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Abstract
By a classical theorem of Jordan, every faithful transitive
action of a non-trivial finite group has a derangement
(an element with no fixed points). The existence of
derangements with additional properties has attracted
much attention, especially for faithful primitive actions
of almost simple groups. In this paper, we show that
an almost simple group can have an element that is a
derangement in every faithful primitive action, and we
call these elements totally deranged. In fact, we clas-
sify the totally deranged elements of all almost simple
groups, showing that an almost simple group 𝐺 con-
tains a totally deranged element only if the socle of 𝐺 is
Sp4(2

𝑓) or PΩ+
𝑛 (𝑞) with 𝑛 = 2𝑙 ⩾ 8. Using this, we clas-

sify the invariable generating sets of a finite simple group
𝐺 of the form {𝑥, 𝑥𝑎} where 𝑥 ∈ 𝐺 and 𝑎 ∈ Aut(𝐺),
answering a question of Garzoni. As a final application,
we classify the elements of almost simple groups that are
contained in a unique maximal subgroup 𝐻 in the case
where𝐻 is not core-free, which complements the recent
work of Guralnick and Tracey addressing the case where
𝐻 is core-free.
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1 INTRODUCTION

Let 𝐺 be a finite group with a transitive action on a setΩ of size |Ω| > 1. Then there exists an ele-
ment of𝐺 that fixes no point ofΩ in this action; such an element is known as a derangement. This
follows quickly from the orbit counting lemma and was first observed by Jordan [30]. As high-
lighted by Serre [42], this basic fact has consequences for number theory and topology. Recently,
an extensive field of research has emerged on counting derangements and finding derangements
with specified properties. For instance, Fulman and Guralnick [20] proved the Boston–Shalev
conjecture that the proportion of derangements in any non-trivial transitive action of a finite
simple group is bounded away from zero by an absolute constant. Many problems in this area
reduce to faithful primitive actions of almost simple groups, and we refer the reader to the intro-
ductory chapter of [9] for an overview of recent work. (Recall that a group 𝐺 is almost simple if
𝑇 ⩽ 𝐺 ⩽ Aut(𝑇) for a non-abelian simple group 𝑇.)
Since every faithful primitive action of an almost simple group admits a derangement, it is

natural to reverse the quantifiers and ask whether it is possible for an almost simple group to
contain an element that is a derangement in every faithful primitive action?Despite how restrictive
this condition is, the following example shows that it is possible.

Example. Let 𝐺 = O+
2𝑚
(𝑞) where 2𝑚 ⩾ 8 and 𝑞 are powers of two. Then any element of 𝐺 of

order 𝑞𝑚 − 1 is a derangement in every faithful primitive action of 𝐺.

Motivated by this example, we make the following definition. An element 𝑥 of a group 𝐺 is
totally deranged if 𝑥 is a derangement in every faithful primitive action of 𝐺.
Our first main theorem classifies the almost simple groups with totally deranged elements.

Theorem 1. Let 𝐺 be an almost simple group with socle 𝑇. Then 𝐺 contains a totally deranged
element if and only if 𝑇 = Sp4(2

𝑓) and𝐺 contains a graph-field automorphism, or 𝑇 = PΩ+
𝑛 (𝑞)with

2𝑚 = 2𝑙 ⩾ 8 and𝐺 contains a graph automorphism or a product of graph and field automorphisms.

In fact, with some more notation, we can give an expanded version of Theorem 1 that classifies
all totally deranged elements of almost simple groups. For a finite simple group 𝑇 of Lie type, we
write 𝜑 for the standard field automorphism and Inndiag(𝑇) for the subgroup ofAut(𝑇) generated
by inner and diagonal automorphisms. (We formally define Inndiag(𝑇) in Section 2.1, but let us
note that if 𝑇 is Sp4(2𝑓) or PΩ+

2𝑚
(2𝑓), then Inndiag(𝑇) = 𝑇, and if 𝑇 = PΩ+

2𝑚
(𝑝𝑓) for odd 𝑝, then

Inndiag(𝑇) is a particular index two subgroup of PGO+
2𝑚
(𝑝𝑓).)

Theorem 2. Let 𝐺 be an almost simple group with socle 𝑇. Then 𝑥 ∈ 𝐺 is totally deranged if and
only if all of the following conditions hold, where 𝑝 is prime and 𝑞 = 𝑝𝑓:

(i) 𝑇 is either PΩ+
2𝑚
(𝑞) with 2𝑚 = 2𝑙 ⩾ 8, or Sp2𝑚(𝑞) with 2𝑚 = 4 and 𝑝 = 2,

(ii) 𝐺  ⟨Inndiag(𝑇), 𝜑⟩,
(iii) 𝑥 ∈ Inndiag(𝑇)𝛼 for 𝛼 ∈ ⟨𝜑⟩ of odd order 𝑒, and, writing 𝑞 = 𝑞𝑒

0
, we have 𝑥𝑒 = 𝑠𝑢 = 𝑢𝑠 for:

(a) 𝑢 = 1 or |𝑢| = 𝑝 > 2,
(b) |𝑠| ∣ (𝑞𝑚

0
− 1) and |𝑥𝑒| ∤ 2(𝑞𝑚∕2

0
+ 1),

(c) |𝑠| ∤ (𝑞𝑚∕𝑘
0

− 1) for all prime divisors 𝑘 of 2𝑓 that do not divide 𝑒,
(d) 𝑘 ∣ |𝑠| and 𝑘 ∤ (𝑞𝑚

0
− 1)∕|𝑠| for all prime divisors 𝑘 of 𝑒.
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Observe that Theorem 2 is simpler if 𝑥 ∈ 𝑇, since in this case 𝑒 = 1, so part (d) is vacuous,
𝑥 = 𝑠𝑢 and 𝑞0 = 𝑞. Theorem 1 and the example above immediately follow from Theorem 2.
Theorem 2 has an application to generation. A subset {𝑥𝑖 ∣ 𝑖 ∈ 𝐼} of a group 𝐺 is an invariable

generating set of 𝐺 if {𝑥g𝑖
𝑖
∣ 𝑖 ∈ 𝐼} is a generating set of 𝐺 for all choices of g𝑖 ∈ 𝐺. This notion

was first introduced by Dixon [16] motivated by computational Galois theory. There is a close
connection between derangements and invariable generation given by the easy observation that
a group 𝐺 admits an invariable generating set if and only if every transitive action of 𝐺 on a set of
size at least two has a derangement. In particular, every finite group has an invariable generating
set, and much attention has been dedicated to finding invariable generating sets of minimal size.
For instance, every finite simple group is known to have an invariable generating set of size two
[25, 31], which strengthens the famous result that every finite simple group has a generating set
of size two (see [2, 46]).
In [23, Question 2.14], Garzoni asks whether there exists a non-abelian finite simple group 𝑇

that is invariably generated by {𝑥, 𝑥𝑎} for some 𝑥 ∈ 𝑇 and 𝑎 ∈ Aut(𝑇). This is clearly impossible
if Out(𝑇) = 1. A short elementary argument shows that if {𝑥, 𝑥𝑎} is an invariable generating set
for a non-abelian finite simple group 𝑇, then 𝑥 must be a totally deranged element of the almost
simple group ⟨𝑇, 𝑎⟩ (see Lemma 4.1). This leads to our next theorem, which gives an affirmative
answer to Garzoni’s question.

Theorem 3. Let 𝑇 be a non-abelian finite simple group, let 𝑎 ∈ Aut(𝑇) and let 𝑥 ∈ 𝑇. Then the
following are equivalent:

(i) 𝑇 is invariably generated by {𝑥, 𝑥𝑎},
(ii) 𝑥 is a totally deranged element of ⟨𝑇, 𝑎⟩,
(iii) the following hold, where 𝑝 is prime and 𝑞 = 𝑝𝑓:

(a) 𝑇 is either PΩ+
2𝑚
(𝑞) with 2𝑚 = 2𝑙 ⩾ 8, or Sp2𝑚(𝑞) with 2𝑚 = 4 and 𝑝 = 2,

(b) 𝑎 ∉ ⟨Inndiag(𝑇), 𝜑⟩,
(c) 𝑥 = 𝑠𝑢 = 𝑢𝑠 where |𝑠| ∣ (𝑞𝑚 − 1), |𝑥| ∤ 2(𝑞𝑚∕2 + 1), |𝑠| ∤ (𝑞𝑚∕𝑘 − 1) for all prime divisors

𝑘 of 2𝑓 and either 𝑢 = 1 or |𝑢| = 𝑝 > 2.

Theorem 2 gives (ii)⇒(iii). Interestingly, while (i)⇒(ii) is elementary (see Lemma 4.1), we prove
the converse (ii)⇒(i) by directly showing that (i) satisfied by the groups in (iii).
In [26], Guralnick and Tracey classify the elements of almost simple groups that are contained

in a unique maximal subgroup 𝐻 under the assumption that 𝐻 is core-free (they use this to clas-
sify the finite groups 𝐺 and elements 𝑥 satisfying ⟨𝑥𝐺⟩ = 𝐺 such that 𝑥 is contained in a unique
maximal subgroup of 𝐺). However, examples also occur when 𝐻 is not core-free and our next
theorem complements [26] by solving the problem in this case.

Theorem4. Let𝐺 be almost simple with socle 𝑇 and let 𝑥 ∈ 𝐺. Then the following are equivalent:

(i) 𝑥 is contained in a unique maximal subgroup𝐻 of 𝐺 and𝐻 is not core-free,
(ii) 𝑥 is a totally deranged element of𝐺 and𝑇𝑥 is contained in a uniquemaximal subgroup of𝐺∕𝑇,
(iii) (𝐺, 𝑥) appears in Theorem 2 and, in addition, the following hold:

(a) if 𝑇 = Sp4(𝑞), then𝐺 = ⟨𝑇, 𝜌𝑖⟩ for a graph-field automorphism 𝜌 that satisfies 𝜌2 = 𝜑 and
where 𝑖 divides 𝑓∕𝑒 and 𝑓∕𝑒𝑖 is a power of 2,

(b) if 𝑇 = PΩ+
2𝑚
(𝑞), then 𝐺 = ⟨𝑇, 𝑥, 𝑦𝜑𝑖⟩ for a duality (respectively, triality) graph automor-

phism 𝑦 and where 𝑖 divides 𝑓∕𝑒 and 𝑓∕𝑒𝑖 is a power of 2 (respectively, 3).
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4 of 38 HARPER

The equivalence (i)⟺ (ii) is elementary, so to complete the proof, we have to determine when
𝑇𝑥 is contained in a unique maximal subgroup of 𝐺∕𝑇 for the groups in Theorem 2. Notice that
if 𝑥 ∈ 𝑇, then we simply require that 𝐺∕𝑇 be cyclic of prime power order. In Proposition 4.3, we
will see that when 𝑥 is contained in a unique maximal subgroup𝐻 of 𝐺 and𝐻 is not core-free, it
is always the case that𝐻 = 𝐺 ∩ ⟨Inndiag(𝑇), 𝜑⟩.
Wenowdiscuss ourmethods. Let𝐺 be an almost simple groupwith socle𝑇. If𝐺 acts transitively

with point stabiliser𝐻 ⩽ 𝐺, then𝑥 ∈ 𝐺 is a derangement if and only if 𝑥𝐺 ∩ 𝐻 is empty. Therefore,
𝑥 ∈ 𝐺 is totally deranged if and only if 𝑥 is contained in no core-free maximal subgroup of𝐺. This
gives a framework for proving Theorem 2. Indeed, to show that 𝐺 contains no totally deranged
elements, we show that every element of 𝐺 is contained in a maximal subgroup not containing 𝑇.
For alternating 𝑇, the proof is short, and for sporadic 𝑇, we use computational methods exploiting
the Character Table Library [7] in GAP [22].
Most of our effort is devoted to the case where 𝑇 is a finite simple group of Lie type. The most

interesting cases are when 𝑇 ∈ {𝐵2(2
𝑓), 𝐺2(3

𝑓), 𝐹4(2
𝑓)} and 𝐺 contains a graph-field automor-

phism or 𝑇 ∈ {PSL𝑛(𝑞), PΩ
+
2𝑚
(𝑞), 𝐸6(𝑞)} and 𝐺 contains a graph or graph-field automorphism,

since graph(-field) automorphisms affect the maximality of subgroups. We use a variety of geo-
metric and Lie-theoretic methods to study the elements of Inndiag(𝑇), but the elements in
Aut(𝑇) ⧵ Inndiag(𝑇) are more opaque and we apply Shintani descent. This technique was intro-
duced by Shintani [45] in 1976 and has its origins in character theory. However, in recent years, it
has seen powerful applications in group theory, for example, in the series of papers leading to the
classification of the finite 3

2
-generated groups [11].

In this paper, we establish new general results on Shintani descent, which we expect will have
further applications (indeed, they have already been used in [26], see below). For a connected
linear algebraic group 𝑋 over 𝔽𝑝 and two commuting Steinberg endomorphisms 𝜎1 and 𝜎2, the
Shintani map is a bijection between the 𝑋𝜎1

-classes in 𝑋𝜎1
𝜎2 and the 𝑋𝜎2

-classes in 𝑋𝜎2
𝜎1 (here

𝑋𝜎𝑖
is the set of fixed points of 𝑋 under 𝜎𝑖). For instance, if 𝑋 = PGL𝑛(𝔽𝑝) and 𝜑 is the standard

Frobenius map, then for divisors 𝑖 of 𝑓, we have a bijection between the conjugacy classes in
PGL𝑛(𝑝

𝑓)𝜑𝑖 and in PGL𝑛(𝑝𝑖). This bijection preserves important structure, including information
about maximal overgroups (see [27, Theorem 4]).
Corollary 2.12 is a new result describing how Shintani descent relates to maximal subfield sub-

groups. In the previous example, it implies that if 𝑘 is a prime dividing 𝑓 but not 𝑓∕𝑖, then an
element of PGL𝑛(𝑝𝑓)𝜑𝑖 is contained in a degree 𝑘 subfield subgroup of ⟨PGL𝑛(𝑝𝑓), 𝜑𝑖⟩ if and only
if its image under the Shintani map is contained in a degree 𝑘 subfield subgroup of PGL𝑛(𝑝𝑖).
Corollary 2.12 has recently been used by Guralnick and Tracey [26] in their classification of
elements of finite groups contained in a unique maximal subgroup.

Organisation. Section 2 records preliminary results on groups of Lie type and Shintani descent,
with our new results on Shintani descent and subfields being presented in Section 2.3. Theorem 2
is proved in Section 3, and then Theorems 3 and 4 are proved in Section 4.

Notation. We follow [24, 32]. In particular,Ω𝑛(𝔽𝑝) is the connected componentO𝑛(𝔽𝑝)
◦. For a Lie

type Σ, by Σ(𝔽𝑝), we mean the adjoint algebraic group and by Σ(𝑞), we mean the (typically) sim-
ple group, so 𝐴𝑚(𝔽𝑝) = PGL𝑚+1(𝔽𝑝) and 2𝐴𝑚(𝑞) = PSU𝑚+1(𝑞). We also write SL+𝑛 (𝑞) = SL𝑛(𝑞)

and SL−𝑛 (𝑞) = SU𝑛(𝑞), and similarly, 𝐸+
6
(𝑞) = 𝐸6(𝑞) and 𝐸−

6
(𝑞) = 2𝐸6(𝑞). For 𝐻,𝐾 ⩽ 𝐺, we write

𝑁𝐻(𝐾) = {ℎ ∈ 𝐻 ∣ 𝐾ℎ = 𝐾} even when 𝐾 is not a subgroup of 𝐻. We write (𝑎, 𝑏) for the greatest
common divisor of natural numbers 𝑎 and 𝑏.
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TOTALLY DERANGED ELEMENTS OF ALMOST SIMPLE GROUPS AND INVARIABLE GENERATING SETS 5 of 38

2 PRELIMINARIES

2.1 Groups of Lie type

We take this section to introduce our notation for the almost simple groups of Lie type. Our
notation is consistent with [27], to which we will refer later.
Let 𝑋 be a linear algebraic group over 𝔽𝑝, with 𝑝 prime, which we call an algebraic group.

For a Steinberg endomorphism 𝜎 of 𝑋, write 𝑋𝜎 = {𝑥 ∈ 𝑋 ∣ 𝑥𝜎 = 𝑥}. Let  be the set of finite
groups 𝑇 such that 𝑇 = 𝑂𝑝′(𝑋𝜎) for a simple algebraic group 𝑋 of adjoint type and a Steinberg
endomorphism 𝜎. (Recall that𝑂𝑝′(𝐺) is the subgroup generated by the 𝑝-elements of𝐺.) Usually,
if 𝑇 ∈ , then 𝑇 is simple and we call it a finite simple group of Lie type. (For us, the Tits group
2𝐹4(2)

′ is not a finite simple group of Lie type.)We call𝐴𝑚(𝑞),. . . ,𝐺2(𝑞)untwisted, 2𝐴𝑚(𝑞), 2𝐷𝑚(𝑞),
2𝐸6(𝑞), 3𝐷4(𝑞) twisted and 2𝐵2(2

𝑓), 2𝐹4(2𝑓), 2𝐺2(3
𝑓) very twisted.

We say that an element 𝑥 ∈ 𝑋 is semisimple if |𝑥| is prime to 𝑝 and unipotent if |𝑥| is a power of
𝑝. In particular, the identity is both semisimple and unipotent. Every element of 𝑋 is expressible
uniquely as 𝑥 = 𝑠𝑢 = 𝑢𝑠 where 𝑠 is semisimple and 𝑢 unipotent (this is the Jordan decomposition
of 𝑥). We say that 𝑥 ismixed if it is neither semisimple nor unipotent.
Let 𝑋 be a simple algebraic group of adjoint type. Let us fix some notation:

𝜑 is the Frobenius endomorphism of 𝑋 fixing 𝔽𝑝,
𝛾 is the standard involutory graph automorphism of 𝑋 ∈ {𝐴𝑚,𝐷𝑚, 𝐸6},
𝜏 is the standard triality graph automorphism of 𝑋 = 𝐷4,
𝜌 is the graph-field endomorphism of 𝑋 fixing 𝔽𝑝 if (𝑋, 𝑝) ∈ {(𝐵2, 2), (𝐹4, 2), (𝐺2, 3)}.

Write Σ(𝑋) for the group generated by the maps 𝜑, 𝛾, 𝜏, 𝜌 when they are defined. For 𝑇 =

𝑂𝑝′(𝑋𝜎) ∈ , note that Aut(𝑇) ≅ Inndiag(𝑇)∶Σ(𝑇), where Inndiag(𝑇) = 𝑋𝜎 and Σ(𝑇) = {g|𝑋𝜎
∣

g ∈ Σ(𝑋) and g𝜎 = g} (see [24, Theorem 2.5.4]).
It will be useful to record the following immediate consequence of [24, Theorem 2.5.12].

Lemma 2.1. Let 𝑇 be a finite simple group of Lie type. Then Aut(𝑇) = ⟨Inndiag(𝑇), 𝜑⟩ or
(i) Aut(𝑇) = ⟨𝑇, 𝜌⟩ and 𝑇 ∈ {𝐵2(2

𝑓), 𝐹4(2
𝑓), 𝐺2(3

𝑓)},
(ii) Aut(𝑇) = ⟨Inndiag(𝑇), 𝜑, 𝛾⟩ and 𝑇 ∈ {𝐴𝑚(𝑞) (𝑚 ⩾ 2), 𝐷𝑚(𝑞) (𝑚 ⩾ 5), 𝐸6(𝑞)},
(iii) Aut(𝑇) = ⟨Inndiag(𝑇), 𝜑, 𝛾, 𝜏⟩ and 𝑇 = 𝐷4(𝑞).

Remark 2.2. Let us comment on Lemma 2.1.

(i) In Lemma 2.1, we are abusing notation by, for example, conflating themap𝜑∶ 𝑋 → 𝑋with its
restriction 𝜑|𝑇 ∶ 𝑇 → 𝑇. Usually, this causes no problems, but when we need more precision,
for an endomorphism 𝛼 of 𝑋 that restricts to an automorphism of 𝑇 = 𝑂𝑝′(𝑋𝜎), we write
�̃� = 𝛼|Inndiag(𝑇). For instance, if 𝑋 = 𝐵2, 𝑝 = 2 and 𝑓 is odd, then ⟨𝜑⟩ is a proper subgroup of
⟨𝜌⟩, but for 𝑇 = 2𝐵2(2

𝑓) = 𝑋𝜌𝑓 , we have ⟨𝜑⟩ = ⟨𝜌⟩.
(ii) Lemma 2.1 demonstrates that ⟨Inndiag(𝑇), 𝜑⟩ is a normal subgroup of Aut(𝑇). Indeed, if

𝑇 ≠ PΩ+
8
(𝑞), then ⟨Inndiag(𝑇), 𝜑⟩ has index at most two in Aut(𝑇). If 𝑇 = PΩ+

8
(𝑞), then

Aut(𝑇)∕⟨Inndiag(𝑇), 𝜑⟩ ≅ 𝑆3, and, for 𝑇 ⩽ 𝐺 ⩽ Aut(𝑇), we say that the almost simple group
𝐺 contains triality if |𝐺∕(𝐺 ∩ ⟨Inndiag(𝑇), 𝜑⟩)| is divisible by 3.
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6 of 38 HARPER

Let us now discuss the the subgroup structure of the finite groups of Lie type. Let 𝑇 be a finite
simple group of Lie type and let 𝑇 ⩽ 𝐺 ⩽ Aut(𝑇). The core-free maximal subgroups of 𝐺 are of
central importance to this paper and they are described by the following theorem,which combines
[35, Theorem 2] and [36, Theorem 2] of Liebeck and Seitz.

Theorem 2.3. Let 𝐺 be an almost simple group of Lie type with socle 𝑇. Write 𝑇 = 𝑂𝑝′(𝑋𝜎) for a
simple algebraic group𝑋 of adjoint type and a Steinberg endomorphism 𝜎 of𝑋. Let𝐻 be a maximal
subgroup of 𝐺 not containing 𝑇. Then𝐻 is one of

(I) 𝑁𝐺(𝑌𝜎 ∩ 𝑇) for a maximal closed 𝜎-stable positive-dimensional subgroup 𝑌 of 𝑋,
(II) 𝑁𝐺(𝑋𝛼 ∩ 𝑇) for a Steinberg endomorphism 𝛼 of 𝑋 such that 𝛼𝑘 = 𝜎 for a prime 𝑘,
(III) a local subgroup not in (I),
(IV) an almost simple group not in (I) or (II),
(V) the Borovik subgroup:𝐻 ∩ 𝑇 = (Alt5 × Alt6).2

2 with 𝑇 = 𝐸8(𝑞) and 𝑝 ⩾ 7.

Remark 2.4. Let us comment on Theorem 2.3.

(i) An important class of examples arising in (I) are parabolic subgroups. For a simple algebraic
group or a finite group of Lie type, we write 𝑃𝑖1,…,𝑖𝑘 for the parabolic subgroup obtained by
deleting nodes 𝑖1,. . . , 𝑖𝑘 from the Dynkin diagram.

(ii) The subgroups in (II) are easily determined via the possible Steinberg endomorphisms.
(iii) In addition to those in (i) and (ii), for exceptional groups, the only other maximal subgroups

we need detailed information about are the subgroups in (I) arising from reductive maximal
rank subgroups 𝑌 ⩽ 𝑋, and our reference for these is [34].

(iv) For classical groups, one usually categorises maximal subgroups via Aschbacher’s subgroup
structure theorem [1], where each maximal subgroup is either contained in one of eight geo-
metric classes 1,. . . , 8 (with (II) and (III) broadly overlapping with 5 and 6, respectively)
or is an absolutely irreducible almost simple group in the class  . We follow Kleidman and
Liebeck’s notation in [32] for geometric subgroups (including their definition of type), and
we refer to [32, p.3] for a definition of the class  .

2.2 Shintani descent

We now introduce Shintani descent, following [27]. Let 𝑋 be a connected algebraic group and
let 𝜎1 and 𝜎2 be commuting Steinberg endomorphisms. For {𝑖, 𝑗} = {1, 2}, write 𝜎𝑖 = 𝜎𝑖|𝑋𝜎𝑗

and
assume that ⟨𝜎𝑖⟩ ∩ 𝑋𝜎𝑗

= 1. The Shintani map of (𝑋, 𝜎1, 𝜎2), written 𝐹∶ 𝑋𝜎1
𝜎2 → 𝑋𝜎2

𝜎1, is

𝐹∶ {g𝑋𝜎1 ∣ g ∈ 𝑋𝜎1
𝜎2} → {ℎ𝑋𝜎2 ∣ ℎ ∈ 𝑋𝜎2

𝜎1}

(𝑥𝜎2)
𝑋𝜎1 ↦ (𝑦𝜎1)

𝑋𝜎2 ⟺ (𝑥𝜎2, 𝜎1)
𝑋 = (𝜎2, 𝑦𝜎1)

𝑋.

By [27, Theorem 2.1], 𝐹 is a well-defined bijection and 𝐶𝑋𝜎1
(g) ≅ 𝐶𝑋𝜎2

(ℎ) if 𝐹(g𝑋𝜎1 ) = ℎ𝑋𝜎2 . We
frequently abuse notation and write 𝐹 on elements rather than conjugacy classes.

Remark 2.5. Let us collect together some basic properties of the Shintani map.

(i) If 𝐹 is the Shintani map of (𝑋, 𝜎1, 𝜎2) and 𝐹(g) = ℎ, then there exists 𝑎 ∈ 𝑋 such that g =

𝑎𝑎−𝜎
−1
2 𝜎2 and ℎ = 𝑎−1𝑎𝜎

−1
1 𝜎1 (see [27, Lemma 2.2]).
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TOTALLY DERANGED ELEMENTS OF ALMOST SIMPLE GROUPS AND INVARIABLE GENERATING SETS 7 of 38

(ii) Part (i) implies that if 𝐹 is the Shintani map of (𝑋, 𝜎𝑒, 𝜎) for 𝑒 > 0, then for all g ∈ 𝑋𝜎𝑒𝜎, the
image 𝐹(g) is 𝑋-conjugate to g−𝑒 (see [27, Lemma 2.20]). In particular, |g| = 𝑒|𝐹(g)|.

(iii) If 𝐹∶ 𝑋𝜎1
𝜎2 ↦ 𝑋𝜎2

𝜎1 is the Shintani map of (𝑋, 𝜎1, 𝜎2), then define 𝐹′ ∶ 𝑋𝜎1
�̃�2 ↦

𝑋𝜎2
�̃�−1
1

as 𝐹′(g) = 𝐹(g)−1. In particular, if 𝐹 is the Shintani map of (𝑋, 𝜎𝑒, 𝜎), then 𝐹′

is what is called the Shintani map of (𝑋, 𝜎, 𝑒) elsewhere (see [11, Definition 3.18] for
example).

Let us explain how the Shintani map relates to closed subgroups of 𝑋. This is studied compre-
hensively in [27], but apart from in a few instances, all we need is a simpler result.We have chosen
to give the proof since it is short and enlightening.

Theorem 2.6. Let 𝑌 be a closed connected ⟨𝜎1, 𝜎2⟩-stable subgroup of 𝑋. Let g ∈ 𝑋𝜎1
𝜎2 and ℎ ∈

𝑋𝜎2
𝜎1 with 𝐹(g

𝑋𝜎1 ) = ℎ𝑋𝜎2 . Then g is contained in an ⟨𝑋𝜎1
, 𝜎2⟩-conjugate of ⟨𝑌𝜎1

, 𝜎2⟩ if and only if
ℎ is contained in an ⟨𝑋𝜎2

, 𝜎1⟩-conjugate of ⟨𝑌𝜎2
, 𝜎1⟩.

