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A dichotomy on the self-similarity of graph-directed attractors

Kenneth J. Falconer, Jiaxin Hu, and Junda Zhang

Abstract. This paper seeks conditions that ensure that the attractor of a graph directed iterated
function system (GD-IFS) cannot be realised as the attractor of a standard iterated function
system (IFS). For a strongly connected directed graph, it is known that, if all directed circuits
go through a particular vertex, then for any GD-IFS of similarities on R based on the graph and
satisfying the convex open set condition (COSC), its attractor associated with that vertex is also
the attractor of a (COSC) standard IFS. In this paper we show the following complementary
result. If there exists a directed circuit which does not go through a certain vertex, then there
exists a GD-IFS based on the graph such that the attractor associated with that vertex is not
the attractor of any standard IFS of similarities. Indeed, we give algebraic conditions for such
GD-IFS attractors not to be attractors of standard IFSs, and thus show that ‘almost-all’ COSC
GD-IFSs based on the graph have attractors associated with this vertex that are not the attractors
of any COSC standard IFS.

1. Introduction

An iterated function system (IFS) ¹Siºi is a finite set of distinct contracting maps on
a complete metric space which we will assume here to be Rn [11]. The attractor of
the IFS is the unique non-empty compact set K � Rn such that

K D

m[
iD1

Si .K/: (1.1)

If these maps are all contracting similarities, we say that this IFS is a standard IFS,
and call K a self-similar set. A contracting similarity S.x/ on R can be written as
S.x/ D �x C b, where � 2 .�1; 1/ n ¹0º is the contraction ratio.

Separation conditions for IFSs are often required to ensure ‘not too much over-
lapping’ in the union (1.1). A frequent condition is the open set condition (OSC),
meaning that there exists a non-empty open set U � Rn such that

Sm
iD1 Si .U / � U

with this union disjoint. We say that the IFS satisfies the convex open set condi-
tion (COSC) if U can be chosen to be convex, or we can (equivalently) take U D
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int.convK/ where ‘conv’ denotes the convex hull, ‘int’ denotes the interior of a set.
We say that the IFS satisfies the convex strong separation condition (CSSC) if we can
take U D int.convK/ such that Si .convK/ \ Sj .convK/ D ; for any i ¤ j .

We also consider graph-directed IFSs [12] based on a given digraph. A directed
graph (or a digraph for brevity), G WD .V; E/, consists of a finite set of vertices V
and a finite set of directed edges E (for brevity, we often omit ‘directed’) with loops
and multiple edges allowed. Let Euv � E be the set of edges from the initial ver-
tex u to the terminal vertex v. A graph-directed iterated function system (GD-IFS)
on Rn consists of a finite collection of contracting similarities ¹SeW e 2 Euvº from
Rnv to Rnu for u, v 2 V , where Rnu is a copy of Rn associated with vertex u. We
write �e 2 .�1; 1/ n ¹0º for the contraction ratio of the similarity Se in R. We always
require the digraph satisfies that du � 1 for every u 2 V ([12], [4, Section 4.3]),
where du is the out-degree of u (the number of directed edges leaving u). For a GD-
IFS .V; E; .Se/e2E / based on such a digraph, there exists a unique list of non-empty
compact sets .Fu � Rnu/u2V such that, for all u 2 V ,

Fu D
[
v2V

[
e2Euv

Se.Fv/; (1.2)

see [12] or [4, Theorem 4.3.5 on p.128]. We call the above .Fu/u2V the (list of)
attractors of the GD-IFS, and each Fu is called a GD-attractor. A (finite) directed
path e1e2 � � � ek is a consecutive sequence of directed edges ei 2 E (i D 1; : : : ; k) for
which the terminal vertex of ei is the initial vertex of eiC1 (i D 1; : : : ; k � 1). For a
directed path eD e1e2 � � � ek with edges ei (1 � i � k), the corresponding contractive
mapping is given by Se D Se1

ı Se2
ı � � � ı Sek

, and its contraction ratio along e is
�e D �e1

�e2
� � � �ek

.
For a GD-IFS there are analogous separation conditions. The open set condition

(OSC) is satisfied if there exist non-empty bounded open sets .Uu � Rnu/u2V , with[
v2V

[
e2Euv

Se.Uv/ � Uu

and the union is disjoint for each u2 V . The convex open set condition (COSC) means
that these .Uu/u2V can all be chosen to be convex. In one-dimensional case, one can
take

.Uu/u2V D .int.convFu//u2V ; (1.3)

since convFu � Uu for each u 2 V (see Proposition 5.2 in the Appendix). We say
that a GD-IFS satisfies the CSSC (convex strong separation condition), if the union[

v2V

[
e2Euv

Se.convFv/ (which belongs to convFu)

is disjoint for each u 2 V .
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GD-attractors and GD-IFSs appear naturally in dynamical systems and fractal
geometry. For example, certain complex dynamical systems can be regarded as con-
formal GD-IFSs using a Markov partition, see [7, Section 5.5]. For another occur-
rence, the orthogonal projection of certain self-similar sets may be GD-attractors [8,
Theorem 1.1]. We will work with COSC (including CSSC) GD-IFSs defined on R

based on digraphs with du � 2 for every vertex u in V throughout this paper.
We say that a digraph is strongly connected if, for all vertices u; v 2 V , there is a

directed path from u to v (we allow u D v). For brevity, we will assume throughout
that a strongly connected digraph always satisfies du� 2 for all u2V . This is because,
if dv D 1 (v 2 V ), then Fv is just a scaled copy of another GD-attractor Fw (w 2
V n ¹vº). Then Fv is self-similar (with the COSC) if and only if Fw is self-similar
(with the COSC), since if K is the attractor of the IFS ¹�ix C biºi , then �K C l is
the attractor of the IFS ¹�ix C �bi C .1� �i /lºi (�; l 2 R). We can do a reduction as
in [5, pp.607] on any strongly connected digraph and associated GD-IFS, to obtain a
subgraph and new GD-IFS with du � 2 for all u 2 V such that each attractor is similar
to one of the original ones.

A natural question arises, “When does a GD-IFS of similarity mappings have
attractors which cannot be realised as attractors of any standard IFS?”. In particular,
we seek algebraic conditions involving the parameters underlying the GD-IFS simil-
arities that ensure this is so. Some cases were examined in an earlier paper [3] which
showed that, for a class of strongly connected digraphs, it is possible to construct
CSSC GD-IFSs on R with attractors that cannot be obtained from a standard IFS,
with or without the CSSC. Another paper [2] uses a different argument to construct
CSSC GD-IFSs on R with attractors that cannot be obtained from a standard IFS.
This paper further investigates this issue for all strongly connected digraphs (or even
wider classes of digraphs).

For a strongly connected digraph G, it is known from [2, Lemma 5.1] (see also
Theorem 5.4 in the Appendix) that, if all directed circuits in G go through a vertex
u 2 V , then for any (COSC) GD-IFS based on G, its attractor Fu is also the attractor
of a (COSC) standard IFS. By way of contrast, we will show that if, for some ver-
tex u 2 V , not all directed circuits in G go through u, then it is possible to define
GD-IFSs of similarities satisfying the COSC so that the corresponding attractor Fu is
not the attractor of a standard IFS of similarities satisfying the COSC (Lemma 4.4).
Moreover, this is true for ‘almost all’ choices of similarities in a natural sense (The-
orem 4.8). The proof basically relies on identifying a characteristic of the ‘gap length
set’, where we use a shorter systematical algebraic argument ‘ratio analysis’ rather
than the categorising method of [3, Section 6] which only works for certain classes
of digraphs. In fact, we can relax the strong connectivity of G in this construction
(Lemma 4.1) and the ‘ratio analysis’ method may have further applications to other
related problems. We finally apply [2, Theorem 1.4] (see also Theorem 5.6 in the
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Appendix) to show immediately that there exists GD-IFSs of similarities with the
CSSC so that the corresponding attractor Fu is not the attractor of a standard IFS.

GD-IFSs considered in this paper are inhomogeneous, by which we mean GD-
IFSs of contracting similarities with not all contraction ratios equal. We will require
the COSC condition, which is easy to verify from the parameters of a GD-IFS by solv-
ing simultaneous linear inequalities. There are difficulties in relaxing this condition
to OSC (even in R) where many problems still remain open even for standard IFSs,
such as the affine-embedding problem [10, Conjecture 1.1] or the inverse fractal prob-
lem (determining the generating IFSs of a standard IFS attractor) [9]. The question
considered here can be viewed as an inverse-type problem, where we show certain
GD-attractors have no generating standard IFS (with or without the COSC). Previous
results on inhomogeneous self-similar sets also require this condition [9, Section 4]
or stronger conditions such as SSC and restrictions on Hausdorff dimension [1,6,10].
Thus, one might expect similar difficulties for inhomogeneous GD-attractors.

This paper is organised as follows. In Section 2, we first introduce and obtain an
expression for the gap length set of COSC GD-attractors, and we then introduce our
algebraic method ‘ratio analysis’, and derive a key lemma (Lemma 2.9) relating the
ratio sets of GD-IFSs and standard IFSs with the COSC. In Section 3 we introduce
natural vector sets and construct GD-IFSs satisfying the COSC or the CSSC. In Sec-
tion 4 we use the GD-IFSs constructed in Section 3 to show that the corresponding
GD-attractors are not the attractors of COSC standard IFSs using both the ‘ratio ana-
lysis’ lemmas and the tool developed in [2]. We provide some examples to illustrate
our assertions.

2. Gap length sets and ratio analysis

2.1. Gap length sets

For a compact set K � R with .convK/ nK ¤ ;, let

.convK/ nK D
[
i

Ui

be the unique decomposition of the disjoint non-empty bounded complementary inter-
vals ¹Ui D .ai ; bi /ºi (see for example [13, Chapter 2, Theorem 9]), which will be
called the gaps ofK numbered by decreasing length (and left to right for equal length
intervals).

Definition 2.1 (Gap length set). Define the gap length set of a compact set K � R

to be
GL.K/ WD ¹bi � aiºi
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that is, the set of lengths of all the gaps of K. If .convK/ nK D ;, that is, if K is an
interval (or a singleton), we define GL.K/ WD ;.

For each vertex u 2 V , we arrange the edges leaving u, denoted by e.k/u (k D
1; : : : ; du) in the following way. Denote by !.e/ the terminal vertex of an edge e 2 E,
then the interiors of the intervals Se.conv F!.e// are disjoint due to the COSC. We
rank these intervals in order from left to right, and denote the kth interval by

S .k/u

�
convF

!.e
.k/
u /

�
.1 � k � du/

with the edges (and also the GD-IFS ¹Seºe2E ) arranged according to this order.

Definition 2.2 (Basic gaps). With the above notation, for each u 2 V and 1 � k �
du � 1 (du � 2), let �.k/u be the length of the complementary open interval between
S
.k/
u .convF

!.e
.k/
u /
/ and S .kC1/u .convF

!.e
.kC1/
u /

/ (possibly �.k/u D 0). All such com-
plementary intervals (possibly empty) are called the basic gaps of this ordered COSC
GD-IFS ¹S .k/u º sitting at vertex u. Let

ƒu WD ¹�
.k/
u W�

.k/
u > 0; 1 � k � du � 1º (2.1)

be the set of strictly positive lengths of the basic gaps associated with vertex u 2 V ,
see Figure 1.

︸ ︷︷ ︸
convFu (du D 3)

S
.1/
u

�
convF

!.e
.1/
u /

�
S

.2/
u

�
convF

!.e
.2/
u /

�
S

.3/
u

�
convF

!.e
.3/
u /

�
�

.1/
u �

.2/
u

Figure 1. Basic gaps of Fu.

As standard IFSs are one-vertex GD-IFSs, this definition is also applicable to
standard IFSs when we will omit the single vertex.

