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Abstract: Cross-entropy loss is crucial in training many deep neural networks. In this context,
we show a number of novel and strong correlations among various related divergence functions.
In particular, we demonstrate that, in some circumstances, (a) cross-entropy is almost perfectly
correlated with the little-known triangular divergence, and (b) cross-entropy is strongly correlated
with the Euclidean distance over the logits from which the softmax is derived. The consequences of
these observations are as follows. First, triangular divergence may be used as a cheaper alternative to
cross-entropy. Second, logits can be used as features in a Euclidean space which is strongly synergistic
with the classification process. This justifies the use of Euclidean distance over logits as a measure
of similarity, in cases where the network is trained using softmax and cross-entropy. We establish
these correlations via empirical observation, supported by a mathematical explanation encompassing
a number of strongly related divergence functions.

Keywords: softmax; cross-entropy; f-divergence; Kullback–Leibler divergence; Jensen–Shannon
divergence; triangular divergence

1. Introduction

The notion of cross-entropy loss is integral to the training of many deep learning
networks. Before the cross-entropy loss function can be applied to arrays within the network,
a softmax function is normally applied in order to convert an array of arbitrary floating
point values into an array of strictly positive values which sum to 1.

The softmax function has a single hyper-parameter, temperature, which governs the
input to the cross-entropy function. Until recently, this value had not been rigorously
investigated. Recent work [1] has shown that a wide range of values can be useful, typically
in the range 0.1 to 100.

In this study, we demonstrate strong correlations, as shown in Figure 1, between cross-
entropy, triangular divergence, and Euclidean divergence (see Table 1) in the context of
machine learning. These correlations are particularly strong when higher temperature
values are used within the softmax function.

The main contribution of this article is to show:

1. A very tight correlation among all the information divergence functions, i.e., the cross-
entropy divergence (CED), Kullback–Leibler divergence (KLD), Jensen–Shannon
divergence (JSD), and triangular divergence (TRI) for spaces with certain properties,
along with the demonstration that the output of many deep learning networks have
these properties;

2. A tight correlation between the Euclidean divergence (EUC) over the logit space and
CED to which the softmax function has been applied with a high temperature.

The effects we measure are found in high-dimensional data; they are probabilistic
and therefore beyond detailed mathematical analysis. To this extent, our results are em-
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pirical; however, we show that they are highly repeatable, and we provide a significant
mathematical explanation of why they occur.

Figure 1. The three main correlations shown in this article. For higher temperature values, there is
typically an almost perfect correlation between cross-entropy divergence and triangular divergence.
In some spaces, these also correlate very strongly with Euclidean divergence in the logit space.

Table 1. Outline description of the functions of interest. As we are only interested in correlations,
none of these are proper (metric) distances; the JSD, TRI, and EUC are the squares of proper distances.
The CED and KLD are asymmetric in their arguments, and the others are symmetric.

CED Cross-entropy Our main topic of interest, as applied to the output layer
of networks after softmax

KLD Kullback–Leibler divergence A principled information loss function

JSD Jensen–Shannon divergence A “smoothed, symmetrised” version of the KLD

TRI Triangular divergence

A little-known divergence with tight bounds over the
JSD. The square root of this form is also sometimes
referred to as chi-square distance, although that term is
also used for other functions

EUC Euclidean divergence Euclidean divergence, the square of the classic
L2 distance

For the sake of accuracy and absolute clarity, we proceed to give formal definitions of
the functions we refer to in the text:
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h(x) = −x log2 x

so f tmax(x, t) =
1

∑n
i=1 exi/t [e

x1/t, . . . , exn/t] Softmax (1)

CED(q : p) = −
n

∑
i=1

qi log pi Cross-entropy (2)

KLD(q : p) =
n

∑
i=1

qi log
qi
pi

Kullback–Leibler div. (3)

JSD(q, p) = 1 − 1
2

n

∑
i=1

h(qi) + h(pi)− h(qi + pi) Jensen–Shannon div. (4)

TRI(q, p) =
1
2

n

∑
i=1

(qi − pi)
2

qi + pi
Triangular divergence (5)

EUC(q, p) =
n

∑
i=1

(qi − pi)
2 Euclidean divergence (6)

We use the notation qi, pi to refer to the individual (component) dimensions of
n-dimensional vectors q, p. We use the notation F(q : p) to define a divergence func-
tion which may not be symmetric over its arguments and F(q, p) to denote a symmetric
function. The JSD and TRI are normalised so that their outcome is in [0, 1]. Other than the
CED, an outcome of 0 implies q = p. Post-softmax, all values qi, pi are in the range (0, 1),
so all functions are always well defined.