Proof. First note that g ∈ 𝑋𝜎1
𝜎2 is contained in an ⟨𝑋𝜎1

, 𝜎2⟩-conjugate of the subgroup ⟨𝑌𝜎1
, 𝜎2⟩

if and only if g is contained in an ⟨𝑋𝜎1
, 𝜎2⟩-conjugate of the coset 𝑌𝜎1

𝜎2, which, in turn, is true
if and only if g⟨𝑋𝜎1

,𝜎2⟩ ∩ 𝑌𝜎1
𝜎2 = g𝑋𝜎1 ∩ 𝑌𝜎1

𝜎2 is non-empty. Similarly, ℎ ∈ 𝑋𝜎2
𝜎1 is contained in

an ⟨𝑋𝜎2
, 𝜎1⟩-conjugate of ⟨𝑌𝜎2

, 𝜎1⟩ if and only if ℎ𝑋𝜎2 ∩ 𝑌𝜎2
𝜎1 is non-empty. Let 𝐸 be the Shintani

map of (𝑌, 𝜎1, 𝜎2). Observe that if 𝑦 ∈ 𝑌𝜎1
𝜎2 and 𝑧 ∈ 𝑌𝜎2

𝜎1 satisfy𝐸(𝑦
𝑌𝜎1 ) = 𝑧𝑌𝜎2 , then𝐹(𝑦𝑋𝜎1 ) =

𝑧𝑋𝜎2 . In particular, if g𝑋𝜎1 ∩ 𝑌𝜎1
𝜎2 is non-empty, and contains 𝑦

𝑌𝜎1 , say, then ℎ𝑋𝜎2 ∩ 𝑌𝜎2
𝜎1 is non-

empty since it contains 𝐸(𝑦𝑌𝜎1 ); the converse similarly holds. Therefore, g𝑋𝜎1 ∩ 𝑌𝜎1
𝜎2 is non-

empty if and only ℎ𝑋𝜎2 ∩ 𝑌𝜎2
𝜎1 is non-empty. The result follows. □

Example 2.7. Let 𝑋 = GL𝑛 and let 𝑌 be a maximal 𝑃𝑘 parabolic subgroup of 𝑋 for an integer
0 < 𝑘 < 𝑛 (i.e. 𝑌 is the stabiliser of a 𝑘-space of the natural module for 𝑋). Write 𝑞 = 𝑝𝑓 and 𝑞0 =
𝑝𝑖 where 𝑖 ∣ 𝑓. Let 𝑥 ∈ GL𝑛(𝑞) = 𝑋𝜑𝑓 and 𝑥0 ∈ GL𝑛(𝑞0) = 𝑋𝜑𝑖 satisfy 𝐹((𝑥𝜑𝑖)GL𝑛(𝑞)) = 𝑥0

GL𝑛(𝑞0)

where 𝐹∶ GL𝑛(𝑞)𝜑
𝑖 → GL𝑛(𝑞0) is the Shintani map of (𝑋, 𝜑𝑓, 𝜑𝑖). Then Theorem 2.6 implies that

𝑥𝜑𝑖 is contained in a 𝑃𝑘 parabolic subgroup of ⟨GL𝑛(𝑞), 𝜑⟩ if and only if 𝑥0 is contained in a 𝑃𝑘
parabolic subgroup of GL𝑛(𝑞0). Applying this to all 0 < 𝑘 < 𝑛, we deduce that 𝑥𝜑𝑖 stabilises no
subspace of 𝔽𝑛𝑞 in the semilinear action of ⟨GL𝑛(𝑞), 𝜑⟩ on 𝔽𝑛𝑞 if and only if 𝑥0 acts irreducibly on
𝔽𝑛𝑞0

.

The following more technical result [27, Theorem 2.8(ii)] will be useful in some proofs. Here,
for an element 𝑥 ∈ 𝑋 and a Steinberg endomorphism 𝜎 of 𝑋, we write

𝑥𝜎 = 𝑥𝑥−𝜎
−1
. (2.1)

By the Lang–Steinberg theorem, every 𝑠 ∈ 𝑋 may written as 𝑠 = 𝑥𝜎 for some 𝑥 ∈ 𝑋.

Theorem 2.8. Let 𝑌 be a closed ⟨𝜎1, 𝜎2⟩-stable subgroup of 𝑋 and let 𝑠, 𝑡 ∈ 𝑁𝑋(𝑌
◦). Assume

that𝑁𝑋𝑠𝜎1
(𝑌◦

𝑠𝜎1
) = 𝑁𝑋(𝑌

◦)𝑠𝜎1 ,𝑁𝑋𝑡𝜎2
(𝑌◦

𝑡𝜎2
) = 𝑁𝑋(𝑌

◦)𝑡𝜎2 and [𝑠𝜎1, 𝑡𝜎2] = 1. Let g ∈ 𝑋𝜎1
𝜎2 andℎ ∈

𝑋𝜎2
𝜎1 with 𝐹(g

𝑋𝜎1 ) = ℎ𝑋𝜎2 . Then the number of ⟨𝑋𝜎1
, 𝜎2⟩-conjugates of (𝑌◦

𝑠𝜎1
𝑡𝜎2)

𝑠𝜎1 that contain g

equals the number of ⟨𝑋𝜎2
, 𝜎1⟩-conjugates of (𝑌◦

𝑡𝜎2
𝑠𝜎1)

𝑡𝜎2 that contain ℎ.
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8 of 38 HARPER

2.3 Shintani descent and subfields

Referring to the cases in Theorem 2.3, to see how Shintani descent relates to subgroups in case (I)
(the ‘algebraic subgroups’), the key tool is Theorem 2.6, which we introduced in the previous
section. However, we will need new techniques to handle the subgroups in case (II) (the ‘subfield
subgroups’). This is what we introduce in this section. (Other methods are available to study the
subgroups in cases (III)–(V).)

Lemma 2.9. Let𝑋 be a connected algebraic group and let 𝜎1 and 𝜎2 be commuting Steinberg endo-
morphisms of 𝑋. Let 𝑑 ⩾ 1. Let 𝐹1 be the Shintani map of (𝑋, 𝜎1, 𝜎2) and let 𝐹2 be the Shintani map
of (𝑋, 𝜎𝑑

1
, 𝜎2). Let 𝑥 ∈ 𝑋𝜎1

. Then 𝐹2(𝑥𝜎2) = 𝐹1(𝑥𝜎2)
𝑑 .

Proof. Let 𝑥 = 𝑎𝜎2 . By Remark 2.5(i), 𝐹1(𝑥𝜎2)
𝑑 = (𝑎−1𝑎𝜎

−1
1 𝜎1)

𝑑 = 𝑎−1𝑎𝜎
−𝑑
1 𝜎𝑑

1
= 𝐹2(𝑥𝜎2). □

Theorem 2.10. Let 𝑋 be a connected algebraic group and let 𝜎 be a Steinberg endomorphism of
𝑋. Let 𝐹 be the Shintani map of (𝑋, 𝜎𝑚, 𝜎𝑙) where 𝑙 ∣ 𝑚. Let 𝑥 ∈ 𝑋𝜎𝑚 . Let 𝑘 be a prime divisor of𝑚.
Then 𝑥𝜎𝑙 is contained in an𝑋𝜎𝑚 -conjugate of ⟨𝑋𝜎𝑚∕𝑘 , 𝜎⟩ if and only if 𝐹(𝑥𝜎𝑙) = 𝑧𝑘 for 𝑧 ∈ 𝑋𝜎𝑙𝜎

𝑚∕𝑘 .

Proof. Let 𝐸∶ 𝑋𝜎𝑚∕𝑘𝜎𝑙 → 𝑋𝜎𝑙𝜎
𝑚∕𝑘 be the Shintani map of (𝑋, 𝜎𝑚∕𝑘, 𝜎𝑙).

For the forward direction, assume that 𝑥𝜎𝑙 is contained in an𝑋𝜎𝑚 -conjugate of ⟨𝑋𝜎𝑚∕𝑘 , 𝜎⟩. Then
𝑥𝜎𝑙 is 𝑋𝜎𝑚 -conjugate to g𝜎𝑙 for some g ∈ 𝑋𝜎𝑚∕𝑘 . By Lemma 2.9, 𝐹(𝑥𝜎𝑙) = 𝐹(g𝜎𝑙) = 𝐸(g𝜎𝑙)𝑘 and
𝐸(g𝜎𝑙) ∈ 𝑋𝜎𝑙𝜎

𝑚∕𝑘 as required.
For the reverse direction, assume that there exists 𝑧 ∈ 𝑋𝜎𝑙𝜎

𝑚∕𝑘 such that 𝑧𝑘 = 𝐹(𝑥𝜎𝑙). Let
g ∈ 𝑋𝜎𝑚∕𝑘 such that 𝐸(g𝜎𝑙) = 𝑧. By Lemma 2.9, 𝐹(g𝜎𝑙) = 𝐸(g𝜎𝑙)𝑘 = 𝑧𝑘 = 𝐹(𝑥𝜎𝑙), so 𝑥𝜎𝑙 is
𝑋𝜎𝑚 -conjugate to g𝜎𝑙, so 𝑥𝜎𝑙 is contained in an 𝑋𝜎𝑚 -conjugate of ⟨𝑋𝜎𝑚∕𝑘 , 𝜎⟩. □

In practice, we will use a corollary of Theorem 2.10 that is slightly easier to apply. To obtain this
corollary, we first need the following lemma.

Lemma 2.11. Let 𝑋 be a connected algebraic group and let 𝜎 be a Steinberg endomorphism of 𝑋.
Let 𝑒, 𝑘 ⩾ 1 be coprime. Let 𝑦 ∈ 𝑋𝜎𝑘 . Then 𝑦 is 𝑋-conjugate to an element of 𝑋𝜎 if and only if 𝑦 is
𝑋-conjugate to 𝑧𝑘 for an element 𝑧 ∈ 𝑋𝜎𝑘𝜎

𝑒.

Proof. Let 𝐹∶ 𝑋𝜎𝑘𝜎 → 𝑋𝜎 be the Shintani map of (𝑋, 𝜎𝑘, 𝜎).
For the forward direction, assume that 𝑦 is𝑋-conjugate to𝑤 ∈ 𝑋𝜎. Fix 𝑎 ⩾ 1 such that (𝑎, |𝑦|) =

1 and 𝑎 ≡ 𝑒 (mod 𝑘) and fix 𝑏 ⩾ 1 such that 𝑎𝑏 ≡ 1 (mod |𝑦|). Then 𝑦 = 𝑦𝑎𝑏 is 𝑋-conjugate
to 𝑤𝑎𝑏 = (𝑤𝑏)𝑎, which, by Remark 2.5(ii), is 𝑋-conjugate to (𝐹−1(𝑤𝑏)𝑘)𝑎 = (𝐹−1(𝑤𝑏)𝑎)𝑘, and
𝐹−1(𝑤𝑏)𝑎 ∈ 𝑋𝜎𝑘𝜎

𝑎 = 𝑋𝜎𝑘𝜎
𝑒.

For the reverse direction, assume that 𝑦 is𝑋-conjugate to 𝑧𝑘 for some 𝑧 ∈ 𝑋𝜎𝑘𝜎
𝑒. Fix 𝑐 ⩾ 1 such

that (𝑐, |𝑦|) = 1 and 𝑐𝑒 ≡ 1 (mod 𝑘) and fix 𝑑 ⩾ 1 such that 𝑐𝑑 ≡ 1 (mod |𝑦|). Then 𝑦 = 𝑦𝑐𝑑 is 𝑋-
conjugate to 𝑧𝑘𝑐𝑑 = (𝑧𝑐𝑘)𝑑. Now 𝑧𝑐 ∈ 𝑋𝜎𝑘𝜎

𝑐𝑒 = 𝑋𝜎𝑘𝜎, and by Remark 2.5(ii), (𝑧𝑐𝑘)𝑑 is𝑋-conjugate
to 𝐹(𝑧𝑐)𝑑 ∈ 𝑋𝜎. □

We can now state the main result we use to relate Shintani descent and subfield subgroups.
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TOTALLY DERANGED ELEMENTS OF ALMOST SIMPLE GROUPS AND INVARIABLE GENERATING SETS 9 of 38

Corollary 2.12. Let 𝑋 be a connected algebraic group and let 𝜎 be a Steinberg endomorphism of 𝑋.
Let 𝐹 be the Shintani map of (𝑋, 𝜎𝑚, 𝜎𝑙) where 𝑙 ∣ 𝑚. Let 𝑥 ∈ 𝑋𝜎𝑚 . Let 𝑘 be a prime divisor of𝑚.

(i) If 𝑘 divides𝑚∕𝑙, then 𝑥𝜎𝑙 is contained in an𝑋𝜎𝑚 -conjugate of ⟨𝑋𝜎𝑚∕𝑘 , 𝜎⟩ if and only if 𝐹(𝑥𝜎𝑙) =
𝑧𝑘 for some 𝑧 ∈ 𝑋𝜎𝑙 .

(ii) Assume 𝐹(𝑥𝜎𝑙)𝑋 ∩ 𝑋𝜎𝑙 = 𝐹(𝑥𝜎𝑙)𝑋𝜎𝑙 . If 𝑘 does not divide𝑚∕𝑙, then 𝑥𝜎𝑙 is contained in an 𝑋𝜎𝑚 -
conjugate of ⟨𝑋𝜎𝑚∕𝑘 , 𝜎⟩ if and only if 𝐹(𝑥𝜎𝑙) is contained in an 𝑋𝜎𝑙 -conjugate of 𝑋𝜎𝑙∕𝑘 .

Proof. If 𝑘 divides 𝑚∕𝑙, then 𝜎𝑚∕𝑘 = 1, so the result holds by Theorem 2.10. Now assume that 𝑘
does not divide𝑚∕𝑙. By assumption, 𝐹(𝑥𝜎𝑙)𝑋 ∩ 𝑋𝜎𝑙 = 𝐹(𝑥𝜎𝑙)𝑋𝜎𝑙 , so the result holds by combining
Theorem 2.10 and Lemma 2.11. □

The following example illustrates the utility of Corollary 2.12.

Example 2.13. Let 𝑋 = GL𝑛 and write 𝑞 = 𝑝𝑓 and 𝑞0 = 𝑝𝑖 where 𝑖 ∣ 𝑓. Let 𝑥 ∈ GL𝑛(𝑞) = 𝑋𝜑𝑓

and 𝑥0 ∈ GL𝑛(𝑞0) = 𝑋𝜑𝑖 satisfy 𝐹((𝑥𝜑𝑖)GL𝑛(𝑞)) = 𝑥0
GL𝑛(𝑞0) where 𝐹∶ GL𝑛(𝑞)𝜑

𝑖 → GL𝑛(𝑞0) is the
Shintani map of (𝑋, 𝜑𝑓, 𝜑𝑖). Since conjugacy in both 𝑋 = GL𝑛 and 𝑋𝜑𝑖 = GL𝑛(𝑞0) is determined
by the rational canonical form, the condition 𝑥𝑋

0
∩ 𝑋𝜑𝑖 = 𝑥0

𝑋𝜑𝑖 is satisfied.
Assume that 𝑓 is even and 𝑒 = 𝑓∕𝑖 is odd (so 𝑖 is even), and write 𝑚 = 2𝑓∕𝑖 and 𝑙 = 2. We

consider two examples.

(i) Let 𝜎 = 𝜑𝑖∕2. Then 𝐹 is the Shintani map of (𝑋, 𝜎𝑚, 𝜎𝑙), and by Corollary 2.12(ii), 𝑥𝜑𝑖 is con-
tained in a subgroup of ⟨GL𝑛(𝑞), 𝜑⟩ of type ⟨GL𝑛(𝑞1∕2), 𝜑⟩ if and only if 𝑥0 is contained in a
subgroup of GL𝑛(𝑞0) of type GL𝑛(𝑞

1∕2
0

).
(ii) Let𝜎 = 𝛾𝜑𝑖∕2where 𝛾 is the standard graph automorphismof𝑋. Then, again,𝐹 is the Shintani

map of (𝑋, 𝜎𝑚, 𝜎𝑙), but, in this case, by Corollary 2.12(ii), 𝑥𝜑𝑖 is contained in a subgroup of⟨GL𝑛(𝑞), 𝜑⟩ of type ⟨GU𝑛(𝑞
1∕2), 𝜑⟩ if and only if 𝑥0 is contained in a subgroup of GL𝑛(𝑞0) of

type GU𝑛(𝑞
1∕2
0

).

2.4 Reductive maximal rank subgroups and related finite subgroups

This final preliminary section is dedicated to the reductive maximal rank subgroups that arise in
part (I) of Theorem 2.3, which will play a particular role in our proofs.
Let 𝑋 be a simple algebraic group and let 𝜎 be a Steinberg endomorphism of 𝑋. For 𝑥 ∈ 𝑋, we

will regularly use the notation 𝑥𝜎 = 𝑥𝑥−𝜎
−1 introduced in (2.1).

Let 𝑆 be a 𝜎-stablemaximally split maximal torus of𝑋 and let𝑌 be a closed connected reductive
𝜎-stable subgroup of 𝑋 containing 𝑆. Let 𝑥 ∈ 𝑋 such that 𝑌𝑥 is 𝜎-stable. Since 𝑌𝑥 contains a 𝜎-
stable maximal torus, without loss of generality, we may assume that 𝑆𝑥 is also 𝜎-stable. The
possibilities for (𝑌𝑥)𝜎 up to 𝑋𝜎-conjugacy are in bijection with the conjugacy classes in the coset
(𝑁𝑋(𝑌)∕𝑌)𝜎, via (𝑌𝑥)𝜎 ↦ 𝑌𝑥𝜎𝜎 (see [38, Theorem 21.11] for example).
The following easy observation will be useful.

Lemma 2.14. Let 𝑋 be a connected algebraic group and let 𝜎 be a Steinberg endomorphism of 𝑋.
Let 𝑌 ⩽ 𝑋 be a closed 𝜎-stable subgroup, let 𝑥 ∈ 𝑋 and let 𝑒 ⩾ 0. Then (𝑌𝑥)𝜎𝑒 = 𝑌𝑥

(𝑥𝜎𝜎)
𝑒 .
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10 of 38 HARPER

Proof. Here, (𝑌𝑥)𝜎𝑒 = 𝑌𝑥
𝜓
for 𝜓 = (𝜎𝑒)𝑥

−1
= (𝜎𝑥

−1
)𝑒 = (𝑥𝜎𝜎)

𝑒. □

We can now present a technical result that we use in the proof of Proposition 3.3.

Lemma 2.15. Let 𝑋 be a simple algebraic group, let 𝜎 be a Steinberg endomorphism of 𝑋, let 𝑀
be a closed connected reductive 𝜎-stable maximal rank subgroup of 𝑋 and let 𝑒 be a positive integer.
Assume that one of the following holds:

(i) 𝑋 ∈ {𝐺2, 𝐹4, 𝐸6, 𝐸7, 𝐸8} and 𝜎 = 𝜑𝑖 ,
(ii) 𝑋 ∈ {𝐵2, 𝐺2, 𝐹4}, 𝜎 = 𝜌𝑖 (odd 𝑖) and 2 ∤ 𝑒,
(iii) 𝑋 = 𝐸6, 𝜎 = 𝛾𝜑𝑖 and 2 ∤ 𝑒,
(iv) 𝑋 = 𝐷4, 𝜎 = 𝜏𝜑𝑖 and 3 ∤ 𝑒.

If𝑁𝑋𝜎
(𝑀𝜎) is a maximal subgroup of 𝑋𝜎, then𝑁𝑋𝜎𝑒

(𝑀𝜎𝑒 ) is a maximal subgroup of 𝑋𝜎𝑒 .

Before we prove Lemma 2.15, let us make a modification to the above setup that will make our
calculations easier (both in the following proof and later in the paper).
Fix the Weyl groups𝑊𝑋 = 𝑁𝑋(𝑆)∕𝑆 and𝑊𝑌 = 𝑁𝑌(𝑆)∕𝑆, and for 𝑛 ∈ 𝑁𝑋(𝑆), write �̄� = 𝑆𝑛 ∈

𝑊𝑋 . Write 𝐴 = 𝑁𝑊𝑋
(𝑊𝑌)∕𝑊𝑌 and note that 𝑁𝑋(𝑌)∕𝑌 ≅ 𝐴. The endomorphism 𝜎 induces an

automorphism 𝛼 = 𝜎|𝐴 on 𝐴, and by [13, Corollary 3], the possibilities for (𝑌𝑥)𝜎 up to 𝑋𝜎-
conjugacy are also in bijection with the conjugacy classes in the coset 𝐴𝛼, via (𝑌𝑥)𝜎 ↦ 𝑊𝑌�̄�𝜎𝛼.
Let us write

𝜎 = {𝑊𝑌�̄�𝜎 ∈ 𝐴 ∣ 𝑁𝑋𝜎
((𝑌𝑥)𝜎) is maximal in 𝑋𝜎}.

We are now in a position to prove Lemma 2.15.

Proof of Lemma 2.15. Let 𝑆 be a 𝜎-stable maximally split maximal torus of𝑋, and let 𝑌 be a closed
connected reductive 𝜎-stable subgroup of 𝑋 containing 𝑆. Let 𝑥 ∈ 𝑋 such that 𝑀 = 𝑌𝑥 and 𝑆𝑥

are 𝜎-stable. We will prove that if𝑁𝑋𝜎
((𝑌𝑥)𝜎) is maximal in 𝑋𝜎, then𝑁𝑋𝜎𝑒

((𝑌𝑥)𝜎𝑒 ) is maximal in
𝑋𝜎𝑒 . From Lemma 2.14, recall that 𝑁𝑋𝜎

((𝑌𝑥)𝜎) = 𝑁𝑋𝜎
(𝑌𝑥

𝑥𝜎𝜎
) and 𝑁𝑋𝜎𝑒

((𝑌𝑥)𝜎𝑒 ) = 𝑁𝑋𝜎𝑒
(𝑌𝑥

(𝑥𝜎𝜎)
𝑒 ).

We will prove that if 𝑎 ∈ 𝜎𝛼, then 𝑎𝑒 ∈ 𝜎𝑒𝛼
𝑒, which establishes the claim.

First consider part (i). Here, 𝜎 centralises𝑊𝑋 , so 𝛼 = 1, and we need to verify that if 𝑎 ∈ 𝐴𝜎,
then 𝑎𝑒 ∈ 𝐴𝜎𝑒 . This is easily deduced by inspecting [34, Tables 5.1 & 5.2]. For example, let us
consider in detail the case where 𝑋 = 𝐸8. Then either 𝑌 yields no maximal subgroups of 𝑋𝜎 (so
𝐴𝜎 = ∅) or all the possible types of subgroup arising from 𝑌 are maximal in 𝑋𝜎 and 𝑋𝜎𝑒 (so 𝐴𝜎 =

𝐴𝜎𝑒 = 𝐴) or, inspecting the proof of [34, Lemma 2.5], 𝑌 ∈ {𝐷2
4
, 𝐴4

2
, 𝐴8

1
, 𝑆}. When 𝑌 is 𝐷2

4
, 𝐴4

2
or

𝐴8
1
, we see that 𝐴𝜎 = 𝐴𝜎𝑒 is a proper subgroup of 𝐴 (we have 𝐶6 < Sym3 × 𝐶2, 𝐶8 < GL2(3), 1 <

AGL3(2), respectively).
Finally assume that 𝑌 = 𝑆. Here, 𝐴 = 𝑊𝐸8

and, writing 𝐼 = {1, 2, 3, 4, 5, 6, 10, 12, 15, 30}, for
each 𝑖 ∈ 𝐼, we may fix 𝑎𝑖 ∈ 𝐴 satisfying |𝑎𝑖| = 𝑖 and {𝑎𝑖 ∣ 𝑖 ∈ 𝐼}𝐴 = (⟨𝑎30⟩ ∪ ⟨𝑎12⟩)𝐴 such that we
have

𝐴𝜑𝑗 =

⎧⎪⎨⎪⎩
{𝑎𝑖 ∣ 𝑖 ∈ 𝐼 ⧵ {1, 6}}𝐴 if (𝑝, 𝑗) = (2, 1)

{𝑎𝑖 ∣ 𝑖 ∈ 𝐼 ⧵ {1}}𝐴 if (𝑝, 𝑗) ∈ {(2, 2), (3, 1)}

{𝑎𝑖 ∣ 𝑖 ∈ 𝐼}𝐴 otherwise.

In all cases, if 𝑎 ∈ 𝐴𝜎, then 𝑎𝑒 ∈ 𝐴𝜎𝑒 .
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TOTALLY DERANGED ELEMENTS OF ALMOST SIMPLE GROUPS AND INVARIABLE GENERATING SETS 11 of 38

Now consider parts (ii)–(iv). These are all similar, so we just give the details for part (ii). Here,
𝑋 ∈ {𝐵2, 𝐺2, 𝐹4} and 𝜌 (so 𝜎 and 𝜎𝑒) induces a non-trivial involution 𝛼 on𝑊𝑋 . We will verify that
if 𝑎 ∈ 𝐴𝜎𝛼, then 𝑎𝑒 ∈ 𝐴𝜎𝑒𝛼 for all odd 𝑒. First assume 𝑋 = 𝐵2. By [34, Table 5.1], 𝑌 = 𝑆 and, by
[34, Table 5.2], 𝐴𝜎 = 𝐴𝜎𝑒 = 𝐴, so the result holds.
Next assume 𝑋 = 𝐺2. By [34, Table 5.1], 𝑌 = 𝑆, so𝐴 = 𝑊𝐺2

. Let us consider the dihedral group
𝐷24 = ⟨𝑠, 𝑡 ∣ 𝑠12, 𝑠2, 𝑠𝑡 = 𝑠−1⟩. Then𝐴 = ⟨𝑠2, 𝑡⟩ = 𝐷12 and 𝛼 induces 𝑠𝑡, so𝐴𝛼 = 𝐷24 ⧵ 𝐷12. For 𝑠 =
𝑢𝛼, it is easy to check that {|𝑆𝑢𝑗𝜌𝑖 | ∣ 𝑗 odd} = {𝑞0 + 1, 𝑞0 ±

√
3𝑞0 + 1}. Therefore, by [34, Table 5.2],

𝐴𝜎𝛼 = 𝐴𝜎𝑒𝛼 = {(𝑢𝛼)𝑗 ∣ 𝑗 odd}, so if 𝑎 ∈ 𝐴𝜎𝛼, then 𝑎𝑒 ∈ 𝐴𝜎𝑒𝛼.
Finally, assume that 𝑋 = 𝐹4. For now also assume that 𝑌 ≠ 𝑆. Here, by [34, Table 5.1],

𝑌 ∈ {𝐴2�̃�2, 𝐵
2
2
} and 𝐴𝜎 = 𝐴𝜎𝑒 = 𝐴, so the result holds. It remains to assume that 𝑌 = 𝑆,

where 𝐴 = 𝑊𝐹4
. Fix 𝑢 ∈ 𝐴 such that |𝑢𝛼| = 4 and {|𝑆𝑢𝑗𝜌𝑖 | ∣ 𝑗 odd} = {(𝑞0 + 1)2} and 𝑣 ∈ 𝐴 such

that |𝑣𝛼| = 24 and {|𝑆𝑣𝑗𝜌𝑖 | ∣ 𝑗 odd} = {𝑞2
0
±
√
2𝑞

3∕2
0

+ 𝑞0 ±
√
2𝑞0 + 1, (𝑞0 ±

√
2𝑞0 + 1)2}. Then by

[34, Table 5.2], 𝐴𝜎𝛼 = 𝐴𝜎𝑒𝛼 = {(𝑢𝛼)𝑗, (𝑣𝛼)𝑗 ∣ 𝑗 odd}, so 𝑎𝑒 ∈ 𝐴𝜎𝑒𝛼 if 𝑎 ∈ 𝐴𝜎𝛼. The proof is
complete. □

3 TOTALLY DERANGED ELEMENTS

We now turn to the proof of Theorem 2. Sections 3.1–3.4 prove that the only possible examples
appear in Theorem 2, and Section 3.5 proves that the examples in Theorem 2 really are totally
deranged. We formally complete the proof in Section 3.6.

3.1 Alternating, sporadic and small groups

We begin by reducing the proof of Theorem 2 to the almost simple groups of Lie type.We also take
this opportunity to handle some small groups of Lie type.

Proposition 3.1. Let𝐺 be an almost simple groupwhose socle is alternating, sporadic, the Tits group
or one of the following groups of Lie type

PSL2(𝑞)∶ 𝑞 ⩽ 9, PSL3(𝑞)∶ 𝑞 ⩽ 4, PSL4(𝑞)∶ 𝑞 ⩽ 3, PSU3(𝑞)∶ 𝑞 ⩽ 4, PSU5(2), 𝐺2(3).

Then 𝐺 has no totally deranged elements.