The GD-attractors .Fu/u2V of any GD-IFS can be determined in the following
way, see [12, Equation (15)]. For any list of compact sets .Iu/u2V , we define

Imu WD
[

e2Em
u

Se.I!.e// for any m � 1; (2.2)

whereEmu denotes the set of paths of lengthm leaving u and !.e/ denotes the terminal
vertex of path e. Note that if

I 1u � Iu for each u 2 V; (2.3)
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then the sequence Imu decreases in m in the sense that ImC1u � Imu for every m � 1,
since

ImC1u D

[
Qe2EmC1

u

SQe
�
I!.Qe/

�
D

[
e2Em

u

[
e2E1

!.e/

Se ı Se
�
I!.e/

�
D

[
e2Em

u

Se

� [
e2E1

!.e/

Se
�
I!.e/

��
D

[
e2Em

u

Se
�
I 1!.e/

�
�

[
e2Em

u

Se
�
I!.e/

�
D Imu : (2.4)

From this, it is known that for each u 2 V ,

Fu D

1\
mD1

Imu ; (2.5)

provided that (2.3) is satisfied.
In particular, taking Iu D convFu for each u 2 V , we see that (2.3) is satisfied,

since by (1.2)

Fu �
[
v2V

[
e2Euv

Se.convFv/ D I 1u � conv
� [
v2V

[
e2Euv

Se.Fv/
�
D convFu D Iu:

(2.6)
In this case, the (2.5) is true. Moreover, by taking convex hulls in (2.6), we know that

convFu � conv I 1u � conv convFu D convFu;

which gives that
conv I 1u D convFu D Iu; (2.7)

meaning that the two endpoints of the interval conv I 1u coincide with those of the
interval convFu D Iu. This fact will be used shortly.

Throughout this paper, the product AB of sets A, B � R is defined to be AB D
¹abW a 2 A; b 2 Bº, and when we encounter the product of a set in R and a constant,
regard the constant as a set in R. If A is an empty set, then AB is also empty.

The following proposition gives a characterization for the gap length set of an
attractor Fu of any COSC GD-IFS, which slightly extends a result in [3, below equa-
tion (5.2) in Section 5] to the case when a GD-IFS satisfies the COSC.

Proposition 2.3. Let .V; E/ be a digraph with du � 2 for all u 2 V , and let Fu be
a GD-attractor of a GD-IFS in R with the COSC based on .V; E/. With the above
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notation, the gap length set GL.Fu/ of the attractor Fu is given by

GL.Fu/Dƒu
[� 1[

mD1

[
v2V

ƒv
®
j�ejW e is a directed path from u to v with length m

�̄
:

(2.8)
When there is no directed path from u to v, the set ¹j�ejº is understood to be empty.

Proof. When GL.Fu/ D ;, that is, Fu D convFu, we have for all m � 1

convFu �
[
v2V

[
e2Em

uv

Se.convFv/ �
[
v2V

[
e2Em

uv

Se.Fv/ D Fu D convFu;

where Emuv is a collection of paths from vertex u to vertex v with length m. From this
and using the COSC, we see that

Se.convFv/ D Se.Fv/

for every v 2 V and every directed path e of length m from u to v, showing that
ƒv D ; for all v 2 V to which a directed path from u exists. Thus, (2.8) is trivial in
this case.

In the sequel, we assume that GL.Fu/ ¤ ;. Let u 2 V be a vertex. Set Iu WD
convFu for each u 2 V , and (2.5) holds true by virtue of (2.6). So the gaps of Fu will
be given by

.convFu/ n Fu D Iu n
� 1\
mD1

Imu

�
D

�
Iu n I

1
u

�[� 1[
mD1

Imu n I
mC1
u

�
; (2.9)

which consists of the complementary open intervals in Iu n I 1u and Imu n I
mC1
u (1 �

m <1). We need to calculate the lengths of these open intervals.
Indeed, for the open set Iu n I 1u , we know by definition (2.2) that

Iu n I
1
u D convFu n

[
e2E1

u

Se
�
I!.e/

�
D

du�1[
iD1

G.r/u ; (2.10)

where G.r/u for 1 � r � du � 1 form the basic gaps of Fu, whose lengths form the
set ƒu by using (2.7) with the property that two intervals Iu and I 1u have the same
endpoints, see Figure 1.

On the other hand, for any m � 1, due to the COSC, the interiors of the level-m
intervals

®
Se.I!.e//

¯
e2Em

u
are disjoint for any m. We know by (2.4) that

Imu n I
mC1
u D

[
e2Em

u

Se
�
I!.e/ n I

1
!.e/

�
D

[
e2Em

u

Se

� d!.e/�1[
rD1

G
.r/

!.e/

�
(using (2.10)).
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The above union consists of disjoint complementary open intervals Se.G
.r/

!.e//, whose

lengths are given by j�ej � �
.r/

!.e/, which form the gap length sets at the mth-level for
any m � 1. Summing up over m will give the double union in the right-hand side
of (2.8), and so (2.8) follows from (2.9) and the definition of GL.Fu/.

2.2. Ratio analysis

We will use “ratio analysis” to analyse sets ‚ of positive real numbers in .0;1/, in
terms of strictly decreasing geometric sequences ¹� 0rkº1

kD0
that are contained in ‚.

Definition 2.4. Let ‚ � .0;1/. For � 2 ‚, let

R‚.�/D
®
r 2 .0;1/W there exists some � 0 2‚ such that � 2 ¹� 0rkº1kD0�‚

¯
(2.11)

be the set of common ratios of strictly decreasing geometric sequences in ‚ that
contains � (the set R‚.�/ may be empty).

This concept arises quite naturally as the characteristic set GL.Fu/ contains many
geometric sequences. The following definition will be used in studying RGL.Fu/.�/

later on.

Definition 2.5. For a finite set AD ¹aiºniD1 � .0;1/, define AZ�
C (resp. AQ�

C , AQ�)
to be the union of all products

Qn
iD1 a

mi

i , where .mi /niD1 are non-zero vectors whose
entries are nonnegative integers (resp. nonnegative rationals, rationals). Let AZC D

¹1º [ AZ�
C , that is, the union of all products

Qn
iD1 a

mi

i , where .mi /i are nonnegative
integer vectors (including the zero vector). Similarly, AQ D ¹1º [ AQ� and AQC D

¹1º [ AQ�
C .

We will analyse GL.Fu/ given by (2.8) with the following Lemma.

Lemma 2.6. Let A D ¹aiºniD1 � .0; 1/ for n 2 Z�C WD ¹1; 2; : : : º, and �j (j D
1; : : : ; m) be positive real numbers (not necessarily distinct). Let ‚ D

Sm
jD1 �jAj ,

where Aj � AZC for 1 � j � m.

(i) Then R‚.�/ � AQ�
C for all � 2 ‚.

(ii) If �p=�q … AQ for all distinct p; q 2 ¹1; : : : ; mº when m � 2, then for
every strictly decreasing geometric sequence ¹� 0rkº1

kD0
� ‚, there exists a

unique l 2 ¹1; : : : ; mº such that ¹� 0rkº1
kD0
� �lAl , and

� 0rk … �jAj for all j ¤ l and all k � 0: (2.12)

Condition (ii) in Lemma 2.6 means that the sets ¹�jAj ºmjD1 are disjoint.

Proof. (i) Let � 2‚. Assume thatR‚.�/¤ ;. Let r 2 R‚.�/. By (2.11), there exists
� 0 2‚ such that � 2 ¹� 0rkº1

kD0
�‚, so by the pigeonhole principle we can find some
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�l such that ¹� 0rkº1
kD0

T
�lAl is infinite. Write this infinite subsequence as

� 0rkt D �l

nY
iD1

a
mi;t

i ; (2.13)

where .mi;t /niD1 2 ZnC and ¹ktº � ZC WD ¹0; 1; 2; : : : º with kt < ktC1, for t 2 ZC.
Applying Proposition 5.1 in the Appendix with B D ¹.mi;t /niD1ºt2ZC , there exist two
distinct vectors .mi;p/niD1 and .mi;q/niD1 in ZnC for some two indices p < q in ZC,
such that

.mi;p/
n
iD1 � .mi;q/

n
iD1 (2.14)

under the partial order defined by inequality of all coordinates. Therefore, we have
by (2.13)

rkq�kpD
� 0rkq

� 0rkp
D
�l
Qn
iD1 a

mi;q

i

�l
Qn
iD1 a

mi;p

i

D

nY
iD1

a
mi;q�mi;p

i .or rD
nY
iD1

a
.mi;q�mi;p/=.kq�kp/

i /:

Since �mi;q �mi;p
kq � kp

�n
iD1
2 .Qn

C/
�

using (2.14), it follows that r 2 AQ�
C by definition. Therefore,

R‚.�/ � A
Q�
C

for all � 2 ‚, thus proving our assertion (i).
(ii) Form � 2, suppose that there exist distinct p; q 2 ¹1; : : : ;mº such that � 0rk 2

�pAp and � 0rj 2 �qAq for some k; j 2 ZC. Write

� 0rk D �p

nY
iD1

a
pi;k

i and � 0rj D �q

nY
iD1

a
qi;j

i .pi;k; qi;j 2 ZC/: (2.15)

By (i), r 2 R‚.� 0/ � AQ�
C since � 0 2 ‚, and so rk�j 2 AQ. It follows that

�p

�q
D rk�j

nY
iD1

a
qi;j�pi;k

i 2 AQAQ
D AQ;

leading to a contradiction to our assumption. Thus, there exists a unique integer l 2
¹1; : : : ; mº such that ¹� 0rkº1

kD0
� �lAl .

It remains to show (2.12). In fact, if (2.12) were not true, then � 0rk 2 �tAt for
some integer k � 0 and some t ¤ l . Taking p D l , j D k, q D t in (2.15), we would
have

�l

�t
D

nY
iD1

a
qi;k�pi;k

i 2 AQ;

leading to a contradiction. The assertion (2.12) follows.



K. J. Falconer, J. Hu, and J. Zhang 170

The following corollary will be used to describe a certain ‘homogeneity’ property
of (the gap length sets of) attractors of COSC standard IFSs.

Corollary 2.7. Let X � .0; 1/ and ƒ � .0;1/ be two finite sets. Then

XZ�
C � R

ƒXZC .�/ � X
Q�
C

for every � 2 ƒXZC .

Proof. Let � 2 ƒXZC . Since XZ�
C � XZC ,

�XZ�
C � .ƒXZC/XZC D ƒ.XZCXZC/ D ƒXZC :

For any r 2 XZ�
C and k 2 ZC, we have rk 2 XZC and so

� rk 2
�
ƒXZC

�
XZC D ƒXZC ;

thus showing that r 2 R
ƒXZC .�/ by definition (2.11) with ‚ D ƒXZC , so the first

inclusion follows.
The second inclusion also follows by taking AD X , �j 2ƒ and each Aj D XZC

in Lemma 2.6 (i) (so that ‚ D ƒXZC).

As an application of Lemma 2.6 and Corollary 2.7, we derive a key lemma that
will be used to distinguish the attractor of a COSC GD-IFS from that of a COSC
standard IFS.

Definition 2.8 (Absolute contraction ratio set). The absolute contraction ratio set of
a GD-IFS is defined to be the set of the absolute values of the contraction ratios of the
similarities, that is ¹j�ejW e 2 Eº.

Lemma 2.9. Let .Fv/v2V be the attractors of a COSC GD-IFS based on a digraph
with dv � 2 for all v 2 V , with absolute contraction ratio set A. Assume that for some
u, the set Fu is not an interval (or a singleton) and is the attractor of some COSC
standard IFS with absolute contraction ratio set X .

(i) Then for all � 2 GL.Fu/

X � XZ�
C � RGL.Fu/.�/ � A

Q�
C \XQ�

C : (2.16)

(ii) IfA1 [A2 DA andAQ�

1 \A
Q�
C

2 D;, then the following dichotomy is true:
either

RGL.Fu/.�/ \ A
Q�
C

1 ¤ ; for all � 2 GL.Fu/; (2.17)

or
RGL.Fu/.�/ \ A

Q�
C

1 D ; for all � 2 GL.Fu/: (2.18)
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Assertion (ii) of Lemma 2.9 gives a necessary condition that a COSC GD-attractor
Fu is also the attractor of some COSC standard IFS in the following way: if there exist
two elements �1; �2 2 GL.Fu/ such that (2.17) holds for �1 whilst (2.18) holds for �2,
then Fu is not the attractor of any COSC standard IFS. This assertion will be used in
Lemma 4.1 below.

