝛽𝑖 ∈ 𝑈 (1 ⩽ 𝑖 ⩽ 𝑘)

}
⊆ 𝑋.

Observe that for any 𝜃, 𝜑 ∈ 𝑋 , in 𝑋 we have

𝜃𝜑−1 = {(𝑥, 𝑦) ∈ 𝑋 × 𝑋 ∶ 𝑥𝜃 = 𝑦𝜑}.
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12 of 34 EAST et al.

Proposition 3.2. Let 𝑆 be a subsemigroup of 𝑋 , and let𝑈 ⊆ 𝑆 be a generating set for the universal
right congruence 𝜔𝑟

𝑆
. Then for any 𝜃, 𝜑 ∈ 𝑆 there exists 𝜎 ∈ Σ(𝑈) with 𝜎 ⊆ 𝜃𝜑−1.

Proof. Let 𝜃, 𝜑 ∈ 𝑆. Suppose first that 𝜃 = 𝜑. As𝜔𝑟
𝑆
is generated by𝑈, there exists 𝛼 ∈ 𝑈 such that

𝜃 ∈ 𝛼𝑆1. Then 𝛼𝛼−1 ∈ Σ(𝑈) and

𝛼𝛼−1 = ker 𝛼 ⊆ ker 𝜃 = 𝜃𝜃−1 = 𝜃𝜑−1.

Now suppose that 𝜃 ≠ 𝜑. Then there exists a 𝑈-sequence

𝜃 = 𝛼1𝛾1, 𝛽1𝛾1 = 𝛼2𝛾2, … , 𝛽𝑘𝛾𝑘 = 𝜑.

Let 𝜎 = 𝛼1𝛽
−1
1
…𝛼𝑘𝛽

−1
𝑘
∈ Σ(𝑈). We claim that 𝜎 ⊆ 𝜃𝜑−1. So, let (𝑥, 𝑦) ∈ 𝜎. Then there exist

𝑢1, 𝑣1, … , 𝑢𝑘−1, 𝑣𝑘−1, 𝑢𝑘 ∈ 𝑋 such that

(𝑥, 𝑢1) ∈ 𝛼1, (𝑢1, 𝑣1) ∈ 𝛽
−1
1 , (𝑣1, 𝑢2) ∈ 𝛼2, … , (𝑣𝑘−1, 𝑢𝑘) ∈ 𝛼𝑘, (𝑢𝑘, 𝑦) ∈ 𝛽

−1
𝑘
.

Therefore, we have

𝑥𝛼1 = 𝑢1 = 𝑣1𝛽1, 𝑣1𝛼2 = 𝑢2 = 𝑣2𝛽2, … , 𝑣𝑘−1𝛼𝑘 = 𝑢𝑘 = 𝑦𝛽𝑘.

We then have

𝑥𝜃 = 𝑥𝛼1𝛾1 = 𝑣1𝛽1𝛾1 = 𝑣1𝛼2𝛾2 = 𝑣2𝛽2𝛾2 = ⋯ = 𝑣𝑘−1𝛼𝑘𝛾𝑘 = 𝑦𝛽𝑘𝛾𝑘 = 𝑦𝜑.

Thus, (𝑥, 𝑦) ∈ 𝜃𝜑−1, as required. □

For the next result, recall that the monoid𝑋 , defined in Subsection 2.2, is a submonoid of𝑋 ,
and observe that 𝑋 ∩ nj𝑋 = nj𝑋 ⧵ 𝑋 . Note that nj𝑋 ⧵ 𝑋 contains the symmetric group
𝑋 and the Baer–Levi semigroups 𝑋,𝑞 where ℵ0 ⩽ 𝑞 < |𝑋|.
Theorem 3.3. If 𝑆 is an ℵ0-transitive subsemigroup of 𝑋 , then 𝜔𝑟𝑆 is not finitely generated. In
particular, the universal right congruence is not finitely generated for 𝑋 or for any ℵ0-transitive
subsemigroup of nj𝑋 ⧵ 𝑋 (which includes 𝑋 and 𝑋,𝑞 where ℵ0 ⩽ 𝑞 < |𝑋|).
Proof. First, we claim that for any 𝛿 ∈ Σ(𝑆) and 𝑌 ⊆ 𝑋 with |𝑌| = |𝑋| we have |𝑌𝛿| = |𝑋|.
Indeed, consider 𝛿 = 𝛼1𝛽

−1
1
…𝛼𝑘𝛽

−1
𝑘
∈ Σ(𝑆) (where 𝛼𝑖, 𝛽𝑖 ∈ 𝑆) and 𝑌 ⊆ 𝑋 with |𝑌| = |𝑋|. Define

𝛿𝑖 = 𝛼1𝛽
−1
1
…𝛼𝑖𝛽

−1
𝑖

for 𝑖 = 0, … , 𝑘, interpreting 𝛿0 = 1𝑋 . We have |𝑌𝛿0| = |𝑌| = |𝑋|. Now let
𝑖 ∈ {1, … , 𝑘}, and assume that |𝑌𝛿𝑖−1| = |𝑋|. Then, as 𝛼𝑖 ∈ 𝑋 ⊆ 𝑋 , we have |𝑌𝛿𝑖−1𝛼𝑖| = |𝑋|.
It is straightforward to show that 𝑌𝛿𝑖−1𝛼𝑖𝛽−1𝑖 𝛽𝑖 = 𝑌𝛿𝑖−1𝛼𝑖 ∩ im𝛽𝑖 . As

𝑌𝛿𝑖−1𝛼𝑖 = (𝑌𝛿𝑖−1𝛼𝑖 ∩ im𝛽𝑖) ∪ (𝑌𝛿𝑖−1𝛼𝑖⧵im𝛽𝑖) = (𝑌𝛿𝑖−1𝛼𝑖𝛽
−1
𝑖 𝛽𝑖) ∪ (𝑌𝛿𝑖−1𝛼𝑖⧵im𝛽𝑖)

and |𝑌𝛿𝑖−1𝛼𝑖⧵im𝛽𝑖| ⩽ |𝑋⧵im𝛽𝑖| < |𝑋|, it follows that |𝑌𝛿𝑖−1𝛼𝑖𝛽−1𝑖 𝛽𝑖| = |𝑋|. Clearly |𝑌𝛿𝑖| =|𝑌𝛿𝑖−1𝛼𝑖𝛽−1𝑖 | ⩾ |𝑌𝛿𝑖−1𝛼𝑖𝛽−1𝑖 𝛽𝑖|, so |𝑌𝛿𝑖| = |𝑋|. Hence, by finite induction, we have |𝑌𝛿| =|𝑌𝛿𝑘| = |𝑋|. This establishes the claim.
Now suppose for a contradiction that𝜔𝑟

𝑆
is generated by a finite subset𝑈 ⊆ 𝑆, and letΣ = Σ(𝑈).

As Σ is countable, we may write it as Σ = {𝜎𝑖 ∶ 𝑖 ∈ ℕ}, noting that the 𝜎𝑖 need not be distinct.
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ON THE DIAMETER OF SEMIGROUPS OF TRANSFORMATIONS AND PARTITIONS 13 of 34

Certainly each 𝜎𝑖 belongs to Σ(𝑆), so it satisfies the condition of the above claim. Observe
that this implies that 𝜎𝑖 ≠ ∅. We claim that there exist pairs (𝑥𝑖, 𝑦𝑖) ∈ 𝜎𝑖 (𝑖 ∈ ℕ) such that|𝑋⧵{𝑥𝑖 ∶ 𝑖 ∈ ℕ}| = |𝑋⧵{𝑦𝑖 ∶ 𝑖 ∈ ℕ}| = |𝑋|. This is clear if 𝑋 is uncountable: for each 𝑖 ∈ ℕ, we
can choose any pair (𝑥𝑖, 𝑦𝑖) ∈ 𝜎𝑖 . Suppose then that 𝑋 is countably infinite; we may assume
that 𝑋 = ℕ. We choose the pairs (𝑥𝑖, 𝑦𝑖) (𝑖 ∈ ℕ) inductively as follows. Choose any (𝑥1, 𝑦1) ∈ 𝜎1.
For 𝑖 ⩾ 2, as |{𝑥 ∈ 𝑋 ∶ 𝑥 ⩾ 𝑥𝑖−1 + 2}𝜎𝑖| = |𝑋|, by the above claim, we can choose (𝑥𝑖, 𝑦𝑖) ∈ 𝜎𝑖
with 𝑥𝑖 ⩾ 𝑥𝑖−1 + 2 and 𝑦𝑖 ⩾ 𝑦𝑖−1 + 2. Then clearly 𝑋⧵{𝑥𝑖 ∶ 𝑖 ∈ ℕ} and 𝑋⧵{𝑦𝑖 ∶ 𝑖 ∈ ℕ} are infinite,
as desired.
We now choose injections 𝜆 ∶ {𝑥𝑖 ∶ 𝑖 ∈ ℕ} → 𝑋 and 𝜇 ∶ {𝑦𝑖 ∶ 𝑖 ∈ ℕ} → 𝑋 such that

im 𝜆 ∩ im𝜇 = ∅. As 𝑆 is ℵ0-transitive, there exist 𝜃, 𝜑 ∈ 𝑆 extending 𝜆 and 𝜇, respectively.
Then (𝑥𝑖, 𝑦𝑖) ∉ 𝜃𝜑

−1 for all 𝑖 ∈ ℕ. Now, by Proposition 3.2 there exists some 𝑖 ∈ ℕ such that
𝜎𝑖 ⊆ 𝜃𝜑

−1. But then (𝑥𝑖, 𝑦𝑖) ∈ 𝜎 ⊆ 𝜃𝜑−1, and we have a contradiction. □

Remark 3.4. The statement and proof of Theorem 3.3 would still hold if we replaced ‘finitely gen-
erated’ with ‘countably generated’. This is due to the fact that Σ(𝑈) is countable for any countable
generating set 𝑈 of 𝜔𝑟

𝑆
.

It is well-known that urj𝑋 coincides with the-class of the identity of 𝑋 . It follows that every
subsemigroup of urj𝑋 is ∗-simple. Thus, by Proposition 2.6, we have:

Theorem 3.5. If 𝑆 is a subsemigroup of urj𝑋 such that 𝜔𝑟𝑆 is finitely generated, then 𝑆 is countable.
Thus, the universal right congruence on each of the following semigroups is not finitely generated:
urj𝑋 ;𝑋,𝑞 where ℵ0 ⩽ 𝑞 ⩽ |𝑋|;1𝑋 ; 𝑋 ∪𝑋 ; and 𝑋 .

The semigroups left to consider in this section are 𝑋 , 𝑋 ⧵ urj𝑋 , 𝑋 , 1𝑋 , 𝑋 ∪𝑋 and
nj𝑋 . For each of these semigroups, we will show that the universal right congruence is finitely
generated and determine the right diameter.
First, we establish certain mappings that will be used repeatedly in the remainder of this sec-

tion. These were introduced in [8, section 2] (in the form of binary relations) to prove that 𝑋 ,
𝑋 , 𝑋 and 𝑋 each has a monogenic diagonal right act. We use the ‘hat’ notation to distinguish
these mappings from other transformations.
So, let �̂�, 𝛽 ∈ 𝑋 be two fixed injections such that im �̂� ∩ im𝛽 = ∅ and im �̂� ∪ im𝛽 = 𝑋. Note

that �̂�, 𝛽 ∈ 𝑋 . For each pair 𝜃, 𝜑 ∈ 𝑋 , we define a map

𝛾(𝜃, 𝜑) ∶ 𝑋 → 𝑋, 𝑥 ↦

{
(𝑥�̂�−1)𝜃 if 𝑥 ∈ im �̂�

(𝑥𝛽−1)𝜑 if 𝑥 ∈ im𝛽.

Observe that im 𝛾(𝜃, 𝜑) = im𝜃 ∪ im𝜑, and �̂�𝛾(𝜃, 𝜑) = 𝜃 and 𝛽𝛾(𝜃, 𝜑) = 𝜑. It follows immediately
that 𝑋 × 𝑋 = (�̂�, 𝛽)𝑋 . Moreover, clearly �̂�, 𝛽 ∈ 𝑋 , and if 𝜃, 𝜑 ∈ 𝑋 then 𝛾(𝜃, 𝜑) ∈ 𝑋 , so we
have 𝑋 ×𝑋 = (�̂�, 𝛽)𝑋 .
We fix the maps �̂�, 𝛽 and 𝛾(𝜃, 𝜑) (𝜃, 𝜑 ∈ 𝑋) for the remainder of this section.

Definition 3.6. Let 𝑆 be a subsemigroup of 𝑋 such that �̂�, 𝛽 ∈ 𝑆, let 𝜃, 𝜑 ∈ 𝑆, and let 𝑘 ∈ ℕ. By
an (�̂�, 𝛽, 𝑘)-inducing sequence from 𝜃 to 𝜑 in 𝑆, we mean a sequence

𝜃 = 𝜓1, 𝜓2, … , 𝜓𝑘+1 = 𝜑

of elements of 𝑆 where 𝛾(𝜓𝑖, 𝜓𝑖+1) ∈ 𝑆 for each 𝑖 ∈ {1, … , 𝑘}.
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14 of 34 EAST et al.