Proof. Let 𝑥 ∈ 𝐺. First assume that 𝐺 is simple. Then every maximal subgroup is core-free, so 𝑥
is certainly contained in a core-free maximal subgroup and is thus not totally deranged.
Next assume that 𝐺 = Sym𝑛 with 𝑛 ⩾ 5. If 𝑥 stabilises a subset of size 𝑘, for some 0 < 𝑘 < 𝑛,

then 𝑥 is contained in a 𝐺-conjugate of Sym𝑘 × Sym𝑛−𝑘 if 𝑛 ≠ 2𝑘 or Sym𝑘 ≀ Sym2 if 𝑛 = 2𝑘. If
𝑥 is an 𝑛-cycle, then 𝑥 is contained in a 𝐺-conjugate of Sym𝑎 ≀ Sym𝑏 if 𝑛 = 𝑎𝑏 with 𝑎, 𝑏 > 1 or
AGL1(𝑛) if 𝑛 is prime. Each of these overgroups is amaximal subgroup of𝐺 (see themain theorem
of [33]), so, in all cases, 𝑥 is contained in a core-free maximal subgroup and we deduce that 𝑥 is
not totally deranged.
It remains to consider the non-simple sporadic groups, the remaining extensions of Alt6,

the almost simple group 2𝐹4(2) and the non-simple extensions of the groups displayed in the
statement. In these cases, it is straightforward to verify computationally that every element of
𝐺 is contained in a core-free maximal subgroup and is thus not totally deranged. We handle the
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12 of 38 HARPER

sporadic groups using the Character Table Library [7] in GAP [22], but the remaining groups can
be computed with directly in Magma [5]. The code is in [28]. □

3.2 Eliminating most possibilities

Turning to the groups of Lie type, we begin with Propositions 3.3 and 3.4, which eliminate all
but a few families of groups. The cases not covered here require more involved arguments (see
Sections 3.3 and 3.4). However, we first record a small generalisation of [12, Lemma 6.4].

Lemma 3.2. Let 𝑇 be a finite simple group of Lie type, let 𝑇 ⩽ 𝐺 ⩽ Inndiag(𝑇) and let 𝑥 ∈ 𝐺. If 𝑥 is
not contained in a parabolic subgroup of 𝐺, then 𝑥 is a regular semisimple element.

Proof. We prove the contrapositive. Assume that 𝑥 is not regular semisimple. Not being regular
semisimple is equivalent to commuting with a unipotent element (see [4, Corollary E.III.1.4], for
instance). Therefore, fix a unipotent element 𝑢 ∈ 𝐺 such that 𝑥 ∈ 𝐶𝐺(𝑢). Now 𝐶𝐺(𝑢) is contained
in𝑁𝐺(⟨𝑢⟩), which, by the Borel–Tits theorem for finite groups of Lie type (see [38, Theorem 26.5],
for instance), is contained in a parabolic subgroup of 𝐺. □

Proposition 3.3. Let 𝑇 be a finite simple group of Lie type, let 𝑇 ⩽ 𝐺 ⩽ Aut(𝑇) and let 𝑥 ∈ 𝐺.
Assume that one of the following holds:

(i) 𝑇 is untwisted or very twisted, and 𝐺 ⩽ ⟨Inndiag(𝑇), 𝜑⟩,
(ii) 𝑇 ∈ {𝐴𝜀

𝑚(𝑝
𝑓) (𝑚 ⩾ 2), 𝐷𝜀

𝑚(𝑝
𝑓) (𝑚 ⩾ 4), 𝐸𝜀

6
(𝑝𝑓)} and 𝑥 ∈ Inndiag(𝑇)𝛾𝜑𝑗 for 𝜀 = (−)𝑓∕𝑗 ,

where 𝐺 does not contain triality if 𝑇 = 𝐷4(𝑝
𝑓),

(iii) 𝑇 = 𝐷4(𝑝
𝑓) and 𝑥 ∈ Inndiag(𝑇)𝜏𝜑𝑗 with 3 ∣ 𝑓

𝑗
, or 𝑇 = 3𝐷4(𝑝

𝑓) and 𝑥 ∈ 𝑇𝜏𝜑𝑗 with 3 ∤ 𝑓

𝑗
.

Then 𝑥 is not totally deranged.

Proof. We may assume that 𝐺 is not in Proposition 3.1. We will first identify a core-free sub-
group 𝐻 ⩽ 𝐺 that contains 𝑥, and then we will prove that 𝐻 is a maximal subgroup of 𝐺. If
𝑥 ∈ Inndiag(𝑇), then we have some control over the maximal overgroups of 𝑥, but for the general
case, we will apply Shintani descent (see Section 2.2), which gives an element 𝑥0 ∈ Inndiag(𝑇0)

for a related group 𝑇0, which we use to inform us about our original element 𝑥 (in particular,
𝑇0 = 𝑇 and ⟨𝑥0⟩ = ⟨𝑥⟩ if 𝑥 ∈ Inndiag(𝑇), see Remark 2.5(ii)).
Let us establish some notation. We will fix a simple algebraic group 𝑋 and two Steinberg endo-

morphisms 𝜎1 and 𝜎2 such that 𝑋𝜎1
= Inndiag(𝑇) and 𝑥 ∈ Inndiag(𝑇)𝜎2. The specific choices for

(𝑋, 𝜎1, 𝜎2) are given in Table 1. (We will define 𝑇0 below.)
We claim that Table 1 exhausts all possibilities in the statement. To see this, first note that

Rows 3–6 cover parts (ii) and (iii). Now consider part (i). If 𝑇 is untwisted, then by replacing 𝑥
by another generator of ⟨𝑥⟩ if necessary, we may assume that 𝑥 ∈ Inndiag(𝑇)𝜑𝑗 where 𝑗 divides
𝑓, and 𝜑𝑗 = 𝜎2 in Row 1. Similarly, if 𝑇 is very twisted, then since ⟨𝜑𝑗⟩ = ⟨𝜌𝑗⟩, we may assume
that 𝑥 ∈ Inndiag(𝑇)𝜌𝑗 where 𝑗 divides 𝑓, and 𝜌𝑗 = 𝜎2 in Row 2.
Let 𝐹∶ 𝑋𝜎1

𝜎2 → 𝑋𝜎2
𝜎1 be the Shintani map of (𝑋, 𝜎1, 𝜎2). Since 𝜎1 = 𝜎

𝑓∕𝑗
2

, we have 𝜎1 = 1.
Write𝑇0 = 𝑋𝜎2

and𝐹∶ Inndiag(𝑇)𝜎2 → Inndiag(𝑇0). Observe that, except inRows 4 and 6,𝑇0 has
the same type as 𝑇 except it is defined over the subfield 𝔽𝑞0 of 𝔽𝑞. Noting that 𝑥 ∈ Inndiag(𝑇)𝜎2,
define 𝑥0 = 𝐹(𝑥) ∈ Inndiag(𝑇0). We find a core-free maximal subgroup 𝐻 of 𝐺 containing 𝑥 by
first considering subgroups𝐻0 of 𝐺0 = Inndiag(𝑇0) containing 𝑥0.
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TOTALLY DERANGED ELEMENTS OF ALMOST SIMPLE GROUPS AND INVARIABLE GENERATING SETS 13 of 38

TABLE 1 Notation for the proof of Proposition 3.3 (here 𝑞 = 𝑝𝑓 , 𝑞0 = 𝑝𝑗 , 𝑗 divides 𝑓, 𝑒 = 𝑓∕𝑗)

Row 𝑿 𝝈𝟏 𝝈𝟐 𝑻 𝑻𝟎 Conditions
1 any 𝜑𝑓 𝜑𝑗 𝑋(𝑞) 𝑋(𝑞0) None
2 𝐵2, 𝐹4, 𝐺2 𝜌𝑓 𝜌𝑗 2𝑋(𝑞) 2𝑋(𝑞0) 𝑓 odd
3 𝐴𝑚, 𝐷𝑚, 𝐸6 𝛾𝜑𝑓 𝛾𝜑𝑗 2𝑋(𝑞) 2𝑋(𝑞0) 𝑒 odd
4 𝐴𝑚, 𝐷𝑚, 𝐸6 𝜑𝑓 𝛾𝜑𝑗 𝑋(𝑞) 2𝑋(𝑞0) 𝑒 even
5 𝐷4 𝜏𝜑𝑓 𝜏𝑒𝜑𝑗 3𝑋(𝑞) 3𝑋(𝑞0) 3 ∤ 𝑒
6 𝐷4 𝜑𝑓 𝜏𝜑𝑗 𝑋(𝑞) 3𝑋(𝑞0) 3 | 𝑒

Case 1. 𝑥0 is contained in a parabolic subgroup of 𝐺0.
Let 𝐻0 be a maximal parabolic subgroup of 𝐺0 containing 𝑥0. Then 𝐻0 = 𝑌𝜎2

for a max-
imal 𝜑-stable parabolic subgroup of 𝑌 ⩽ 𝑋. Theorem 2.6 implies that 𝑥 is contained in an⟨𝑋𝜎1

, 𝜎2⟩-conjugate of ⟨𝑌𝜎1
, 𝜎2⟩. Let𝐻 = 𝑁𝐺(𝑌𝜎1

), so𝑥 ∈ 𝐻. Since𝑌 is𝜑-stable,𝜑 normalises𝑌𝜎1
.

In Rows 1 and 2, |𝐻 ∶ 𝐻 ∩ Inndiag(𝑇)| = |𝐻 ∶ 𝐻 ∩ 𝑌𝜎1
| = 𝑓∕𝑖 = |𝐺 ∶ 𝐺 ∩ Inndiag(𝑇)|, where⟨Inndiag(𝑇), 𝐺⟩ = ⟨Inndiag(𝑇), 𝜑𝑖⟩. Hence, 𝐻 is maximal in 𝐺 as 𝐻 ∩ Inndiag(𝑇) is maximal in

Inndiag(𝑇). In Rows 3–6,𝑋 ∈ {𝐴𝑚,𝐷𝑚, 𝐸6} and𝑇0 is twisted, so𝑌 is actually ⟨𝜑, 𝛾⟩-stable, so again|𝐻 ∶ 𝐻 ∩ 𝑌𝜎1
| = |𝐺 ∶ 𝐺 ∩ Inndiag(𝑇)| and𝐻 = 𝑁𝐺(𝑌𝜎1

) is maximal.
Case 2. 𝑥0 is not contained in a parabolic subgroup of 𝐺0.
By Lemma 3.2, 𝑥0 is a (regular) semisimple element, so it is contained in a maximal torus of

𝐺0 and hence in 𝐻0 = 𝑌𝜎2
for a connected reductive maximal rank subgroup 𝑌 ⩽ 𝑋. We may

assume that 𝑌 is maximal among such subgroups, so 𝑁𝐺0
(𝐻0) is a maximal subgroup of 𝐺0. If 𝑋

is classical, then to simplify our maximality arguments later in the proof, we will exhibit a specific
choice of𝐻0. (Later we will see why it is useful to record the type of 𝑌).
Case 2a. 𝑇0 = PSL𝑛(𝑞0).
Since 𝑥0 is not in a parabolic subgroup, 𝑥0 is irreducible, so is contained in a field extension

subgroup𝐻0 of type GL𝑛∕𝑘(𝑞𝑘0 ) for the least prime 𝑘 dividing 𝑛 (so 𝑌 has type GL𝑘
𝑛∕𝑘

).
Case 2b. 𝑇0 = PSU𝑛(𝑞0).
First assume that 𝑥0 is irreducible. Then 𝑛 is odd and 𝑥0 ∈ 𝐻0 of type GU𝑛∕𝑘(𝑞

𝑘
0
) for the least

prime 𝑘 dividing 𝑛 (so 𝑌 has type GL𝑘
𝑛∕𝑘

). Now assume that 𝑥0 is reducible. Then 𝑥0 stabilises a
𝑘-space𝑈 for some 0 < 𝑘 ⩽ 𝑛∕2. Since 𝑥0 is in no parabolic subgroup,𝑈must be non-degenerate.
Since 𝑥0 is semisimple, we may assume that 𝑥0 acts irreducibly on 𝑈, which implies that 𝑈 has
odd dimension 𝑘, so 𝑥0 ∈ 𝐻0 of type GU𝑘(𝑞0) × GU𝑛−𝑘(𝑞0) (so 𝑌 has type GL𝑘 × GL𝑛−𝑘, perhaps
with 𝑘 = 𝑛 − 𝑘).
Case 2c. 𝑇0 = PSp𝑛(𝑞0).
If 𝑞0 is even, then 𝑥0 ∈ 𝐻0 of typeΩ+

𝑛 (𝑞0) orΩ
−
𝑛 (𝑞0) (so 𝑌 has typeΩ𝑛). Now assume that 𝑞0 is

odd. Here we proceed as in the previous case. First assume that 𝑥0 is irreducible. Then 𝑥0 ∈ 𝐻0

of type Sp𝑛∕𝑘(𝑞𝑘0 ) for the least prime 𝑘 dividing 𝑛∕2 (so 𝑌 has type Sp𝑘
𝑛∕𝑘

). Now assume that 𝑥0
is reducible. Then 𝑥0 stabilises a 𝑘-space 𝑈 for some 0 < 𝑘 ⩽ 𝑛∕2. Since 𝑥0 is in no parabolic
subgroup,𝑈must be non-degenerate, so 𝑥0 ∈ 𝐻0 of type Sp𝑘(𝑞0) × Sp𝑛−𝑘(𝑞0) (so𝑌 has type Sp𝑘 ×
Sp𝑛−𝑘, perhaps with 𝑘 = 𝑛 − 𝑘).
Case 2d. 𝑇0 = PΩ𝜀

𝑛(𝑞0) for some 𝜀 ∈ {+, ◦, −}.
First assume that 𝑥0 is irreducible. In this case, 𝑇0 = PΩ−

2𝑚
(𝑞0) and 𝑥0 ∈ 𝐻0 of type SO−

𝑚(𝑞
2
0
) if

𝑚 is even (so 𝑌 has type Ω2
𝑚) or GU𝑚(𝑞0) if 𝑚 is odd (so 𝑌 has type GL2𝑚). Now assume that 𝑥0

is reducible. Since 𝑥0 is in no parabolic subgroup, 𝑥0 stabilises a proper non-zero non-degenerate
subspace𝑈. Since 𝑥0 is semisimple, we may assume that 𝑥0 acts irreducibly on𝑈, which implies
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14 of 38 HARPER

that 𝑈 is a minus-type space of even dimension 𝑘, so 𝑥0 ∈ 𝐻0 of type SO−
𝑘
(𝑞0) × SO−𝜀

𝑛−𝑘
(𝑞0) (so 𝑌

has type Ω𝑘 × Ω𝑛−𝑘, perhaps with 𝑘 = 𝑛 − 𝑘).
Case 2e. 𝑇0 = 3𝐷4(𝑞0).
Let 𝑆0 be a maximal torus of 𝑇0 that contains 𝑥0. If |𝑆0| ∈ {(𝑞2

0
± 𝑞0 + 1)2, 𝑞4

0
− 𝑞2

0
+ 1}, then

𝑥0 ∈ 𝐻0 = 𝑆0 (so 𝑌 is a maximal torus). Otherwise, consulting [15, Table 1.1], for example, since
𝑥0 is not contained in a parabolic subgroup of 𝑇0, we have |𝑆0| = (𝑞0 + 1)(𝑞3

0
+ 1), which means

that 𝑥0 ∈ 𝐻0 of type SL2(𝑞) × SL2(𝑞
3) (so 𝑌 has type SL42).

In summary, 𝑥0 is contained in 𝐻0 = 𝑌𝜎2
for a closed connected 𝜎2-stable subgroup 𝑌 ⩽ 𝑋, so

Theorem 2.6 implies that 𝑥 is contained in an ⟨𝑋𝜎1
, 𝜎2⟩-conjugate of ⟨𝑌𝜎1

, 𝜎2⟩. Let 𝐻 = 𝑁𝐺(𝑌𝜎1
).

We now show that 𝐻 is maximal, except for one case that we can easily handle. In all cases, if
𝑛 ⩽ 12, then to verify the claims on maximality, we refer the reader to the relevant table in [6,
Chapter 8] rather than to the stated reference in [32, Chapter 3].
Case 2A. 𝑇 = PSU𝑛(𝑞).
Here, 𝑇0 = PSU𝑛(𝑞0) and 𝑌 has type GL𝑘 × GL𝑛−𝑘 or GL𝑘𝑛∕𝑘 (𝑛 odd and 𝑘 prime), so 𝐻 is

maximal [32, Table 3.5B].
Case 2B. 𝑇 = PSp𝑛(𝑞).
Here 𝑇0 = PSp𝑛(𝑞0) and 𝑌 has type Ω𝑛 if 𝑞 is even and type Sp𝑘 × Sp𝑛−𝑘 or Sp𝑘𝑛∕𝑘 (𝑘 prime) if

𝑞 is odd, so 𝐻 is maximal [32, Table 3.5C].
Case 2C. 𝑇 = Ω𝑛(𝑞) for odd 𝑛.
Here, 𝑇0 = Ω𝑛(𝑞0) and 𝑌 has type Ω𝑘 × Ω𝑛−𝑘, so 𝐻 is maximal [32, Table 3.5D] (referring to

the exceptional case in that table, if 𝑞 = 3, then 𝜎1 = 𝜎2 = 𝜑, so 𝑌𝜎1
= 𝑌𝜎2

= 𝐻0, which has type
SO−

𝑘
(3) × SO𝑛−𝑘(3), see Case 2d).

Case 2D. 𝑇 = PΩ−
𝑛 (𝑞).

Here, 𝑇0 = PΩ−
𝑛 (𝑞0) and 𝑌 has type GL2

𝑛∕2
(𝑛∕2 odd) or Ω𝑘 × Ω𝑛−𝑘 (𝑘 even), so 𝐻 is maximal

[32, Table 3.5F] (if 𝑞 ⩽ 3, then𝐻 does not have type SO−
𝑛−2(𝑞) × SO+

2
(𝑞) as above).

Case 2E. 𝑇 = PSL𝑛(𝑞).
Here there are two possibilities, corresponding toRows 1 and 4 of Table 1, namely𝑇0 = PSL𝑛(𝑞0)

(with 𝜎2 = 𝜑𝑗) and 𝑇0 = PSU𝑛(𝑞0) (with 𝜎2 = 𝛾𝜑𝑗 and 𝑓∕𝑗 > 0 even). Inspecting Cases 2a and 2b
above, we see that we can divide into two subcases.
First assume that 𝑌 has type GL𝑘

𝑛∕𝑘
where 𝑘 is the least prime dividing 𝑛. Now 𝐻 is maximal

[32, Table 3.5A] (if 𝑞 ⩽ 3, then 𝐻 does not have type GL𝑛∕𝑘(𝑞) ≀ Sym𝑘), except that if 𝑞 = 4 and 𝑛
is prime, then when 𝑥 ∉ Inndiag(𝑇) the subgroup 𝐻 could have type GL1(4) ≀ Sym𝑛 and not be
maximal. Here, if𝐻 is not maximal, then it is contained in a subgroup �̃� of type PSU𝑛(2) (see [32,
Table 3.5H] and [6, Proposition 2.3.6]), which is maximal (see [32, Table 3.5A]), so we replace 𝐻
with �̃� in this case.
We may now assume that 𝑌 has type GL𝑘 × GL𝑛−𝑘 where 𝑘 < 𝑛 and 𝑇0 = PSU𝑛(𝑞0). As 𝑇0 =

PSU𝑛(𝑞0), we know that 𝑇𝜎2 = 𝑇𝛾𝜑𝑗 ∈ 𝐺∕𝑇, so 𝐺  ⟨Inndiag(𝑇), 𝜑⟩. Therefore, inspecting [32,
Tables 3.5A & 3.5H], we see that𝐻 is maximal.
Case 2F. 𝑇 = PΩ+

𝑛 (𝑞).
Here, there are three possibilities, corresponding to Rows 1, 4 and 6 of Table 1, namely 𝑇0 =

PΩ+
𝑛 (𝑞0) (with𝜎2 = 𝜑𝑗),𝑇0 = PΩ−

𝑛 (𝑞0) (with𝜎2 = 𝛾𝜑𝑗 and𝑓∕𝑗 even) and𝑇0 = 3𝐷4(𝑞0) (with𝜎2 =
𝜏𝜑𝑗 and 𝑒 = 𝑓∕𝑗 divisible by 3). Assume for now that 𝑇0 ≠ 3𝐷4(𝑞0). Inspecting Case 2d above, we
see that we can divide into two subcases.
First assume 𝑌 has type Ω𝑘 × Ω𝑛−𝑘 where 𝑘 < 𝑛 is even, so𝐻 is maximal [32, Table 3.5E].
We may now assume that 𝑌 has type Ω2

𝑛∕2
where 𝑛∕2 is even or GL2

𝑛∕2
where 𝑛∕2 is odd

and, in both cases, 𝑇0 = PΩ−
𝑛 (𝑞0). As 𝑇0 = PΩ−

𝑛 (𝑞0), we know that 𝑇𝜎2 = 𝑇𝛾𝜑𝑗 ∈ 𝐺∕𝑇, so 𝐺 
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TOTALLY DERANGED ELEMENTS OF ALMOST SIMPLE GROUPS AND INVARIABLE GENERATING SETS 15 of 38

⟨Inndiag(𝑇), 𝜑⟩. Moreover, we know that 𝑓∕𝑗 is even, so, by Lemma 2.14, 𝐻 has type SO+
𝑛∕2

(𝑞) ≀

Sym2 or GL𝑛∕2(𝑞).2. By consulting [32, Tables 3.5E & 3.5H], we see that𝐻 is maximal.
It remains to assume that 𝑇0 = 3𝐷4(𝑞0). From Case 2e above, we know that 𝑌 has type SL42 or

is a maximal torus. In the former case, 𝐻 has type SL2(𝑞)4. For the latter case, let 𝑆 be a max-
imally split 𝜎2-stable maximal torus of 𝑋 and write 𝑌 = 𝑆𝑦 . Seeking to apply the theory from
Section 2.4, let 𝐴 = 𝑁𝑊𝑋

(𝑊𝑌)∕𝑊𝑌 and let 𝛼 be the automorphism of 𝐴 induced by 𝜎2. Since|𝑆𝑦𝜎2𝜎2 | = |𝑌𝜎2
| ∈ {(𝑞2

0
± 𝑞0 + 1)2, 𝑞4

0
− 𝑞2

0
+ 1}, we deduce that𝑊𝑌�̄�𝜎2𝛼 ∈ 𝐴𝛼 has order 3, 6 or 12

(see [21, Section 7.5] for example). Now 3 divides 𝑒 = 𝑓∕𝑗, so (𝑊𝑌�̄�𝜎2𝛼)
𝑒 ∈ 𝐴 has order 1, 2 or 4.

By Lemma 2.14, |𝑌𝜎1
| = |𝑌𝜎𝑒

2
| = |𝑆(𝑦𝜎2𝜎2)𝑒 | ∈ {(𝑞 ± 1)4, (𝑞2 + 1)2}. In all cases, by [6, Table 8.50],

𝐻 is maximal since 𝐺  ⟨Inndiag(𝑇), 𝛾, 𝜑⟩.
Case 2G. 𝑇 is exceptional.
For now exclude the case in Row 4 of Table 1. Recall that we write𝐻0 = 𝑌𝜎2

and we know that
𝑁𝐺0

(𝐻0) is a maximal subgroup of 𝐺0 = Inndiag(𝑇0) = 𝑋𝜎2
. Applying Lemma 2.15, we deduce

that 𝑁Inndiag(𝑇)(𝑌𝜎1
) is a maximal subgroup of Inndiag(𝑇) = 𝑋𝜎1

. Now consulting [34, Tables 5.1
& 5.2], we deduce that𝐻 = 𝑁𝐺(𝑌𝜎1

) is a maximal subgroup of 𝐺.
It remains to consider 𝑇 = 𝐸6(𝑞) and 𝑇0 =

2𝐸6(𝑞0). Arguing as in the proof of Lemma 2.15,
using [34, Tables 5.1 & 5.2], it is easy to check that since 𝑁𝐺0

(𝐻0) is a maximal subgroup of 𝐺0,
we also have that 𝐻 = 𝑁𝐺(𝑌𝜎1

) is a maximal subgroup of 𝐺. Here, the only subtlety is that when
𝑌 has type 𝐷5, while 𝐻0 = 𝑌𝜎2

= PΩ−
10
(𝑞0) × (𝑞0 + 1) is maximal in Inndiag(𝐸6(𝑞0)) = 𝑋𝜎2

, the
subgroup 𝑌𝜎1

= PΩ+
10
(𝑞) × (𝑞 − 1) is not maximal in Inndiag(𝐸6(𝑞)) = 𝑋𝜎1

, but 𝐻 = 𝑁𝐺(𝑌𝜎1
) is

maximal in 𝐺 since 𝑇𝜎2 = 𝑇𝛾𝜑𝑗 ∈ 𝐺∕𝑇 and hence 𝐺  ⟨Inndiag(𝑇), 𝜑⟩.
In all cases, we have identified a core-free maximal subgroup𝐻 of 𝐺 that contains 𝑥, so 𝑥 is not

a totally deranged element of 𝐺. □

Proposition 3.4. Let 𝑇 be a finite simple group of Lie type, let 𝑇 ⩽ 𝐺 ⩽ Aut(𝑇) and let 𝑥 ∈ 𝐺.
Assume that one of the following holds:

(i) 𝑇 ∈ {𝐴𝑚(𝑝
𝑓) (𝑚 ⩾ 2), 𝐷𝑚(𝑝

𝑓) (𝑚 ⩾ 4), 𝐸6(𝑝𝑓)} and 𝑥 ∈ Inndiag(𝑇)𝛾𝜑𝑗 for 𝑓∕𝑗 odd, where
𝐺 does not contain triality if 𝑇 = 𝐷4(𝑝

𝑓),
(ii) 𝑇 ∈ {2𝐴𝑚(𝑝

𝑓) (𝑚 ⩾ 2), 2𝐷𝑚(𝑝
𝑓) (𝑚 ⩾ 4), 2𝐸6(𝑝𝑓)} and 𝑥 ∈ Inndiag(𝑇)𝜑𝑗 for 𝑗 ∣ 𝑓,

(iii) 𝑇 = 𝐷4(𝑝
𝑓) and 𝑥 ∈ Inndiag(𝑇)𝜏𝜑𝑗 with 3 ∤ 𝑓

𝑗
,

(iv) 𝑇 = 3𝐷4(𝑝
𝑓) and 𝑥 ∈ 𝑇𝜑𝑗 with 𝑗 ∣ 𝑓.

Then 𝑥 is not totally deranged.

Proof. In (i) and (ii), if 𝑇 = 𝐷±
𝑚(𝑝

𝑓), then [27, Theorem 5.8(iii)] implies that 𝑥 is contained in
𝑁𝐺(𝐻) where𝐻 is the stabiliser in 𝑇 of a 1- or 2-space of the natural module for 𝑇, so, consulting
[32, Tables 3.5E & 3.5F], we deduce that 𝑥 is contained in a core-free maximal subgroup of 𝐺. For
the rest of the proof, we will assume that 𝑇 ≠ 𝐷±

𝑚(𝑝
𝑓) in (i) and (ii).

To unify notation, write 𝛼 = 𝛾 if 𝑇 is𝐴±
𝑚(𝑝

𝑓) or 𝐸±
6
(𝑝𝑓) and write 𝛼 = 𝜏 otherwise; in all cases,

write 𝑑 = |𝛼|. Fix a simple algebraic group 𝑋 and two Steinberg endomorphisms 𝜎1 and 𝜎2 such
that 𝑋𝜎1

= Inndiag(𝑇) and 𝑥 ∈ Inndiag(𝑇)𝜎2. The specific choices for (𝑋, 𝜎1, 𝜎2) are given in
Table 2. Write 𝑒 = 𝑓∕𝑗 and observe that 𝜎1 = 𝛼𝜎𝑒

2
, so 𝜎1 = 𝛼.

We now define 𝐹∶ Inndiag(𝑇)𝜎2 → 𝑋(𝑞0)𝛼. For Row 1, 𝐹 is the Shintani map of (𝑋, 𝜎1, 𝜎2).
For Row 2, we use the notation of Remark 2.5(iii). Let 𝐸0 ∶ Inndiag(𝑇)𝜎2 →

𝑑𝑋(𝑞0)𝛼
−𝑒 be the

Shintani map of (𝑋, 𝜑𝑓, 𝛼𝜑𝑗) and choose 𝐹0 ∶ Inndiag(𝑇)𝜎2 →
𝑑𝑋(𝑞0)𝛼 satisfying g ↦ 𝐸0(g)

±, so
𝐹0 ∈ {𝐸0, 𝐸

′
0
}. For 𝑖 > 0, let 𝐹𝑖 be the Shintani map of (𝑋, 𝛼𝑖𝜑𝑗, 𝛼𝑖+1𝜑𝑗). Let 𝐹 be 𝐹0𝐹′

1
if 𝑑 = 2
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16 of 38 HARPER

TABLE 2 Notation for the proof of Proposition 3.4 (here 𝑞 = 𝑝𝑓 , 𝑞0 = 𝑝𝑗 , 𝑗 divides 𝑓, 𝑒 = 𝑓∕𝑗).

