
Processing clinical guideline text for formal                       

verification 

Fahrurrozi Rahman 

A thesis submitted for the degree of PhD 
at the 

University of St Andrews 
 

  

2022 

Full metadata for this thesis is available in 
 St Andrews Research Repository 

at: 
https://research-repository.st-andrews.ac.uk/ 

 
 

Identifier to use to cite or link to this thesis: 

DOI: https://doi.org/10.17630/sta/935     

 
 

This item is protected by original copyright 

 

 

https://research-repository.st-andrews.ac.uk/
https://doi.org/10.17630/sta/935








Acknowledgements

I would express my gratitude to my supervisor Dr Juliana Bowles, for her constant

guidance, support and patience throughout my PhD. This PhD has helped me grow-

ing up, from limited to no knowledge in formal methods and machine learning when I

started, to gaining academic skills and becoming an independent researcher. Thank

you also for always encouraging me to break out of my bubble.

I would also like to thank Dr Ruth Hoffmann and Dr Beatrice Alex for their patience

and guidance during the viva. Their invaluable feedback for this thesis is very much

appreciated.

Many thanks also to the academic and administrative staffs at the School of Com-

puter Science, University of St Andrews. My journey could have been rougher

without the help of Stuart, Alex, Julie, and Sylvia.

Thanks also to people that I have only met on the Internet throughout online forums

and have helped me moving forward with their invisible hands.

Special thanks to Clara, Juanjo, Andy, Ibrahim, Remmy and Deborah for being

faithful friends through thick and thin; Trish and Jim for constantly checking on my

well being and providing me with gifts especially throughout the lockdown; Marco

for the technical help rasterising a pdf file; Emma for our chats that keep me sane;

and Jonny, a good brother I never had from Utah.

And lastly, to me, for surviving after all the ups and downs.

iv



Funding This work was supported by the Indonesian Endowment Fund for Edu-

cation (LPDP) 2016-2020.

v



Abstract

Clinical guidelines are evidence-based recommendations developed to assist practi-

tioners in their decisions on appropriate care for patients with specific clinical circum-

stances. They provide succinct instructions such as what drugs should be given or

taken for a particular condition, how long such treatment should be given, what tests

should be conducted, or other situational clinical circumstances for certain diseases.

However, as they are described in natural language, they are prone to problems such

as ambiguity and incompleteness. As the guidelines are publicly accessible, we ex-

pect them to be foolproof from inconsistencies and missing gaps. This thesis aims to

answer a couple questions in regard to the correctness of clinical guidelines: (1) How

can we get the main information in clinical guideline texts? (2) How can we check the

guidelines in terms of correctness and consistencies? To answer these questions, first,

we develop several methods to mark and capture the semantic information in the

texts. We start by building a controlled natural language to reduce the complexity

of the texts’ structure. We show that this approach is easy to set up but obviously

unscalable. We then consider machine learning approaches and use semantic role

labelling, named-entity recognition and relation classification techniques. To achieve

this task, we create a clinical guideline corpus tagged with process labels. We show

that even with a small corpus, the baseline performance is promising. We then in-

vestigate fine-tuning some state-of-the-art neural model architectures and get better

performance. Finally, we create a framework to transform the clinical guidelines into

formal statements and check their correctness against some properties using model

checkers or constraint solvers. This thesis presents a study and analyses of entity

labelling and relation classification in regard to clinical guidelines, as well as formally
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checking their correctness, providing insights and future research directions on the

improvement of clinical guidelines.
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“Begin at the beginning," the King said, very gravely, "and go on

till you come to the end: then stop.”

Lewis Carroll, Alice in Wonderland

1
Introduction

Clinical guidelines are evidence-based recommendations developed to assist health

care providers treating patients with different conditions, and are commonly used

for documenting how to treat chronic conditions (Institute of Medicine, 1990). They

provide guidance such as what drugs should be prescribed for a particular condition,

how long such treatment should be given, what tests should be conducted and when,

or other situational clinical circumstances for certain diseases. This makes clinical

guidelines an official source where standard treatment procedures are documented,

developed and revised over time when necessary. In the United Kingdom, clinical

guidelines are published by the National Institute for Health and Care Excellence

(NICE)1 for England, Wales and Northern Ireland, and the Scottish Intercollegiate

Guidelines Network (SIGN)2 for Scotland. Further development of local and regional

guidelines would be based on these national ones.

As clinical guidelines are disseminated in human natural language, they are often am-

biguous and/or incomplete. For example, a blood glucose lowering therapy for people

with Type 2 Diabetes (T2D) does not include recommendations which assume pa-

tients are able to recover and improve their condition, or the drugs are recommended
1https://www.nice.org.uk/
2https://www.sign.ac.uk/

1

https://www.nice.org.uk/
https://www.sign.ac.uk/


without explicit dosage information. Furthermore, they usually assume that health

practitioners understand how to best follow guidelines. Since one clinical guideline is

normally associated to a single disease, it is also a challenge to consult the guideline

when treating patients with multiple chronic conditions, also known as multimorbid-

ity, as the health practitioner needs to consider multiple guidelines for the different

conditions to be able to provide a more suitable and targeted recommendation.

It is therefore important to produce sound clinical guidelines, and representing clin-

ical guidelines and their underlying intentions in a standard, machine-readable, and

machine-interpretable way is crucial for dissemination of clinical knowledge, and can

improve the quality of care. As an example, in a multimorbidity case where a pa-

tient experiences several diseases at the same time, clinical practitioners may consult

several guidelines at the same time to treat such particular patients. In some cases,

the recommendations in a guideline may contradict others in another guideline. This

figure is becoming more prominent with the increase of chronic diseases.

One way to ensure correctness and consistency in recommendations are by using

automated methods to reason about them. One approach in this context is through

formal verification, for instance model checking where a system is modelled math-

ematically and some properties are checked against all states and transitions in the

model. Another approach is by specifying what is held as true by the system as lo-

gical formulae and using a constraint solver to prove mathematically that the system

conforms to the specification.

To formally check a clinical guideline, we can either build a mathematical model

and define some properties to check against the model, or write logical formulae to

represent the guideline. Nevertheless, this is not a trivial task as it demands some

background knowledge from the users or health practitioners in mathematics, logic

or in the verification tool being used. Another way to do this is by structuring

clinical guidelines according to some predefined grammar rules so that they can be

transformed into a formal model automatically. However, this approach can also

limit the expressiveness of the guidelines to some extent, hence make it (slightly)

less natural and not enticing for health practitioners to use it as someone still needs

to convert the original source into the predefind rules.
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Recent advances in the field of Natural Language Processing (NLP) and machine

learning open possibilities to manipulate texts to achieve some tasks. This enables

text processing from a very rigid way by defining sets of rules to learning from data.

This is ranging from part-of-speech tagging, parsing, sentiment analysis, recognising

textual entailment, and question answering. Using NLP, we can leverage the process

of transforming clinical guidelines into formal specifications to minimise the burden

of requiring the mathematical knowledge from users while keeping the guidelines

written as close as possible to human natural language.

1.1 Objectives

This thesis aims to facilitate the formal verification of clinical guidelines, specific-

ally the clinical guidelines written in English. Concretely, we will create a framework

that can (semi) automatically transform clinical guidelines into formal specifications.

This consists of two main issues: (1) capturing the key concepts in the texts, (2)

transforming these concepts into formal models and verifying it against some prop-

erties.

To address issue (1), we will study several techniques that mainly come from the

software engineering field. As human activities are getting more and more involved

with and dependent on computer software, research in automatic software verification

and test generation from its textual requirements is getting more attention in recent

years. We will also look at current techniques in NLP in tandem with machine/deep

learning to help us annotate concepts of interest in clinical guidelines more effectively.

To address issue (2), we need to create procedures that enable the conversion of the

concepts from issue (1) to several types of formal specifications. Each specification

will tie very closely to the tool it is run on and each has its own degree of express-

iveness. The purpose of having various specifications is a proof of concept that the

output of (1) can be used to generate any specification form that is sufficient for our

current task at hand. We also will create properties in formal languages (logics) that

is accepted by different tools to verify the generated formal model.

Figure 1.1 shows the whole framework in our research. This framework displays
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Clinical guidelines Syntactic and
semantic analysis

Annotated
sentences

UPPAAL model

PRISM model

Z3 model

Figure 1.1: The framework for verifying clinical guidelines

the flow when clinical guidelines are first processed by the syntactic and semantic

analysis part. This further generates the annotated version of the clinical guidelines.

Finally, the last part of the framework shows that the annotation can be converted

into several formalism models to suit different needs.

1.2 Outline

Over the next chapters, this thesis will go into detail on how we investigate and

address the objectives that we want to achieve. This thesis is organised as follows:

Chapter 2 This chapter lays the related work that sets the foundations and mo-

tivations of our work to model clinical guideline texts. We investigate two different

domains namely software requirements and biomedical data. We discuss common

techniques used to manipulate texts in these two domains and how they can be

used to generate formal specification. In the last part of this chapter, we state the

approaches that we will adapt in our own work.

Chapter 3 We describe our first technique to annotate the main concepts in clinical

guidelines using Controlled Natural Language (CNL). The advantage of using CNL

is that the development does not depend on the size of available data. This is very

suitable for our situation where our clinical guideline sentences are very limited.

The downside of this is that creating grammar rules is not easy as they need to

accommodate most (if not all) possible sentence patterns. It is also obvious that

the grammar will restrict the expressiveness of the guideline texts. A part of this

chapter is published in Rahman and J. K. F. Bowles (2017).
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Chapter 4 To add more flexibility, we adapt NLP techniques for tagging concepts

in texts using Semantic Role Labelling (SRL), Named-Entity Recognition (NER)

and relation classification. We introduce the concepts that we use throughout the

thesis. We investigate several features that we use when training the SRL model.

We also describe the neural architecture for our NER and relation classification

models. Finally, we discuss the fine-tuning approach from several state-of-the-art

deep learning models. A part of this work has been published in Rahman and J.

Bowles (2021a).