The correlations we establish here are interesting in their own right, and also have
two possible practical applications. First, we note that if the CED is perfectly correlated
with the TRI, there exists a simple re-written form of the TRI (see Equation (23)), which as
we show is a much cheaper function to evaluate, potentially allowing the saving of many
compute cycles during training.

Second, for some types of network, if the EUC over the logit space is perfectly corre-
lated with the CED over the softmax equivalent, this seems to imply that Euclidean distance
over the same space post-training should be the metric of choice for assessing similarity.
Common practice seems to usually recommend cosine distance for this purpose.

The rest of this article is structured as follows. Section 2.1 gives an overview of the
use of loss functions in the training of neural networks and introduces the concepts of the
softmax function and its temperature parameter. Section 3 introduces the experimental
datasets we use and some other important aspects of our methodology. Sections 4–9 show
details of the individual correlations noted. Finally, we discuss some of the outcomes in
Section 10 before concluding in Section 11.

2. Background and Related Work
2.1. Neural Networks and Loss Functions

We are interested in the application of information loss functions in the context of the
training of deep neural networks. For our purposes, we largely treat a network as a “black
box” as described below.

A neural network may be abstractly represented by a function f , which takes as
input some value representation x and a set of parameters (weights) θ and return an output
f (x, θ). Deep neural networks are typically organised as a sequence (or graph) of parametric
transformations whose composition gives the final function f (·). The parameters of the
network are learned (optimised) during the training phase to minimise a loss (or cost)
function measuring the discrepancy between the network’s outputs and target values. In
particular, given a training set of N input–target pairs X = {(x(i), y(i))}N

i=1, the quality of a
particular configuration of parameters is quantitatively assessed by a loss function L(X , θ).
It is important to note that the training data comprise samples x(i) drawn from the real data
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distribution, with target output values y(i) typically obtained through manual annotation
or directly derived from the inputs xi, as seen in self-supervised methods [2]. The training
process involves iteratively adjusting the parameters θ to minimise the expected loss over
the training data, relying on the assumption that the training set is large enough to represent
some truth encompassing all future inputs to the network. The particular formulation of
the loss function is task-dependent. The essential requirements for the loss function L are
(1) that a smaller loss represents a stronger similarity between the output of the network
and the target output and (2) that it is differentiable, in order to feed back to the process of
making appropriate adjustments to θ between iterations. Here, our focus lies on scenarios
where a cross-entropy loss (applied to the outputs produced by a softmax function) is
employed, a common approach found in several state-of-the-art neural networks.

Formally, we are considering the case in which f (x, θ) = softmax(z(x, θ), t) where
z(x, θ) are the logits (pre-softmax output of the network) and t is the temperature used
in the softmax. Please note that z(x, θ) takes as input some value representation x and a
set of weights θ and returns a vector of floating point values. Cross-entropy divergence
(Equation (2)) is defined over a finite set of probabilities; therefore, before it can be applied,
the logit vectors must be converted to a vector of positive numbers which sum to 1.
To preserve the argmax property, the conversion must also maintain the position of the
largest value within the vector. The conversion is typically performed using the softmax
function (Equation (1)).

The cross-entropy loss can be written as

L(X , θ) = ∑
(x,y)∈X

CED(y : f (x, θ))

= − ∑
(x,y)∈X

y · log (softmax(z(x, θ), t))

= − ∑
(x,y)∈X

n

∑
i=1

yi log

(
ezi/t

∑n
j=1 ezj/t

)
(7)

where, for simplicity, zj denotes the j-th element of the logit vector z(x, θ).
Note that the term ezi/t in the softmax is monotonically increasing with zi, and the de-

nominator (∑i ezi/t) simply performs an L1 normalization of the outcome. Agarwala et al. [1]
state that softmax followed by cross-entropy is “a principled approach to modelling prob-
ability distributions”. Softmax is essentially a differentiable argmax function, as required
for training purposes [3]. However, it shows an arbitrary non-linearity depending on the
range of values applied as exponents and the value of the temperature parameter t.