Proof. (i) Let ƒ be the set of non-zero basic gap lengths of some COSC standard
IFS with the attractor Fu, and let X be the absolute contraction ratio set. Regard this
standard IFS as a GD-IFS based on .¹vº; ¹ej ºmjD1/, where ej are loops of the single
vertex v, all directed paths of length k � 1 are now ei1ei2 � � �eik , where il D 1;2; : : : ;m
for all l D 1; 2; : : : ; k. By (2.8),

GL.Fu/ D ƒ
[� 1[

mD1

ƒ
®
j�ejW e is a directed path from v to v with length m

¯�
D ƒ [ƒXZ�

C D ƒXZC :

Note that GL.Fu/ is non-empty by using our assumption that Fu is not an interval or
a singleton.

On the other hand, Corollary 2.7 implies that

XZ�
C � RGL.Fu/.�/ D RƒXZC .�/ � X

Q�
C (2.19)

for all � 2 GL.Fu/. Recall that a directed circuit containing u is a directed path from
u to u. We write the union given by (2.8) as

‚ WD GL.Fu/ D
� [
�2ƒu

�
�
¹1º

[®
j�ejW e is a directed circuit containing u

¯��
[� [

v2V n¹uº

[
�2ƒv

�
®
j�ejW e is a directed path from u to v

¯�
: (2.20)

Since the absolute contraction ratios are all in A (so that j�ej 2 A
ZC), it follows

from Lemma 2.6 (i) that RGL.Fu/.�/ � A
Q�
C for all � 2 GL.Fu/, which combines

with (2.19) to give that
RGL.Fu/.�/ 2 A

Q�
C \XQ�

C ;

leading to the inclusions in (2.16), as desired.

(ii) If X \ A
Q�
C

1 ¤ ;, it follows from (2.16) that

X \ A
Q�
C

1 � RGL.Fu/.�/ \ A
Q�
C

1

for all � 2 GL.Fu/, thus showing that (2.17) is true.
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Now assume that X \ A
Q�
C

1 D ;. We will show that (2.18) is true.

We first claim that AQ�
C is the union of two disjoint sets A

Q�
C

1 and AQC
1 A

Q�
C

2 . To

see this, as AQ�

1 \ A
Q�
C

2 D ; by assumption, it follows that

A
Q�
C

1 \ A
QC
1 A

Q�
C

2 D ;: (2.21)

In fact, if (2.21) were not true, there would exist three elements

a 2 A
Q�
C

1 ; b 2 A
QC
1 ; c 2 A

Q�
C

2

with a D bc, from which a
b
2 A

Q
1 and a

b
D c 2 A

Q�
C

2 . As AQ
1 D ¹1º [A

Q�

1 by defin-

ition and ¹1º \ A
Q�
C

2 D ; due to A
Q�
C

2 � .0; 1/, we see that

a

b
2 A

Q
1 \ A

Q�
C

2 D
�
¹1º [ A

Q�

1

�
\ A

Q�
C

2 D
�
¹1º \ A

Q�
C

2

�
[
�
A

Q�

1 \ A
Q�
C

2

�
D ;;

a contradiction.
We need to show

AQ�
C D A

Q�
C

1 [ A
QC
1 A

Q�
C

2 : (2.22)

In fact, let
A1 D ¹biº

m
iD1; A2 D ¹cj º

n
jD1:

As A1 \ A2 � A
Q�

1 \ A
Q�
C

2 D ;, any element a 2 AQ�
C D .A1 [ A2/

Q�
C can be

written as

a D

mY
iD1

b
pi

i

nY
jD1

c
qj

j for some .pi /miD1 2 Qm
C and .qj /njD1 2 Qn

C;

where not all pi ; qj are zero. Thus, if all qj are zero, then a D
Qm
iD1 b

pi

i 2 A
Q�
C

1 ;

otherwise a 2 AQC
1 A

Q�
C

2 . This proves (2.22) by using (2.21).

As X \ A
Q�
C

1 D ; and

X � AQ�
C D A

Q�
C

1 [ A
QC
1 A

Q�
C

2

by using (2.16) and (2.22), we have

X � A
QC
1 A

Q�
C

2 : (2.23)

We will show the following inclusion

XQ�
C � A

QC
1 A

Q�
C

2 : (2.24)
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Since X is finite, let

X D ¹xlº
k
lD1; A1 D ¹biº

m
iD1; A2 D ¹cj º

n
jD1:

By (2.23), we write for each l D 1; 2; : : : ; k

xl D

mY
iD1

b
pi;l

i

nY
jD1

c
qj;l

j for some .pi;l/miD1 2 Qm
C and .qj;l/njD1 2 .Q

n
C/
�:

Then any element x 2 XQ�
C can be written as

x D

kY
lD1

x
rl
l
D

kY
lD1

� mY
iD1

b
pi;l

i

nY
jD1

c
qj;l

j

�rl
D

mY
iD1

b
Pk

lD1 pi;lrl
i

nY
jD1

c
Pk

lD1 qj;lrl
j for some .rl/klD1 2

�
Qk
C

��
:

Note that the numbers
Pk
lD1 pi;lrl and

Pk
lD1 qj;lrl all belong to QC. Since rl 0 > 0

for some l 0 while qj 0;l 0 > 0 for this l 0 and some j 0, we have
Pk
lD1 qj 0;lrl > 0 for

this j 0. Therefore, we obtain (2.24).
Finally, by (2.16) and (2.24), we have for all � 2 GL.Fu/,

RGL.Fu/.�/ � X
Q�
C � A

QC
1 A

Q�
C

2 ;

from which we easily conclude that (2.18) holds by using (2.21).

3. Construction of GD-IFSs

We will construct COSC (CSSC) GD-IFSs in terms of vector sets in Euclidean spaces,
to analyse the existence and extent of non-trivial GD-IFSs whose attractors are not
attractors of any (COSC) standard IFS.

For a digraph G D .V;E/ with di � 2 for i 2 V D ¹1; 2; : : : ; N º, we set

n WD 2#E � #V D 2.d1 C d2 C � � � C dN / �N (3.1)

so that n�N (recall that di denotes the number of the edges leaving vertex i ). Define
the subset P0 in the Euclidean space Rn, with n given in (3.1), by

P0 WD
°
x D

�
x
.1/
1 ; : : : ; x

.d1/
1 ; x

.1/
2 ; : : : ; x

.d2/
2 ; : : : ; x

.1/
N ; : : : ; x

.dN /
N ;

�
.1/
1 ; : : : ; �

.d1�1/
1 ; : : : ; �

.1/
N ; : : : ; �

.dN�1/
N

�
where x.k/i ; x

.di /
i 2 .�1; 1/ n ¹0º and �.k/i � 0

for each vertex i 2 V; 1 � k � di � 1
±
: (3.2)
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Each vector x in P0 consists of two kinds of entries: the entries ¹x.k/i ºi2V;1�k�di
all

lie in the set .�1; 1/ n ¹0º, and will specify the contraction ratios of GD-IFSs to be
constructed, whilst the other entries ¹�.k/i ºi2V;1�k�di�1 are all nonnegative, and will
specify the basic gap lengths.

For vertex i 2 V , let ¹ei .k/W 1 � k � diº be the set of edges leaving i , which are
arranged in some order which will henceforth remain fixed. For a point x in P0, we
look at its entries ¹x.k/i ºi2V;1�k�di

and define an N �N matrix Mx.s/ for any s > 0
by

Mx.s/ D
�
Mij .s/

�
1�i;j�N

; (3.3)

where
Mij .s/ D

X
ei .k/2Eij

jx
.k/
i j

s (3.4)

if Eij ¤ ;, and Mij .s/ D 0 if Eij D ; (recall that Eij is the set of (multiple) edges
from vertex i to vertex j ).

Let b, l, be two vectors defined by

b WD .b
.1/
i /i2V ; where b.1/i 2 R; (3.5)

l WD .li /i2V ; where li � 0: (3.6)

For each edge ei .k/ (1 � k � di ) leaving vertex i 2 V , we define the mappings
associated with a point x in P0 by

Sei .k/.t/ WD x
.k/
i .t � b

.1/

!.ei .k//
/C b

.k/
i � x

.k/
i l!.ei .k//1¹x.k/

i
<0º

for a variable t 2 R;

(3.7)
where 1

¹x
.k/

i
<0º
D 1 if x.k/i < 0, and 1

¹x
.k/

i
<0º
D 0 otherwise, and

b
.kC1/
i WD b

.k/
i C jx

.k/
i jl!.ei .k// C �

.k/
i for i 2 V and 1 � k � di � 1; (3.8)

and !.ei .k// denotes the terminal vertex of the edge ei .k/ as before.
Note that for any point x 2 P0, the mapping Sei .k/ defined as in (3.7) has the

contraction ratio x.k/i 2 .�1; 1/ n ¹0º, therefore it is a contracting similarity, and

±.x;b; l/ WD ¹Sei .k/W i 2 V; 1 � k � diº (3.9)

forms a GD-IFS on the digraph .V; ¹ei .k/º/, thus having a unique list of GD-attractors
¹Fiºi2V .

For any two vectors b, l as in (3.5), (3.6) and any point x in P0, we define the
closed intervals (which may be singletons) for each vertex i 2 V by

Ii D Œb
.1/
i ; b

.1/
i C li �; (3.10)

Ii .k/ D
�
b
.k/
i ; b

.k/
i C jx

.k/
i jl!.ei .k//

�
for 1 � k � di ;

where b.kC1/i for 1 � k � di � 1 are given by (3.8).
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We will work with a subset P of P0 defined by

P WD

²
x 2 P0W r� .Mx.1// < 1;

di�1X
kD1

�
.k/
i > 0 for all 1 � i � N

³
; (3.11)

where the matrix Mx.1/ is defined by (3.3) with s D 1, and r� .M/ denotes the spec-
tral radius of a matrix M , which is the largest absolute value (complex modulus) of
the eigenvalues of M .

We show that any point in P will give arise to at least one COSC GD-IFS onG, in
form of (3.7), whose contraction ratios are ¹x.k/i ºi2V;1�k�di

and whose attractor Fi
at each vertex i has the convex hull Ii given by (3.10), having the basic gap lengths
¹�
.k/
i º1�k�di�1, provided that li satisfies (3.12) below.

Lemma 3.1 (Construction of GD-IFSs). Let G D .V; E/ be a digraph with di � 2
for i 2 V . With the same notation above, let x be any point in P as in (3.11) and b

be any vector as in (3.5). Let .li /i2V be a vector of real numbers given by

.li /
T
i2V WD .id �Mx.1//

�1

�di�1X
kD1

�
.k/
i

�T
i2V

; (3.12)

where M T denotes the transpose of a matrix M . Then any GD-IFS ±.x; b/, given
by (3.7), (3.9) and (3.12) and having attractors ¹Fiºi2V , satisfies the following prop-
erties.

(i) For each vertex i 2 V , we have li > 0 and

convFi D Ii D Œb
.1/
i ; b

.1/
i C li �: (3.13)

(ii) The GD-IFS ±.x;b/ satisfies the COSC. The basic gaps of attractor Fi for
i 2 V are given by the following open intervals in R°�

b
.k/
i C jx

.k/
i jl!.ei .k//; b

.kC1/
i

�±
1�k�di�1

; (3.14)

which are arranged in order from left to right. The corresponding basic gap
lengths are°

b
.kC1/
i �

�
b
.k/
i C jx

.k/
i jl!.ei .k//

�
D �

.k/
i

±
1�k�di�1

: (3.15)

If further all �.k/i > 0 for i 2 V and 1 � k � di � 1, then ±.x;b/ satisfies
the CSSC.
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Proof. Note that

b
.di /
i D b

.1/
i C

di�1X
kD1

.�
.k/
i C jx

.k/
i jl!.ei .k///; (3.16)

since, by repeatedly using the defining expression (3.8) of b.kC1/i ,

b
.di /
i D b

.di�1/
i C jx

.di�1/
i jl!.ei .di�1// C �

.di�1/
i

D
�
b
.di�2/
i Cjx

.di�2/
i jl!.ei .di�2//C�

.di�2/
i

�
Cjx

.di�1/
i jl!.ei .di�1//C�

.di�1/
i

D � � �

D b
.1/
i C

di�1X
kD1

.�
.k/
i C jx

.k/
i jl!.ei .k///:

Also note that
li > 0 for each i 2 V; (3.17)

since, by using the defining expression (3.11) of P , the matrix .id�Mx.1// is invert-
ible and can be written as

.id �Mx.1//
�1
D idCMx.1/CM

2
x .1/C � � � ;

(see for example [14, Lemma B.1, Appendix B]), from which it follows by definition
(3.12) that

li D
X
j2V

�
.id �Mx.1//

�1
�
ij

� dj�1X
kD1

�
.k/
j

�

D

X
j2V

�
idCMx.1/CM

2
x .1/C � � �

�
ij

� dj�1X
kD1

�
.k/
j

�

�

di�1X
kD1

�
.k/
i > 0

by using the fact thatMx.1/ is a nonnegative matrix and that
Pdi�1

kD1
�
.k/
i >0 by (3.11).

