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Abstract

There are several graphs defined on groups. Among them we consider graphs whose vertex set
onsists conjugacy classes of a group G and adjacency is defined by properties of the elements of
onjugacy classes. In particular, we consider commuting/nilpotent/solvable conjugacy class graph
f G where two distinct conjugacy classes aG and bG are adjacent if there exist some elements

x ∈ aG and y ∈ bG such that ⟨x, y⟩ is abelian/nilpotent/solvable. After a section of introductory
esults and examples, we discuss all the available results on connectedness, graph realization,
enus, various spectra and energies of certain induced subgraphs of these graphs. Proofs of the
esults are not included. However, many open problems for further investigation are stated.

2024 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY
icense (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Characterizing finite groups using graphs defined over groups has gained traction
s a research topic in recent times. A number of graphs have been defined on groups
see [23]), among which the commuting graph has been studied widely. Let G be a finite
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non-abelian group. The commuting graph of G is a simple undirected graph whose vertex
set is G, in which two vertices x and y are adjacent if they commute. The complement of
his graph is the non-commuting graph of G. The concept of commuting graph appeared
n an important work of Brauer and Fowler [21], in the year 1955, a step towards the
lassification of Finite Simple Groups. After the work of Erdős and Neumann [62] on

ts complement in the year 1976, it was studied in its own right.
The property that x and y commute is equivalent to saying that ⟨x, y⟩ is abelian.

sing other group types such as cyclic, nilpotent, solvable, . . . graphs have been defined
n groups. Given a group type P (for instance, cyclic, abelian, nilpotent, solvable etc.),
e define a graph on a group G, called the P graph of G, whose vertex set is G and

wo distinct vertices x and y are adjacent if ⟨x, y⟩ is a P group. In this nomenclature
abelian graph’ is nothing but the commuting graph. These graphs forms the following
ierarchy (where A ⊆ B denotes that A is a spanning subgraph of B):

Cyclic graph ⊆ Commuting graph ⊆ Nilpotent graph ⊆ Solvable graph. (1)

It is worth mentioning that there are other graphs in the above hierarchy (for details
ne can see [23]).

A dominant vertex of a graph is a vertex that is adjacent to all other vertices. Let
(G) = {g ∈ G : ⟨g, h⟩ is a P group for all h ∈ G}. Then P(G) is the set of all

ominant vertices of P graph of G.
In the four cases just described, P(G) is a subgroup of G, the cyclicizer, centre,

ypercentre, and solvable radical of G respectively. The question of connectedness of
he subgraphs of P graph induced by G \ P(G) is an interesting problem (see [8,19,22,
7,49,58,64]). Of course, this problem is trivial unless P(G) is removed (otherwise the
raph has diameter at most 2). However for other studies such as independence number
r clique number, it makes either no difference or just a trivial difference.

Graphs are also defined from (finite) groups by considering the vertex set as the set
f conjugacy classes (or class sizes), with adjacency defined by certain properties of the
lements of conjugacy classes or the class sizes. A survey on graphs whose vertex set
onsists of class sizes of a finite group can be found in [54]. Graphs whose vertex set
onsists conjugacy classes of a group and adjacency is defined by properties of their sizes
ere first considered in [13].
In this survey, we shall consider graphs whose vertex set consists conjugacy classes

f a group G, with adjacency defined by properties of the elements of these classes. We
all such a graph the P conjugacy class graph of G, or for short the PCC-graph. The

conjugacy class graph of G is a simple undirected graph whose vertex set is the set
f all the conjugacy classes of G and two vertices (conjugacy classes) aG and bG are
djacent if there exist some elements x ∈ aG and y ∈ bG such that ⟨x, y⟩ is a P group.
e have the following hierarchy in case of P conjugacy class graph:

Cyclic CC-graph ⊆ CCC-graph ⊆ NCC-graph ⊆ SCC-graph, (2)

here here and subsequently we use CCC-graph, NCC-graph, SCC-graph to denote
ommuting, nilpotent and solvable conjugacy class graph. (Commuting conjugacy class
raph is synonymous with ‘abelian conjugacy class graph’.) Clearly, 1G (the conjugacy

lass of the identity element) is a dominant vertex if P(G) is a subgroup. To make the
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question of connectedness interesting, we should consider the induced subgraph on the
set of non-dominant vertices. However, as we will see, it is not always known what this
set is. Sometimes we just remove the identity class from the vertex set.

Note that the cyclic conjugacy class graph of a group has not yet been studied. In
what follows, we shall consider commuting/nilpotent/solvable conjugacy class graph.

An outline of the paper follows. In the next section we give some general results about
conjugacy class graphs, including a discussion of when they are complete (Theorem 2.3),
when it happens that the P graph is a “blow-up” of the PCC-graph (Theorem 2.6),
and some discussion of the dominant vertices (a characterization is known only for the
CCC-graph, see Proposition 2.5 and Problem 2.2). The following three sections survey
the three graph types, discussing connectedness, detailed structure for special groups,
and properties such as genus, spectrum and energy. (These results are taken from the
literature and proofs are not given.) The final section includes some open problems.

2. General remarks and examples

We begin with a general observation about conjugacy class graphs which is often
useful. Let P be any group-theoretic property, and let Γ be the PCC-graph of G; that
is, the vertices are conjugacy classes, and there is an edge {C1, C2} if and only if there
xist gi ∈ Ci for i = 1, 2 such that the group ⟨g1, g2⟩ has property P . In fact a stronger
ondition holds: if {C1, C2} is an edge, then for any h1 ∈ C1 there exists h2 ∈ C2 such
hat ⟨h1, h2⟩ has property P . For let g1, g2 be as in the definition. There exists x ∈ G
uch that gx

1 = h1; then, letting h2 = gx
2 , we see that

⟨g1, g2⟩
x

= ⟨h1, h2⟩,

nd since P is a group-theoretic property it is preserved by conjugation.
The first result relevant to conjugacy class graphs is the theorem of Landau [53] from

903: given the number of conjugacy classes of a finite group G, there is an upper bound
n the order of G. This implies the following result.

roposition 2.1. Given a graph Γ , there are only finitely many finite groups G whose
commuting, nilpotent or solvable conjugacy class graph is isomorphic to Γ .

The number of such groups is not usually 1. For example, for any abelian group of
order n, the CCC-graph is the complete graph on n vertices.

Problem 2.1. Which finite groups are uniquely determined by their commuting,
nilpotent, or solvable conjugacy class graph?

Fig. 1 shows the conjugacy classes of the symmetric group S4, with the CCC- and
NCC-graphs. (The conjugacy classes of Sn are defined by cycle types, and are labelled
with partitions of n; so their number is p(n), where p is the partition function, sequence
A000041 in the On-line Encyclopedia of Integer Sequences [1].) Solid lines show edges
in the CCC-graph, while the dotted line is the additional edge in the NCC-graph. Note
that the partitions 1111, 112, 22 and 4 form a clique in the NCC-graph. This observation
leads to our first general result.
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Fig. 1. Conjugacy class graphs of S4.

roposition 2.2. Let G be a finite group and p a prime. Then the conjugacy classes of
lements of p-power order form a clique in the NCC-graph.

roof. Let P be a Sylow p-subgroup of G. By Sylow’s theorem, every element of
p-power order is conjugate to an element of P; so P meets every conjugacy class of p-
elements. Let C1 and C2 be two such classes, and take gi ∈ Ci ∩ P . Then ⟨g1, g2⟩ ≤ P ,
o this group is a p-group, hence nilpotent. □

Thus the NCC-graph of Sn has a clique whose size is the number of partitions of n
nto powers of 2 (sequence A018819 in the OES).

The SCC-graph of S4 is complete, because S4 is a solvable group (and the class of
olvable groups is subgroup-closed). This is also a special case of the following general
esult.

heorem 2.3. Let G be a finite group. Then the CCC-graph (resp., the NCC-graph, the
CC-graph) of G is complete if and only if G is abelian (resp., nilpotent, solvable).

The “if” statements are clear. For the converses, we use the following result. Its roots
ie in the work of Jordan.

roposition 2.4. Let H be a proper subgroup of the finite group G. Then G has a
onjugacy class disjoint from H.

This holds because G acts transitively on the set of right cosets of H by right
ultiplication; by Jordan’s theorem, G contains an element x fixing no coset, that is,

o conjugate of x lies in H .
Thus, if we choose one element from each conjugacy class of G, these elements

enerate G.
Now we prove Theorem 2.3 for the CCC-graph. Suppose that the CCC-graph is

omplete. Choose any element h, say h ∈ C1. By our general remark about conjugacy
lass graphs, there exist hi ∈ Ci for all i such that hi commutes with h = h1. Then

⟨h1, . . . , hr ⟩ = G, and so h ∈ Z (G). Since h was arbitrary, G is abelian.
For the SCC-graph, this is immediate from the main theorem in [25], according to

hich G is solvable if and only if, for all g, h ∈ G, there exists x ∈ G such that ⟨g, hx
⟩

s solvable.
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For the NCC-graph, we use [25, Corollary E], which states that a finite group G
is nilpotent if the following condition holds: for distinct primes p, q, and for g, h ∈ G

here g is a p-element and h a q-element, there exists x ∈ G such that g commutes with
hx . Now suppose that G has complete NCC-graph, and let p, q, g, h be as stated. Then
here exists x ∈ G such that ⟨g, hx

⟩ is nilpotent. But in a nilpotent group, a p-element
nd a q-element necessarily commute.

We would like to have a strengthening of this describing the dominant vertices of
ne of our graphs (those joined to all others). The dominant vertices of the commuting,
ilpotent and solvable graphs are known; they are respectively the centre, hypercentre,
nd solvable radical of the group [23, Theorem 11.2]. One might expect that the
nalogous result would hold for conjugacy class graphs, since each of these sets is the
nion of conjugacy classes. But this is not the case. The groups PSL(2, 2a) for a ≥ 2
ave a single conjugacy class of involutions, and every element is conjugate to its inverse
y some involution. This means that for any element g there is an involution h such that
g, h⟩ is dihedral. So the class of involutions is dominant in the SCC-graph, even though
he solvable radical is trivial. It is, however, true for the CCC-graph:

roposition 2.5. The set of dominant vertices in the CCC-graph of a finite group G is
he set of central conjugacy classes of G.

roof. Clearly the central classes are dominant. Suppose that the class of the element
g is dominant; that is, for all h ∈ G, there exists x ∈ G such that g commutes with hx .

hen the centralizer of g meets every conjugacy class; by Jordan’s result, it is the whole
f G, so g ∈ Z (G) as required. □

roblem 2.2. Describe the dominant vertices of the NCC- or SCC-graph of a finite
roup.