Row 𝑿 𝝈𝟏 𝝈𝟐 𝑿𝝈𝟏
𝑿𝝈𝟐

Conditions
1 𝐴𝑚, 𝐷4, 𝐸6 𝛼𝜑𝑓 𝜑𝑗 𝑑𝑋(𝑞) 𝑋(𝑞0)

2 𝐴𝑚, 𝐷4, 𝐸6 𝜑𝑓 𝛼𝜑𝑗 𝑋(𝑞) 𝑑𝑋(𝑞0) 𝑑 ∤ 𝑒

and 𝐹0𝐹′
1
𝐹′
2
if 𝑑 = 3. In all cases, 𝑥 ∈ Inndiag(𝑇)𝜎2, so define 𝑥0 = 𝐹(𝑥) ∈ 𝑋(𝑞0)𝛼. We will write

Inndiag(𝑇0) = 𝑋(𝑞0) and 𝐺0 = ⟨𝑋(𝑞0), 𝛼⟩.
Case 1. 𝑥𝑑

0
is unipotent.

First assume that 𝑝 = 𝑑, so 𝑥0 is a 𝑝-element of 𝐺0. Let 𝑃0 be an 𝛼-stable parabolic subgroup
of Inndiag(𝑇0). Then 𝑁𝐺0

(𝑃0) = ⟨𝑃0, 𝛼⟩ contains a Sylow 𝑝-subgroup of 𝐺0, so 𝑥0 is contained
in a suitable 𝐺0-conjugate of 𝑁𝐺0

(𝑃0). Therefore, Theorem 2.6 implies that 𝑥 is contained in the
normaliser of a maximal parabolic subgroup of 𝐺.
Now assume that 𝑝 ≠ 𝑑. In this case, 𝑥0 = 𝑠𝑢 = 𝑢𝑠 where 𝑠 has order 𝑑 and 𝑢 is a unipotent

element of Inndiag(𝑇0). We will fix a Borel subgroup 𝐵 of 𝑋 so that 𝑠 induces a graph automor-
phism on the corresponding root system; note that 𝐶𝐵(𝑠)◦ is a Borel subgroup of 𝐶𝑋(𝑠)◦. Now,
since 𝑢 ∈ 𝐶𝑋(𝑠)

◦, we know that there exists g ∈ 𝐶𝐺(𝑠) such that 𝑢 ∈ (𝐶𝐵(𝑠)
◦)g = 𝐶𝐵g (𝑠)◦ ⩽ 𝐵g

and (𝐵g )𝑠 = (𝐵𝑠)g = 𝐵g . Therefore, 𝑢 is contained in an 𝑠-stable Borel subgroup of 𝑋 and hence
an 𝑠-stable Borel subgroup𝐵0 of Inndiag(𝑇0).We nowdeduce that 𝑥0 = 𝑠𝑢 is contained in𝑁𝐺0

(𝑃0)

where 𝑃0 is a maximal 𝑠-stable parabolic subgroup of Inndiag(𝑇0) containing 𝐵0. As before,
Theorem 2.6 implies that 𝑥 is contained in the normaliser of a maximal parabolic subgroup of
𝐺.
Case 2. 𝑥𝑑

0
is not unipotent.

Here, we fix a power 𝑦0 of 𝑥0 that is a semisimple element of prime order in Inndiag(𝑇0).
Let 𝐻0 = 𝐶𝐺0(𝑦0), so 𝑥0 ∈ 𝐻0. By [24, Theorem 4.2.2(j)], 𝑦𝑇0

0
= 𝑦

Inndiag(𝑇0)
0

, which means that⟨𝑇0,𝐻0⟩ ⩾ ⟨𝑇0, 𝐶Inndiag(𝑇0)(𝑦)⟩ = Inndiag(𝑇0). Additionally, 𝑥0 ∈ Inndiag(𝑇0)𝛼 centralises 𝑦0, so,
in fact, ⟨𝑇0,𝐻0⟩ = 𝐺0. Let 𝑀0 be a maximal subgroup of 𝐺0 that contains 𝐻0. Since ⟨𝑇0,𝑀0⟩ ⩾⟨𝑇0,𝐻0⟩, we know that ⟨𝑇0,𝑀0⟩ = 𝐺0, so 𝑇0  𝑀0. Moreover, the fact that 𝐻0 ⩽ 𝑀0 implies that
𝑀0 = 𝑌𝜑𝑗 for a closed 𝜑𝑗-stable maximal rank subgroup 𝑌 of 𝑋. Now applying Theorem 2.8 gives
that 𝑥 is contained in a core-free maximal subgroup of 𝐺. □

Remark 3.5. There is an alternative proof of Case 1 of Proposition 3.4 when 𝑇0 = PSL𝑛(𝑞0). Write
𝑉 = 𝔽𝑛𝑞0

for the natural module for 𝑇0. Since 𝑥20 is unipotent, there is a 1-space 𝑈 of 𝑉 stabilised
by 𝑥2

0
. Let𝐻0 be the stabiliser in 𝑇0 of𝑈. Then 𝑥0 normalises𝐻0 ∩ 𝐻

𝑥0
0
. Now𝐻

𝑥0
0
is the stabiliser

in 𝑇 of an (𝑛 − 1)-space𝑊 of 𝑉. If𝑈 ⊆ 𝑊, then𝐻0 ∩ 𝐻
𝑥0
0
is a subgroup of type 𝑃1,𝑛−1; otherwise,

𝑉 = 𝑈 ⊕𝑊, so 𝐻0 ∩ 𝐻
𝑥0
0
has type GL1(𝑞0) × GL𝑛−1(𝑞0). In either case, 𝑥0 is contained in𝑀0 =

𝑁𝐺0
(𝐻0 ∩ 𝐻

𝑥0
0
) and we proceed by Shintani descent in the usual way.

3.3 The groups 𝑩𝟐(𝒒), 𝑮𝟐(𝒒) and 𝑭𝟒(𝒒)

Wenow turn to the cases not covered by Propositions 3.3 and 3.4, beginningwith the almost simple
groups with socle 𝑇 ∈ {𝐵2(2

𝑓), 𝐺2(3
𝑓), 𝐹4(2

𝑓)}.

Proposition 3.6. Let 𝑇 ∈ {𝐵2(2
𝑓), 𝐺2(3

𝑓), 𝐹4(2
𝑓)} and let𝐺 = ⟨𝑇, 𝜌𝑖⟩ for an odd divisor 𝑖 of 𝑓. Let

𝑥 ∈ 𝐺. Assume that (𝐺, 𝑥) is not in Theorem 2. Then 𝑥 is not totally deranged.

 14697750, 2024, 6, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12935 by T

est, W
iley O

nline L
ibrary on [03/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



TOTALLY DERANGED ELEMENTS OF ALMOST SIMPLE GROUPS AND INVARIABLE GENERATING SETS 17 of 38

Before proving Proposition 3.6, let us record two preliminary results.We include the second, not
just to reduce the length of the proof of Proposition 3.6, but also because we will adopt the argu-
ments in the proof a few more times in Section 3.4 and we wish to explain the general strategies
in detail once and for all.

Lemma 3.7. Let 𝑇0 = 𝐹4(𝑞0) with 𝑞0 = 2𝑗 and let𝑀0 ⩽ 𝑇0 have type Sp4(𝑞0)2. Then𝑀0 has two
subgroups of order (𝑞2

0
− 1)2 that are not 𝑇0-conjugate.

Proof. Let𝐾0 = 𝐾1 × 𝐾2where𝐾1, 𝐾2 aremaximal tori of Sp4(𝑞0) of orders (𝑞0 − 1)2 and (𝑞0 + 1)2,
and let 𝐿0 = 𝐿1 × 𝐿2 where 𝐿1, 𝐿2 are non-conjugate maximal tori of Sp4(𝑞0) of order 𝑞20 − 1. It
suffices to show that 𝐾0 and 𝐿0 are not 𝑇0-conjugate. Note that 𝑁𝑇0

(𝐾0)∕𝐾0 ⩾ 𝑁𝑀0
(𝐾0)∕𝐾0 =

𝐷2
8
(where 𝐷8 is the dihedral group of order 8) and 𝑁𝑀0

(𝐿0)∕𝐿0 = 24. We claim that 𝑁𝑀0
(𝐿0) =

𝑁𝑇0
(𝐿0) (from which it follows that 𝑁𝑇0

(𝐿0)∕𝐿0 = 24 and 𝐿0 is not 𝑇0-conjugate to 𝐾0). Clearly,
𝑁𝑇0

(𝐿0) is contained in amaximal subgroup𝑁0 of 𝑇0 ofmaximal rank. Inspecting the possibilities
for 𝑁0 (parabolic subgroups and reductive subgroups of maximal rank in [34]), we see that the
only such subgroup to contain a subgroup of order (𝑞2

0
− 1)2.24 is 𝑁0 = Sp8(𝑞0), but 𝑁𝑀0

(𝐿0) =

𝑁𝑁0
(𝐿0), so 𝑁𝑀0

(𝐿0) = 𝑁𝑇0
(𝐿0), as claimed. □

Lemma 3.8. Let 𝑇0 = 𝐹4(𝑞0)with 𝑞0 = 2𝑗 and let 𝑥0 ∈ 𝑇0 be mixed. Then 𝑥0 is contained in one of
the following types of maximal rank maximal subgroups of 𝑇0

𝑃2,3, SL3(𝑞0)◦SL3(𝑞0), SU3(𝑞0)◦SU3(𝑞0), Sp4(𝑞0) ≀ Sym2, Sp4(𝑞
2
0).2.

Proof. Let 𝑋 be the algebraic group 𝐹4 and let 𝜎 be the Steinberg endomorphism 𝜑𝑗 . Let 𝑆 be a
𝜎-stable maximally split maximal torus of 𝑋. Write Φ for the root system of 𝑋 with respect to 𝑆
and let 𝛼1, 𝛼2, 𝛼3, 𝛼4 be the simple roots of Φ. For 𝑖 ∈ {1, 2, 3, 4}, let

𝑆𝑖 = {ℎ ∈ 𝑆 ∣ 𝛼𝑗(ℎ) = 1 for all 𝑗 ∈ {1, 2, 3, 4} ⧵ {𝑖}},

which is a one-dimensional subtorus. Note that 𝑆 = 𝑆1 × 𝑆2 × 𝑆3 × 𝑆4 and 𝑆𝜎 = (𝑆1)𝜎 × (𝑆2)𝜎 ×

(𝑆3)𝜎 × (𝑆4)𝜎, with |(𝑆𝑖)𝜎| = 𝑞0 − 1.
Write 𝑥0 = 𝑠𝑢 = 𝑢𝑠where 𝑠 ≠ 1 is semisimple, 𝑢 ≠ 1 is unipotent. Note that 𝐶𝑇0(𝑥0) ≠ 𝑇0 since

𝑠 ≠ 1 and 𝐶𝑇0(𝑥0) is not a torus since 𝑢 ≠ 1. The conjugacy classes of semisimple elements of 𝑇0,
together with their centralisers, are given in [43, Tables II & III], but we prefer to use the conve-
nient presentation of the conjugacy classes of centralisers of semisimple elements of 𝑇0 given in
[37]. Inspecting the possibilities for 𝐶𝑇0(𝑥0), we see that 𝐶𝑇0(𝑥0) = 𝑌𝜎 for a maximal rank closed
subgroup 𝑌 < 𝑋. Moreover, by [38, Proposition 14.7], for example, 𝑥0 = 𝑠𝑢 ∈ 𝑌◦

𝜎. Write 𝐻0 = 𝑌◦
𝜎

andwrite0 for the set ofmaximal subgroups of𝑇0 of one of the five types given in the statement.
Except in one specific case (where we proceed differently), we will identify𝑀0 ∈ 0 containing
𝐻0 and thus also containing 𝑥0.
Case 1. 𝑌◦ has type 𝐴2𝐴2

Here𝐻0 has type SL3(𝑞0)◦SL3(𝑞0) or SU3(𝑞0)◦SU3(𝑞0), so is certainly contained in a subgroup
in0.
Case 2. 𝑌◦ has type 𝑆1𝐵2𝑆4.
Here𝐻0 is the centraliser of a subgroup𝑍0 of order (𝑞0 − 1)2, (𝑞0 + 1)2, 𝑞2

0
− 1 or 𝑞2

0
+ 1 (for each

order 𝐻0 is determined uniquely up to ⟨𝑇0, 𝜌⟩-conjugacy, even though there are two possibilities
up to 𝑇0-conjugacy when |𝑍0| = 𝑞2

0
− 1), and 𝐻0 = Sp4(𝑞0) × 𝑍0 in each case. Let 𝑀0 have type
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18 of 38 HARPER

Sp4(𝑞0)
2. Then 𝑀0 has a subgroup 𝑍′

0
of order |𝑍0| with centraliser of order |𝐻0|, and since no

subgroups of 𝑇0 of order |𝑍0| have centraliser order properly divisible by |𝐻0|, we deduce that|𝐶𝑇0(𝑍′
0
)| = |𝐶𝑀0

(𝑍′
0
)| = |𝐻0|. Therefore, 𝐻0 = 𝐶𝑇0(𝑍0) and 𝐶𝑇0(𝑍

′
0
) are ⟨𝑇0, 𝜌⟩-conjugate, so 𝐻0

is contained in a subgroup𝑀0 ∈ 0 of type Sp4(𝑞0)2.
Case 3. 𝑌◦ has type 𝐴2𝑆3𝐴1, 𝐴2𝑆3𝑆4, 𝐴1𝑆2𝑆3𝐴1 or 𝐴1𝑆2𝑆3𝑆4.
In [37], under elements of other class types in centre, for each semisimple cen-

traliser 𝐶𝑇0(𝑦), we have a list of elements 𝑧1, … , 𝑧𝑘 such that 𝑧𝑖 ∈ 𝑍(𝐶𝑇0(𝑦)) and, conversely, if
𝑧 ∈ 𝑍(𝐶𝑇0(𝑦)), then there exists some 1 ⩽ 𝑖 ⩽ 𝑘 such that 𝐶𝑇0(𝑧) is 𝑇0-conjugate to 𝐶𝑇0(𝑧𝑖). As
𝑧 ∈ 𝑍(𝐶𝑇0(𝑦)) implies that 𝐶𝑇0(𝑦) ⩽ 𝐶𝑇0(𝑧), it is easy to use this information to deduce that one
semisimple centraliser is contained in another. By considering each possibility for 𝐶𝑇0(𝑠) with
these choices of 𝑌 (these are, without loss of generality, i = 7, 13, 14, 18 in [37]), we deduce
that 𝐶𝑇0(𝑠) ⩽ 𝑍𝜎 where 𝑍 has type 𝐴2𝐴2 or 𝑆1𝐵2𝑆4 (i = 4, 15). Applying the conclusions from
the previous two cases, we deduce that𝐻0 ⩽ 𝑀0 for𝑀0 ∈ 0.
Case 4. 𝑌◦ has type 𝐵3𝑆4.
We handle this case differently. Let 𝐵 be the Borel subgroup of 𝑋 containing 𝑆 defined as 𝐵 =⟨𝑆,𝑈𝛼 ∣ 𝛼 ∈ Φ+⟩, and let 𝑈 be the unipotent radical of 𝐵. Let 𝑃 be the 𝑃2,3 parabolic subgroup

𝑃 = ⟨𝑆,𝑈𝛼 ∣ 𝛼 ∈ Φ+ ∪ Φ1,4⟩, and let 𝐿 be the Levi complement of 𝑃, so
𝐿 = ⟨𝑆,𝑈𝛼 ∣ 𝛼 ∈ Φ1,4⟩ = 𝐴1 × 𝑆2 × 𝑆3 × 𝐴1.

Observe that 𝑈 ⩽ 𝐵 ⩽ 𝑃. Noting that 𝑃 is 𝜌-stable, write𝑀0 = 𝑃𝜎. Observe that

𝐻0 = 𝐶𝑇0(𝑠) = 𝐵3(𝑞0) × ⟨𝑠⟩ = ⟨𝑆1, 𝑆2, 𝑆3, 𝑈𝛼 ∣ 𝛼 ∈ Φ1,2,3⟩𝜎 × ⟨𝑠⟩.
Note that

𝑠 ∈ ⟨𝑆,𝑈𝛼 ∣ 𝛼 ∈ Φ4⟩𝜎 = (𝑆1 × 𝑆2 × 𝑆3)𝜎 × 𝐴1(𝑞0) ⩽ 𝐿𝜎 ⩽ 𝑃𝜎.

Moreover, by conjugating in 𝐻0 if necessary, we may assume that

𝑢 ∈ ⟨𝑈𝛼 ∣ 𝛼 ∈ Φ+
1,2,3

⟩𝜎 ⩽ 𝑈𝜎 ⩽ 𝑃𝜎.

Therefore, 𝑥0 = 𝑠𝑢 ∈ 𝑃𝜎 = 𝑀0.
In all cases, 𝑥0 ∈ 𝑀0 for some𝑀0 ∈ 0, as claimed. □

With these results in place, we can now continue with the main proof.

Proof of Proposition 3.6. By Proposition 3.1, assume that 𝑇 ≠ 𝐺2(3). By replacing 𝑥 by another
generator of ⟨𝑥⟩ if necessary, assume that 𝑥 ∈ 𝑇𝜌𝑙 where 𝑖 divides 𝑙 and 𝑙 divides 2𝑓. Fix 𝑋 ∈

{𝐵2, 𝐺2, 𝐹4} and 𝑝 ∈ {2, 3} such that, writing 𝑞 = 𝑝𝑓 , we have 𝑇 = 𝑋(𝑞). Fix 𝜎1 = 𝜑𝑓 and 𝜎2 = 𝜌𝑙,
so 𝑋𝜎1

= 𝑇 and 𝑥 ∈ 𝑇𝜎2. Let 𝐹∶ 𝑋𝜎1
𝜎2 → 𝑋𝜎2

𝜎1 be the Shintani map of (𝑋, 𝜎1, 𝜎2). Write 𝑇0 =
𝑋𝜎2

and let 𝑥0 = 𝐹(𝑥) ∈ 𝑇0. Since 𝜎1 = 𝜎
2𝑓∕𝑙
2

, Remark 2.5(ii) gives us |𝑥| = 𝑒|𝑥0| where 𝑒 = 2𝑓∕𝑙.
Let 𝑆 be a 𝜌-stable maximally split maximal torus of 𝑋. Let𝑊𝑋 be the Weyl group 𝑁𝑋(𝑆)∕𝑆,

and for g ∈ 𝑁𝑋(𝑆), write ḡ = 𝑆g ∈ 𝑊𝑋 .
Case 1. 𝑙 is odd.
Here 𝑇0 = 2𝑋(𝑞0) for 𝑞0 = 𝑝𝑙 and 𝐹∶ 𝑇𝜌𝑙 → 𝑇0.
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TOTALLY DERANGED ELEMENTS OF ALMOST SIMPLE GROUPS AND INVARIABLE GENERATING SETS 19 of 38

Case 1a. 𝑥0 is semisimple.
In this case, 𝑥0 is contained in a maximal torus𝐻0 of 𝑇0. Let 𝑡 ∈ 𝑋 such that 𝑆𝑡 is 𝜎2-stable and

𝐻0 = (𝑆𝑡)𝜎2 . Theorem 2.6 implies that 𝑥 is contained in a 𝐺-conjugate of ⟨𝐻, 𝜎2⟩ ⩽ 𝑁𝐺(𝐻) where
𝐻 = (𝑆𝑡)𝜎1 . We will show that𝑁𝐺(𝐻) is a maximal subgroup of 𝐺, or, in some cases with 𝑋 = 𝐹4,
find an another core-free maximal overgroup of 𝑥. Write 𝑠 = 𝑡𝜎2 , so that 𝐻0 = (𝑆𝑡)𝜎2 = 𝑆𝑡𝑠𝜎2

and
𝐻 = (𝑆𝑡)𝜎1 = 𝑆(𝑠𝜎2)2𝑓∕𝑙 . Recall 𝜎2 = 𝜌𝑙 induces an involution 𝛼 on𝑊𝑋 .
First assume that 𝑋 ∈ {𝐵2, 𝐺2}. Here,𝑊𝑋 = ⟨𝑎, 𝑏 ∣ 𝑎2𝑝, 𝑏2, 𝑎𝑏 = 𝑎−1⟩ ≅ 𝐷4𝑝 (recall that 𝑝 = 2

if 𝑋 = 𝐵2 and 𝑝 = 3 if 𝑋 = 𝐺2). Since ⟨𝑎⟩𝛼 = ⟨𝑎⟩, we see that
(𝑠𝜎2)

2𝑓∕𝑙 = (𝑠𝜌𝑙)2𝑓∕𝑙 = (𝑠𝑠𝛼)𝑓∕𝑙𝜑𝑓 ∈ ⟨𝑎⟩𝜎1.
Therefore, |𝐻| ≠ 𝑞2 − 1 (see [21, (4.4) & (5.2)], for instance), so, consulting [6, Tables 8.14 & 8.42],
we see that𝑁𝐺(𝐻) is maximal unless 𝑇 = Sp4(4) and |𝐻| = (4 − 1)2, in which case𝑁𝐺(𝐻) ⩽ �̃� =⟨Sp4(2), 𝜌⟩, which is a core-freemaximal subgroup of𝐺 containing 𝑥 (this is easy to verify directly,
but the details are also given in the proof of [6, Proposition 7.2.7]).
Now assume that𝑋 = 𝐹4.We consider each class ofmaximal torus in 2𝐹4(𝑞0) in turn (for the list

of these 11 classes, see [44]). First consider |𝐻0| = 𝑞2
0
±
√
2𝑞

3∕2
0

+ 𝑞0 ±
√
2𝑞0 + 1. By [21, Table 7.3],

𝑠𝑠𝛼 is a Weyl group element 𝑤 ∈ 𝑊𝐹4
of order 12. Therefore, since

(𝑠𝜎2)
2𝑓∕𝑙 = 𝑤𝑓∕𝑙𝜑𝑓 ∈ ⟨𝑤⟩𝜎1,

we deduce that |𝐻| is
|𝑆(𝑠𝜎2)2𝑓∕𝑙 | ∈ {(𝑞 ± 1)2, (𝑞2 + 1)2, (𝑞2 ± 𝑞 + 1)2, 𝑞4 − 𝑞2 + 1}.

If 𝑞 > 2, then it follows from [34, Table 5.2] that 𝑁𝐺(𝐻) is maximal (noting that if 𝑞 = 4, then
𝑓 = 2 and 𝑙 = 1, which means that |𝑤𝑓∕𝑙| = 6, so, in particular, |𝐻| ≠ (4 − 1)2). Now assume that
𝑇 = 𝐹4(2), so 𝑓 = 𝑙 = 1 and |𝑤𝑓∕𝑙| = 12. In this case, |𝐻| = 24 − 22 + 1 = 13 and 𝑁𝐺(𝐻) ⩽ �̃� =⟨2𝐹4(2), 𝜌⟩, which is a core-freemaximal subgroup of𝐺 containing 𝑥 (this information is provided
in [40, Tables 1(b) & 2]).
For the remaining possibilities for 𝐻0, we will identify an alternative core-free maximal over-

group of𝑥. If |𝐻0| ∈ {(𝑞0 ± 1)2, 𝑞2
0
± 1}, then𝑥0 is contained in a subgroup𝑀0 of𝑇0 of type Sp4(𝑞0)

and if |𝐻0| ∈ {(𝑞0 − 1)(𝑞0 ±
√
2𝑞0 + 1), (𝑞0 ±

√
2𝑞0 + 1)2}, then 𝑥0 is contained in a subgroup𝑀0

of type 2𝐵2(𝑞0)
2; in both cases, Theorem 2.6 implies that 𝑥 is contained in𝑀 = 𝑁𝐺(𝐾) where 𝐾

has type Sp4(𝑞)2 or Sp4(𝑞2), and in either case,𝑀 is maximal in 𝐺 (see [34, Table 5.1]). The final
possibility is that |𝐻0| = 𝑞2

0
− 𝑞0 + 1, and here 𝑥0 is contained in a subgroup𝑀0 of type SU3(𝑞0),

so Theorem 2.6 implies that 𝑥 is contained in𝑀 = 𝑁𝐺(𝐾)where𝐾 has type SL±
3
(𝑞)◦SL±

3
(𝑞), which

is maximal in 𝐺 (see [34, Table 5.1]).
Case 1b. 𝑥0 is not semisimple.
By Lemma 3.2, 𝑥0 is contained in a maximal parabolic subgroup 𝐻0 of 𝑇0. Now 𝐻0 = 𝑌𝜎2

for
a maximal 𝜌-stable parabolic subgroup 𝑌 ⩽ 𝑋, so Theorem 2.6 implies that 𝑥 is contained in
an ⟨𝑋𝜎1

, 𝜎2⟩-conjugate of ⟨𝑌𝜎1
, 𝜎2⟩. Let 𝑀 = 𝑁𝐺(𝑌𝜎1

), so 𝑥 ∈ 𝑀. Since 𝑌 is 𝜌-stable, 𝜌𝑖 ∈ 𝑀, so|𝑁𝐺(𝑌𝜎1
) ∶ 𝑌𝜎1

| = 2𝑓∕𝑖 = |𝐺 ∶ 𝑇| and we deduce that𝑀 = 𝑁𝐺(𝑌𝜎1
) is maximal in 𝐺.

Case 2. 𝑙 is even.
Here 𝜌𝑙 = 𝜑𝑗 , where 𝑗 = 𝑙∕2, so 𝑇0 = 𝑋(𝑞0) for 𝑞0 = 𝑝𝑗 and 𝐹∶ 𝑇𝜑𝑗 → 𝑇0.
Case 2a. 𝑥0 is semisimple.

 14697750, 2024, 6, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12935 by T

est, W
iley O

nline L
ibrary on [03/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



20 of 38 HARPER

First assume that 𝑋 ∈ {𝐵2, 𝐺2} and that 𝑥0 is contained in a maximal torus 𝐻0 of 𝑇0 of order
different from 𝑞2

0
− 1. Fix 𝑡 ∈ 𝑋 such that 𝑆𝑡 is 𝜎2-stable and 𝐻0 = (𝑆𝑡)𝜎2 and write 𝑠 = 𝑡𝜎2 , so

𝐻0 = 𝑆𝑡𝑠𝜎2
. Theorem 2.6 implies that 𝑥 is contained in a𝐺-conjugate of𝑁𝐺(𝐻)where𝐻 = (𝑆𝑡)𝜎1 =

𝑆𝑡
(𝑠𝜎2)

𝑓∕𝑗
. Since 𝜎2 = 𝜑𝑗 acts trivially on𝑊𝑋 ,𝐻 = 𝑆𝑡

𝑠𝑓∕𝑗𝜎1
. Writing

𝑊𝑋 = ⟨𝑎, 𝑏 ∣ 𝑎2𝑝, 𝑏2, 𝑎𝑏 = 𝑎−1⟩ ≅ 𝐷4𝑝,

as |𝐻0| ≠ 𝑞2
0
− 1, 𝑠 ∈ ⟨𝑎⟩ (see [21, (4.4) & (5.2)]), so 𝑠𝑓∕𝑗 ∈ ⟨𝑎⟩ and |𝐻| ≠ 𝑞2 − 1. As in Case 1a,

𝑁𝐺(𝐻) is maximal or 𝑇 = Sp4(4), |𝐻| = 9 and 𝑁𝐺(𝐻) ⩽ �̃� = ⟨Sp4(2), 𝜌⟩, which is maximal.
Next assume that 𝑋 ∈ {𝐵2, 𝐺2} and that every maximal torus of 𝑇0 that contains 𝑥0 has order

𝑞2
0
− 1. This implies that the order 𝑟 of 𝑥0 satisfies 𝑟 ∣ (𝑞20 − 1) and 𝑟 ∤ (𝑞0 ± 1). If𝑋 = 𝐺2, then 𝑥0 is

contained in amaximal subgroup of 𝑇0 of type SL2(𝑞0)◦SL2(𝑞0), so by Theorem 2.6, 𝑥 is contained
in amaximal subgroup of𝐺 of type SL2(𝑞)◦SL2(𝑞) (see [6, Table 8.42]). Nowassume that𝑋 = 𝐵2. If
𝑓∕𝑖 is even, then arguing as above, 𝑠 = 1, so |𝐻| = (𝑞 − 1)2 and𝑁𝐺(𝐻) is maximal or 𝑇 = Sp4(4),|𝐻| = (4 − 1)2 and 𝑁𝐺(𝐻) ⩽ �̃� = ⟨Sp4(2), 𝜌⟩ is maximal. Therefore, we will assume that 𝑓∕𝑖 is
odd. Since 𝑥 is not in Theorem 2, either there exists a prime divisor 𝑘 of 𝑗 not dividing 𝑓∕𝑗 such
that 𝑟 ∣ (𝑞2∕𝑘

0
− 1), or there there exists a prime divisor 𝑘 of 𝑓∕𝑗 such that 𝑘 ∤ 𝑟 or 𝑘 ∣ (𝑞2

0
− 1)∕𝑟.