We claim that

b
.di /
i C jx

.di /
i jl!.ei .di // D b

.1/
i C li for each vertex i 2 V: (3.18)

Indeed, we know by definition (3.12) that

.id �Mx.1//.li /
T
i2V D

� di�1X
kD1

�
.k/
i

�T
i2V

;
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from which, by definition (3.3) and (3.4),

di�1X
kD1

�
.k/
i D li �

NX
jD1

Mij .1/lj D li �

NX
jD1

� X
ei .k/2Eij

jx
.k/
i j

�
lj D li �

diX
kD1

jx
.k/
i jl!.ei .k//;

so that

li D

di�1X
kD1

�
.k/
i C

diX
kD1

jx
.k/
i jl!.ei .k// for each vertex i 2 V:

Combining this with (3.16),

li D

di�1X
kD1

�
.k/
i C

diX
kD1

jx
.k/
i jl!.ei .k// D

di�1X
kD1

.�
.k/
i C jx

.k/
i jl!.ei .k///C jx

.di /
i jl!.ei .di //

D b
.di /
i � b

.1/
i C jx

.di /
i jl!.ei .di //;

thus showing (3.18). This proves our claim.
We next show that the contracting similarity Sei .k/ associated with the edge ei .k/

satisfies
Sei .k/.I!.ei .k/// D Œb

.k/
i ; b

.k/
i C jx

.k/
i jl!.ei .k//� D Ii .k/ (3.19)

for each vertex i 2 V and each 1 � k � di . This is easily seen by looking at the
two endpoints of interval I!.ei .k//, depending on whether x.k/i > 0 or not. Indeed, by
definition (3.10) with vertex i being replaced by vertex !.ei .k//,

I!.ei .k// D Œb
.1/

!.ei .k//
; b
.1/

!.ei .k//
C l!.ei .k//�:

If x.k/i > 0, we have by definition (3.7) that Sei .k/.b
.1/

!.ei .k//
/ D b

.k/
i and

Sei .k/.b
.1/

!.ei .k//
C l!.ei .k/// D x

.k/
i l!.ei .k// C b

.k/
i D b

.k/
i C jx

.k/
i jl!.ei .k//;

from which

Sei .k/.I!.ei .k/// D ŒSei .k/.b
.1/

!.ei .k//
/; Sei .k/.b

.1/

!.ei .k//
C l!.ei .k///�

D Œb
.k/
i ; b

.k/
i C jx

.k/
i jl!.ei .k//�;

thus showing (3.19). On the other hand, if x.k/i < 0, we similarly have that

Sei .k/.b
.1/

!.ei .k//
C l!.ei .k/// D b

.k/
i

and
Sei .k/.b

.1/

!.ei .k//
/ D b

.k/
i � x

.k/
i l!.ei .k// D b

.k/
i C jx

.k/
i jl!.ei .k//;



K. J. Falconer, J. Hu, and J. Zhang 178

so

Sei .k/.I!.ei .k/// D ŒSei .k/.b
.1/

!.ei .k//
C l!.ei .k///; Sei .k/.b

.1/

!.ei .k//
/�

D Œb
.k/
i ; b

.k/
i C jx

.k/
i jl!.ei .k//�;

thus showing (3.19) again. Thus (3.19) is always true.
Since by definition (3.8)

b
.k/
i C jx

.k/
i jl!.ei .k// D b

.kC1/
i � �

.k/
i � b

.kC1/
i ;

we know by (3.19) that the closed intervals ¹Ii .k/W 1 � k � diº are arranged in order
from left to right, which together with (3.18) implies that

di[
kD1

int.Ii .k// D
di[
kD1

�
b
.k/
i ; b

.k/
i C jx

.k/
i jl!.ei .k//

�
�
�
b
.1/
i ; b

.di /
i C jx

.di /
i jl!.ei .di //

�
D
�
b
.1/
i ; b

.1/
i C li

�
(3.20)

with the disjoint union.
We are now in a position to prove the assertions (i), (ii).
(i) We will use (3.19) and (3.12) to derive (3.13). Indeed, recall that the intervals

Ii are defined in (3.10). Note that li > 0 for each i 2 V by (3.17). As in (2.2), for each
vertex i 2 V we let

Imi WD
[

e2Em
i

Se
�
I!.e/

�
for m D 1; 2; : : : ; (3.21)

where Emi is the set of edges of length m leaving vertex i , and !.e/ is the terminal of
path e as before. We show that for each vertex i 2 V

min Imi D b
.1/
i D min Ii ; max Imi D b

.1/
i C li D max Ii for m D 1; 2; : : : ;

(3.22)
so that the left and right endpoints, respectively, of all the intervals Imi are the same.

Indeed, we know by definition (3.21) that for each vertex i 2 V

I 1i D
[

e2E1
i

Se
�
I!.e/

�
D

di[
kD1

Sei .k/

�
I!.ei .k//

�
D

di[
kD1

Œb
.k/
i ; b

.k/
i C jx

.k/
i jl!.ei .k//� (using (3.19)),
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from which, using the fact that b.k/i C jx
.k/
i jl!.ei .k// � b

.kC1/
i by (3.8), it follows that

min I 1i D b
.1/
i , and

max I 1i D b
.di /
i C jx

.di /
i jl!.ei .di // D b

.1/
i C li

by using (3.18). Hence, (3.22) is true when m D 1 by the defining expression (3.10)
of Ii .

Assume inductively that (3.22) holds for somem � 1. Since for each vertex i 2 V

ImC1i D

[
e02EmC1

i

Se0
�
I!.e0/

�
D

[
e2Em

i

Se
�
I 1!.e/

�
by using (2.4), it follows that

min ImC1i D min
®
Se.I

1
!.e//W e 2 E

m
i

¯
D min

®
Se.I!.e//W e 2 Emi

¯
D min Imi D b

.1/
i :

Similarly,
max ImC1i D max Imi D b

.1/
i C li :

Therefore, the (3.22) holds for all m � 1 by induction.
Since condition (2.3) holds using that I 1i � Ii D Œb

.1/
i ; b

.1/
i C li �, and we know

by (2.5) that Fi D
T1
mD1 I

m
i , (3.22) gives that,

convFi D conv
1\
mD1

Imi D Œb
.1/
i ; b

.1/
i C li �;

showing that (3.13) holds true.
(ii) Applying (3.13) with i replaced by vertex !.ei .k//, the terminal of the edge

ei .k/,
convF!.ei .k// D I!.ei .k// D Œb

.1/

!.ei .k//
; b
.1/

!.ei .k//
C l!.ei .k//�;

from which it follows by (3.19) that

Sei .k/.convF!.ei .k/// D Sei .k/.I!.ei .k/// D Œb
.k/
i ; b

.k/
i C jx

.k/
i jl!.ei .k//� D Ii .k/

(3.23)
for 1 � k � di .

We show that ±.x;b/ satisfies the COSC. Taking Ui D int.convFi /, from (3.13)

Ui D int.convFi / D .b
.1/
i ; b

.1/
i C li / D int.Ii /;
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so that each open set Ui is not empty as li > 0. It follows that

[
j2V

[
e2Eij

Se.Uj / D

di[
kD1

Sei .k/.U!.ei .k/// D

di[
kD1

Sei .k/

�
int.I!.ei .k///

�
D

di[
kD1

int
�
Sei .k/.I!.ei .k///

�
D

di[
kD1

int
�
Ii .k/

�
(using (3.19))

�
�
b
.1/
i ; b

.1/
i C li

�
(using (3.20))

D Ui

with the union disjoint. Thus ±.x;b/ satisfies the COSC.
For each vertex i 2 V , the basic gaps of the attractor Fi are the complementary

open intervals between the closed interval

Sei .k/.convF!.ei .k/// D Œb
.k/
i ; b

.k/
i C jx

.k/
i jl!.ei .k//� D Ii .k/ (using (3.23))

and its neighbour

Sei .kC1/.convF!.ei .kC1/// D Œb
.kC1/
i ; b

.kC1/
i C jx

.kC1/
i jl!.ei .kC1//� D Ii .k C 1/

for 1 � k � di � 1. Specifically, they are the following open intervals°�
b
.k/
i C jx

.k/
i jl!.ei .k//; b

.kC1/
i

�±
1�k�di�1

that are arranged in order from left to right, thus showing (3.14) for each vertex i 2 V .
The basic gap lengths of the attractor Fi are the lengths of the open intervals

in (3.14), which are equal to

b
.kC1/
i �

�
b
.k/
i C jx

.k/
i jl!.ei .k//

�
D �

.k/
i .1 � k � di � 1/

by using the definition (3.8), thus showing (3.15).
Finally, if all �.k/i > 0, then ±.x;b/ satisfies the CSSC, since

[
v2V

[
e2Euv

Se
�
convFv

�
D

di[
kD1

Sei .k/

�
convF!.ei .k//

�
D

di[
kD1

Ii .k/

with the disjoint union, as the intervals Ii .k/ and Ii .k C 1/ are separated by distance
�
.k/
i , which are strictly positive.



A dichotomy on the self-similarity of graph-directed attractors 181

Remark 3.2. Note that any point x belongs to P if

max
i2V

´
diX
kD1

jx
.k/
i j

µ
< 1: (3.24)

This is because

r� .Mx.1// � max
i2V

´
NX
jD1

X
ei .k/2Eij

jx
.k/
i j

µ
D max

i2V

´
diX
kD1

jx
.k/
i j

µ
< 1;

using the elementary fact that the spectral radius of a nonnegative matrix is no greater
than any row sum, see for example [14, Equation (1.9)]. Therefore, every x 2 P0
satisfying (3.24) belongs to P , and all the assertions (i), (ii) in Lemma 3.1 hold true,
provided that .li /i2V are chosen as in (3.12).

We now look at subsets P , depending on a number ı > 0, which will give rise to
a special class of GD-IFSs, satisfying the CSSC, having attractors ¹Fiºi2V with the
property that convFi D Œ0; 1�, and all the basic gaps of Fi have the same length ı.

