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Abstract

For a semigroup S whose universal right congruence is
finitely generated (or, equivalently, a semigroup satis-
fying the homological finiteness property of being type
right-FP; ), the right diameter of S is a parameter that
expresses how ‘far apart’ elements of S can be from each
other, in a certain sense. To be more precise, for each
finite generating set U for the universal right congruence
on S, we have a metric space (S, d;) where di;(a, b) is
the minimum length of derivations for (a, b) as a con-
sequence of pairs in U; the right diameter of S with
respect to U is the diameter of this metric space. The
right diameter of S is then the minimum of the set of
all right diameters with respect to finite generating sets.
We develop a theoretical framework for establishing
whether a semigroup of transformations or partitions on
an arbitrary infinite set X has a finitely generated univer-
sal right/left congruence, and, if it does, determining its
right/left diameter. We apply this to prove results such
as the following. Each of the monoids of all binary rela-
tions on X, of all partial transformations on X, and of
all full transformations on X, as well as the partition
and partial Brauer monoids on X, have right diameter
1 and left diameter 1. The symmetric inverse monoid on
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X has right diameter 2 and left diameter 2. The monoid
of all injective mappings on X has right diameter 4, and
its minimal ideal (called the Baer-Levi semigroup on X)
hasright diameter 3, but neither of these two semigroups
has a finitely generated universal left congruence. On
the other hand, the semigroup of all surjective mappings
on X has left diameter 4, and its minimal ideal has left
diameter 2, but neither of these semigroups has a finitely
generated universal right congruence.

MSC 2020
20M20 (primary), 20M10

1 | INTRODUCTION

This paper is concerned with the semigroup finiteness condition of the universal right congruence
being finitely generated, and the related parameter of right diameter, as well as the left-right duals
of these notions.

For a semigroup S whose universal right congruence is generated by a finite set U, the right
diameter of S with respect to U is, informally, the supremum of the minimum lengths of deriva-
tions for pairs (a,b) € S X S as a consequence of those in U. The right diameter of S is the
minimum of the set of all right diameters with respect to finite generating sets. Thus, a semi-
group has finite right diameter if its universal right congruence is finitely generated and there is
a bound on the length of sequences required to relate any two elements. More precise definitions
regarding the notion of diameter will be given in Section 2.

The property of having finite right (resp., left) diameter is also known as being right (resp., left)
pseudo-finite. Left pseudo-finite semigroups were first studied by White in [21] in the context of
Banach algebras. This work was motivated by a conjecture of Dales and Zelazko, stating that a
unital Banach algebra in which every maximal left ideal is finitely generated is necessarily finite-
dimensional. It was also noted in [21] that for weakly right cancellative monoids, which include
groups, being left pseudo-finite coincides with being finite.

Dandan et al. undertook the first comprehensive study of semigroups with a finitely generated
universal left congruence, with appropriate specialisations to left pseudo-finite semigroups [4].
The former class of semigroups was shown to be equivalent to a number of previously studied
classes, including those semigroups satisfying the homological finiteness property of being type
left-F P, [4, Theorem 3.10] (the equivalence of some of these conditions had previously been estab-
lished by Kobayashi [15]). An interesting question raised in [4, Open Question 8.10] is whether
every (left) pseudo-finite semigroup has a completely simple minimal ideal. The article [10] sought
to address this question systematically. It found that for pseudo-finite semigroups lying in some
important classes, such as orthodox semigroups, completely regular semigroups and commutative
semigroups, having a completely simple minimal ideal is necessary, but in general a pseudo-finite
semigroup may have a minimal ideal that it not completely simple, or may have no minimal ideal
at all.

85UB0 |7 SuoWIWoD aAIee.D a|qeal|dde sy Aq peussnof 8. Ssjole VO ‘8sN JO Se|n oy AkelqiT8uljuO 4|1 UO (SUONIPUOD-PUB-SLLBIALI0D A3 | M Alelq 1puljuoy//:sdny) SuonIpuoD pue swie 1 8u) 89S *[#Z02/90/7T] uo Ariqiauluo A8|iM ‘8L Aq t#62T 'SW|(/ZTTT 0T/I0P/WO0d A3 | 1M ARelq | PU 1 |UO"O0SUTRWPUO|//:SANY WoJy pepeo|umoq ‘T ‘v202 ‘0SLL69T



ON THE DIAMETER OF SEMIGROUPS OF TRANSFORMATIONS AND PARTITIONS | 30f34

The notion of right/left diameter was introduced in [10] as a useful tool for proving that certain
semigroups are right/left pseudo-finite. It was observed that the property of having right diameter
lis equivalent to a certain well-studied notion, namely that of the diagonal right act being finitely
generated [10, Proposition 3.6]. For a semigroup S, the diagonal right S-act is the set S X S under
the right action given by (a, b)c = (ac, bc). Diagonal acts first appear, implicitly, in [1], and they
were then formally defined and studied in [20]. A systematic investigation into generation of diag-
onal acts was undertaken in [9], and some of the most intriguing results concerned certain infinite
semigroups of transformations and relations [8]. In particular, it was shown that, for any infinite
set X, the diagonal right and left acts are monogenic for the monoids By of all binary relations on
X, the monoid Ty of all transformations on X, and the monoid P7 of all partial transformations
on X.

Given the above findings concerning certain transformation semigroups, it is natural to con-
sider similar kinds of semigroups when searching for semigroups with finite right/left diameter.
Indeed, the first example found of a right pseudo-finite semigroup with a minimal ideal that is not
completely simple was the Baer-Levi semigroup on an infinite set X [18, Remark 7.3], and another
such example is the monoid of all injective mappings on X [10, Proposition 4.4]. Moreover, the
first example exhibited of a right (and left) pseudo-finite semigroup with no minimal ideal was a
certain transformation monoid denoted U [10, Example 8.1].

A class of semigroups that exhibit some similar behaviour to transformation semigroups is that
of the so-called diagram monoids, which have recently come into prominence; see [6]. In par-
ticular, the partition monoid on a set X, denoted Py, contains natural copies of many ‘classical’
transformation monoids, including the symmetric group Sy, the full transformation monoid 7y
and the symmetric inverse monoid Zy. The importance of these classical monoids derives mainly
from the well-known Cayley theorems, stating that every group embeds into some Sy and every
semigroup into some 7y [12, Theorem 1.1.2], and the Wagner—Preston theorem, stating that every
inverse semigroup embeds into some Iy [12, Theorem 5.1.7]. Thus, a common theme in papers
on partition monoids is the extent to which their behaviour resembles those of classical trans-
formation monoids; for example, see the article [5], which classifies all congruences on Py and
the partial Brauer monoid P By, where X is an arbitrary infinite set. Given the aforementioned
results concerning certain classical transformation monoids in relation to diameter, it is natural to
explore monoids of partitions as a potential source of further examples of semigroups with finite
right/left diameter.

The purpose of this article is to systematically investigate, for various infinite semigroups
of transformations and partitions, whether each such semigroup has a finitely generated uni-
versal right/left congruence, and, if so, determine its right/left diameter. The main results are
summarised in Table 1.

The paper is organised as follows. In Section 2, we provide the necessary prelimary material
and summarise the main results of the paper. Various transformation semigroups are considered
in Sections 3 and 4. Section 3 is concerned with the universal right congruence and right diam-
eter, and Section 4 is the left-right counterpart of Section 3. In both these sections, we aim to
prove general results that can be applied to a number of transformation semigroups of concern.
Particularly noteworthy results are obtained for certain subsemigroups of the monoids Injy of all
injective mappings on X and Surjy of all surjective mappings on X. In particular, we prove that:

 the minimal ideal BLy of Injy, called the Baer-Levi semigroup on X, has right diameter 3
(Theorem 3.14);

» asubmonoid S of Injy containing the symmetric group Sy has right diameter 4 if and only if
it contains BLy (Theorem 3.16);
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TABLE 1 Summary of results. Throughout ‘f.g.” stands for ‘finitely generated’.

Semigroup S s f.g.? w f.g.? D,(S) S' f.g.? ! £.g.? D\(S)
By Yes Yes 1 Yes Yes 1
PTx Yes Yes 1 Yes Yes 1
Iy Yes Yes 2 Yes Yes 2
Tx Yes Yes 1 Yes Yes 1
Sy Yes No n.a Yes No n.a
Fx Yes Yes 1 Yes No n.a.
Injy Yes Yes 4 Yes No n.a.
BLy 4,9 < 1 X| Yes No n.a No No n.a
BLy Yes Yes 3 No No n.a.
BL), Yes Yes 3 Yes No n.a.
Sy UBLy Yes Yes 4 Yes No n.a.
Surjy Yes No n.a. Yes Yes 4
DBLy 4. q < |X| No No n.a. Yes No n.a.
DBLy No No n.a. Yes Yes 2
DBL}, Yes No n.a. Yes Yes 3
Sy UDBLy Yes No n.a. Yes Yes 4
Ty \ Injx No No n.a. Yes Yes 2
Tx \ Surjy Yes Yes 2 No No n.a.
Hy Yes Yes 1 Yes No n.a.
Ky Yes No n.a. Yes No n.a.
Py Yes Yes 1 Yes Yes 1
PBy Yes Yes 1 Yes Yes 1

 the minimal ideal DBLy of Surjy, called the dual Baer-Levi semigroup on X, has left diameter
2 (Theorem 4.11);
* the monoid Surjy has left diameter 4 (Theorem 4.17).

Finally, in Section 5 we prove that both the partition monoid Py and the partial Brauer monoid
P By have right diameter 1 and left diameter 1. It is perhaps intriguing that all diameters computed
in this paper and shown in Table 1 are ‘small’, specifically < 4. At this point, we do not know any
examples of ‘natural’ semigroups of transformations or partitions whose diameters are finite and
greater than 4.

2 | NOTATION AND SUMMARY OF RESULTS
In this section, we provide the necessary preliminary material on semigroups and summarise the

main results of the article. We refer the reader to [12] for a more comprehensive introduction to
the basic semigroup concepts defined here.

2.1 | Diameter of semigroups

Let S be a semigroup. We denote by S! the monoid obtained from S by adjoining an identity if
necessary (if S is already a monoid, then S* = S).
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A right ideal of S is a subset I such that IS C I. A subset U of a right ideal I is a generating set
for Iif I = US'; I is said to be finitely generated if it has a finite generating set. Of course, S is a
right ideal of itself. When considering S being generated by a set as a right ideal, we shall write S
as S". Thus, ‘S” is generated by U’ means S = US".