An (�̂�, 𝛽, 𝑘)-inducing sequence gives rise to a special kind of (�̂�, 𝛽)-sequence of length 𝑘, and
vice versa:

Lemma 3.7. Let 𝑆 be a subsemigroup of 𝑋 such that �̂�, 𝛽 ∈ 𝑆, let 𝜃, 𝜑 ∈ 𝑆, and let 𝑘 ∈ ℕ. Then the
following statements are equivalent.

(1) There exists an (�̂�, 𝛽, 𝑘)-inducing sequence

𝜃 = 𝜓1, 𝜓2, … , 𝜓𝑘+1 = 𝜑

from 𝜃 to 𝜑 in 𝑆.
(2) There exists an (�̂�, 𝛽)-sequence

𝜃 = �̂�𝛾1, 𝛽𝛾1 = �̂�𝛾2, … , 𝛽𝛾𝑘−1 = �̂�𝛾𝑘, 𝛽𝛾𝑘 = 𝜑

from 𝜃 to 𝜑 of length 𝑘 in 𝑆.

Proof. (1)⇒ (2). By the definition of an (�̂�, 𝛽, 𝑘)-inducing sequence, we have 𝛾(𝜓𝑖, 𝜓𝑖+1) ∈ 𝑆 for
each 𝑖 ∈ {1, … , 𝑘}. Letting 𝛾𝑖 = 𝛾(𝜓𝑖, 𝜓𝑖+1), we have �̂�𝛾𝑖 = 𝜓𝑖 and 𝛽𝛾𝑖 = 𝜓𝑖+1. Hence, there is an
(�̂�, 𝛽)-sequence

𝜃 = �̂�𝛾1, 𝛽𝛾1 = �̂�𝛾2, … , 𝛽𝛾𝑘−1 = �̂�𝛾𝑘, 𝛽𝛾𝑘 = 𝜑

in 𝑆.
(2)⇒ (1). By the definition of an (�̂�, 𝛽)-sequence in 𝑆, we have 𝛾𝑖 ∈ 𝑆 for 1 ⩽ 𝑖 ⩽ 𝑘. Let 𝜓𝑖 =

�̂�𝛾𝑖 for each 𝑖 ∈ {1, … , 𝑘}, and let 𝜓𝑘+1 = 𝜑. Then 𝛾(𝜓𝑖, 𝜓𝑖+1) = 𝛾(�̂�𝛾𝑖, 𝛽𝛾𝑖) for each 𝑖 ∈ {1, … , 𝑘}.
Consider any 𝑥 ∈ 𝑋. Then 𝑥 ∈ im �̂� or 𝑥 ∈ im𝛽. If 𝑥 ∈ im �̂�, then

𝑥𝛾(𝜓𝑖, 𝜓𝑖+1) = 𝑥𝛾(�̂�𝛾𝑖, 𝛽𝛾𝑖) = (𝑥�̂�−1)�̂�𝛾𝑖 = 𝑥𝛾𝑖.

Similarly, if 𝑥 ∈ im𝛽 then 𝑥𝛾(𝜓𝑖, 𝜓𝑖+1) = 𝑥𝛾𝑖 . Thus, 𝛾(𝜓𝑖, 𝜓𝑖+1) = 𝛾𝑖 ∈ 𝑆. Hence, there is an
(�̂�, 𝛽, 𝑘)-inducing sequence

𝜃 = 𝜓1, 𝜓2, … , 𝜓𝑘+1 = 𝜑

in 𝑆. □

Lemma 3.7 yields the following result.

Proposition 3.8. Let 𝑆 be a subsemigroup of 𝑋 such that:

(1) �̂�, 𝛽 ∈ 𝑆;
(2) there exists 𝑛 ∈ ℕ such that for any pair 𝜃, 𝜑 ∈ 𝑆 there is an (�̂�, 𝛽, 𝑘)-inducing sequence from 𝜃

to 𝜑 in 𝑆 for some 𝑘 ⩽ 𝑛.

Then 𝜔𝑟
𝑆
is generated by the pair (�̂�, 𝛽) and𝐷𝑟(𝑆) ⩽ 𝑛. Furthermore, if 𝑛 = 1 (so that 𝛾(𝜃, 𝜑) ∈ 𝑆 for

any 𝜃, 𝜑 ∈ 𝑆), then the diagonal right 𝑆-act is generated by (�̂�, 𝛽) (and is hence monogenic).
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ON THE DIAMETER OF SEMIGROUPS OF TRANSFORMATIONS AND PARTITIONS 15 of 34

Using Proposition 3.8, we show that the diagonal right act of𝑋 is monogenic.

Theorem 3.9. The diagonal right act of𝑋 is generated by (�̂�, 𝛽), and consequently𝑋 has right
diameter 1.

Proof. Clearly, �̂�, 𝛽 ∈ 𝑋 . Let 𝜃, 𝜑 ∈ 𝑋 , and write 𝛾 = 𝛾(𝜃, 𝜑). By Proposition 3.8, it suffices to
prove that 𝛾 ∈ 𝑋 . So, let 𝑌 ⊆ 𝑋 with |𝑌| = |𝑋|. We have

𝑌𝛾 = (𝑌 ∩ im �̂�)�̂�−1𝜃 ∪ (𝑌 ∩ im𝛽)𝛽−1𝜑.

As 𝑌 = (𝑌 ∩ im �̂�) ∪ (𝑌 ∩ im𝛽), and �̂�, 𝛽 are bijections, it follows that at least one of
(𝑌 ∩ im �̂�)�̂�−1 and (𝑌 ∩ im𝛽)𝛽−1 has cardinality |𝑋|. As 𝜃, 𝜑 ∈ 𝑋 , we conclude that at least one
of (𝑌 ∩ im �̂�)�̂�−1𝜃 and (𝑌 ∩ im𝛽)𝛽−1𝜑 has cardinality |𝑋|, and hence |𝑌𝛾| = |𝑋|. Thus, 𝛾 ∈ 𝑋 ,
as required. □

By the proof of [11, Corollary 1], any semigroup can be embedded in some𝑋 . This fact, together
with Theorem 3.9, yields:

Corollary 3.10. Any semigroup can be embedded in a bisimple monoid whose diagonal right act
is monogenic.

We now move on to consider 𝑋 ⧵ urj𝑋 .

Theorem 3.11. The semigroup 𝑋 ⧵ urj𝑋 has right diameter 2.

Proof. Let 𝑆 = 𝑋⧵ urj𝑋 . By Table 2 and Proposition 2.10, 𝑆 does not have right diameter 1. Using
Proposition 3.8, we show that 𝜔𝑟

𝑆
= ⟨(�̂�, 𝛽)⟩ with 𝐷𝑟(𝑆) ⩽ 2, and hence 𝐷𝑟(𝑆) = 2.

Clearly, �̂�, 𝛽 ∈ 𝑆. Consider any 𝜃, 𝜑 ∈ 𝑆. As 𝜃 and 𝜑 are not surjective, we can choose 𝑦 ∈ 𝑋
such that im 𝜃 ∪ {𝑦} ≠ 𝑋 and im𝜑 ∪ {𝑦} ≠ 𝑋. Letting 𝑐𝑦 denote the constantmapwith image 𝑦, we
have im 𝛾(𝜃, 𝑐𝑦) = im𝜃 ∪ {𝑦} ≠ 𝑋 and im 𝛾(𝑐𝑦, 𝜑) = im𝜑 ∪ {𝑦} ≠ 𝑋, so that 𝛾(𝜃, 𝑐𝑦), 𝛾(𝑐𝑦, 𝜑) ∈ 𝑆.
Thus, we have an (�̂�, 𝛽, 2)-inducing sequence 𝜃, 𝑐𝑦, 𝜑, as required. □

We now turn our attention to 𝑋 , 1𝑋 , 𝑋 ∪𝑋 and nj𝑋 . In fact, we will obtain results
concerning a larger class of subsemigroups of nj𝑋 . We begin with the following technical lemma.

Lemma 3.12. For any 𝜃, 𝜑 ∈ 𝑋 such that |𝑋⧵(im𝜃 ∪ im𝜑)| = |𝑋|, there exists an (�̂�, 𝛽)-
sequence from 𝜃 to 𝜑 of length 2 (in 𝑋).

Proof. Let 𝑆 = 𝑋 . By Lemma 3.7, it suffices to show that there exists an (�̂�, 𝛽, 2)-inducing
sequence from 𝜃 to 𝜑; that is, there exists 𝜆 ∈ 𝑆 such that 𝛾(𝜃, 𝜆), 𝛾(𝜆, 𝜑) ∈ 𝑆.
Let 𝑍 = im𝜃 ∪ im𝜑. Then |𝑋⧵𝑍| = |𝑋| by assumption. Let 𝜆 ∶ 𝑋 → 𝑋⧵𝑍 be an injection such

that |𝑋 ⧵ (𝑍 ∪ im𝜆)| = |𝑋|. Clearly 𝜆 ∈ 𝑆. Let 𝛾1 = 𝛾(𝜃, 𝜆) and 𝛾2 = 𝛾(𝜆, 𝜑). It is straightforward
to show that 𝛾1, 𝛾2 ∈ nj𝑋 . Moreover, we have

im 𝛾1 = im𝜃 ∪ im𝜆 ⊆ 𝑍 ∪ im𝜆,

so |𝑋⧵im𝛾1| ⩾ |𝑋⧵(𝑍 ∪ im𝜆)| = |𝑋|. Thus, 𝛾1 ∈ 𝑆, and similarly 𝛾2 ∈ 𝑆, as desired. □
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16 of 34 EAST et al.

The following result provides several equivalent characterisations for an |𝑋|-transitive
subsemigroup of nj𝑋 to have right diameter 3 or 4.

Proposition 3.13. For a subsemigroup 𝑆 of nj𝑋 , the following are equivalent.

(1) 𝑆 is |𝑋|-transitive, 𝜔𝑟
𝑆
is finitely generated and 𝐷𝑟(𝑆) ∈ {3, 4}.

(2) 𝑆 is |𝑋|-transitive and 𝜔𝑟
𝑆
is finitely generated.

(3) 𝑆 is |𝑋|-transitive, 𝑆𝑟 is finitely generated and 𝑆 ∩ 𝑋 ≠ ∅.
(4) 𝑆𝑟 is finitely generated and 𝑆 contains 𝑋 .

Proof. (1)⇒ (2) is trivial.
(2)⇒ (3). By Lemma 2.3, 𝑆𝑟 is finitely generated. It follows by Theorem 3.3 that 𝑆 ∩ 𝑋 ≠ ∅.
(3)⇒ (4). Fix any 𝛼 ∈ 𝑆 ∩ 𝑋 , and consider an arbitrary 𝛽 ∈ 𝑋 . Then 𝛼−1𝛽 ∈ 𝑋 . We have

dom𝛼−1𝛽 = im𝛼 and im𝛼−1𝛽 = im𝛽, so that

|𝑋⧵dom𝛼−1𝛽| = |𝑋⧵im𝛼| = |𝑋| and |𝑋⧵im𝛼−1𝛽| = |𝑋⧵im𝛽| = |𝑋|.
As 𝑆 is |𝑋|-transitive, there exists 𝛾 ∈ 𝑆 extending 𝛼−1𝛽, that is, 𝛾|im𝛼 = 𝛼−1𝛽. Therefore, for each
𝑥 ∈ 𝑋 we have (𝑥𝛼)𝛾 = (𝑥𝛼)𝛼−1𝛽 = 𝑥𝛽, so that 𝛽 = 𝛼𝛾 ∈ 𝑆. Thus, 𝑋 ⊆ 𝑆.
(4)⇒ (1). As 𝑆 contains 𝑋 , which is |𝑋|-transitive, 𝑆 is |𝑋|-transitive.
We now prove that 𝜔𝑟

𝑆
is finitely generated with 𝐷𝑟(𝑆) ⩽ 4. By assumption, there exists a finite

subset 𝑉 ⊂ 𝑆 such that 𝑆𝑟 = 𝑉𝑆1. Let 𝐾 = 𝑋 , and recall that �̂�, 𝛽 ∈ 𝐾. Letting 𝑈 = 𝑉 ∪ {�̂�, 𝛽},
we shall prove that 𝜔𝑟

𝑆
= ⟨𝑈⟩ with 𝐷𝑟(𝑈, 𝑆) ⩽ 4.

So, let 𝜃, 𝜑 ∈ 𝑆. We claim that there exist 𝜃′, 𝜑′ ∈ 𝐾 such that the pairs (𝜃, 𝜃′), (𝜑′, 𝜑) ∈ 𝜔𝑟
𝑆
are

each obtained by a single application of a pair from 𝑈 × 𝑈, and |𝑋⧵(im𝜃′ ∪ im𝜑′)| = |𝑋|.
Indeed, we have 𝜃 = 𝛾𝜎 and 𝜑 = 𝛿𝜏 for some 𝛾, 𝛿 ∈ 𝑉 and 𝜎, 𝜏 ∈ 𝑆1. Let 𝜃′ = �̂�𝜎. Then clearly

(𝜃, 𝜃′) is obtained by a single application of the pair (𝛾, �̂�) ∈ 𝑈 × 𝑈. Now, as im �̂� ∩ im𝛽 = ∅ and
𝜏 is injective, we have im �̂�𝜏 ∩ im𝛽𝜏 = ∅. Thus,

(𝑋⧵im𝜃′) ∩ im �̂�𝜏 ⊆ 𝑋⧵(im𝜃′ ∪ im𝛽𝜏).