2.2. Softmax Temperature

The use of different temperatures within the softmax function has two major effects.
First, a higher temperature gives more significance to smaller values within the logit vectors;
low temperatures have the effect of allowing the larger values to dominate the ensuing
comparisons. Secondly, higher temperatures also result in inputs to the cross-entropy
function which have a decreased measure of roughness (see Section 6.1); in short, the variance
among the dimensions is decreased, thus increasing the entropy. The effect of this has been
previously studied in the context of various information divergence functions [4,5], and
underlies the strong correlations we report in this article.

Figure 2 shows the effect of temperature on ex on the softmax function application. It
can be seen that when a relatively low temperature is used (e.g., t = 1), for low negative
values, the function maps to almost zero and quickly maps to very high values as x is
increased through zero and into the positive domain. By contrast, with a high temperature
(t = 10), the domain of the function more gently rises through the shown range, and with
t = 100 the function becomes effectively linear.

A major observation shown in [1], that a higher temperature leads to semantically
better results, while a lower temperature leads to faster convergence of the network,
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seems consistent with this observation. The main result expressed in [1] is that the best
temperature is very dependent upon context, but nonetheless a wide range of temperatures
may be useful, perhaps with different temperatures at different stages of training. They
suggest using temperatures in the range 0.1 up to 100. We hypothesise that an appropriate
of choice of temperature selected according to the value range in the logits can result in a
more efficacious loss function.

Figure 2. The effect of different temperature values t (here t ∈ {1, 10, 100}) on the function ex/t.
Note that the absolute values are not significant, as L1 normalisation occurs over the whole vector
after this application.

2.3. f -Divergences

In mathematics, an f -divergence is any numeric function which allocates a value to
the dissimilarity between two sets of probabilities. In our context, this includes the CED,
KLD, JSD, and TRI. It should be noted however that, mathematically, these are all defined
over sets of probabilities, whereas in our case we apply them to vectors of positive numbers
which sum to 1. That is, the application of the softmax function to an arbitrary vector of
floating point numbers is not actually a probability distribution. Rather, softmax has been
defined as a somewhat arbitrary function which maps floating point vectors to a domain
where an f -divergence can be used as a loss function.

We rely heavily on work by Harremoës [5] and Topsøe [4], who show strong bounds
among these functions; we extend that work here to show how these bounds give extremely
strong correlations among high-dimensional embeddings. Other more recent related work
includes [6], which shows a very strong convergence of the measured distribution of values
as the locality over which the distances are measured tends towards infinitesimal.

In the rest of this article, we show some very strong correlations between cross-entropy
loss over high-temperature softmax conversions and a number of other loss functions.
These are, we believe, interesting for their own sake. Furthermore, they may help to guide
practitioners in the field of neural networks to a more informed choice of temperature
according to properties of the logit vectors being produced by the network.

3. Methodology

For the experiments, we used logits deriving from the following deep learning
networks: GoogleNet [7] trained on Places365 classifications [8]; SqueezeNet [9] and
AlexNet [10] trained on ImageNet classifications [11]; and DinoV2 [12] outputs. In all cases,
we derived logits from the first 10,000 images of the MirFlickr one million image set [13].
These data are summarised in Table 2. All of our (MATLAB) code and data are available at
https://github.com/MetricSearch/2024_entropy_paper (accessed on 29 May 2024).

To calculate correlations, we used the Spearman rho correlation function [14], a topo-
logical measure of the order preservation of divergence within sampled pairs of objects
from the domain. This is essentially a measure of the likelihood for functions f and g that
f (x, y) < f (x, z) implies g(x, y) < g(x, z). We use this form of the function:

https://github.com/MetricSearch/2024_entropy_paper
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Sρ = 1 − 6 ∑T
i=1(z(i)− ẑ(i))2

T3 − T
(8)

where z(i) and ẑ(i) are the values obtained by f and g over a set of T function applications.
The adjusting factors combine to give an output in the range [−1, 1], where 1 implies
a perfect preservation of ordering, 0 implies no correlation, and −1 implies a perfect
inverse correlation.