Finally in this section, we compare our conjugacy class graphs with the conjugacy
upergraphs as defined, for example, in [10]. In these graphs, the vertex set is the group

G, and two vertices g and h are joined if and only if there exist conjugates g′ and h′

f g and h respectively so that ⟨g′, h′
⟩ has the appropriate property. These graphs are

btained from the conjugacy class graphs defined here by “inflating” each vertex to the
umber of vertices in its conjugacy class. In the other direction, we shrink a conjugacy
lass to a single vertex.

It is clear that many properties of the two graphs (such as connectedness and dominant
ertices) will be unaltered by these transformations, while others such as spectrum and
lique number will change. We will not discuss this further.

The question of when these graphs are equal is answered by the next theorem.

heorem 2.6. Let P be one of the properties “commutative”, “nilpotent”, or “solvable”.
necessary and sufficient condition for the P graph and the conjugacy super P graph

o be equal is as follows.

(a) For P = “commutative”: G is a 2-Engel group (one satisfying the identity
[x, y, y] = 1).
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(b) For P = “nilpotent”: G is nilpotent.
(c) For P = “solvable”: G is solvable.

Proof. (a) This is [10, Theorem 2].
(b) It is clear that, if G is nilpotent, then both graphs are complete. So suppose

that they are equal. Suppose that G is not nilpotent. Then G contains a Schmidt
group (a minimal non-nilpotent group). These groups were classified by Schmidt [69]; a
convenient reference is [12].

By inspection, any such group contains a p-element x acting non-trivially on a q-group
Q, where p and q are distinct primes. If y ∈ Q with yx

̸= y, then

(x−1)y x = [y, x] = y−1 yx

is a non-identity q-element. But ⟨x, x⟩ is nilpotent, so by assumption ⟨x y, x⟩ is nilpotent.
This is a contradiction since all p-elements of a nilpotent group are contained in a single

ylow p-subgroup.
(c) The key ingredient is the fact that any finite simple group can be generated by

wo conjugate elements. In fact, by [39], if G is a finite simple group, then there exists
∈ G such that for all nontrivial x ∈ G there exists g ∈ G such that ⟨x, sg

⟩ = G (we
can take x = s to get the previous claim).

It is clear that, if G is solvable, then both graphs are complete. So suppose that they
re equal. Any two conjugates of an element g are joined in the P supergraph, and

therefore are joined in the P graph. Suppose that G is not solvable. Let N < M < G
be a subnormal series such that M/N is a non-abelian simple group. As noted above,
there exists g, y ∈ M such that M/N = ⟨Ng, Ngy

⟩. In particular, ⟨Ng, Ngy
⟩ is non-

solvable and hence ⟨g, gy
⟩ is non-solvable. However, ⟨g, g⟩ = ⟨g⟩ is solvable, which is

contradiction. Therefore, G is solvable, completing the proof. □

The simplicity of the conditions in (b) and (c) compared to (a) is striking.
In the next three sections, we collate and survey some properties of the CCC-, NCC-

nd SCC-graphs of finite groups.

. Commuting conjugacy class graph

We write CCC(G) to denote the CCC-graph of a group G. The CCC-graph of G is
graph whose vertex set is Cl(G) := {xG

: x ∈ G}, where xG denotes the conjugacy
lass of x in G, and two distinct vertices aG and bG are adjacent if there exist some
lements x ∈ aG and y ∈ bG such that ⟨x, y⟩ is an abelian group. In this section, we
iscuss results on various induced subgraphs of CCC(G). Herzog et al. [48] considered
hree induced graphs of CCC(G) induced by Cl(G \1), Cl(G \ Z (G)) and Cl(G \ FC(G)),
here Cl(S) = {xG

: x ∈ S} for any subset S of G, and FC(G) = {x ∈ G : xG is finite}
s the FC-centre of G.

.1. Connectivity of CCC(G)[Cl(G \ 1)]

Let X be the class of groups which cannot be written as a union of conjugates of a
roper subgroup. The following theorem gives a characterization of residually X -group

G such that CCC(G)[Cl(G \ 1)] is complete.
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Theorem 3.1 ([48, Proposition 1]). Let G be a residually X-group. Then the graph
CC(G)[Cl(G \ 1)] is complete if and only if G is abelian. In particular, the claim holds

f G is residually (finite or solvable)-group.

Connectedness of CCC(G)[Cl(G \ 1)] is discussed in the next two theorems.

heorem 3.2 ([48, Theorem 10 and 12]). Let G be a finite solvable group or a periodic
olvable group. Then CCC(G)[Cl(G \ 1)] has at most two connected components, each
f diameter ≤ 9.

heorem 3.3 ([48, Theorems 13–14]). Let G be a finite group or a locally finite group.
hen CCC(G)[Cl(G \ 1)] has at most six connected components, each of diameter ≤ 19.

The following theorems give characterization of supersolvable/solvable groups such
that CCC(G)[Cl(G \ 1)] is disconnected.

heorem 3.4 ([48, Proposition 7]). Let G be a supersolvable group. Then the graph
CC(G)[Cl(G \ 1)] is disconnected if and only if G is either of the groups given in the

ollowing two types:

(a) G = A ⋊ ⟨x⟩, where x ∈ G, |x | = 2 and A is a subgroup of G on which x acts
fixed-point-freely.

(b) G is finite and G = A ⋊ B, where A, B are non-trivial subgroups of G, A is
nilpotent and B is cyclic, and B acts on A fixed-point-freely (in particular, G is
a Frobenius group with kernel A and a cyclic complement B).

heorem 3.5 ([48, Theorem 16]). Let G be a finite solvable group such that the graph
CCC(G)[Cl(G \ 1)] is disconnected. Then there exists a nilpotent normal subgroup H of
G such that one of the following holds:

(a) G = H ⋊ T is a Frobenius group with the kernel H and a complement T .
(b) G = (H ⋊ S) ⋊ ⟨x⟩, where S is a non-trivial cyclic subgroup of G of odd order

which acts fixed-point-freely on H, x ∈ NG(S) is such that ⟨x⟩ acts fixed-point-
freely on S, and there exist h1 ∈ H \{1} and i ∈ N such that x i

̸= 1, which satisfy
[x i , h1] = 1.

onversely, if either (a) or (b) holds, then CCC(G)[Cl(G \ 1)] is disconnected.

.2. Properties of CCC(G)[Cl(G \ Z (G))]

In the following theorem Herzog et al. [48] determined all periodic groups G such
hat CCC(G)[Cl(G \ Z (G))] is empty.

heorem 3.6 ([48, Theorem 19]). Let G be a periodic non-abelian group. Then
CC(G)[Cl(G \ Z (G))] is empty if and only if G is isomorphic to D8, Q8 or S3.

In 2016, Mohammadian et al. [57] classified all finite groups G such that the graph
CC(G)[Cl(G \ Z (G))] is triangle-free and obtained the following results.
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Theorem 3.7 ([57, Theorem 2.3]). If G is a finite group of odd order and the graph
CCC(G)[Cl(G \ Z (G))] is triangle-free, then |G| = 21 or 27.

Theorem 3.8 ([57, Theorem 3.4]). Suppose G is a finite group of even order which is
not a 2-group and CCC(G)[Cl(G \ Z (G))] is triangle-free. If |Z (G)| ̸= 1, then G is
isomorphic to D12 or T12 = ⟨a, b : a4

= b3
= 1, aba−1

= b−1
⟩.

Theorem 3.9 ([57, Theorem 3.5]). If G is a centreless non-solvable finite group and
CCC(G)[Cl(G \ Z (G))] is triangle-free, then G is isomorphic to one of the groups
P SL(2, q) (q ∈ {4, 7, 9}), P SL(3, 4) or SmallGroup(960, 11357).

Theorem 3.10 ([57, Theorem 3.6]). If G is a centreless non-abelian solvable finite
group and CCC(G)[Cl(G \ Z (G))] is triangle-free, then G is isomorphic to one of
the following groups: S3, D10, A4, S4, SmallGroup(72, 41), SmallGroup(192, 1023) or
SmallGroup(192, 1025).

Theorem 3.11 ([57, Theorem 3.7]). If G is a finite non-abelian 2-group such that
CCC(G)[Cl(G \ Z (G))] is triangle-free, then Φ(G) ≤ Z (G) and CG(x) = ⟨x, Z (G)⟩
whenever x ∈ G \ Z (G). Furthermore, either G ∼= D8, G ∼= Q8 or |G : Z (G)| = |Z (G)|.

.3. Structure of CCC(G)[Cl(G \ Z (G))]

In [66–68] structures of commuting conjugacy class graphs of certain finite non-
belian groups were determined. In this section, we shall discuss the structures of
CC-graphs of dihedral group, generalized quaternion group, semi-dihedral group, the
roups U(n,m), V8n and G(p, m, n) along with some other groups such that G

Z (G)
∼= Zp×Zp

or D2n , where p is a prime and D2n = ⟨x, y : xn
= y2

= 1, yxy−1
= x−1

⟩.

heorem 3.12 ([66, Theorem 1.2]). Let G be a finite group with centre Z (G) and G
Z (G)

is isomorphic to the dihedral group D2n . Then

CCC(G)[Cl(G \ Z (G))] =

{
K (n−1)|Z (G)|

2
∪ 2K |Z (G)|

2
, for 2 | n

K (n−1)|Z (G)|
2

∪ K|Z (G)|, for 2 ∤ n.

As a corollary to Theorem 3.12, we get the structure of CCC(G)[Cl(G \ Z (G))] when
G is the dihedral group D2n , the generalized quaternion group Q4m = ⟨x, y : x2m

=

, xm
= y2, y−1xy = x−1

⟩, the semi-dihedral group SD8n = ⟨x, y : x4n
= y2

=

, yxy = x2n−1
⟩ the group U(n,m) = ⟨x, y : x2n

= ym
= 1, x−1 yx = y−1

⟩ and the
roup U6n = ⟨x, y : x2n

= y3
= 1, x−1 yx = y−1

⟩. Further, Salahshour and Ashrafi
67, Proposition 2.4 and 2.6] determined the structures of CCC(G)[Cl(G \ Z (G))] when

G is the group V8n = ⟨x, y : x2n
= y4

= 1, yx = x−1 y−1, y−1x = x−1 y⟩ and the
roup G(p, m, n) = ⟨x, y : x pm

= y pn
= [x, y]p

= 1, [x, [x, y]] = [y, [x, y]] = 1⟩ as
iven below:

CCC(V8n)[Cl(V8n \ Z (V8n))] =

{
K2n−2 ∪ 2K2, for 2 | n

K2n−1 ∪ 2K1, for 2 ∤ n
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CCC(G(p, m, n))[Cl(G(p, m, n) \ Z (G(p, m, n)))]

= 2K pm+n−1−pm+n−2 ∪ (pn
− pn−1)K pm−n (pn−pn−1).