Therefore, we have

𝑋⧵im𝜃′ = 𝑋⧵(im𝜃′ ∪ im �̂�𝜏) ∪
(
(𝑋⧵im𝜃′) ∩ im �̂�𝜏

)
⊆ 𝑋⧵(im𝜃′ ∪ im �̂�𝜏) ∪ 𝑋⧵(im𝜃′ ∪ im𝛽𝜏).

As |𝑋⧵im𝜃′| = |𝑋| (as 𝜃′ ∈ 𝐾), it follows that either
|𝑋⧵(im𝜃′ ∪ im �̂�𝜏)| = |𝑋| or |𝑋⧵(im𝜃′ ∪ im𝛽𝜏)| = |𝑋|.

If |𝑋⧵(im𝜃′ ∪ im �̂�𝜏)| = |𝑋|, we set 𝜑′ = �̂�𝜏; otherwise, we set 𝜑′ = 𝛽𝜏. Then (𝜑′, 𝜑) is obtained
by a single application of either (�̂�, 𝛿) or (𝛽, 𝛿), and |𝑋⧵(im𝜃′ ∪ im𝜑′)| = |𝑋|. This completes the
proof of the claim.
Now, by Lemma 3.12, there exists an (�̂�, 𝛽)-sequence from 𝜃′ to𝜑′ of length 2 in𝐾 ⊆ 𝑆. It follows

that there is a 𝑈-sequence from 𝜃 to 𝜑 of length 4. Hence, 𝐷𝑟(𝑈, 𝑆) ⩽ 4, as desired.
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ON THE DIAMETER OF SEMIGROUPS OF TRANSFORMATIONS AND PARTITIONS 17 of 34

Now, to prove the lower bound of 3 for 𝐷𝑟(𝑆), suppose for a contradiction that 𝐷𝑟(𝑈, 𝑆) ⩽ 2 for
some finite set 𝑈 ⊆ 𝑆 × 𝑆.
We say that a pair (𝛾, 𝛿) ∈ 𝑆 × 𝑆 is disjoint if im 𝛾 ∩ im𝛿 = ∅, and intersecting otherwise. We

may assume that 𝑈 contains an intersecting pair, for otherwise we can add such a pair to 𝑈. Let
{(𝛾𝑖, 𝛿𝑖) ∶ 1 ⩽ 𝑖 ⩽ 𝑛} be the set of intersecting pairs in𝑈. For each 𝑖 ∈ {1, … , 𝑛} choose 𝑥𝑖 ∈ 𝑋 such
that 𝑥𝑖𝛾𝑖 ∈ im𝛿𝑖 , and let 𝑦𝑖 = 𝑥𝑖𝛾𝑖𝛿

−1
𝑖
. Now let

𝑄 =
{
(𝑗, 𝑘) ∶ 𝑗, 𝑘 ∈ {1, … , 𝑛}, 𝑦𝑗 ∈ im𝛿𝑘𝛾

−1
𝑘

}
.

Choose

𝑤1,… ,𝑤𝑛 ∈ 𝑋⧵{𝑦𝑖, 𝑦𝑗𝛾𝑘𝛿
−1
𝑘
∶ 1 ⩽ 𝑖 ⩽ 𝑛, (𝑗, 𝑘) ∈ 𝑄}

such that𝑤𝑖 = 𝑤𝑗 if and only if𝑥𝑖 = 𝑥𝑗 . Fix any 𝜃 ∈ 𝑋 (⊆ 𝑆), and note that |im 𝜃| = |𝑋⧵im𝜃| =|𝑋|. Choose
𝑧1, … , 𝑧𝑛 ∈ im𝜃⧵{𝑥𝑖𝜃 ∶ 1 ⩽ 𝑖 ⩽ 𝑛}

such that 𝑧𝑖 = 𝑧𝑗 if and only if 𝑦𝑖 = 𝑦𝑗 . Note that the sets

𝐴 = {𝑤𝑖, 𝑦𝑖 ∶ 1 ⩽ 𝑖 ⩽ 𝑛} and 𝐵 = {𝑥𝑖𝜃, 𝑧𝑖 ∶ 1 ⩽ 𝑖 ⩽ 𝑛}

are finite and have the same cardinality. Choose a bijection

𝜆 ∶ 𝑋⧵(im𝜃 ∪ 𝐴) → 𝑋⧵(im𝜃 ∪ 𝐵),

and extend 𝜆 to a bijection

𝜆′ ∶ (𝑋⧵im𝜃) ∪ 𝐴 → (𝑋⧵im𝜃) ∪ 𝐵

by setting 𝑤𝑖𝜆′ = 𝑥𝑖𝜃 and 𝑦𝑖𝜆′ = 𝑧𝑖 (1 ⩽ 𝑖 ⩽ 𝑛). We have

𝑋⧵dom𝜆′ = im𝜃⧵𝐴 and 𝑋⧵im𝜆′ = im𝜃⧵𝐵.

As | im 𝜃| = |𝑋| and 𝐴 and 𝐵 are finite, we have

|𝑋⧵dom𝜆′| = |𝑋⧵im𝜆′| = |𝑋|.
As 𝑆 is |𝑋|-transitive, there exists some 𝜑 ∈ 𝑆 extending 𝜆′. Note that im 𝜃 ∪ im𝜑 = 𝑋. As
𝐷𝑟(𝑈, 𝑆) ⩽ 2, there exists a 𝑈-sequence

𝜃 = 𝛾𝜎, 𝛿𝜎 = 𝛾′𝜎′, 𝛿′𝜎′ = 𝜑.

First suppose that (𝛾, 𝛿) and (𝛾′, 𝛿′) are disjoint pairs. If the pair (𝜃, 𝛿𝜎) were intersecting, then
there would exist 𝑥, 𝑦 ∈ 𝑋 such that 𝑥𝜃 = (𝑥𝛾)𝜎 = 𝑦𝛿𝜎, but then 𝑥𝛾 = 𝑦𝛿 because 𝜎 is injective,
contradicting that (𝛾, 𝛿) is disjoint. Thus, (𝜃, 𝛿𝜎) is disjoint, and similarly (𝛿𝜎, 𝜑) = (𝛾′𝜎′, 𝜑) is
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18 of 34 EAST et al.

disjoint. Thus, we have

im 𝛿𝜎 ∩ (im𝜃 ∪ im𝜑) = ∅.

But im 𝜃 ∪ im𝜑 = 𝑋, so we have a contradiction.We conclude that at least one of (𝛾, 𝛿) and (𝛾′, 𝛿′)
is intersecting.
Suppose first that (𝛾, 𝛿) is intersecting, so that (𝛾, 𝛿) = (𝛾𝑗, 𝛿𝑗) for some 𝑗 ∈ {1, … , 𝑛}. We then

have

𝑦𝑗𝛾
′𝜎′ = 𝑦𝑗𝛿𝑗𝜎 = 𝑥𝑗𝛾𝑗𝜎 = 𝑥𝑗𝜃 = 𝑤𝑗𝜑 = 𝑤𝑗𝛿

′𝜎′.

As 𝜎′ is injective, we have 𝑦𝑗𝛾′ = 𝑤𝑗𝛿
′. Thus, (𝛾′, 𝛿′) is intersecting, so that (𝛾′, 𝛿′) = (𝛾𝑘, 𝛿𝑘) for

some 𝑘 ∈ {1, … , 𝑛}. Hence, 𝑦𝑗𝛾𝑘 = 𝑤𝑗𝛿𝑘. But then (𝑗, 𝑘) ∈ 𝑄 and𝑤𝑗 = 𝑦𝑗𝛾𝑘𝛿
−1
𝑘
, contradicting the

choice of 𝑤𝑗 .
Now suppose that (𝛾′, 𝛿′) is intersecting, so that (𝛾′, 𝛿′) = (𝛾𝑙, 𝛿𝑙) for some 𝑙 ∈ {1, … , 𝑛}. As

𝑧𝑙 ∈ im𝜃, there exists some 𝑥 ∈ 𝑋 such that 𝑧𝑙 = 𝑥𝜃. Thus, we have

𝑥𝛾𝜎 = 𝑥𝜃 = 𝑧𝑙 = 𝑦𝑙𝜑 = 𝑦𝑙𝛿𝑙𝜎
′ = 𝑥𝑙𝛾𝑙𝜎

′ = 𝑥𝑙𝛿𝜎.

As 𝜎 is injective, it follows that 𝑥𝛾 = 𝑥𝑙𝛿. But it has already been established that (𝛾, 𝛿) is not
intersecting, so we have a contradiction. Thus, 𝐷𝑟(𝑆) ⩾ 3. This completes the proof of (4)⇒ (1)
and hence of the proposition. □

It follows immediately from Proposition 3.13 that each of 𝑋 , 1𝑋 , 𝑋 ∪𝑋 and nj𝑋 has
right diameter either 3 or 4.We shall prove that the former two have right diameter 3 and the latter
two have right diameter 4.
As nj𝑋 ⧵ 𝑋 is a submonoid of nj𝑋 , for any subsemigroup 𝑆 of nj𝑋 we have that 𝑆⧵𝑋

is a (possibly empty) subsemigroup of 𝑆. If 𝑆⧵𝑋 is finite and non-empty, then it is a subgroup
of 𝑋 ; this follows from the fact that nj𝑋 ⧵ 𝑋 contains no idempotents.

Theorem 3.14. If 𝑆 is a semigroup such that𝑋 ⩽ 𝑆 ⩽ nj𝑋 and 𝑆⧵𝑋 is finite, then𝐷𝑟(𝑆) = 3.
In particular, 𝑋 and 1𝑋 have right diameter 3.

Proof. By Proposition 3.13, it suffices to prove that 𝐷𝑟(𝑆) ⩽ 3.
Let 𝑈 = (𝑆⧵𝑋) ∪ {�̂�, 𝛽}. Certainly 𝑈 is finite because 𝑆⧵𝑋 is finite. We shall prove that

𝜔𝑟
𝑆
= ⟨𝑈⟩ and 𝐷𝑟(𝑈, 𝑆) ⩽ 3.
So, consider 𝜃, 𝜑 ∈ 𝑆. If 𝜃, 𝜑 ∈ 𝑆⧵𝑋 , then 𝜃, 𝜑 ∈ 𝑈, so clearly there is a𝑈-sequence from 𝜃 to

𝜑 of length 1. Assume then that 𝜃 ∈ 𝑋 , and suppose first that 𝜑 ∈ 𝑆⧵𝑋 . As𝑋 = im �̂� ∪ im𝛽

and |𝑋⧵im𝜃| = |𝑋|, it follows that either |𝑋⧵(im𝜃 ∪ im �̂�)| = |𝑋| or |𝑋⧵(im𝜃 ∪ im𝛽)| = |𝑋|.
Assumewithout loss of generality that |𝑋⧵(im𝜃 ∪ im �̂�)| = |𝑋|. Then, by Lemma 3.12, there exists
an (�̂�, 𝛽)-sequence from 𝜃 to �̂� of length 2. As �̂�, 𝜑 ∈ 𝑈, we conclude that there is a 𝑈-sequence
from 𝜃 to 𝜑 of length 3.
Finally, suppose that 𝜑 ∈ 𝑋 . If |𝑋⧵(im𝜃 ∪ im𝜑)| = |𝑋|, then by Lemma 3.12 there exists

an (�̂�, 𝛽)-sequence of length 2 from 𝜃 to 𝜑. Suppose then that |𝑋⧵(im𝜃 ∪ im𝜑)| < |𝑋|. Let 𝑌 =

im𝜑⧵im𝜃. As

𝑋⧵im𝜃 =
(
𝑋⧵(im𝜃 ∪ im𝜑)

)
∪ 𝑌
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ON THE DIAMETER OF SEMIGROUPS OF TRANSFORMATIONS AND PARTITIONS 19 of 34

and |𝑋⧵im𝜃| = |𝑋|, it follows that |𝑌| = |𝑋|. Let 𝜆 ∶ 𝑋 → 𝑌 be an injection such that |𝑌⧵im𝜆| =|𝑋|, and let 𝛾 = 𝛾(𝜃, 𝜆). Clearly, 𝛾 is an injection (and hence | im 𝛾| = |𝑋|). Also, we have
𝑌⧵im𝜆 ⊆ 𝑋⧵(im𝜃 ∪ im𝜆) = 𝑋⧵im𝛾.

As |𝑌⧵im𝜆| = |𝑋|, it follows that |𝑋⧵im𝛾| = |𝑋|. Thus, 𝛾 ∈ 𝑆. Recall that 𝜃 = �̂�𝛾 and 𝜆 = 𝛽𝛾.
Now, as im 𝜆 ⊆ 𝑌 ⊆ im𝜑, we have that

|𝑋⧵(im𝜆 ∪ im𝜑)| = |𝑋⧵ im𝜑| = |𝑋|.
Therefore, by Lemma 3.12, there exists an (�̂�, 𝛽)-sequence from 𝜆 to 𝜑 of length 2. Hence, we have
an (�̂�, 𝛽)-sequence from 𝜃 to 𝜑 of length 3. This completes the proof. □

Next, we show that a subsemigroup 𝑆 of nj𝑋 such that 𝑆⧵𝑋 is finitely transitive cannot have
right diameter strictly less than 4.