An equivalence relation p on S is a right congruence if (a,b) € p implies (as, bs) € p for all
s € S.For U C S xS, the right congruence generated by U is the smallest right congruence on S
containing U; we denote this right congruence by (U).

Lemma 2.1 [14, Lemma I. 4. 37]. Let S be a semigroup, let U be a subset of S X S, and let p be the
right congruence generated by U. For any a,b € S, we have (a,b) € p if and only if either a = b or
there exists a sequence

a =u;Sy, V18] = UySy, o, UyS, =D
for some n € N, where (u;,v;) € U or (v;,u;) € U, and s; € S, foreachi € {1, ...,n}.

A sequence of the form given in Lemma 2.1 is referred to as a U-sequence from a to b of length
n.If a = b, we consider that a and b are related by a U-sequence of length 0. If the generating set
U consists of a single pair (u, v), we may speak of (u, v)-sequences rather than U-sequences.

The universal relation wg = S X S is certainly a right congruence on S. When viewing this rela-
tion as a right congruence, we shall denote it by w(. If U is a generating set for w¢, we shall write
wg = (U).

Consider a set U C S X S such that cug = (U). For any a,b € S, let d{](a, b) denote the least
non-negative integer n such that there is a U-sequence of length n from a to b. It is easy to see
that d{] :S%xS —1{0,1,2,..}is a metric on S.

Definition 2.2. Let S be a semigroup.

* If wg = (U), we call the diameter of the metric space (S, d;;) the right U-diameter of S and
denote it by D, (U, S); that is,

D,(U,S) = sup{d,(a,b) : a,b € S}
o If cog is finitely generated, we define the right diameter of S to be
D,(S) = min{D,(U,S) : wg = (U) where |U| < R,}.

Note that if U and U’ are two finite generating sets for wf, then D,(U, S) is finite if and only if
D,.(U’,S) is finite [4, Lemma 2.5]. We make the following easy observation.

Lemma 2.3. Let S be a non-trivial semigroup. If wg = (U) then, letting
V ={veS : 3ueSsuchthat(u,v) € Uor(v,u) € U},

we have cog =(VXxV)and D,.(V xXV,S) < D,(U,S). Furthermore, we have S = vSl.In particular,
if wg is finitely generated then so is S'.
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We shall often abuse terminology by saying that wg is generated by a subset V' of S to mean
that w is generated by V' X V, and also write D,(V,S) in place of D,(V X V, S). It follows from
Lemma 2.3 that if w is finitely generated then there exists a finite subset V' C S such that D,(S) =
D,(V,S).

‘We now provide some results that will be useful later in the paper.

Lemma 2.4. Let S be a monoid and let I be a right ideal of S. If &} is finitely generated, then w( is
finitely generated. Moreover, we have D,.(S) < D,(I) + 2.

Proof. This result essentially follows from the proof of [4, Lemma 2.11]. We provide a proof here
for completeness.

Let U C I be a finite generating set for w} such that D,(U,I) = D,(I). Choose any u € U. For
any a,b € S, as ua,ub € I, there exists a U-sequence

ua = uyS;, U18; = UySy, ..., VxS, = ub
in I, where k < D,(I). Thus, letting V = U U {1}, we have a V-sequence
a=1a, ua = u;S;, V18, = UySy, ..., VxS = ub, 1b=0>

from a to b of length k +2 < D,(I) + 2. We conclude that cug is generated by V, and D,(S) <
D.(V,S)<D,(I)+2. O

Corollary 2.5. If S is a monoid with a left zero, then D,(S) < 2.

Green’s relations £, R, H, D and .J are standard tools for describing the ideal structure of a
semigroup. The relation £ on S is given by (a, b) € L if and only if S'a = S'b, that is, if a and b
generate the same principal left ideal. The relations R and .J are defined analogously in terms
of principal right ideals and principal two-sided ideals, respectively. Finally, we have H = LN R
andD=LVR(=LoR =RoL).

We call S left/right simple if it has a single £ /R-class, and simple if it has a single .7 -class. There
is a natural partial order on the set of .J-classes of S, given by J,, < J, if and only S'aS* C S'bS?.
There is at most one minimal .7 -class under this ordering; if it exists, it is called the minimal ideal
of S, and is a simple subsemigroup of S.

The equivalence relation £* on S is defined by the rule that (a,b) € £* if and only a, b are L-
related in some oversemigroup T, thatis, aT' = bT'. We say that S is £*-simple if it has a single £*-
class. We dually define the relation R* and the notion of being R *-simple. By [10, Proposition 3.4],
an L*-simple semigroup has finite right diameter if and only if it is finite. We provide a proof of this
result here using a more general argument, which also shows that, for any £*-simple semigroup,
being countable is necessary for the universal right congruence to be finitely generated.

Proposition 2.6. Let S be an L*-simple semigroup. If w is finitely generated, then S is countable.
Moreover, S has finite right diameter if and only if it is finite.

Proof. As S is L*-simple, by [19, Theorem 1] there exists an oversemigroup T of S such that S is
contained in a single £-class of T. (One can take T to be the dual of the full transformation monoid
on S, in which maps are composed from right to left.)
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Now, suppose that w is finitely generated, and let U C S be a finite generating set for w{

such that D,(U, S) = D,(S). For each pair u,v € U, as u and v are L-related in T we can choose
a(u,v) € T such that u = a(u,v)v. Fixb € S. Let
V= {a(ub vl) Cf(uk, Uk)b S UL € U,k < Dr(s)} cT.
Clearly V is countable, and if D,(S) is finite then so is V. We claim that S C V; then S is
countable, and it is finite if it has finite right diameter. So, let a € S. Then there exists a
U-sequence
a =u;Sy, U1S; = UySy, ., UyS =D
where k < D,(S). Letting o; = a(u;,v;), we have
A =1US] = A U1S] = 0 UySy = A A,U,8) = +o0 = Ay o A UiS; = 0 .. 0gb €V,

as required. Clearly, if S is finite then it has finite right diameter. O
Remark 2.7. Combining Proposition 2.6 and [4, Proposition 2.7], it follows that any finitely gen-
erated infinite group G has the property that w, is finitely generated, but D,(G) is infinite. Also, a
slight modification of the proof of Proposition 2.6 shows that an £*-simple semigroup S is count-
able if and only if @} is countably generated (where countably generated means being generated
by a countable set).

The above definitions and results have obvious left-right duals, and we use analogous
nomenclature and notation: left ideal, S, co’S left diameter, and so on.
2.2 | Semigroups of transformations and relations
In this subsection, we introduce the transformation semigroups of concern in this article. First,
we recall some basic terminology regarding relations and mappings.

Throughout the paper, X will stand for an arbitrary infinite set.

A (binary) relation on X is a subset of X X X. We denote the identity relation {(x, x) : x € X}
by 1. For a relation o on X and a subset Y C X, we define

Ya={xeX : (y,x) € aforsomey €Y},
and we abbreviate {y}a to ya. The domain and image of « are, respectively,
doma={xeX : (x,y) eaforsomey € X} and ima = Xa,

and the inverse of « is the relation

a! ={,x) : (x,y) € a}.
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The composition of two relations o and 5 on X is the relation
af ={(x,y) : 3z € X such that (x,z) € a and (z,y) € }.
A partial transformation on X is a relation « on X satisfying the condition
6 y),(x,z)Ea=>y=z.

Let a be a partial transformation on X. For each x € dom a, we interpret xa as an element of X
(rather than a singleton subset of X). Note that for Y C X we have Ya=! = {x € X : xa € Y}. The
kernel of a is

kera = {(x,y) € doma xXdoma : xa = ya}.

1

Observe that aa™! = kera and a~'a = {(x, x) : x € im a}. It follows that

aa”! =1y © [doma = X and « is injective] and a 'a =1y < ais surjective.

We now define the semigroups of transformations and relations that will be considered in this
paper, with some relevant additional information.

By: The monoid of all binary relations on X under composition, with identity 1y.
PTx, the partial transformation monoid on X: The submonoid of By consisting of all partial
transformations on X.
Iy, the symmetric inverse monoid on X: The submonoid of PTy consisting of all injective
partial transformations (also known as partial bijections).
T, the full transformation monoid on X: The submonoid of PTy consisting of all (full)
transformations on X, thatis, 7y = {&d € PTy : doma = X}.
Sy, the symmetric group on X: The subgroup of 7y consisting of all bijections.
Fx: The submonoid of 7T consisting of all finite-to-one mappings, that is, Fy ={ax € Ty :
|xa™1| < oo forall x € X}.
Injy: The submonoid of Ty consisting of all injective mappings.

- Injy is right cancellative (that is, fa = ya implies that 8 = y), and hence 1y is its only

idempotent.

BLy 4, the Baer-Levi semigroup of type q on X: For an infinite cardinal g < |X|, it is the
subsemigroup of Injy defined by
BLy , ={a € Injy @ |X \ ima| = g}

- Each BLy , is right cancellative, right simple and has no idempotents [3, Theorem 8.2].

BLy, the Baer-Levi semigroup on X: BLy . for g = |X|.
- For any a, 8 € Injy, we have a € f(Injy) if and only if o € (Injy)B(Injy) if and only if
[X\im «| > |X\im §|. Thus, the J(=R)-classes of Injy form a chain

SX >.I1 >]2 > e > J}’l > e > B[:X,NO > BﬁX,Nl > e > B£X1|X| = B[:X’
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where J, = {a € Injy : |X \ ima| = n} (n € N), and BLy is the minimal ideal of Injy [16,
Proposition 2.2, Theorem 2.3, Remark 2.4].
Bﬁ;{: The Baer-Levi semigroup with an identity adjoined.
SxU BLx: The submonoid of Ty consisting of all bijections and all Baer-Levi elements.
- For any subgroup G of Sy, the set G U BLy is a submonoid of Injy; see [3, Exercise 8.1.10]
for more information about such monoids.
Surjy: The submonoid of 7T consisting of all surjective mappings.
- Surjy is left cancellative, and hence 1y is its only idempotent.
DBLy 4, the dual Baer-Levi semigroup of type g on X: For an infinite cardinal g < |X], it is
the subsemigroup of Surjy defined by

DBLy, = {a € Surjy : |xa~'| = qforall x € X}.