Note that all the groups considered above are AC-groups (non-abelian groups whose
centralizers of non-central elements are abelian). Salahshour and Ashrafi [67] also
obtained the structure of CCC(G)[Cl(G\ Z (G))] if G is a finite AC-group. Let Cent(G) =

{CG(a) : a ∈ G}, where CG(a) is the centralizer of a ∈ G. Consider the equivalence
relation ∼ on Cent(G) \ {G} given by CG(a) ∼ CG(b) if and only if CG(a) and CG(b)
re conjugate in G. Then we have the following result.

heorem 3.13 ([67, Theorem 3.3]). Let G be a finite AC-group with centre Z (G). Then

CCC(G)[Cl(G \ Z (G))] =

⋃
CG (a)

∼
∈EC(G)

Kn CG (a)
∼

where EC(G) =
Cent(G)\{G}

∼
is the set of all equivalence classes of ∼ and n CG (a)

∼

=

|CG (a)|−|Z (G)|
[NG (CG (a)):CG (a)] .

Salahshour and Ashrafi [68] determined the structures of CCC(G)[Cl(G \ Z (G))] when
G is a finite non-abelian group such that G

Z (G) has order p2 or p3 as given in the following
heorems.

heorem 3.14 ([68, Theorem 3.1]). Let G be a finite non-abelian group with centre Z (G)
and G

Z (G)
∼= Zp ×Zp, where p is prime. Then CCC(G)[Cl(G \ Z (G))] = (p+1)Kn , where

n =
(p−1)|Z (G)|

p .

Theorem 3.15 ([68, Theorem 3.3]). Let G be a finite non-abelian group with centre Z (G)
and |

G
Z (G) | = p3, where p is a prime. Then one of the following is satisfied:

(a) If G
Z (G) is abelian then CCC(G)[Cl(G \ Z (G))] = Km ∪ p2 Kn or (p2

+ p + 1)Kn ,

where m =
(p2

−1)|Z (G)|
p and n =

(p−1)|Z (G)|
p2 .

(b) If G
Z (G) is non-abelian then CCC(G)[Cl(G \ Z (G))] = Km ∪ kpKn1 ∪ (p − k)Kn2 ,

(kp + 1)Kn1 ∪ (p + 1 − k)Kn2 , Km ∪ pKn2 , (p2
+ p + 1)Kn1 or Kn1 ∪ (p + 1)Kn2 ,

where m =
(p2

−1)|Z (G)|
p , n1 =

(p−1)|Z (G)|
p2 , n2 =

(p−1)|Z (G)|
p , 1 ≤ k ≤ p.

As a corollary, it follows that CCC(G)[Cl(G \ Z (G))] = (p + 1)K p(p−1) or K(p2−1) ∪

pK p−1 if G is a non-abelian p-group of order p4. Ashrafi and Salahshour [11, Theorem
1.2] also obtained the structure of CCC(G)[Cl(G \ Z (G))] when G

Z (G) is isomorphic
o Zp2 ⋊ Zp2 , where p is a prime. In a recent work, Rezaei and Foruzanfar [65]
ave determined the structure of CCC(G)[Cl(G \ Z (G))] when G

Z (G) is isomorphic to
Frobenius group of order pq or p2q , where p, q are primes.
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3.4. Genus of CCC(G)[Cl(G \ Z (G))]

For any graph Γ , we write γ (Γ ) to denote its genus. The genus of Γ is the smallest
integer k ≥ 0 such that Γ can be embedded on the surface obtained by attaching k
handles to a sphere. If γ (Γ ) is equal to 0, 1, 2, or 3, then Γ is called planar, toroidal,
double-toroidal, or triple-toroidal, respectively. Clearly, γ (K1) = γ (K2) = 0. For n ≥ 3,
by [75, Theorem 6-38], we have

γ (Kn) =

⌈
(n − 3)(n − 4)

12

⌉
,

where ⌈a⌉ denotes the smallest integer greater than or equal to a for any real number a.
t is worth mentioning that finite non-abelian groups G for which C(G)[G \ Z (G)] (the
nduced subgraph of commuting graph of G induced by G \ Z (G)) is planar have been
haracterized (see [7, Theorem 2.2]), toroidal (see [7, Theorem 2.2] and [30, Theorem
.3]), double-toroidal (see [63, Theorem 3.3]) and triple-toroidal (see [63, Theorem 3.7]).
n this regard, we have the following problem.

roblem 3.1. Characterize all finite non-abelian groups G such that the induced
ubgraph CCC(G)[Cl(G \ Z (G))] of CCC(G) is planar, toroidal, double-toroidal or
riple-toroidal.

This problem was considered by Bhowal and Nath [17] and they characterized
he dihedral groups, generalized quaternion groups and semidihedral groups such that
CC(G)[Cl(G \ Z (G))] is planar, toroidal, double-toroidal or triple-toroidal. We have the

ollowing theorems for instance.

heorem 3.16 ([18, Theorem 2.2]). Let G be the dihedral group D2n . Then

(a) CCC(G)[Cl(G \ Z (G))] is planar if and only if 3 ≤ n ≤ 10.
(b) CCC(G)[Cl(G \ Z (G))] is toroidal if and only if 11 ≤ n ≤ 16.
(c) CCC(G)[Cl(G \ Z (G))] is double-toroidal if and only if n = 17, 18.
(d) CCC(G)[Cl(G \ Z (G))] is triple-toroidal if and only if n = 19, 20.

(e) γ (CCC(G)[Cl(G \ Z (G))]) =

⎧⎪⎨⎪⎩
⌈

(n−7)(n−9)
48

⌉
, for 2 ∤ n and n ≥ 21⌈

(n−8)(n−10)
48

⌉
, for 2 | n and n ≥ 22.

heorem 3.17 ([18, Theorem 2.4]). Let G be the generalized quaternion group Q4m .
hen

(a) CCC(G)[Cl(G \ Z (G))] is planar if and only if m = 2, 3, 4 or 5.
(b) CCC(G)[Cl(G \ Z (G))] is toroidal if and only if m = 6, 7 or 8.
(c) CCC(G)[Cl(G \ Z (G))] is double-toroidal if and only if m = 9.
(d) CCC(G)[Cl(G \ Z (G))] is triple-toroidal if and only if m = 10.

(e) γ (CCC(G)[Cl(G \ Z (G))]) =

⌈
(m−4)(m−5)

⌉
for m ≥ 11.
12
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Theorem 3.18 ([18, Theorem 2.3]). Let G be the semidihedral group SD8n . Then

(a) CCC(G)[Cl(G \ Z (G))] is planar if and only if n = 2 or 3.
(b) CCC(G)[Cl(G \ Z (G))] is toroidal if and only if n = 4.
(c) CCC(G)[Cl(G \ Z (G))] is double-toroidal if and only if n = 5.
(d) CCC(G)[Cl(G \ Z (G))] is not triple-toroidal.

(e) γ (CCC(G)[Cl(G \ Z (G))]) =

⎧⎪⎨⎪⎩
⌈

(n−3)(2n−5)
6

⌉
, for 2 ∤ n and n ≥ 7⌈

(n−2)(2n−5)
6

⌉
, for 2 | n and n ≥ 6.

Bhowal and Nath [18] also considered the groups V8n , U(n,m) and G(p, m, n) in their
tudy and obtained the following result.

heorem 3.19 ([18, Corollary 2.8]). Let G be a group isomorphic to D2n , SD8n , Q4m ,
V8n , U(n,m) or G(p, m, n). Then

(a) CCC(G)[Cl(G \ Z (G))] is planar if and only if G = D6, D8, D10, D12, D14,
D16, D18, D20, SD16, SD24, Q8, Q12, Q16, Q20, V16, U(2,2), U(2,3), U(2,4), U(2,5),
U(2,6), U(3,2), U(3,3), U(3,4), U(4,2), U(4,3), U(4,4), G(2, 1, 1), G(3, 1, 1), G(5, 1, 1),
G(2, 2, 1), G(2, 3, 1), G(2, 1, 2), G(2, 2, 2) or G(2, 1, 3).

(b) CCC(G)[Cl(G \ Z (G))] is toroidal if and only if G = D22, D24, D26, D28, D30,
D32, SD32, Q24, Q28, Q32, V24, V32, U(2,7), U(2,8), U(3,5) or U(3,6).

(c) CCC(G)[Cl(G \ Z (G))] is double-toroidal if and only if G = D34, D36, SD40, Q36,
U(2,9), U(2,10), U(4,5), U(4,6), U(5,2), U(5,3), U(6,2), U(6,3), U(7,2), U(7,3) or G(3, 1, 2).

(d) CCC(G)[Cl(G \ Z (G))] is triple-toroidal if and only if G = D38, D40, Q40, V40,
U(3,7), U(3,8), U(5,4), U(6,4) or U(7,4).

It may be interesting to continue similar study for the groups with known/unknown
structures of CCC(G)[Cl(G \ Z (G))] and answer Problem 3.1.

3.5. Various spectra and energies of CCC(G)[Cl(G \ Z (G))]

The spectrum of a finite graph Γ with vertex set V (Γ ), denoted by Spec(Γ ),
is the set of eigenvalues of its adjacency matrix with multiplicities. If Spec(Γ ) =

{α
a1
1 , α

a2
2 , . . . , α

ak
k } for some Γ then we mean that α1, α2, . . . , αk are the eigenvalues

of the adjacency matrix of Γ with multiplicities a1, a2, . . . , ak respectively. Similarly,
L-spec(Γ ) and Q-spec(Γ ) denote the Laplacian spectrum (L-spectrum) and signless
Laplacian spectrum (Q-spectrum) of Γ i.e., the set of eigenvalues of the Laplacian and
signless Laplacian matrices of Γ respectively. A graph Γ is called integral/L-integral/Q-
integral if Spec(Γ )/L-spec(Γ )/Q-spec(Γ ) contains only integers. To determine all the
integral/L-integral/Q-integral graphs is a general problem in graph theory. Various spectra
of C(G)[G \ Z (G)] were computed in [29–31,59] and obtained various groups such that
C(G)[G \ Z (G)] is integral/L-integral/Q-integral. Note that the following problem is still
open.
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Problem 3.2. Determine all the finite non-abelian groups G such that C(G)[G \ Z (G)]
is integral/L-integral/Q-integral.

The energy, Laplacian energy (L-energy) and signless Laplacian energy (Q-energy) of
Γ denoted by E(Γ ), L E(Γ ) and L E+(Γ ) respectively are given by

E(Γ ) :=

∑
α∈Spec(Γ )

|α|, L E(Γ ) :=

∑
β∈L-spec(Γ )

⏐⏐⏐⏐β −
tr (D(Γ ))
|V (Γ )|

⏐⏐⏐⏐
and L E+(Γ ) :=

∑
γ∈Q-spec(Γ )

⏐⏐⏐⏐γ −
tr (D(Γ ))
|V (Γ )|

⏐⏐⏐⏐,
where D(Γ ) is the degree matrix of Γ and tr (D(Γ )) is the trace of D(Γ ). In 1978,

utman [41] introduced the notion of energy of a graph. In Huckel theory, π -electron
nergy of a conjugated carbon molecule is approximated by E(G). Subsequently, Gut-
an and Zhou [46] in 2006 and Abreua et al. [6] in 2008 introduced L-energy and
-energy of a graph. Applications of these energies can be found in crystallography,

heory of macromolecules, analysis and comparison of protein sequences, network
nalysis, satellite communication, image analysis and processing etc. (see [45] and
he references therein). In 2009, Gutman et al. [44] conjectured (E-LE conjecture)
hat

E(Γ ) ≤ L E(Γ ). (3)

Though (3) was disproved in [55,71] people wanted to know whether this conjecture is
true for various graphs defined on groups. The following problem for C(G)[G \ Z (G)] is
considered in [27,32].