In the former case, 𝑥0 is contained in a 𝑇0-conjugate of 𝐵2(𝑞
1∕𝑘
0

), which, by Corollary 2.12, means
that 𝑥 is contained in a 𝑇-conjugate of 𝑁𝐺(𝐵2(𝑞

1∕𝑘)). In the latter case, there exists 𝑧 ∈ 𝑇0 such
that 𝑧𝑟 = 𝑥0, which, by Corollary 2.12, means that 𝑥 is contained in a 𝑇-conjugate of𝑁𝐺(𝐵2(𝑞

1∕𝑘)).
In both cases, 𝑥 is contained in a core-free maximal subgroup of 𝐺 (see [6, Table 8.14]).
Now assume that𝑋 = 𝐹4 and fix amaximal torus𝐻0 of𝑇0 containing 𝑥0. The𝑇0-classes ofmax-

imal tori of𝑇0 are given in [43, p.145].Wewill consider each possibility for𝐻0, in turn, and identify
a subgroup𝑀0 of 𝑇0 that contains𝐻0. It will be useful to note that there are two ⟨𝑇0, 𝜌⟩-classes of
maximal tori of order (𝑞2

0
− 1)2, but otherwise |𝐻0| determines𝐻0 up to ⟨𝑇0, 𝜌⟩-conjugacy.

First assume that |𝐻0| = (𝑞2
0
− 1)2. Here, there are two possibilities for 𝐻0 up to 𝑇0-conjugacy

(and ⟨𝑇, 𝜌⟩-conjugacy), but by Lemma 3.7, both types are contained in a subgroup 𝑀0 of type
Sp4(𝑞0)

2. Now assume that |𝐻0| ≠ (𝑞2
0
− 1)2, so 𝐻0 ⩽ 𝑀0, provided that𝑀0 has a maximal torus

of order |𝐻0|. If
|𝐻0| ∈ {(𝑞20 + 𝜀𝑞0 + 1)2, (𝑞30 − 𝜀)(𝑞0 ± 1)},

then let𝑀0 have type SL𝜀3(𝑞0)◦SL
𝜀
3
(𝑞0), if

|𝐻0| ∈ {(𝑞0 ± 1)4, (𝑞0 ± 1)3(𝑞0 ∓ 1), (𝑞0 ± 1)2(𝑞20 + 1), (𝑞20 + 1)2, 𝑞40 − 1},

then let𝑀0 have type Sp4(𝑞0)2, if |𝐻0| = 𝑞4
0
+ 1, then let𝑀0 have type Sp4(𝑞20) and if |𝐻0| = 𝑞4

0
−

𝑞2
0
+ 1, then let𝑀0 = 𝐻0.
Therefore, in all cases,𝑀0 is 𝑇0-conjugate to 𝑌𝜎2

where 𝑌 is a closed connected 𝜌-stable sub-
group 𝑌 of 𝑋 of type 𝐴2�̃�2 or 𝐵22 or a maximal torus. Therefore, by Theorem 2.6, 𝑥 is contained in
a 𝐺-conjugate of𝑀 = 𝑁𝐺(𝑌𝜎1

), which we claim is a core-free maximal subgroup of 𝐺 (except for
some very small values of 𝑞). If |𝐻0| ≠ 𝑞4

0
− 𝑞2

0
+ 1, then 𝑌 has type 𝐴2�̃�2 or 𝐵22, so 𝑌𝜎1

has one of
the following types SL3(𝑞)◦SL3(𝑞), SU3(𝑞)◦SU3(𝑞), Sp2(𝑞)2 or Sp2(𝑞2), all of which yield core-free
maximal subgroups𝑀 = 𝑁𝐺(𝑌𝜎1

) (see [34, Table 1]). Now assume that |𝐻0| = 𝑞4
0
− 𝑞2

0
+ 1. Here,

we fix 𝑡 ∈ 𝑋 such that 𝑌 = 𝑆𝑡, so 𝐻0 = (𝑆𝑡)𝜎2 = 𝑆𝑡𝑠𝜎2
, where we write 𝑠 = 𝑡𝜎2 . By [21, Table 5.2],
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TOTALLY DERANGED ELEMENTS OF ALMOST SIMPLE GROUPS AND INVARIABLE GENERATING SETS 21 of 38

we may assume that 𝑠 ∈ 𝑊𝐹4
has order 12. Now 𝑌𝜎1

= (𝑆𝑡)𝜎2 = 𝑆𝑡
𝑠𝑓∕𝑗𝜎2

, which means that

|𝑌𝜎1
| = |𝑆𝑠𝜎1 | ∈ {(𝑞 ± 1)2, (𝑞2 + 1)2, (𝑞2 ± 𝑞 + 1)2, 𝑞4 − 𝑞2 + 1},

so, as in Case 1(a), either 𝑀 = 𝑁𝐺(𝑌𝜎1
) is maximal, or 𝑇 = 𝐹4(2), |𝐻| = 24 − 22 + 1 = 13 and

𝑁𝐺(𝐻) ⩽ �̃� = ⟨2𝐹4(2), 𝜌⟩ is maximal.
Case 2b. 𝑥0 is unipotent.
In this case, 𝑥0 is contained in a Borel subgroup𝐻0 of 𝑇0. If𝑋 ∈ {𝐵2, 𝐺2}, then let𝑀0 = 𝐻0 and

if 𝑋 = 𝐹4, then let𝑀0 be a parabolic subgroup of 𝑇0 of type 𝑃1,4 or 𝑃2,3 that contains𝐻0. In either
case, 𝑥0 ∈ 𝑀0 and𝑀0 is 𝑇0-conjugate to 𝑌𝜎2

for a maximal 𝜌-stable parabolic subgroup of 𝑌 ⩽ 𝑋.
Theorem 2.6 implies that 𝑥 is contained in an ⟨𝑋𝜎1

, 𝜎2⟩-conjugate of ⟨𝑌𝜎1
, 𝜎2⟩. Let𝑀 = 𝑁𝐺(𝑌𝜎1

),
so 𝑥 ∈ 𝑀. Since 𝑌 is 𝜌-stable, 𝜌𝑖 ∈ 𝑀, so |𝑁𝐺(𝑌𝜎1

) ∶ 𝑌𝜎1
| = 2𝑓∕𝑖 = |𝐺 ∶ 𝑇| and we deduce that

𝑀 = 𝑁𝐺(𝑌𝜎1
) is maximal in 𝐺.

Case 2c. 𝑥0 is mixed.
Let usmake some general comments about the case𝑋 ∈ {𝐵2, 𝐺2}. Themaximal subgroups of𝑇0

are given in [6, Table 8.14] if 𝑇0 = 𝐵2(𝑞0) and [6, Table 8.42] if 𝑇0 = 𝐺2(𝑞0). The conjugacy classes
of 𝑇0 are given in [18, Table IV-1] if 𝑇0 = 𝐵2(𝑞0) and [17, Table 2] if 𝑇0 = 𝐺2(𝑞0). Consulting these
lists, we see that if 𝑢 ∈ 𝑇0 is any non-trivial unipotent element that commutes with a non-trivial
semisimple element, then |𝐶𝑇0(𝑢)|𝑝′ divides 𝑞20 − 1 and for any two tori 𝑆+ and 𝑆− of orders 𝑞0 − 1

and 𝑞0 + 1 contained in 𝐶𝑇0(𝑢), any mixed element of 𝑇0 is ⟨𝑇0, 𝜌⟩-conjugate to an element 𝑢𝑠
where 𝑠 ∈ 𝑆+ ∪ 𝑆−.
First assume that 𝑋 = 𝐺2. Let 𝐻0 be a 𝜌-stable subgroup of 𝑇0 of type SL2(𝑞0)◦SL2(𝑞0). Then

𝐻0 contains a non-trivial unipotent element that commutes with subgroups of order 𝑞0 − 1 and
𝑞0 + 1, so 𝑥0 is contained in a 𝑇0-conjugate of 𝐻0. Writing 𝐻0 = 𝑌𝜎2

for a 𝜌-stable subgroup of 𝑌
of type 𝐴1�̃�1, by Theorem 2.6, 𝑥 is contained in a 𝐺-conjugate of 𝑁𝐺(𝑌𝜎1

), which is a maximal
core-free subgroup of 𝐺 (of type SL2(𝑞)◦SL2(𝑞)).
Next assume that𝑋 = 𝐵2. Let𝐻𝜀

0
be a 𝜌-stable subgroup of𝑇0 of typeO𝜀

2
(𝑞0)

2. Then𝐻𝜀
0
contains

a non-trivial unipotent element that commutes with a subgroup of order 𝑞0 − 𝜀, so 𝑥0 is contained
in a 𝑇0-conjugate of𝐻𝜀

0
for some 𝜀 ∈ {+,−}. Writing𝐻0 = 𝑌𝜎2

for a 𝜌-stable subgroup of𝑌 of type
Ω2
2
, by Theorem 2.6, 𝑥 is contained in a 𝐺-conjugate of 𝑁𝐺(𝑌𝜎1

), which is a maximal core-free
subgroup of 𝐺 (of type O±

2
(𝑞) ≀ Sym2 or O−

2
(𝑞2).2).

Finally, assume that 𝑋 = 𝐹4. Here, we make use of Lemma 3.8. In particular, 𝑥0 is contained
in a 𝑇0-conjugate of 𝑌𝜎2

where 𝑌 is a a closed connected 𝜌-stable subgroup 𝑌 of 𝑋 (either 𝑃1,4
or 𝑃2,3 parabolic or reductive maximal rank of type 𝐴2�̃�2 or 𝐵22). Therefore, by Theorem 2.6, 𝑥 is
contained in a 𝐺-conjugate of𝑀 = 𝑁𝐺(𝑌𝜎1

), which is a core-free maximal subgroup of 𝐺 (either
𝑃1,4 or 𝑃2,3 parabolic or maximal rank of type SL3(𝑞)◦SL3(𝑞), SU3(𝑞)◦SU3(𝑞), Sp4(𝑞) ≀ Sym2 or
Sp4(𝑞

2).2), see [34] for maximality. This completes the proof. □

3.4 The groups 𝑨𝒎(𝒒), 𝑫𝒎(𝒒) and 𝑬𝟔(𝒒)

We now turn to the remaining cases not covered by Propositions 3.3 and 3.4, all of which have
socle 𝑇 ∈ {PSL𝑛(𝑞) (𝑛 ⩾ 2), PΩ+

2𝑚
(𝑞) (𝑚 ⩾ 4), 𝐸6(𝑞)}.

Proposition 3.9. Let 𝑇 = PSL𝑛(𝑞) and 𝑇 ⩽ 𝐺 ⩽ Aut(𝑇) with 𝐺  ⟨Inndiag(𝑇), 𝜑⟩. Let 𝑥 ∈ 𝐺.
Assume that 𝑥 ∈ ⟨Inndiag(𝑇), 𝜑⟩. Then 𝑥 is not totally deranged.
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22 of 38 HARPER

Proof. Write 𝑞 = 𝑝𝑓 . By replacing 𝑥 by another generator of ⟨𝑥⟩ if necessary, assume that 𝑥 ∈

PGL𝑛(𝑞)𝜑
𝑗 for some divisor 𝑗 of 𝑓. Fix the simple algebraic group 𝑋 = 𝐴𝑛−1 and the Steinberg

endomorphisms 𝜎1 = 𝜑𝑓 and 𝜎2 = 𝜑𝑗 . Let 𝐹∶ Inndiag(𝑇)𝜑𝑗 → Inndiag(𝑇0) be the Shintani map
of (𝑋, 𝜎1, 𝜎2) where 𝑇0 = PSL𝑛(𝑞0) for 𝑞0 = 𝑝𝑗 , and let 𝑥0 = 𝐹(𝑥).
If 𝑥0 is contained in a subgroup of Inndiag(𝑇0) of type GL𝑘(𝑞0) × GL𝑛−𝑘(𝑞0), for some 0 < 𝑘 <

𝑛, then let𝑀0 be such a subgroup. Now assume that 𝑥0 is not contained in such a subgroup. Then,
by considering the rational canonical form of 𝑥0, we deduce that the minimal polynomial and
characteristic polynomial are both equal to 𝜓𝑛∕deg(𝜓) for an irreducible polynomial 𝜓 ∈ 𝔽𝑞0[𝑋]. If
deg(𝜓) = 1, then 𝑥0 is conjugate to an element with a single Jordan block (of size 𝑛) and is thus
contained in a Borel subgroup of Inndiag(𝑇0) and consequently a subgroup𝑀0 of type 𝑃1,𝑛−1. If
deg(𝜓) = 𝑑 > 1, then 𝑥0 is conjugate to an element arising from an element with a single Jordan
block of size 𝑛∕𝑑 embedded via a degree 𝑑 field extension of 𝔽𝑞0 and is thus contained in a sub-
group of type GL𝑛∕𝑑(𝑞𝑑0 ) and consequently a subgroup𝑀0 of type GL𝑛∕𝑘(𝑞𝑘0 ) where 𝑘 is the least
prime divisor of 𝑑.
In all cases, 𝑥0 ∈ 𝑀0 and𝑀0 is Inndiag(𝑇0)-conjugate to 𝑌𝜎2

for a closed connected subgroup
𝑌 of 𝑋 (of type GL𝑘 × GL𝑛−𝑘, 𝑃1,𝑛−1 or GL𝑘𝑛∕𝑘). By Theorem 2.6, 𝑥 is contained in a 𝐺-conjugate
of𝑀 = 𝑁𝐺(𝑌𝜎1

), which is a core-free maximal subgroup of 𝐺 (of typeGL𝑘(𝑞) × GL𝑛−𝑘(𝑞), 𝑃1,𝑛−1,
GL𝑛∕𝑘(𝑞) ≀ Sym𝑘 orGL𝑛∕𝑘(𝑞𝑘).𝑘), see [32, Table 3.5A] using the fact that𝐺  ⟨Inndiag(𝑇), 𝜑⟩. □

Proposition 3.10. Let 𝑇 = 𝐸6(𝑞) and 𝑇 ⩽ 𝐺 ⩽ Aut(𝑇) with 𝐺  ⟨Inndiag(𝑇), 𝜑⟩. Let 𝑥 ∈ 𝐺.
Assume that 𝑥 ∈ ⟨Inndiag(𝑇), 𝜑⟩. Then 𝑥 is not totally deranged.
Proof. As usual, write 𝑞 = 𝑝𝑓 , assume that 𝑥 ∈ Inndiag(𝑇)𝜑𝑗 for a divisor 𝑗 of 𝑓 and let
𝐹∶ Inndiag(𝑇)𝜑𝑗 → Inndiag(𝑇0) be the Shintani map of (𝑋, 𝜎1, 𝜎2) = (𝐸6, 𝜑

𝑓, 𝜑𝑗) where 𝑇0 =

𝐸6(𝑞0) and 𝑞0 = 𝑝𝑗 . Write 𝑥0 = 𝐹(𝑥).
If 𝑥0 is unipotent, then 𝑥0 contained in a Borel subgroup and therefore a 𝑃4 parabolic subgroup

of 𝑇0.
From now, wewill assume that 𝑥0 ∈ 𝐶Inndiag(𝑇0)(𝑠) for a non-trivial semisimple element 𝑠 ∈ 𝐺0.

We proceed as we did in the proof of Lemma 3.8. Consulting [37], note that 𝐶Inndiag(𝑇0)(𝑠) = 𝑌𝜎2
for a closed 𝜎2-stable subgroup 𝑌 ⩽ 𝑋, and recall that 𝑥0 ∈ 𝑀0 = 𝑌◦

𝜎2
. For now assume that 𝑀0

does not have order 𝑞6
0
+ 𝑞3

0
+ 1 ([i,j,k] = [21,1,14] in [37]). Then arguing as in Case 3 of

Lemma 3.8, using the centraliser inclusions given in [37], we deduce that𝑀0 ⩽ 𝑍𝜎2 where 𝑍 has
one of the following types

𝐴5𝐴1, 𝐴3
2, 𝐷5𝑆, 𝐴4𝐴1𝑆, 𝐴2

2𝐴1𝑆, 𝐴5𝑆, 𝐴2
2𝑆

2, 𝐷4𝑆
2

(corresponding to i = 2, 3, 4, 5, 6, 8, 12, 14). Arguing as in Case 2 of Lemma 3.8, if 𝑌
has type 𝐴4𝐴1𝑆, 𝐴2

2
𝐴1𝑆, 𝐴5𝑆, 𝐴2

2
𝑆2 or𝑀0 has order 𝑞60 + 𝑞3

0
+ 1 (i = 5, 6, 8, 12 or [i,j,k]

= [21,1,14]), then 𝑀0 ⩽ 𝑍𝜎2 where 𝑍 has type 𝐴5𝐴1, 𝐴3
2
, 𝐷5𝑆 or 𝐷4𝑆

2. (If 𝑝 ⩾ 5, then we can
carry out these two steps in one, via centraliser inclusions, but wemust bemore careful in general
since 𝑍𝜎2 is not a semisimple centraliser if (𝑌, 𝑝) is (𝐴5𝐴1, 2) or (𝐴3

2
, 3).)

Therefore, in all cases, 𝑥0 is contained in a 𝑇0-conjugate of 𝑌𝜎2
where 𝑌 is a closed connected

𝜎2-stable subgroup 𝑌 of 𝑋 of type 𝑃4, 𝐴5𝐴1, 𝐴3
2
, 𝐷5𝑆 or 𝐷4𝑆

2. Therefore, by Theorem 2.6, 𝑥
is contained in a 𝐺-conjugate of 𝑌𝜎1

. By [34], either 𝑀 = 𝑁𝐺(𝑌𝜎1
) is maximal or 𝑌𝜎1

has type
PΩ−

8
(𝑞) × (𝑞2 − 1) and is contained in a maximal subgroup of type PΩ+

10
× (𝑞 − 1). Either way, 𝑥

is contained in a core-free maximal subgroup of 𝐺, so 𝑥 is not totally deranged. □
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TOTALLY DERANGED ELEMENTS OF ALMOST SIMPLE GROUPS AND INVARIABLE GENERATING SETS 23 of 38

We remind the reader that we defined the expression contains triality in Remark 2.2(ii).

Proposition 3.11. Let 𝑇 = PΩ+
2𝑚
(𝑞) for an integer 𝑚 ⩾ 4 and let 𝑇 ⩽ 𝐺 ⩽ Aut(𝑇). Assume that

𝐺  ⟨Inndiag(𝑇), 𝜑⟩ and that 𝐺 does not contain triality. Let 𝑥 be an element of 𝐺. Assume that
𝑥 ∈ ⟨Inndiag(𝑇), 𝜑⟩ and that 𝑥 does not feature in Theorem 2. Then 𝑥 is not totally deranged.

Proof. If 𝑚 ⩾ 5, then 𝐺 ⩽ Aut(𝑇) = ⟨PGO+
2𝑚
(𝑞), 𝜑⟩. Now consider the case 𝑚 = 4. Since 𝐺 does

not contain triality, we know that 𝐺 ⩽ ⟨Inndiag(𝑇), 𝜑, 𝛾𝜏𝑖⟩ for an integer 𝑖. By replacing 𝐺 by
𝐺𝜏𝑖 , we obtain 𝐺 ⩽ ⟨Inndiag(𝑇), 𝜑, 𝛾⟩ = ⟨PGO+

8
(𝑞), 𝜑⟩ while maintaining 𝑥 ∈ ⟨Inndiag(𝑇), 𝜑⟩.

Therefore, in all cases, for the remainder of the proof, we may assume that 𝐺 ⩽ ⟨PGO+
2𝑚
(𝑞), 𝜑⟩.

As usual, write 𝑞 = 𝑝𝑓 , assume that 𝑥 ∈ Inndiag(𝑇)𝜑𝑗 for a divisor 𝑗 of 𝑓 and let
𝐹∶ Inndiag(𝑇)𝜑𝑗 → Inndiag(𝑇0) be the Shintani map of (𝑋, 𝜎1, 𝜎2) = (𝐷𝑚, 𝜑

𝑓, 𝜑𝑗) where 𝑇0 =
PΩ+

2𝑚
(𝑞0) and 𝑞0 = 𝑝𝑗 . Write 𝑥0 = 𝐹(𝑥). Write 𝐺0 = Inndiag(𝑇0) and let 𝑉 = 𝔽2𝑚𝑞0

be the natural
module for 𝐺0. Note that |𝑥| = 𝑓∕𝑗 ⋅ |𝑥0|.
Write 𝑥0 = 𝑠𝑢 = 𝑢𝑠 for elements 𝑠, 𝑢 ∈ 𝐺0 such that 𝑠 is semisimple and 𝑢 is unipotent. Let𝑈 =

{𝑣 ∈ 𝑉 ∣ 𝑣𝑢 = 𝑣}, noting that𝑈 is non-zero since𝑢 is unipotent. Since𝑈𝑠 = 𝑈 and 𝑠 is semisimple,
we may write𝑈 = ⊕𝑑

𝑖=1
𝑊𝑖 where 𝑠 stabilises, and acts irreducibly on, each𝑊𝑖 and 0 < dim𝑊1 ⩽

⋯ ⩽ dim𝑊𝑑 < 𝑛, noting that𝑊𝑑 is proper since 𝐺0 contains no elements that act irreducibly on
𝑉. Let𝑊 = 𝑊1. Since 𝑠 acts irreducibly on𝑊, we deduce that𝑊 is either totally singular or non-
degenerate. Now 𝑥0 = 𝑠𝑢 stabilises𝑊, and let𝐻0 be the stabiliser of𝑊 in 𝐺0, so𝐻0 is parabolic if
𝑊 is totally singular and has type O−

𝑘
(𝑞0) × O−

2𝑚−𝑘
(𝑞0) if𝑊 is non-degenerate. In the latter case,

as 𝑢 acts trivially on𝑊 and 𝑠 acts irreducibly on𝑊, 𝑥0 = 𝑠𝑢 is contained in a subgroup of type
SO−

𝑘
(𝑞0) × SO−

2𝑚−𝑘
(𝑞0).

First assume that𝑊 is not a totally singular 𝑚-space. In this case, 𝐻0 = 𝑌𝜎2
for a closed con-

nected 𝜎2-stable subgroup𝑌 of𝑋, where𝑌 is the stabiliser of a totally singular 𝑘-spacewith 𝑘 < 𝑚

or a non-degenerate 𝑘-space with 𝑘 even. By Theorem 2.6, 𝑥 is contained in the stabiliser𝑀0 in 𝐺
of a totally singular 𝑘-space of 𝔽2𝑚𝑞 with 𝑘 < 𝑚 or a non-degenerate 𝑘-space of 𝔽2𝑚𝑞 with 𝑘 even.
Either way, by [32, Table 3.5E],𝑀 = 𝑁𝐺(𝑀0) is a core-free maximal subgroup of 𝐺, noting that if
𝑞 ∈ {2, 3}, then𝑀0 does not have type SO+

2
(𝑞) × SO+

2𝑚−2
(𝑞).

Next assume that𝑊 is a totally singular 𝑚-space. Therefore, dim𝑈 ∈ {𝑚, 2𝑚}, so either 𝑈 =

𝑊 (with 𝑢 ≠ 1) or 𝑈 = 𝑊 ⊕𝑊∗ = 𝑉 (with 𝑢 = 1). For now assume that 𝑈 = 𝑉. Here 𝑥0 = 𝑠 is
semisimple, and since 𝑥0 acts irreducibly on𝑊, we deduce that 𝑥0 = g ⊕ g−𝖳 with respect to the
decomposition 𝑉 = 𝑊 ⊕𝑊∗, with g acting irreducibly on𝑊. In particular, 𝑥0 is semisimple of
order 𝑟 that satisfies 𝑟 ∣ (𝑞𝑚

0
− 1) and 𝑟 ∤ (𝑞𝑚∕𝑘

0
− 1) for all prime divisors 𝑘 of𝑚. If𝑚 is even and

𝑟 ∣ 2(𝑞
𝑚∕2
0

+ 1), then 𝑥0 also stabilises a non-degenerate minus-type 𝑚-space (and its orthogonal
complement), so we return to the case in the previous paragraph. Therefore, when𝑈 = 𝑉, we can
assume that 𝑟 ∤ 2(𝑞𝑚∕2

0
+ 1) if𝑚 is even.

Now assume that𝑈 = 𝑊. Since 𝑢 ∈ Inndiag(𝑇0) ∩ PO+
2𝑚
(𝑞0), by [47, Theorem 11.43], 𝑢 has an

even-dimensional 1-eigenspace, so𝑚 = dim𝑊 = dim𝑈 is even.We claim that 𝑢 has Jordan form
[𝐽𝑚
2
]. To see this, observe that 𝑢 has no 𝐽1 blocks since it has no non-singular 1-eigenvectors, and

since it has a𝑚-dimensional 1-eigenspace, theremust be𝑚 distinct Jordan blocks. If𝑝 is odd, then
this determines 𝑢 up to 𝐺0-conjugacy. If 𝑝 = 2, then since 𝑢 is centralised by an element 𝑠 acting
irreducibly on a𝑚-space, 𝑢 is again determined up to 𝐺0-conjugacy (𝑢 is an 𝑎𝑚 involution, in the
notation of [3]). Without loss of generality, we may write𝑊 = ⟨𝑒1, … , 𝑒𝑚⟩ and𝑊∗ = ⟨𝑓1, … , 𝑓𝑚⟩.
Now 𝐶𝐺0(𝑢) = 𝑄∶𝐷 where |𝑄| = 𝑞

𝑚(𝑚−1)∕2
0

and𝐷 = Sp𝑚(𝑞0), which acts diagonally on𝑊⊕𝑊∗.
Therefore, 𝑠 = g ⊕ g−𝖳with respect to the decomposition𝑉 = 𝑊 ⊕𝑊∗, with g ∈ Sp2𝑚(𝑞0) acting
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24 of 38 HARPER

irreducibly on𝑊, so the order 𝑟 of 𝑠 satisfies 𝑟 ∣ (𝑞𝑚∕2
0

+ 1) and 𝑟 ∤ (𝑞𝑚∕2
0

− 1) (note that g = g−𝖳

since g ∈ Sp2𝑚(𝑞0)).
Continue to assume that𝑈 = 𝑊, but now also assume that 𝑝 = 2. For now, in addition, assume

that 𝑓∕𝑗 is even. From the description of 𝑥0, we see that 𝑥0 is contained in a field extension sub-
groupΩ+

𝑚(𝑞
2
0
), so 𝑥0 ∈ 𝑌𝑦𝜎2

= 𝑌𝑦𝜎2
𝜎1 (using the fact that𝑓∕𝑗 is even) for some𝜎2-stable subgroup

𝑌 ⩽ 𝑋 of type Ω2
𝑚. Therefore, by Theorem 2.8, we know that 𝑥 ∈ 𝑌𝜎1

𝑦𝜎2, where 𝑦 interchanges
the two factors of 𝑌, so 𝑥 is contained in a subgroup of 𝐺 of typeO±

𝑚(𝑞) ≀ Sym2, which is maximal
by [32, Table 3.5E]. Now assume that 𝑓∕𝑗 is odd. Here we note that there exists a subgroup chain
𝐻0 ⩽ 𝑀0 ⩽ 𝐺0 where𝐻0 = Ω−

𝑚(𝑞0) and𝑀0 = Ω+
𝑚(𝑞

2
0
) such that 𝑠 ∈ 𝐻0. Moreover, we can choose

these subgroups such that 𝑢 ∈ 𝑁𝐺0
(𝑀0) ⧵ 𝑀0. In particular, 𝑥0 ∈ 𝑁𝐺0

(𝑀0) of type Ω+
𝑚(𝑞

2
0
).2, so

for a suitable 𝜎2-stable subgroup 𝑌 ⩽ 𝑋 of typeΩ2
𝑚, we have 𝑥0 ∈ 𝑌𝑢𝜎2

𝜎1 (using the fact that 𝑓∕𝑗
is odd). Therefore, by Theorem 2.8, we know that 𝑥 ∈ 𝑌𝜎1

𝑢𝜎2, so 𝑥 is contained in a subgroup of
𝐺 of type O−

𝑚(𝑞) ≀ Sym2, which, again, is maximal by [32, Table 3.5E].
To summarise, for the remainder of the proof, we may assume that 𝑥0 = 𝑠𝑢 = 𝑢𝑠, where 𝑟 = |𝑠|

satisfies 𝑟 ∣ (𝑞𝑚
0
− 1) and 𝑟 ∤ (𝑞𝑚∕2

0
− 1) if𝑚 is even, and either 𝑢 = 1 and 𝑟 ∤ 2(𝑞𝑚∕2

0
+ 1) if𝑚 even,

or 𝑝 is odd,𝑚 is even, 𝑢 has Jordan form [𝐽𝑚
2
] and 𝑟 ∣ (𝑞𝑚∕2

0
+ 1). Let us write 𝜎 = 𝜎2 and 𝑒 = 𝑓∕𝑗,

so 𝑞 = 𝑞𝑒
0
.