- Each DBLy , is left cancellative, left simple and has no idempotents [2, Theorem 3].
DBLy, the dual Baer-Levi semigroup on X: DBLy , for g = |X|.

- DBLy is the minimal ideal of Surjy [17, Theorem 3.2].
DBE;(: The dual Baer-Levi semigroup with an identity adjoined.
SxUDBLy: The submonoid of Ty consisting of all bijections and all dual Baer-Levi elements.
Tx\Injy: The subsemigroup of Ty consisting of all non-injective mappings.
Tx \Surjy: The subsemigroup of Ty consisting of all non-surjective mappings.
Hy: The submonoid of Ty defined by

Hy ={a €Ty : |Ya| = |X|forallY C X with |Y| = |X|}.

- Hy is bisimple, meaning that it has a single D-class. It was introduced by Higgins in [11] as a
means of proving that every semigroup embeds into some bisimple monoid.

- The following are subsemigroups of Hy: Fy; Injy (and hence Sy, BLy , where X, < g < [X],
Bﬁ}(, and Sy UBLy) and DBLy , where X, < g < |X|. This is clear in the case of Tnj; for
the other semigroups we provide a brief explanation. Suppose that S is either 7x or DBLy ,
with g < |X|, and consider « € S and Y C X such that |Y«| < |X|. By definition, |[xa™'| < g
for all x € X (in fact, |[xa™'| < ¥, if S = Fy). Therefore, using the fact that Y C (Ya)a™!, we
have

Y <iYwa | = | |J xa!| < max(Yal,q) < X].
xeYa

Ky : The submonoid of Hy defined by
All the semigroups in the above list are subsemigroups of 7y, with the exception of By, PTy

and Iy. All these subsemigroups of 7y have the following ‘transitivity’ properties, which will play
a key role in the paper.
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Definition 2.8. Let S be a subsemigroup of 7.

* Let x¥ < |X| be a cardinal. We say that S is x-transitive if for any partial bijection 1 € I with
|[dom 1| € x and |[X\dom 4| = |[X\im 4| = |X|, there exists some 6 € S extending A4, that is,

6|dom/1 =1
* We call S finitely transitive if it is x-transitive for every finite cardinal x < ¥,.

Remark 2.9. Let S be a subsemigroup of 7, and let ¥ < |X].

(1) The semigroup S is k-transitive if and only if it is y-transitive for every u < x

(2) Ifx < |X|, then S is x-transitive if and only if for any partial bijection 1 € Iy with |dom 4| < %
there exists some 6 € S extending A.

(3) IfS contains a x-transitive (resp., finitely transitive) subsemigroup T, then S is also x-transitive
(resp., finitely transitive).

2.3 | Summary of results, and diagonal acts

Our main goal in this paper is to answer the following questions for each semigroup S listed in
Subsection 2.2, as well as the partition monoid Py and the partial Brauer monoid P By, which
will be defined in Section 5.

(Q1) Is S finitely generated as a right ideal, that is, is S” finitely generated?
(Q2) Is the universal right congruence on S finitely generated, that is, is wg finitely generated?
(Q3) Ifw, is finitely generated, what is the right diameter D,(S)?
(Q4) Is Slg finitely generated?
(Q5) Is wl, finitely generated?
(Q6) If wé is finitely generated, what is the left diameter D;(S)?

Our main results are summarised in Table 1.

For certain transformation semigroups S, we can quickly answer questions (Q1)-(Q6) using
known results regarding diagonal acts.

For a semigroup S, the diagonal right S-act is the set S X S on which S acts on the right via
(a,b)c = (ac, be). 1t is said to be generated by a set U C S x S if S xS = US!, and it is finitely
generated or monogenic if it is generated by a finite set or a singleton, respectively. Of course, one
can dually define the diagonal left S-act and its finite generation/monogenicity.

The importance of diagonal acts in relation to the notion of diameter is expressed in the
following result.

Proposition 2.10 [10, Proposition 3.6]. For a non-trivial semigroup S, the diagonal right S-act is
finitely generated if and only if S has right diameter 1.

From the substantial body of results on generation of diagonal acts [7-9], the main findings
concerning natural semigroups of transformations and relations are summarised in Table 2.

We immediately deduce from Table 2 and Proposition 2.10 that By, P7y and 7y each have both
right diameter 1 and left diameter 1, that Fy has right diameter 1 but not left diameter 1, and the
remaining semigroups appearing in Table 2 have neither right diameter 1 nor left diameter 1. As
T has a zero (the empty map), we deduce, using Corollary 2.5 and its left-right dual, that T has
right diameter 2 and left diameter 2.
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TABLE 2 Generation of diagonal acts of certain transformation semigroups. See [7, Theorem 7.1 and Lemma
7.2] for the results on infinite subsemigroups of Surjy and Injy, and [9, Table 1.2] for the remaining semigroups.
Throughout ‘f.g.’ stands for ‘finitely generated’.

Semigroup Diagonal right act Diagonal left act
By Monogenic Monogenic
PTy Monogenic Monogenic
I, Not f.g. Not f.g.

Tx Monogenic Monogenic
Sy Not f.g. Not f.g.

Fx Monogenic Not f.g.
Infinite subsemigroup of Injy Not f.g. Not f.g.
Infinite subsemigroup of Surjy Not f.g. Not f.g.

Ty \ Injy Not f.g. Not f.g.

Ty \ Surjy Not f.g. Not f.g.

3 | TRANSFORMATION SEMIGROUPS: RIGHT DIAMETER

This section naturally divides into three parts, corresponding to questions (Q1), (Q2) and (Q3) of
Subsection 2.3. Specifically, we first determine for which of the transformation semigroups S in
Table 1 we have S" is not finitely generated (and hence wy is not finitely generated). We then find a
number of semigroups S with S” finitely generated but w¢ not finitely generated. Finally, for each
of the remaining semigroups S, we prove that w( is finitely generated and determine the right
diameter of S (which turns out to be finite).

Now, it is certainly the case that S” is finitely generated if S is a monoid or a right simple semi-
group. Moreover, it is straightforward to show that 7y \ Surjy is generated as a right ideal of itself
by any a € Injy \ Sx. So, we are left to consider only Ty \ Injy and DBLy , (R, < g < |X]|). It
turns out that these are not finitely generated as right ideals of themselves. In fact, we prove a
stronger result:

Theorem 3.1. If S is a finitely transitive subsemigroup of Ty \ Injy, then S" is not finitely generated.
In particular, the semigroups Ty \Injyx and DBLy , (R, < g < |X|) are not finitely generated as
right ideals of themselves.

Proof. Consider any finite subset U C S. For each a € U, choose (x,,y,) € ker a with x, # y,
(such a pair exists because « is not injective). As S is finitely transitive, there exists 6 € S such
that x,0 = x, and y,6 = y, foralla € U. Thus, foralla € U we have (x,,y,) & ker 6 and hence
0 & aS',s0 S # US'. Hence, S" is not finitely generated. O

‘We now move on to find certain transformation semigroups S for which S” is finitely generated
but wy is not finitely generated. To this end, we first establish a general result regarding generation
of the universal right congruence on a subsemigroup of 7.

Let S be a subsemigroup of 7. For a subset U C S, we define

2(U) = {ap; B tkEN, a,f€eUA<i<k)} C By.
Observe that for any 6, ¢ € Ty, in By we have

Bl ={(x,y) EX XX : x6 = yp}
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Proposition 3.2. Let S be a subsemigroup of Ty, and let U C S be a generating set for the universal
right congruence wy. Then for any 6, ¢ € S there exists o € Z(U) with o C Op~1L.

Proof. Let8,¢ € S. Suppose first that 6 = ¢. As wy is generated by U, there exists & € U such that
6 € aS!. Then aa~! € X(U) and

aa ! =kera Cker6 =06"! =0¢p".
Now suppose that 6 # ¢. Then there exists a U-sequence

0 =a1y1, B1¥1 = %¥as s BkVk = -

Let 0 = a,6]" ...ockp’;l € Z(U). We claim that ¢ C0¢~'. So, let (x,y) € 0. Then there exist
Uy, Vg, e, U1, Ug_1, Uy € X such that

(x,uy) € ay, (u;,vy) € 51_1, V1, uy) € ooy (Vg_1,Uy) € g, (Uy,Y) € ,6’,;1.

Therefore, we have

Xy = Uy =01, U1y = Uy = Uy, vy Vg1 Ot = Uy = PPy
We then have
X0 = xayy; = 018171 = 010y), = UBsys = =+ = U1 ¥k = YB¥i = Yo
Thus, (x,y) € 8¢~ 1, as required. O

For the next result, recall that the monoid Ky, defined in Subsection 2.2, is a submonoid of Hy,
and observe that £y N Injy = Injy \ BLy. Note that Injy \ BLy contains the symmetric group
Sy and the Baer-Levi semigroups BLy , where 8, < g < |X].

Theorem 3.3. If S is an W-transitive subsemigroup of Ky, then wg is not finitely generated. In
particular, the universal right congruence is not finitely generated for Ky or for any R-transitive
subsemigroup of Injy \ BLy (which includes Sy and BLy ; where R, < q < |X|).

Proof. First, we claim that for any § € (S) and Y C X with |Y| = |X| we have |Y§| = |X]|.
Indeed, consider § = a; 3" ..., € Z(S) (Where a;, §; € S)and Y C X with |Y| = |X]. Define
8 =ayfyt..ayf ! for i =0,...,k, interpreting &, = 1y. We have |Y§,| = |Y| = |X|. Now let
i €41,...,k}, and assume that |Y3;_;| = |X|. Then, as a; € Ky C Hy, we have |Yd,_,o;| = |X|.
It is straightforward to show that Y5i_loci,6i‘1[5’i =Y6,_ o; nim ;. As

Y5i_10£i = (Y5i_10£i Nim ‘81) U (Yéi_lai\im ‘81) = (Y5i_1aiﬁi_1ﬁi) U (Y5i_105i\im ‘81)

and |Y6,_;a;\imB;| < |X\im g;| < |X|, it follows that |Y5i—10‘i5i_15i| = |X]|. Clearly |Y§;| =
Y887 > 1Y8;_ ;8" Bil, so [Y8;| = |X|. Hence, by finite induction, we have |Y§| =
|Y S, | = |X]. This establishes the claim.