Problem 3.3. Determine all the finite non-abelian groups G such that C(G)[G \ Z (G)]
satisfy the following inequalities:

(a) E(C(G)[G \ Z (G)]) ≤ L E(C(G)[G \ Z (G)]).
(b) L E+(C(G)[G \ Z (G)]) ≤ L E(C(G)[G \ Z (G)]).

A graph Γ is called hyperenergetic, L-hyperenergetic and Q-hyperenergetic if
E(Γ ) > E(K|V (Γ )|), L E(Γ ) > L E(K|V (Γ )|) and L E+(Γ ) > L E+(K|V (Γ )|) respectively.
The concept of hyperenergetic graph was given by Walikar et al. [74] and Gut-
man [42], independently in 1999. The concept of L-hyperenergetic and Q-hyperenergetic
graph can be found in [34]. Again, Γ is called borderenergetic (introduced by Gong
et al. [38]), L-borderenergetic (introduced by Tura [73]) and Q-borderenergetic (intro-
duced by Tao et al. [72]) if E(Γ ) = E(K|V (Γ )|), L E(Γ ) = L E(K|V (Γ )|) and L E+(Γ ) =

L E+(K|V (G)|) respectively. The following conjecture was posed by Gutman [41] in
1978.

Conjecture 3.20. Any finite graph Γ ≇ K|v(G)| is non-hyperenergetic.

This conjecture was also disproved by different mathematicians providing counter
examples (see [43]). However, the search for counter examples to Conjecture 3.20
continued. In [70], the following problem for C(G)[G \ Z (G)] was considered.
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Problem 3.4. Determine all the finite non-abelian groups G such that C(G)[G\Z (G)] is
hyperenergetic/borderenergetic/L-hyperenergetic/L-borderenergetic/
Q-hyper-energetic/Q-borderenergetic.

In [16,17], Bhowal and Nath considered problems corresponding to the Problems 3.2–
3.4 for CCC(G)[Cl(G \ Z (G))]. They considered the dihedral groups, generalized quater-
nion groups and semidihedral groups and obtained the following results.

Theorem 3.21 ([17, Theorem 3.1]). If G is the dihedral group D2n , then

(a) Spec(CCC(G)[Cl(G \ Z (G))])

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

{
(0)1, (−1)

n−3
2 ,

( n−3
2

)1
}

, for 2 ∤ n{
(0)2, (−1)

n
2 −2,

( n
2 − 2

)1
}

, for 2 | n and 2 |
n
2{

(−1)
n
2 −1, (1)1,

( n
2 − 2

)1
}

, for 2 | n and 2 ∤ n
2

and E(CCC(G)[Cl(G \ Z (G))]) =

⎧⎪⎨⎪⎩
n − 3, for 2 ∤ n
n − 4, for 2 | n and 2 |

n
2

n − 2, for 2 | n and 2 ∤ n
2 .

(b) L-spec(CCC(G)[Cl(G \ Z (G))])

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

{
(0)2,

( n−1
2

) n−3
2

}
, for 2 ∤ n

{
(0)3,

( n
2 − 1

) n
2 −2

}
, for 2 | n and 2 |

n
2{

(0)2, 21,
( n

2 − 1
) n

2 −2
}

, for 2 | n and 2 ∤ n
2

and L E(CCC(G)[Cl(G \ Z (G))])=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2(n−1)(n−3)
n+1 , for 2 ∤ n

3(n−2)(n−4)
n+2 , for 2 | n and 2 |

n
2

4, for n = 6
(n−4)(3n−10)

n+2 , for 2 | n, n ≥ 10
and 2 ∤ n

2 .

(c) Q-spec(CCC(G)[Cl(G \ Z (G))])

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

{
(0)1, (n − 3)1,

( n−5
2

) n−3
2

}
, for 2 ∤ n

{
(0)2, (n − 4)1,

( n
2 − 3

) n
2 −2

}
, for 2 | n and 2 |

n
2{

(0)1, (2)1, (n − 4)1,
( n

− 3
) n

2 −2
}

, for 2 | n and 2 ∤ n

2 2
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T

and L E+(CCC(G)[Cl(G \ Z (G))]) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(n−3)(n+3)
n+1 , for 2 ∤ n

(n−4)(n+6)
n+2 , for n = 4, 8

2(n−2)(n−4)
n+2 , for 2 | n, n

2 and n ≥ 12

4, for n = 6
22
3 , for n = 10

2(n−2)(n−6)
n+2 , for 2 | n, 2 ∤ n

2

and n ≥ 14.

Theorem 3.22 ([17, Theorem 3.2]). If G is the generalized quaternion group Q4m , then

(a) Spec(CCC(G)[Cl(G \ Z (G))]) =

{{
(−1)m−1, (1)1, (m − 2)1

}
, for 2 ∤ m{

(−1)m−2, (0)2, (m − 2)1
}
, for 2 | m

and E(CCC(G)[Cl(G \ Z (G))]) =

{
2 m − 2, for 2 ∤ m
2 m − 4, for 2 | m.

(b) L-spec(CCC(G)[Cl(G \ Z (G))]) =

{{
(0)2, (2)1, (m − 1)m−2

}
, for 2 ∤ m{

(0)3, (m − 1)m−2
}
, for 2 | m

and L E(CCC(G)[Cl(G \ Z (G))]) =

⎧⎪⎨⎪⎩
4, for m = 3
2(m−2)(3 m−5)

m+1 , for 2 ∤ m and m ≥ 5
6(m−1)(m−2)

m+1 , for 2 | m.

(c) Q-spec(CCC(G)[Cl(G \ Z (G))])

=

{{
(2)1, (0)1, (2 m − 4)1, (m − 3)m−2

}
, for 2 ∤ m{

(0)2, (2 m − 4)1, (m − 3)m−2
}
, for 2 | m

and L E+(CCC(G)[Cl(G \ Z (G))]) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

4, for m = 3
22
3 , for m = 5

4(m−1)(m−3)
m+1 , for 2 ∤ m and m ≥ 7

2(m−2)(m+3)
m+1 , for m = 2, 4

4(m−1)(m−2)
m+1 , for 2 | m and m ≥ 6.

heorem 3.23 ([17, Theorem 3.5]). If G is the semidihedral group SD8n , then

(a) Spec(CCC(G)[Cl(G \ Z (G))]) =

{{
(−1)2n, (3)1, (2n − 3)1} , for 2 ∤ n{
(−1)2n−2, (0)2, (2n − 2)1} , for 2 | n

and E(CCC(G)[Cl(G \ Z (G))]) =

{
4n, for 2 ∤ n
4n − 4, for 2 | n.

(b) L-spec(CCC(G)[Cl(G \ Z (G))]) =

{{
(0)2, (4)3, (2n − 2)2n−3} , for 2 ∤ n{

3 2n−2}
(0) , (2n − 1) , for 2 | n
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and L E(CCC(G)[Cl(G \ Z (G))]) =

⎧⎪⎨⎪⎩
12, for n = 3
2(2n−3)(5n−11)

n+1 , for 2 ∤ n and n ≥ 5
6(2n−1)(2n−2)

2n+1 , for 2 | n.
(c) Q-spec(CCC(G)[Cl(G \ Z (G))])

=

{{
(6)1, (2)3, (4n − 6)1, (2n − 4)2n−3} , for 2 ∤ n{
(0)2, (4n − 4)1, (2n − 3)2n−2} , for 2 | n

and L E+(CCC(G)[Cl(G \ Z (G))]) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

12, for n = 3
22, for n = 5
16(n−1)(n−3)

n+1 , for 2 ∤ n and n ≥ 7
28
5 , for n = 2

4(2n−1)(2n−2)
2n+1 , for 2 | n and n ≥ 4.

Bhowal and Nath [16,17] also considered the groups V8n , U(n,m) and G(p, m, n) in
heir study and obtained the following results.

heorem 3.24 ([17, Corollary 3.6]). If G is isomorphic to D2n , Q4m , SD8n , V8n , U(n,m)
nd G(p, m, n) then CCC(G)[Cl(G \ Z (G))] is integral, L-integral and Q-integral.

Comparing various energies of CCC(G)[Cl(G\Z (G))] they also obtained the following
esults.

heorem 3.25 ([17, Theorem 4.6]). Let G be a finite non-abelian group and Γ =

CC(G)[Cl(G \ Z (G))]. Then

(a) E(Γ ) = L E+(Γ ) = L E(Γ ) if G is isomorphic to D6, D8, D12, Q8, Q12, U(n,2),
U(n,3), U(n,4) (n ≥ 2), V16, SD24 or G(p, m, 1) (p ≥ 2, m ≥ 1).

(b) L E+(Γ ) < E(Γ ) < L E(Γ ) if G is isomorphic to D20, Q20, U(2,5), U(3,5), U(2,6) or
G(2, 2, 2).

(c) E(Γ ) < L E+(Γ ) < L E(Γ ) if G is isomorphic to D14, D16, D18, D2n (n ≥ 11),
Q16, Q24, Q4m (m ≥ 8), U(n,5) (n ≥ 4), U(n,m) (m ≥ 6 and n ≥ 3), U(n,m)
(m ≥ 8 and n ≥ 2), V8n (n ≥ 3), SD16, SD8n (n ≥ 4), G(2, m, 2) (m ≥ 3),
G(p, m, 2) (p ≥ 3, m ≥ 1) or G(p, m, n) (n ≥ 3, p ≥ 2, m ≥ 1).

(d) E(Γ ) = L E+(Γ ) < L E(Γ ) if G is isomorphic to Q28 or U(2,7)
(e) E(Γ ) < L E+(Γ ) = L E(Γ ) if G is isomorphic to D10 and G(2, 1, 2).

heorem 3.26 ([17, Theorem 5.6]). Let G be a finite non-abelian group. Then

(a) CCC(G)[Cl(G \ Z (G))] is neither hyperenergetic, borderenergetic,
L-hyperenergetic, L- borderenergetic, Q-hyperenergetic nor Q-borderenergetic if
G is isomorphic to D8, D12, D2n (n is odd), Q8, Q12, Q16, U(2,6), U(n,3), U(n,4)
(n ≥ 2), V16, SD16, SD24, G(p, m, 1) (p ≥ 2 and m ≥ 1), G(2, 1, 2) or
G(2, 2, 2).