Chapter 5 To evaluate the performance of the models that we build, we conduct

several experiments. Firstly, we discuss the statistical nature of our dataset to get

a basic understanding and to discover patterns and anomalies. This is important

due to the small size of our dataset, therefore, we can make rough predictions of

what we will get when running the experiments. We then explain the experiments

on SRL, NER and relation classification and discuss the performance of our models.

As expected, fine-tuning state-of-the-art models gives better performance. However,

due to the computation resource needed for fine-tuning, in some cases, this is not

always the most favourable option. Some parts of this chapter have been published

in Rahman and J. Bowles (2021a) and Rahman and J. Bowles (2021b).

Chapter 6 We explain the procedures for converting the annotated text from

the guidelines into formal specifications in this chapter. Firstly, we provide some

background on the underlying formalism and logics used. These logics will be used

when specifying the properties to be checked against the formal models. We then

discuss the verification step using model checking tools such as UPPAAL (Behrmann

et al., 2004) and PRISM (Kwiatkowska et al., 2011) as well as constraint solver such

as Z3 (Moura and Bjørner, 2008). Which approach is more suitable depends on the

guideline text itself and how much information on treatments is available. A part of

this chapter is published in Rahman and J. K. F. Bowles (2017).

Chapter 7 The summary of our findings with research directions for future work.
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...comme l’on dit, il est bien facile, et même nécessaire de voir

plus loin que nos devanciers, lorsque nous sommes montés sur

leurs épaules...

Marin Mersenne

2
Related Work

This chapter describes the background that sets the foundations and motivations of

our work to model clinical guideline texts. We start by discussing the approaches

done in the field of software requirement modelling from natural language (Sec-

tion 2.1), which involves automatic semantic annotation and test case generation.

We then discuss the importance and challenge of implementing Natural Language

Processing (NLP) for healthcare data as well as current related approaches in the

field (Section 2.2).

2.1 Modelling Software Requirements

In the software engineering process, understanding requirements is one of the most

fundamental steps as it drives further all the development stages that follow. Never-

theless, it is also one of the most difficult tasks when building a software system or

any system in general (Pressman and Maxim, 2015). In the requirements engineering

stage, the scope and the functionality of the system that will be developed are expec-

ted to be defined as clearly as possible. Figure 2.1 shows a side-by-side illustration

of the waterfall software engineering process and requirement engineering process.
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Figure 2.1: The left image shows the classical waterfall process in software engineer-
ing whereas the right image illustrates the requirement engineering process consisting
of requirement elicitation and analysis, specification and validation (Sommerville,
2016).

Albeit software requirement engineering aims to get a clear, complete and consistent

set of requirements, in reality, this is very rarely achieved. One of the reasons for

this is that requirements are often written in natural language, hence, they inherit

the ambiguous nature of human language. There are other alternatives to express

requirements, such as formal mathematical models and graphical models such as use

case diagrams and sequence diagrams from Unified Modeling Language (UML; Booch

et al., 2005). Mathematical formalisms often require additional understanding and

are not straightforward to use. Conversely, semi-formal approaches such as UML are

still potential sources of ambiguity or may be incomplete. Even though both cases

would minimise the ambiguity in the requirements, in most cases, they can still be

difficult to understand by the various stakeholders.

Although it is common to start the next stage of software development after finishing

the prior stage as in the waterfall model (Royce, 1970), an incremental development

where one stage can still be refined and evolved based on the user’s feedback is also

increasingly common especially for more complex systems. Incremental approaches

include Agile models such as Extreme Programming (Beck, 1999), Scrum (Schwaber

and Beedle, 2002), Kanban (Brechner, 2015) and DevOps (Kim et al., 2016). The

ability to eliminate inconsistencies early can reduce the cost of a later correction

or rework, and reduce time spent in implementation and testing phases. The use

of formal verification techniques to automatically identify inconsistencies or incom-

plete requirements is natural at a design stage but not common at natural language

requirements.
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Research in verifying a software system, or any system in general, has received much

attention over the past decade (Beyer, 2020). It is driven by the fact that technology

is becoming more and more integrated into our daily life. Hence, the reliability of

a system is essential especially in a safety-critical environment or when failures can

lead to considerable financial and business losses. Verification is a crucial factor in

the hardware industries but it is still received less traction for the software industries

in spite of the fact that software debugging in a later software development phase can

cost a company billion per year (Brady, 2013). We have witnessed some catastrophes

caused by faults in software systems and every year more reports of software failures

are identified: from banking to air traffic management, to space and healthcare

systems as can be seen in the list below:

• the crash of the space launch vehicle Ariane 5 due to an overflow computation

(Gleick, 1996),

• a glitch in the Royal Bank of Scotland (RBS) computer systems caused a man

to stay in prison (News, 2012) or blocked from a hotel checkout missing a flight

home (Boyce, 2012),

• the recall of 466,000 Toyota cars due to braking issues (Online, 2014),

• the state-wide false alarm about a ballistic missile causing mass hysteria (Rosa,

2018),

• the death caused by the incapability of a self-driving car to identify a pedestrian

(McCausland, 2019)

On the other hand, for all exposed catastrophic impacts, we can also see what soft-

ware systems have been trying to achieve throughout times. We also witness how

formal verification can be applied in crucial systems such as in software development

for railway signalling systems (Dehbonei and Mejia, 1970), in a medical device control

system (Jacky, 1995), in developing an air traffic control (ATC) system (Hall, 1996)

and in requirements modelling for spacecraft fault protection system (Easterbrook

et al., 1998).

As we are interested in improving the correctness of the requirements capturing phase

and removing any sources of errors that may arise at that level, we detail known
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approaches across the NLP context. In the next section, we present one approach to

analyse requirement texts using a controlled natural language. The work is aimed

at generating test cases automatically from requirements. A different approach to

analyse requirements using machine learning is explained in Section 2.1.2 (p. 12).

2.1.1 Automatic Test Cases Generation from Requirements

One way to ensure the correctness of a system is by testing it under every possible

scenario. For critical systems, testing is also aimed at ensuring their safety and

reliability. Recent work by Carvalho (2016) shows how test cases can be generated

automatically from software requirements written in a controlled natural language.

The author argues that despite there being testing techniques that can be used to

generate and execute test cases automatically, such as for model-based testing (MBT;

Utting and Legeard, 2007), most of the time, the model syntax and semantics are

not very well known to be used by engineers and stakeholders. Furthermore, as

most requirements are specified in natural language, these models are not available

at the start of the project. To overcome these shortcomings, Carvalho (2016) adapts

the MBT technique with NLP to extract the models directly from the requirements.

This approach is shown in Figure 2.2.

Figure 2.2: Phases of the NAT2TEST strategy (Carvalho, 2016)

Figure 2.2 shows the Natural Language Requirements to Test Cases (NAT2TEST)
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strategy. The fundamental idea of NAT2TEST is to generate test cases for Data-

Flow Reactive Systems (DFRS), i.e., a class of embedded systems whose inputs

and outputs are signals provided by sensors and actuators that can have discrete

or continuous time-based behaviour. The output of the strategy can be translated

into several formal notations, for example, a formal method based on tables for the

specification and analysis of the required behavior of complex software systems called

Software Cost Reduction (SCR; Heitmeyer et al., 1998), an abstract syntax called

Intermediate Model Representation (IMR) as the input of a test case generator for

reactive systems named RT-Tester (Peleska et al., 2011), or process algebras such as

Communicating Sequential Processes (CSP; Roscoe, 1997). The translation is done

through a series of NLP techniques, namely syntactic analysis and semantic analysis.

These strategies are further explained in the subsequent subsections.

2.1.1.1 Syntactic analysis

One way to process system requirements automatically requires that every sentence

be written according to some grammar rules. In NAT2TEST, the grammar is defined

as SysReq-CNL, a Controlled Natural Language (CNL) designed for editing DFRS

requirements. A CNL is a constructed language based on a certain natural lan-

guage, which has more restriction in terms of lexicon, syntax, and/or semantics

while preserving most of its natural properties (Kuhn, 2014). It can be used to im-

prove communication among humans as well as to provide a clearer representation of

formal notations. As the expected format of the sentences in this language is clear,

we are also closer to a language that can be used in automated tasks.

The CNL is composed of Context-Free Grammar (CFG) with predefined vocabularies

from the application domain. The vocabularies fall into several lexical categories or

Part-Of-Speech (POS) tags such as DETER for determiner, NSING and NPLUR for

singular and plural noun, ADJ for adjective, ADV for adverb, CONJ for conjunction,

PREP for preposition, and VBASE and VPRE3RD for verb in base form and verb

in 3rd person singular present form. There are also several additional categories

to simplify the analysis process, namely NUMBER for numbers, COMP to mark

comparisons, and grammatical keywords such as AND, OR, NOT, SHALL, COLON

and COMMA.
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To illustrate, the following is an example of a requirement sentence in the original and

the SysReq-CNL form (Carvalho, 2016). For every sentence written in the SysReq-

CNL form, the syntactic analysis will generate a parse tree as the output which is

then used in the semantic analysis step discussed next.

Original: "The Priority Logic Function shall assign value 0 (zero) to

Command In-Control output when: left Priority Button is not pressed

AND right Priority Button is not pressed AND left Command is on

neutral position AND right Command is on neutral position."

SysReq-CNL: "When the left priority button is not pressed, and the

right priority button is not pressed, and the left command is on neutral

position, and the right command is on neutral position, the Priority

Logic Function shall assign 0 to the Command-In-Control output."

The most visible difference between the two forms is the placement of the conditions.

In the original sentence, the system action comes first followed by the conditions

that should be fulfilled for the action to be executed, whereas the orders are reversed

in SysReq-CNL. This rewriting resembles the notion of guard of an action or an

if statement structure in programming. Another difference is the reduction and

standardisation of the punctuation used in the sentence. The removal of the colon

(highlighted in orange red) and the lower casing of AND (highlighted in cyan ) are

examples of this case.

2.1.1.2 Semantic analysis

The semantic analysis step will assign a thematic role, e.g., agent, patient, location,

object, to every word or group of words that is affected by a verb as described in the

case grammar theory (Fillmore, 1968). Two groups of thematic roles are created in

association to the action or condition statements in the SysReq-CNL grammar.