Now suppose for a contradiction that w( is generated by a finite subset U C S, and let £ = Z(U).
As X is countable, we may write it as X = {o; : i € N}, noting that the o; need not be distinct.
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Certainly each o; belongs to X(S), so it satisfies the condition of the above claim. Observe
that this implies that o; # @. We claim that there exist pairs (x;,y;) € o; (i €N) such that
IX\{x; : i eN}| = [X\{y; : i €N}| = |X]|. This is clear if X is uncountable: for each i € N, we
can choose any pair (x;,y;) € o;. Suppose then that X is countably infinite; we may assume
that X = N. We choose the pairs (x;,¥;) (i € N) inductively as follows. Choose any (x;,y;) € 0;.
Fori>2, as [{x € X : x > x;_; + 2}o0;| = |X|, by the above claim, we can choose (x;,y;) € o;
with x; > x;_; +2and y; > y;,_; + 2. Then clearly X \{x; : i € N}and X\{y; : i € N} are infinite,
as desired.

We now choose injections A4 :{x; :ie€N}—-X and pu:{y;:i€N}—->X such that
imAnimu =@. As S is Nj-transitive, there exist 6, € S extending 4 and u, respectively.
Then (x;,y;)  6¢p~! for all i € N. Now, by Proposition 3.2 there exists some i € N such that
o; C 6p~ L. But then (x;,y;) € o C 691, and we have a contradiction. O

Remark 3.4. The statement and proof of Theorem 3.3 would still hold if we replaced “finitely gen-
erated’ with ‘countably generated’. This is due to the fact that (U) is countable for any countable
generating set U of w(.

It is well-known that Surjy coincides with the £-class of the identity of 7. It follows that every
subsemigroup of Surjy is L*-simple. Thus, by Proposition 2.6, we have:

Theorem 3.5. If S is a subsemigroup of Surjy such that w( is finitely generated, then S is countable.
Thus, the universal right congruence on each of the following semigroups is not finitely generated:
Surjy; DBEX,q where X, < q < |X]|; DBLL; Sy UDBLy; and Sy.

The semigroups left to consider in this section are Hy, Ty \ Surjy, BLy, Bﬁ}l{, Sy UBLy and
Injy. For each of these semigroups, we will show that the universal right congruence is finitely
generated and determine the right diameter.

First, we establish certain mappings that will be used repeatedly in the remainder of this sec-
tion. These were introduced in [8, section 2] (in the form of binary relations) to prove that By,
PTy, Ty and Fy each has a monogenic diagonal right act. We use the ‘hat’ notation to distinguish
these mapplngs from other transformations.

So, let @, ,8 € Ty be two fixed injections such that im@ N im ﬁ @ and imQ@ Uim ,8 X. Note
that @, /3 € BLy. For each pair 6, ¢ € Ty, we define a map

(xa He ifxeima

70,0) : X - X, x ~ ~
6.9 X~ F+{u&ﬂ¢ if x € im £,

Observe that im7(8, @) = im 6 U im ¢, and @7(6, ) = 6 and B7(6, ) = . It follows immediately
that Ty X Ty = (&,B\)TX. Moreover, clearly &,Ee Fx, and if 6, ¢ € Fx then 7(6, ¢) € Fx, so we
have Fy X Fy = (&, B) .

We fix the maps &, 8 and 7(6, ) (6,9 € T ) for the remainder of this section.

Definition 3.6. Let S be a subsemigroup of 7y such that @, E € S,letf,p € S,and letk € N. By
an (&, 8, k)-inducing sequence from 6 to ¢ in S, we mean a sequence

0=, Y1 =@

of elements of S where ¥(¥);,¥;,,) € Sforeachi € {1, ..., k}.
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An (@, BA, k)-inducing sequence gives rise to a special kind of (@, ﬁ)—sequence of length k, and
vice versa:

Lemma 3.7. Let S be a subsemigroup of Ty such that @, ,[? € S, let0,p € S, and letk € N. Then the
following statements are equivalent.

(1) There exists an (@, [? , k)-inducing sequence

0=, 95 s Phy1 =@

fromBtopinS.
(2) There exists an (@, )-sequence

6 =ayy, By1 =Qra, s BYi1 = QVis By = ¢
from 0 to ¢ of length k in S.

Proof. (1)= (2). By the definition of an (@, ﬁ k)-inducing sequence, we have 7(¥;, ¥;,;) € S for
each i € {1,...,k}. Letting y; = ¥(¥;, ¥;,1), we have @y; = ¢; and By; = ¥,,;. Hence, there is an
(@, B)-sequence

0 =ayy, By1 = Az s BYie1 = Qi BYk =@

in S.

(2)= (1). By the definition of an (&, ﬁ)-sequence in S, we have y; € Sfor 1 <i<k.Lety; =
ay; for each i € {1, ..., k}, and let ¢, ., = ¢. Then ¥(¥;, ¥;,,) = ¥(@y;, By;) for each i € {1,..., k}.
Consider any x € X. Then x € im@ or x € im . If x € im @, then

xXP(Wi.i41) = XP@ri, Br) = (k@ ay; = x,.
Similarly, if x € im[? then xy(¥;,%;,1) = xy;. Thus, 7(¥;, ;1) =¥; € S. Hence, there is an

(a, /? , k)-inducing sequence

O=v1,%0 s Ppy1 =9
inS. .

Lemma 3.7 yields the following result.
Proposition 3.8. Let S be a subsemigroup of T such that:

M) &fes;

(2) there exists n € N such that for any pair 6, ¢ € S there is an (@, f3, k)-inducing sequence from 6
to g in S for some k < n.

Then w, is generated by the pair (@, B\) and D,(S) < n. Furthermore, ifn = 1 (so that 7(6, ¢) € S for

any 6, € S), then the diagonal right S-act is generated by (@, [/3’\ ) (and is hence monogenic).
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Using Proposition 3.8, we show that the diagonal right act of Hy is monogenic.

Theorem 3.9. The diagonal right act of Hy is generated by (@, ﬁ), and consequently Hy has right
diameter 1.

Proof. Clearly, @, /? € Hy. Let 6,9 € Hy, and write y = 7(6, ). By Proposition 3.8, it suffices to
prove that y € Hy. So, let Y C X with |Y| = |X|. We have

Yy = (Y nim@a 10 u (Y nim HF .

As Y=(Ynima)u(Y nim EA), and @, ,BA are bijections, it follows that at least one of
(Ynim&)a~!and (Y Nnim ﬁ )ﬁ\ ~! has cardinality |X|. As 6,9 € Hy, we conclude that at least one
of (Y Nim&)&~16 and (Y n im B)B ¢ has cardinality [X|, and hence |Yy| = |X|. Thus, y € Hy,
as required. O

By the proof of [11, Corollary 1], any semigroup can be embedded in some Hy. This fact, together
with Theorem 3.9, yields:

Corollary 3.10. Any semigroup can be embedded in a bisimple monoid whose diagonal right act
is monogenic.

We now move on to consider Ty \ Surjy.
Theorem 3.11. The semigroup Ty \ Surjy has right diameter 2.

Proof. LetS = Ty \ Surjy. By Table 2 and Proposition 2.10, S does not have right diameter 1. Using
Proposition 3.8, we show that wg = ((a, E)) with D,(S) < 2, and hence D,.(S) = 2.

Clearly, @, B\ € S. Consider any 8,9 € S. As 8 and ¢ are not surjective, we can choose y € X
such thatim 6 U {y} # X and im ¢ U {y} # X. Letting ¢, denote the constant map with image y, we
have im¥(6,¢,) = im0 U {y} # X and im¥(c,, ») = im ¢ U {y} # X, so that 7(6, ¢,), 7(cy, ¢) € S.
Thus, we have an (@, B\, 2)-inducing sequence 6, c,, ¢, as required. O

We now turn our attention to 5Ly, BC;(, Sy UBLy and Injy. In fact, we will obtain results
concerning a larger class of subsemigroups of Injy. We begin with the following technical lemma.

Lemma 3.12. For any 6,9 € BLy such that |X\(im6 Uim )| = |X|, there exists an (&, f3)-
sequence from 6 to ¢ of length 2 (in BLy).

Proof. Let S = BLy. By Lemma 3.7, it suffices to show that there exists an (&, ,SA 2)-inducing
sequence from 6 to ¢; that is, there exists A € S such that 7(6, 1),7(1,¢) € S.

LetZ =im6 Uim¢. Then |[X\Z| = |X| by assumption. Let A : X — X\ Z be an injection such
that | X \ (Zuim1)| = |X|. Clearly 1 € S. Let y; = %(6,4) and y, = ¥(4, ). It is straightforward
to show that y,,y, € Injy. Moreover, we have

imy,; =iméuimA C ZuUimA4,

so | X\imy,| > [ X\(ZuimAa)| = |X|. Thus, y; € S, and similarly y, € S, as desired. O
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The following result provides several equivalent characterisations for an |X|-transitive
subsemigroup of Injy to have right diameter 3 or 4.

Proposition 3.13. For a subsemigroup S of Injy, the following are equivalent.

(1) Sis |X|-transitive, w is finitely generated and D,(S) € {3,4}.
(2) Sis |X|-transitive and @y is finitely generated.

(3) Sis|X|-transitive, S" is finitely generated and S N BLx # @.
(4) S" is finitely generated and S contains BLy.

Proof. (1)= (2) is trivial.
(2)= (3). By Lemma 2.3, S” is finitely generated. It follows by Theorem 3.3 that S N BLy # @.
(3)= (4). Fixany a € S N BLy, and consider an arbitrary 8 € BLy. Then a~'8 € I.. We have
doma~!f = ima andima~!8 = im 3, so that

|X\doma™!8| = |X\ima| =|X| and [X\ima~!g|=|X\im§g| = |X].

As S is | X |-transitive, there exists y € S extending a™! 3, thatis, 7|, , = «~'f. Therefore, for each
x € X we have (xa)y = (xa)a~!f = xf3, so that § = ay € S. Thus, BLy C S.

(4)= (1). As S contains BLy, which is | X|-transitive, S is |X|-transitive.

We now prove that w is finitely generated with D, (S) < 4. By assumption, there exists a finite
subset V C S such that S” = VS!. Let K = BLy, and recall that &,,@e K. LettingU =V U {&,E},
we shall prove that wg = (U)with D,(U,S) < 4.