(b) CCC(G)[Cl(G \ Z (G))] is L-borderenergetic but neither hyperenergetic, bor-
derenergetic, L-borderenergetic, Q-hyperenergetic nor Q-borderenergetic if G is
isomorphic to Q or U .
20 (2,5)
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(c) CCC(G)[Cl(G \ Z (G))] is L-hyperenergetic but neither hyperenergetic, borderen-
ergetic, L- borderenergetic, Q-hyperenergetic nor Q-borderenergetic if G is
isomorphic to D16, D20, D24, D28, Q24, Q28, U(3,5), U(3,6), U(2,7), V24, V32,
G(2, 3, 2) or G(2, 1, 3).

(d) CCC(G)[Cl(G \ Z (G))] is L-hyperenergetic and Q-borderenergetic but neither
hyperenergetic, borderenergetic, L-borderenergetic nor Q-hyperenergetic if G is
isomorphic to SD40.

(e) CCC(G)[Cl(G \ Z (G))] is L-hyperenergetic and Q-hyperenergetic but neither
hyperenergetic, borderenergetic, L-borderenergetic nor Q-borderenergetic if G
is isomorphic to D2n (n is even, n ≥ 16), Q4m (m ≥ 8), U(n,5) (n ≥ 4),
U(n,6) (n ≥ 4), U(n,7) (n ≥ 3), U(n,m) (n ≥ 2 and m ≥ 8), V8n (n ≥ 5),
SD32, SD8n (n ≥ 6), G(2, m, 2) (m ≥ 4), G(p, m, 2) (p ≥ 3 and m ≥ 1),
G(2, m, 3) (m ≥ 2) or G(p, m, n) (n ≥ 4, p ≥ 2 and m ≥ 1).

Theorem 3.27 ([17, Theorem 5.7]). Let G be a finite non-abelian group.

(a) Then CCC(G)[Cl(G \ Z (G))] is neither hyperenergetic nor borderenergetic, for G
is isomorphic to D2n , Q4m , U(n,m), V8n , SD8n or G(p, m, n).

(b) Then CCC(G)[Cl(G \ Z (G))] is L-hyperenergetic, for G is isomorphic to D2n (n
is even, n ≥ 8), Q4m (m ≥ 6), U(n,5) (n ≥ 3), U(n,6) (n ≥ 3), U(n,m)
(n ≥ 2 and m ≥ 7), V8n (n ≥ 3), SD8n (n ≥ 4), G(2, m, 2) (m ≥ 3), G(p, m, 2)
(p ≥ 3 and m ≥ 1), G(2, m, 3) (m ≥ 1) or G(p, m, n) (n ≥ 4, p ≥ 2 and m ≥ 1).

(c) Then CCC(G)[Cl(G \ Z (G))] is L-borderenergetic, for G is isomorphic to Q20 or
U(2,5).

(d) Then CCC(G)[Cl(G \ Z (G))] is Q-hyperenergetic, for G is isomorphic to D2n n
is even, (n ≥ 16), Q4m (m ≥ 8), U(n,5) (n ≥ 4), U(n,6) (n ≥ 4), U(n,7) (n ≥ 3),
U(n,m) (n ≥ 2 and m ≥ 8), V8n (n ≥ 5), SD32, SD8n (n ≥ 6), G(2, m, 2)
(m ≥ 4), G(p, m, 2) (p ≥ 3 and m ≥ 1), G(2, m, 3) (m ≥ 2) or G(p, m, n)
(n ≥ 4, p ≥ 2 and m ≥ 1).

(e) Then CCC(G)[Cl(G \ Z (G))] is Q-borderenergetic, for G is isomorphic to SD40.

We conclude this section noting that problems analogous to Problems 3.2–3.4 for
various common neighbourhood spectrum and energies of CCC(G)[Cl(G \ Z (G))] were
considered in [50,51]. Common neighbourhood spectrum/energy, common neighbour-
hood Laplacian spectrum/energy and common neighbourhood signless Laplacian spec-
trum/energy of graphs were introduced in [9,52]. Various common neighbourhood
spectrum and energies of C(G)[G \ Z (G)] were considered in [34,35,61].

3.6. Properties of CCC(G)[Cl(G \ FC(G))]

The FC-centre of a group G is the set of elements x ∈ G such that xG is finite.
Herzog et al. [48] obtained the following results for the induced subgraph CCC(G)[Cl(G\

FC(G))] of CCC(G) induced by Cl(G) \ {gG
: g ∈ FC(G)} when G is a periodic group.

Theorem 3.28 ([48, Theorem 22]). Let G be a periodic group such that the graph
CCC(G)[Cl(G \ FC(G))] is empty. Write F = FC(G) and suppose that there exists
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x F ∈ G/F such that |x F | = 3. Then G has the following structure:

G = F ⋊ ⟨a, b⟩,

where |a| = 3, |b| = 2, ab
= a−1 (i.e.⟨a, b⟩ ∼= S3), F is an elementary abelian 2-group,

F = D1 × D2, where D1 = {[d, b] : d ∈ F}, D2 = {[d, ab] : d ∈ F}, D1 and D2 are
nfinite subgroups of F and a acts fixed-point-freely on F.

Conversely, if G has the above structure, then F = FC(G) and the graph
CC(G)[Cl(G \ FC(G))] is empty.

heorem 3.29 ([48, Theorem 23]). Let G be a periodic group such that the graph
CC(G)[Cl(G \ FC(G))] is empty. Write F = FC(G). Then G is locally finite and
ither G is a hypercentral 2-group with G/F abelian of exponent 2 or G/F is finite. In
he latter case, either G/F is a finite elementary abelian 2-group or G/F ∼= S3 and G
as the structure described in Theorem 3.28.

. Nilpotent conjugacy class graph

We write NCC(G) to denote the NCC-graph of a group G. The NCC-graph of G is
graph whose vertex set is Cl(G) and two distinct vertices aG and bG are adjacent if

here exist some elements x ∈ aG and y ∈ bG such that ⟨x, y⟩ is a nilpotent group. In
his section, we discuss various results on induced subgraphs of NCC(G). Mohammadian
nd Erfanian [56] considered two induced subgraphs of NCC(G) induced by Cl(G \ 1)
nd Cl(G \ Nil(G)), where Nil(G) := {g ∈ G : ⟨g, x⟩ is nilpotent for all x ∈ G} is the
ypercentre of G.

.1. Connectivity of NCC(G)[Cl(G \ 1)]

Mohammadian and Erfanian [56] obtained the following results analogous to Theo-
ems 3.2 and 3.3.

heorem 4.1. Let G be any group.

(a) [56, Theorem 2.6-2.7] If G is finite solvable or periodic solvable then the graph
NCC(G)[Cl(G \ 1)] has at most two connected components whose diameters are
at most 7.

(b) [56, Theorem 2.10-2.11] If G is finite or locally finite then NCC(G)[Cl(G \ 1)]
has at most six connected components whose diameters are at most 10.

Mohammadian and Erfanian [56] also obtained the following characterizations of
upersolvable and solvable groups G such that NCC(G)[Cl(G \ 1)] is disconnected.

heorem 4.2 ([56, Theorem 3.2]). Let G be a supersolvable group. Then the graph
CC(G)[Cl(G \ 1)] is disconnected if and only if one of the following holds:

(a) If G is an infinite group, then G = H ⋊ ⟨a⟩, where a ∈ G, |a| = 2 and H is a
subgroup of G on which a acts fixed-point-freely.
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(b) If G is a finite group, then G = H ⋊ K is a Frobenius group with kernel H and
a cyclic complement K .

Theorem 4.3 ([56, Theorem 3.4]). Let G be a finite solvable group with disconnected
graph NCC(G)[Cl(G \ 1)]. Then there exists a nilpotent normal subgroup N of G such
that one of the following holds:

(a) G = N ⋊ H is a Frobenius group with the kernel N and a complement H.
(b) G = (N ⋊ L) ⋊ ⟨x⟩, where L is a non-trivial cyclic subgroup of G of odd order

which acts fixed-point-freely on N, x ∈ NG(L) is such that ⟨x⟩ acts fixed-point-
freely on L, and there exist a ∈ N \ {1} and i ∈ N such that x i

̸= 1 and
[a, x i ] = 1.

Conversely, if either (a) or (b) holds, then NCC(G)[Cl(G \ 1)] is disconnected.

Notice that the two situations in Theorems 3.5 and 4.3, where we get disconnected
CCC(G)[Cl(G \ 1)] and NCC(G)[Cl(G \ 1)], are identical. Therefore, the following
problem arises naturally.

Problem 4.1. Determine whether CCC(G)[Cl(G \1)] = NCC(G)[Cl(G \1)] if and only
if one of the cases in Theorem 4.3 holds.

4.2. Properties of NCC(G)[Cl(G \ Nil(G))]

Mohammadian and Erfanian [56] also considered the subgraph NCC(G)[Cl(G \

Nil(G))] of NCC(G) induced by the set Cl(G \ Nil(G)) in their study. They obtain the
following characterizations of finite non-nilpotent groups G such that NCC(G)[Cl(G \

Nil(G))] is empty/triangle-free.

Theorem 4.4 ([56, Theorem 4.3]). Let G be a finite non-nilpotent group. Then the graph
NCC(G)[Cl(G \ Nil(G))] is an empty graph if and only if G ∼= S3.

Theorem 4.5. Let G be a finite non-nilpotent group.

(a) [56, Theorem 4.8] If |G| is odd then NCC(G)[Cl(G \ Nil(G))] is triangle-free if
and only if |G| = 21.

(b) [56, Theorem 4.9] If |G| is even then NCC(G)[Cl(G \ Nil(G))] is triangle-free if
and only if G is isomorphic to one of the groups S3, D10, D12, A4, T12 or PSL(2, q)
where q ∈ {4, 7, 9}.

Note that the structure of graph NCC(G)[Cl(G \ Nil(G))] is not realized much. If
the structures of NCC(G)[Cl(G \ Nil(G))] for various families of finite groups are
known then one can consider problems similar to Problems 3.2–3.4 for the graph
NCC(G)[Cl(G \ Nil(G))]. Therefore, the following problem is worth mentioning.

Problem 4.2. Determine the structure of NCC(G)[Cl(G \ Nil(G))] for various families
of finite non-nilpotent groups.
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We conclude this section with the following problem analogous to Problem 3.1.

Problem 4.3. Characterize all finite non-nilpotent groups G such that the induced
ubgraph NCC(G)[Cl(G \ Nil(G))] of NCC(G) is planar, toroidal, double-toroidal or

triple-toroidal.

5. Solvable conjugacy class graph

We write SCC(G) to denote the SCC-graph of a group G. The SCC-graph of G is
a graph whose vertex set is Cl(G) and two distinct vertices aG and bG are adjacent if
here exist some elements x ∈ aG and y ∈ bG such that ⟨x, y⟩ is a solvable group. In
his section, we discuss results on an induced subgraph of SCC(G). Bhowal et al. [14,15]
onsidered the subgraph of SCC(G) induced by Cl(G \ 1).