Table 2.1 shows the thematic roles and their definition. All thematic roles associated

with a verb are then grouped into a case frame. A case frame describes all possible

roles accepted by a particular verb. A verb can only have one case frame whereas

several verbs can have or share the same case frame. For example, the verb ’add’
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Role Definition

Action

ACT the performed action if the conditions are satisfied
AGT the entity who performs the action
PAT the entity who is affected by the action
TOV the value of PAT after action completion

Condition

CAC the action for enabling a condition
CPT the entity affected by CAC
CFV the value of CPT before performing CAC
CTV the value of CPT after performing CAC
CMD the modifier for the condition

Table 2.1: Thematic roles for action and condition statements (Carvalho, 2016)

and ’subtract’ in mathematical context have the same arguments, hence they have

the same case frame.

The final output of the syntactic analysis step is a structure called a requirement

frame. A requirement frame contains as many case frames as the number of verbs

in that particular requirement sentence. By taking the value of each thematic role

in a requirement frame, NAT2TEST can generate a DFRS which can be further

translated into a requirement model in several formalisms. Figure 2.3 shows a re-

quirement frame for the requirement below (the conditions part are highlighted in

cyan , the actions in orange red). There are two case frames for the condition: one

for the verb is and another for the verb changes, and two for the action: one for the

verb reset and another for the verb assign.

" When the system mode is idle, and the coin sensor changes to true , the

coffee machine system shall: reset the request timer, assign choice to the

system mode."

The whole NAT2TEST strategy is for automated test case generation from software

requirements. For our study, we adapt the initial stages of NAT2TEST, namely the

syntactic and the semantic analyses, for constructing a CNL in a clinical guidelines

domain.

2.1.2 Semantic Annotation in Software Requirements

Similar to the work of Carvalho (2016) described in Section 2.1.1 (p. 9), Diamanto-

poulos et al. (2017) try to detect problems in software requirements at an early stage,
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Figure 2.3: An example of a requirement frame (Carvalho, 2016)

but follow a very different strategy by using Machine Learning (ML). They adapt

the semantic role labelling (SRL; Gildea and Jurafsky, 2002) technique to automate

the annotation of software requirement texts as well as the underlying mapping to

formal representation. This work is a part of a project called Scaffolding Scalable

Software Services (S-CASE)1 comprising from the front-end part that handles multi-

modal requirements input to the back-end that generates source code. Figure 2.4

shows the architecture of S-CASE. The following subsections explain their approach

to automate semantic annotation in software requirements which are included in the

Req2Specs Module in S-CASE.

Figure 2.4: The architecture of S-CASE (Diamantopoulos et al., 2017)

1https://www.cloudwatchhub.eu/serviceoffers/s-case-scaffolding-scalable-softw
are-services

Related Work 13

https://www.cloudwatchhub.eu/serviceoffers/s-case-scaffolding-scalable-software-services
https://www.cloudwatchhub.eu/serviceoffers/s-case-scaffolding-scalable-software-services


2.1.2.1 Ontology of concepts

In S-CASE, to annotate the software requirements, a hierarchy of ontologies starting

from the most generic to the most specific are defined. These ontologies represent

the structure of concepts of the software. For S-CASE, the concepts are designed

to capture the relationships between an agent performing some action(s) on some

object(s).

Concept

ProjectRequirementThingTypeOperationType

Ownership

Emergence

Action

State

Actor Object Property

ExternalSystem

UserActor

System

Source

Theme

Goal

Direction

Time

Location

Extent

Modality

Manner

Figure 2.5: Ontology of Concepts (figure readjusted from Diamantopoulos et al.,
2017)

S-CASE uses the ontology shown in Figure 2.5, where every entity is seen as a

Concept. A Concept can be further specialised as either a Project, a Requirement,

a ThingType or an OperationType. The Project and the Requirement refer to the

software project and its requirements, whereas ThingType refers to the actor of an

action, an object that is acted upon, or the property of an actor or an object, and

OperationType refers to the actions performed by actors. Table 2.2 shows a subset

of relationships between the ontology concepts in S-CASE. Here, we only show what

concepts and their relationships that are relevant for our adaptation in our study.

Every relationship in the domain has an inverse, that is, for each relationship from

concept A to concept B, there is also a reverse relationship from concept B to concept

A.

Once the concepts are clearly defined, then the software requirements are annotated

accordingly. These requirements are taken from real software projects and in-class

assignments from various universities associated with the project. The final annota-

tion for this task only uses Actor, Action, Object and Property concepts. This is
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because the more detailed concepts introduced, the more difficult it is to differen-

tiate between those concepts. In other words, a fine-grained concept hierarchy will

introduce complexity when trying to distinguish them.

Concept Relationship Concept
Action acts_on Object, Property
Object, Property receives_action Action
OperationType has_actor Actor
Actor is_actor_of OperationType
ThingType has_property Property
Property is_property_of ThingType

Table 2.2: Some relationships between concepts in S-CASE.

2.1.2.2 Syntactic analysis

    Tokenisation   POS Tagging    Lemmatisation    Dependency 
   Parsing

separating every
component in the
sentence into tokens

attaching a
grammatical category
for every token

normalising all tokens
into their canonical
form

classifying the
relationship between
two tokens

   Semantic Role 
   Labeling

assigning semantic
role label to word or
phrases 

Figure 2.6: Syntactic analysis in the Mate Tools pipeline

To perform the syntactic analysis, Diamantopoulos et al. (2017) use the Mate Tools2

(Björkelund, Bohnet et al., 2010) that provide functionalities to perform tokenisation,

POS tagging, lemmatisation, dependency parsing, and semantic role labelling for a

given sentence. The tools have been proven to achieve state-of-the-art performance

on the shared task of syntactic and semantic dependencies in multilingual texts (Hajic

et al., 2009). Figure 2.6 shows the modules provided in the Mate Tools. For the

syntactic analysis, Diamantopoulos et al. (2017) use the tokenisation, POS tagging,

and lemmatisation modules, and train their own semantic role labelling module for

the software requirements domain. As the syntactic analysis steps are ubiquitous in

many NLP preprocessing tasks, we will also use them when building our own system.

The outcome of this step will be used as the features for the semantic analysis step

to identify the ontology of concepts in the sentences. Further explanation on this

and its implementation in our domain are discussed in Section 4.1.3 (p. 43).
2https://code.google.com/archive/p/mate-tools/
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2.2 Natural Language Processing in Healthcare

Data

In addition to the advances that technology has brought in many fields, e.g., in

banking and transportation, it can also bring breakthroughs in the medical field,

particularly with the aid of increased recent data processing power. One factor to

accelerate the discovery of new insights is the ability to extract valuable information

from patient electronic health records (EHRs). Nevertheless, the nuggets of inform-

ation for the most part are still hidden in free-text form and it remains a challenge

to capture this information.

A review study conducted by Demner-Fushman, W. W. Chapman et al. (2009)

showed that applying fundamental NLP strategies on EHRs can be used to de-

velop Clinical Decision Support (CDS) systems that benefit health care providers

and the general public. A subset of EHRs consisting of medical history, physical

examination, and chest radiography results are commonly obtained in the free-text

form. The authors argue that the two biggest challenges to process free-text EHRs

are the domain-specific abbreviations that clinicians are using and privacy issues.

Despite these challenges, the benefits of incorporating CDS systems can range from

identifying clinically relevant entities in clinical notes, extracting details on family

history from discharge summaries, monitoring of clinical events to detect and prevent

adverse events, and processing radiology or pathology reports, to name but a few

(Demner-Fushman, W. W. Chapman et al., 2009).

Another study incorporating NLP to improve Colorectal Cancer (CRC) screening

and surveillance also shows a promising result (Imler et al., 2015). While it still

needs further investigations, another study has shown how text mining on multiple

clinical data resources can detect the link between the use of proton pump inhibitors

and the increased risk of myocardial infarction (Shah et al., 2015).

The next section discusses some notable work in formal checking for clinical guidelines.

Further work on semantic annotation in biomedical texts will be discussed in detail

in Section 2.2.2 (p. 18).
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2.2.1 Formal Checking for Clinical Guidelines

Considerable research in modelling and formalising clinical guidelines have been done

over the past years. Bäumler et al. (2006) applied formal modelling and verifica-

tion to improve the quality of medical guidelines. The guideline representations are

written in Asbru, a predefined language designed especially for the medical domain

(Shahar et al., 1998). Asbru is able to express durative actions and the intentions in

the guideline plans. With specifications formulated in Action Computational Tree

Logic (ACTL; De Nicola and Vaandrager, 1990), the model is then verified using the

Cadence Symbolic Model Verification (SMV) model checker (McMillan et al., 2000).

The example below illustrates Asbru syntax for the parameter proposition: "high

blood-glucose level of any type in the context of therapy for GDM type II for more

than 7 days in the period from 24 conception weeks to delivery, using the estimated

conception date as a reference point" (Miksch et al., 1997):

(STATE(blood-glucose) HIGH GDM-Type-II [[24 WEEKS, 24 WEEKS],

[DELIVERY, DELIVERY], [7 DAYS,_], CONCEPTION])

Another implementation of model checking to verify clinical guidelines is done by

Giordano et al. (2006). They use the GLARE language (Terenziani et al., 2001), a

domain-independent prototypical system for acquiring, representing, and executing

clinical guidelines. With an Extensible Markup Language (XML) intermediary layer

which then is translated to Process Meta Language (PROMELA), the model and its

properties are verified using the SPIN model checker (Holzmann, 2003).

Pérez and Porres (2010) created a framework to enable authorisation and verification

of clinical guidelines. The guidelines are modeled as UML statecharts following com-

mon representation patterns found in clinical guidelines from the natural language

expressions. Figure 2.7 shows an example of a statechart model from the Intraven-

ous Catheters (IRC) guideline. The statechart model is chosen as an intermediate

representation to ease the burden of the non-expert to write formal specifications.