Proposition 3.15. Let 𝑆 be a subsemigroup of nj𝑋 such that 𝑆 ⧵ 𝑋 is finitely transitive. If 𝜔𝑟𝑆 is
finitely generated, then 𝐷𝑟(𝑆) ⩾ 4.

Proof. Suppose for a contradiction that 𝐷𝑟(𝑈, 𝑆) ⩽ 3 for some finite set 𝑈 ⊆ 𝑆. Let 𝑃 denote
the (finite) collection of all tuples (𝛼1, 𝛽1, 𝛼2, 𝛽2, 𝛼3, 𝛽3) ∈ 𝑈6 where 𝛼1, 𝛽3 ∈ 𝑆 ⧵ 𝑋 . Observe
that for any 𝛼 ∈ 𝑆⧵𝑋 and 𝛽 ∈ 𝑆, as |𝑋⧵im𝛼| < |𝑋| we have |im𝛼 ∩ im𝛽| = |𝑋|, or, equiv-
alently, in 𝑋 we have |im𝛼𝛽−1| = |im𝛽𝛼−1| = |𝑋|. Therefore, we may choose a set of distinct
elements {𝑥𝑝, 𝑦𝑝 ∶ 𝑝 ∈ 𝑃} such that, for each 𝑝 = (𝛼1, … , 𝛽3) ∈ 𝑃, in 𝑋 we have 𝑥𝑝 ∈ im𝛽1𝛼

−1
1
,

𝑦𝑝 ∈ im𝛼3𝛽
−1
3

and 𝑥𝑝𝛼1𝛽−11 𝛼2 ≠ 𝑦𝑝𝛽3𝛼
−1
3
𝛽2.

As 𝑆⧵𝑋 is finitely transitive, there exist 𝜃, 𝜑 ∈ 𝑆⧵𝑋 such that 𝑥𝑝𝜃 = 𝑥𝑝 and 𝑦𝑝𝜑 = 𝑥𝑝 for
all 𝑝 ∈ 𝑃. As 𝐷𝑟(𝑈, 𝑆) ⩽ 3, there exists a 𝑈-sequence

𝜃 = 𝛼1𝛾1, 𝛽1𝛾1 = 𝛼2𝛾2, 𝛽2𝛾2 = 𝛼3𝛾3, 𝛽3𝛾3 = 𝜑.

As 𝑋 is an ideal of 𝑆, it follows that 𝛼1, 𝛽3 ∈ 𝑆⧵𝑋 , so that (𝛼1, … , 𝛽3) ∈ 𝑃. Letting
(𝛼1, … , 𝛽3) = 𝑝, we have

𝑥𝑝𝛼1𝛽
−1
1 𝛼2𝛾2 = 𝑥𝑝𝛼1𝛽

−1
1 𝛽1𝛾1 = 𝑥𝑝𝛼1𝛾1 = 𝑥𝑝𝜃 = 𝑥𝑝 = 𝑦𝑝𝜑 = 𝑦𝑝𝛽3𝛾3 = 𝑦𝑝𝛽3𝛼

−1
3 𝛼3𝛾3

= 𝑦𝑝𝛽3𝛼
−1
3 𝛽2𝛾2.

But then, as 𝛾2 is injective, we have 𝑥𝑝𝛼1𝛽−11 𝛼2 = 𝑦𝑝𝛽3𝛼
−1
3
𝛽2, contradicting the choice of 𝑥𝑝 and

𝑦𝑝. Thus, 𝐷𝑟(𝑆) ⩾ 4. □

If 𝑆 is a subsemigroup of nj𝑋 such that 𝑆⧵𝑋 is |𝑋|-transitive, then certainly 𝑆 is|𝑋|-transitive and 𝑆⧵𝑋 is finitely transitive. Thus, by Propositions 3.13 and 3.15, we have:
Theorem 3.16. For a subsemigroup 𝑆 of nj𝑋 such that 𝑆⧵𝑋 is |𝑋|-transitive, the following are
equivalent.
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20 of 34 EAST et al.

(1) 𝜔𝑟
𝑆
is finitely generated and 𝐷𝑟(𝑆) = 4.

(2) 𝜔𝑟
𝑆
is finitely generated.

(3) 𝑆𝑟 is finitely generated and 𝑆 ∩ 𝑋 ≠ ∅.
(4) 𝑆𝑟 is finitely generated and 𝑆 contains 𝑋 .

If 𝑆 is a subsemigroup of nj𝑋 containing 𝑋 , then certainly 𝑆𝑟 is finitely generated (as 𝑆 is
a monoid) and 𝑆⧵𝑋 is |𝑋|-transitive (as it contains 𝑋 , which is |𝑋|-transitive). Thus, we
deduce:

Theorem 3.17. For a monoid 𝑆 such that 𝑋 ⩽ 𝑆 ⩽ nj𝑋 , the following are equivalent.

(1) 𝜔𝑟
𝑆
is finitely generated and 𝐷𝑟(𝑆) = 4.

(2) 𝜔𝑟
𝑆
is finitely generated.

(3) 𝑆 ∩ 𝑋 ≠ ∅.
(4) 𝑆 contains 𝑋 .

Consequently, the monoids 𝑋 ∪𝑋 and nj𝑋 have right diameter 4.

Remark 3.18. For any non-empty set 𝐼 of infinite cardinals 𝑞 ⩽ |𝑋|, the set 𝑆 =⋃
𝑞∈𝐼 𝑋,𝑞 is an|𝑋|-transitive subsemigroup of nj𝑋 . Moreover, we have 𝑆𝑟 = 𝛼𝑆1 for any 𝛼 ∈ 𝑋,𝑞0 , where 𝑞0

is the smallest cardinal in 𝐼. If 𝐼 contains |𝑋| and at least one other cardinal 𝑞 < |𝑋|, then, by
Theorem 3.16, the universal right congruence 𝜔𝑟

𝑆
is finitely generated and 𝐷𝑟(𝑆) = 4.

4 TRANSFORMATION SEMIGROUPS: LEFT DIAMETER

This section has a parallel structure to Section 3; that is, it naturally splits into three parts,
correponding to questions (Q4), (Q5) and (Q6) of Subsection 2.3.
So, we begin by considering which of the transformation semigroups 𝑆 appearing in Table 1 are

finitely generated as left ideals. Of course, this holds if 𝑆 is a monoid or left simple. Also, it is fairly
straightforward to show that 𝑋 ⧵ nj𝑋 is generated as a left ideal of itself by any 𝛼 ∈ urj𝑋 ⧵ 𝑋
(in fact, we shall see that 𝑋 ⧵ nj𝑋 has left diameter 2). The remaining semigroups (𝑋 ⧵ urj𝑋
and 𝑋,𝑞, ℵ0 ⩽ 𝑞 ⩽ |𝑋|) are dealt with by the following result.
Theorem4.1. If 𝑆 is a finitely transitive subsemigroup of 𝑋 ⧵ urj𝑋 , then 𝑆𝑙 is not finitely generated.
In particular, the semigroups 𝑋 ⧵ urj𝑋 and𝑋,𝑞 (ℵ0 ⩽ 𝑞 ⩽ |𝑋|) are not finitely generated as left
ideals of themselves.

Proof. Consider any finite subset 𝑈 ⊆ 𝑆. For each 𝛼 ∈ 𝑈 choose 𝑥𝛼 ∈ 𝑋⧵im𝛼 (such an element
exists because 𝛼 is not surjective). As 𝑆 is finitely transitive, there exists 𝜃 ∈ 𝑆 such that 𝑥𝛼𝜃 = 𝑥𝛼
for each 𝛼 ∈ 𝑈. Then im 𝜃 ⊈ im𝛼 for all 𝛼 ∈ 𝑈, and hence 𝜃 ∉ 𝑆1𝛼 for any 𝛼 ∈ 𝑈, so 𝑆 ≠ 𝑆1𝑈.
Hence, 𝑆𝑙 is not finitely generated. □

We now consider which of the remaining transformation semigroups 𝑆 from Table 1 have
𝜔𝑙
𝑆
not finitely generated. First, we establish an analogue of Proposition 3.2, followed by a

technical lemma.
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ON THE DIAMETER OF SEMIGROUPS OF TRANSFORMATIONS AND PARTITIONS 21 of 34

Let 𝑆 be a subsemigroup of 𝑋 . For a subset 𝑈 ⊆ 𝑆, we define

Σ′(𝑈) = {𝛼−11 𝛽1 …𝛼
−1
𝑘
𝛽𝑘 ∶ 𝑘 ∈ ℕ, 𝛼𝑖, 𝛽𝑖 ∈ 𝑈 (1 ⩽ 𝑖 ⩽ 𝑘)} ⊆ 𝑋.

Observe that for any 𝜃, 𝜑 ∈ 𝑋 , in 𝑋 we have

𝜃−1𝜑 = {(𝑥𝜃, 𝑥𝜑) ∶ 𝑥 ∈ 𝑋}.

Proposition 4.2. Let 𝑆 be a subsemigroup of 𝑋 , and let𝑈 ⊆ 𝑆 be a generating set for the universal
left congruence 𝜔𝑙

𝑆
. Then for any 𝜃, 𝜑 ∈ 𝑆 there exists 𝜎 ∈ Σ′(𝑈) with 𝜃−1𝜑 ⊆ 𝜎.

Proof. Let 𝜃, 𝜑 ∈ 𝑆. Suppose first that 𝜃 = 𝜑. As𝜔𝑙
𝑆
is generated by𝑈, there exists 𝛼 ∈ 𝑈 such that

𝜃 ∈ 𝑆1𝛼. As im 𝜃 ⊆ im𝛼, it follows that 𝜃−1𝜑 = 𝜃−1𝜃 ⊆ 𝛼−1𝛼 ∈ Σ′(𝑈).
Now suppose that 𝜃 ≠ 𝜑. Then there exists a 𝑈-sequence

𝜃 = 𝛾1𝛼1, 𝛾1𝛽1 = 𝛾2𝛼2, … , 𝛾𝑘𝛽𝑘 = 𝜑.

Let 𝜎 = 𝛼−1
1
𝛽1 …𝛼

−1
𝑘
𝛽𝑘 ∈ Σ

′(𝑈). We claim that 𝜃−1𝜑 ⊆ 𝜎. So, let (𝑥, 𝑦) ∈ 𝜃−1𝜑. Then there exists
𝑧 ∈ 𝑋 such that 𝑥 = 𝑧𝜃 and 𝑦 = 𝑧𝜑. Then 𝑥 = (𝑧𝛾1)𝛼1, so that (𝑥, 𝑧𝛾1) ∈ 𝛼−11 . Therefore, we
have

(𝑥, 𝑧𝛾2𝛼2) = (𝑥, 𝑧𝛾1𝛽1) ∈ 𝛼
−1
1 𝛽1.

It follows that (𝑥, 𝑧𝛾2) ∈ 𝛼−11 𝛽1𝛼
−1
2
, which in turn implies that (𝑥, 𝑧𝛾2𝛽2) ∈ 𝛼−11 𝛽1𝛼

−1
2
𝛽2. Contin-

uing in this way, we obtain

(𝑥, 𝑦) = (𝑥, 𝑧𝜑) = (𝑥, 𝑧𝛾𝑘𝛽𝑘) ∈ 𝛼
−1
1 𝛽1 …𝛼

−1
𝑘
𝛽𝑘 = 𝜎,

as required. □

Lemma 4.3. Let 𝑆 be an ℵ0-transitive subsemigroup of 𝑋 satisfying the following condition: for
any finite subset 𝑈 ⊂ 𝑆 there are infinitely many 𝑥 ∈ 𝑋 such that for each 𝜎 ∈ Σ′(𝑈) the set 𝑋⧵𝑥𝜎
is infinite. Then 𝜔𝑙

𝑆
is not finitely generated.

Proof. Suppose for a contradiction that𝜔𝑙
𝑆
is generated by a finite subset𝑈 ⊂ 𝑆, and let Σ = Σ′(𝑈).

Let 𝑋′ be the (infinite) set of all 𝑥 ∈ 𝑋 such that for each 𝜎 ∈ Σ the set 𝑋⧵𝑥𝜎 is infinite.
Choose a set of distinct elements {𝑥𝜎 ∶ 𝜎 ∈ Σ} ⊆ 𝑋′ such that |𝑋⧵{𝑥𝜎 ∶ 𝜎 ∈ Σ}| = |𝑋|. As the set
𝑋⧵𝑥𝜎𝜎 is infinite for each 𝜎 ∈ Σ, we may choose a set of distinct elements {𝑦𝜎 ∶ 𝜎 ∈ Σ} such that|𝑋⧵{𝑦𝜎 ∶ 𝜎 ∈ Σ}| = |𝑋| and (𝑥𝜎, 𝑦𝜎) ∉ 𝜎 for each 𝜎 ∈ Σ. As Σ is countable and 𝑆 is ℵ0-transitive,
there exist 𝜃, 𝜑 ∈ 𝑆 such that 𝑥𝜎𝜃 = 𝑥𝜎 and 𝑥𝜎𝜑 = 𝑦𝜎 for all 𝜎 ∈ Σ. Then (𝑥𝜎, 𝑦𝜎) ∈ 𝜃−1𝜑 for all
𝜎 ∈ Σ. Now, by Proposition 4.2, there exists 𝜎 ∈ Σ with 𝜃−1𝜑 ⊆ 𝜎. But then (𝑥𝜎, 𝑦𝜎) ∈ 𝜎, and we
have a contradiction. □

We can now show that all the subsemigroups of𝑋 appearing in Table 1 do not have a finitely
generated universal left congruence.
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22 of 34 EAST et al.