Definition 3.3. Let ı be a small number such that

0 < ı < min
i2V

²
1

di � 1

³
(3.25)

(recall our assumption that the out-degree di at vertex i satisfies di � 2 for all i ). We
define a set A.ı/ by

A.ı/ WD
®
.x
.1/
1 ; : : : ; x

.d1/
1 ; x

.1/
2 ; : : : ; x

.d2/
2 ; : : : ; x

.1/
N ; : : : ; x

.dN /
N ; ı; : : : ; ı/ 2 RnW

jx
.k/
i j > 0 and jx.1/i j C � � � C jx

.di /
i j D 1 � .di � 1/ı for all i 2 V; 1 � k � di

¯
:

(3.26)

Let Mx.1/ be an N �N matrix associated with point x as in (3.3) for s D 1. For
each x 2 A.ı/, the spectral radius of matrix Mx.1/ is less than 1, since

max
i2V

´
diX
kD1

jx
.k/
i j

µ
D max

i2V

®
1 � .di � 1/ı

¯
< 1 (using (3.25))

and hence,
A.ı/ � P; (3.27)

where the set P is as in (3.11). Moreover,

�
id �Mx.1/

�
0BBB@
1

1
:::

1

1CCCA WD
0BBB@
.d1 � 1/ı

.d2 � 1/ı
:::

.dN � 1/ı

1CCCA (3.28)
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so that (3.12) is satisfied with

li D 1 and �
.k/
i D ı for i 2 V I 1 � k � di � 1;

this is because for each i 2 V , by definitions (3.26) and (3.4),

.di � 1/ı D 1 �
�
jx
.1/
i j C � � � C jx

.di /
i j

�
D 1 �

NX
jD1

 X
ei .k/2Eij

jx
.k/
i j

!
D

NX
jD1

�
id �Mx.1/

�
ij

0BBB@
1

1
:::

1

1CCCA : (3.29)

Let ¹b.k/i ºi2V;1�k�di
be a family of real numbers given by

b
.1/
i D 0 and b

.kC1/
i D b

.k/
i C jx

.k/
i j C ı for i 2 V; 1 � k � di � 1;

so that

b
.kC1/
i D jx

.1/
i j C jx

.2/
i j C � � � C jx

.k/
i j C kı .i 2 V; 1 � k � di � 1/: (3.30)

Clearly, each b.kC1/i 2 .0; 1/ for 1 � k � di � 1 by using (3.29).
Let b0, l1 be two vectors defined by

b0 WD .b
.1/
i ; b

.1/
2 ; : : : ; b

.1/
N / D .0; 0; : : : ; 0/;

l1 WD .l1; l2; : : : ; lN / D .1; 1; : : : ; 1/:

In this situation, for x 2 A.ı/, the contracting similarities defined in (3.7) read

Sei .k/.t/ D x
.k/
i t C b

.k/
i � x

.k/
i 1

¹x
.k/

i
<0º

for a variable t 2 R (3.31)

for i 2 V , 1 � k � di , which will give arise to a GD-IFS satisfying the CSSC. This
will be used in Theorem 4.10 below.

Corollary 3.4. Let G D .V;E/ be a digraph with di � 2 for i 2 V D ¹1; 2; : : : ; N º.
Let ı satisfy (3.25). For x 2 A.ı/, let

±.x/ WD ¹Sei .k/W i 2 V; 1 � k � diº

be a GD-IFS given as in (3.31), with attractors .Fi /i2V . Then the following statements
hold.

(i) For each vertex i 2 V , convFi D Œ0; 1�.
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(ii) For each vertex i 2 V ,

Sei .1/.Œ0; 1�/ D
�
0; jx

.1/
i j
�

(3.32)

so that jx.1/i j 2 Fi . The basic gaps of the attractor Fi are given by�
jx
.1/
i j C � � � C jx

.k/
i j C .k � 1/ı; jx

.1/
i j C � � � C jx

.k/
i j C kı

�
(3.33)

for every 1 � k � di � 1, so that the basic gap lengths are all equal to the
same number, ı say. Moreover, the GD-IFS ±.x/ satisfies the CSSC.

Proof. Let x 2 A.ı/. Then x 2 P by using (3.27), and condition (3.12) is also satis-
fied by (3.28). Thus all the assumptions in Lemma 3.1 are satisfied. Applying Lem-
ma 3.1 (i) and using (3.10) with b.1/i D 0 and li D 1,

convFi D Œb
.1/
i ; b

.1/
i C li � D Œ0; 1�;

thus showing (i).
To show (ii), noting that I!.ei .k// D Œ0; 1� and l!.ei .k// D 1; b

.1/
i D 0, we know

by (3.19) that

Sei .1/.Œ0; 1�/ D Sei .1/.I!.ei .k/// D Œb
.1/
i ; b

.1/
i C jx

.1/
i jl!.ei .1//� D Œ0; jx

.1/
i j�

thus showing (3.32).
By (3.14) and (3.30), the basic gaps of the attractor Fi are given by�

b
.k/
i C jx

.k/
i jl!.ei .k//; b

.kC1/
i

�
D
�
b
.k/
i C jx

.k/
i j; b

.kC1/
i

�
D
�
jx
.1/
i j C � � � C jx

.k/
i j C .k � 1/ı; jx

.1/
i j C � � � C jx

.k/
i j C kı

�
for every 1 � k � di � 1, thus showing (3.33). From this, it is clear that the basic gap
lengths all are equal to the same number which we call ı. Finally, ±.x/ satisfies the
CSSC by Lemma 3.1 (i) since all �.k/i D ı > 0.

4. Criteria for graph directed attractors not to be self-similar sets

In this section we give some sufficient conditions under which GD-attractors cannot
be realised as attractors of any standard IFSs with or without the COSC.

For a directed path L, let A.L/ (resp. A.Lc/) be the set of the absolute values
of the contraction ratios of the similarities associated with the edges in L (resp. not
in L). Recall the definition of ƒu from (2.1).



K. J. Falconer, J. Hu, and J. Zhang 184

Lemma 4.1. Assume that .V; E/ is a digraph with dw � 2 for all w 2 V and L is a
directed circuit that does not go through every vertex in V . Let u be a vertex outside
L and v a vertex in L, assume that there exists a directed path from u to v. Consider
a COSC GD-IFS based on this digraph. With the notation above, suppose that the
following three conditions hold:

(i) .A.L//Q
�

\ .A.Lc//Q
�
C D ;.

(ii) ƒu ¤ ; and ƒv ¤ ;.

(iii) For all pairs .w; k/ ¤ .z;m/ with �.m/z ¤ 0, where w; z 2 V and 1 � k �
dw � 1; 1 � m � dz � 1,

�.k/w =�.m/z … .A.L/ [ A.Lc//Q:

Then the GD-IFS attractor Fu is not the attractor of any COSC standard IFS.

Basically, condition (i) means that linear combinations of numbers ¹log j�ejW e 2
A.L/º over Q�, that is,X

e2A.L/

qe log j�ej for .qe/e2A.L/ 2
�
Q#A.L/��;

where .Q#A.L//� is the set of non-zero vectors in Q#A.L/ as before, are different
from those of numbers ¹log j�ejW e 2 A.Lc/º over Q�C, while condition (ii) means that
not all basic gaps associated with u and v are empty, and condition (iii) means that
log.�.k/w =�

.m/
z / for all distinct basic gaps of positive lengths are different from linear

combinations of numbers ¹log j�ejW e 2 Eº over Q. Note that condition (i) requires a
certain homogeneity, on the ratios of the gap length set of a COSC self-similar GD-
attractor, which does not necessarily hold when (ii) and (iii) are satisfied. Note that
among the three conditions (i), (ii), (iii), no two of them imply the third.

Proof. We show that the strict dichotomy required by Lemma 2.9 (ii) for a GD attrac-
tor fails for Fu satisfying the conditions of this theorem.

Let u be a vertex outside L and v a vertex in L. For any w ¤ u in V , let

R.uw/ D ¹j�ejW e is a directed path from u to wº;

and let
R.uu/ D ¹1º [ ¹j�ejW e is a directed circuit containing uº:

With the above notation, the union (2.20) becomes

‚ WD GL.Fu/ D
[
w2V

ƒwR.uw/ D
[
w2V

[
�2ƒw

�R.uw/: (4.1)
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By condition (ii), we can choose two non-zero basic gap lengths �u 2 ƒu, �v 2 ƒv .
Since there exists a directed path e from u to v, we can choose a number

� WD �vj�ej 2 �vR.uv/ � GL.Fu/:

Recall that �L denotes the product of the contraction ratios on the edges of L. For
each integer k � 0, we define eLk by eL0 WD e and

eLk WD eL � � �L„ƒ‚…
k times

for k � 1;

all of which are directed paths from u to v, so that j�eLk j 2 R.uv/. Note that

j�Lj 2 RGL.Fu/.�/; (4.2)

since for every k � 0,

� j�Lj
k
D �vj�ejj�Lj

k
D �vj�eLk j 2 �vR.uv/ � GL.Fu/

by using (4.1), which implies (4.2) using (2.11) with � 0 being replaced by � 2GL.Fu/.

SetA1 WDA.L/,A2 WDA.Lc/. Since j�Lj 2 .A.L//Z
�
C DA

Z�
C

1 �A
Q�
C

1 , we obtain
by (4.2)

RGL.Fu/.�/ \ A
Q�
C

1 ¤ ;: (4.3)

Let
r 2 RGL.Fu/.�u/:

By definition (2.11), there exists a geometric sequence ¹� 0rkº1
kD0
� GL.Fu/ contain-

ing �u with � 0 2 GL.Fu/. Note that �u 2 �uR.uu/ � GL.Fu/ by (4.1).
We claim that

� 0 D �u: (4.4)

To see this, taking the decomposition of‚DGL.Fu/ given by (4.1), the requirements
for Lemma 2.6 (ii), with �j varying in ¹� 2ƒw Ww 2 V º,Aj varying in ¹Ruw Ww 2 V º
and withADA.L/

S
A.Lc/, are satisfied by assumption (iii). Thus, there is a unique

w 2 V and a unique � 2 ƒw such that®
� 0rk

¯1
kD0
� �R.uw/; (4.5)

and
� 0rk … �0R.uz/ for all .�0; z/ ¤ .�;w/ and all k � 0 (4.6)

by (2.12). Thus, �u 2 ¹� 0rkº1kD0 � �R.uw/. On the other hand, noting that 12R.uu/
so that

�u 2 �uR.uu/;

we conclude that � D �u; w D u by (4.6).
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Since r < 1, we have �u D � 0rk � � 0 for some k. As R.uu/ � .0; 1�, we know
by (4.5) that

� 0rk 2 �R.uw/ D �uR.uu/ (4.7)

for every k � 0, which gives that � 0 � �u on taking k D 0, and so �u D � 0, thus
proving our claim (4.4).

By (4.4) and (4.7) with k D 1,

�ur D �
0r 2 �uR.uu/;

from which we see that r 2 R.uu/, thus showing that

RGL.Fu/.�u/ � R.uu/; (4.8)

since r is any number in RGL.Fu/.�u/.
On the other hand, since u is not in L, any directed circuit L0 containing u must

also visit some edge outside L as well, implying that j�L0 j 2 .A.L//ZC.A.Lc//Z
�
C D

A
ZC
1 A

Z�
C

2 and

R.uu/ D ¹1º [ ¹j�L0 jWL
0 is a directed circuit containing uº

� ¹1º [ A
ZC
1 A

Z�
C

2 � ¹1º [ A
QC
1 A

Q�
C

2 : (4.9)

Noting that by assumption (i)

A
Q�

1 \ A
Q�
C

2 D .A.L//Q
�

\ .A.Lc//Q
�
C D ;

so that AQC
1 A

Q�
C

2 \ A
Q�
C

1 D ; by (2.21), it follows that

RGL.Fu/.�u/ \ A
Q�
C

1 � R.uu/ \ A
Q�
C

1 (using (4.8))

�
�
¹1º [ A

QC
1 A

Q�
C

2

�
\ A

Q�
C

1 (using (4.9))

D
�
¹1º \ A

Q�
C

1

�
[
�
A

QC
1 A

Q�
C

2 \ A
Q�
C

1

�
D ; (4.10)

using that ¹1º \ A
Q�
C

1 D ;, since all numbers in A
Q�
C

1 are strictly less than 1.
Finally, since (4.3) and (4.10) hold simultaneously, Lemma 2.9 (ii) implies that

Fu cannot be the attractor of any COSC standard IFS.

Note that the assumption ‘there exists a directed path from u to v’ in Lemma 4.1
is necessary. The following example shows that without this assumption, the GD-
attractor may be an attractor of some standard IFS (with or without the COSC).
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b b

b

1 2

3

e

e0

Figure 2. F3 is an attractor of a standard IFS.

Example 4.2. Let G D .V; E/ be the digraph (not strongly connected) in Figure 2
with V D ¹1; 2; 3º and E consisting of seven edges, three of which leave vertex
1 (including one loop). Let ¹Seºe2E be any COSC GD-IFS, having GD-attractors
F1; F2; F3 associated with vertices 1; 2; 3, respectively. By (1.2), the set F3 satisfies

F3 D Se.F3/ [ Se0.F3/;

which is an attractor of the standard IFS ¹Se; Se0º. Note that there is no directed path
from vertex 3 to other two vertices 1, 2.