Table 2. Data used for experiments. Magnitudes given are mean, measured from the data centroid.

Network
Name

Training
Dataset

Logit Name Dimensions Range Magnitude

GoogleNet Places365 loss3-classifier 365 [−8.9, 20.9] 41.7
SqueezeNet ImageNet pool10 1000 [0, 58.5] 105.8

AlexNet ImageNet fc8 1000 [−13.6, 43.4] 77.4
DinoV2 n/a n/a 384 [−14.0, 14.2] 46.4

We also give visual impressions of correlations using Shepard diagrams [15]. These
are scatter plots of one divergence function against the other over a finite set of sam-
ples, decorated with the isotonic regression function defined for the Kruskal stress coef-
ficient [16]. They give a useful visual impression of correlation. Shepard diagrams are
normally annotated with the Kruskal stress value; however, this is dependent on the ab-
solute range of only one of the functions. As the absolute ranges vary hugely among the
different functions we tested, this would give incomparable results, and we therefore report
Spearman rho values instead.

Figure 3 gives examples of two simple Shepard plots demonstrating these for perfectly
correlated, and highly correlated, functions.

There are two important points to note about the graphs we present.

1. As the softmax temperatures are increased, and therefore all values within the vectors
under consideration converge, the absolute distances yielded by all the information
divergence functions become very similar; however, the rankings are still perfectly
significant. This is why all of our analysis was performed using correlations, rather
than any other measure.

2. In all of our comparisons, we arbitrarily choose a single element and measure it
against a large number of different elements. This is always appropriate for our
context, but note that the correlations measured in this context are quite different from
those that would be measured if both arguments were randomly selected. There is a
danger with this methodology that the choice of single element may be atypical; in all
cases, we have repeated these experiments with many different elements, not shown
for brevity, to ensure the results presented are general.

Figure 3. Demonstration of Shepard plots; the first shows that x and x2 are perfectly correlated, the
second adds some random noise to x to show an imperfect correlation.
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4. Correlation of Cross-Entropy and Triangular Divergence

Figure 4 shows the correlation between cross-entropy and triangular divergence
applied to the GoogleNet-places network [7,8]. Both functions are applied to the values
after softmax using a range of temperatures. As can be seen, temperatures of around 10
and upwards lead to an almost perfect correlation.

Figure 4. Correlations for GoogleNet-Places logits. For three different values of softmax temperatures—1,
10, and 100—we see how the correlation between cross-entropy and triangular divergence becomes
essentially perfect as temperature increases.

The steps to demonstrating the underlying reasons for this correlation are as follows:

1. The CED is a specialised form of the KLD, such that CED(k : p) perfectly correlates
with KLD(k : p) for all probability vectors p compared with a fixed vector k.

2. The relationship between the KLD and JSD appears evident, yet it is influenced by the
temperature setting in the softmax function. Notably, while strong correlation exists
at higher temperatures, lower temperatures exhibit a diminished correlation.

3. Jensen–Shannon divergence correlates almost perfectly with triangle divergence in
almost all high-dimensional spaces.

4. From all the above, cross-entropy divergence correlates very strongly with triangular
divergence with higher temperature values. We note that triangular divergence is a
much cheaper calculation than cross-entropy, and if the correlation is very strong the
latter may be used instead.

We show each of these steps in turn.

5. Correspondence between Cross-Entropy and Kullback–Leibler Divergence

The perfect correlation between cross-entropy and Kullback–Leibler divergence is well
known and derives from simple algebra:

KLD(q : p) =
n

∑
i=1

qi log
qi
pi

=
n

∑
i=1

(qi log qi − qi log pi) = CED(q : p)− H(q) (9)

where H(q) = −∑n
i=1 qi log qi is the Shannon entropy of q. If q is fixed, its Shannon entropy

remains constant, ensuring a perfect correlation. It is important to note that both functions
are asymmetric, and this perfect correlation applies only when a set of different probabilities
{p} are compared with a single, fixed-value q supplied as the first parameter; otherwise,
the correlation does not hold. In the context of comparing the information loss between
a target output and a neural network model distribution, as described in Section 2.1, this
will always be the case during supervised training of a classification network but depends
on the network architecture for other types. Specifically, using the notation in Section 2.1,
during neural network training, the vector q corresponds to the target output y and p
to softmax(z(x, θ), t) for any input–target pair (x, y) of the training set. In the context of
supervised classification, the target outputs y for a given input x remain fixed during
training steps; consequently, the parameters θ that minimise KLD(y : softmax(z(x, θ), t))
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are identical to those that minimise the loss CED(y : softmax(z(x, θ), t) since the two
functions differ by a constant.