The statechart model is then transformed into PROMELA and the properties that

the model wants to check are translated into linear temporal logic (LTL; Pnueli,

1977). The verification of the guideline model is then performed using the SPIN

model checker.
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Figure 2.7: Part of the statechart defined from the Intravenous Catheters (IRC)
guideline (Pérez and Porres, 2010)

Representing the guidelines as a statechart model or presenting them in some pre-

defined languages such as Asbru or GLARE will make the verification process easier.

However, this also gives additional restrictions and / or limitations on how the

guidelines should be expressed to conform to the model or language being used.

Furthermore, none of these is easy to understand for clinicians or health practition-

ers when developing the clinical guidelines.

Although formal verification is also widely used across other domains, we will restrict

its use in the clinical guideline domain for our study. In addition to the model

checkers, where the system model is inspected against some properties, we will also

consider SAT and SMT solvers as verification tools where the clinical guidelines are

defined as a list of constraints that need to be solved. In our case, model checkers

are used mainly to verify clinical guidelines that have strict recommendation orders

whereas SAT and SMT solvers are more favourable otherwise.

2.2.2 Semantic Annotation in Biomedical Texts

Research on finding key concepts in biomedical texts has delivered notable results

for the past two decades. Since the creation of the Unified Medical Language System

(UMLS) Thesaurus (Lindberg et al., 1993), many systems have been developed to

identify and extract those concepts from biomedical texts. Some of these systems

are freely available and have been used as the basis for many study in medical texts,

such as the MetaMap (Aronson, 2006), cTAKES (Savova et al., 2009), MetaMapLite

(Demner-Fushman, Rogers et al., 2017) and Bio-YODIE (Gorrell et al., 2018). A

notable shared task for identifying and extracting UMLS disorder from a Shared
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Annotated Resources (ShARe) corpus has also been developed in the past (Pradhan

et al., 2014; Elhadad et al., 2015).

Other tasks are ranging from recognising protein names, structures and functions

(Gaizauskas et al., 2003; Valencia, 2005), drugs (I. Segura-Bedmar, Martınez and M.

Segura-Bedmar, 2008), diseases (Gorinski et al., 2019), recommendations in clinical

guidelines and their corresponding strength of importance (Read et al., 2016), a wide

range of eleven clinical entities (Patel et al., 2018). There is also research on the

extraction of protein-protein interactions (Bui et al., 2010), the relations between

drugs, genes and cells (Friedman et al., 2001), the relations between drugs and

diseases (Shah et al., 2015).

The documents of interest also come from multiple domains, such as an Intensive

Care Unit (ICU) department clinical notes (Wang, 2009), the ShARe corpus (Pra-

dhan et al., 2014; Elhadad et al., 2015), large multi-source clinical documents (Patel

et al., 2018), or the radiology reports (Alex et al., 2019; Gorinski et al., 2019).

The techniques used to accomplish the task also range from dictionary checking

with all possible variations (Aronson, 2006; Demner-Fushman, Rogers et al., 2017;

Gorrell et al., 2018), handcraft rule-based technique (Friedman et al., 2001; Alex

et al., 2019; Becker, Böckmann et al., 2020), text mining (Shah et al., 2015), as well

as machine learning (Bui et al., 2010; Settles, 2004; Pradhan et al., 2014; Elhadad

et al., 2015; Read et al., 2016; Gorinski et al., 2019). Some use the combination of

these approaches, such as augmenting the rule-based output for the machine learning

step or using the rule-based for post-processing the machine learning output (Becker

and Böckmann, 2017a).

In terms of extracting concepts in clinical guideline, some studies have been conduc-

ted such as parsing clinical guidelines using Named-Entity Recognition (NER) and

relation classification to encode diagnosis and treatment recommendations (Taboada

et al., 2013), or personalising treatment recommendations from clinical guidelines

written in German (Becker and Böckmann, 2017a; Becker and Böckmann, 2017b)

which further developed to personalising treatment for patient with CRC (Becker,

Böckmann et al., 2020). These studies are conducted fully automated using several
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open-source NLP tools, namely OpenNLP3, Stanford NLP4, SemRep5 by Taboada

et al. (2013) or a combination of rule-based and ML-based using cTAKES6 by Becker

and Böckmann (2017a), Becker and Böckmann (2017b) and Becker, Böckmann et al.

(2020).

In addition to the work by Becker and Böckmann (2017a), Becker and Böckmann

(2017b) and Becker, Böckmann et al. (2020) for clinical guidelines written in German,

Borchert et al. (2020) develop GGPONC (German Guideline Program in Oncology

NLP Corpus), a large corpus composed of German medical texts taken from clinical

guidelines in oncology. This work is driven by the lack of publicly accessible corpora

in medical domain other than English. This corpus contains rich structural informa-

tion and metadata that can facilitate the development of ML-based NLP algorithms

for clinical text in German.

A notable study to detect interactions between recommendations in several guidelines

using Semantic Web technologies has been conducted by Carretta Zamborlini et al.

(2016). They create the Transition-based Medical Recommendations for detecting

Interactions (TMR4I) using Semantic Web to model clinical guidelines as well as

to enable components reuse, combination and reason. Table 2.3 (p. 21) shows the

concepts that are used in this study. By using these concepts, they can capture

interactions in several guidelines such as contradiction, repetition or alternative in-

teractions. TMR4I can then check internal interactions, i.e., interaction between the

given recommendations, for example the contradiction between "lower blood pressure"

and "increase blood pressure". It can also check the external interactions based on

drug-drug interactions, e.g., Aspirin is incompatible with Ibuprofen.

To evaluate TMR4I, they conducted experiments to check merged guidelines between

Duodenal Ulcer (DU) and Transient Ischemic Attack (TIA) as well as Osteoarthritis

(OA), Hypertension (HT) and Diabetes (DB). Their experiments show that TMR4I

can detect contradictions and give recommendation based on the detected interac-

tions.

3https://opennlp.apache.org/
4https://stanfordnlp.github.io/CoreNLP/
5https://lhncbc.nlm.nih.gov/ii/tools/SemRep_SemMedDB_SKR/SemRep.html
6https://ctakes.apache.org/index.html
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Concept Description Example
Situation Type Represents a property and its ad-

missible values
Transformable
Situation Type

Regards the situation that is ex-
pected to be changed

Patient’s temperature is over 37
degrees

Non-
Transformable
Situation Type

Regards the situation that holds
as filter condition

Patient’s age is over 10 years old

Post-Situation
Type

Regards the situation that is ex-
pected to be achieved

Patient’s temperature is below 37
degrees

Care Action
Type

Represents the action types that
can be performed by health care
agents in order to change a situ-
ation

Administer aspirin

Transition Represents the possibility of
changing a situation regarding
a patient by performing a care
action type

Administering aspirin in patient
over 10 years old reduces its tem-
perature below 37 degrees

Recommendation Represents a suggestion to either
pursue or avoid a transition pro-
moted by a care action type

Table 2.3: Transition-based Medical Recommendations for detecting Interactions
(TMR4I) Concepts Summary (Carretta Zamborlini et al., 2016).

Complementary to the work of Carretta Zamborlini et al. (2016) to identify and

address interactions between multiple clinical guidelines, Wilk et al. (2017) also

incorporate temporal aspects of the identified interactions that the former did not

have. Furthermore, while Carretta Zamborlini et al. (2016) can detect and suggest

alternative interactions, Wilk et al. (2017) leverage the former’s work further as

they can discover if any interactions still exist by applying the detected alternative

interactions.

Lastly, the recent work by Grivas et al. (2020) has some resemblance to our research.

They build a rule-based information extraction system, EdIE-R, as well as neural

systems EdIE-LSTM and EdIE-BERT to mark the findings (e.g., tumours or small

vessel disease), modifiers (e.g., recent, old, deep, or cortical) and negation (e.g., if

the findings are absent or present) in brain MRI radiology reports using NER and

relation classification. Their experiments show that in a small dataset environment,

the rule-based system outperforms the neural models. For the analogous NER and

relation classification method to our work, the concept will be explained further in

Section 4.2 (p. 51).
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2.3 Summary

In this chapter, we presented related work that serves as the foundations of our

research to formally check clinical guideline texts. We discussed several approaches

to transform software requirements from written text into a formal model. We have

also discussed past research on formal checking in clinical guidelines and semantic

annotation in biomedical texts.

As far as we are aware, there is no research on process annotation in clinical guidelines.

For this reason, we will adapt several approaches that have been discussed in this

chapter when building our framework to formally check clinical guidelines. We start

from the most rigid approach by making hand-craft rules and building a controlled

natural language adapting the work of Carvalho (2016). For a less restrictive ap-

proach, we build a machine learning model for semantic role labelling following

Diamantopoulos et al. (2017). Finally, we also train several neural network mod-

els for NER and relation classification analogous to the work of Grivas et al. (2020).
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Bélise — Veux-tu toute ta vie offenser la grammaire ?

Martine — Qui parle d’offenser grand’mère ni grand-père ?

Philaminte — Ô Ciel !

Molière, Les Femmes savantes

3
Controlled Natural Language for

Clinical Guidelines

This chapter describes the implementation of a controlled natural language to mark

the main information in clinical guidelines. This is the first approach followed and

we discuss advantages and limitations later on. Part of the work presented in this

chapter has been published in Rahman and J. K. F. Bowles (2017).

3.1 CNL in Clinical Guidelines

Following Carvalho (2016), we create a Controlled Natural Language (CNL) to stand-

ardise the sentence structure of clinical guidelines. The CNL will be used further to

parse the guidelines to get their main information. We will take examples from the

Type 2 Diabetes (T2D) therapy algorithm shown in Figure 3.1 taken from NICE1 to

guide us in the definition of our CNL.

Before the therapy algorithm is processed, every sentence is rewritten to conform

with the CNL. The Context-Free Grammar (CFG) composing the CNL is explained
1https://www.nice.org.uk/guidance/ng28/resources/algorithm-for-blood-glucose-

lowering-therapy-in-adults-with-type-2-diabetes-pdf-2185604173
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in the next section. Once all sentences are in agreement with the grammar, we

parse the sentences to get the syntactic parse trees using the Modgrammar library2.