We give an example to illustrate Lemma 4.1. Our example is a digraph that has
three vertices and is not strongly connected.

Example 4.3 (Three-vertex digraph). LetG D .V;E/ be the (not strongly) connected
digraph in Figure 3 with V D ¹1; 2; 3º and E consisting of seven edges. Note that the
out-degrees of the vertices are respectively

d1 D d2 D 2; d3 D 3:

Let LD e1.1/ be a loop (circuit) so that vertex uD 3 is outside L whilst vertex v D 1
is inside L. A directed path from u to v is labelled by e3.2/.

Let x0 be a point given by

x0 D .p�11 ; p�12 ; p�13 ; p�14 ; p�12 ; p�13 ; p�14 ; �; p5�; 0; ��/;
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b b

b

1 2

e1.1/ e2.2/

p�1
1

p�1
4

e1.2/

e2.1/

p�1
2

p�1
3

3
e3.1/

p�1
2

e3.3/

p�1
4

e3.2/

p�1
3

Figure 3. F3 is not an attractor of any standard COSC IFS.

where ¹pj º1�j�5 are five distinct positive prime numbers. The matrixMx0.1/ defined
in (3.3) is given by

M WDMx0.1/ D

0B@p�11 p�12 0

p�13 p�14 0

p�13 0 p�12 C p
�1
4

1CA :
The point x0 belongs to the set P in (3.11) by using (3.24) as the sum of each row of
matrix M is bounded by 1, that is,

max¹p�11 C p
�1
2 C 0; p

�1
3 C p

�1
4 C 0; p

�1
3 C 0C p

�1
2 C p

�1
4 º < 1:

Let l D .l1; l2; l3/ be determined by (3.12), that is,

lT D

0B@l1l2
l3

1CA D .id �M/�1

0B@ �

p5�

0C ��

1CA : (4.11)

Let b D .0; 0; 0/ and let ±.x0/ WD ±.x0;b/ be a GD-IFS constructed as in Lem-
ma 3.1, which is given by

Se1.1/.t/ D p
�1
1 t; Se1.2/.t/ D p

�1
2 t C b

.2/
1 ;

Se2.1/.t/ D p
�1
3 t; Se2.2/.t/ D p

�1
4 t C b

.2/
2 ;

Se3.1/.t/ D p
�1
2 t; Se3.2/.t/ D p

�1
3 t C b

.2/
3 ; Se3.3/.t/ D p

�1
4 t C b

.3/
3 for t 2 R;

where
®
b
.2/
1 ; b

.2/
2 ; b

.2/
3 ; b

.3/
3

¯
are determined by (3.8), with l D .l1; l2; l3/ determined

by (4.11).
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By Lemma 3.1, such a GD-IFS, ±.x0/, satisfies the COSC, and the basic gap
length sets at three vertices are respectively

�
.1/
1 D � (at vertex 1);

�
.1/
2 D p5� (at vertex 2);

�
.1/
3 D 0; �

.2/
3 D �� (at vertex 3); (4.12)

so that the sets of positive gap lengths at the vertices are given by

ƒ1 D ¹�º (at vertex 1);

ƒ2 D ¹p5�º (at vertex 2);

ƒ3 D ¹��º (at vertex 3): (4.13)

Since L D e1.1/ is a loop, we see that

A.L/ D ¹p�11 º and A.Lc/ D ¹p�12 ; p�13 ; p�14 º; (4.14)

so that the contraction ratio set A is given by

A D A.L/ [ A.Lc/ D ¹p�11 ; p�12 ; p�13 ; p�14 º:

We show that conditions (i), (ii), (iii) in Lemma 4.1 are all satisfied when
L D e1.1/, u D 3 and v D 1. Thus, the attractor F3 of the GD-IFS, ±.x0/ above,
is not the attractor of any COSC standard IFS.

To verify condition (i), we need to show that�
A.L/

�Q�
\ .A.Lc//Q

�
C D ;;

where A.L/, A.Lc/ are given as in (4.14). Otherwise, there would exist some non-
zero rational number q such that�

p�11
�q
2 ¹p�12 ; p�13 ; p�14 º

Q�
C ;

which would imply
1 2 ¹p�11 ; p�12 ; p�13 ; p�14 º

Q�
C ;

a contradiction by using Proposition 5.5 in the Appendix.
Condition (ii) holds by directly using (4.13).
Finally, for condition (iii), we know from (4.12) that all the ratios �.k/w =�

.m/
z of

basic gap lengths for .w; k/ ¤ .z;m/ lie in the following set²
1

p5
;
1

�
; p5;

p5

�
; 0; �;

�

p5

³
;

each number in which does not belong to AQ D ¹p�11 ; p�12 ; p�13 ; p�14 º
Q by using

Proposition 5.5 in Appendix and the fact that � is transcendental. Thus, condition (iii)
is satisfied.
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We mention in passing that one can also construct a GD-IFS with the CSSC, whose
GD-attractor is not attractor of any standard IFS. For example, let p6 be a prime
different from other pj (1 � j � 5), and let

x00 D .p�11 ; p�12 ; p�13 ; p�14 ; p�12 ; p�13 ; p�14 ; �; p5�; p6�; ��/:

Such a point x00 also belongs to the set P , and the corresponding GD-IFS, ±.x00/
associated with x00 in a way of Lemma 3.1, satisfies the CSSC. When L D e1.1/,
uD 3 and v D 1, the attractor F3 of this ±.x00/ is not an attractor of any standard IFS.
We omit the details.

Lemma 4.4. For a strongly connected digraphGD .V;E/with dw � 2 for allw 2 V ,
let A be the absolute contraction ratio set of a COSC GD-IFS based on G, having
.Fu/u2V as its attractors. Suppose that the following conditions hold.

(i0) All the contraction ratios have different absolute values, and 1 … AQ� .

(ii0) ƒw ¤ ; for all w 2 V .

(iii) For all pairs .w; k/ ¤ .z;m/ with �.m/z ¤ 0, where w; z 2 V and 1 � k �
dw � 1, 1 � m � dz � 1,

�.k/w =�.m/z … .A.L/ [ A.Lc//Q:

If G contains a directed circuit not passing through a vertex u, then Fu is not the
attractor of any COSC standard IFS.

Proof. Let L be a directed circuit that does not go through u. By condition (ii0) we
know that condition (ii) in Lemma 4.1 holds upon taking any vertex v in L. Since
the digraph G is strongly connected, there exists a directed path from u to v. Since
condition (iii) remains the same, we only need to verify condition (i) in Lemma 4.1
under the stronger condition (i0). For, suppose that there exists some � 2 .A.L//Q \
.A.Lc//Q

�
C . Setting

A.L/ D ¹biº
m
iD1; A.Lc/ D ¹cj º

n
jD1

so that A D A.L/ [ A.Lc/, we write

� D

mY
iD1

b
pi

i D

nY
jD1

c
qj

j

for some two vectors .pi /miD1 2 Qm and .qj /njD1 2 .Q
n
C/
�. Then

1 D

mY
iD1

b
pi

i

nY
jD1

c
�qj

j 2 AQ� ;
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where we have used that A.L/ \ A.Lc/ D ; since all the contraction ratios have
different absolute values by condition (i0). However, this contradicts our assumption
1 … AQ� . Therefore, all conditions in Lemma 4.1 are satisfied, thus the conclusion of
the lemma follows.

Remark 4.5. Lemma 4.4 is an extension of [3, Theorem 6.3]. The assertion of Lem-
ma 4.4 is optimal in the sense that the restriction on the graph ‘there is a circuit not
passing through u’ cannot be relaxed (see Theorem 5.4 in the Appendix).

The following example, with a digraph that has two vertices with two loops and
is strongly connected, illustrates Lemma 4.4.

Example 4.6 (Two-vertex digraph). LetG D .V;E/ be a strongly connected digraph,
where V D ¹1; 2º, E D ¹e1.1/; e1.2/; e2.1/; e2.2/º, so that d1 D 2, d2 D 2, see Fig-
ure 4.

b b1 2

e1.1/ e2.2/

p�1
1

p�1
2

e1.2/

e2.1/

p�1
2

p�1
3

Figure 4. F1 and F2 are not the attractors of any standard COSC IFS.

Let ¹pj º1�j�4 be four distinct primes arranged in ascending order so that 2 �
pj < pjC1, and let p5 be a positive number such that logp5 is not a rational linear
combination of ¹log pj º1�j�4. Let � > 0 be any real number, and let x be a vector
given by

x D .p�11 ; p�12 ; p�13 ; p�14 ; �; p5�/ DW .x
.1/
1 ; x

.2/
1 ; x

.1/
2 ; x

.2/
2 ; �

.1/
1 ; �

.1/
2 /: (4.15)

The matrix Mx.1/ in (3.3), (3.4) associated with point x is given by

M WDMx.1/ D

 
x
.1/
1 x

.2/
1

x
.1/
2 x

.2/
2

!
D

 
p�11 p�12
p�13 p�14

!
:

Note that x 2 P in (3.11) by using (3.24), since

max¹p�11 C p
�1
2 ; p�13 C p

�1
4 º < 1:

Let l D .l1; l2/
T be given by (3.12), that is,

l D

 
l1

l2

!
D .id �Mx.1//

�1

 
�
.1/
1

�
.1/
2

!
D

 
1 � p�11 �p�12
�p�13 1 � p�14

!�1  
�

p5�

!
:
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Let b WD .b
.1/
1 ; b

.1/
2 / for b.1/1 ; b

.1/
2 2 R, and let

b
.2/
1 WD b

.1/
1 C p

�1
1 l1 C �;

b
.2/
2 WD b

.1/
2 C p

�1
3 l2 C �p5:

We define four similarities ±.x;b/ WD ¹Se1.1/; Se1.2/; Se2.1/; Se2.2/º, depending on x,
b, by

3Se1.1/.t/ D p
�1
1 t C b

.1/
1 ; Se1.2/.t/ D p

�1
2 t C b

.2/
1 ;

Se2.1/.t/ D p
�1
3 t C b

.1/
2 ; Se2.2/.t/ D p

�1
4 t C b

.2/
2 for t 2 R:

Clearly, such a GD-IFS ±.x; b/ has absolute contraction ratio set given by A WD
¹p�1i º

4
iD1. Applying Lemma 3.1, ±.x;b/ satisfies the CSSC, whose basic gap lengths

sets are ƒ1 D ¹�
.1/
1 º D ¹�º (at vertex 1) and ƒ2 D ¹�

.1/
2 º D ¹�p5º (at vertex 2). Let

F1; F2 be the attractors of ±.x;b/ at vertices 1 and 2.
We will use Lemma 4.4 to show that F1 (or F2) is not the attractor of any COSC

standard IFS, noting that .V;E/ contains a directed circuit (loop) not passing through
vertex 1 (or through vertex 2).

Condition (i0) is clear since the contraction ratios A D ¹p�1i º
4
iD1 are distinct, and

1 … AQ� by using Proposition 5.5 in the Appendix. Condition (ii0) is trivial since the
basic gap lengths are �; �p5 that are strictly positive.

It remains to verify condition (iii) or equivalently to check that

�
.1/
2

�
.1/
1

D
�
.1/
2

�
.1/
1

D
�p5

�
D p5 … A

Q;

�
.1/
1

�
.1/
2

D
1

p5
… AQ:

However, this is trivial by noting that

p5 ¤
�
p�11

�s1�p�12 �s2�p�13 �s3�p�14 �s4 (the same is true for p�15 )

for any rationals .si /4iD1, since log p5 is not a rational linear combination of
¹logpj º1�j�4.

Therefore, all the assumptions (i0), (ii0), (iii) in Lemma 4.4 are satisfied, so the
GD-attractor F1 (or F2) is not the attractor of any standard IFS with the COSC.

We next show that for n-dimensional Lebesgue almost all vectors in P , all the
conditions in Lemma 4.4 hold for their corresponding GD-IFSs. Let P1 be a subset of
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P given by

P1 WD ¹x 2 P0W r� .Mx.1// < 1; �
.k/
i > 0 for each vertex i 2 V; 1 � k � di � 1º:

(4.16)
Clearly, P1 � P since each

Pdi�1

kD1
�
.k/
i > 0.