6. Correlation between Kullback–Leibler Divergence and Jensen–Shannon Divergence

Jensen–Shannon divergence, also called capacitory discrimination in the literature [4,17],
derives from Kullback–Leibler divergence and is widely regarded as a bounded, smoothed,
and symmetrised version of that:

JSD(q, p) = KL
(

q :
q + p

2

)
+ KL

(
p :

q + p
2

)
(10)

where q+p
2 is the mixture distribution of q and p. Therefore, the JSD can be interpreted as

the total divergence to the average distribution q+p
2 [18].

It is noted in [4] and elsewhere that this is equivalent to an expression over the entropy
H of the terms q and p:

JSD(q, p) = 2H
(

q + p
2

)
− H(p)− H(q) (11)

which is
JSD(q, p) = ∑

i
qi log qi + pi log pi − (qi + pi) log( qi+pi

2 ) (12)

and which then simplifies (using base 2 logs to simplify the constant term) to

JSD(q, p) = 2 + ∑
i

qi log qi + pi log pi − (qi + pi) log(qi + pi) (13)

In this context we can take 0 log 0 = 0, as x log x tends to 0 from above as x does. We note
also that the summand is equal to 2pi if and only if qi = pi. This form can then be seen to
give an outcome in [0, 2], with 2 for orthogonal inputs (i.e., for all terms qi = 0 ∨ pi = 0)
and 0 if q = p , so to normalise the output into [0, 1] we use

JSD(q, p) = 1 + 1
2 ∑

i
qi log qi + pi log pi − (qi + pi) log(qi + pi) (14)

= 1 − 1
2 ∑

i
h(qi) + h(pi)− h(qi + pi) (15)

which is the form given in Equation (4).
With high temperature values, we measure almost perfect correlations between the KLD

and JSD. Figure 5 shows Shepard diagrams of the KLD to JSD over AlexNet, GoogleNet,
SqueezeNet, and DinoV2 data with softmax temperatures of 1, 10, and 100, respectively.

It is clear from its derivation that there is a strong semantic relationship between the
KLD and JSD, but this alone does not explain the very strong correlations shown in the
figure. We shed some light on the mathematical underpinnings in the next section.

Figure 5. Cont.
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Figure 5. Shepard plots and Spearman’s rho correlation between the KLD and JSD across AlexNet,
GoogleNet, SqueezeNet, and DinoV2 datasets, with variations in softmax temperature t ∈ {1, 10, 100}.

6.1. Index of Coincidence and the Measure of Roughness

In [5], the authors introduce the notions of Index of Coincidence (IC) and the conse-
quent measure of roughness (MR). The concepts are simple, giving measures essentially for
the uniformity of terms within a set of probabilities:

IC(p) =
n

∑
i=1

p2
i (16)

The underlying intuition of the MR measure is that of a divergence from the “flattest”
set of probabilities, i.e., Un = [1/n, . . . , 1/n]:

MR(p) =
n

∑
i=1

(pi − 1
n )

2 (17)

An alternative formulation of MR is

MR(p) =
1
n

n

∑
i=1

(pi − 1
n )

2

1
n

(18)
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The authors use a divergence they call the χ2 divergence (we note that other authors use
this term for a number of different functions), which they define as

χ2(p : q) =
n

∑
i=1

(pi − qi)
2

qi
(19)

and given this form, it can be seem that the definition of the MR is application of the χ2

divergence between p and Un.
In the context of softmax applied to a vector of logits, it is evident that a higher

temperature leads to a smaller MR and furthermore that each element becomes closer to Un.
We quantify this relationship for our various experimental datasets in Section 10. Figure 6
shows the absolute values for our four datasets at different temperatures.