So, let 6, ¢ € S. We claim that there exist 8’, ¢’ € K such that the pairs (8,9’), (¢’, ) € w are
each obtained by a single application of a pair from U X U, and | X \(im 6’ Uim ¢')| = |X].

Indeed, we have 0 = yo and ¢ = &t forsome y,6 € V and o,7 € S'. Let @ = @o. Then clearly
(6,6") is obtained by a single application of the pair (7, &) € U X U. Now, asim@& N im 8 = @ and
7 is injective, we have im &7 N im ﬁr = @. Thus,

(X\im6)nimar € X\(im6’ uim Br).
Therefore, we have
X\imé' = X\(im6’' uimar) u ((X\im6’) Nimar)
C X\(im¢' Uim@&r) U X\(im &’ Uim Br).
As |X\im 0’| = |X| (as ' € K), it follows that either
IX\(im6' uimar)| = |X| or |X\(im6' UimpB7)| = |X].

If I X\(im 6’ uim@r)| = |X|, we set ¢’ =Aar; otherwise, we set ¢’ = B\T. Then (¢’, @) is obtained
by a single application of either (@, §) or (8, 6), and | X\ (im 8’ U im ¢")| = |X|. This completes the
proof of the claim.

Now, by Lemma 3.12, there exists an (@, /? )-sequence from 6’ to ¢’ of length 2in K C S. It follows
that there is a U-sequence from 6 to ¢ of length 4. Hence, D, (U, S) < 4, as desired.

85UB0 |7 SuoWIWoD aAIee.D a|qeal|dde sy Aq peussnof 8. Ssjole VO ‘8sN JO Se|n oy AkelqiT8uljuO 4|1 UO (SUONIPUOD-PUB-SLLBIALI0D A3 | M Alelq 1puljuoy//:sdny) SuonIpuoD pue swie 1 8u) 89S *[#Z02/90/7T] uo Ariqiauluo A8|iM ‘8L Aq t#62T 'SW|(/ZTTT 0T/I0P/WO0d A3 | 1M ARelq | PU 1 |UO"O0SUTRWPUO|//:SANY WoJy pepeo|umoq ‘T ‘v202 ‘0SLL69T



ON THE DIAMETER OF SEMIGROUPS OF TRANSFORMATIONS AND PARTITIONS | 17 of 34

Now, to prove the lower bound of 3 for D,.(S), suppose for a contradiction that D, (U, S) < 2 for
some finite set U C S X S.

We say that a pair (y,8) € S X S is disjoint if imy Nim § = @, and intersecting otherwise. We
may assume that U contains an intersecting pair, for otherwise we can add such a pair to U. Let
{(y;,6;) : 1 <i < n}be the set of intersecting pairsin U. For each i € {1, ..., n} choose x; € X such
that x;y; € im &;, and let y; = x;7;6;". Now let

Q={0,k) : jke{l,..,n}y; €im&y'}.
Choose

Wy, e W, € X\{, 78" 1 1<i<n, (k) € Q}

such thatw; = w; ifand onlyifx; = x;. Fixany 6 € BLy (C S), and note that |[im 6| = |X\im 6| =
|X]. Choose

Zy, 0,2, €IMO\{x;0 : 1 <i< n}

such that z; = z; if and only if y; = y;. Note that the sets
A={w,y; :1<i<n} and B={x;0,z;, :1<i<n}

are finite and have the same cardinality. Choose a bijection

A X\(im6uUA) - X\({im6uUB),
and extend A to a bijection

A (X\im@)UA — (X\im6)UB
by setting w;A’ = x;0 and y;A’ = z; (1 < i < n). We have

X\domA’ =im6\A and X\imA' =im6\B.
As |im 6| = |X| and A and B are finite, we have
|IX\domA'| = |X\im1'| = |X].

As S is |X|-transitive, there exists some ¢ € S extending A’. Note that im6 Uim¢ = X. As
D, (U, S) < 2, there exists a U-sequence

0 =yo, Sod=9y'd, §d’ =¢.
First suppose that (y,§) and (y’, ') are disjoint pairs. If the pair (6, §o) were intersecting, then

there would exist x,y € X such that x6 = (xy)o = ydo, but then xy = yd because o is injective,
contradicting that (y, §) is disjoint. Thus, (6, §o) is disjoint, and similarly (8o, p) = (y'0’, @) is
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disjoint. Thus, we have
imdon(imb6Uime) = @.

Butim 6 U im ¢ = X, so we have a contradiction. We conclude that at least one of (y, §) and (¥', §")
is intersecting.

Suppose first that (y, §) is intersecting, so that (y,5) = (y;, ;) for some j € {1,..., n}. We then
have

yiy'd' =y;8;0 =x;7,0 =x;6 =w;p =w;8'd".

As o’ is injective, we have y;y" = w;&’. Thus, (¢, d") is intersecting, so that (', &) = (yy, &) for
some k € {1,..., n}. Hence, y;¥, = w;6;. Butthen (j, k) € Qand w; = yjyké_l, contradicting the
choice of w It

Now suppose that (y’,8’) is intersecting, so that (y’,8") = (y;,8)) for some | € {1,...,n}. As
z; € im 6, there exists some x € X such that z; = x6. Thus, we have

xyo =x6 =z, = y;p = y;8,0 = x;y,0’ = x;60.

As o is injective, it follows that xy = x;8. But it has already been established that (y, §) is not
intersecting, so we have a contradiction. Thus, D,(S) > 3. This completes the proof of (4)= (1)
and hence of the proposition. O

It follows immediately from Proposition 3.13 that each of BLy, B‘E}(, Sx UBLy and Injy has
right diameter either 3 or 4. We shall prove that the former two have right diameter 3 and the latter
two have right diameter 4.

As Injy \ BLy is a submonoid of Injy, for any subsemigroup S of Injy we have that S\ BLy
is a (possibly empty) subsemigroup of S. If S\ BLy is finite and non-empty, then it is a subgroup
of Sy; this follows from the fact that Injy \ Sy contains no idempotents.

Theorem 3.14. If S is a semigroup such that BLy < S < Injy and S\ BLy is finite, then D,.(S) = 3.
In particular, BL y and BE)I( have right diameter 3.

Proof. By Proposition 3.13, it suffices to prove that D,.(S) < 3.

Let U = (S\BLx)U{a, E}. Certainly U is finite because S\ BLy is finite. We shall prove that
wg =(U)and D,(U,S) < 3.

So, consider 8,9 € S.If6,p € S\ BLx,then 8, ¢ € U, so clearly there isa U-sequence from 6 to
@ of length 1. Assume then that 6 € BLy, and suppose first that ¢ € S\ BLy. AsX =ima Uim ,BA
and |X\im 6| = |X|, it follows that either | X\(im6 uim@)| = |X| or |X\(im6 U imﬁ)l = |X]|.
Assume without loss of generality that |X \ (im 6 Uim @)| = |X|. Then, by Lemma 3.12, there exists
an (@, E)-sequence from 6 to @ of length 2. As @, ¢ € U, we conclude that there is a U-sequence
from 6 to ¢ of length 3.

Finally, suppose that ¢ € BLy. If |X\(im 0 U im ¢)| = |X|, then by Lemma 3.12 there exists
an (@, [?)-sequence of length 2 from 6 to ¢. Suppose then that | X\(im6 Uim¢)| < |X|. Let Y =
imgp\im6. As

X\im6 = (X\(imé Uimg)) UY
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and | X \im 6| = |X|, it followsthat |Y| = |X|.LetA : X — Y be aninjection such that |Y\im 4| =
|X|, and let y = 7(6, 1). Clearly, y is an injection (and hence | imy| = |X]|). Also, we have

Y\imA C X\(im6éuima) = X\imy.

As |Y\im 1| = |X]|, it follows that |X\imy| = |X|. Thus, y € S. Recall that 6 = @y and 1 = Ey.
Now, asimA C Y C im ¢, we have that

IX\(imAUime)| = X\ imp| = X].

Therefore, by Lemma 3.12, there exists an (@, ,@)-sequence from A to ¢ of length 2. Hence, we have
an (@, §)-sequence from 6 to ¢ of length 3. This completes the proof. O

Next, we show that a subsemigroup S of Injy such that S\ BLy is finitely transitive cannot have
right diameter strictly less than 4.

Proposition 3.15. Let S be a subsemigroup of Injy such that S \ BLy is finitely transitive. If & is
finitely generated, then D,(S) > 4.

Proof. Suppose for a contradiction that D,(U,S) < 3 for some finite set U C S. Let P denote
the (finite) collection of all tuples (a;, f;,a,, B, a3, B3) € U® where a;, 83 € S\ BLy. Observe
that for any a« € S\BLy and 8 € S, as [X\im «| < [X| we have |ima Nnim §| = |X]|, or, equiv-
alently, in T, we have |imaf~!| = |im fa~!| = |X|. Therefore, we may choose a set of distinct
elements {xp,yp : p € P} such that, for each p = (ay, ..., 3;) € P, in Iy we have X, € imﬁlcxl_l,
yp € imasfy! and x, 08 ey # ¥, 8505 By

As S\ BLy is finitely transitive, there exist 6, ¢ € S\ BLy such thatx,6 = x, and y,¢ = x,, for
all p e P. As D, (U, S) < 3, there exists a U-sequence

0 = a1y1, i1 = Y2 Ba¥a = 33, B3¥z = @.

As BLy is an ideal of S, it follows that «;,5; € S\BLy, so that (ay,...,5;) € P. Letting
(cy, ..., B3) = p, we have

xp“lﬁl_l“zyz = xp“151_1;3171 =X,01Y1 = X,0 =X, = Y,0 = YpP3¥z = yp530‘3_1°‘373
= ypﬁsofg_lﬁzh-

But then, as y, is injective, we have x,a; 8, '@, = y,8;a; ' 8,, contradicting the choice of x,, and
¥p- Thus, D,(S) > 4. [l

If S is a subsemigroup of Injy such that S\BLy is |X|-transitive, then certainly S is
|X |-transitive and S\ BLy is finitely transitive. Thus, by Propositions 3.13 and 3.15, we have:

Theorem 3.16. For a subsemigroup S of Injy such that S\ BLy is | X |-transitive, the following are
equivalent.
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(1) o is finitely generated and D,(S) = 4.

(2) y is finitely generated.

(3) S" is finitely generated and S N BLy # @.
(4) S" is finitely generated and S contains BLy.