.1. Connectivity of SCC(G)[Cl(G \ 1)]

Not much is known about the connectivity of SCC(G)[Cl(G \ 1)]. We have the
ollowing problem whose answer is not known.

roblem 5.1. If G is a finite non-solvable group then determine the number of
omponents of SCC(G)[Cl(G \ 1)] and an upper bound for diameters of its components.

The answers to Problem 5.1 for CCC(G)[Cl(G \1)] and NCC(G)[Cl(G \1)] are given
n Theorems 3.3 and 4.1 respectively. The following results are known regarding the
onnectivity of the graph SCC(G)[Cl(G \ 1)].

heorem 5.1 ([14, Theorem 2.1]). Let G be a finite group. Then SCC(G)[Cl(G \ 1)] is
omplete if and only if G is solvable.

heorem 5.2 ([14, Theorem 2.9]). If G, H are arbitrary non-trivial groups then
he graph SCC(G × H )[Cl(G × H \ (1G, 1H ))] is connected with diameter ≤ 3. In
articular, SCC(G × G)[Cl(G × G \ (1G, 1G))] is connected with diameter ≤ 3. Further,
iam(SCC(G×G)[Cl(G×G\(1G, 1G))]) = 3 if and only if diam(SCC(G)[Cl(G\1)]) ≥ 3
possibly infinite).

heorem 5.3 ([14, Theorem 4.4]). Let G be a finite group. Let H and K be two
ubgroups of G such that H is normal in G, G = H K and SCC(H )[Cl(H \ 1)],
CC(K )[Cl(K \1)] are connected. If there exist two elements h ∈ H \{1} and x ∈ G \ H

uch that hG and xG are connected in SCC(G)[Cl(G \ 1)] then SCC(G)[Cl(G \ 1)] is
onnected.

heorem 5.4 ([14, Theorem 3.3]). Let G be a finite group. If G has an element of order
= Π m

i=1 pki
i , where pi ’s are distinct primes. Then SCC(G)[Cl(G \ 1)] has a clique of

ize Π m (k + 1) − 1.
i=1 i



20 P.J. Cameron, F.E. Jannat, R.K. Nath et al. / Expo. Math. 42 (2024) 125585

5

T

Theorem 5.5 ([14, Theorem 3.5]). For any positive integer d, there are only finitely many
finite groups G such that the clique number of SCC(G) is d.

Problem 5.2. Do the analogues of Theorem 5.5 hold for the graphs CCC(G) and
NCC(G)?

We conclude this section with the following result which shows that the graph
SCC(G)[Cl(G \ 1)] is triangle-free when G ∼= {1},Z2,Z3 or S3, the symmetric group
of degree 3.

Theorem 5.6 ([14, Theorem 3.4]). With the exception of the cyclic groups of orders 1, 2
and 3 and the symmetric group of degree 3, every finite group G has the property that
SCC(G)[Cl(G \ 1)] contains a triangle (that is, has girth 3).

.2. Genus of SCC(G)[Cl(G \ 1)]

We have seen various results on genus of the graph CCC(G)[Cl(G \ Z (G))] in
Section 3.4. The genus of SCC(G)[Cl(G \ Sol(G))], where Sol(G) := {g ∈ G :

⟨g, x⟩ is solvable for all x ∈ G}, the solvable radical of G, is not studied so far. However,
the following problem is considered in [15].

Problem 5.3. Characterize all finite groups G such that the graph SCC(G)[Cl(G \ 1)]
is planar, toroidal, double-toroidal, triple-toroidal or projective.

Let Nk be the connected sum of k projective planes. A simple graph Γ which can be
embedded in Nk but not in Nk−1, is called a graph with crosscap k. We write γ̄ (Γ ) to
denote the crosscap of Γ . A graph Γ is called projective if γ̄ (Γ ) = 1. Bhowal et al. [15]
obtained the following results related to Problem 5.3.

Theorem 5.7 ([15, Theorem 3.1]). Let G = D2n . Then

(a) SCC(G)[Cl(G \ 1)] is planar if and only if n = 2, 3, 4, 5 and 7.
(b) SCC(G)[Cl(G \ 1)] is toroidal if and only if n = 6, 8, 9, 10, 11 and 13.
(c) SCC(G)[Cl(G \ 1)] is double-toroidal if and only if n = 12 and 15.
(d) SCC(G)[Cl(G \ 1)] is triple-toroidal if and only if n = 14 and 17.

(e) γ (SCC(G)[Cl(G \ 1)]) =

⎧⎪⎨⎪⎩
⌈

(n−5)(n−7)
48

⌉
, when n ≥ 19 and n is odd⌈

(n−2)(n−4)
48

⌉
, when n ≥ 16 and n is even.

(f) γ̄ (SCC(G)[Cl(G \ 1)]) = 0 if and only if n = 2, 3, 4, 5 and 7.
(g) SCC(G)[Cl(G \ 1)] is projective if and only if n = 6, 8, 9 and 11.

(h) γ̄ (SCC(G)[Cl(G \ 1)]) =

⎧⎪⎨⎪⎩
⌈

(n−5)(n−7)
24

⌉
, when n ≥ 13 and n is odd⌈

(n−2)(n−4)
24

⌉
, when n ≥ 10 and n is even.

heorem 5.8 ([15, Theorem 3.2]). Let G = Q . Then
4m
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(a) SCC(G)[Cl(G \ 1)] is planar if and only if m = 1 and 2.
(b) SCC(G)[Cl(G \ 1)] is toroidal if and only if m = 3, 4 and 5.
(c) SCC(G)[Cl(G \ 1)] is double-toroidal if and only if m = 6.
(d) SCC(G)[Cl(G \ 1)] is triple-toroidal if and only if m = 7.

(e) γ (SCC(G)[Cl(G \ 1)]) =

⌈
(m−1)(m−2)

12

⌉
for m ≥ 8.

(f) γ̄ (SCC(G)[Cl(G \ 1)]) = 0 if and only if m = 1 and 2.
(g) SCC(G)[Cl(G \ 1)] is projective if and only if m = 3 and 4.

(h) γ̄ (SCC(G)[Cl(G \ 1)]) =

⎧⎪⎨⎪⎩
⌈

(n−5)(n−7)
24

⌉
, when n ≥ 13 and n is odd⌈

(n−2)(n−4)
24

⌉
, when n ≥ 10 and n is even.

heorem 5.9 ([15, Theorem 3.3]). Let G be a finite solvable group. Then

(a) SCC(G)[Cl(G \ 1)] is planar if and only if | Cl(G)| = 1, 2, 3, 4 and 5.
(b) SCC(G)[Cl(G \ 1)] is toroidal if and only if | Cl(G)| = 6, 7 and 8.
(c) SCC(G)[Cl(G \ 1)] is double-toroidal if and only if | Cl(G)| = 9.
(d) SCC(G)[Cl(G \ 1)] is triple-toroidal if and only if | Cl(G)| = 10.
(e) γ (SCC(G)[Cl(G \ 1)]) =

⌈
(| Cl(G)|−4)(| Cl(G)|−5)

12

⌉
for | Cl(G)| ≥ 11.

(f) γ̄ (SCC(G)[Cl(G \ 1)]) = 0 if and only if | Cl(G)| = 1, 2, 3, 4 and 5.
(g) SCC(G)[Cl(G \ 1)] is projective if and only if | Cl(G)| = 6 and 7.

(h) γ̄ (SCC(G)[Cl(G \ 1)]) =

⎧⎨⎩3, when m = 5⌈
(m−1)(m−2)

6

⌉
, when m ≥ 6.

heorem 5.10 ([15, Theorem 3.4]). Let G = Sn . Then

(a) SCC(G)[Cl(G \ 1)] is planar if and only if n ≤ 5.
(b) If n ≥ 7 then SCC(G)[Cl(G \ 1)] is neither planar, toroidal, double-toroidal nor

triple-toroidal.
(c) SCC(G)[Cl(G \ 1)] is not toroidal if n = 6.
(d) If n ≥ 6 then SCC(G)[Cl(G \ 1)] is not projective.

heorem 5.11 ([15, Theorem 3.5]). Let G = An , the alternating group of degree n. Then

(a) SCC(G)[Cl(G \ 1)] is planar if and only if n ≤ 6.
(b) If n ≥ 9 then SCC(G)[Cl(G \ 1)] is neither planar, toroidal, double-toroidal nor

triple-toroidal.
(c) SCC(G)[Cl(G \ 1)] is toroidal if and only if n = 7.
(d) If n ≥ 8 then SCC(G)[Cl(G \ 1)] is not projective.

Bhowal et al. [15] also obtained the genus of SCC(G)[Cl(G \ 1)] when G is certain
rojective special linear group.

heorem 5.12 ([15, Theorem 3.6]). Let G = PSL(2, q), where q = 2d with d ≥ 3. Then

γ (SCC(G)[Cl(G \ 1)]) = γ (K ) + γ (K ) or γ (K ) + γ (K ) − 1.
q/2 q/2+1 q/2 q/2+1
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Regarding bounds for genus and crosscap of SCC(G)[Cl(G\1)] we have the following
results.

Theorem 5.13 ([15, Theorem 2.4]). Given n ≥ 10, let k = p(⌊n/2⌋) − 1. If G = Sn , the
symmetric group of degree n, and Γ = SCC(G)[Cl(G \ 1)] then

γ (Γ ) ≥

⌈
(k − 3)(k − 4)

12

⌉
and γ̄ (Γ ) ≥

⌈
(k − 3)(k − 4)

6

⌉
.

Theorem 5.14 ([15, Theorem 2.6]). Let G be a finite non-solvable group with non-trivial
centre Z (G). Then

4γ (SCC(G)[Cl(G \ 1)]) ≥ (|Z (G)| − 3)(| Cl(G)| − |Z (G)| − 2).

As an application of Theorem 5.14, we have the following bound for Pr(G) which is
the probability that a randomly chosen pair of elements of G commute; also known as
commutativity degree of G.

Theorem 5.15 ([15, Corollary 2.7]). Let G be a finite non-solvable group and |Z (G)| >

3. Then

Pr(G) ≤
4γ (Γsc(G)) + (|Z (G)| − 3)(|Z (G)| + 2)

|G|(|Z (G)| − 3)
.

Many other bounds for Pr(G) using various group theoretic notions can be found
n [24,40,60]. It is worth noting that similar bounds for nilpotency degree [26] and
olvability degree [36] can be obtained by obtaining bounds for γ (CCC(G)[Cl(G \ 1)])
nd γ (NCC(G)[Cl(G \ 1)]) similar to Theorem 5.14.