Figure 6. The relation between temperature and the measure of roughness for the four datasets
considered. Note the logarithmic scale of the Y axis. Although all graphs show a similar shape,
note that very different temperatures may be required to achieve the same MR.

One of the results in this paper shows an approximate equivalence between the MR
and the Kullback–Leibler divergence over the same operands, i.e.,

MR(p) = χ2(p : Un) ≈ KLD(p, Un) (20)

with this approximation becoming ever closer as the value p becomes closer to Un, that is, as
the measure of roughness of p decreases, all three of these measures become more similar.

Finally, we note that χ2 is an asymmetric divergence measure, but can be used to
define a symmetric divergence in a similar manner as the KLD is used to define the JSD:

Sχ2(p, q) = χ2(p : p+q
2 ) + χ2(q : p+q

2 ) (21)

and in fact this divergence is equal to triangular divergence (Equation (5)) after the summed
terms are factored out. In the next section, we explain an almost perfect correlation between
triangular divergence and Jensen–Shannon divergence.

This is not quite sufficient, as the proof shows the correspondence between these diver-
gences when applied from the vectors p, q to Un, rather than p+q

2 . With high temperatures,
however, these entities become very close. Given the experimental evidence of the very
strong correlation, we believe this explanation sheds considerable light on the reason for
the observation.

7. Correlation: Jensen–Shannon Divergence to Triangular Divergence

In [4], Topsøe shows a strong relationship between Jensen–Shannon divergence and
triangular divergence in terms of an upper bound:

TRI(q, p) ≤ JSD(q, p) ≤ log 2 · TRI(q, p) (22)
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This is an encouraging result to start with but does not go far enough to explain
the experimental correlations we measure, which show the two functions to be in almost
perfect correlation over high-dimensional spaces.

First, we show a rewrite of the triangular divergence:

TRI(q, p) =
1
2

n

∑
i=1

(qi − pi)
2

qi + pi

=
1
2

n

∑
i=1

(qi + pi)
2 − 4piqi

qi + pi

= 1 −
n

∑
i=1

2piqi
qi + pi

as
n

∑
i=1

qi,
n

∑
i=1

pi = 1 (23)

We repeat our definitions of the CED and JSD from above:

JSD(q, p) = 1 − 1
2

n

∑
i=1

h(qi) + h(pi)− h(qi + pi) (24)

CED(q : p) = −
n

∑
i=1

qi log pi (25)

which allow us to note the following:

1. There is now a strong apparent congruence between the TRI and JSD, based on the
approximate equivalence of the component terms

h(qi) + h(pi)− h(qi + pi) ≈
2piqi

qi + pi
(26)

Note that these terms act as “similarity accumulators” in their respective contexts, and
the approximate equivalence also implies that the respective divergence functions will
yield similar values. This is not a strongly bounded equivalence but pragmatically
holds when qi and pi are in the typical range of values we consider. If qi = pi, then
both terms are equal to 2qi.

2. Considering the evaluation time, the CED requires, for each vector dimension, a log
calculation and a multiplication operation, whereas the TRI requires an addition, a
multiplication, and a division. These operators are much cheaper for conventional
hardware than the expensive log calculation. Over various data, we measured the
relative cost as between 2 and 20 times different. Section 10 gives some actual times
as measured over the different datasets used in this article.

Mathematical Rationale of the Correlation

In [4], Topsøe introduces an ordered set of triangular divergence functions

TRIv(q, p) =
|qi − pi|2v

(qi + p1)2v−1 (27)

where v is a natural number, and this is used to provide a perfect equality with the JSD:

JSD(q, p) =
∞

∑
v=1

1
2v(2v − 1)

TRIv(q, p) (28)

noting that the first term v = 1 gives the TRI as in Equation (5).
Clearly, the factor 1

2v(2v−1) decays quickly as v increases, leading to convergence as
long as the TRIv function also decreases. What is also evident is that, as the measure of
roughness of q and p decreases, then the numerator term |qi − pi|2v very rapidly diminishes
to zero, while the denominator decreases much less quickly. The overall effect is that the
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first term, where v = 1, becomes fully dominant in the summation, giving the required
result of TRI(q, p) ≈ JSD(q, p).