Definition 4.7 (Admissible set). With the notation as above, we say that a point x D
.x1; x2; : : : ; xn/ in the set P1 is admissible if

nY
iD1

jxi j
pi ¤

nY
iD1

jxi j
qi (4.17)

for any two distinct vectors .pi /niD1 and .qi /niD1 of nonnegative rationals. The set of
all admissible points is denoted by A.

Note that the admissible set A depends only on the numbers of vertices and
their out-degrees, but is independent of any vertex itself and the order of edges. If
.x1; x2; : : : ; xn/ 2A, then for any two distinct indices i; j , taking pi D 1, pk D 0 for
all k ¤ i and qj D 1, qk D 0 for all k ¤ j in (4.17),

jxi j ¤ jxj j; (4.18)

and so the entries of any vector in A all have distinct absolute values.
By Lemma 3.1, we know that each admissible point x leads to a COSC GD-IFS

±.x;b/ (4.19)

as in (3.7), (3.12), for any b in (3.5).
The following says that the size of the admissible set A is very large.

Theorem 4.8. Let G D .V; E/ be a strongly connected digraph with dw � 2 for all
w 2 V , containing a vertex u 2 V outside a directed circuit. With the notation as
above, if x 2 A, then the attractor Fu of the corresponding GD-IFS, ±.x;b/, defined
as in (4.19) for any b, is not the attractor of any COSC standard IFS. Moreover, with
n given as in (3.1),

Ln.P nA/ D 0;

that is, the complement of the set A in P has n-dimensional Lebesgue measure zero.

Proof. Let b D .b
.1/
i /i2V for b.1/i 2 R and let x D .x1; x2; : : : ; xn/ be an admissible

point. By Lemma 3.1, the corresponding GD-IFS, ±.x;b/ associated with the vectors
x;b, satisfies the CSSC. We will show that such a GD-IFS ±.x;b/ also satisfies all
three conditions (i0), (ii0), (iii) in Lemma 4.4.
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Clearly, the GD-IFS ±.x;b/ satisfies condition (ii0) by noting thatƒi ¤; for each
vertex i 2 V , since all the basic gap lengths sitting at vertex i are �.1/i ; �

.2/
i ; : : : ; �

.di�1/
i

by Lemma 3.1 (ii), which are strictly positive since the vector x belongs to P1.
We show condition (i0). Let

X WD ¹jxi jº
n
iD1 � .0;1/:

We need to prove
1 … XQ� : (4.20)

For, suppose that 1 D
Qn
iD1 jxi j

si for some .si /niD1 2 .Q
n/�, then

nY
iD1

jxi j
s�

i D

nY
iD1

jxi j
s
C

i ;

where sCi D max¹si ; 0º, s�i D max¹�si ; 0º so that si D sCi � s
�
i . As not all si are

zero, we see that .sCi /
n
iD1 ¤ .s�i /

n
iD1 are two distinct nonnegative rational vectors.

This contradicts the admissibility of x as defined in (4.17), thus (4.20) is true.
By using (3.7) and (4.18), all the contraction ratios of the COSC GD-IFS ±.x;b/

have different absolute values. Since 1 …AQ� asAQ� �XQ� , whereA is the absolute
contraction ratio set of ±.x;b/, condition (i0) is satisfied.

For condition (iii), suppose that there exists some a2AQ such that aD�.k/w =�
.m/
z ,

where �.k/w 2 ƒw , �.m/z 2 ƒz . Then

1 D �.k/w
�
�.m/z

��1
a�1 2 ¹jxi jº

Q�
D XQ�

by noting that �.k/w D xi > 0, �.m/z D xj > 0 for some two indices i ¤ j in virtue of
definition (3.2), contradicting (4.20). Thus, condition (iii) is also satisfied.

Therefore, by applying Lemma 4.4, the attractor Fu of the GD-IFS ±.x;b/ is not
the attractor of any COSC standard IFS.

We finally show that Ln.P nA/ D 0. For this, note that

Ln.P n P1/ D 0;

where P1 is defined as in (4.16), since P nP1 lies in the union of hyperplanes �.k/i D0.
We just need to show Ln.P1 nA/ D 0. Let

x D .x1; x2; : : : ; xn/ 2 P1 nA;

that is, for some two distinct vectors .pi /niD1 and .qi /niD1 of nonnegative rationals,

nY
iD1

jxi j
pi D

nY
iD1

jxi j
qi :
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As pi ¤ qi for some i , say without loss of generality for i D 1, then

jx1j D

nY
iD2

jxi j
.qi�pi /=.p1�q1/;

from which, it follows that any vector in P1 nA lies in an at most .n� 1/-dimensional
manifold. Since there are countably many such equations, the union of countably
many such manifolds has n-dimensional Lebesgue measure zero in Rn.

There are plenty of examples of admissible points so that the assertions of The-
orem 4.8 hold. However, there are also some other interesting examples such that the
first assertion in Theorem 4.8 still holds, but points are not admissible.

Example 4.9. The point x given by (4.15) in Example 4.6 is not admissible in the
sense of Definition 4.7 for a certain class of �. To see this, we need to show that (4.17)
fails for suitable �. In fact, if (4.17) fails, then by definition (4.15)

�
p�11

�s1�p�12 �s2�p�13 �s3�p�14 �s4�s5�p5��s6 D 6Y
iD1

jxi j
si D

6Y
iD1

jxi j
ti

D
�
p�11

�t1�p�12 �t2�p�13 �t3�p�14 �t4�t5�p5��t6
for some two distinct vectors .si /6iD1 and .ti /6iD1 of nonnegative rationals. From this,
we know that

�.s5�t5/C.s6�t6/ D p
s1�t1
1 p

s2�t2
2 p

s3�t3
3 p

s4�t4
4 p

�.s6�t6/
5 : (4.21)

Thus, condition (4.17) fails if � is chosen as in (4.21). In particular, condition (4.17)
fails if � D 1=

p
p5 on taking si D ti for i D 1; 2; 3; 4 whilst si D ti C 1 for i D 5; 6.

However, the GD-attractor Fu, associated with such a non-admissible point x, is
not the attractor of any COSC standard IFS by Example 4.6.

We further consider the situation by removing the ‘COSC’. We will apply Corol-
lary 3.4 and Theorem 5.6 in the Appendix.

Theorem 4.10. Let G D .V; E/ be a strongly connected digraph with dj � 2 for
every vertex j 2 V , containing a vertex i 2 V outside a directed circuit. Let x 2A.ı/

(see definition (3.26)) satisfying that, for every vertex j ¤ i in V ,

jx
.1/
i j 2

�
jx
.1/
j jC � � � Cjx

.mj /

j jC.mj�1/ı; jx
.1/
j jC � � � Cjx

.mj /

j jCmj ı
�
; (4.22)

1�jx
.1/
i j 2

�
jx
.1/
j jC � � � Cjx

.nj /

j jC.nj�1/ı; jx
.1/
j jC � � � Cjx

.nj /

j jCnj ı
�
; (4.23)

wheremj ;nj 2 Œ1;dj � 1� are integers. Let ±.x/ be corresponding CSSC GD-IFS con-
structed as in Corollary 3.4, with GD-attractors .Fj /j2V . Then Fi is not the attractor
of any standard IFS.



K. J. Falconer, J. Hu, and J. Zhang 196

Proof. Let x2A.ı/. Recall that the corresponding GD-IFS, ±.x/D¹Sei .k/ºi2V;1�k�di

associated with point x, is given by (3.31), where ¹b.kC1/i ºi2V;1�k�di�1 are real num-
bers in .0; 1/ defined as in (3.30) (b.1/i D 0 for every i 2 V ).

We apply Theorem 5.6 in the Appendix to prove this theorem. Clearly, condi-
tions (1), (2) in Theorem 5.6 are satisfied. In order to verify condition (3), we need to
show that for every vertex j ¤ i ,

Fi ª Fj (4.24)

and
1 � Fi ª Fj : (4.25)

We first show (4.24). Indeed, note that the point jx.1/i j belongs to the attractor Fi by
Corollary 3.4 (ii). However, this point does not belong to any attractor Fj (j ¤ i ),
since it falls in some basic gap (see formula (3.33)) of Fj by using assumption (4.22).

Similarly, the point 1 � jx.1/i j belongs to the set 1 � Fi but does not belong to
any attractor Fj (j ¤ i ), since it also falls in some basic gap of Fj by using assump-
tion (4.23), and thus (4.25) is also true, as required.

To illustrate Theorem 4.10, we give an example. Let i be a fixed vertex in V D
¹1; 2; : : : ; N º. Let x 2 A.ı/ satisfy

jx
.1/
i j 2

�
jx
.1/
j j; jx

.1/
j j C ı

�
and 1 � jx

.1/
i j 2

�
jx
.1/
j j; jx

.1/
j j C ı

�
for any j ¤ i;

(4.26)
so that both conditions (4.22), (4.23) are satisfied withmj D nj D 1. To secure (4.26),
we let

0 < ı < min
j2V

²
1

2.dj � 1/

³
:

By the definition of A.ı/, any vector x 2 A.ı/ satisfies that for all j 2 V ,

jx
.1/
j j C � � � C jx

.dj /

j j D 1 � .dj � 1/ı >
1

2
: (4.27)

Now we first choose ¹x.1/j ºj2V by

jx
.1/
i j D

1

2
and jx

.1/
j j 2

�
1

2
� ı;

1

2

�
for any j ¤ i;

and then we choose
®
x
.2/
j ; x

.3/
j ; : : : ; x

.dj /

j j̄2V
to be any numbers such that (4.27)

is satisfied. Such a class of points satisfy condition (4.26), which implies that condi-
tions (4.22), (4.23) are both satisfied.
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5. Appendix

In this appendix we derive some general properties and secondary results that are used
in the main part of the paper.

The following proposition on ordering integer lattice points is used in Lemma 2.6.
Recall that ZC denotes the set of all nonnegative integers.

Proposition 5.1. Let B � ZnC be an infinite set. Then B contains two distinct vectors
�!x � �!y under the partial order defined by inequality of all coordinates.

Proof. We write �!x WD .xi /niD1 2 ZnC. Consider the set of integers:

S WD
®

min¹xiºniD1W
�!x 2 B

¯
:

If S is unbounded, then we are done by fixing some vector �!x and taking �!y D
.yi /

n
iD1 2 B � ZnC with min¹yiºniD1 > max¹xiºniD1 so that

�!x < �!y :

Otherwise, S is bounded by an integer N in which case we prove the proposition by
induction on n. When n D 1 it is trivial. Assume that the proposition holds for n � 1.
For each 1 � j � n and each ˛ 2 ¹0; 1; : : : ; N º, define

B.˛; j / WD ¹�!x 2 BW xj D min¹xiºniD1 D ˛º;

a (possibly empty) collection of all vectors in B whose j -th entries equal to the same
number ˛ and take the smallest value. Since

n[
jD1

N[
˛D0

B.˛; j / D B;

we can assume that some B.˛; j /, say B.ˇ; m/, contains infinitely many elements.
Deleting themth coordinate xmD ˇ of all the vectors in such a setB.ˇ;m/, we obtain
an infinite set B 0.ˇ;m/ � Zn�1C , and by induction assumption, B 0.ˇ;m/ � Zn�1C has

two distinct vectors
�!
x0 �

�!
y0 . Inserting the mth coordinate xm D ˇ into

�!
x0 ,
�!
y0 to get

�!x , �!y , respectively, we obtain two distinct vectors �!x � �!y in B.ˇ;m/ � B , showing
the assertion for ZnC.

The next proposition generalises a well-known result for standard IFSs to GD-
IFSs.
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Proposition 5.2. Let G D .V; E/ be a digraph and .Fu/u2V be the GD-attractors
of a GD-IFS ± D .V; E; .Se/e2E / based on it. If there exist non-empty sets .Uu/u2V
such that [

v2V

[
e2Euv

Se.Uv/ � Uu for each u 2 V; (5.1)

then Fu � Uu, the closure of the set Uu, for each u 2 V .