It is intuitive that the order of a finite group G is bounded (above) by a function of
he genus of SCC(G)[Cl(G \ 1)]. In this regard, we have the following problem.

roblem 5.4 ([15, Problem 2.2]). Find an explicit bound for the order of a finite group
G for which

(a) γ (SCC(G)[Cl(G \ 1)]) = k.
(b) γ̄ (SCC(G)[Cl(G \ 1)]) = k.

We conclude this section noting that problems similar to Problem 5.4 for the graphs
CC(G)[Cl(G \ 1)] and NCC(G)[Cl(G \ 1)] are worth considering.

. Concluding remarks

In [23], conditions for holding equalities in the hierarchy (1) were discussed for
arious P graphs of finite groups. For instance, the cyclic graph of G is equal to the
ommuting graph of G if and only if G contains no subgroup isomorphic to Zp × Zp

where p is prime); the commuting graph of G is equal to the nilpotent graph of G if
nd only if the Sylow subgroups of G are abelian; the nilpotent graph of G is equal to
he solvable graph of G if and only if G is nilpotent. It may be interesting to obtain

onditions for holding equalities in the hierarchy (2) for various PCC-graphs.
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Let DV (PCC(G)) be the set of all dominant vertices of PCC(G). In view of Propo-
ition 2.5, DV (CCC(G)) = Cl(Z (G)). It is easy to see that Cl(Nil(G)) ⊆ DV (NCC(G))
nd Cl(Sol(G)) ⊆ DV (SCC(G)). The following problem along with similar problems for
CC(G) and NCC(G) are worth mentioning here.

roblem 6.1 ([15, Problem 3.8]). Which non-solvable finite groups G have the property
hat |DV (SCC(G))| = 2?

To make the question of connectedness of P conjugacy class graphs interesting it is
necessary to determine DV (PCC(G)) (also see Problem 2.2). Now consider the following
problem.

Problem 6.2. Determine whether the induced subgraphs CCC(G)[Cl(G \ Z (G))],
NCC(G)[Cl(G) \ DV (NCC(G))] and SCC(G)[Cl(G) \ DV (SCC(G))] of CCC(G),
CC(G) and SCC(G) respectively are connected. Also, find upper bounds for the

iameters of their components.

Note that the induced subgraphs NCC(G)[Cl(G \ FC(G))] and SCC(G)[Cl(G \

FC(G))] of NCC(G) and SCC(G) respectively are not studied yet. (Recall that FC(G)
s the FC-centre of G, see Section 3.6.) Therefore, researchers working in this area may
onsider these graphs in their study.

The complements of cyclic/commuting/nilpotent/solvable graphs (in other words non-
yclic/non-commuting/non-nilpotent/non-solvable graphs) of finite groups were well-
tudied over the years (see [2–5,20,28,33,47,76]). However, the complements of PCC-
raphs of G are not studied. Note that DV (PCC(G)) is the set of isolated vertices of
he complement of PCC(G). Thus, by Proposition 2.5, it follows that the set of isolated
ertices of the complement of CCC(G) is Cl(Z (G)). The following problem is equivalent
o Problem 2.2.

roblem 6.3. Describe the set of isolated vertices of the complements of NCC- or
CC-graph of a finite group.

Similarly, we have equivalent problems corresponding to Problems 2.1, 4.1, 4.2 and
.1 for the complement of PCC(G). We conclude this paper noting that problems
nalogous to Problems 3.1–3.4, 4.3, 5.1–5.4 and 6.2 for complements of PCC-graphs
f G are worth considering.

RediT authorship contribution statement

Peter J. Cameron: Writing – review & editing, Writing – original draft, Methodology,
nvestigation. Firdous Ee Jannat: Writing – review & editing, Writing – original draft,

ethodology, Investigation. Rajat Kanti Nath: Writing – review & editing, Writing –
riginal draft, Methodology, Investigation. Reza Sharafdini: Writing – review & editing,

riting – original draft, Methodology, Investigation.



24 P.J. Cameron, F.E. Jannat, R.K. Nath et al. / Expo. Math. 42 (2024) 125585

r

D

A

I

r

R

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal
elationships that could have appeared to influence the work reported in this paper.

ata availability

No data was used for the research described in the article.

cknowledgements

F. E. Jannat would like to thank Department of Science and Technology, India for the
NSPIRE Fellowship (IF200226).

The authors are grateful to Scott Harper for the proof of Theorem 2.6(c), and to the
eferee for helpful comments.

eferences

[1] On-Line Encyclopedia of Integer Sequences, https://oeis.org/.
[2] A. Abdollahi, A.M. Hassanabadi, Noncyclic graph of a group, Commun. Algebra 35 (2007) 2057–2081.
[3] A. Abdollahi, A.M. Hassanabadi, Noncyclic graph associated with a group, J. Algebra Appl. 8 (2009)

243–257.
[4] A. Abdollahi, M. Zarrin, Non-nilpotent graph of a group, Commun. Algebra 38 (12) (2010) 4390–4403.
[5] S. Abdollahi, H.R. Maimani, Non-commuting graph of a group, J. Algebra 298 (2) (2006) 468–492.
[6] N. Abreu, D.M. Cardoso, I. Gutman, E.A. Martins, M. Robbiano, Bounds for the signless Laplacian

energy, Linear Algebra Appl. 435 (10) (2011) 2365–2374.
[7] M. Afkhami, D.G.M. Farrokhi, K. Khashyarmanesh, Planar, toroidal, and projective commuting and

non-commuting graphs, Comm. Algebra 43 (7) (2015) 2964–2970.
[8] B. Akbari, M.L. Lewis, J. Mirzajani, A.R. Moghaddamfar, The solubility graph associated with a finite

group, Internat. J. Algebra Comput. 30 (8) (2020) 1555–1564.
[9] A. Alwardi, N.D. Soner, I. Gutman, On the common-neighborhood energy of a graph, Bull. Cl. Sci.

Math. Nat. Sci. Math. 36 (2011) 49–59.
[10] G. Arunkumar, P.J. Cameron, R.K. Nath, L. Selvaganesh, Super graphs on groups, I, Graphs Combin.

38 (2022) 100.
[11] A.R. Ashrafi, M.A. Salahshour, Counting centralizers of a finite group with an application in

constructing the commuting conjugacy class graph, Comm. Algebra 51 (3) (2023) 1105–1116.
[12] A. Ballester-Bolinches, R. Esteban-Romero, D.J.S. Robinson, On finite minimal non-nilpotent groups,

Proc. Amer. Math. Soc. 133 (2005) 3455–3462.
[13] E.A. Bertram, M. Herzog, A. Mann, On a graph related to conjugacy classes of groups, Bull. Lond.

Math. Soc. 22 (1990) 569–575.
[14] P. Bhowal, P.J. Cameron, R.K. Nath, B. Sambale, Solvable conjugacy class graph of groups, Discrete

Math. 346 (8) (2023) 113467.
[15] P. Bhowal, P.J. Cameron, R.K. Nath, B. Sambale, Genus and crosscap of solvable conjugacy class

graphs of finite groups, Arch. Math. 122 (5) (2024) 475–489.
[16] P. Bhowal, R.K. Nath, Spectrum and energies of commuting conjugacy class graph of a finite group,

https://arxiv.org/pdf/2003.07142.pdf.
[17] P. Bhowal, R.K. Nath, Spectral aspects of commuting conjugacy class graph of finite groups, Algebr.

Struct. Appl. 8 (2) (2021) 67–118.
[18] P. Bhowal, R.K. Nath, Genus of commuting conjugacy class graph of certain finite groups, Algebr.

Struct. Appl. 9 (1) (2022) 93–108.

https://oeis.org/
https://oeis.org/
https://oeis.org/
https://oeis.org/
https://oeis.org/
https://oeis.org/
https://oeis.org/
https://oeis.org/
https://oeis.org/
https://oeis.org/
https://oeis.org/
https://oeis.org/
https://oeis.org/
https://oeis.org/
https://oeis.org/
https://oeis.org/
https://oeis.org/
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb2
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb3
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb3
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb3
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb4
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb5
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb6
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb6
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb6
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb7
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb7
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb7
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb8
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb8
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb8
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb9
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb9
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb9
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb10
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb10
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb10
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb11
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb11
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb11
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb12
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb12
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb12
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb13
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb13
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb13
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb14
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb14
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb14
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb15
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb15
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb15
https://arxiv.org/pdf/2003.07142.pdf
https://arxiv.org/pdf/2003.07142.pdf
https://arxiv.org/pdf/2003.07142.pdf
https://arxiv.org/pdf/2003.07142.pdf
https://arxiv.org/pdf/2003.07142.pdf
https://arxiv.org/pdf/2003.07142.pdf
https://arxiv.org/pdf/2003.07142.pdf
https://arxiv.org/pdf/2003.07142.pdf
https://arxiv.org/pdf/2003.07142.pdf
https://arxiv.org/pdf/2003.07142.pdf
https://arxiv.org/pdf/2003.07142.pdf
https://arxiv.org/pdf/2003.07142.pdf
https://arxiv.org/pdf/2003.07142.pdf
https://arxiv.org/pdf/2003.07142.pdf
https://arxiv.org/pdf/2003.07142.pdf
https://arxiv.org/pdf/2003.07142.pdf
https://arxiv.org/pdf/2003.07142.pdf
https://arxiv.org/pdf/2003.07142.pdf
https://arxiv.org/pdf/2003.07142.pdf
https://arxiv.org/pdf/2003.07142.pdf
https://arxiv.org/pdf/2003.07142.pdf
https://arxiv.org/pdf/2003.07142.pdf
https://arxiv.org/pdf/2003.07142.pdf
https://arxiv.org/pdf/2003.07142.pdf
https://arxiv.org/pdf/2003.07142.pdf
https://arxiv.org/pdf/2003.07142.pdf
https://arxiv.org/pdf/2003.07142.pdf
https://arxiv.org/pdf/2003.07142.pdf
https://arxiv.org/pdf/2003.07142.pdf
https://arxiv.org/pdf/2003.07142.pdf
https://arxiv.org/pdf/2003.07142.pdf
https://arxiv.org/pdf/2003.07142.pdf
https://arxiv.org/pdf/2003.07142.pdf
https://arxiv.org/pdf/2003.07142.pdf
https://arxiv.org/pdf/2003.07142.pdf
https://arxiv.org/pdf/2003.07142.pdf
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb17
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb17
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb17
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb18
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb18
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb18


P.J. Cameron, F.E. Jannat, R.K. Nath et al. / Expo. Math. 42 (2024) 125585 25
[19] P. Bhowal, D. Nongsiang, R.K. Nath, Solvable graphs of finite groups, Hacet. J. Math. Stat. 49 (6)
(2020) 1955–1964.

[20] P. Bhowal, D. Nongsiang, R.K. Nath, Non-solvable graphs of groups, Bull. Malays. Math. Sci. Soc.
45 (2022) 1255–1272.