If S is a subsemigroup of Injy containing Sy, then certainly S” is finitely generated (as S is
a monoid) and S\ BLy is |X|-transitive (as it contains Sy, which is |X|-transitive). Thus, we
deduce:

Theorem 3.17. For a monoid S such that Sy < S < Injy, the following are equivalent.

(¢))] cog is finitely generated and D,(S) = 4.
(2) wy is finitely generated.

3) SNBLy # @.

(4) S contains BLy.

Consequently, the monoids Sy U BLy and Injy have right diameter 4.

Remark 3.18. For any non-empty set I of infinite cardinals g < |X|, the set S = | qe1 BLx g is an
| X |-transitive subsemigroup of Injy. Moreover, we have S” = aS! for any a € BLy 4,0 where g
is the smallest cardinal in I. If I contains |X| and at least one other cardinal g < |X|, then, by
Theorem 3.16, the universal right congruence wg is finitely generated and D,.(S) = 4.

4 | TRANSFORMATION SEMIGROUPS: LEFT DIAMETER

This section has a parallel structure to Section 3; that is, it naturally splits into three parts,
correponding to questions (Q4), (Q5) and (Q6) of Subsection 2.3.

So, we begin by considering which of the transformation semigroups S appearing in Table 1 are
finitely generated as left ideals. Of course, this holds if S is a monoid or left simple. Also, it is fairly
straightforward to show that 7y \ Injy is generated as a left ideal of itself by any o € Surjx \ Sy
(in fact, we shall see that 7y \ Injy has left diameter 2). The remaining semigroups (7 \ Surjy
and BEX’q, N, < g < |X]) are dealt with by the following result.

Theorem 4.1. IfS is a finitely transitive subsemigroup of Ty, \ Surjy, then S is not finitely generated.
In particular, the semigroups Ty \ Surjx and BLx , (R, < q < |X|) are not finitely generated as left
ideals of themselves.

Proof. Consider any finite subset U C S. For each a € U choose x, € X \im « (such an element
exists because « is not surjective). As S is finitely transitive, there exists 8 € S such that x,6 = x,
for each « € U. Then im0 ¢ im« for all « € U, and hence 6 ¢ S'a for any a € U, so S # S'U.
Hence, S' is not finitely generated. O

We now consider which of the remaining transformation semigroups S from Table 1 have
coé not finitely generated. First, we establish an analogue of Proposition 3.2, followed by a
technical lemma.
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Let S be a subsemigroup of 7. For a subset U C S, we define
W) ={a;'By o Byt keN, 4, B, € UL <i<k)}C By.
Observe that for any 0, ¢ € Ty, in By we have
87 lp ={(x6,xp) : x € X}

Proposition 4.2. Let S be a subsemigroup of Ty, and let U C S be a generating set for the universal
left congruence wls. Then for any 0, ¢ € S there exists o € X'(U) with 6~ 1¢p C 0.

Proof. Let8, ¢ € S. Suppose first that 6 = ¢. As cof9 is generated by U, there exists « € U such that
0 € S'a. Asim6 C ima, it follows that 61 = 6716 C a~la € Z'(V).
Now suppose that 8 # ¢. Then there exists a U-sequence

0 =y1a1, V1B = V2%, s YiBk = @

Leto = a; 'y ... ' B € T'(U). We claim that 6~'p C 0. So, let (x, y) € 6~'¢. Then there exists
z € X such that x = z6 and y = z¢. Then x = (zy;)a;, so that (x,zy;) € ocl_l. Therefore, we
have

(x,zy,0) = (x,zy181) € 051_151-

It follows that (x, zy,) € a;'§;a; ", which in turn implies that (x, zy,8,) € a;' 8,8, Contin-
uing in this way, we obtain

(6, p) = (x,29) = (x, 21, B) € ay ' By - B = 0,
as required. O

Lemma 4.3. Let S be an X-transitive subsemigroup of Ty satisfying the following condition: for
any finite subset U C S there are infinitely many x € X such that for each o € T'(U) the set X \ xo
is infinite. Then culs is not finitely generated.

Proof. Suppose for a contradiction that coé is generated by a finite subset U C S, and let = = Z/(U).
Let X’ be the (infinite) set of all x € X such that for each ¢ € T the set X\xo is infinite.
Choose a set of distinct elements {x, : o € £} C X’ such that |[X\{x, : ¢ € Z}| = |X|. As the set
X\xo is infinite for each o € Z, we may choose a set of distinct elements {y, : o € X} such that
IX\{y, : 0 € Z} = |X| and (x,,y,) € o for each o € X. As T is countable and S is N -transitive,
there exist 6, € S such that x,0 = x, and x,¢ = y, for all o € . Then (x,,y,) € 6~ '¢ for all
o € Z. Now, by Proposition 4.2, there exists o € T with 6~'¢ C . But then (x,,y,) € o, and we
have a contradiction. Ll

We can now show that all the subsemigroups of Hy appearing in Table 1 do not have a finitely
generated universal left congruence.
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Theorem 4.4. If S is an R,-transitive subsemigroup of Hy, then cuf9 is not finitely generated. In

particular, the universal left congruence on each of the following semigroups is not finitely generated:
Sx; Fx; Injx; BLx , where Ry < p < |X|; BLY; Sy UBLy; DBLy , where X, < q < |X|; Hx; and
Ky.

Proof. We claim that S satisfies the condition of Lemma 4.3, and hence wé is not finitely gen-
erated. Indeed, consider any x € X, U C S and 0 = a; ' ...a ' B € Z(U) (where «;, §; € U).
Define o; = a;'B; ... 'B; for i = 0,...,k (interpreting o, = 1y). We have |xo,| = |{x}| < |X].
Now let i €{1,...,k}, and assume that |xo;_;| < |X|. We have xoi_loci‘locl- = Xx0;_; Nima;, so
X0,y | < |x0y_y | < |X|. As a; € Hy, it follows that |xo;_;a;!| < |X|. Therefore,

-1 -1
|x0;| = |xo;_10 B;] < |xoi_j0 | < [X].
Hence, by induction, we have |xo| = |xoy| < |X|. Thus, X\ xo is infinite, as required. O

Remark 4.5.

(1) The statements and proofs of Lemma 4.3 and Theorem 4.4 would still hold if we replaced
‘finitely generated’ with ‘countably generated’.

(2) The monoid Injy coincides with the R-class of the identity of Ty, so every subsemigroup of
Injy is R*-simple. Thus, by the left-right dual of Proposition 2.6, the universal left congruence

wé on any uncountable subsemigroup S of Injy is not finitely generated.

The remaining semigroups to consider are 7y \ Injy, DBLy, DBE}K, Sx UDBLy and Surjy.
We will show that each of these semigroups has a finitely generated universal left congruence and
finite left diameter. To this end, we first establish the following mappings, which were introduced
in [8] to prove that Ty and P7y have monogenic diagonal left acts.

Choose any bijection ¥ : X — X X X, and let& = ¥, and § = ¥, where 7,7, : X XX — X
denote the projections onto the first and second coordinates, respectively. Note that @, E € DBLy.
For each pair 6, ¢ € Ty, define a map

76,9) 1 X = X, x — (x6,xp)v L.
Observe that kery(6, ¢) = kfr@ Nker ¢, and ¥(6, p)a = 0 and ¥(6, go)[ﬁiT = ¢@. It follows immedi-
ately that 7y X Ty = Tx(a, ).

We fix the maps 7, @, E and ¥(6, p) (6, ¢ € Tx) for the remainder of this section.

Definition 4.6. Let S be a subsemigroup of 7y such that @, E e S,letf,p € S,and letk € N. By
an (@, 8, k)-inducing sequence from 6 to ¢ (in S), we mean a sequence

O=91,%0 Y1 =9
of elements of S where 7(¥;,%;,;) € S foreachi € {1, ..., k}.

The following lemma is an analogue of the (1)= (2) part of Lemma 3.7, showing that (&, E ,k)-
inducing sequences give rise to (&, 3)-sequences of length k.

85UB0 |7 SuoWIWoD aAIee.D a|qeal|dde sy Aq peussnof 8. Ssjole VO ‘8sN JO Se|n oy AkelqiT8uljuO 4|1 UO (SUONIPUOD-PUB-SLLBIALI0D A3 | M Alelq 1puljuoy//:sdny) SuonIpuoD pue swie 1 8u) 89S *[#Z02/90/7T] uo Ariqiauluo A8|iM ‘8L Aq t#62T 'SW|(/ZTTT 0T/I0P/WO0d A3 | 1M ARelq | PU 1 |UO"O0SUTRWPUO|//:SANY WoJy pepeo|umoq ‘T ‘v202 ‘0SLL69T



ON THE DIAMETER OF SEMIGROUPS OF TRANSFORMATIONS AND PARTITIONS | 23 of 34

Lemma 4.7. Let S be a subsemigroup of Ty such that &, E € S. If there exists an (@, E, k)-inducing
sequence

0=, ¢ Y1 =@

from O to @ in S, then there exists an (&, E)-sequence

6 =11 118 =728 -, V1B =1i& 1B =9
from 6 to ¢ of length k in S.

Proof. By definition, we have y(3;,9;,,) € S for each i € {1, ..., k}. Letting y; = 7(¥);, ¥;,,), we
have y;a = 9; and y;,5 = 9;,,. Hence, we have an (&, 8)-sequence

6 =71& V1B =128 s VB =& VB =@
in S, as required. l
Lemma 4.7 yields the following counterpart of Proposition 3.8.

Proposition 4.8. Let S be a subsemigroup of Ty such that:

W &pesS;
(2) there exists n € N such that for any pair 6, ¢ € S there is an (@, 3, k)-inducing sequence from 6
to g in S for some k < n.

Then cué is generated by the pair (@, E) and D|(S) < n. Furthermore, ifn = 1 (so that¥(8, ¢) € S for
any 6, ¢ € S), then the diagonal left S-act is generated by (@, ﬁ) (and is hence monogenic).

We now consider Ty \ Injy.
Theorem 4.9. The semigroup Ty \ Injy has left diameter 2.

Proof. Let S = Ty \ Injy. By Table 2 and Proposition 2.10, S does not have left diameter 1. Using
Proposition 4.8, we show that colS = ((@, B)) with D;(S) < 2, and hence D;(S) = 2.