Let 𝑘 be a prime divisor of 𝑚, and assume that 𝑚∕𝑘 is even if 𝑢 ≠ 1. Our assumptions imply
that 𝑥0 is contained in a field extension subgroup 𝐻0 = SO+

2𝑚∕𝑘
(𝑞𝑘

0
). Let 𝑌 be a closed 𝜎2-stable

subgroup of type Ω𝑘
2𝑚∕𝑘

that contains a maximally split maximal torus of 𝑋, so 𝐻0 = 𝑌𝑦𝜎 for a
𝑘-cycle 𝑦 acting on the factors of 𝑌. We apply this observation in two cases.
First, assume that there exists an odd prime divisor 𝑘 of 𝑚 such that (𝑒, 𝑘) = 1. Note that if

𝑢 ≠ 1, then𝑚 is even, so𝑚∕𝑘 is even. In this case,𝑌𝑦𝜎 = 𝑌𝑦𝜎𝑦
−𝑒𝜎𝑒 and |𝑦−𝑒| = 𝑘 since (𝑒, 𝑘) = 1.

Now, by Theorem 2.8, 𝑥 is contained in 𝑌𝑦−𝑒𝜎𝑒𝑦𝜎, which implies that 𝑥 is contained in a subgroup
of typeO+

2𝑚∕𝑘
(𝑞𝑘).𝑘, which is maximal by [32, Table 3.5E], noting that 𝑘 is odd. Therefore, we now

assume that every odd prime divisor of𝑚 divides 𝑒.
Next assume that (𝑒,𝑚) > 1 and let 𝑘 be the largest prime divisor of (𝑒,𝑚). Note that if 𝑢 ≠ 1,

then𝑚 is even, so if 𝑘 is odd, then𝑚∕𝑘 is even, and if 𝑘 = 2, then𝑚∕2 is even, since otherwise,𝑚
would have an odd prime divisor not dividing 𝑒, which is a contradiction to our working assump-
tion. In this case, 𝑌𝑦𝜎 = 𝑌𝑦𝜎𝜎

𝑒, noting that 𝑘 divides 𝑒. Now, by Theorem 2.8, 𝑥 is contained in
𝑌𝜎𝑒𝑦𝜎, which implies that 𝑥 is contained in a subgroup of typeO+

2𝑚∕𝑘
(𝑞) ≀ Sym𝑘, which ismaximal

by [32, Table 3.5E]. Therefore, from now on, we will assume that (𝑒,𝑚) = 1.
Combining the assumptions that every odd prime divisor of𝑚 divides 𝑒 and also that (𝑒,𝑚) = 1

establishes that 𝑚 is a power of 2 and 𝑒 is odd. Since 𝑥 is not in Theorem 2, either there exists
a (necessarily odd) prime divisor 𝑘 of 𝑗 not dividing 𝑒 such that 𝑟 ∣ (𝑞𝑚∕𝑘

0
− 1), or there there

exists a (necessarily odd) prime divisor 𝑘 of 𝑒 such that 𝑘 ∤ 𝑟 or 𝑘 ∣ (𝑞𝑚
0
− 1)∕𝑟. By Corollary 2.12,

both of these conditions guarantee that 𝑥 is contained in a subfield subgroup of type O+
2𝑚
(𝑞1∕𝑘),

which yields a core-free maximal subgroup containing 𝑥 (see [32, Table 3.5E], noting that 𝑘 is
odd). Therefore, we have deduced that 𝑥 is contained in a core-free maximal subgroup of 𝐺, so 𝑥
is not totally deranged. □

Proposition 3.12. Let𝑇 = PΩ+
8
(𝑞)and𝑇 ⩽ 𝐺 ⩽ Aut(𝑇). Assume that𝐺 contains triality. Let𝑥 ∈ 𝐺.

Assume that 𝑥 ∈ ⟨PGO+
8
(𝑞), 𝜑⟩ and 𝑥 is not in Theorem 2. Then 𝑥 is not totally deranged.

Proof. Write 𝑞 = 𝑝𝑓 . By replacing 𝑥 by another generator of ⟨𝑥⟩ if necessary, assume that
𝑥 ∈ PGO+

8
(𝑞)𝜑𝑗 for a divisor 𝑗 of 𝑓. Fix the simple algebraic group 𝑋 = 𝐷𝑚 and the Steinberg
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endomorphisms 𝜎1 = 𝜑𝑓 and 𝜎2 ∈ {𝜑𝑗, 𝛾𝜑𝑗}, so Inndiag(𝑇) = 𝑋𝜎1
and 𝑥 ∈ Inndiag(𝑇)𝜎2. Let

𝐹∶ Inndiag(𝑇)𝜎2 → Inndiag(𝑇0)𝜎1 be the Shintani map of (𝑋, 𝜎1, 𝜎2) where 𝑇0 = PΩ𝜀
8
(𝑞0)

for 𝑞0 = 𝑝𝑗 and 𝜀 ∈ {+,−}, and let 𝑥0 = 𝐹(𝑥). Note that if 𝑥 ∈ Inndiag(𝑇)𝜑𝑗, then 𝑥0 ∈

Inndiag(PΩ+
8
(𝑞0)), and if 𝑥 ∈ Inndiag(𝑇)𝛾𝜑𝑗 , then 𝑥0 ∈ Inndiag(PΩ−

8
(𝑞0))𝛾

𝑓∕𝑗 . Write 𝐺0 =

PGO𝜀
8
(𝑞) and let 𝑉 = 𝔽8𝑞0

be the natural module for 𝐺0. Write 𝑥0 = 𝑠𝑢 = 𝑢𝑠 for elements 𝑠, 𝑢 ∈ 𝐺0

such that 𝑠 is semisimple and 𝑢 is unipotent. Note that |𝑥| = 𝑓∕𝑗 ⋅ |𝑥0|.
If 𝑥0 is unipotent, then 𝑥0 contained in a Borel subgroup and hence a 𝑃2 parabolic subgroup of

𝐺0. Therefore, by Theorem 2.6, 𝑥 is contained in a maximal 𝑃2 parabolic subgroup of 𝐺.
From now on, we will assume that 𝑠 is non-trivial. For now assume that there exists 𝑠0 ∈ ⟨𝑠⟩

of prime order such that 𝐶Inndiag(𝑇0)(𝑠0) ⩽ 𝑌𝜎2
for a closed 𝜎2-stable subgroup 𝑌 ⩽ 𝑋 of type𝐴2𝑆

2

or 𝐴4
1
, with 𝑌𝜎2

of type SL2(𝑞0)4 and 𝜎2 = 𝜑𝑗 in the latter case. Then 𝑥0 ∈ 𝑌𝜎2
𝜎1, so Theorem 2.6

implies that 𝑥 is contained in a maximal subgroup of 𝐺 of type O±
2
(𝑞) × GL±

3
(𝑞) or O+

4
(𝑞) ≀ Sym2.

Similarly, we next assume that there exists 𝑠0 ∈ ⟨𝑠⟩ of prime order such that 𝐶Inndiag(𝑇0)(𝑠0) ⩽ 𝑌𝜎2
for a𝜎2-stablemaximal torus𝑌 ⩽ 𝑋 such that𝑌𝜎2

has order (𝑞2
0
+ 1)2with𝜎2 = 𝜑𝑗 , or order 𝑞4

0
+ 1

with 𝜎2 = 𝛾𝜑𝑗 and 𝑓∕𝑗 even. Then 𝑥0 ∈ 𝑌𝜎2
𝜎1 and 𝜎1 = 𝜎

𝑓∕𝑗
2

, so Theorem 2.6 implies that 𝑥 is
contained in 𝑁𝐺(𝐻) where 𝐻 is a maximal torus of 𝐺 of order (𝑞2 + 1)2 or (𝑞 ± 1)4; in all cases,
𝑁𝐺(𝐻) is maximal (see [6, Table 8.50]).
Considering the possible centralisers of semisimple elements of prime order in PGO±

8
(𝑞0) (see

[9, Tables B.10–B.12], for instance), we deduce that it only remains to consider the case where
𝑥0 ∈ Inndiag(𝑇0) for 𝑇0 = PΩ+

8
(𝑞0) and 𝑠 ∈ ⟨𝑠′⟩ where 𝑠′ ∈ Inndiag(𝑇0) is an element of order

𝑞4
0
− 1. Write𝐻0 = 𝐶Inndiag(𝑇0)(𝑠) and 𝜎 = 𝜎2 = 𝜑𝑗 .
First assume that |𝑠| divides 𝑞0 ± 1, so 𝐻0 has type GL

±
4
(𝑞0). Here, we proceed as in Case 4 of

Lemma 3.8, using the same notation for tori. Let 𝐵 be the Borel subgroup of 𝑋 defined as 𝐵 =⟨𝑆,𝑈𝛼 ∣ 𝛼 ∈ Φ+⟩, and let 𝑈 be the unipotent radical of 𝐵. Let 𝑃 be the 𝑃2 parabolic subgroup

𝑃 = ⟨𝑆,𝑈𝛼 ∣ 𝛼 ∈ Φ+ ∪ Φ1,3,4⟩,
and let 𝐿 be the Levi complement of 𝑃, so

𝐿 = ⟨𝑆,𝑈𝛼 ∣ 𝛼 ∈ Φ1,3,4⟩.
Observe that

𝐻0 = 𝐴±
3
(𝑞0) × ⟨𝑠⟩ = ⟨𝑆1, 𝑆2, 𝑆3, 𝑈𝛼 ∣ 𝛼 ∈ Φ1,2,3⟩𝜎 × ⟨𝑠⟩

and

𝑠 ∈ ⟨𝑆,𝑈𝛼 ∣ 𝛼 ∈ Φ4⟩𝜎 = (𝑆1 × 𝑆2 × 𝑆3)𝜎 × 𝐴1(𝑞0) ⩽ 𝐿𝜎 ⩽ 𝑃𝜎.

By conjugating in 𝐻0 if necessary, we may assume that

𝑢 ∈ ⟨𝑈𝛼 ∣ 𝛼 ∈ Φ+
1,2,3

⟩𝜎 ⩽ 𝑈𝜎 ⩽ 𝑃𝜎,

so 𝑥0 = 𝑠𝑢 ∈ 𝑃𝜎. As before, 𝑥 is contained in a maximal 𝑃2 parabolic subgroup of 𝐺.
Next assume that |𝑠| divides 𝑞2

0
− 1 but does not divide 𝑞0 ± 1, so 𝐻0 has type GL2(𝑞20).2 if |𝑠|

divides 2(𝑞0 ± 1) (so, in particular, 𝑝 ≠ 2) and GL2(𝑞20) otherwise. In either case, 𝑥0 is contained
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26 of 38 HARPER

in the subgroup of𝐻0 of typeGL2(𝑞20). In particular, this means that 𝑥0 stabilises a totally singular
2-space of 𝑉0, so 𝑥0 is contained in a 𝑃2 parabolic subgroup of 𝐺0. Therefore, by Theorem 2.6, 𝑥 is
contained in a maximal 𝑃2 parabolic subgroup of 𝐺.
Now assume that |𝑠| divides 2(𝑞2

0
+ 1). Since 𝑥 is not in Theorem 2, either 𝑢 = 1 or 𝑝 = 2. In

either case, |𝑥0| divides 2(𝑞20 + 1), and we will write 𝑦0 = 𝑥0 if |𝑥0| divides 𝑞20 + 1 and 𝑦0 = 𝑥2
0
oth-

erwise, so |𝑦0| divides 𝑞20 + 1 in both cases. Now fix a maximally split 𝜎-stable maximal torus 𝑌 ⩽

𝑋 and fix 𝛼 ∈ 𝑁𝑋(𝑌) such that |𝑌𝛼𝜎| = (𝑞2
0
+ 1)2 and 𝑦0 ∈ 𝑌𝛼𝜎. If 𝑥0 = 𝑦0, then 𝑥0 ∈ 𝑌𝛼𝜎(𝛼𝜎)

𝑒,
so by Theorem 2.8, 𝑥 ∈ 𝑌(𝛼𝜎)𝑒𝛼𝜎, whichmeans that 𝑥 is contained in𝑁𝐺(𝐻)where𝐻 is a torus of
order (𝑞2 + 1)2 or (𝑞 ± 1)4, which in all cases is maximal. Now assume that 𝑥0 ≠ 𝑦0. Since 𝑥0 and
𝑦0 commute, we see that 𝑦0 interchanges the two factors of 𝑌𝛼𝜎, so we may write 𝑦0 ∈ 𝑌𝛼𝜎𝑡(𝛼𝜎)

𝑒

for 𝑡 ∈ 𝑌. Theorem 2.8 implies that 𝑥 ∈ 𝑌𝑡(𝛼𝜎)𝑒𝛼𝜎. Since 𝑌𝑡(𝛼𝜎)𝑒 has order (𝑞2 − 1)2 or (𝑞2 + 1)2,
we deduce that 𝑥 is contained in a maximal subgroup of 𝐺 of typeO+

4
(𝑞) ≀ Sym2 orO−

2
(𝑞2) ≀ Sym2

(see [6, Table 8.50]).
Finally, it remains to assume that |𝑠| divides 𝑞4

0
− 1 but not 𝑞2

0
− 1 or 2(𝑞2

0
+ 1), which, in par-

ticular, forces 𝑥0 = 𝑠. For now assume further than 𝑒 is even. Then 𝑥0 ∈ 𝑌𝜎 for a closed 𝜎-stable
maximal torus 𝑌 of 𝑋 such that 𝑌𝜎 has order 𝑞40 − 1. Theorem 2.6 implies that 𝑥 is contained in
𝑌𝜎𝑒𝜎. Since 𝑒 is even, 𝑌𝜎𝑒 has order (𝑞2 − 1)2 or (𝑞 − 1)4, which means that 𝑥 is contained in a
maximal subgroup of 𝐺 of type O+

4
(𝑞) ≀ Sym2 or O+

2
(𝑞) ≀ Sym4.

Now assume that 𝑒 is odd. We complete the proof just as for Proposition 3.11. Since 𝑥 is not in
Theorem 2, either there exists an odd prime divisor 𝑘 of 𝑗 not dividing 𝑒 such that 𝑟 ∣ (𝑞4∕𝑘

0
− 1), or

there exists an odd prime divisor 𝑘 of 𝑒 such that 𝑘 ∤ 𝑟 or 𝑘 ∣ (𝑞4
0
− 1)∕𝑟. Therefore, Corollary 2.12

implies that 𝑥 is contained in a subgroup of type O+
8
(𝑞1∕𝑘), which is maximal since 𝑘 is odd (see

[6, Table 8.50]). In conclusion, 𝑥 is contained in a core-free maximal subgroup of 𝐺, so 𝑥 is not
totally deranged. □

3.5 Verifying the examples

We now verify that if (𝐺, 𝑥) appears in part (iii) of Theorem 2, then 𝑥 actually is a totally deranged
element of 𝐺. Here, we need more comprehensive information on the subgroup structure of 𝐺.
Let 𝑇 ⩽ 𝐺 ⩽ Aut(𝑇) for 𝐺 and 𝑇 as in Theorem 2. Complete information is given in [6, Table 8.14]
if 𝑇 = Sp4(2

𝑓) and in [6, Table 8.50] if 𝑇 = PΩ+
8
(𝑞). For𝑚 ⩾ 4 and PΩ+

2𝑚
(𝑞) ⩽ 𝐺 ⩽ PGO+

2𝑚
(𝑞), we

use the (incomplete) description of themaximal subgroups of𝐺 in [32], namely that each core-free
maximal subgroup is either a geometric subgroup in [32, Table 3.5E] or an absolutely irreducible
almost simple group in the class  . The class  is defined formally in [32, p.3], and we will make
use of the detailed information on almost simple groups given in [32, Chapter 5].

Lemma 3.13. Let 𝑇 = Sp4(𝑞) for 𝑞 = 𝑝𝑓 , and let 𝑇 ⩽ 𝐺 ⩽ Aut(𝑇). Assume that (𝐺, 𝑥) appears in
Theorem 2. Then 𝑥 ∉ 𝑁𝐺(𝐻) for any𝐻 ⩽ 𝑇 of type Sp4(𝑞1∕𝑘) for prime 𝑘 ∣ 𝑓 or 2𝐵2(𝑞) for odd 𝑓.

Proof. By replacing 𝑥 by another generator of ⟨𝑥⟩ if necessary, we may assume that 𝑥 ∈ 𝑇𝜑𝑗 for
a divisor 𝑗 of 𝑓. Let 𝐹∶ 𝑇𝜑𝑗 → 𝑇0 be the Shintani map of (Sp4, 𝜑𝑓, 𝜑𝑗) where 𝑇0 = Sp4(𝑞0) and
𝑞0 = 2𝑗 . Write 𝑥0 = 𝐹(𝑥), noting that |𝑥0| = |𝑥𝑓∕𝑗|.
First assume that𝑀 = 𝑁𝐺(𝐻) where 𝐻 has type Sp4(𝑞1∕𝑘) for a prime 𝑘 ∣ 𝑓. For now assume

further that 𝑘 divides𝑓∕𝑗. Then the conditions on |𝑥0| imply that there is no 𝑧 ∈ 𝑇0 such that 𝑥0 =
𝑧𝑘. Now assume that 𝑘 does not divide 𝑓∕𝑗 (so 𝑘 divides 𝑗). We claim that 𝑥0 is not contained in a

 14697750, 2024, 6, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12935 by T

est, W
iley O

nline L
ibrary on [03/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense
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𝑇0-conjugate of Sp4(𝑞
1∕𝑘
0

). To see this, suppose otherwise. Then |𝑥0|must divide either 𝑞2∕𝑘0
+ 1 or

𝑞
2∕𝑘
0

− 1, but the first of these is impossible since (𝑞2∕𝑘
0

+ 1, 𝑞2
0
− 1) = 1 and the second is excluded

by the statement of Theorem 2. Therefore, in both cases, Corollary 2.12 (with 𝜎 = 𝜑, 𝑚 = 𝑓 and
𝑙 = 𝑗) shows that 𝑥 ∉ 𝑀.
Nowassume that𝑀 = 𝑁𝐺(𝐻)where𝐻 has type 2𝐵2(𝑞), so𝑓 is odd. Suppose that𝑥0 is contained

in a 𝑇0-conjugate of 2𝐵2(𝑞0). Then, as before, |𝑥0| must divide 𝑞20 + 1 or 𝑞0 − 1, but the first is
impossible since (𝑞2

0
+ 1, 𝑞2

0
− 1) = 1 and the second is excluded. Again, Corollary 2.12 (this time

with 𝜎 = 𝜌,𝑚 = 2𝑓 and 𝑙 = 2𝑗) shows that 𝑥 ∉ 𝑀. □

Lemma 3.14. Let 𝑇 = PΩ+
2𝑚
(𝑞) for 𝑞 = 𝑝𝑓 and 2𝑚 = 2𝑙 ⩾ 8, and let 𝑇 ⩽ 𝐺 ⩽ Aut(𝑇). Assume that

(𝐺, 𝑥) is in Theorem 2. Then 𝑥 ∉ 𝑁𝐺(𝐻) for any𝐻 ⩽ 𝑇 satisfying one of the following:

1. 𝐻 is a reducible subgroup of type
(a) the stabiliser of a totally singular 𝑘-space for 1 ⩽ 𝑘 < 𝑚,
(b) O𝜀

𝑘
(𝑞) × O𝜀

2𝑚−𝑘
(𝑞) for 1 ⩽ 𝑘 < 𝑚 and 𝜀 ∈ {+,−},

(c) Sp2𝑚−2(𝑞) for odd 𝑞,
2. 𝐻 has type O𝜀

2𝑚∕𝑘
(𝑞) ≀ Sym𝑘 for 𝑘 ∣ 2𝑚 and 𝜀 ∈ {+,−},

3. 𝐻 is a subfield subgroup of type
(a) O+

2𝑚
(𝑞1∕𝑘) for prime 𝑘 ∣ 𝑓,

(b) O−
2𝑚
(𝑞1∕2) for 2 ∣ 𝑓,

(c) 3𝐷4(𝑞
1∕3) for𝑚 = 4 and 3 ∣ 𝑓,

4. 𝐻 is an -type subgroup.

Proof. By replacing 𝑥 by another generator of ⟨𝑥⟩ if necessary, we may assume that 𝑥 is contained
in Inndiag(𝑇)𝜑𝑗 for a divisor 𝑗 of 𝑓. Let 𝐹∶ Inndiag(𝑇)𝜑𝑗 → Inndiag(𝑇0) be the Shintani map
of (𝑋, 𝜎𝑒, 𝜎) = (PΩ2𝑚, 𝜑

𝑓, 𝜑𝑗) where 𝑇0 = PΩ+
2𝑚
(𝑞0) and 𝑞0 = 𝑝𝑗 (so 𝑒 = 𝑓∕𝑗). Write 𝑥0 = 𝐹(𝑥)

noting that |𝑥0| = |𝑥𝑒|. In particular, 𝑥0 = 𝑠𝑢 with the notation from Theorem 2. Write 𝐺0 =

Inndiag(𝑇0) and let 𝑉 = 𝔽2𝑚𝑞0
be the natural module for 𝐺0.

Cases 1 & 2.𝐻 is a reducible or imprimitive subgroup
Suppose that 𝑥 ∈ 𝑁𝐺(𝐻). Fix a closed 𝜎-stable subgroup 𝑌 ⩽ 𝑋 such that 𝐻 = 𝑌𝜎𝑒 ∩ 𝑇. Now

𝑥 ∈ 𝑌𝜎𝑒𝜎, so fix 𝛼 ∈ 𝑌 such that 𝑥 ∈ 𝑌◦
𝜎𝑒
𝛼𝜎. In the case𝑌 = O2𝑚∕𝑘 ≀ Sym𝑘, wemay assume that 𝜎

does not permute the 𝑘 factors of𝑌◦. By Theorem 2.8, we deduce that 𝑥0 ∈ 𝑌◦
𝛼𝜎𝜎

𝑒. The only proper
non-zero subspaces of 𝔽2𝑚𝑞0 stabilised by 𝑥𝑎

0
(for any even 𝑎) are totally singular𝑚-spaces (here we

are using the fact that𝑢 ≠ 1 if𝑝 = 2). Therefore, the only possibility is that𝑌◦
𝛼𝜎 has typeΩ

+
2𝑚∕𝑘

(𝑞𝑘
0
)

for some 𝑘 dividing 𝑚. This means that 𝑌 has type O2𝑚∕𝑘 ≀ Sym𝑘 and 𝛼 ∈ Sym𝑘 is a 𝑘-cycle. In
particular, since 𝑒 is odd, we deduce that 𝑥0 ∈ 𝑌◦

𝛼𝜎𝛽 where 𝛽 ∈ Sym𝑘 is a 𝑘-cycle. Said otherwise,
𝑥0 ∈ Ω+

2𝑚∕𝑘
(𝑞𝑘

0
)𝜓 where 𝜓 induces field automorphism of order 𝑘. The usual Shintani descent

argument implies that Ω+
2𝑚∕𝑘

(𝑞0) must contain an element of order |𝑥𝑘0 |. However, since 𝑘 ⩽ 𝑚,
we know that |𝑥𝑘

0
| is divisible by a primitive prime divisor of 𝑞𝑚

0
− 1, which is a contradiction.

Case 3.𝐻 is a subfield subgroup.
First assume that 𝐻 has type O+

2𝑚
(𝑞1∕𝑘) for a prime divisor 𝑘 of 𝑓. If 𝑘 divides 𝑓∕𝑗, then the

conditions on |𝑥0| imply that there is no element 𝑧 ∈ Inndiag(𝑇0) such that 𝑥0 = 𝑧𝑘. Now assume
that 𝑘 does not divide 𝑓∕𝑗 (so 𝑘 divides 𝑗). We claim that 𝑥0 is not contained in a subgroup of
Inndiag(𝑇0) of type O+

2𝑚
(𝑞

1∕𝑘
0

). (To see this, suppose otherwise. Then 𝑠 stabilises a dual pair of
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28 of 38 HARPER

totally singular 𝑚-spaces of 𝔽2𝑚𝑞𝑘 where 𝑞𝑘 = 𝑞
1∕𝑘
0

, so |𝑠| ∣ 𝑞2𝑚∕𝑘
0

− 1, which is a contradiction.)
Therefore, in both cases, Corollary 2.12 (with 𝜎 = 𝜑,𝑚 = 𝑓 and 𝑙 = 𝑗) shows that 𝑥 ∉ 𝑁𝐺(𝐻).
Next assume that 𝐻 has type O−

2𝑚
(𝑞1∕2). We claim that 𝑥0 is not contained in a subgroup of

Inndiag(𝑇0) of type O−
2𝑚
(𝑞

1∕2
0

). To see this, suppose otherwise. Then 𝑠 must act irreducibly on
𝔽2𝑚𝑞2

, where 𝑞2 = 𝑞
1∕2
0

, so |𝑠| ∣ 𝑞𝑚∕2
0

+ 1. Now the conditions in Theorem 2 imply that 𝑢 ≠ 1, but

irreducible elements of O−
2𝑚
(𝑞

1∕2
0

) commute with no non-trivial unipotent elements, which is a
contradiction and the claim is proved. Now, recalling that 𝑓∕𝑗 is odd, by applying Corollary 2.12
(with 𝜎 = 𝛾𝜑𝑗∕2,𝑚 = 2𝑓∕𝑖 and 𝑙 = 2), we deduce that 𝑥 ∉ 𝑁𝐺(𝐻).
Now assume that 𝑚 = 4 and 𝐻 has type 3𝐷4(𝑞

1∕3). In this case, it suffices to note that since
𝑞 = 𝑞𝑒

0
and 𝑒 is odd, |3𝐷4(𝑞

1∕3)| is not divisible by a primitive prime divisor 𝑟 of 𝑞4
0
− 1 since any

such 𝑟 divides 𝑞2
0
+ 1 and 𝑞2

0
+ 1 is prime to |3𝐷4(𝑞

1∕3)|.
Case 4.𝐻 is an -type subgroup.
Let 𝑆 be the socle of𝐻. Observe that |𝑥0| (and hence |𝑥|) is divisible by a primitive prime divisor

𝑟 of 𝑞𝑚
0
− 1. Now 𝑟 = 𝑎𝑚 + 1 for some 𝑎 ⩾ 1, so, if𝑚 ⩾ 8, then 𝑟 ⩾ 17. Moreover, if𝑚 ⩾ 16, then

𝑟 = 17 (in which case 𝑚 = 16) or 𝑟 > 100. Note also that |𝑥0| is not prime, so |𝑥| ⩾ |𝑥0| > 𝑟. (If
|𝑥0|were prime, then 𝑥0 = 𝑠𝑢 with |𝑠| prime and 𝑢 = 1, but then |𝑠| divides 𝑞𝑚∕2

0
+ 1, which is at

odds with the specification of 𝑥0 in Theorem 2.)
Case 4a. 𝑆 is a sporadic group.
If𝑚 = 4, then no cases arise [6, Table 8.50], and if𝑚 = 8, then 𝑆 = M12 [41, Table 7.8], but the

prime 𝑟 ⩾ 17 does not divide |Aut(𝑆)|, so again no cases arise. We can now assume that 𝑚 ⩾ 16.
Since |Aut(𝑆)| is not divisible by any prime greater than 100, we must have 𝑟 = 17 and hence
𝑚 = 16. Since 𝑟 divides |Aut(𝑆)|, wemust have 𝑆 ∈ {J3, He, Fi23, Fi

′
24, 𝔹,𝕄}. Every non-trivial rep-

resentation of 𝑆 has degree greater than 32 [32, Proposition 5.3.8], except when 𝑆 = J3, but 𝑆 does
not have an irreducible representation of degree exactly 32 in this case either (see [14, p. 83] and
[29, pp. 215–219]).
Case 4b. 𝑆 is an alternating group Alt𝑑.
First assume that 𝑆 is embedded via the fully deleted permutation module, so 𝑞 = 𝑞0 = 𝑝 (see

[32, pp. 185–187]). Let 𝑈 = 𝔽𝑑𝑝 and write

𝑈0 = {(𝑎1, … , 𝑎𝑑) ∈ 𝑈 ∣ 𝑎1 +⋯ + 𝑎𝑑 = 0}

𝑊 = {(𝑎1, … , 𝑎𝑑) ∈ 𝑈 ∣ 𝑎1 = ⋯ = 𝑎𝑑}.