Proof. Set Iu WD Uu for each u 2 V . Let Imu be defined by (2.2) for m � 1. Then the
inclusion (2.3) is satisfied, since

I 1u D
[
e2E1

u

Se.I!.e// D
[
e2E1

u

Se.U!.e// D
[
e2E1

u

Se.U!.e//

�

[
e2E1

u

Se.U!.e// � Uu D Iu (using (5.1));

thus showing that Fu � I 1u � Uu by virtue of (2.5). The proof is complete.

The directed paths in GD-IFSs play the same role as the finite-length words in
standard IFSs, as the following proposition suggests. We will frequently use the fol-
lowing fact that, for any u 2 V and m � 1,

Fu D
[

e2Em
u

Se.F!.e//; (5.2)

by repeatedly using definition (1.2) (recall that Emu is the totality of all paths of length
m leaving u). The following proposition concerns the disjointness of images of com-
ponents under mappings corresponding to different words.

Proposition 5.3. LetGD .V;E/ be a digraph and .Fu/u2V be the GD-attractors of a
GD-IFS ± D .V;E; .Se/e2E / based on it. Assume that each Fu is not a singleton. Let
e0, e00 be two directed paths with e00¤ e0e if je0j � je00j (where e is a directed path which
may be empty). If ± satisfies the COSC on R, then the interiors of Se0.convF!.e0// and
Se00.convF!.e00// are disjoint. Similarly, if ± satisfies the CSSC, then Se0.F!.e0// and
Se00.F!.e00// are disjoint.

Proof. By (5.2), for any path e, we have Se.F!.e// � F˛.e/, where ˛.e/ denotes the
initial vertex of path e. As Se is a similarity on R, taking the convex hulls gives that

Se.convF!.e// D convSe.F!.e// � convF˛.e/;

from which, we see that, for any path e1e2 (meaning that !.e1/D ˛.e2/, the terminal
of e1 is the initial of e2)

Se1e2
.convF!.e2// D Se1

.Se2
.convF!.e2/// � Se1

.convF˛.e2// D Se1
.convF!.e1//:

(5.3)
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Assume now that ± satisfies the COSC. By (1.3), one can take

Uu D int.convFu/ for each u 2 V;

which is non-empty by our assumption that Fu is not a singleton.
For any two paths ee1, ee2 with common path e and distinct edges e1; e2, the

interiors of two intervals

int
�
See1

.convF!.e1//
�
\ int

�
See2

.convF!.e2//
�
D ; (5.4)

by using the COSC, since

See1
.convF!.e1// D Se.Se1

.convF!.e1///

and

See2
.convF!.e2// D Se

�
Se2

.convF!.e2//
�

and the interiors of Se1
.convF!.e1// and Se2

.convF!.e2// are disjoint as the edges
e1; e2 have the same initial vertex, namely the terminal of path e.

Let e be the longest common path of e00 and e0 (which may be empty). Write
e0 D ee1p1 and e00 D ee2p2, where e1 ¤ e2 are two distinct edges and p1, p2 are some
paths (possibly empty). By (5.3),

Se0.convF!.e0// D See1p1
.convF!.p1// � See1

.convF!.e1//;

Se00.convF!.e00// D See2p2
.convF!.p2// � See2

.convF!.e2//;

thus, the interiors of Se0.convF!.e0// and Se00.convF!.e00// are disjoint by using (5.4).
The assertion for the CSSC is similar. The proof is complete.

The following was essentially proved in [2, Lemma 5.1], except that we also con-
sider the COSC case.

Theorem 5.4. Let G D .V; E/ be a strongly connected digraph with dv � 2 for all
v 2 V . If every directed circuit goes through a vertex u 2 V , then for any (resp.
COSC) GD-IFS based on G, its attractor Fu is also the attractor of a (resp. COSC)
standard IFS.

Proof. Set N WD #V , the number of vertices in V . Let L.u/ be the set of all circuits
having u as their initial and terminal, and which do not contain another shorter cir-
cuits, that is,

L.u/ WD ¹e D euv1v2���vkuW each vi ¤ u 2 V; jej � N º;

where the symbol euv1v2���vku D euv1
ev1v2

� � � evku is understood to be a path consist-
ing of consecutive edges.
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We claim that
Fu D

[
e02L.u/

Se0.Fu/; (5.5)

by using the fact that every circuit goes through vertex u.
To see this, we have by (5.2) that

Fu D
[

e2EN
u

Se.F!.e//:

Since any directed path e in ENu can be written as

e D euv1v2���vN
;

we see that at least one of vertices v1; v2; : : : ; vN must be u, otherwise, one of them
would appear twice, thus producing a circuit, contradicting the assumption that every
directed circuit goes through vertex u. There exists some index k such that vk D u
and the path visits u the second time (besides the initial time), and

e D euv1v2���vk�1uvkC1���vN
D euv1v2���vk�1ueuvkC1���vN

D e0e00;

where e0 D euv1v2���vk�1u 2 L.u/ and e00 is a path with initial u if it exists (possibly
e00 is empty and the following argument will become easier). From this, we know that

Se.F!.e// D Se0.Se00.F!.e00/// � Se0.Fu/;

since Se00.F!.e00// � Fu by (5.2). It follows that

Fu D
[

e2EN
u

Se.F!.e// �
[

e02L.u/

Se0.Fu/:

The opposite inclusion is also clear since, by (5.2),

Se0.Fu/ � Fu;

thus showing that our claim (5.5) holds true. Therefore, Fu is the attractor of the IFS

ˆ WD ¹Se0 W e0 2 L.u/º: (5.6)

If the GD-IFS ± further satisfies the COSC, we claim that the IFSˆ given by (5.6)
also satisfies the COSC. Indeed, by definition of the COSC and the fact that ˆ has
attractor Fu, we need only to show that the interiors of two intervals Se0.convFu/ and
Se00.conv Fu/ are disjoint, where e0, e00 are in L.u/. But this assertion immediately
follows from Proposition 5.3.
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The following easy property of powers of primes is used in the examples in Sec-
tion 4.

Proposition 5.5. Let ¹aiºniD1 be distinct positive prime numbers. Then

1 … AQ� for A D ¹a�1i º
n
iD1:

Proof. Suppose to the contrary, that 1 2 AQ� . Then 1 D
Qn
iD1.a

�1
i /si for some

non-zero vector .si /niD1 of rationals. Let q be the least common denominator of the
rationals si . Taking the qth power, it follows that

m WD

nY
iD1

a
qs�

i

i D

nY
iD1

a
qs
C

i

i ;

where sCi D max¹si ; 0º, s�i D max¹�si ; 0º so that si D sCi � s
�
i . As the si are not

all zero, the vectors of integers .qsCi /
n
iD1 and .qs�i /

n
iD1 are distinct. By the unique-

ness of the prime factorisation of the integer m, we see that .qsCi /
n
iD1 D .qs

�
i /
n
iD1,

a contradiction.

The following assertion was essentially obtained in [2, Theorem 1.4 and the end
of Section 1]. Here we give a simpler proof under stronger assumptions with condi-
tions (2), (3) in the next theorem.

Theorem 5.6. LetG D .V;E/ be a strongly connected digraph with dw � 2 for each
w 2 V . Suppose that a given GD-IFS of similarities based on G satisfies the CSSC,
and convFw D Œ0; 1� for each w 2 V . For some vertex u 2 V , suppose the following
conditions hold.

(1) There is a directed circuit that does not pass through u.

(2) All basic gaps have the same length ı > 0.

(3) For each vertex v ¤ u, we have Fu ª Fv and 1 � Fu ª Fv .

Then Fu is not the attractor of any standard IFS defined on R.

Proof. The proof is divided into two steps.

Step 1. We claim that, for any v2V and any contracting similarity f with f .Fu/�Fv ,
there exists some path e leaving v with terminal !.e/ D u such that

f .Fu/ � Se.Fu/: (5.7)

Indeed, as Fv consists of the level-1 cells Se.F!.e// for edges e leaving v by using
(1.2), the f .Fu/ must belong to only one of those cells, say

f .Fu/ � Se.F!.e// for some edge e leaving v: (5.8)
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Otherwise, there are two points in f .Fu/ lying in two distinct level-1 cells, and as
f .Fu/ � Fv , we know that f .Fu/ spans a basic gap of Fv , implying that f .Fu/ has
a gap, containing a basic gap of Fv , whose length is clearly greater than or equal
to ı. However, this is impossible, because all gap lengths of Fu do not exceed ı by
assumption (2) and (2.8), so that all the gap lengths of f .Fu/ are strictly smaller than
ı by using the contractivity of f .

By (5.2), it follows that

f .Fu/ � Fv D
[

e02Em
v

Se0.F!.e0// for any m � 1;

whereEmv is the set of all paths leaving v with the same lengthm as before. As f .Fu/
has fixed diameter and cells Se0.F!.e0// have arbitrarily small diameters by taking m
large, we can choose a longest directed path e1 leaving v, which exists by using (5.8)
and the fact that distinct cells of the same length are disjoint (see Proposition 5.3),
such that

f .Fu/ � Se1
.F!.e1//: (5.9)

We show that the contraction ratio � of the mapping S�1e1
ı f satisfies � D ˙1.

The diameter of each Fw equals 1, since convFw D Œ0; 1� for each w 2 V by our
assumption. By (5.9)

S�1e1
ı f .Fu/ � F!.e1/; (5.10)

implying that j�j � 1 by comparing the diameters of Fu and F!.e1/ and noting that
S�1e1
ı f is a similarity.

If j�j < 1, we will derive a contradiction. Indeed, by (5.10), we can apply (5.8)
with f being replaced by S�1e1

ı f and v replaced by !.e1/, and obtain

S�1e1
ı f .Fu/ � Se.F!.e//

for some edge e leaving !.e1/. From this and that !.e/ D !.e1e/,

f .Fu/ � Se1
.Se.F!.e/// D Se1e.F!.e1e//;

which contradicts the fact that e1 is the longest path by virtue of (5.9). Thus, j�j D 1.
Therefore, if �D 1, then FuC c � F!.e1/ for some translation c 2R using (5.10),

which implies that

Œ0; 1�C c D .convFu/C c D conv.Fu C c/ � convF!.e1/ D Œ0; 1�

using our assumption that convFw D Œ0; 1� for each w 2 V . Then c D 0, and so

Fu � F!.e1/;

showing that !.e1/ D u by assumption (3) that Fu ª Fv if v ¤ u.
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Similarly, if �D�1, then�FuC c � F!.e1/ for some translation c 2R by (5.10),
which implies that

Œ�1; 0�C c D conv.�Fu/C c D conv.�Fu C c/ � conv.F!.e1// D Œ0; 1�

using our assumption that convFw D Œ0; 1� for each w 2 V . We must have c D 1, and
so

1 � Fu � F!.e1/;

showing that !.e1/ D u again by assumption (3) that 1 � Fu ª Fv if v ¤ u.
Therefore, noting that !.e1/ D u in (5.9), we obtain (5.7) with e D e1, proving

our claim.

Step 2. We show that Fu is not the attractor of any standard IFS.
Assume to the contrary that there exists a standard IFS ¹fiº such that

Fu D
[
i

fi .Fu/:

As fi .Fu/ � Fu, using (5.7) with v D u, we know that fi .Fu/ � Sei
.Fu/, and so

Fu D
[
i

fi .Fu/ �
[
i

Sei
.Fu/; (5.11)

where each ei is a directed circuit from initial u to terminal u. By condition (1), there
is a vertex w ¤ u contained in a circuit L that does not pass through u. By the strong
connectivity, we can find a simple path L1 (i.e., a path visits any vertex at most for
once) from u to w.

Note that the path L1Lm from u to w visits u only once. We can pick an integer
m so large that the path length is greater than max¹jei jºi . By (5.2) and (5.11),

SL1Lm.Fw/ � Fu �
[
i

Sei
.Fu/: (5.12)

Note that ¹Seº satisfies the CSSC by assumption (2), and so SL1Lm.Fw/ is dis-
joint with any set Sei

.Fu/ in (5.12) using Proposition 5.3, since the path L1Lm does
not start with any of these paths ei , otherwise L1Lm would visit u twice. This contra-
dicts (5.12), thus showing that Fu is not self-similar.
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