It is clear that @, E € S. Fix any x € X, and consider arbitrary 8, ¢ € S. Certainly, ¢, € S. We
have

ker7(6,c,) = ker6 nkerc, = ker6 n (X x X) = ker®.

Therefore, as 8 is not injective, it follows that (6, c,.) is not injective, thatis, (6, c,) € S. Similarly,
we have y(c,, ) € S. Thus, there is an («, 8, 2)-inducing sequence 6, c,, ¢, as required. O

We now turn our attention to the dual Baer-Levi semigroup DBLy.

We call a partition of an infinite set Y a DBL-partition of Y if it is of the form {A, : y € Y}
where |A,| = |Y]|forally € Y. For each a € DBLy, the set {xa~! : x € X} of kernel classes of «
forms a DBL-partition of X.
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The following technical lemma concerning D/3L-partitions will be crucial in determining the
left diameter of DBLy.

Lemma 4.10. Let{A, : x € X} and {B, : x € X} be a pair of DBL-partitions of X. Then there
exists a third DBL-partition {C,. : x € X} of X such that for each x € X theset{A, nC, : y € X}
is a DBL-partition of A, and {B, N C, : y € X} is a DBL-partition of B,.

Proof. Let |X| = x, and for convenience assume that X = x, where as usual the cardinal x is iden-
tified with the set of all ordinals 1 < x. So, consider a pair of DBL-partitions {4, : 1 € x} and
{B, : 1 € x}. We begin by defining a sequence (x;),¢, of distinct elements of X by transfinite
induction, as follows. First, we define the set

T =%>%{0,1} ={(a,B,7,n) : a, B,y €x, n €{0,1}%.

As|T| = x, we may fix a bijectionx — T,4 — t;. Nowlet 1 € x, and suppose that we have defined
the elements X, for all u < A. Also write t; = (a, 3,7, h), and define Y = {xﬂ Tu<ALAs|Y| =
|4] < x (as x is a cardinal), we can define X, to be any element of A, \Y if n = 0, or any element
of B,\Yifn=1.

Now that we have defined the sequence (x;);¢,, for each 1 € x we define

T, =xXxXx{A} x{0,1} ={(a, B, 4, n) : a,f €k, n € {0,1}}.

Finally, we set
C, = {x, 11, €T} ifA>1,
fx, 11, eTUX\{x; 1 1€x} ifA=0.

Then {C; : 1 € x}is a DBL-partition of X because {T; : 1 € x}is a DBL-partition of T. Also, for
any 4, u € x, the set C; contains x elements of the form x, where ¢, € {u} X x X {1} x {0}, each of
which belongs to A, by definition. This shows that |[A, N C;| =« for all 4, u € x. Similarly, we
have |B, NC;| =x for all 4, u € x. This completes the proof. O

We are now in a position to compute the left diameter of DBLy.
Theorem 4.11. The dual Baer-Levi semigroup DBLx has left diameter 2.

Proof. Let S = DBLy. By Table 2 and Proposition 2.10, S does not have left diameter 1.

To prove the inequality D;(S) < 2, we use Proposition 4.8. We have already noted that @, E eSs.
Consider 6,¢p € S. For each x € X, let A, = x0~! and B, = x¢~!. Then {A, : x € X} and
{B, : x € X}are DBL-partitions of X. By Lemma 4.10, there exists a DBL-partition {C, : x € X}
of X such that for each x € X the set {A, NC) : y € X} is a DBL-partition of A,, and
{B,NC, :y € X} is a DBL-partition of B,. Let 1 € S be given by xA™! = C, for all x € X. We
claim that

6,4, ¢
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is an (@, ,@: 2)-inducing sequence from 6 to ¢. Letting y; = ¥7(6,1) and y, = ¥(4, ¢), we need to
show that y;,y, € S. Indeed, for each y € X we have

y}/l_1 ={xeX:x0,x1)=y¥}={x€X : x6 =yaand x4 :yﬁ}
={xeX:xe@a)p landx e (yg)/l_l} ={xeX:x€Ayzandx € Cyﬁ}
= Aya N Cyg,
and similarly yy; 1= Czn Byﬁ- Thus, for each y € X we have
1t = 14,20 Cpsl = IX| and |yy;'| = ICyz N B3l = IXI,
so that y,,y, € S, as required. O

Next, we establish a technical lemma, and then employ it to show that submonoids of Surjy
containing DBE; have left diameter either 3 or 4. In this lemma and what follows, asubset Y C X
is colarge (in X) if | X\ Y| = |X]|.

Lemma 4.12. Let {ct,, ..., «,,} be a finite subset of Ty, and let x,, ..., X,,_; be (not necessarily distinct)
elements of X. If the set Y = J,;c,_; X;&; " is colarge in X, then there exists at most one element
X € X such thatY U xoc;1 is not colarge in X.

Proof. Suppose that Y Uxa;! is not colarge. As X\Y = (X\(Y uxa,')) u(xa,'\Y), and
IX\Y| = |X]|, it follows that |xoc;1 \Y| = |X]|. But then for any y € X\ {x} we have

X\(Y Uy, ) = X\Y)nX\ya, ") 2 xa, "\,
and hence Y U ya,; 1 is colarge. [l

Proposition 4.13. IfS is a monoid such that DBE}( < S < Surjy, then cué is finitely generated and

Proof. As DBLy is an ideal of S, it follows from Theorem 4.11 and the dual of Lemma 2.4 that a)ls
is finitely generated with D;(S) < 4.
Now suppose for a contradiction that D;(U, S) < 2 for some finite set U C S. Let

V={ull: uelUnsSy,1eU}

and note that V is finite. By an easy induction argument, using Lemma 4.12, we may fix elements
Yo €X (p € V) such that A = U¢€V y¢cp_1 is colarge. For each pair o, € U and each p € V,
we fix some x, g, € X such that xcxﬁ’qpoc‘1 ﬂyq‘,ﬁ‘1 # @ (as y, € X =imf, we can pick any
z € yqoﬁ‘l and define x, g, = za). Now choose an arbitrary 6 € DBLy (CS) such that
{Xepyp BEU,pE V3}6~! C X\ A (such a map exists because A is colarge). As Dy(U,S) < 2,
there exists a U-sequence

O =ya,yB =04, du =1y
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(wherea, 8,4, u € U). As Surjy \ Sy isanideal of Surjy [9, Proof of Theorem 4.4.2], it follows that
8,4 € Sy with § = u~!. Thus, letting ¢ = u~'1 € V, we have 6 = ya and y = ¢. Let x = X, g ,,
choose some z € xa™' Ny, B!, and then pick some u € zy~'. Then ud = uya = za = x, 0
u € x6~'. On the other hand, we have up = uyf =zf =y,, so u € y,¢~' € A. But this
contradicts the fact that x6=! C X\ A. Thus, D;(S) > 3. O

Note that the set Surjy \ DBLy is not a subsemigroup of Surjy (in contrast to the situation for
Injy, where Injy \ BLy is a subsemigroup). However, for a subsemigroup S of Surjy, if S\DBLy
is finite and non-empty, then it is a subgroup of Sy.

Theorem 4.14. For any finite subgroup G of Sy, the monoid G U DBLy has left diameter 3. In
particular, DBE}( has left diameter 3.

Proof. LetS = GUDBLy. As Dy({«, E}, DBLy) = 2 (by the proof of Theorem 4.11), it is clear that
w’s is generated by the finite set U = G U {@, 8} and that D;(U, S) < 3. On the other hand, we have
Dy(S) = 3 by Proposition 4.13. Thus, D;(S) = 3. O

We now raise the following question, concerning a natural analogue of Proposition 3.15.

Open Problem 4.15. If S is a subsemigroup of Surjy containing a finitely transitive subsemigroup
of S\DBLy, and coé is finitely generated, is D,(S) > 4?

The following result affirmatively answers Open Problem 4.15 in the special case that S contains
SX .

Proposition 4.16. Let S be a monoid such that Sy < S < Surjy. If wé is finitely generated, then
Dy(S) = 4.

Proof. Suppose for a contradiction that D;(U, S) < 3 for some finite set U C S. Let P denote the col-
lection of all tuples («;, B, &y, B3, &3, B3) € US where ay, 5 € Sy. Write P = {py, ..., Dys - s Pir s
where p; = G .,ﬁgl)) (1<ig<n+r)and py,..., p, are those tuples p = (ay,...,5;) € P for

g
which there exists an element w,, € X such that the set [ J zp; ', is finite. For i € {1,..., n},

z;éwp

@ and note that L

N -1
write w asw;, andlet W = {w, ..., w,}. Also, let L = Ulsi@ Uz;’:wi z(ﬁg)) s

p
is finite. We now establish the following claim.

Claim.

(1) There exist u;,v;,X;,y; € X (1 < i < n)such that

N =1 s N =1
wEW, v €L, x; € ui(“g)) 5;1) and y,; € Ui(ﬁil)) ai‘),

with x; # xy and y; # yy for distinct pairs i,i’ € {1, ..., n}.
(2) Lety; (1 €i< n)beasgiven in (1), and let

K={@™") " i 1<isn1<j<rh
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Foreach1 < j <r,thereexista;,b; € X withb; € q; (5(n+] )y agnﬂ )\K such that

-1
U aq( (’H'Q)) ‘B(VH"]) and U bq(ﬁi”‘*"])) ag"“])

1<qsj 1<q<j
are colarge.

Proof. We prove both (1) and (2) by induction.

(1) For the base case, pick any u; ¢ W and v, € L, and then choose x; € ul(oc(l)) ﬁ(l)

1 1
€ vl(ﬁ§ o8 oc§ ),
Now let k € {2, ..., n}, and assume that u;,v;,x;,y; € X (1 <i < k — 1) have been chosen
such that
N =1
u g W, v ¢ L x eu@) g0 and y, € v o,
with x; # x and y; # y; for distinct pairs i,i’ € {1,...,k — 1}. As the map (,G(k) (k) is sur-

-1
jective, its set of kernel classes {x(cxgk)) 6;")

u, € W such that

txeX } is infinite. Therefore, we may choose

Oy ok
u (@) B N fxy, g} = @

Similarly, we may choose v, & L such that
oy (k
Uk(ﬁg )) Ofg 4 N1 Vi1 =@

-1 -1
Take any x;, € uk(ocgk)) ﬁgk) and y, € vk(ﬁgk)) cxgk). This completes the inductive step.