Theorem 4.4. If 𝑆 is an ℵ0-transitive subsemigroup of 𝑋 , then 𝜔𝑙𝑆 is not finitely generated. In
particular, the universal left congruence on each of the following semigroups is not finitely generated:
𝑋 ; 𝑋 ; nj𝑋 ; 𝑋,𝑝 where ℵ0 ⩽ 𝑝 ⩽ |𝑋|; 1𝑋 ; 𝑋 ∪𝑋 ;𝑋,𝑞 where ℵ0 ⩽ 𝑞 < |𝑋|;𝑋 ; and
𝑋 .

Proof. We claim that 𝑆 satisfies the condition of Lemma 4.3, and hence 𝜔𝑙
𝑆
is not finitely gen-

erated. Indeed, consider any 𝑥 ∈ 𝑋, 𝑈 ⊆ 𝑆 and 𝜎 = 𝛼−1
1
𝛽1 …𝛼

−1
𝑘
𝛽𝑘 ∈ Σ(𝑈) (where 𝛼𝑖, 𝛽𝑖 ∈ 𝑈).

Define 𝜎𝑖 = 𝛼−1
1
𝛽1 …𝛼

−1
𝑖
𝛽𝑖 for 𝑖 = 0, … , 𝑘 (interpreting 𝜎0 = 1𝑋). We have |𝑥𝜎0| = |{𝑥}| < |𝑋|.

Now let 𝑖 ∈ {1, … , 𝑘}, and assume that |𝑥𝜎𝑖−1| < |𝑋|. We have 𝑥𝜎𝑖−1𝛼−1𝑖 𝛼𝑖 = 𝑥𝜎𝑖−1 ∩ im𝛼𝑖 , so|𝑥𝜎𝑖−1𝛼−1𝑖 𝛼𝑖| ⩽ |𝑥𝜎𝑖−1| < |𝑋|. As 𝛼𝑖 ∈ 𝑋 , it follows that |𝑥𝜎𝑖−1𝛼−1𝑖 | < |𝑋|. Therefore,
|𝑥𝜎𝑖| = |𝑥𝜎𝑖−1𝛼−1𝑖 𝛽𝑖| ⩽ |𝑥𝜎𝑖−1𝛼−1𝑖 | < |𝑋|.

Hence, by induction, we have |𝑥𝜎| = |𝑥𝜎𝑘| < |𝑋|. Thus, 𝑋⧵𝑥𝜎 is infinite, as required. □

Remark 4.5.

(1) The statements and proofs of Lemma 4.3 and Theorem 4.4 would still hold if we replaced
‘finitely generated’ with ‘countably generated’.

(2) The monoid nj𝑋 coincides with the-class of the identity of 𝑋 , so every subsemigroup of
nj𝑋 is∗-simple. Thus, by the left–right dual of Proposition 2.6, the universal left congruence
𝜔𝑙
𝑆
on any uncountable subsemigroup 𝑆 of nj𝑋 is not finitely generated.

The remaining semigroups to consider are 𝑋 ⧵ nj𝑋 , 𝑋 , 1𝑋 , 𝑋 ∪𝑋 and urj𝑋 .
We will show that each of these semigroups has a finitely generated universal left congruence and
finite left diameter. To this end, we first establish the following mappings, which were introduced
in [8] to prove that 𝑋 and 𝑋 have monogenic diagonal left acts.
Choose any bijection 𝜈 ∶ 𝑋 → 𝑋 × 𝑋, and let �̃� = 𝜈𝜋1 and 𝛽 = 𝜈𝜋2, where 𝜋1, 𝜋2 ∶ 𝑋 × 𝑋 → 𝑋

denote the projections onto the first and second coordinates, respectively. Note that �̃�, 𝛽 ∈ 𝑋 .
For each pair 𝜃, 𝜑 ∈ 𝑋 , define a map

�̃�(𝜃, 𝜑) ∶ 𝑋 → 𝑋, 𝑥 ↦ (𝑥𝜃, 𝑥𝜑)�̃� −1.

Observe that ker 𝛾(𝜃, 𝜑) = ker 𝜃 ∩ ker 𝜑, and 𝛾(𝜃, 𝜑)�̃� = 𝜃 and 𝛾(𝜃, 𝜑)𝛽 = 𝜑. It follows immedi-
ately that 𝑋 × 𝑋 = 𝑋(�̃�, 𝛽).
We fix the maps 𝜈, �̃�, 𝛽 and 𝛾(𝜃, 𝜑) (𝜃, 𝜑 ∈ 𝑋) for the remainder of this section.

Definition 4.6. Let 𝑆 be a subsemigroup of 𝑋 such that �̃�, 𝛽 ∈ 𝑆, let 𝜃, 𝜑 ∈ 𝑆, and let 𝑘 ∈ ℕ. By
an (�̃�, 𝛽, 𝑘)-inducing sequence from 𝜃 to 𝜑 (in 𝑆), we mean a sequence

𝜃 = 𝜓1, 𝜓2, … , 𝜓𝑘+1 = 𝜑

of elements of 𝑆 where 𝛾(𝜓𝑖, 𝜓𝑖+1) ∈ 𝑆 for each 𝑖 ∈ {1, … , 𝑘}.

The following lemma is an analogue of the (1)⇒ (2) part of Lemma 3.7, showing that (�̃�, 𝛽, 𝑘)-
inducing sequences give rise to (�̃�, 𝛽)-sequences of length 𝑘.
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ON THE DIAMETER OF SEMIGROUPS OF TRANSFORMATIONS AND PARTITIONS 23 of 34

Lemma 4.7. Let 𝑆 be a subsemigroup of 𝑋 such that �̃�, 𝛽 ∈ 𝑆. If there exists an (�̃�, 𝛽, 𝑘)-inducing
sequence

𝜃 = 𝜓1, 𝜓2, … , 𝜓𝑘+1 = 𝜑

from 𝜃 to 𝜑 in 𝑆, then there exists an (�̃�, 𝛽)-sequence

𝜃 = 𝛾1�̃�, 𝛾1𝛽 = 𝛾2�̃�, … , 𝛾𝑘−1𝛽 = 𝛾𝑘�̃�, 𝛾𝑘𝛽 = 𝜑

from 𝜃 to 𝜑 of length 𝑘 in 𝑆.

Proof. By definition, we have 𝛾(𝜓𝑖, 𝜓𝑖+1) ∈ 𝑆 for each 𝑖 ∈ {1, … , 𝑘}. Letting 𝛾𝑖 = 𝛾(𝜓𝑖, 𝜓𝑖+1), we
have 𝛾𝑖�̃� = 𝜓𝑖 and 𝛾𝑖𝛽 = 𝜓𝑖+1. Hence, we have an (�̃�, 𝛽)-sequence

𝜃 = 𝛾1�̃�, 𝛾1𝛽 = 𝛾2�̃�, … , 𝛾𝑘−1𝛽 = 𝛾𝑘�̃�, 𝛾𝑘𝛽 = 𝜑

in 𝑆, as required. □

Lemma 4.7 yields the following counterpart of Proposition 3.8.

Proposition 4.8. Let 𝑆 be a subsemigroup of 𝑋 such that:

(1) �̃�, 𝛽 ∈ 𝑆;
(2) there exists 𝑛 ∈ ℕ such that for any pair 𝜃, 𝜑 ∈ 𝑆 there is an (�̃�, 𝛽, 𝑘)-inducing sequence from 𝜃

to 𝜑 in 𝑆 for some 𝑘 ⩽ 𝑛.

Then 𝜔𝑙
𝑆
is generated by the pair (�̃�, 𝛽) and𝐷𝑙(𝑆) ⩽ 𝑛. Furthermore, if 𝑛 = 1 (so that 𝛾(𝜃, 𝜑) ∈ 𝑆 for

any 𝜃, 𝜑 ∈ 𝑆), then the diagonal left 𝑆-act is generated by (�̃�, 𝛽) (and is hence monogenic).

We now consider 𝑋 ⧵ nj𝑋 .

Theorem 4.9. The semigroup 𝑋 ⧵ nj𝑋 has left diameter 2.

Proof. Let 𝑆 = 𝑋 ⧵ nj𝑋 . By Table 2 and Proposition 2.10, 𝑆 does not have left diameter 1. Using
Proposition 4.8, we show that 𝜔𝑙

𝑆
= ⟨(�̃�, 𝛽)⟩ with 𝐷𝑙(𝑆) ⩽ 2, and hence 𝐷𝑙(𝑆) = 2.

It is clear that �̃�, 𝛽 ∈ 𝑆. Fix any 𝑥 ∈ 𝑋, and consider arbitrary 𝜃, 𝜑 ∈ 𝑆. Certainly, 𝑐𝑥 ∈ 𝑆. We
have

ker 𝛾(𝜃, 𝑐𝑥) = ker 𝜃 ∩ ker 𝑐𝑥 = ker 𝜃 ∩ (𝑋 × 𝑋) = ker 𝜃.

Therefore, as 𝜃 is not injective, it follows that 𝛾(𝜃, 𝑐𝑥) is not injective, that is, 𝛾(𝜃, 𝑐𝑥) ∈ 𝑆. Similarly,
we have 𝛾(𝑐𝑥, 𝜑) ∈ 𝑆. Thus, there is an (�̃�, 𝛽, 2)-inducing sequence 𝜃, 𝑐𝑥, 𝜑, as required. □

We now turn our attention to the dual Baer–Levi semigroup𝑋 .
We call a partition of an infinite set 𝑌 a -partition of 𝑌 if it is of the form {𝐴𝑦 ∶ 𝑦 ∈ 𝑌}

where |𝐴𝑦| = |𝑌| for all 𝑦 ∈ 𝑌. For each 𝛼 ∈ 𝑋 , the set {𝑥𝛼−1 ∶ 𝑥 ∈ 𝑋} of kernel classes of 𝛼
forms a-partition of 𝑋.
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24 of 34 EAST et al.

The following technical lemma concerning -partitions will be crucial in determining the
left diameter of𝑋 .

Lemma 4.10. Let {𝐴𝑥 ∶ 𝑥 ∈ 𝑋} and {𝐵𝑥 ∶ 𝑥 ∈ 𝑋} be a pair of -partitions of 𝑋. Then there
exists a third -partition {𝐶𝑥 ∶ 𝑥 ∈ 𝑋} of 𝑋 such that for each 𝑥 ∈ 𝑋 the set {𝐴𝑥 ∩ 𝐶𝑦 ∶ 𝑦 ∈ 𝑋}
is a-partition of 𝐴𝑥 , and {𝐵𝑥 ∩ 𝐶𝑦 ∶ 𝑦 ∈ 𝑋} is a-partition of 𝐵𝑥 .

Proof. Let |𝑋| = 𝜅, and for convenience assume that𝑋 = 𝜅, where as usual the cardinal 𝜅 is iden-
tified with the set of all ordinals 𝜆 < 𝜅. So, consider a pair of -partitions {𝐴𝜆 ∶ 𝜆 ∈ 𝜅} and
{𝐵𝜆 ∶ 𝜆 ∈ 𝜅}. We begin by defining a sequence (𝑥𝜆)𝜆∈𝜅 of distinct elements of 𝑋 by transfinite
induction, as follows. First, we define the set

𝑇 = 𝜅3 × {0, 1} = {(𝛼, 𝛽, 𝛾, 𝑛) ∶ 𝛼, 𝛽, 𝛾 ∈ 𝜅, 𝑛 ∈ {0, 1}}.

As |𝑇| = 𝜅, wemay fix a bijection 𝜅 → 𝑇, 𝜆 ↦ 𝑡𝜆. Now let 𝜆 ∈ 𝜅, and suppose that we have defined
the elements 𝑥𝜇 for all 𝜇 < 𝜆. Also write 𝑡𝜆 = (𝛼, 𝛽, 𝛾, 𝑛), and define 𝑌 = {𝑥𝜇 ∶ 𝜇 < 𝜆}. As |𝑌| =|𝜆| < 𝜅 (as 𝜅 is a cardinal), we can define 𝑥𝜆 to be any element of 𝐴𝛼⧵𝑌 if 𝑛 = 0, or any element
of 𝐵𝛼⧵𝑌 if 𝑛 = 1.
Now that we have defined the sequence (𝑥𝜆)𝜆∈𝜅, for each 𝜆 ∈ 𝜅 we define

𝑇𝜆 = 𝜅 × 𝜅 × {𝜆} × {0, 1} = {(𝛼, 𝛽, 𝜆, 𝑛) ∶ 𝛼, 𝛽 ∈ 𝜅, 𝑛 ∈ {0, 1}}.

Finally, we set

𝐶𝜆 =

{
{𝑥𝜇 ∶ 𝑡𝜇 ∈ 𝑇𝜆} if 𝜆 ⩾ 1,
{𝑥𝜇 ∶ 𝑡𝜇 ∈ 𝑇𝜆} ∪ 𝑋⧵{𝑥𝜆 ∶ 𝜆 ∈ 𝜅} if 𝜆 = 0.