[21] R. Brauer, K.A. Fowler, On groups of even order, Ann. Math. 62 (1955) 565–583.
[22] T.C. Burness, A. Lucchini, D. Nemmi, On the soluble graph of a finite group, J. Combin. Theory Ser.

A 194 (2023) 105708.
[23] P.J. Cameron, Graphs defined on groups, Int. J. Group Theory 11 (2) (2022) 53–107.
[24] A.K. Das, R.K. Nath, M.R. Pournaki, A survey on the estimation of commutativity in finite groups,

Southeast Asian Bull. Math. 37 (2) (2013) 161–180.
[25] S. Dolfi, R.M. Guralnick, M. Herzog, C.E. Praeger, A new solvability criterion for finite groups, J.

Lond. Math. Soc. (2) 85 (2012) 269–281.
[26] H. Dubose-Schmidt, M.D. Galloy, D.L. Wilson, Counting Nilpotent Pairs in Finite Groups: Some

Conjectures, Mathematical Sciences Technical Reports (MSTR). 132, 1992, https://scholar.rose-hulma
n.edu/math_mstr/132.

[27] P. Dutta, B. Bagchi, R.K. Nath, Various energies of commuting graphs of finite nonabelian groups,
Khayyam J. Math. 6 (1) (2020) 27–45.

[28] P. Dutta, J. Dutta, R.K. Nath, On Laplacian spectrum of non-commuting graph of finite groups, Indian
J. Pure Appl. Math. 49 (2) (2018) 205–216.

[29] J. Dutta, R.K. Nath, Finite groups whose commuting graphs are integral, Mat. Vesnik 69 (3) (2017)
226–230.

[30] J. Dutta, R.K. Nath, Spectrum of commuting graphs of some classes of finite groups, Matematika 33
(1) (2017) 87–95.

[31] J. Dutta, R.K. Nath, Laplacian and signless Laplacian spectrum of commuting graphs of finite groups,
Khayyam J. Math. 4 (1) (2018) 77–87.

[32] P. Dutta, R.K. Nath, Various energies of commuting graphs of some super integral groups, Indian J.
Pure Appl. Math. 52 (1) (2021) 1–10.

[33] W.N.T. Fasfous, R.K. Nath, Inequalities involving energy and Laplacian energy of non-commuting
graphs of finite groups, Indian J. Pure Appl. Math. http://dx.doi.org/10.1007/s13226-023-00519-7.

[34] W.N.T. Fasfous, R.K. Nath, R. Sharafdini, Various spectra and energies of commuting graphs of finite
rings, Hacet. J. Math. Stat. 49 (6) (2020) 1915–1925.

[35] W.N.T. Fasfous, R. Sharafdini, R.K. Nath, Common neighbourhood spectrum graphs of finite groups,
Algebra Discrete Math. 32 (1) (2021) 33–48.

[36] J.E. Fulman, M.D. Galloy, G.J. Sherman, J.M. Vanderkam, Counting nilpotent pairs in finite groups,
Ars Combin. 54 (2000) 161–178.

[37] M. Giudici, C.W. Parker, There is no upper bound for the diameter of the commuting graph of a finite
group, J. Combin. Theory, Ser. A 120 (2013) 1600–1603.

[38] S. Gong, X. Li, G. Xu, I. Gutman, B. Furtula, Borderenergetic graphs, MATCH Commun. Math.
Comput. Chem. 74 (2015) 321–332.

[39] R.M. Guralnick, W.M. Kantor, Probabilistic generation of finite simple groups, J. Algebra 234 (2000)
743–792.

[40] R.M. Guralnick, G.R. Robinson, On the commuting probability in finite groups, J. Algebra 300 (2006)
509–528.

[41] I. Gutman, The energy of a graph, Ber. Math–Statist. Sekt. Forschungsz. Graz 103 (1978) 1–22.
[42] I. Gutman, Hyperenergetic molecular graphs, J. Serb. Chem. Soc. 64 (1999) 199–205.
[43] I. Gutman, Hyperenergetic and hypoenergetic graphs, Zb. Rad. (Beogr.) 22 (2011) 113–135.
[44] I. Gutman, N.M.M. Abreu, C.T.M. Vinagre, A.S. Bonifacioa, S. Radenkovic, Relation between energy

and Laplacian energy, MATCH Commun. Math. Comput. Chem. 59 (2009) 343–354.
[45] I. Gutman, B. Furtula, Graph energies and their applications, Bull. Cl. Sci. Math. Nat. Sci. Math. 44

(2019) 29–45.
[46] I. Gutman, B. Zhou, Laplacian energy of a graph, Linear Algebra Appl. 414 (2006) 29–37.
[47] D. Hai-Reuven, Non-solvable graph of a finite group and solvabilizers, https://arxiv.org/pdf/1307.2924.
pdf.

http://refhub.elsevier.com/S0723-0869(24)00052-5/sb19
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb19
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb19
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb20
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb20
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb20
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb21
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb22
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb22
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb22
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb23
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb24
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb24
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb24
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb25
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb25
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb25
https://scholar.rose-hulman.edu/math_mstr/132
https://scholar.rose-hulman.edu/math_mstr/132
https://scholar.rose-hulman.edu/math_mstr/132
https://scholar.rose-hulman.edu/math_mstr/132
https://scholar.rose-hulman.edu/math_mstr/132
https://scholar.rose-hulman.edu/math_mstr/132
https://scholar.rose-hulman.edu/math_mstr/132
https://scholar.rose-hulman.edu/math_mstr/132
https://scholar.rose-hulman.edu/math_mstr/132
https://scholar.rose-hulman.edu/math_mstr/132
https://scholar.rose-hulman.edu/math_mstr/132
https://scholar.rose-hulman.edu/math_mstr/132
https://scholar.rose-hulman.edu/math_mstr/132
https://scholar.rose-hulman.edu/math_mstr/132
https://scholar.rose-hulman.edu/math_mstr/132
https://scholar.rose-hulman.edu/math_mstr/132
https://scholar.rose-hulman.edu/math_mstr/132
https://scholar.rose-hulman.edu/math_mstr/132
https://scholar.rose-hulman.edu/math_mstr/132
https://scholar.rose-hulman.edu/math_mstr/132
https://scholar.rose-hulman.edu/math_mstr/132
https://scholar.rose-hulman.edu/math_mstr/132
https://scholar.rose-hulman.edu/math_mstr/132
https://scholar.rose-hulman.edu/math_mstr/132
https://scholar.rose-hulman.edu/math_mstr/132
https://scholar.rose-hulman.edu/math_mstr/132
https://scholar.rose-hulman.edu/math_mstr/132
https://scholar.rose-hulman.edu/math_mstr/132
https://scholar.rose-hulman.edu/math_mstr/132
https://scholar.rose-hulman.edu/math_mstr/132
https://scholar.rose-hulman.edu/math_mstr/132
https://scholar.rose-hulman.edu/math_mstr/132
https://scholar.rose-hulman.edu/math_mstr/132
https://scholar.rose-hulman.edu/math_mstr/132
https://scholar.rose-hulman.edu/math_mstr/132
https://scholar.rose-hulman.edu/math_mstr/132
https://scholar.rose-hulman.edu/math_mstr/132
https://scholar.rose-hulman.edu/math_mstr/132
https://scholar.rose-hulman.edu/math_mstr/132
https://scholar.rose-hulman.edu/math_mstr/132
https://scholar.rose-hulman.edu/math_mstr/132
https://scholar.rose-hulman.edu/math_mstr/132
https://scholar.rose-hulman.edu/math_mstr/132
https://scholar.rose-hulman.edu/math_mstr/132
https://scholar.rose-hulman.edu/math_mstr/132
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb27
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb27
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb27
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb28
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb28
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb28
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb29
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb29
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb29
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb30
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb30
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb30
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb31
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb31
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb31
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb32
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb32
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb32
http://dx.doi.org/10.1007/s13226-023-00519-7
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb34
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb34
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb34
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb35
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb35
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb35
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb36
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb36
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb36
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb37
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb37
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb37
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb38
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb38
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb38
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb39
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb39
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb39
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb40
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb40
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb40
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb41
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb42
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb43
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb44
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb44
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb44
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb45
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb45
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb45
http://refhub.elsevier.com/S0723-0869(24)00052-5/sb46
https://arxiv.org/pdf/1307.2924.pdf
https://arxiv.org/pdf/1307.2924.pdf
https://arxiv.org/pdf/1307.2924.pdf


26 P.J. Cameron, F.E. Jannat, R.K. Nath et al. / Expo. Math. 42 (2024) 125585
[48] M. Herzog, P. Longobardi, M. Maj, On a commuting graph on conjugacy classes of groups, Comm.
Algebra 37 (10) (2009) 3369–3387.

[49] A. Iranmanesh, A. Jafarzadeh, On the commuting graph associated with the symmetric and alternating
groups, J. Algebra Appl. 7 (2008) 129–146.

[50] F.E. Jannat, R.K. Nath, Common neighborhood (signless) Laplacian spectrum and energy of
CCC-graph, https://arxiv.org/pdf/2403.02703.pdf.

[51] F.E. Jannat, R.K. Nath, Common neighborhood spectrum and energy of commuting conjugacy class
graph, J. Algebr. Syst. 12 (2) (2025) 301–326.

[52] F.E. Jannat, R.K. Nath, K.C. Das, Common neighborhood energies and their relations with Zagreb
index, https://arxiv.org/pdf/2402.15416.pdf.

[53] E. Landau, Über die klassenzahl der binären quadratischen formen von negativer discriminante, Math.
Ann. 56 (1903) 671–676.

[54] M.L. Lewis, An overview of graphs associated with character degrees and conjugacy class sizes in
finite groups, Rocky Mountain J. Math. 38 (1) (2008) 175–211.

[55] J. Liu, B. Liu, On the relation between energy and Laplacian energy, MATCH Commun. Math. Comput.
Chem. 61 (2009) 403–406.

[56] A. Mohammadian, A. Erfanian, D.G.M. Farrokhi, On the nilpotent conjugacy class graph of groups,
Note Mat. 37 (2) (2017) 77–89.

[57] A. Mohammadian, A. Erfanian, D.G.M. Farrokhi, B. Wilkens, Triangle-free commuting conjugacy class
graphs, J. Group Theory 19 (2016) 1049–1061.

[58] G.L. Morgan, C.W. Parker, The diameter of the commuting graph of a finite group with trivial centre,
J. Algebra 393 (2013) 41–59.

[59] R.K. Nath, Various spectra of commuting graphs of n-centralizer finite groups, Int. J. Eng. Sci. Technol.
10 (2S) (2018) 170–172.

[60] R.K. Nath, A.K. Das, On a lower bound for commutativity degree, Rend. Circ. Mat. Palermo 59 (1)
(2010) 137–142.

[61] R.K. Nath, W.N.T. Fasfous, K.C. Das, Y. Shang, Common neighbourhood energy of commuting graphs
of finite groups, Symmetry 13 (9) (2021) 1651–1662.
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