Modgrammar is a Python library for constructing language parsers and interpreters

for CFG definitions. By traversing the parse trees following our hand-crafted rules,

the semantic analysis module will then construct the case frames. Once we have the

case frames, we are able to reason with the information obtained in various ways as

shown later in Chapter 6 (p. 83).

2https://github.com/rembish/modgrammar-py2
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Algorithm for blood glucose lowering therapy in 
adults with type 2 diabetes 
 

 

‘Type 2 diabetes in adults: management’, NICE guideline NG28. Published December 2015, last updated April 2017.   © National Institute for Health and Care Excellence 2015. All rights reserved.  

 

Insulin-based treatment

· When starting insulin, use a structured programme 

and continue metformin for people without 

contraindications or intolerance. Review the continued 

need for other blood glucose lowering therapies
f
.

· Offer NPH insulin once or twice daily according to 

need.

· Consider starting both NPH and short-acting insulin 

either separately or as pre-mixed (biphasic) human 

insulin (particularly if HbA1c is 75 mmol/mol (9.0%) or 

higher). 

· Consider, as an alternative to NPH insulin, using 

insulin detemir or glargine
g
 if the person: needs 

assistance to inject insulin, lifestyle is restricted by 

recurrent symptomatic hypoglycaemic episodes or 

would otherwise need twice-daily NPH insulin in 

combination with oral blood glucose lowering drugs.

· Consider pre-mixed (biphasic) preparations that 

include short-acting insulin analogues, rather than 

pre-mixed (biphasic) preparations that include short-

acting human insulin preparations, if: the person 

prefers injecting insulin immediately before a meal, 

hypoglycaemia is a problem or blood glucose levels 

rise markedly after meals.

· Only offer a GLP-1 mimetic
c
 in combination with 

insulin with specialist care advice and ongoing 

support from a consultant-led multidisciplinary team
h
.

· Monitor people on insulin for the need to change the 

regimen.

· An SGLT-2i in combination with insulin with or without 

other antidiabetic drugs is an option
b
.

Abbreviations: 
DPP-4i

Dipeptidyl peptidase-4 inhibitor, 
GLP-1

Glucagon-like peptide-1, 
SGLT-2i

Sodium–glucose cotransporter 2 inhibitors, 
SU

Sulfonylurea. Recommendations that cover DPP-4 inhibitors, GLP 1 mimetics and sulfonylureas refer 

to these groups of drugs at a class level.

a. When prescribing pioglitazone, exercise particular caution if the person is at high risk of the adverse effects of the drug. Pioglitazone is associated with an increased risk of heart failure, bladder cancer and bone fracture. Known risk 

factors for these conditions, including increased age, should be carefully evaluated before treatment: see the manufacturers’ summaries of product characteristics for details. Medicines and Healthcare products Regulatory Agency 

(MHRA) guidance (2011) advises that ‘prescribers should review the safety and efficacy of pioglitazone in individuals after 3–6 months of treatment to ensure that only patients who are deriving benefit continue to be treated’.

b. See NICE technology appraisal guidance 288 & 418, 315 and 336 on dapagliflozin, canagliflozin and empagliflozin, respectively. All three SGLT-2 inhibitors are recommended as options in dual therapy regimens with metformin 

under certain conditions, as options in triple therapy regimens and in combination with insulin. All three are also options as monotherapies in adults in whom metformin is contraindicated or not tolerated.  Serious and life-threatening 

cases of diabetic ketoacidosis have been reported in people taking SGLT-2 inhibitors (canagliflozin, dapagliflozin or empagliflozin) or shortly after stopping the SGLT-2 inhibitor. MHRA guidance (2015) advises testing for raised ketones 

in people with symptoms of diabetic ketoacidosis, even if plasma glucose levels are near normal.

c. Only continue GLP-1 mimetic therapy if the person has a beneficial metabolic response (a reduction of HbA1c by at least 11 mmol/mol [1.0%] and a weight loss of at least 3% of initial body weight in 6 months).

d. Be aware that, if metformin is contraindicated or not tolerated, repaglinide is both clinically effective and cost effective in adults with type 2 diabetes. However, discuss with any person for whom repaglinide is being considered, that 

there is no licensed non-metformin-based combination containing repaglinide that can be offered at first intensification. 

e. Be aware that the drugs in dual therapy should be introduced in a stepwise manner, checking for tolerability and effectiveness of each drug.

f. MHRA guidance (2011) notes that cases of cardiac failure have been reported when pioglitazone was used in combination with insulin, especially in patients with risk factors for the development of cardiac failure. It advises that if the 

combination is used, people should be observed for signs and symptoms of heart failure, weight gain, and oedema. Pioglitazone should be discontinued if any deterioration in cardiac status occurs.

g. The recommendations in this guideline also apply to any current and future biosimilar product(s) of insulin glargine that have an appropriate Marketing Authorisation that allows the use of the biosimilar(s) in the same indication.

h. A consultant-led multidisciplinary team may include a wide range of staff based in primary, secondary and community care.

If the person is symptomatically hyperglycaemic, consider insulin or an SU. Review treatment when blood glucose control has been achieved.

ADULT WITH TYPE 2 DIABETES WHO CAN TAKE METFORMIN

If HbA1c rises to 48 mmol/mol (6.5%) on lifestyle 

interventions:

· Offer standard–release metformin

· Support the person to aim for an HbA1c level of 48 mmol/

mol (6.5%)

FIRST INTENSIFICATION

If HbA1c rises to 58 mmol/mol (7.5%):

· Consider dual therapy with:

- metformin and a DPP-4i 

- metformin and pioglitazone
a

- metformin and an SU

- metformin and an SGLT-2i
b

· Support the person to aim for an HbA1c level of 53 mmol/

mol (7.0%)

SECOND INTENSIFICATION

If HbA1c rises to 58 mmol/mol (7.5%):

· Consider:

- triple therapy with:

      o metformin, a DPP-4i and an SU

       o metformin, pioglitazone
a 
and an SU

       o metformin, pioglitazone
a 
or an SU, and an SGLT-2i

b

- insulin-based treatment

· Support the person to aim for an HbA1c level of 53 mmol/

mol (7.0%)

If standard-release 

metformin is not 

tolerated, consider a 

trial of modified–release 

metformin

If triple therapy is not 

effective, not tolerated 

or contraindicated, 

consider combination 

therapy with metformin, 

an SU and a GLP-1 

mimetic
c
 for adults with 

type 2 diabetes who:
- have a BMI of 35 kg/m

2
 

or higher (adjust 

accordingly for people from 

black, Asian and other 

minority ethnic groups) 

and specific psychological 

or other medical problems 

associated with obesity or

- have a BMI lower than 35 

kg/m
2
, and for whom 

insulin therapy would have 

significant occupational 

implications, or weight loss 

would benefit other 

significant obesity-related 

comorbidities

· Reinforce advice on diet, lifestyle and adherence to drug treatment.

· Agree an individualised HbA1c target based on: the person’s needs and circumstances including preferences, comorbidities, risks from polypharmacy and tight blood glucose control and ability to achieve 

longer-term risk-reduction benefits. Where appropriate, support the person to aim for the HbA1c levels in the algorithm. Measure HbA1c levels at 3/6 monthly intervals, as appropriate. If the person achieves 

an HbA1c target lower than target with no hypoglycaemia, encourage them to maintain it. Be aware that there are other possible reasons for a low HbA1c level.

· Base choice of drug treatment on: effectiveness, safety (see MHRA guidance), tolerability, the person’s individual clinical circumstances, preferences and needs, available licensed indications or 

combinations, and cost (if 2 drugs in the same class are appropriate, choose the option with the lowest acquisition cost).

· Do not routinely offer self-monitoring of blood glucose levels unless the person is on insulin, on oral medication that may increase their risk of hypoglycaemia while driving or operating machinery, is pregnant 

or planning to become pregnant or if there is evidence of hypoglycaemic episodes.

METFORMIN CONTRAINDICATED OR NOT 

TOLERATED

If HbA1c rises to 48 mmol/mol (6.5%) on 

lifestyle interventions:

· Consider one of the following
d
:

   - a DPP-4i, pioglitazone
a
 or an SU

   - an SGLT-2i
b
 instead of a DPP-4i if an

     SU or pioglitazone
a
 is not appropriate

· Support the person to aim for an HbA1c 

level of 48 mmol/mol (6.5%) for people on 

a DPP-4i, SGLT-2i or pioglitazone or 53 

mmol/mol (7.0%) for people on an SU

SECOND INTENSIFICATION

If HbA1c rises to 58 mmol/mol (7.5%):

· Consider insulin-based treatment

· Support the person to aim for an HbA1c 

level of 53 mmol/mol (7.0%)

FIRST INTENSIFICATION

If HbA1c rises to 58 mmol/mol (7.5%):

· Consider dual therapy
e
 with:

- a DPP-4i and pioglitazone
a

- a DPP-4i and an SU  

- pioglitazone
a
 and an SU 

· Support the person to aim for an HbA1c 

level of 53 mmol/mol (7.0%)

 

Figure 3.1: The National Institute for Health and Care Excellence Type 2 Diabetes (T2D) Therapy Algorithm
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3.1.1 Syntactic Analysis

In the T2D therapy algorithm, we consider that every sentence has the following

form:

number if conditions, the doctor shall: actions

The number in the beginning of every sentence is needed because the original al-

gorithm is following a specific order. To illustrate this, in Figure 3.1 (the purple area

with an automaton like structure, p. 25), a first intensification can only happen after

the patient has received a first treatment. The same with a second intensification

that only happens later after a first intensification.

Some considerations that we take when transforming all sentences into the stand-

ardised form are as follows: for every sentence, we add the doctor as the agent of

the actions. In addition to explicitly showing who is responsible for a therapy, it is

also needed to reduce the ambiguity from the missing information of who is giving

the therapy versus who is receiving the therapy.

Furthermore, if there is a list of choices (conditions or possible therapies), we trans-

form it into:

{choice1, choice2, · · · choicen}.