Then {𝐶𝜆 ∶ 𝜆 ∈ 𝜅} is a-partition of 𝑋 because {𝑇𝜆 ∶ 𝜆 ∈ 𝜅} is a-partition of 𝑇. Also, for
any 𝜆, 𝜇 ∈ 𝜅, the set 𝐶𝜆 contains 𝜅 elements of the form 𝑥𝜈 where 𝑡𝜈 ∈ {𝜇} × 𝜅 × {𝜆} × {0}, each of
which belongs to 𝐴𝜇 by definition. This shows that |𝐴𝜇 ∩ 𝐶𝜆| = 𝜅 for all 𝜆, 𝜇 ∈ 𝜅. Similarly, we
have |𝐵𝜇 ∩ 𝐶𝜆| = 𝜅 for all 𝜆, 𝜇 ∈ 𝜅. This completes the proof. □

We are now in a position to compute the left diameter of𝑋 .

Theorem 4.11. The dual Baer–Levi semigroup𝑋 has left diameter 2.

Proof. Let 𝑆 = 𝑋 . By Table 2 and Proposition 2.10, 𝑆 does not have left diameter 1.
To prove the inequality 𝐷𝑙(𝑆) ⩽ 2, we use Proposition 4.8. We have already noted that �̃�, 𝛽 ∈ 𝑆.

Consider 𝜃, 𝜑 ∈ 𝑆. For each 𝑥 ∈ 𝑋, let 𝐴𝑥 = 𝑥𝜃−1 and 𝐵𝑥 = 𝑥𝜑−1. Then {𝐴𝑥 ∶ 𝑥 ∈ 𝑋} and
{𝐵𝑥 ∶ 𝑥 ∈ 𝑋} are-partitions of𝑋. By Lemma 4.10, there exists a-partition {𝐶𝑥 ∶ 𝑥 ∈ 𝑋}
of 𝑋 such that for each 𝑥 ∈ 𝑋 the set {𝐴𝑥 ∩ 𝐶𝑦 ∶ 𝑦 ∈ 𝑋} is a -partition of 𝐴𝑥, and
{𝐵𝑥 ∩ 𝐶𝑦 ∶ 𝑦 ∈ 𝑋} is a -partition of 𝐵𝑥. Let 𝜆 ∈ 𝑆 be given by 𝑥𝜆−1 = 𝐶𝑥 for all 𝑥 ∈ 𝑋. We
claim that

𝜃, 𝜆, 𝜑
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ON THE DIAMETER OF SEMIGROUPS OF TRANSFORMATIONS AND PARTITIONS 25 of 34

is an (�̃�, 𝛽, 2)-inducing sequence from 𝜃 to 𝜑. Letting 𝛾1 = 𝛾(𝜃, 𝜆) and 𝛾2 = 𝛾(𝜆, 𝜑), we need to
show that 𝛾1, 𝛾2 ∈ 𝑆. Indeed, for each 𝑦 ∈ 𝑋 we have

𝑦𝛾−11 = {𝑥 ∈ 𝑋 ∶ (𝑥𝜃, 𝑥𝜆) = 𝑦𝜈} = {𝑥 ∈ 𝑋 ∶ 𝑥𝜃 = 𝑦�̃� and 𝑥𝜆 = 𝑦𝛽}

= {𝑥 ∈ 𝑋 ∶ 𝑥 ∈ (𝑦�̃�)𝜃−1 and 𝑥 ∈ (𝑦𝛽)𝜆−1} = {𝑥 ∈ 𝑋 ∶ 𝑥 ∈ 𝐴𝑦�̃� and 𝑥 ∈ 𝐶𝑦𝛽}

= 𝐴𝑦�̃� ∩ 𝐶𝑦𝛽,

and similarly 𝑦𝛾−1
2
= 𝐶𝑦�̃� ∩ 𝐵𝑦𝛽 . Thus, for each 𝑦 ∈ 𝑋 we have

|𝑦𝛾−11 | = |𝐴𝑦�̃� ∩ 𝐶𝑦𝛽| = |𝑋| and |𝑦𝛾−12 | = |𝐶𝑦�̃� ∩ 𝐵𝑦𝛽| = |𝑋|,
so that 𝛾1, 𝛾2 ∈ 𝑆, as required. □

Next, we establish a technical lemma, and then employ it to show that submonoids of urj𝑋
containing1𝑋 have left diameter either 3 or 4. In this lemma andwhat follows, a subset𝑌 ⊂ 𝑋

is colarge (in 𝑋) if |𝑋⧵𝑌| = |𝑋|.
Lemma 4.12. Let {𝛼1, … , 𝛼𝑛} be a finite subset of 𝑋 , and let 𝑥1, … , 𝑥𝑛−1 be (not necessarily distinct)
elements of 𝑋. If the set 𝑌 =

⋃
1⩽𝑖⩽𝑛−1 𝑥𝑖𝛼

−1
𝑖

is colarge in 𝑋, then there exists at most one element
𝑥 ∈ 𝑋 such that 𝑌 ∪ 𝑥𝛼−1𝑛 is not colarge in 𝑋.

Proof. Suppose that 𝑌 ∪ 𝑥𝛼−1𝑛 is not colarge. As 𝑋⧵𝑌 =
(
𝑋⧵(𝑌 ∪ 𝑥𝛼−1𝑛 )

)
∪ (𝑥𝛼−1𝑛 ⧵𝑌), and|𝑋⧵𝑌| = |𝑋|, it follows that |𝑥𝛼−1𝑛 ⧵𝑌| = |𝑋|. But then for any 𝑦 ∈ 𝑋⧵{𝑥} we have

𝑋⧵(𝑌 ∪ 𝑦𝛼−1𝑛 ) = (𝑋⧵𝑌) ∩ (𝑋⧵𝑦𝛼−1𝑛 ) ⊇ 𝑥𝛼−1𝑛 ⧵𝑌,

and hence 𝑌 ∪ 𝑦𝛼−1𝑛 is colarge. □

Proposition 4.13. If 𝑆 is a monoid such that1𝑋 ⩽ 𝑆 ⩽ urj𝑋 , then 𝜔𝑙𝑆 is finitely generated and
𝐷𝑙(𝑆) ∈ {3, 4}.

Proof. As𝑋 is an ideal of 𝑆, it follows from Theorem 4.11 and the dual of Lemma 2.4 that 𝜔𝑙
𝑆

is finitely generated with 𝐷𝑙(𝑆) ⩽ 4.
Now suppose for a contradiction that 𝐷𝑙(𝑈, 𝑆) ⩽ 2 for some finite set 𝑈 ⊂ 𝑆. Let

𝑉 = {𝜇−1𝜆 ∶ 𝜇 ∈ 𝑈 ∩ 𝑋, 𝜆 ∈ 𝑈},

and note that 𝑉 is finite. By an easy induction argument, using Lemma 4.12, we may fix elements
𝑦𝜑 ∈ 𝑋 (𝜑 ∈ 𝑉) such that 𝐴 =

⋃
𝜑∈𝑉 𝑦𝜑𝜑

−1 is colarge. For each pair 𝛼, 𝛽 ∈ 𝑈 and each 𝜑 ∈ 𝑉,
we fix some 𝑥𝛼,𝛽,𝜑 ∈ 𝑋 such that 𝑥𝛼,𝛽,𝜑𝛼−1 ∩ 𝑦𝜑𝛽−1 ≠ ∅ (as 𝑦𝜑 ∈ 𝑋 = im𝛽, we can pick any
𝑧 ∈ 𝑦𝜑𝛽

−1 and define 𝑥𝛼,𝛽,𝜑 = 𝑧𝛼). Now choose an arbitrary 𝜃 ∈ 𝑋 (⊆ 𝑆) such that
{𝑥𝛼,𝛽,𝜑 ∶ 𝛼, 𝛽 ∈ 𝑈, 𝜑 ∈ 𝑉}𝜃

−1 ⊆ 𝑋⧵𝐴 (such a map exists because 𝐴 is colarge). As 𝐷𝑙(𝑈, 𝑆) ⩽ 2,
there exists a 𝑈-sequence

𝜃 = 𝛾𝛼, 𝛾𝛽 = 𝛿𝜆, 𝛿𝜇 = 1𝑋

 14697750, 2024, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12944 by T

est, W
iley O

nline L
ibrary on [14/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



26 of 34 EAST et al.

(where𝛼, 𝛽, 𝜆, 𝜇 ∈ 𝑈). Asurj𝑋 ⧵ 𝑋 is an ideal ofurj𝑋 [9, Proof of Theorem4.4.2], it follows that
𝛿, 𝜇 ∈ 𝑋 with 𝛿 = 𝜇−1. Thus, letting 𝜑 = 𝜇−1𝜆 ∈ 𝑉, we have 𝜃 = 𝛾𝛼 and 𝛾𝛽 = 𝜑. Let 𝑥 = 𝑥𝛼,𝛽,𝜑,
choose some 𝑧 ∈ 𝑥𝛼−1 ∩ 𝑦𝜑𝛽−1, and then pick some 𝑢 ∈ 𝑧𝛾−1. Then 𝑢𝜃 = 𝑢𝛾𝛼 = 𝑧𝛼 = 𝑥, so
𝑢 ∈ 𝑥𝜃−1. On the other hand, we have 𝑢𝜑 = 𝑢𝛾𝛽 = 𝑧𝛽 = 𝑦𝜑, so 𝑢 ∈ 𝑦𝜑𝜑

−1 ∈ 𝐴. But this
contradicts the fact that 𝑥𝜃−1 ⊆ 𝑋⧵𝐴. Thus, 𝐷𝑙(𝑆) ⩾ 3. □

Note that the set urj𝑋 ⧵𝑋 is not a subsemigroup of urj𝑋 (in contrast to the situation for
nj𝑋 , where nj𝑋 ⧵ 𝑋 is a subsemigroup). However, for a subsemigroup 𝑆 ofurj𝑋 , if 𝑆⧵𝑋
is finite and non-empty, then it is a subgroup of 𝑋 .

Theorem 4.14. For any finite subgroup 𝐺 of 𝑋 , the monoid 𝐺 ∪𝑋 has left diameter 3. In
particular,1𝑋 has left diameter 3.

Proof. Let 𝑆 = 𝐺 ∪𝑋 . As 𝐷𝑙({�̃�, 𝛽},𝑋) = 2 (by the proof of Theorem 4.11), it is clear that
𝜔𝑙
𝑆
is generated by the finite set𝑈 = 𝐺 ∪ {�̃�, 𝛽} and that 𝐷𝑙(𝑈, 𝑆) ⩽ 3. On the other hand, we have

𝐷𝑙(𝑆) ⩾ 3 by Proposition 4.13. Thus, 𝐷𝑙(𝑆) = 3. □

We now raise the following question, concerning a natural analogue of Proposition 3.15.

Open Problem 4.15. If 𝑆 is a subsemigroup of urj𝑋 containing a finitely transitive subsemigroup
of 𝑆⧵𝑋 , and 𝜔𝑙𝑆 is finitely generated, is 𝐷𝑟(𝑆) ⩾ 4?

The following result affirmatively answersOpen Problem4.15 in the special case that 𝑆 contains
𝑋 .

Proposition 4.16. Let 𝑆 be a monoid such that 𝑋 ⩽ 𝑆 ⩽ urj𝑋 . If 𝜔𝑙𝑆 is finitely generated, then
𝐷𝑙(𝑆) ⩾ 4.

Proof. Suppose for a contradiction that𝐷𝑙(𝑈, 𝑆) ⩽ 3 for some finite set𝑈 ⊂ 𝑆. Let𝑃 denote the col-
lection of all tuples (𝛼1, 𝛽1, 𝛼2, 𝛽2, 𝛼3, 𝛽3) ∈ 𝑈6 where 𝛼1, 𝛽3 ∈ 𝑋 . Write 𝑃 = {𝑝1, … , 𝑝𝑛, … , 𝑝𝑛+𝑟},
where 𝑝𝑖 = (𝛼(𝑖)

1
, … , 𝛽(𝑖)

3
) (1 ⩽ 𝑖 ⩽ 𝑛 + 𝑟) and 𝑝1, … , 𝑝𝑛 are those tuples 𝑝 = (𝛼1, … , 𝛽3) ∈ 𝑃 for

which there exists an element 𝑤𝑝 ∈ 𝑋 such that the set
⋃
𝑧≠𝑤𝑝

𝑧𝛽−1
2
𝛼2 is finite. For 𝑖 ∈ {1, … , 𝑛},

write𝑤𝑝𝑖 as𝑤𝑖 , and let𝑊 = {𝑤1, … ,𝑤𝑛}. Also, let 𝐿 =
⋃
1⩽𝑖⩽𝑛

⋃
𝑧≠𝑤𝑖

𝑧(𝛽
(𝑖)
2
)
−1
𝛼
(𝑖)
2
, and note that 𝐿

is finite. We now establish the following claim.

Claim.