-1 (m+1)
%,

is not contained in K (which is possible by surJect1V1ty) and let b; € al(ﬁ("H) ocg"H)\K .

-1
The sets a1(04(n+1)) ,3(”+1) and b (5(n+1)) oc("H) are colarge because the sets al(oé"“))
(n+1)

(2) We first note that X is finite. Now, for the base case, let a; € X be such that al(ﬁ("+1))

and b (B(”+1)) are colarge and the maps ﬁ("H) and o;"" " are bijections.
Now let j € {2,...,r}, and assume that we have chosen a,b,eX (1<qg<j—1) with

q>0q
1
b, € aq(ﬁgnw)) ocgnJrq)\K such that

+\ "L o+ +\ L (nt
A= | a@™?) g and B = |J b8 alt?
1<g<j—-1 1gggj—1

are colarge. Observing that for any a, 8 € By we have a8 = (8 ‘104)_1, by Lemma 4.12 there

N -1 .
exists at most one element c; such that the set A;_; Uc; (océ"ﬂ ) 6§"+J ) is not colarge, and at

CET AN ’_ :
most one element d; such that B;_; ud j(ﬁl ) o is not colarge. Let K/ = K U {d j} if
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d i exists; otherwise, let K’ = K. Now, if ¢ j were the only element of X such that

D\ )
cj< ) > a, LK,

1 R
then we would have | J, 4, z(ﬁ("+] )y océ"ﬂ ) ¢ K’, which is finite, contradicting the fact that
Pn+j is not one of the tuples D1, - Py Hence, we may pick a; € X (with a; # ¢; if ¢; exists)
such that

+j + + +
Aj Uaj<oc;" J)) (n N _ U a (a(n q)) (n )
1<q<]

. i\ (n+)
is colarge, and aj(ﬁ;" 7y océ" 7

(n+)\7F k) (n+q)\ L (n+g)
JlUb< ) % —qu<‘81 > %

1<q<j

possesses an element b; & K'. Then

is colarge. This completes the inductive step. O

We fix the elements u;, v, x;, y;, a], i € X (1<i<gn,1<j<r)andthesetK, as given in the
above claim, for the remainder of this proof. Let

)\ ! o) _ N\ (n+j)
U aj<oc3 ) 3 and B = U bj( 1 ) 4

INNG NG
Choose 8 € Sy such that
x0=y; 1<ig<n) and (A\{x; :1<i<g<n}bCX\B.

(Such a bijection exists because the elements x, ..., x,, are distinct, the elements yy,...,y, are
distinct, and the sets A\{x; : 1 < i < n} and B are both colarge.) As D;(S, U) < 3, there exists a
U-sequence

0 =y104, ¥1P1 = V2% V2B2 = V393, V3B = 1x.

As Surjy \ Sy is an ideal of Surjy, we have y,, ay, 73, 83 € Sy withy, = 6a; ! andy; = ;. Thus,
p = (a;,B1, %, By, 43, B3) € P, and we have

9051_1:31 = Y0y, Yoy = 53_10‘3-
Now, for any z € X,

y€E z,82_1oc2 & there exists x € X such that x8, = z,y = xa,
& there exists X’ € X such that x'y,8, = z,y = x'y,a, (asy, is surjective)

SYE Z(Vzﬁz)_l(yzaz)
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oy ezBla) (6o

&y € za; ' Bs6a] ' B;.
Thus, for each z € X we have
() 25 a, = za3 ' B6ar By

Suppose first that p = p; wherei € {1, ..., n} (so o), = oc]({i), B = ,8]({1') fork =1,2,3). Thenu; ¢ W,
so u;8;a, C L. But then we have

1 -1 -1 _1 -1
v =y B =x0a; By € way Bibar By =uBy o, CL,

contradicting the choice of v;.
Now suppose that p = p,,,; where j € {1,...,r} (so a; = ocl(("ﬂ), Bi = 61((”“) for k =1,2,3).
Then we have
bj€a;f,'a, = a;a;' B:6a; ') C Aba;' B,

C((A\fx; 1 1<i<nhuix; 1 1<i<nPoa;'p,
C (X\B)a; "B u{ya; "B s 1<i<n}
C (X\b;B; o) ' UK
C X\{b;H UK =Xx\{b;},

where the first equality is due to (+) and the final equality is due to the fact that b; ¢ K. Again,

we have a contradiction. Thus, D;(S) > 4. O
By Propositions 4.13 and 4.16, we have:

Theorem 4.17. If S is a monoid such that Sy U DBLy < S < Surjy, then Di(S) = 4. In particular,
the monoids Sy U DBLy and Surjy have left diameter 4.

Unfortunately, we have not obtained an analogue of Theorem 3.17, classifying those subsemi-
groups of Surjy containing Sy that have left diameter 4. We conclude this section by considering
a potential such classification.

First, for a map a € Ty define

K@={xeX : |xa™'| = X[},

and let k(a) = |K(a)|. The set K(a) and parameter k(c) were introduced in [13]. Note that
DBLy ={a € Surjy : K(a) = X}.

Proposition 4.18. Let S be a monoid such that Sy < S < Surjy. Then S contains DBLy if and only
if there exists some o € S such that k(a) = |X]|.
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Proof. We have already observed that K(«) = X for any a € DBLy, so the forward direction
clearly holds.

For the reverse implication, let Y be any subset of K(«r) such that |Y| = |[X\Y| = |X]|, and fix
a bijection X — Y, x — y,. For each x € X fix some a, € xa~!, and note that A = {a, : x € X}
satisfies [A| = |[X\A| = |X|,asK(a) # @. Themap Y — A,y, — a, can therefore be extended to
a bijection 7 € Sy. We then see that § = azwa € S belongs to DBLy. Indeed, for any x € X we
have xf~! =xa 'z7la ! Darlat =y, a ™, and |y,a”!| = |X|asy, €Y C K(a).

Finally,lety € DBL be arbitrary. Take any bijectiony € Sy C Ssuch that(xy~!)y = xB~ for
each x € X. Then, for each x € X, we have x¢ € ((x)/)y_l) P = (xy)B~ 1, so that xy = (xp)B =
x(¥B). Thus,y = B € S, and hence DBLy C S. [l

Open Problem 4.19. For a monoid S such that Sy < S < Surjy, are the following equivalent?

(1) Dy(S) =4.

2) culs is finitely generated.

(3) There exists a € S such that k() = |X]|.
(4) S contains DBLy.

(1)= (2) certainly holds, we have (3)<>(4) by Proposition 4.18, and (4)= (1) follows from The-
orem 4.17. Thus, to answer this question in the affirmative, it would suffice to prove that (2)
implies (3).

5 | MONOIDS OF PARTITIONS

In this section, we consider the partition monoid Py and the partial Brauer monoid PBy (where
X is an arbitrary infinite set).

The partition monoid Py consists of all set partitions of X UX’, where X’ = {x’ : x € X}isa
disjoint copy of X. So, an element of Py is of the form a = {A; : i € I}, where the A; are non-
empty, pairwise disjoint subsets of X U X’ such that X U X’ = | J;; A;; the A; are called the blocks
of a. An element of Py may be represented as a graph with vertices X UX’ whose connected
components are the blocks of the partition; when depicting such a graph, vertices from X and X’
are displayed on upper and lower rows, respectively. It is from this graph-theoretic viewpoint that
we define the product in Py.

Leta, B € Py.Introduce another copy X" = {x"" : x € X}of X, disjoint from X U X’. Denote by
a, the graph obtained from a by replacing every x” with x”’, and denote by 8 ! the graph obtained
from B by replacing every x with x’’. The product graph TI(a, 8) is the graph with vertex set
X UX"UX' and edge set the union of the edge sets of a; and B'. The graph II(«, §) is drawn
with vertices from X"’ displayed in a new middle row. We define af to be the partition of X U X’
such that u,v € X U X’ belong to the same block if and only if u and v belong to the same con-
nected component of I(a, b). We illustrate this product in Figure 1 (using elements from a finite
partition monoid). Under this product, Py is a monoid with identity {{x, xX}:xeX }

The partial Brauer monoid P By is the submonoid of Py consisting of all partitions whose blocks
have size at most 2. (Thus, the partition 8 in Figure 1 in fact belongs to P3;.)

It turns out that both Py and PBy have right diameter 1 and left diameter 1, as follows from
the following stronger result.
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FIGURE 1 Two partitions a, § € P, (left), the product graph Il(a, b) (middle) and the product af (right).

Theorem 5.1. The diagonal right act and diagonal left act of both Py and PBx are monogenic.

Consequently, both Py and P By have right diameter 1 and left diameter 1.

Proof. The partition monoid Py has an involution *: Py — Py, a — o, where a* is obtained
from a by swapping dashed and undashed vertices (pictorially, o* is ‘e upside-down’), and this
map restricts to an involution on P By. It follows that for all partitions 8, ¢, a, 8,y € Py (or PBy)

we have

6.9) = (@B & (6".¢") =y, B,

and hence the diagonal right act of Py (resp., PBy) is monogenic if and only if the diagonal left
act of Py (resp., PBy) is monogenic. Thus, it suffices to show that the diagonal right acts of Py

and P By are monogenic.
Divide X into five subsets as follows:

X=AUBUCUDUE where |A| = |B| = |C| = |D| = |E| = |X].
Write

A={a, :x€X}, B={b, : xeX}, etc

X

Define (and fix) a, 8 € Py as follows:
a={{xa}: xexiu{p,,}:xeXju{{d}: xeXju{fe}: xeX};
B={{xe} xextu{{.d}: xexju{{d}: xex}u{p}: xeXx}

See Figure 2, and note that in fact « and 8 belong to PBy.
For each set T = U UV’ where U,V C X, define

AMT)={a, :ueU}tuib, : veV} and p(T)={e, :ueUiu{d, : ve Vi

Consider 8, ¢ € Px. Set

A0)={AT): Te6} and  p(p)={p(T) : T € p}.
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T

FIGURE 3 The partitiony = y(6,¢) € Py.

FIGURE 4 The products ay =6 and By = ¢.
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Note that A(8) and p(¢) are partitions of A U B and D U E, respectively. Now define

Yy =7(6,9) =26) U {{c;, X'} : x € X} Up(p).

Then y € Py and (6, ) = («, B)y; see Figures 3 and 4. Moreover, if 8,9 € PBy then y € PBy.
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