Figure 7 shows this effect between two randomly selected GoogleNet vectors at
temperatures of 1, 5, and 10. It can be seen that, as temperature increases, the Tri1 term
completely dominates the summation.

Figure 7. The summation of Triv terms for v = 1, . . . , 10 between two GoogleNet vectors, with
temperatures of 1, 2, 5, and 10. The four lines in the plots represent the following: Triv: the TRIv

formula at different values of v; Triv reduced: the Triv value adjusted by the factor 1
2v(2v−1) ; Sum

(Triv) reduced: the sum of these terms up to this value of v; and jsd: the (constant) outcome of the JSD
function. As temperature increases, it can be seen how the adjusted Tri1 term increasingly dominates
the summation, becoming indistinguishable from the JSD at v = 1 and t = 10.

8. Recap: Correlation of Cross-Entropy and Triangular Divergence

The correlation between cross-entropy follows directly from the results above and is
shown earlier in the paper in Figure 4. It can be observed that when t is increased to a value
of 10 or more, the correlation between the two functions becomes essentially perfect. We
have not included the corresponding diagrams for AlexNet, SqueezeNet, and Dinov2 since
they essentially show the same effect.

9. Correlation of Cross-Entropy and Euclidean Divergence

Some modern networks, rather than classifying the input into a number of categories,
instead aim to provide the post-trained logit space as an embedding which can either be
used as the basis for further classification or else used as a similarity space in its own right.
That is, for the universal set of possible output logits U, there should exist a dissimilarity
space (U, d) with the property that, for any ui, uj, uk ∈ U, d(ui, uj) < d(ui, uk) implies that
the input object resulting in ui should be more similar to that resulting in uj than the one
resulting in uk. Within our example data, DinoV2 is such a network.

The properties of the function d are required to be very different from cross-entropy: in
any search domain it would be expected that d has at least semi-metric properties, including
d(ui, uj) ≥ 0, d(u, u) = 0 and d(ui, uj) = d(uj, ui). Depending on the search mechanism
to be used, it may also be important that d is a proper metric, therefore also requiring the
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triangle inequality to be shown. As our discussion to this point has been entirely based on
correlation, none of these properties has featured so far.

In the DinoV2 paper [12], the authors describe training the network using primarily
cross-entropy and then test it using cosine distance over the logits. The reason for this is
not stated but may perhaps be simply that cosine distance is a proper metric, is cheap to
evaluate, and gives apparently good results. Other previous work has also suggested the use
of Euclidean distance; and [19] develops a specialised metric based on cosine distance for a
particular purpose. We have not, however, seen any principled argument for the metric of
choice, one reason perhaps being that in high-dimensional spaces, most metrics are reasonably
well correlated, and it is very challenging to tell which metric is semantically the best over a
very large metric space for which no ground truth can feasibly be constructed.

We note first that triangular divergence as defined in Equation (5) is the square of a
proper metric, which leads to the possibility of using the post-softmax space with this metric.
As far as we know, this is a completely novel idea, and we are currently investigating it further.

We have observed one last very strong correlation, which is between Euclidean dis-
tance in the logit space and cross-entropy in the space to which softmax has been applied.
The correlation is much tighter than that of cosine distance in the logit space, and leads to
the suggestion that Euclidean distance may be the better metric to use in the case where
logits are exported for use in the context of similarity search.

Figure 8 shows correlations, in the DinoV2 context, between Euclidean distance over the
raw logit values and the CED over the softmax values for a range of temperatures. Figure 9

shows the same correlations for cosine distance, where COS(u, v) = EUC
(

u
∥u∥2

,
v

∥vs.∥2

)
.

It can be seen that these correlations are much weaker, leading to the suggestion that,
for a such a network trained using cross-entropy, then Euclidean distance may be the
better choice.

We have observed these correlations also in other spaces, but we note that they do not
hold for all Euclidean and cosine spaces. We do not yet fully understand the properties
necessary to achieve these strong correlations, nor a full mathematical basis for them, and
for the moment we leave this as an item of further work.

Figure 8. Shepard plots and Spearman’s rho correlation between the CED (over the softmax’d value)
and EUC (over the raw logit values) for DinoV2 dataset, with variations in softmax temperature
t ∈ {1, 10, 100}.