For example, the conditions in "if triple therapy is not effective, not tolerated, or

contraindicated" and the advice "consider therapy with a DPP-4i, pioglitazone, or

an SU" will be written as: "if triple therapy is {not effective, not tolerated, contraindic-

ated}" and "consider therapy with {a DPP-4i, pioglitazone, an SU}" respectively. The

inclusion of articles as seen in: "{a DPP-4i, pioglitazone, an SU}" is to preserve the

phrase structure in the original sentence, i.e., a noun phrase in this particular ex-

ample, and to separate the noun from other categories in a NounPhrase (this will be

explained further when discussing the NounPhrase category in our grammar). This

normalisation will group the choices and make it easier to build the case frames from

the parse tree.

Since our grammar is controlled and the lexicons are domain-dependent (i.e., a clin-

ical guideline), we have specified in advance the vocabularies and their Part-Of-
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Speech (POS) tags. Most of our POS tags follow those proposed by Carvalho (2016)

with some additional categories to simplify the parsing of the sentences and the case

frames generation, such as LBrace and RBrace for { and } respectively, LPar and

RPar for ( and ) respectively, and Percent for the % sign. In addition to the POS

tags, we also adapt the context-free grammar of Carvalho (2016) for our CNL with

some modifications.

The whole context-free grammar is described in the box below. It follows the Backus-

Naur form and regular expression quantification, where the pipe ’|’ means ’or’, the

’?’ indicates zero or one occurrence of the preceding element, the ’*’ indicates zero

or more occurrences of the preceding element, and the ’+’ indicates one or more

occurrences of the preceding element.

Advice -> Number ConditionalClause Comma ActionClause

ConditionalClause -> Conj Condition

Condition -> NounPhrase VerbPhraseCondition

ActionClause -> NounPhrase VerbPhraseAction

VerbPhraseAction -> Shall Colon [VerbAction ToInfClause |

VerbComplement | ChoiceAction ConditionalClause?]+↪→

ChoiceAction -> LBrace PrepComplement [Comma VerbComplement]+ RBrace

VerbPhraseCondition -> VerbCondition Not? VerbComplement

ToInfClause -> To VBase VerbComplement

VerbComplement -> VariableState | ChoiceComplement | PrepComplement

PrepComplement -> [VariableState? Prep] VariableState |

ChoiceComplement↪→

ChoiceComplement -> LBrace VariableState [Comma VariableState]+ RBrace

PrepositionalPhrase -> Prep NounPhrase

VariableState -> AdjPhrase | NounPhrase

NounPhrase -> [Det? Adj* Noun PrepositionalPhrase*]+ [And NounPhrase+]*

VerbAction -> VBase

AdjPhrase -> [Adv?] Adj | VPart

VerbCondition -> VPre3 | VToBePre3

Noun -> Number | NSing | NPlur | NMass

The explanation for each symbol in the grammar with its set of lexicons is explained
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next. We only use the subset of lexicons taken from the T2D therapy algorithm to

illustrate the lexicons.

Noun A Noun represents the class of things which may be animate (e.g., doctor)

or inanimate (e.g., metformin). It can also be countable as a singular (NSing) or a

plural noun (NPlur) or uncountable as a mass noun (NMass). For our grammar, we

also put the Number in this category. This inclusion is mainly for practical reason

as now it is easier to combine any number and noun into a noun phrase. A number

can be negative, real or natural, or a percentage.

Number -> '('? '-'? '[0-9]' '.[0-9]'? '%'? ')'?

NSing -> 'insulin' | 'SU' | 'doctor' | 'blood' | 'glucose' | 'control'

| 'treatment' | 'metformin' | '\acrshort{hba1c}\index{Glycated

Haemoglobin (HbA1c)}' | 'lifestyle' | 'therapy' | 'DPP-4i' |

'pioglitazone' | 'SGLT-2i' | 'patient' | 'GLP-1' | 'mimetic'

↪→

↪→

↪→

NPlur -> 'interventions'

NMass -> 'mmol/mol' | 'level'

VerbCondition A VerbCondition is the verb denoting the condition in a condi-

tional clause. For example, the inflected verb is in "if triple therapy is not effective" is

a VerbCondition. This is commonly the third person singular present verb (VPre3)

or the third person singular present to be (VToBePre3).

VPre3 -> 'becomes' | 'rises' | 'takes'

VToBePre3 -> 'is'

AdjPhrase An AdjPhrase is the phrase associating an attribute to a noun. In our

case, this could be a single adjective (Adj), a participle (VPart), or a combination

between an adverb (Adv) and an adjective/participle.

Adv -> 'symptomatically'

Adj -> 'hyperglycaemic' | 'standard-release' | 'modified-release' |

'effective' | 'dual' | 'triple' | 'insulin-based'↪→

VPart -> 'achieved' | 'tolerated' | 'contraindicated'
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VerbAction Different from a VerbCondition, a VerbAction is the main verb in an

action clause. Because we structure our sentence in the form: number if conditions,

the doctor shall: actions, every action verb will be in its base form (VBase).

VBase -> 'consider' | 'review' | 'offer' | 'support' | 'aim'

NounPhrase and PrepositionalPhrase A NounPhrase is a word or group of

words functioning as a noun in the sentence. It can be formed by a noun following a

determiner (Det) and/or an adjective. The explicit use of a Det category is two-fold:

keeping the original sentence as it is and separating the main noun in the Noun-

Phrase from other categories. A phrase of a preposition followed by a noun phrase

forms a PrepositionalPhrase. The NounPhrase and the PrepositionalPhrase

can be formed recursively with either one of them. For example, "HbA1c level" is a

NounPhrase and "on lifestyle interventions" is a PrepositionalPhrase.

PrepositionalPhrase -> ['from' | 'to' | 'on' | 'of' | 'for' | 'with']

NounPhrase↪→

Det -> 'a' | 'an' | 'the'

NounPhrase -> [Det? Adj* Noun PrepositionalPhrase*]+ ['and'

NounPhrase+]*↪→

ChoiceComplement, PrepComplement and VerbComplement A Choice-

Complement is a group of words that serves as a list of choices. For example, the

phrase: "{metformin and a DPP-4i, metformin and pioglitazone, metformin and an SU,

metformin and an SGLT-2i}" is a ChoiceComplement. It is formed by one or several

VariableStates, which is formed by an adjective phrase or a noun phrase.

A PrepComplement is a preposition followed by either a ChoiceComplement, an Ad-

jPhrase, or a ChoiceComponent. An example of a PrepComplement is "dual therapy

with {metformin and a DPP-4i, metformin and pioglitazone, metformin and an SU,

metformin and an SGLT-2i}".

A VariableState, a ChoiceComplement or a PrepComplement will form a Verb-

Complement.
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VerbComplement -> VariableState | ChoiceComplement | PrepComplement

PrepComplement -> [VariableState? Prep] VariableState |

ChoiceComplement↪→

ChoiceComplement -> LBrace VariableState [Comma VariableState]+ RBrace

VariableState -> AdjPhrase | NounPhrase

ConditionalClause, Condition and VerbPhraseCondition A verb phrase is

a group of words with a verb and its dependents all functioning as a predicate in

the sentence. To make the parsing process easier, in our CNL we separate the verb

phrase for the conditional clause and the action clause. A VerbPhraseCondition

is a verb phrase used in a conditional clause. For example, the clause: "rises to 58

mmol/mol (7.5%)" is a VerbPhraseCondition.

A Condition is composed by a noun phrase and a verb phrase. It represents the

condition for an action to happen. The phrase: "HbA1c level rises to 58 mmol/mol

(7.5%)" is an example of a Condition.

Finally, an if and a Condition will form a ConditionalClause as in "if HbA1c level

rises to 58 mmol/mol (7.5%)".

VerbPhraseCondition -> VerbCondition Not? VerbComplement

Condition -> NounPhrase VerbPhraseCondition

ConditionalClause -> 'if' Condition

ChoiceAction Similarly to how a ChoiceComplement denotes a list of choices

available for things, a ChoiceAction is used to represent a list of choices for an

action. For example, the phrase: "{triple therapy with {metformin and a DPP-4i and

an SU, metformin and pioglitazone and an SU, metformin and pioglitazone and an SGLT-

2i, metformin and an SU and an SGLT-2i}, insulin-based treatment}" shows an example

of a ChoiceAction.

ChoiceAction -> LBrace PrepComplement [Comma VerbComplement]+ RBrace

Controlled Natural Language for Clinical Guidelines 30



ToInfClause, ActionClause and VerbPhraseAction A ToInfClause, which

occurs only in a VerbPhraseAction, is a clause composed by a to, a VBase and a Ver-

bComplement. An example is the clause: "to aim for an HbA1c level of 48 mmol/mol

(6.5%)".

A VerbPhraseAction is a clause that always started by shall as in "shall: offer

standard-release metformin, support to aim for an HbA1c level of 48 mmol/mol (6.5%)".

It only occurs in an ActionClause.

A combination of a noun phrase and a verb phrase will form an ActionClause. At

the moment, the noun phrase will always be written as the doctor. An example of

an ActionClause is "the doctor shall: offer standard-release metformin, support to aim

for an HbA1c level of 48 mmol/mol (6.5%)".

ToInfClause -> To VBase VerbComplement

ActionClause -> NounPhrase VerbPhraseAction

VerbPhraseAction -> 'shall' ':' [VerbAction ToInfClause |

VerbComplement | ChoiceAction ConditionalClause?]+↪→

Advice Finally, a complete sentence in therapy a algorithm is encapsulated as an

Advice. It starts with a number (to mark the order), followed by a conditional

clause, a comma, and an action clause.

Advice -> Number ConditionalClause Comma ActionClause

As a proof of concept, we apply the grammar rules that we have defined for extracting

the main information in the sentences taken from the T2D guideline in Figure 3.1

(p. 25). We do this for the part where the patients can take metformin (the purple

area with an automaton like structure). As the grammar rules are developed based

on the sentence structures in this particular section of T2D guideline, the coverage

is trivially 100%.
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3.1.2 Semantic Analysis

3.1.2.1 Parsing sentences in CNL

After defining the grammar for our CNL, the next step will be parsing the sentences

in accordance to this new grammar. First, we need to rewrite the sentences from the

guidelines. Below is an example of an original guideline sentence and the rewritten

one following the CNL. This sentence is taken from the T2D therapy algorithm in

Figure 3.1 (p. 25).