Then we may identify 𝑉 = 𝑈0∕(𝑊 ∩ 𝑈0), so 𝑛 = 𝑑 + 1 if 𝑝 ∤ 𝑑 and 𝑛 = 𝑑 + 2 if 𝑝 ∣ 𝑑.
For now assume that 𝑢 = [𝐽𝑚

2
]. The element of Alt𝑑 corresponding to 𝑢 has order 𝑝 and

hence cycle type (𝑝𝑘, 1𝑑−𝑝𝑘). By [10, Lemma 3.2], the Jordan form for the corresponding element
in GL(𝑉) is

⎧⎪⎪⎨⎪⎪⎩

[𝐽𝑘𝑝, 𝐽
𝑑−pk−1
1

] if 𝑑 > pk and 𝑝 ∤ 𝑑

[𝐽𝑘𝑝, 𝐽
𝑑−pk−2
1

] if 𝑑 > pk and 𝑝 |𝑑
[𝐽𝑘−1𝑝 , 𝐽𝑝−2] if 𝑑 = pk and 𝑝 ∤ 𝑘

[𝐽𝑘−2𝑝 , 𝐽2
𝑝−1

] if 𝑑 = pk and 𝑝 | 𝑘,
but all of these are inconsistent with 𝑢 = [𝐽𝑚

2
].
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TOTALLY DERANGED ELEMENTS OF ALMOST SIMPLE GROUPS AND INVARIABLE GENERATING SETS 29 of 38

Wemay now assume that 𝑢 = 1. Let 𝛼 be the element ofAlt𝑑 corresponding to 𝑥0 = 𝑠 and let 𝛼0
be a power of𝛼 of order 𝑟. Since 𝑟 ≡ 1 (mod 𝑚) and𝑑 ⩽ 2𝑚 + 2, wemust have 𝑟 ∈ {𝑚 + 1, 2𝑚 + 1}.
Since |𝛼| ∤ (𝑝𝑚∕2 + 1), we know that |𝛼| > 𝑟, so actually, 𝑟 = 𝑚 + 1. For now suppose that 𝛼0
has cycle type [𝑟2], so 𝑑 = 2𝑚 + 2 and 𝑝 ∣ 𝑑. Then 𝛼 has cycle type [2𝑟], which implies that 2𝑟 ∣
(𝑝𝑚 − 1). In particular, 𝑝 ∉ {2, 𝑟}, but 𝑑 = 2𝑟 is supposed to be divisible by 𝑝: a contradiction. Now
suppose that 𝛼0 has cycle type [𝑟, 1𝑑−𝑟]. Since 𝑑 − 𝑟 ⩾ 𝑚 > 0, the element ofGL(𝑉) corresponding
to 𝛼0 fixes a 1-space of 𝑉, which is impossible as it must act irreducibly on a dual pair of totally
singular𝑚-spaces.
It remains to assume that 𝑆 is not embedded via the fully deleted permutation module. No

cases arise when 𝑚 = 4 [6, Table 8.50]. Now assume that 𝑚 ⩾ 8, so 𝑑 ⩾ 𝑟 ⩾ 17. Combining [19,
Lemma 4.3] and [39, (6.1)], we see that since 𝑑 ⩾ 17 and since the embedding is not the fully
deleted permutation module, the degree of the representation must satisfy 2𝑚 ⩾ 2𝑑. This implies
that 𝑟 ⩾ 𝑚 + 1 > 𝑑, which is a contradiction.
Case 4c. 𝑆 is a group of Lie type over 𝔽𝑡 where (𝑝, 𝑡) = 1.
For each possible type of 𝑆, we will show that the bound 𝑟 > 𝑚 is contradicted. A lower bound

on the degree of a non-trivial representation of 𝑆 is given in [32, Theorem 5.3.9]. To obtain upper
bounds on the size of the prime divisors ofAut(𝑆), we note that every prime divisor of |Aut(𝑆)| is at
mostmax{3, 𝑡} or divides one of the cyclotomic polynomials in 𝑡 given by the 𝑡′-part of the order
formula for |Inndiag(𝑇)|. For exceptional groups and orthogonal groups, this easily yields the
desired contradiction. For instance, if 𝑆 = 𝐸6(𝑡), then 2𝑚 ⩾ 𝑡9(𝑡2 − 1) but 𝑟 is at most the greatest
cyclotomic polynomial dividing |Inndiag(𝐸6(𝑡))| which is 𝑡6 + 𝑡3 + 1, which contradicts 𝑟 > 𝑚.
For the remaining classical groups, more care is required but the arguments are similar in all
cases and we present the details for 𝑆 = PSL𝑑(𝑡) where 𝑑 is even. No examples arise when𝑚 = 4

(see [6, Table 8.50]), so assume that𝑚 ⩾ 8.
First assume that 𝑑 > 2. On the one hand, 2𝑚 ⩾ 𝑡𝑑−1 − 1 (from [32, Theorem 5.3.9]). On the

other hand, 𝑟 divides (𝑡𝑖 − 1)∕(𝑡 − 1) for some 1 ⩽ 𝑖 ⩽ 𝑑, and since 𝑟 > 𝑚 ⩾
1

2
(𝑡𝑑−1 − 1), 𝑖 = 𝑑.

Therefore, 𝑟 divides 𝑡𝑑∕2 ± 1, so (except for the case 𝑆 = PSL4(2), which was handled in Case 4b
as Alt8), we deduce that

𝑟 ⩽ 𝑡𝑑∕2 + 1 ⩽
1

2
(𝑡𝑑−1 − 1) ⩽ 𝑚,

which contradicts 𝑟 > 𝑚.
We now assume that 𝑑 = 2, and low-rank isomorphisms allow us to assume that 𝑡 = 8 or 𝑡 ⩾ 11.

Let us record that every prime divisor of |Aut(𝑆)| greater than log2 𝑡 must divide 𝑡 − 1, 𝑡 or 𝑡 + 1.
Recall that 2𝑚 = 2𝑙. We claim that 𝑟 = 𝑡 + 1 if 𝑡 is even, and 𝑟 = 𝑡 if 𝑡 is odd.
To see this, first assume that 𝑡 is even. From [8], the degrees of the non-trivial irreducible repre-

sentations of 𝑆 are 𝑡 − 1, 𝑡 and 𝑡 + 1, so 2𝑚 = 𝑡. Since 𝑟 ≡ 1 (mod 𝑚), fix 𝑎 such that 𝑟 = 𝑎𝑚 + 1,
noting that 𝑎 ∈ {1, 2} since 𝑟 divides |Aut(𝑆)|. If 𝑟 = 𝑚 + 1 = 𝑡∕2 + 1, then 𝑟 does not divide 𝑡 − 1,
𝑡 or 𝑡 + 1, so 𝑟 = 2𝑚 + 1 = 𝑡 + 1.
Now assume that 𝑡 is odd. Here, the degrees of the non-trivial irreducible representations of

𝑆 are 1

2
(𝑡 − 𝜀), 𝑡, 𝑡 − 1 and 𝑡 + 1, where 𝜀 ∈ {1, −1} satisfies 𝑡 ≡ 𝜀 (mod 4). This means that 2𝑚 ∈

{1
2
(𝑡 ± 1), 𝑡 ± 1}, so 𝑡 ∈ {2𝑙 ± 1, 2𝑙+1 ± 1}. As 𝑟 ≡ 1 (mod 𝑚) and 𝑟 ⩽ 𝑡 + 1, we see that

𝑟 ∈
{
2𝑙−1 + 1, 2𝑙 + 1, 3

2
⋅ 2𝑙 + 1, 2𝑙+1 + 1

}
.
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30 of 38 HARPER

Moreover, since 𝑟 divides |Aut(𝑆)|, we quickly see that either 𝑟 = 𝑡 or (𝑟, 𝑡) ∈ {(2𝑙−1 + 1, 2𝑙 +

1), (2𝑙 + 1, 2𝑙+1 + 1)} where 𝑟 divides 𝑡 + 1. However, in the latter case, 𝑟 and 𝑡 are both Fermat
primes, so 𝑙 and either 𝑙 − 1 or 𝑙 + 1 is a power of two, which is absurd. Therefore, 𝑟 = 𝑡, and we
have proved the claim.
It now remains to note that |𝑥0| > 𝑟 butAut(𝑆) does not contain any elements of order properly

divisible by 𝑟 ∈ {𝑡, 𝑡 + 1}: a contradiction.
Case 4d. 𝑆 is a group of Lie type in characteristic 𝑝.
By [32, Theorem 5.4.1], fix a closed𝜎-stable simple subgroup𝑌 ⩽ 𝑋 such that𝐻 = 𝑌𝜎𝑒 ∩ 𝑇. Now

𝑥 ∈ 𝑌𝜎𝑒𝜎, so we can fix 𝑦 ∈ 𝑌 such that 𝑥 ∈ 𝑌◦
𝜎𝑒
𝑦𝜎. By Theorem 2.8, we deduce that 𝑥0 ∈ 𝑌◦

𝑦𝜎𝜎
𝑒.

Let 𝑆0 be the socle of 𝑌◦
𝑦𝜎. We will prove that 𝑥0 ∉ Aut(𝑆0).

Write 𝑆0 = Σ𝑛(𝑝
𝑗0) and recall our notation that 𝑥0 ∈ Inndiag(PΩ+

2𝑚
(𝑞0)) where 𝑞0 = 𝑝𝑗 . By

[32, Theorem 5.4.6 & Remark 5.4.7], we have 2𝑚 ⩾ dim𝑀𝑗0∕𝑗 for a non-trivial irreducible 𝔽𝑝𝑗𝑆0-
module 𝑀. Let 𝛼 = 𝑗0∕𝑗 and 𝛽 = max{𝑖2 ∶ (𝑞

𝛼𝑖
0
− 1) ∣ |Aut(𝑆0)|}, and note that 𝛼 ⩾ 𝑚∕𝛽 since

𝑥0 ∈ Aut(𝑆0) and |𝑥0| is divisible by a primitive prime divisor of 𝑞𝑚0 − 1. Let 𝛿 be the smallest
degree of a non-trivial irreducible 𝔽𝑝𝑗𝑆0-module. Therefore, if we can show that 𝛿1∕𝛽 > (2𝑚)1∕𝑚

for all 𝑚 ⩾ 𝛿∕2, then it follows that 2𝑚 < dim𝑀𝛼, which is a contradiction. For exceptional
groups, it is easy to verify this bound using the degree bounds in [32, Proposition 5.4.13] and
the order formulae in [32, Table 5.1.B] (together with the fact that 𝑧 ↦ 𝑧2∕𝑧 is decreasing on
[e,∞), where e is the base of the natural logarithm). For instance, if 𝑆0 = 𝐸±

6
(𝑞𝛼

0
), then 𝛿 = 27

and 𝛽 = 8, so 𝛿1∕𝛽 = 271∕8, which exceeds (2𝑚)1∕𝑚 for all 𝑚 ⩾ 8. Again, classical groups require
more attention, but since the arguments are similar in all cases and we just give the details for
𝑆0 = PSL𝑑(𝑝

𝑗0).
We first handle some cases in small dimension. If 𝑚 = 4, then 𝑆0 = PSL3(𝑞0) with 𝑞0 ≡

1 (mod 3) and 𝑀 is the eight-dimensional adjoint module [6, Table 8.50], but 𝛼 = 1 and 𝛽 = 2,
which contradicts 𝛼 ⩾ 𝑚∕𝛽. If𝑚 = 8, then by [41, Table 7.8], the only possibility is 𝑆0 = PSL2(𝑞

4
0
),

but here the only element orders divisible by a primitive prime divisor of 𝑞8
0
− 1 necessarily

divide 𝑞4
0
+ 1, which makes this case impossible. From now on, we assume that 𝑚 ⩾ 16. For

𝑆0 = PSL𝑑(𝑞0), we have 𝛿 = 𝑑 and 𝛽 ⩽ 𝑑, so 𝛿1∕𝛽 ⩾ 𝑑1∕𝑑. If 𝑑 ⩽ 5, then since 2𝑚 ⩾ 32, we have
(2𝑚)1∕𝑚 ⩽ 321∕16 < 𝑑1∕𝑑, a contradiction. Now assume that 𝑑 > 5. If𝑀 is the natural module for
𝑆0, then 𝛼 > 1, so 2𝑚 ⩾ 𝑑2 and we deduce that (2𝑚)1∕𝑚 ⩽ (𝑑2)2∕𝑑

2
< 𝑑1∕𝑑, another contradiction.

Finally, assume that𝑀 is not the natural module, which means that dim𝑀 ⩾
1

2
𝑑(𝑑 − 1) (see [32,

Proposition 5.4.11]). In this case, we have

(2𝑚)1∕𝑚 ⩽
(
1

2
𝑑(𝑑 − 1)

)4∕𝑑(𝑑−1)
⩽
(
1

2
𝑑(𝑑 − 1)

)1∕𝑑
< dim𝑀1∕𝑑 ⩽ dim𝑀1∕𝛽,

which contradicts 2𝑚 ⩾ dim𝑀𝛼. This completes the proof. □

Proposition 3.15. Let (𝐺, 𝑥) be in Theorem 2. Then 𝑥 is a totally deranged element of 𝐺.

Proof. As usual, let 𝑞 = 𝑝𝑓 and assume 𝑥 ∈ Inndiag(𝑇)𝜑𝑗 for 𝑗 dividing 𝑓 for 𝑒 = 𝑓∕𝑗 odd.
Case 1. 𝑇 = Sp4(𝑞) with 𝑞 even.
Let𝐹∶ 𝑇𝜑𝑗 → 𝑇0 be the Shintanimapof (𝑋, 𝜎1, 𝜎2) = (Sp4, 𝜑

𝑓, 𝜑𝑗)where𝑇0 = Sp4(𝑞0) for 𝑞0 =
2𝑗 . Write 𝑥0 = 𝐹(𝑥) noting that |𝑥0| = |𝑥𝑓∕𝑗|. Write𝐺 = ⟨𝑇, 𝜌𝑖⟩where 𝑖 divides 𝑗. Let𝑀 be a core-
free maximal subgroup of 𝐺. If𝑀 appears in Lemma 3.13, then that lemma implies that 𝑥 ∉ 𝑀.
We now consult [6, Table 8.14] to identify the remaining possibilities for𝑀.
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TOTALLY DERANGED ELEMENTS OF ALMOST SIMPLE GROUPS AND INVARIABLE GENERATING SETS 31 of 38

First assume that 𝑀 is a Borel subgroup, so 𝑀 is ⟨𝑇, 𝜑𝑖⟩-conjugate to ⟨𝑌, 𝜑𝑖⟩𝜎1 for a closed 𝜌-
stable Borel subgroup𝑌 ⩽ 𝑋. Therefore, if 𝑥 ∈ 𝑀, then Theorem 2.6 implies that 𝑥0 ∈ 𝑌𝜎2

, a Borel
subgroup [𝑞4

0
]∶(𝑞0 − 1)2 of 𝑇0, contradicting the conditions on |𝑥0| in Theorem 2.

It remains to assume that𝑀 = 𝑁𝐺(𝐻)where𝐻 is a maximal torus of order (𝑞 − 1)2, (𝑞 + 1)2 or
𝑞2 + 1. In this case,𝑀 is ⟨𝑇, 𝜑𝑖⟩-conjugate to ⟨𝑌, 𝜑𝑖⟩𝜎1 where 𝑌 is a maximal torus of 𝑋. Suppose
that 𝑥 ∈ 𝑀, and write 𝑥 ∈ 𝑆𝑠𝜎1𝑡𝜎2 where 𝑆 is a maximally split 𝜎2-stable maximal torus of 𝑋 and
𝑠, 𝑡 ∈ 𝑁𝑇(𝑆). Then, by Theorem 2.8, 𝑥0 ∈ 𝑆𝑡𝜎2𝑠𝜎1. The conditions on |𝑥0| in Theorem 2, imply
that |𝑆𝑡𝜎2 | = 𝑞2

0
− 1 and 𝑠𝜎1 is trivial. Since |𝑆𝑡𝜎2 | = 𝑞2

0
− 1, we know that 𝑆𝑡 ∈ 𝑁𝑇(𝑆)∕𝑆 ≅ 𝐷8 is a

reflection. Since 𝑠𝜎1 = 𝑠𝜎𝑒
2
= 𝑠𝑡𝑒 is trivial, we know that 𝑠 = 𝑡−𝑒 is a reflection, recalling that 𝑒 is

odd, so |𝐻| = |𝑆𝑠𝜎1 | = 𝑞2 − 1: a contradiction. Therefore,𝑥 is not contained in a core-freemaximal
subgroup of 𝐺, so 𝑥 is a totally deranged element of 𝐺.
Case 2. 𝑇 = PΩ+

2𝑚
(𝑞) with 2𝑚 = 2𝑙 and 𝐺 does not contain triality.

By replacing 𝐺 by 𝐺𝜏 or 𝐺𝜏2 when 𝑚 = 4 if necessary, we may assume that 𝐺 ⩽ PΓO+
2𝑚
(𝑞).

Inspecting [32, Table 3.5.E] (or [6, Table 8.50] if𝑚 = 4), we see that every core-free maximal sub-
group of 𝐺 appears is in the statement of Lemma 3.14, so by that lemma, 𝑥 is contained in no
core-free maximal subgroup of 𝐺, so 𝑥 is totally deranged.
Case 3. 𝑇 = PΩ+

8
(𝑞) and 𝐺 contains triality.

Let 𝐹∶ Inndiag(𝑇)𝜑𝑗 → Inndiag(𝑇0) be the Shintani map of (𝑋, 𝜎1, 𝜎2) = (PΩ8, 𝜑
𝑓, 𝜑𝑗) where

𝑇0 = PΩ+
8
(𝑞0) for 𝑞0 = 𝑝𝑗 .Write𝑥0 = 𝐹(𝑥)noting that |𝑥0| = |𝑥𝑓∕𝑗|. Let𝑀 be a core-freemaximal

subgroup of𝐺. If𝑀 appears in Lemma 3.14, then that lemma implies that 𝑥 ∉ 𝑀. We now consult
[6, Table 8.50] to identify the other possibilities for𝑀.
First assume that 𝑀 is a 𝑃1,3,4 parabolic subgroup or a subgroup of type O

±
2
(𝑞) × GL±

3
(𝑞). If

𝑥 ∈ 𝑀, then via the usual application of Theorem2.6,𝑥0 is contained in a𝑃1,3,4 parabolic subgroup
of Inndiag(𝑇0) or a subgroup of Inndiag(𝑇0) of type O

±
2
(𝑞0) × GL±

3
(𝑞0). However, both of these

possibilities are inconsistent with the order of 𝑥0.
Next, assume that 𝑀 = 𝑁𝐺(𝐻) where 𝐻 is a maximal torus of order (𝑞2 + 1)2. Suppose that

𝑥 ∈ 𝑀, andwrite 𝑥 ∈ 𝑆𝑠𝜎1𝑡𝜎2 where 𝑆 is amaximally split maximal torus and 𝑠, 𝑡 ∈ 𝑁Inndiag(𝑇)(𝑆).
Then, by Theorem 2.8, 𝑥0 ∈ 𝑆𝑡𝜎2𝑠𝜎1. By the conditions on |𝑥0| in Theorem 2, we conclude that|𝑆𝑡𝜎2 | = 𝑞4

0
− 1 and 𝑠𝜎1 is trivial. Since |𝑆𝑡𝜎2 | = 𝑞4

0
− 1, by computing in the Weyl group𝑊𝐷4

, we
know that 𝑡 has order 4 and is conjugate to its inverse. Since 𝑠𝜎1 = 𝑠𝜎𝑒

2
= 𝑠𝑡𝑒 is trivial, 𝑠 = 𝑡−𝑒.

Since 𝑒 is odd, 𝑠 is conjugate to 𝑡, so |𝑆𝑠𝜎1 | = 𝑞4 − 1, which is a contradiction.
It remains to assume that𝑀 = 𝑁𝐺(𝐻)where𝐻 has type 24.26.PSL3(2). This means that 𝑥𝑓∕𝑗 is

contained in a groupwhose order is divisible by no primes other than 2, 3 and 7, which contradicts|𝑥𝑓∕𝑗| = |𝑥0| being divisible by a primitive prime divisor of 𝑞40 − 1. Therefore, 𝑥 is not contained
in a core-free maximal subgroup of 𝐺, so 𝑥 is totally deranged. □

3.6 Completing the proof of Theorem 2

Combining the results established in Section 3 readily gives a proof of Theorem 2.

Proof of Theorem 2. By Proposition 3.15, if (𝐺, 𝑥) appears in Theorem 2, then 𝑥 is totally deranged.
Turning to the converse, assume that 𝑥 is a totally deranged element of 𝐺. By Proposition 3.1,
𝐺 is an almost simple group of Lie type. By Proposition 3.3, either 𝑇 is untwisted and 𝐺 ⟨Inndiag(𝑇), 𝜑⟩, or 𝑇 ∈ {2𝐴𝑚(𝑞),

2𝐷𝑚(𝑞),
2𝐸6(𝑞),

3𝐷4(𝑞)}. Moreover, by Proposition 3.6, we may
assume that 𝑇 ∉ {𝐵2(𝑞), 𝐺2(𝑞), 𝐹4(𝑞)}. To summarise, we may divide into the following cases:
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32 of 38 HARPER

(a) 𝑇 ∈ {𝐴𝑚(𝑞) (𝑚 ⩾ 2), 𝐷𝑚(𝑞) (𝑚 ⩾ 4), 𝐸6(𝑞)} and 𝐺  ⟨Inndiag(𝑇), 𝜑⟩ but 𝐺 does not contain
triality,

(b) 𝑇 = 𝐷4(𝑞) and 𝐺 contains triality,
(c) 𝑇 ∈ {2𝐴𝑚(𝑞) (𝑚 ⩾ 2), 2𝐷𝑚(𝑞) (𝑚 ⩾ 4), 2𝐸6(𝑞)},
(d) 𝑇 = 3𝐷4(𝑞).

By Propositions 3.9–3.11, we can assume that 𝑥 ∉ ⟨Inndiag(𝑇), 𝜑⟩ in case (a), and 𝑥 ∉⟨Inndiag(𝑇), 𝛾, 𝜑⟩ in case (b). We consider cases (a)–(d) in turn.
For (a), by replacing 𝑥 by another generator of ⟨𝑥⟩ if necessary, we can assume that 𝑥 ∈

Inndiag(𝑇)𝛾𝜑𝑗 for some 𝑗 dividing 𝑓, so combining Propositions 3.3(ii) and 3.4(i) shows that 𝑥
is not totally deranged.
Similarly, for (b), we can assume that 𝑥 ∈ Inndiag(𝑇)𝜏𝜑𝑗 for some 𝑗 dividing 𝑓, so the result

follows from Propositions 3.3(iii) and 3.4(iii).
For (c), by replacing 𝑥 by another generator of ⟨𝑥⟩ if necessary, we can assume that 𝑥 ∈

Inndiag(𝑇)𝜑𝑗 for some 𝑗 dividing 2𝑓. If 2𝑓∕𝑗 is even, then 𝑗 divides 𝑓 and we apply Proposi-
tion 3.4(ii). If 2𝑓∕𝑗 is odd, then 𝑗 is even and, writing 𝑗0 = 𝑗∕2, we have that 2𝑓∕𝑗 = 𝑓∕𝑗0 is odd,
so 2𝑓∕(2𝑓, 𝑓 + 𝑗0) = 2𝑓∕(2𝑓, 𝑗) and ⟨𝜑𝑗⟩ = ⟨𝜑𝑓+𝑗0⟩ = ⟨𝛾𝜑𝑗0⟩; in particular, we can assume that
𝑥 ∈ Inndiag(𝑇)𝛾𝜑𝑗0 for odd 𝑓∕𝑗0 and we apply Proposition 3.3(ii).
Arguing in a similar fashion, for (d), we can assume that 𝑥 ∈ Inndiag(𝑇)𝜑𝑗 for some 𝑗 dividing

3𝑓. If 3 divides 3𝑓∕𝑗, then 𝑗 divides𝑓 andwe apply Proposition 3.4(iv); otherwise, 3 ∣ 𝑗 andwriting
𝑗0 = 𝑗∕3, we have ⟨𝜑𝑗⟩ = ⟨𝜏𝜑𝑗0⟩, so we can assume that 𝑥 ∈ Inndiag(𝑇)𝛾𝜑𝑗0 with 3 ∤ 𝑓∕𝑗0 andwe
apply Proposition 3.3(iii). □

4 APPLICATIONS

4.1 Invariable generation

In this section, we prove Theorem 3 on invariable generation.We begin with two lemmas, the first
of which connects totally deranged elements and invariable generation.

Lemma 4.1. Let ⟨𝐺, 𝑎⟩ be a group such that 𝐺 � ⟨𝐺, 𝑎⟩. Let 𝑥 ∈ 𝐺. If {𝑥, 𝑥𝑎} is an invariable
generating set for 𝐺, then 𝑥 is a totally deranged element of ⟨𝐺, 𝑎⟩.
Proof. Weprove the contrapositive. Assume that𝑥 is not a totally deranged element of ⟨𝐺, 𝑎⟩. Then
there exists a maximal subgroup 𝑀 < ⟨𝐺, 𝑎⟩ such that 𝐺  𝑀 and 𝑥 ∈ 𝑀. Since 𝑀 is maximal
and does not contain 𝐺, we deduce that 𝑀  ⟨𝐺, 𝑎𝑖⟩ for any 𝑖 such that ⟨𝑎𝑖⟩ < ⟨𝑎⟩. Therefore,
there exists g ∈ 𝐺 such that 𝑎g ∈ 𝑀. In particular, that 𝑀𝑎g = 𝑀. This means that 𝑥 ∈ 𝑀 and
𝑥𝑎g ∈ 𝑀𝑎g = 𝑀, so ⟨𝑥, 𝑥𝑎g⟩ ⩽ 𝑀 ∩ 𝐺 < 𝐺, which demonstrates that {𝑥, 𝑥𝑎} is not an invariable
generating set for 𝐺. □

Lemma 4.2. Let ⟨𝐺, 𝑎⟩ be a finite group such that 𝐺 � ⟨𝐺, 𝑎⟩. Let 𝑥 ∈ 𝐺. Then {𝑥, 𝑥𝑎} is an invari-
able generating set for𝐺 if and only if for every maximal subgroup𝐻 of𝐺, the element 𝑥 is contained
in a 𝐺-conjugate of at most one of𝐻 and𝐻𝑎.

Proof. The set {𝑥g , 𝑥𝑎ℎ} fails to generate 𝐺 if and only if there exists a maximal subgroup 𝑀 of
𝐺 such that 𝑥g and 𝑥𝑎ℎ = 𝑥ℎ

𝑎−1𝑎 are both contained in𝑀 or equivalently 𝑥 is contained in both
𝑀g−1 = (𝐻𝑎)g

−1 and (𝑀𝑎−1)ℎ
−𝑎−1

= 𝐻ℎ−𝑎
−1

, where𝐻 = 𝑀𝑎−1 . The result follows. □
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TOTALLY DERANGED ELEMENTS OF ALMOST SIMPLE GROUPS AND INVARIABLE GENERATING SETS 33 of 38

We may now proceed with the proof of Theorem 3.