Figure 9. Shepard plots and Spearman’s rho correlation between the CED (over the softmax’d value)
and COS (over the raw logit values) for DinoV2 dataset, with variations in softmax temperature
t ∈ {1, 10, 100}.
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10. Discussion
10.1. Cost of CED and TRI Application

Table 3 shows simple measurements of the CED and TRI functions, showing that the
TRI is cheaper to evaluate at least in this context of measurement. It is of course impossible
to provide objective measurement as the cost will depend on many features of the hardware
and software context.

Table 3. Evaluation cost of the CED and TRI for different networks. The values reported are seconds
per divergence calculation.

Network Name CED Cost TRI Cost

GoogleNet 2.4 × 10−6 2.0 × 10−7

SqueezeNet 1.4 × 10−6 5.2 × 10−7

AlexNet 4.1 × 10−6 5.3 × 10−7

DinoV2 2.2 × 10−6 1.3 × 10−7

In this case, we used MATLAB 2024a (which is optimised for the M1 chipset) running
on a MacBook M1 Pro with 32G of main memory. The MATLAB functions measured are
as follows:

CED = @(X,Y) - sum(X .* log(Y),2);
TRI = @(X,Y) - sum((X .* Y) ./ (X + Y),2);

thus using the optimisation of the TRI shown in Section 7. Note that these forms take arrays
of data, rather than a single datum, as input. Timing was performed using the MATLAB
timeit call over a lambda form which applies each function to a single datum against 10k
others. All tests were repeated until the standard error of the mean was less than 1% of the
mean values reported.

As can be seen, and also as expected, the TRI function is always significantly less
costly than the CED. We are aware that in the context of machine learning, this cost may
not be significant to the overall training time, but in cases where the correlation is almost
perfect, we see no good reason to use extra compute cycles.

10.2. Temperature and Measure of Roughness

Guided by figures we derived from [1], we started on our experiments, applying
temperature values in the range 0.1 to 100, and observed the very tight correlations with
values of around 10 or greater over the different datasets used.

Having subsequently discovered the underlying mathematical relations based on
the measure of roughness, we believe that is the more principled concept from which the
correlations derive. Figure 6 shows how this varies with the application of temperature, and
a correlation can be seen between the individual graph for each dataset and the properties
of the logit range and magnitude shown in Table 2.

In [1], the suggestion is for researchers to experiment across the range of temperatures;
we suggest experimenting across temperatures which achieve the MR down to a value
of, for example, 10−6, which may give a more useful range of temperatures with which
to experiment. Notice that even with our small number of datasets, this implies very
different temperatures.

11. Conclusions and Further Work

In this article, we have shown a number of very strong correlations between the cross-
entropy divergence function and other information distances. Cross-entropy is almost
ubiquitously used in the training of neural networks. These correlations are interesting
in their own right and have one potential practical application in the correlation between
cross-entropy and triangular divergence, as the latter is substantially cheaper to evaluate
and should perhaps be preferred in cases where the correlation is almost perfect.
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We further show a more surprising, and as yet not fully explained, correlation between
Euclidean distance in the logit space and cross-entropy in the post-softmax space. We
suggest this may imply that, where network embeddings are exported for use in more
general similarity spaces, Euclidean distance may be the metric of choice, as opposed to
cosine distance which seems to be more commonly used.

Three items of further work are compelling as a result of this work. First, we observe
that, rather than using either Euclidean or cosine distance in the logit space for the purpose
of general similarity, it is equally possible to use a proper metric form of triangular distance
in the post-softmax space. We are currently investigating this and have observed some
possible advantages with respect to technical properties of the resulting space.

Second, the very strong correlation between Euclidean distance in the logit space
and the CED in the post-softmax space does not apply to all Euclidean spaces, and we do
not as yet have a full understanding of the properties required in the Euclidean space or
consequently a mathematical explanation of the correlation.

Finally, we would like to test whether cosine or Euclidean distance over the logits does
indeed give a better semantic test over the input space. Such testing is very challenging
over very large input spaces, as it is impossible to construct a meaningful ground truth
due to the quadratic number of assessments required; we are working on an approximate
measure of quality with a view to achieving such comparisons.
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