Original: "If HbA1c rises to 48 mmol/mol (0.6%) in lifestyle interven-

tions:

• Offer standard-release metformin

• Support the person to aim for an HbA1c level of 48 mmol/mol

(0.6%)"

CNL: " 1 if HbA1c level rises to 48 mmol/mol (6.5%) on lifestyle interven-

tions, the doctor shall: offer standard-release metformin, support to aim for

an HbA1c level of 48 mmol/mol (6.5%)."

When rewriting the original sentence into CNL form, we remove the patients receiv-

ing the recommendation (highlighted in orange red) because it is implicitly given

to them. We also add the sentence number and the phrase the doctor shall: (high-

lighted in cyan ) to signify the beginning of the recommendation action. There

are several grammar parser libraries, such as Another Tool for Language Recogni-

tion (ANTLR)3, Construction of Useful Parsers (CUP)4 or ABNF Parser Generator

(APG)5. For this task, we use the Modgrammar library as it is simpler and also writ-

ten in the programming language that the author is most familiar with, i.e., Python.

Given a list of sentences, Modgrammar will parse and generate a parse tree for each

sentence which then is used in the next step.

3https://github.com/antlr/antlr4
4http://www2.cs.tum.edu/projects/cup/
5https://github.com/ldthomas/apg-7.0
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3.1.2.2 Case frame generation

Case grammar theory and thematic roles In case grammar theory (Fillmore,

1968), every word or group of words that is affected by a verb will be given a

thematic role, e.g., agent, theme, instrument and many others. The case grammar is

further developed as the FrameNet6 project. In FrameNet, sentences are annotated

with semantic frames that describe the type of event, relation or entity and the

participants in it.

An example of a semantic frame is the Health_response7 that is realised by a

Lexical Unit (LU) word such as allergic, allergy, sensitive, sensitivity, susceptible, and

susceptibility. This semantic frame describes an event involving a PROTAGONIST

that is sensitive to a TRIGGER, in a BODYPART to some DEGREE and MANNER,

which are called as the Frame Element (FE). The examples below illustrate two LUs,

allergic and sensitive, for the Health_response semantic frame with the FEs as

their syntactic dependents:

[PROTAGONIST Daisy Duck] is allergic to [TRIGGER cats].

[PROTAGONIST Minnie Mouse] is sensitive to [TRIGGER pollen].

A thematic role captures the semantic commonality between the verb’s or predicate’s

arguments in the sentence. For example, Daisy Duck and Minnie Mouse in the

previous examples are affected by the health trigger. Therefore, they have the Theme

as their thematic roles. Another example is cats and pollen are both the triggers for

the health response. Hence, they both have the Actor as their role.

Thematic Role Definition
Agent The volitional causer of an event
Theme The participant most directly affected by an event
Instrument An instrument used in an event
Beneficiary The beneficiary of an event
Source The origin of the object of a transfer event
Goal The destination of an object of a transfer event

Table 3.1: Some set of commonly used thematic roles

6https://framenet.icsi.berkeley.edu/fndrupal/
7https://framenet2.icsi.berkeley.edu/fnReports/data/frameIndex.xml?frame=Healt

h_response
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Table 3.1 shows some commonly used thematic roles. The same word in two different

sentences can have different roles. The following examples illustrate this phenomenon

where Pluto serves as the Agent in one sentence and the Theme in another.

Minnie Mouse is allergic to [Agent Pluto].

[Theme Pluto] is sensitive to milk.

Thematic roles for the CNL in clinical guidelines We adapt the eight them-

atic roles defined by Carvalho (2016) in Table 2.1 (p. 12) and also add two additional

roles, hence we have ten roles in total. The two additional roles are CACT for hand-

ling the nested condition and NUM for marking the sequence of the sentence. The

NUM role is useful in our case because the therapies are given in a sequence, and

we need to keep track of the order of their occurrences. For example, a value of 1

for NUM means it is from the first sentence in the guideline, whereas 1.1. means it

is the first alternative/branch recommendation for the first sentence. Similar with

Carvalho (2016), the thematic roles can be grouped into action clause and condi-

tional clause. The explanation of each thematic role and how it is captured from the

defined grammar in Section 3.1.1 (p. 26) is as follows:

• Action clause thematic roles

1. Action (ACT): the action to be performed if the conditions are met. It

is taken from the VBase or the ToInfClause in the VerbPhraseAction.

For our case, these are consider, review, offer, support, and aim.

2. Agent (AGT): the actor of ACT. It is taken from the NounPhrase found

in the ActionClause. There is only one agent, i.e., the doctor.

3. Patient (PAT): the entity affected by ACT and not the patient receiving

the guideline. It is taken from the VariableState in the VerbComple-

ment.

4. To Value (TOV): the value given to PAT. It is taken from the Vari-

ableState in the PrepositionalComplement or ChoiceComplement.

5. Nested Condition Action (CACT): the additional condition for ACT. For

every ACT found, a list of CACT is created whose value could be empty,

Controlled Natural Language for Clinical Guidelines 34



i.e., an empty list. It is taken from the ConditionalClause found in the

VerbPhraseAction.

• Conditional clause thematic roles

1. Condition Action (CAC): the action for the condition. The values are

taken from all VerbCondition inside the ConditionalClause.

2. Condition Patient (CPT): the entity related to the condition. Because in

the guideline there is only one entity related to the condition(s), its value

is taken from the NounPhrase found in the ConditionalClause.

3. Condition To Value (CTV): the new value of CPT. It is taken from the

VariableState in the VerbComplement or ChoiceComplement, or from

the Noun in the PrepComplement.

4. Condition Modifier (CMD): the modifier for the condition. The value is

taken from the first Noun in the PrepComplement if there are more than

one.

Constructing the case frame After the parse trees from the sentences are gen-

erated, we traverse them one by one to construct the case frame. Figure 3.2 shows

a fragment of the parse tree generated by Modgrammar for the first sentence in the

T2D therapy algorithm.

The algorithm for generating the case frame is shown as the generate_case_frame

function in Algorithm 1 (p. 36). For every element in a given parse tree, we first

check if it is a Number. This first step is to get the sentence order and store it in the

case_frame’s attribute. If the element is a ConditionalClause, another function

is called to get CPT, CAC, CMD and CTV and they are stored as attributes of

the case_frame. And lastly, if the element is an ActionClause, AGT, ACT, PAT,

TOV, and CACT are returned from calling a function. They are then stored as the

case_frame’s attributes. After leaving the function, the case_frame object contains

the case frame for the particular sentence. The transformation of the case_frame

into formal specification will be discussed further in Chapter 6 (p. 83).
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Figure 3.2: A fragment of the parse tree for the first sentence in the T2D therapy
algorithm: "If HbA1c rises to 48mmol/mol(6.5%) on lifestyle interventions: offer stand-
ard–release metformin".

Algorithm 1: Algorithm for case frame generation

1 def generate_case_frame(parse_Tree):

2 case_frame = CaseFrame()

3 for x ∈ parse_Tree do

4 if x == Number then

5 case_frame.set_num(x)

6 else if x == ConditionalClause then

7 CPT, CAC, CMD, CTV = get_condition_elements(x)

8 case_frame.set_condition(CPT, CAC, CMD, CTV)

9 else if x == ActionClause then

10 AGT, ACT, PAT, TOV, CACT = get_action_elements(x)

11 case_frame.set_action(AGT, ACT, PAT, TOV, CACT)

12 return case_frame

Table 3.2 below shows the case frames generated from the sentence: "1 if HbA1c level
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rises to 48 mmol/mol (6.5%) on lifestyle interventions, the doctor shall: offer standard-

release metformin, support to aim for an HbA1c level of 48 mmol/mol (6.5%)."

NUM 1

Conditions

CPT [’HbA1c level’]
CAC [’rises’]
CTV [’48 mmol/mol (6.5%)’]
CMD [’lifestyle interventions’]

Actions

AGT [’the doctor’]
ACT [’offer’, ’aim’]
PAT [’standard-release metformin’, ’HbA1c level’]
TOV [[], [48 mmol/mol (6.5%)]]
CACT [[], []]

Table 3.2: Case frames for a sentence in T2D therapy algorithm

3.2 Summary

In this chapter we discussed the CNL that we developed for marking the key con-

cepts in terms of clinical processes in clinical guideline texts. As we discussed in Sec-

tion 2.2.1 (p. 17), compared to Asbru language (Shahar et al., 1998; Bäumler et al.,

2006), GLARE (Terenziani et al., 2001; Giordano et al., 2006) or UML statecharts

(Pérez and Porres, 2010), the CNL is very close to human natural language therefore

it is not difficult to understand for practitioners when developing the guideline. Our

CNL adapts the one created by Carvalho (2016) developed for formally checking

software requirement texts.

The advantage of using CNL in our work can be summed up as follows:

• It is user-friendly as it is very close to our natural language

• It is suitable for restricted domain where the sentence structure variation is

small

• Its development does not depend on big dataset

However, the CNL also has several shortcomings:

• It needs linguistic knowledge to develop the grammar
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• It is difficult to develop a grammar that can catch all possible sentence struc-

tures. For example, our CNL requires explicit sentence number to keep the

order for giving the recommendations. In contrast, some guidelines may not

have ordering, hence the grammar will need to behave differently.

• It is not scalable when the dataset becomes bigger as the lexicon will also grow

and may affect the existing grammar

In the next chapter, we will explain more flexible approaches to extract main com-

ponents using machine learning. The transformation of annotated guidelines using

the CNL will be discussed further in Chapter 6 (p. 83).
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UN. — Je le vois bien, ce do : il est là ! Mais pour ce qui est

de le jouer, je suis désolé, professeur, mais je ne me rapelle plus

comment on fait.

DEUX. — Écoutez, monsieur, vous n’êtes vraiment pas doué.

Comment on fait ! On appuie dessus, tout simplement !