(1) There exist 𝑢𝑖, 𝑣𝑖, 𝑥𝑖, 𝑦𝑖 ∈ 𝑋 (1 ⩽ 𝑖 ⩽ 𝑛) such that

𝑢𝑖 ∉ 𝑊, 𝑣𝑖 ∉ 𝐿, 𝑥𝑖 ∈ 𝑢𝑖(𝛼
(𝑖)
3
)
−1
𝛽(𝑖)
3

and 𝑦𝑖 ∈ 𝑣𝑖(𝛽
(𝑖)
1
)
−1
𝛼(𝑖)
1
,

with 𝑥𝑖 ≠ 𝑥𝑖′ and 𝑦𝑖 ≠ 𝑦𝑖′ for distinct pairs 𝑖, 𝑖′ ∈ {1, … , 𝑛}.
(2) Let 𝑦𝑖 (1 ⩽ 𝑖 ⩽ 𝑛) be as given in (1), and let

𝐾 = {𝑦𝑖(𝛼
(𝑛+𝑗)
1

)
−1
𝛽
(𝑛+𝑗)
1

∶ 1 ⩽ 𝑖 ⩽ 𝑛, 1 ⩽ 𝑗 ⩽ 𝑟}.
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ON THE DIAMETER OF SEMIGROUPS OF TRANSFORMATIONS AND PARTITIONS 27 of 34

For each 1 ⩽ 𝑗 ⩽ 𝑟, there exist 𝑎𝑗, 𝑏𝑗 ∈ 𝑋 with 𝑏𝑗 ∈ 𝑎𝑗(𝛽
(𝑛+𝑗)
2

)
−1
𝛼
(𝑛+𝑗)
2

⧵𝐾 such that

⋃
1⩽𝑞⩽𝑗

𝑎𝑞(𝛼
(𝑛+𝑞)
3

)
−1
𝛽
(𝑛+𝑞)
3

and
⋃
1⩽𝑞⩽𝑗

𝑏𝑞(𝛽
(𝑛+𝑞)
1

)
−1
𝛼
(𝑛+𝑞)
1

are colarge.

Proof. We prove both (1) and (2) by induction.

(1) For the base case, pick any 𝑢1 ∉ 𝑊 and 𝑣1 ∉ 𝐿, and then choose 𝑥1 ∈ 𝑢1(𝛼
(1)
3
)
−1
𝛽(1)
3

and

𝑦1 ∈ 𝑣1(𝛽
(1)
1
)
−1
𝛼
(1)
1
.

Now let 𝑘 ∈ {2, … , 𝑛}, and assume that 𝑢𝑖, 𝑣𝑖, 𝑥𝑖, 𝑦𝑖 ∈ 𝑋 (1 ⩽ 𝑖 ⩽ 𝑘 − 1) have been chosen
such that

𝑢𝑖 ∉ 𝑊, 𝑣𝑖 ∉ 𝐿, 𝑥𝑖 ∈ 𝑢𝑖(𝛼
(𝑖)
3
)
−1
𝛽
(𝑖)
3

and 𝑦𝑖 ∈ 𝑣𝑖(𝛽
(𝑖)
1
)
−1
𝛼
(𝑖)
1
,

with 𝑥𝑖 ≠ 𝑥𝑖′ and 𝑦𝑖 ≠ 𝑦𝑖′ for distinct pairs 𝑖, 𝑖′ ∈ {1, … , 𝑘 − 1}. As the map (𝛽
(𝑘)
3
)
−1
𝛼
(𝑘)
3

is sur-

jective, its set of kernel classes {𝑥(𝛼(𝑘)
3
)
−1
𝛽(𝑘)
3

∶ 𝑥 ∈ 𝑋} is infinite. Therefore, we may choose
𝑢𝑘 ∉ 𝑊 such that

𝑢𝑘(𝛼
(𝑘)
3
)
−1
𝛽
(𝑘)
3
∩ {𝑥1, … , 𝑥𝑘−1} = ∅.

Similarly, we may choose 𝑣𝑘 ∉ 𝐿 such that

𝑣𝑘(𝛽
(𝑘)
1
)
−1
𝛼
(𝑘)
1
∩ {𝑦1, … , 𝑦𝑘−1} = ∅.

Take any 𝑥𝑘 ∈ 𝑢𝑘(𝛼
(𝑘)
3
)
−1
𝛽(𝑘)
3

and 𝑦𝑘 ∈ 𝑣𝑘(𝛽
(𝑘)
1
)
−1
𝛼(𝑘)
1
. This completes the inductive step.

(2) We first note that𝐾 is finite. Now, for the base case, let 𝑎1 ∈ 𝑋 be such that 𝑎1(𝛽
(𝑛+1)
2

)
−1
𝛼
(𝑛+1)
2

is not contained in 𝐾 (which is possible by surjectivity), and let 𝑏1 ∈ 𝑎1(𝛽
(𝑛+1)
2

)
−1
𝛼(𝑛+1)
2

⧵𝐾.

The sets 𝑎1(𝛼
(𝑛+1)
3

)
−1
𝛽
(𝑛+1)
3

and 𝑏1(𝛽
(𝑛+1)
1

)
−1
𝛼
(𝑛+1)
1

are colarge because the sets 𝑎1(𝛼
(𝑛+1)
3

)
−1

and 𝑏1(𝛽
(𝑛+1)
1

)
−1
are colarge and the maps 𝛽(𝑛+1)

3
and 𝛼(𝑛+1)

1
are bijections.

Now let 𝑗 ∈ {2, … , 𝑟}, and assume that we have chosen 𝑎𝑞, 𝑏𝑞 ∈ 𝑋 (1 ⩽ 𝑞 ⩽ 𝑗 − 1) with

𝑏𝑞 ∈ 𝑎𝑞(𝛽
(𝑛+𝑞)
2

)
−1
𝛼
(𝑛+𝑞)
2

⧵𝐾 such that

𝐴𝑗−1 =
⋃

1⩽𝑞⩽𝑗−1

𝑎𝑞(𝛼
(𝑛+𝑞)
3

)
−1
𝛽
(𝑛+𝑞)
3

and 𝐵𝑗−1 =
⋃

1⩽𝑞⩽𝑗−1

𝑏𝑞(𝛽
(𝑛+𝑞)
1

)
−1
𝛼
(𝑛+𝑞)
1

are colarge. Observing that for any 𝛼, 𝛽 ∈ 𝑋 we have 𝛼−1𝛽 = (𝛽−1𝛼)
−1, by Lemma 4.12 there

exists at most one element 𝑐𝑗 such that the set 𝐴𝑗−1 ∪ 𝑐𝑗(𝛼
(𝑛+𝑗)
3

)
−1
𝛽
(𝑛+𝑗)
3

is not colarge, and at

most one element 𝑑𝑗 such that 𝐵𝑗−1 ∪ 𝑑𝑗(𝛽
(𝑛+𝑗)
1

)
−1
𝛼
(𝑛+𝑗)
1

is not colarge. Let 𝐾′ = 𝐾 ∪ {𝑑𝑗} if

 14697750, 2024, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12944 by T

est, W
iley O

nline L
ibrary on [14/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



28 of 34 EAST et al.

𝑑𝑗 exists; otherwise, let 𝐾′ = 𝐾. Now, if 𝑐𝑗 were the only element of 𝑋 such that

𝑐𝑗

(
𝛽
(𝑛+𝑗)
2

)−1
𝛼
(𝑛+𝑗)
2

⊈ 𝐾′,

then we would have
⋃
𝑧≠𝑐𝑗

𝑧(𝛽
(𝑛+𝑗)
2

)
−1
𝛼
(𝑛+𝑗)
2

⊆ 𝐾′, which is finite, contradicting the fact that
𝑝𝑛+𝑗 is not one of the tuples 𝑝1, … , 𝑝𝑛. Hence, we may pick 𝑎𝑗 ∈ 𝑋 (with 𝑎𝑗 ≠ 𝑐𝑗 if 𝑐𝑗 exists)
such that

𝐴𝑗−1 ∪ 𝑎𝑗

(
𝛼
(𝑛+𝑗)
3

)−1
𝛽
(𝑛+𝑗)
3

=
⋃
1⩽𝑞⩽𝑗

𝑎𝑞

(
𝛼
(𝑛+𝑞)
3

)−1
𝛽
(𝑛+𝑞)
3

is colarge, and 𝑎𝑗(𝛽
(𝑛+𝑗)
2

)
−1
𝛼
(𝑛+𝑗)
2

possesses an element 𝑏𝑗 ∉ 𝐾′. Then

𝐵𝑗−1 ∪ 𝑏𝑗

(
𝛽
(𝑛+𝑗)
1

)−1
𝛼
(𝑛+𝑗)
1

=
⋃
1⩽𝑞⩽𝑗

𝑏𝑞

(
𝛽
(𝑛+𝑞)
1

)−1
𝛼
(𝑛+𝑞)
1

is colarge. This completes the inductive step. □

We fix the elements 𝑢𝑖, 𝑣𝑖, 𝑥𝑖, 𝑦𝑖, 𝑎𝑗, 𝑏𝑗 ∈ 𝑋 (1 ⩽ 𝑖 ⩽ 𝑛, 1 ⩽ 𝑗 ⩽ 𝑟) and the set 𝐾, as given in the
above claim, for the remainder of this proof. Let

𝐴 =
⋃
1⩽𝑗⩽𝑟

𝑎𝑗

(
𝛼
(𝑛+𝑗)
3

)−1
𝛽
(𝑛+𝑗)
3

and 𝐵 =
⋃
1⩽𝑗⩽𝑟

𝑏𝑗

(
𝛽
(𝑛+𝑗)
1

)−1
𝛼
(𝑛+𝑗)
1

.

Choose 𝜃 ∈ 𝑋 such that

𝑥𝑖𝜃 = 𝑦𝑖 (1 ⩽ 𝑖 ⩽ 𝑛) and (𝐴⧵{𝑥𝑖 ∶ 1 ⩽ 𝑖 ⩽ 𝑛})𝜃 ⊆ 𝑋⧵𝐵.

(Such a bijection exists because the elements 𝑥1, … , 𝑥𝑛 are distinct, the elements 𝑦1, … , 𝑦𝑛 are
distinct, and the sets 𝐴⧵{𝑥𝑖 ∶ 1 ⩽ 𝑖 ⩽ 𝑛} and 𝐵 are both colarge.) As 𝐷𝑙(𝑆,𝑈) ⩽ 3, there exists a
𝑈-sequence

𝜃 = 𝛾1𝛼1, 𝛾1𝛽1 = 𝛾2𝛼2, 𝛾2𝛽2 = 𝛾3𝛼3, 𝛾3𝛽3 = 1𝑋.

Asurj𝑋 ⧵ 𝑋 is an ideal ofurj𝑋 , we have 𝛾1, 𝛼1, 𝛾3, 𝛽3 ∈ 𝑋 with 𝛾1 = 𝜃𝛼−1
1
and 𝛾3 = 𝛽−1

3
. Thus,

𝑝 = (𝛼1, 𝛽1, 𝛼2, 𝛽2, 𝛼3, 𝛽3) ∈ 𝑃, and we have

𝜃𝛼−11 𝛽1 = 𝛾2𝛼2, 𝛾2𝛽2 = 𝛽−13 𝛼3.

Now, for any 𝑧 ∈ 𝑋,

𝑦 ∈ 𝑧𝛽−12 𝛼2 ⇔ there exists 𝑥 ∈ 𝑋 such that 𝑥𝛽2 = 𝑧, 𝑦 = 𝑥𝛼2

⇔ there exists 𝑥′ ∈ 𝑋 such that 𝑥′𝛾2𝛽2 = 𝑧, 𝑦 = 𝑥′𝛾2𝛼2 (as 𝛾2 is surjective)

⇔ 𝑦 ∈ 𝑧(𝛾2𝛽2)
−1(𝛾2𝛼2)
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ON THE DIAMETER OF SEMIGROUPS OF TRANSFORMATIONS AND PARTITIONS 29 of 34

⇔ 𝑦 ∈ 𝑧(𝛽−13 𝛼3)
−1
(𝜃𝛼−11 𝛽1)

⇔ 𝑦 ∈ 𝑧𝛼−13 𝛽3𝜃𝛼
−1
1 𝛽1.

Thus, for each 𝑧 ∈ 𝑋 we have

(∗) 𝑧𝛽−12 𝛼2 = 𝑧𝛼−13 𝛽3𝜃𝛼
−1
1 𝛽1.

Suppose first that 𝑝 = 𝑝𝑖 where 𝑖 ∈ {1, … , 𝑛} (so 𝛼𝑘 = 𝛼
(𝑖)
𝑘
, 𝛽𝑘 = 𝛽

(𝑖)
𝑘
for 𝑘 = 1, 2, 3). Then 𝑢𝑖 ∉ 𝑊,

so 𝑢𝑖𝛽−12 𝛼2 ⊆ 𝐿. But then we have

𝑣𝑖 = 𝑦𝑖𝛼
−1
1 𝛽1 = 𝑥𝑖𝜃𝛼

−1
1 𝛽1 ∈ 𝑢𝑖𝛼

−1
3 𝛽3𝜃𝛼

−1
1 𝛽1 = 𝑢𝑖𝛽

−1
2 𝛼2 ⊆ 𝐿,

contradicting the choice of 𝑣𝑖 .
Now suppose that 𝑝 = 𝑝𝑛+𝑗 where 𝑗 ∈ {1, … , 𝑟} (so 𝛼𝑘 = 𝛼

(𝑛+𝑗)

𝑘
, 𝛽𝑘 = 𝛽

(𝑛+𝑗)

𝑘
for 𝑘 = 1, 2, 3).