Proof of Theorem 3. The implication (i)⇒(ii) is given by Lemma 4.1 and (ii)⇒(iii) is given by
Theorem 2. Therefore, it suffices to prove that if (𝑇, 𝑎, 𝑥) appears in part (iii), then 𝑇 is invariably
generated by {𝑥, 𝑥𝑎}. (Of course, writing 𝐺 = ⟨𝑇, 𝑎⟩, this means that (𝐺, 𝑥) appears in Theorem 2
with the additional assumption that 𝑥 ∈ 𝑇.)
Case 1. 𝑇 = Sp4(𝑞) with 𝑞 even
By replacing𝑥 by someAut(𝑇)-conjugate if necessary, we assume that𝑥 = 𝑦 ⊕ 𝑦−𝖳with respect

to a decomposition 𝑉 = 𝔽4𝑞 = 𝑈 ⊕𝑈∗ where 𝑈 is a totally singular 2-space on which 𝑦 acts irre-
ducibly. This means that 𝑥 has eigenvalues 𝜆, 𝜆𝑞, 𝜆−1, 𝜆−𝑞 with |𝜆| = |𝑦| = |𝑥|. This implies that
𝑥 is contained in no 𝑇-conjugate of𝐻 ∈ 1 = {𝑃1, Sp2(𝑞) ≀ Sym2, O

−
4
(𝑞)}. Moreover, Lemma 3.13

implies that 𝑥 is contained in no 𝑇-conjugate of 𝐻 ∈ 2 where2 consists of Sp4(𝑞1∕𝑘) for each
prime 𝑘 ∣ 𝑓 and, if 𝑓 is odd, also 2𝐵2(𝑞). By [6, Table 8.14], for every maximal subgroup 𝐻 of 𝑇,
either𝐻 or𝐻𝑎 is 𝑇-conjugate to a subgroup in1 ∪2. Therefore, Lemma 4.2 implies that {𝑥, 𝑥𝑎}
invariably generates 𝑇.
Case 2. 𝑇 = PΩ+

2𝑚
(𝑞) with 2𝑚 = 2𝑙.

By replacing 𝑥 by some Aut(𝑇)-conjugate if necessary, we may assume that 𝑥 = 𝑠𝑢 = 𝑢𝑠 where
𝑠 = 𝑦 ⊕ 𝑦−𝖳 with respect to a decomposition 𝑉 = 𝔽2𝑚𝑞 = 𝑈 ⊕𝑈∗ where 𝑈 is a totally singular
𝑚-space on which 𝑦 acts irreducibly, and 𝑢 is either trivial or has Jordan form [𝐽𝑚

2
]. Let 𝑟 be a

primitive prime divisor of 𝑞𝑚 − 1 that divides |𝑥|.
Let 𝐻 be a maximal subgroup of 𝑇 that contains 𝑥. In particular, 𝐻 is not in Lemma 3.14. We

now consult [32, Table 3.5.E] (or [6, Table 8.50] if𝑚 = 4) to identify the remaining possibilities for
𝐻. We will show that 𝑥 is not contained in any 𝑇-conjugate of 𝐻𝑎, which completes the proof by
Lemma 4.2. Throughout, let Aut0(𝑇) be ⟨Inndiag(𝑇), 𝜑⟩.
First assume that 𝐻 is the stabiliser of an 𝑚-space or is a subgroup of type GL𝑚(𝑞). If 𝑢 = 1,

then 𝑈 and 𝑈∗ are the only maximal totally singular subspaces stabilised by 𝑥2, so 𝑇𝑈 and 𝑇𝑈∗

are the only stabilisers of𝑚-spaces containing 𝑥 and 𝑇𝑈⊕𝑈∗ is the only subgroup of type GL𝑚(𝑞)
containing 𝑥. If 𝑢 ≠ 1, then 𝑇𝑈 is the only stabiliser of an𝑚-space containing 𝑥 and no subgroups
of type GL𝑚(𝑞) contain 𝑥.
Let us pause tomake some observations that will prove useful later. Let𝐻 be the stabiliser of an

𝑚-space in 𝑇, which is a maximal subgroup of 𝑇. Then the PΓO+
2𝑚
(𝑞)-class of𝐻 splits into exactly

two Aut0(𝑇)-classes (which are also 𝑇-classes). Given two maximally totally singular subspaces
𝑊1 and𝑊2 of𝑉, the stabilisers 𝑇𝑊1

and 𝑇𝑊2
areAut0(𝑇)-conjugate (equivalently, 𝑇-conjugate) if

and only if dim(𝑊1 ∩𝑊2) is even (in which case, we say that𝑊1 and𝑊2 have the same type), see
[32, Description 4 (on p.30) & Table 3.5.E]. In particular, since𝑈 and𝑈∗ have trivial intersection,
the stabilisers 𝑇𝑈 and 𝑇𝑈∗ are Aut0(𝑇)-conjugate. If 𝑎 ∈ PΓO+

2𝑚
(𝑞) ⧵ Aut0(𝑇), then this means

that even when 𝑥 is contained in different stabilisers of an 𝑚-space, 𝑥 is not contained in an
Aut0(𝑇)-conjugate 𝐻𝑎. If𝑚 = 4 and 𝑎 ∈ Aut(𝑇) ⧵ PΓO+

8
(𝑞), then 𝐻𝑎 is either the stabiliser of an

𝑚-space or a 1-space, and since𝑥 stabilises no 1-spaces of𝑉, again𝑥 is not contained in anAut0(𝑇)-
conjugate of 𝐻𝑎. In all cases, as 𝑥 is not contained in an Aut0(𝑇)-conjugate of 𝐻𝑎, it follows that⟨𝑥⟩ is not Aut0(𝑇)-conjugate to ⟨𝑥𝑎−1⟩, or equivalently, ⟨𝑥⟩ is not Aut0(𝑇)-conjugate to ⟨𝑥𝑎⟩.
Now assume that 𝐻 is not the stabiliser of an 𝑚-space. The rest of the proof will focus on

showing that ⟨𝑥⟩Aut(𝑇) ∩ 𝐻 = ⟨𝑥⟩Aut0(𝑇) ∩ 𝐻, which we claim completes the proof. To see this,
assume that ⟨𝑥⟩Aut(𝑇) ∩ 𝐻 = ⟨𝑥⟩Aut0(𝑇) ∩ 𝐻 and suppose that 𝑥 ∈ (𝐻𝑎)g for some g ∈ 𝑇. Then
(𝐻𝑎)g contains both 𝑥 and 𝑥𝑎g , so, by our assumption, ⟨𝑥⟩ and ⟨𝑥𝑎⟩g are Aut0(𝑇)-conjugate,
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34 of 38 HARPER

but this contradicts the observation that ⟨𝑥⟩ is not Aut0(𝑇)-conjugate to ⟨𝑥𝑎⟩. Therefore, 𝑥 is not
contained in any 𝑇-conjugate of𝐻𝑎 and we appeal to Lemma 4.2.
First assume that 𝐻 has type GU𝑚(𝑞). Now 𝐻 has a unique class of cyclic subgroups of order|𝑥|, so ⟨𝑥⟩Aut(𝑇) ∩ 𝐻 = ⟨𝑥⟩𝐻 and, in particular, ⟨𝑥⟩Aut(𝑇) ∩ 𝐻 = ⟨𝑥⟩Aut0(𝑇) ∩ 𝐻.
Next assume that 𝐻 has type Sp𝑘1(𝑞) ⊗ Sp𝑘2(𝑞) or O

𝜀1
𝑘1
(𝑞) ⊗ O

𝜀2
𝑘2
(𝑞) where 2𝑚 = 𝑘1𝑘2. Since|𝑥| is divisible by 𝑟, we deduce that, without loss of generality, 𝑘1 = 𝑚 and 𝑘2 = 2, and in the

orthogonal case, 𝜀1 = −. Again,𝐻 has a unique class of cyclic subgroups of order |𝑥|, so ⟨𝑥⟩Aut(𝑇) ∩
𝐻 = ⟨𝑥⟩Aut0(𝑇) ∩ 𝐻.
Now assume that 𝐻 has type 21+2𝑙.O+

2𝑙
(2) where 𝑞 = 𝑝 ⩾ 3 (recall that 2𝑚 = 2𝑙), so 𝐻 is an

extension of 22𝑙 by Ω+
2𝑙
(2) or O+

2𝑙
(2). The assumption that 𝑥 ∈ 𝐻 is highly restrictive. Indeed,

since 22𝑙 has exponent 2, we know that |𝑥2| must divide O+
2𝑙
(2). Now 𝑟 divides |𝑥2| and 𝑟 ≡

1 (mod 2𝑙−1), sowemust have 𝑟 = 2𝑙−1 + 1. Let 𝑥′ be the image of 𝑥 inO+
2𝑙
(2). Then 𝑥′ = (𝑥1, 𝑥2) ∈

O−
2𝑙−2

(2) × O−
2
(2) where |𝑥1| = 𝑟 = 2𝑙−1 + 1 and |𝑥2| ∈ {1, 2, 3}. Suppose that |𝑥2| ≠ 3. Then |𝑥|

divides 4𝑟, which divides 2(𝑞𝑚∕2 + 1), which is a contradiction. Therefore, |𝑥2| = 3. Now Ω−
2𝑙
(2)

(and O−
2𝑙
(2)) has a unique class of cyclic subgroups of order 3𝑟 = (2 + 1)(2𝑙−1 + 1), which implies

that ⟨𝑥2⟩Aut(𝑇) ∩ 𝐻 = ⟨𝑥2⟩Aut0(𝑇) ∩ 𝐻. Therefore, it suffices to establish that 𝑥2 is not Aut0(𝑇)-
conjugate to (𝑥2)𝑎. However, 𝑥2 satisfies the condition of Theorem 2 in this case (since 3 does not
divide 𝑞𝑚 + 1), so the observation that 𝑥 is not Aut0(𝑇)-conjugate to 𝑥𝑎 applies to 𝑥2 too. This
handles subgroups of type 21+2𝑙.O+

2𝑙
(2).

Now assume that𝐻 has type Sp𝑘1(𝑞) ≀ Sym𝑘2
orO𝜀

𝑘1
(𝑞) ≀ Sym𝑘2

where 2𝑚 = 𝑘
𝑘2
1
. Here, since |𝑥|

is divisible by the prime 𝑟 > 𝑚 and 𝑘2 < 𝑚, we deduce that Sp𝑘1(𝑞) orO
𝜀
𝑘1
(𝑞) contains an element

of order 𝑟, but 𝑘1 < 𝑚, so this is impossible.
All that remains is to consider the case where𝐻 has typeO+

𝑚(𝑞
2). Let 𝑥♯ be the preimage of 𝑥 in

O+
𝑚(𝑞

2), which naturally acts on 𝑉♯ = 𝔽𝑚
𝑞2
. Note that 𝑥♯ stabilises a maximal totally singular sub-

space𝑈♯ of𝑉♯ corresponding to themaximal totally singular subspace𝑈 of𝑉. Let 𝑦 ∈ 𝑥Aut(𝑇) ∩ 𝐻

and let 𝑦♯ be the preimage of 𝑦 in O+
𝑚(𝑞

2). Let us first address the case where 𝑚 = 4 and 𝑦 is not
PΓO+

8
(𝑞)-conjugate to 𝑥. Here, 𝑦 has exactly two eigenvalues of order dividing 𝑞 − 1, so 𝑦♯ has a

unique eigenvalue with order dividing 𝑞 − 1, but this is impossible for an element of 𝐻. There-
fore, we may now assume that 𝑦 is PΓO+

2𝑚
(𝑞)-conjugate to 𝑥. In this case, we can fix a maximal

totally singular subspace 𝑊♯ of 𝑉♯ stabilised by 𝑦♯. Now dim(𝑈 ∩𝑊) = 2dim(𝑈♯ ∩𝑊♯), which
is even, so 𝑈 and 𝑊 have the same type. Since all maximal totally singular subspaces of 𝑉 sta-
bilised by 𝑦 have the same type, we deduce that all maximal subgroups of 𝑇 of type 𝑃𝑚 that
contain 𝑦 areAut0(𝑇)-conjugate to 𝑇𝑈 . Therefore, 𝑦 isAut0(𝑇)-conjugate to 𝑥, so ⟨𝑥⟩Aut(𝑇) ∩ 𝐻 =⟨𝑥⟩Aut0(𝑇) ∩ 𝐻.
We have now shown that for all maximal subgroups 𝐻 of 𝑇, the element 𝑥 is contained in a

𝑇-conjugate of at most one of𝐻 and𝐻𝑎, so Lemma 4.2 completes the proof. □

4.2 Unique maximal overgroups

We conclude by proving Theorem 4 on unique maximal overgroups, beginning with a strong
version of the implication (iii)⇒(i). Here, and in what follows, for a finite simple group of Lie
type 𝑇, write �̈� = 𝑇𝑥 ∈ Out(𝑇) if 𝑥 ∈ Aut(𝑇), write �̈� = {�̈� ∣ 𝑥 ∈ 𝐴} if 𝐴 ⊆ Aut(𝑇) and write
𝐷 = ⟨Inndiag(𝑇), 𝜑⟩.

 14697750, 2024, 6, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12935 by T

est, W
iley O

nline L
ibrary on [03/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



TOTALLY DERANGED ELEMENTS OF ALMOST SIMPLE GROUPS AND INVARIABLE GENERATING SETS 35 of 38

Proposition 4.3. Let 𝑇 be a finite simple group of Lie type, 𝑇 ⩽ 𝐺 ⩽ Aut(𝑇) and 𝑥 ∈ 𝐺. Assume
that (𝐺, 𝑥) appears in Theorem 4. Then ⟨Inndiag(𝑇), 𝜑⟩ ∩ 𝐺 is the unique maximal subgroup of 𝐺
that contains 𝑥.

Proof. Let (𝐺, 𝑥) be in Theorem 4. By Theorem 2, 𝑥 is a totally deranged element of 𝐺, so 𝑥 is
contained in no core-free maximal subgroup of 𝐺. Therefore, it suffices to prove that �̈� ∩ �̈� is
the unique maximal subgroup of �̈� that contains �̈�. In all cases, 𝐺  𝐷 and replacing 𝑥 by an
Aut(𝑇)-conjugate if necessary, 𝑥 ∈ Inndiag(𝑇)𝜑𝑗 for a divisor 𝑗 of 𝑓 such that 𝑓∕𝑗 is odd.
Case 1. 𝑇 = Sp4(𝑞)

The maximal subgroups of �̈� that contain �̈� correspond to the maximal subgroups of �̈�∕⟨�̈�⟩.
However, �̈�∕⟨�̈�⟩ ≅ 𝐶2𝑗∕𝑖 and 2𝑗∕𝑖 is a power of 2, so the unique index two subgroup of �̈�∕⟨�̈�⟩
is its unique maximal subgroup. Therefore, ⟨�̈�𝑖⟩ = �̈� ∩ �̈� is the unique maximal subgroup of �̈�
containing �̈�.
Case 2. 𝑇 = PΩ+

2𝑚
(𝑞) and 𝑦 is a duality graph automorphism.

Since �̈�, (�̈��̈�𝑖)2 ∈ �̈�, it is easy to check that ⟨�̈�, �̈��̈��̈�𝑖 , (�̈��̈�𝑖)2⟩ is an index two subgroup of �̈�wholly
contained in �̈�, so it is necessarily �̈� ∩ �̈�. Now �̈� ∩ �̈� is certainly a maximal subgroup of �̈� con-
taining �̈�. Let �̈� be any maximal subgroup of �̈� containing �̈�. Suppose that �̈� ≠ �̈� ∩ �̈�. Then.
�̈�  �̈� ∩ �̈�, so we may fix g̈ ∈ �̈� such that g̈ ∉ �̈�. Then �̈��̈��̈�𝑖 = �̈�g̈ ∈ �̈�, so �̈� = ⟨�̈�, �̈��̈��̈�𝑖 ⟩ is a nor-
mal subgroup of �̈� contained in �̈�. Therefore, the possibilities for �̈� correspond to the maximal
subgroups of �̈�∕�̈� containing �̈�∕�̈�. Now �̈�∕�̈� is a cyclic group of order dividing |�̈��̈�𝑖|, which is
a power of 2, so �̈� = ⟨�̈�, (�̈��̈�𝑖)2⟩ = �̈� ∩ �̈�, which contradicts g̈ ∈ �̈�. Therefore, �̈� = �̈� ∩ �̈�.
Case 3. 𝑇 = PΩ+

8
(𝑞) and 𝑦 is a triality graph automorphism.

The argument is very similar to in Case 2, so we just sketch it. First note that �̈� ∩ �̈� =⟨�̈�, �̈��̈��̈�𝑖 , �̈�(�̈��̈�𝑖 )2 , (�̈��̈�𝑖)3⟩, which is a maximal subgroup of �̈� containing �̈�. Next let �̈� be any max-
imal subgroup of �̈� containing �̈�, and suppose that �̈� ≠ �̈� ∩ �̈�. Then �̈� = ⟨�̈�, �̈��̈��̈�𝑖 , �̈�(�̈��̈�𝑖 )2⟩ is a
normal subgroup of �̈� contained in �̈�, so the possibilities for �̈� correspond to the maximal sub-
groups of �̈�∕�̈� containing �̈�∕�̈�. Since �̈�∕�̈� is a cyclic group of order dividing |�̈��̈�𝑖|, which is a
power of 3, we deduce that �̈� = ⟨�̈�, (�̈��̈�𝑖)3⟩ = �̈� ∩ �̈�, which is a contradiction, so �̈� = �̈� ∩ �̈�. □

Proof of Theorem 4. The equivalence (i)⟺ (ii) is clear, and the implication (iii)⇒(i) is given by
Proposition 4.3. Therefore, the remainder of the proof will be dedicated to proving the implication
(ii)⇒(iii). Let (𝐺, 𝑥) be inTheorem2 and assume that �̈� is contained in a uniquemaximal subgroup
of �̈�. We claim that (𝐺, 𝑥) is given in Theorem 4.
Case 1. 𝑇 = Sp4(𝑞).
In this case, Out(𝑇) = ⟨�̈�⟩. Since �̈�  ⟨�̈�⟩, we have �̈� = ⟨�̈�𝑖⟩ for some odd divisor 𝑖 of 𝑓. Since

�̈� ∈ �̈�, wemust have 𝑖 ∣ 𝑗. Themaximal subgroups of �̈� that contain �̈� correspond to the maximal
subgroups of �̈�∕⟨�̈�⟩. In particular, �̈� is contained in a unique maximal subgroup of �̈� if and only
if 2𝑗∕𝑖 = |�̈�∕⟨�̈�⟩| is a power of 2.
Case 2. 𝑇 = PΩ+

2𝑚
(𝑞) and 𝐺 does not contain triality.

If 𝑚 > 4, then 𝐺 ⩽ PΓO+
8
(𝑞) = ⟨𝐷, 𝛾⟩ and we write 𝛼 = 𝛾. If 𝑚 = 4, then we can fix 𝛼 ∈

{𝛾, 𝛾𝜏, 𝛾𝜏2} such that 𝐺 ⩽ ⟨𝐷, 𝛼⟩. In all cases, 𝛼 is a duality graph automorphism.
First assume that ⟨�̈�⟩ is normal in �̈�. The maximal subgroups of �̈� containing �̈� correspond

to the maximal subgroups of �̈�∕⟨�̈�⟩, so �̈�∕⟨�̈�⟩ is a cyclic 2-group. In particular, the assumption
𝐺  𝐷 means that we may write �̈� = ⟨�̈�, ℎ̈�̈��̈�𝑖⟩ where ℎ ∈ Inndiag(𝑇) and 𝑖 ∣ 𝑗. If 𝑗∕𝑖 had an odd
prime divisor 𝑟, then 𝑟 would divide |�̈�∕⟨�̈�⟩|, a contradiction. Therefore, 𝑗∕𝑖 is a power of 2. This
proves the result (with 𝑦 = ℎ𝛼).
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36 of 38 HARPER

For the rest of this case, we can assume that 𝑝 is odd and ⟨�̈�⟩ = ⟨�̈��̈�𝑗⟩. Here we take a dif-
ferent approach. We know that �̈� ⩽ ⟨�̈�, �̈�⟩ × ⟨�̈�⟩. Assume that the projection of �̈� onto ⟨�̈�⟩ ≅ 𝐶𝑓
is ⟨�̈�𝑖⟩ where 𝑖 ∣ 𝑓, so �̈� ⩽ �̈� where �̈� = ⟨�̈�, �̈�, �̈�𝑖⟩. The assumption that 𝐺  𝐷 is equivalent to
the projection of �̈� onto ⟨�̈�, �̈�⟩ ≅ 𝐷8 not being contained in ⟨�̈�, �̈��̈�⟩ ≅ 𝐶2

2
, and since �̈��̈�𝑗 ∈ �̈�, we

deduce that �̈� projects onto ⟨�̈�, �̈�⟩. Therefore, by Goursat’s lemma, either �̈� = �̈� or 𝑓∕𝑖 is even
and �̈� = {(𝑥1, 𝑥2) ∈ �̈� ∣ �̈�𝑥1 = ⟨�̈�2𝑖⟩𝑥2} where 𝑁 is one of ⟨�̈�, �̈��̈�⟩, ⟨�̈�, �̈��̈�⟩ or ⟨�̈��̈�⟩. Note that in
all cases, �̈� ∩ �̈� is a maximal (in fact, index two) subgroup of �̈� containing �̈�, and it is useful to
record that �̈� ∩ �̈� is abelian. We will now prove that if �̈� ∩ �̈� is the only maximal subgroup of �̈�
that contains �̈�, then 𝑗∕𝑖 is a power of 2 and �̈� = ⟨�̈�, ℎ̈�̈��̈�𝑖⟩ for some ℎ ∈ Inndiag(𝑇), as required
(again with 𝑦 = ℎ𝛼).
First assume that �̈� = �̈�. If 𝑗 > 𝑖, then ⟨�̈�, �̈�, �̈�𝑗⟩ is a proper non-abelian subgroup of �̈� contain-

ing �̈�, a contradiction, so 𝑗 = 𝑖. If 𝑓∕𝑖 is even, then ⟨�̈��̈�𝑖 , �̈�⟩ is a proper non-abelian subgroup of �̈�
containing �̈�, a contradiction, so 𝑓∕𝑖 is odd. Therefore, �̈� = ⟨�̈�, �̈��̈�𝑖⟩.
From now on, we assume that �̈� < �̈�. For now assume that �̈� = ⟨�̈��̈�⟩, so �̈� = ⟨�̈��̈�𝑖 , �̈��̈�⟩. Since

�̈� = �̈��̈�𝑗 ∈ �̈�, 𝑗∕𝑖 is odd. If 𝑗 > 𝑖, then ⟨�̈��̈�, �̈��̈�𝑗⟩ is a proper non-abelian subgroup of �̈� containing
�̈�, a contradiction, so 𝑗 = 𝑖. Note that �̈� = ⟨�̈��̈�𝑖 , (�̈��̈�𝑖)�̈��̈�⟩ = ⟨�̈�, �̈��̈�𝑖⟩.
Next assume that �̈� = ⟨�̈�, �̈��̈�⟩, so �̈� = ⟨�̈��̈�𝑖 , �̈�⟩ and 𝑗∕𝑖 is odd. If 𝑗 > 𝑖, then ⟨�̈��̈�𝑗, �̈�⟩ is a proper

non-abelian subgroup of �̈� containing �̈�, a contradiction, so 𝑗 = 𝑖. Note that �̈� = ⟨�̈��̈�𝑖 , (�̈��̈�𝑖)�̈�⟩ =⟨�̈�, �̈��̈��̈�𝑖⟩.
Finally assume that �̈� = ⟨�̈�, �̈��̈�⟩, so �̈� = ⟨�̈�, �̈��̈�𝑖⟩ and 𝑗∕𝑖 is even. If 𝑗∕𝑖 has an odd prime divisor

𝑟, then ⟨�̈�, �̈��̈�𝑟𝑖⟩ is a proper non-abelian subgroup of �̈� containing �̈�, a contradiction, so 𝑗∕𝑖 is a
power of 2. Note that �̈� = ⟨�̈�, �̈��̈�𝑖⟩ = ⟨�̈�(�̈��̈�𝑖)𝑗∕𝑖, �̈��̈�𝑖⟩ = ⟨�̈�, �̈��̈�𝑖⟩.
Case 3. 𝑇 = PΩ+

8
(𝑞) and 𝐺 contains triality.

This case is very similar to Case 2. First assume that �̈� = �̈�𝑗 . The maximal subgroups of �̈�
containing �̈� correspond to the maximal subgroups of �̈�∕⟨�̈�⟩, so �̈�∕⟨�̈�⟩ is a cyclic 𝑙-group for
some prime 𝑙. In particular, since 𝐺  ⟨Inndiag(𝑇), 𝛾, 𝜑⟩, we may write �̈� = ⟨�̈�, ℎ̈�̈��̈�𝑖⟩ where ℎ ∈

Inndiag(𝑇) and 𝑖 ∣ 𝑗. Observe that 3 divides |�̈�∕⟨�̈�⟩|. If 𝑗∕𝑖 had a prime divisor 𝑟 ≠ 3, then 𝑟 would
divide |�̈�∕⟨�̈�⟩|, a contradiction. Therefore, 𝑗∕𝑖 is a power of 3.
For the rest of this case, we can assume that 𝑝 is odd and ⟨�̈�⟩ = ⟨g̈�̈�𝑗⟩ for some element g ∈

Inndiag(𝑇) ⧵ 𝑇. We know that �̈� ⩽ ⟨�̈�, �̈�, �̈�⟩ × ⟨�̈�⟩. Assume that the projection of �̈� onto ⟨�̈�⟩ ≅
𝐶𝑓 is ⟨�̈�𝑖⟩ where 𝑖 ∣ 𝑓, so �̈� ⩽ ⟨�̈�, �̈�, �̈�, �̈�𝑖⟩. Since 𝐺 contains triality, |𝐺𝐷∕𝐷| is divisible by 3, so
�̈� projects onto at least ⟨g̈ , �̈�⟩ = ⟨�̈�, �̈�⟩. However, if �̈� projects onto ⟨�̈�, �̈�, �̈�⟩, then �̈� has multiple
maximal overgroups in �̈�, so �̈� projects onto exactly ⟨g̈ , �̈�⟩. Therefore, either �̈� = �̈� = ⟨�̈�, �̈�, �̈�𝑖⟩ or
3 divides 𝑓∕𝑖 and �̈� = {(g1, g2) ∈ �̈� ∣ �̈�g1 = ⟨�̈�3𝑖⟩g2} where 𝑁 = ⟨�̈�, �̈��̈�⟩, so, in other words, �̈� =⟨�̈�, �̈��̈�𝑖⟩. In both cases, �̈� ∩ �̈� is amaximal (index three) subgroup of �̈� containing �̈�, andwe record
that �̈� ∩ �̈� is abelian.
We will now prove that if �̈� ∩ �̈� is the only maximal subgroup of �̈� that contains �̈�, then 𝑗∕𝑖 is

a power of 3 and �̈� = ⟨�̈�, ℎ̈�̈��̈�𝑖⟩ for some ℎ ∈ Inndiag(𝑇).
First assume that �̈� = ⟨�̈�, �̈�, �̈�𝑖⟩. If 𝑗 > 𝑖, then ⟨�̈�, �̈�, �̈�𝑗⟩ is a proper non-abelian subgroup of �̈�

containing �̈�, a contradiction, so 𝑗 = 𝑖. If 𝑓∕𝑖 is even, then ⟨�̈��̈�𝑖 , �̈�⟩ is a proper non-abelian sub-
group of �̈� containing �̈�, a contradiction, so 𝑓∕𝑖 is odd. Therefore, �̈� = ⟨�̈��̈�𝑖 , �̈�⟩ = ⟨�̈��̈�𝑖 , (�̈��̈�𝑖)�̈�⟩ =⟨�̈�, �̈��̈��̈�𝑖⟩.
Now assume that �̈� = ⟨�̈�, �̈��̈�𝑖⟩, so 𝑗∕𝑖 is divisible by 3. If 𝑗∕𝑖 has a prime divisor 𝑟 ≠ 3, then⟨�̈�, �̈�𝑟�̈�𝑟𝑖⟩ is a proper non-abelian subgroup of �̈� containing �̈�, a contradiction, so 𝑗∕𝑖 is a power

of 3. Note that �̈� = ⟨�̈�, �̈��̈�𝑖⟩ = ⟨�̈�(�̈��̈�𝑖)𝑗∕𝑖, �̈��̈�𝑖⟩ = ⟨�̈�, �̈��̈�𝑖⟩. □
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