Then we have

𝑏𝑗 ∈ 𝑎𝑗𝛽
−1
2 𝛼2 = 𝑎𝑗𝛼

−1
3 𝛽3𝜃𝛼

−1
1 𝛽1 ⊆ 𝐴𝜃𝛼−11 𝛽1

⊆ ((𝐴⧵{𝑥𝑖 ∶ 1 ⩽ 𝑖 ⩽ 𝑛}) ∪ {𝑥𝑖 ∶ 1 ⩽ 𝑖 ⩽ 𝑛})𝜃𝛼
−1
1 𝛽1

⊆ (𝑋⧵𝐵)𝛼−11 𝛽1 ∪ {𝑦𝑖𝛼
−1
1 𝛽1 ∶ 1 ⩽ 𝑖 ⩽ 𝑛}

⊆ (𝑋⧵𝑏𝑗𝛽
−1
1 𝛼1)𝛼

−1
1 𝛽1 ∪ 𝐾

⊆ (𝑋⧵{𝑏𝑗}) ∪ 𝐾 = 𝑋⧵{𝑏𝑗},

where the first equality is due to (∗) and the final equality is due to the fact that 𝑏𝑗 ∉ 𝐾. Again,
we have a contradiction. Thus, 𝐷𝑙(𝑆) ⩾ 4. □
By Propositions 4.13 and 4.16, we have:

Theorem 4.17. If 𝑆 is a monoid such that 𝑋 ∪𝑋 ⩽ 𝑆 ⩽ urj𝑋 , then 𝐷𝑙(𝑆) = 4. In particular,
the monoids 𝑋 ∪𝑋 and urj𝑋 have left diameter 4.

Unfortunately, we have not obtained an analogue of Theorem 3.17, classifying those subsemi-
groups of urj𝑋 containing 𝑋 that have left diameter 4. We conclude this section by considering
a potential such classification.
First, for a map 𝛼 ∈ 𝑋 define

𝐾(𝛼) = {𝑥 ∈ 𝑋 ∶ |𝑥𝛼−1| = |𝑋|},
and let 𝑘(𝛼) = |𝐾(𝛼)|. The set 𝐾(𝛼) and parameter 𝑘(𝛼) were introduced in [13]. Note that
𝑋 = {𝛼 ∈ urj𝑋 ∶ 𝐾(𝛼) = 𝑋}.

Proposition 4.18. Let 𝑆 be amonoid such that 𝑋 ⩽ 𝑆 ⩽ urj𝑋 . Then 𝑆 contains𝑋 if and only
if there exists some 𝛼 ∈ 𝑆 such that 𝑘(𝛼) = |𝑋|.
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30 of 34 EAST et al.

Proof. We have already observed that 𝐾(𝛼) = 𝑋 for any 𝛼 ∈ 𝑋 , so the forward direction
clearly holds.
For the reverse implication, let 𝑌 be any subset of 𝐾(𝛼) such that |𝑌| = |𝑋⧵𝑌| = |𝑋|, and fix

a bijection 𝑋 → 𝑌, 𝑥 ↦ 𝑦𝑥. For each 𝑥 ∈ 𝑋 fix some 𝑎𝑥 ∈ 𝑥𝛼−1, and note that 𝐴 = {𝑎𝑥 ∶ 𝑥 ∈ 𝑋}

satisfies |𝐴| = |𝑋⧵𝐴| = |𝑋|, as𝐾(𝛼) ≠ ∅. The map𝑌 → 𝐴, 𝑦𝑥 ↦ 𝑎𝑥 can therefore be extended to
a bijection 𝜋 ∈ 𝑋 . We then see that 𝛽 = 𝛼𝜋𝛼 ∈ 𝑆 belongs to 𝑋 . Indeed, for any 𝑥 ∈ 𝑋 we
have 𝑥𝛽−1 = 𝑥𝛼−1𝜋−1𝛼−1 ⊇ 𝑎𝑥𝜋

−1𝛼−1 = 𝑦𝑥𝛼
−1, and |𝑦𝑥𝛼−1| = |𝑋| as 𝑦𝑥 ∈ 𝑌 ⊆ 𝐾(𝛼).

Finally, let 𝛾 ∈ 𝑋 be arbitrary. Take any bijection𝜓 ∈ 𝑋 ⊆ 𝑆 such that (𝑥𝛾−1)𝜓 = 𝑥𝛽−1 for
each 𝑥 ∈ 𝑋. Then, for each 𝑥 ∈ 𝑋, we have 𝑥𝜓 ∈

(
(𝑥𝛾)𝛾−1

)
𝜓 = (𝑥𝛾)𝛽−1, so that 𝑥𝛾 = (𝑥𝜓)𝛽 =

𝑥(𝜓𝛽). Thus, 𝛾 = 𝜓𝛽 ∈ 𝑆, and hence𝑋 ⊆ 𝑆. □

Open Problem 4.19. For a monoid 𝑆 such that 𝑋 ⩽ 𝑆 ⩽ urj𝑋 , are the following equivalent?

(1) 𝐷𝑙(𝑆) = 4.
(2) 𝜔𝑙

𝑆
is finitely generated.

(3) There exists 𝛼 ∈ 𝑆 such that 𝑘(𝛼) = |𝑋|.
(4) 𝑆 contains𝑋 .

(1)⇒ (2) certainly holds, we have (3)⇔(4) by Proposition 4.18, and (4)⇒ (1) follows from The-
orem 4.17. Thus, to answer this question in the affirmative, it would suffice to prove that (2)
implies (3).

5 MONOIDS OF PARTITIONS

In this section, we consider the partition monoid 𝑋 and the partial Brauer monoid 𝑋 (where
𝑋 is an arbitrary infinite set).
The partition monoid 𝑋 consists of all set partitions of 𝑋 ∪ 𝑋′, where 𝑋′ = {𝑥′ ∶ 𝑥 ∈ 𝑋} is a

disjoint copy of 𝑋. So, an element of 𝑋 is of the form 𝛼 = {𝐴𝑖 ∶ 𝑖 ∈ 𝐼}, where the 𝐴𝑖 are non-
empty, pairwise disjoint subsets of𝑋 ∪ 𝑋′ such that𝑋 ∪ 𝑋′ =

⋃
𝑖∈𝐼 𝐴𝑖; the𝐴𝑖 are called the blocks

of 𝛼. An element of 𝑋 may be represented as a graph with vertices 𝑋 ∪ 𝑋′ whose connected
components are the blocks of the partition; when depicting such a graph, vertices from 𝑋 and 𝑋′
are displayed on upper and lower rows, respectively. It is from this graph-theoretic viewpoint that
we define the product in 𝑋 .
Let𝛼, 𝛽 ∈ 𝑋 . Introduce another copy𝑋′′ = {𝑥′′ ∶ 𝑥 ∈ 𝑋} of𝑋, disjoint from𝑋 ∪ 𝑋′. Denote by

𝛼↓ the graph obtained from 𝛼 by replacing every 𝑥′ with 𝑥′′, and denote by 𝛽↑ the graph obtained
from 𝛽 by replacing every 𝑥 with 𝑥′′. The product graph Π(𝛼, 𝛽) is the graph with vertex set
𝑋 ∪ 𝑋′′ ∪ 𝑋′ and edge set the union of the edge sets of 𝛼↓ and 𝛽↑. The graph Π(𝛼, 𝛽) is drawn
with vertices from 𝑋′′ displayed in a new middle row. We define 𝛼𝛽 to be the partition of 𝑋 ∪ 𝑋′
such that 𝑢, 𝑣 ∈ 𝑋 ∪ 𝑋′ belong to the same block if and only if 𝑢 and 𝑣 belong to the same con-
nected component of Π(𝑎, 𝑏). We illustrate this product in Figure 1 (using elements from a finite
partition monoid). Under this product, 𝑋 is a monoid with identity

{
{𝑥, 𝑥′} ∶ 𝑥 ∈ 𝑋

}
.

The partial Brauermonoid𝑋 is the submonoid of𝑋 consisting of all partitionswhose blocks
have size at most 2. (Thus, the partition 𝛽 in Figure 1 in fact belongs to 6.)
It turns out that both 𝑋 and 𝑋 have right diameter 1 and left diameter 1, as follows from

the following stronger result.
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ON THE DIAMETER OF SEMIGROUPS OF TRANSFORMATIONS AND PARTITIONS 31 of 34

F IGURE 1 Two partitions 𝛼, 𝛽 ∈ 6 (left), the product graph Π(𝑎, 𝑏) (middle) and the product 𝛼𝛽 (right).

Theorem 5.1. The diagonal right act and diagonal left act of both 𝑋 and 𝑋 are monogenic.
Consequently, both 𝑋 and 𝑋 have right diameter 1 and left diameter 1.

Proof. The partition monoid 𝑋 has an involution ∗∶ 𝑋 → 𝑋 , 𝛼 → 𝛼∗, where 𝛼∗ is obtained
from 𝛼 by swapping dashed and undashed vertices (pictorially, 𝛼∗ is ‘𝛼 upside-down’), and this
map restricts to an involution on 𝑋 . It follows that for all partitions 𝜃, 𝜑, 𝛼, 𝛽, 𝛾 ∈ 𝑋 (or 𝑋)
we have

(𝜃, 𝜑) = (𝛼, 𝛽)𝛾 ⇔ (𝜃∗, 𝜑∗) = 𝛾∗(𝛼∗, 𝛽∗),

and hence the diagonal right act of 𝑋 (resp., 𝑋) is monogenic if and only if the diagonal left
act of 𝑋 (resp., 𝑋) is monogenic. Thus, it suffices to show that the diagonal right acts of 𝑋
and 𝑋 are monogenic.
Divide 𝑋 into five subsets as follows:

𝑋 = 𝐴 ⊔ 𝐵 ⊔ 𝐶 ⊔ 𝐷 ⊔ 𝐸 where |𝐴| = |𝐵| = |𝐶| = |𝐷| = |𝐸| = |𝑋|.
Write

𝐴 = {𝑎𝑥 ∶ 𝑥 ∈ 𝑋}, 𝐵 = {𝑏𝑥 ∶ 𝑥 ∈ 𝑋}, etc.

Define (and fix) 𝛼, 𝛽 ∈ 𝑋 as follows:

𝛼 =
{
{𝑥, 𝑎′𝑥} ∶ 𝑥 ∈ 𝑋} ∪

{
{𝑏′𝑥, 𝑐

′
𝑥} ∶ 𝑥 ∈ 𝑋

}
∪
{
{𝑑′𝑥} ∶ 𝑥 ∈ 𝑋

}
∪
{
{𝑒′𝑥} ∶ 𝑥 ∈ 𝑋

}
;

𝛽 =
{
{𝑥, 𝑒′𝑥

}
∶ 𝑥 ∈ 𝑋} ∪

{
{𝑐′𝑥, 𝑑

′
𝑥} ∶ 𝑥 ∈ 𝑋

}
∪
{
{𝑎′𝑥} ∶ 𝑥 ∈ 𝑋

}
∪
{
{𝑏′𝑥} ∶ 𝑥 ∈ 𝑋

}
.

See Figure 2, and note that in fact 𝛼 and 𝛽 belong to 𝑋 .
For each set 𝑇 = 𝑈 ∪ 𝑉′ where 𝑈,𝑉 ⊆ 𝑋, define

𝜆(𝑇) = {𝑎𝑢 ∶ 𝑢 ∈ 𝑈} ∪ {𝑏𝑣 ∶ 𝑣 ∈ 𝑉} and 𝜌(𝑇) = {𝑒𝑢 ∶ 𝑢 ∈ 𝑈} ∪ {𝑑𝑣 ∶ 𝑣 ∈ 𝑉}.

Consider 𝜃, 𝜑 ∈ 𝑋 . Set

𝜆(𝜃) =
{
𝜆(𝑇) ∶ 𝑇 ∈ 𝜃

}
and 𝜌(𝜑) =

{
𝜌(𝑇) ∶ 𝑇 ∈ 𝜑

}
.
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32 of 34 EAST et al.

F IGURE 2 The partitions 𝛼, 𝛽 ∈ 𝑋 (left and right, respectively).

F IGURE 3 The partition 𝛾 = 𝛾(𝜃, 𝜑) ∈ 𝑋 .

F IGURE 4 The products 𝛼𝛾 = 𝜃 and 𝛽𝛾 = 𝜑.
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ON THE DIAMETER OF SEMIGROUPS OF TRANSFORMATIONS AND PARTITIONS 33 of 34

Note that 𝜆(𝜃) and 𝜌(𝜑) are partitions of 𝐴 ∪ 𝐵 and 𝐷 ∪ 𝐸, respectively. Now define

𝛾 = 𝛾(𝜃, 𝜑) = 𝜆(𝜃) ∪
{
{𝑐𝑥, 𝑥

′} ∶ 𝑥 ∈ 𝑋
}
∪ 𝜌(𝜑).

Then 𝛾 ∈ 𝑋 and (𝜃, 𝜑) = (𝛼, 𝛽)𝛾; see Figures 3 and 4. Moreover, if 𝜃, 𝜑 ∈ 𝑋 then 𝛾 ∈ 𝑋 .
Thus, we have 𝑋 × 𝑋 = (𝛼, 𝛽)𝑋 and 𝑋 ×𝑋 = (𝛼, 𝛽)𝑋 . □
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