Roland Dubillard, La Leçon de piano et autres diablogues

4
Machine Learning for Clinical

Guidelines

This chapter explains the Machine Learning (ML) approaches for tagging the process

concepts in clinical guidelines. Concretely, we will discuss the semantic role labelling

approach implemented with classic machine learning classifiers. We will also discuss

the named-entity recognition and relation classification techniques implemented by

neural models. Part of the work presented in this chapter has been published in

Rahman and J. Bowles (2021a).

4.1 Semantic Role Labelling

Our approach using a Controlled Natural Language (CNL) in the previous chapter

is deemed to be unscalable as either we need to rewrite (new) sentences to conform

the grammar rules, or modify the grammar rules to accommodate the new sentences.

Although we do not follow all the thematic roles shown in Table 3.1 (p. 33), we can

also argue that it is difficult to agree with the standard set of roles as well as to

determine the definition of each role formally.
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For example, by definition in Table 3.1 (p. 33), an INSTRUMENT is a thing used in

an event. However, the examples below show there are at least two possible cases for

an INSTRUMENT: an intermediary instruments that can act as a subject (sentence

1-3), and an enabling instrument that cannot (sentence 4).

1. Donald Duck pricked the potatoes with a fork.

2. The fork pricked the potatoes.

3. Donald Duck ate the potatoes with a fork.

4. *The fork ate the potatoes.

Another difficulty concerns the AGENT role. In most cases, an AGENT is animate,

volitional, sentient and casual. However, most Noun Phrase (NP)s can act as an

AGENT without fulfilling those criteria. The fork in sentence 2 above is an example

of an unanimated, involuntary and insentient agent.

To tackle the limitation of the CNL that we created and its thematic roles, we build a

learning model that can automatically mark the roles that arguments of a predicate

can take in a sentence. This task is widely known as semantic role labelling (SRL).

In SRL, we want to know "Who did What to Whom, and How, When and Where?"

(Palmer et al., 2010). The sentence below shows the semantic roles for the verb

threw that are realised by the words John, a ball, Mary and in the park.

[AGENT John] threw [THEME a ball] to [PATIENT Mary] [LOCATION in the

park].

The semantic roles can be more general or abstract than what can be found in the

thematic roles. Take the example of the PROTO-AGENT and PROTO-PATIENT

semantic roles. These roles receive more agent-like and patient-like arguments.

Therefore, if an argument demonstrates more agent-like properties, e.g., being an-

imate, volitional and sentient involved in the event as well as causing a change of

state in another entity, it is more likely that argument to be labeled as PROTO-

AGENT. If it has more characteristics such as changing state affected by another

entity then it is more likely to be labeled as PROTO-PATIENT. This way, classifying

an NP as a PROTO-AGENT or a PROTO-PATIENT can be done by considering

its characteristics between the two criteria.
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Table 4.1 shows some common semantic roles with their definitions and examples.

Although considerable research has been done in SRL (Kogan et al., 2005; Yaoyun

Zhang et al., 2014; Medina-Moreira et al., 2017) we have not found work that deals

with processes in guideline sentences. Here, we build a SRL system tailored for our

clinical guidelines domain. Our SRL will not mark every argument type for a predic-

ate as we do not need the fine grained semantic roles in our domain. Concretely, we

only use the Agent and Patient from Table 4.1 and two additional roles: Action and

Modifier. Furthermore, we will call the Patient role as Object. The next subsections

will explain the building blocks of our SRL system.

Role Description Examples
Agent Initiator of action, capable of

volition
The pilot landed the plane as
lightly as a feather.

Patient Affected by action, undergoes
change of state

David trimmed his beard .

Theme Entity moving, or being "loc-
ated"

Paola threw the frisbee .

Experiencer Perceives action but not in con-
trol

He tasted the delicate flavor of
the baby lettuce.

Beneficiary For whose benefit action is per-
formed

The Smiths rented an apart-
ment for their son .

Instrument Intermediary/means used to
perform an action

He shot the wounded buffalo
with a rifle .

Location Place of object or action There are some real monsters
hiding in the anxiety closet .

Source Starting point We heard the rumor
from a friend .

Goal Ending point Laura lectured to the class .

Table 4.1: A set of widely recognised Semantic Roles (Palmer et al., 2010). The
words in cyan fulfilling the role.

4.1.1 Semantics in clinical guidelines

To build a learning model to mark the roles of a word or phrase in a guideline

sentence, we first need to define the classes of roles that we allow in our domain.

Following Diamantopoulos et al. (2017), we select several concepts to represent the

process aspects of the guidelines. The design focuses on the concept of an actor

doing some action(s) on some object(s) with some modifiers. However, we do not

design our concepts in a hierarchy of ontology as in Figure 2.5 (p. 14) because their
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aim is to check the concepts using the Web Ontology Language (OWL) whereas ours

is not. For the purpose of illustrating the syntax and semantic analysis, we will use

the following guideline sentence:

"All patients should have appropriate monitoring for clinically significant

AEs."

Figure 4.1 shows the concepts in our SRL system. This set of concepts is the min-

imum that we can define to mark the labels in a guideline sentence. We can still add

some more fine-grained concepts but to do so we would need 1) more data for the

learning model and 2) clear annotation guideline to avoid mistakes.

Concept

ModifierObjectActorAction

Figure 4.1: Semantic role labelling concepts that we use in this study.

Each concept is defined as follows:

• Action: denotes an operation performed on some Object by an Actor (if it

exists). Different from Diamantopoulos et al. (2017), we also consider the

ownership type as an Action. E.g., "All patients should have appropriate

monitoring for clinically significant AEs."

• Actor: refers to the explicit performer of an Action. In many cases, the actor

is omitted in the guideline sentences.

• Object: denotes the entity over which an Action is performed. E.g., "All

patients should have appropriate monitoring for clinically significant AEs."

• Modifier: describes all modifiers of an Action, an Actor, or an Object.

E.g., "All patients should have appropriate monitoring for clinically signi-

ficant AEs."

4.1.2 Relationship between concepts

When designing the concepts, we also need to introduce the relationships between

them. These relationships define the allowed interactions between concepts. We
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follow the set of relationships introduced by Diamantopoulos et al. (2017) as shown

in Table 2.2 (p. 15) with some modifications. Firstly, there is no hierarchy of concepts

so the OperationType is substituted with Action in has_actor and actor_of. Next,

we remove the has_property and is_property_of as we do not have the ThingType

and Property concepts anymore. Finally, we introduced two relationships namely

modifies and is_modified for relationships from and to Modifier. Table 4.2 shows

the adjustment for the relationship set.

Concept class Relationship Concept class
Action acts_on Object
Object receives_action Action
Action has_actor Actor
Actor is_actor_of Action
Modifier modifies Action, Actor, Object
Action, Actor, Object is_modified_by Modifier

Table 4.2: Relationship between concepts that we use in this study.

The relationship acts_on defines that an Action is performed on an Object. The

inverse relation is receives_action that connects an Object. In the verb phrase:

"have appropriate monitoring", we say monitoring receives_action from have.

The performer of an Action is defined by the has_actor relation to an Actor.

Likewise, the Actor of an Action is defined by the is_actor_of relation. For

example, have has_actor patients in the phrase: "patients should have appropriate

monitoring".

The last two relations can cover the Action, Actor and Object concepts as its par-

ticipants. E.g., monitoring is_modified_by appropriate in the phrase: "appropriate

monitoring".

As each pair of relations is basically an inverse of one another, we will only use three

of them in our end system, namely: acts_on, has_actor, and modifies.

4.1.3 Syntactic analysis of guideline sentences

To build the features for the learning model which will be explained further in the

next sections, we need to perform the syntactic analysis step. In contrast to Diaman-
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topoulos et al. (2017), we use spaCy core large pipeline for English1 instead of the

Mate Tools for this task. spaCy gives state-of-the-art performance for Natural Lan-

guage Processing (NLP) tasks and also provides configurable NLP pipelines from

prototype to production.

The syntactic analysis covers several steps, namely:

• Tokenisation that splits each component in the sentence into a single token.

In the sentence: "All patients should have appropriate monitoring for clinically

significant AEs.", there will be ten tokens, namely: All , patients, should , have,

appropriate, monitoring , for , clinically , significant, AEs, and ..

• Part-of-speech (POS) tagging that marks up the tokens with a particular part

of speech. Following the previous example, the POS tags are as follows:

All/DT , patients/NNS, should/MD, have/VB, appropriate/JJ , monitoring/NN ,

for/IN , clinically/RB, significant/JJ , AEs/NNS, ./.. There are two well-known

sets of POS tags: the Brown Corpus developed at Brown University2 and the

Penn Treebank developed at the University of Pennsylvania3. The difference

between them is that the Brown Corpus has more tags than the Penn Tree-

bank, roughly 2.4 times, which can make it too specific for some tasks. For this

reason, we use the Penn Treebank tags set for our case. Appendix A (p. 135)

gives the complete tag set in the two corpora.

• Lemmatisation which finds the uninflected base form of each token. A lemma

is a word/token that can be inflected into several forms. E.g., eat as a verb

is the lemma for eat, eats, eating, ate, and eaten. Using the previous example,

the lemmas are as follows: All/all , patients/patient, should/should , have/have,

appropriate/appropriate, monitoring/monitor , for/for , clinically/clinically , signific-

ant/significant, AEs/ae, ./..

• Dependency parsing which parses the sentence based on the dependency re-

lation of the words, i.e., every word is connected to another by a direct link.

Figure 4.2 shows the dependency parse tree for the sentence: "All patients should

1https://spacy.io/models/en#en_core_web_lg
2http://icame.uib.no/brown/bcm.html
3https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
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have appropriate monitoring for clinically significant AEs.". The dependency re-

lationship marks the link between two words. For example, the link connect-

ing monitoring to appropriate is marked by the relation nmod, or ⟨nmod⟩ →

⟨monitoring , appropriate⟩, which means that appropriate is a noun modifier for

monitoring .

All patients should have appropriate monitoring for clinically significant AEs .

nmod sbj vc nmod

obj

adv

amod nmod

pmod

p

Figure 4.2: Dependency parse tree for the sentence: "All patients should have appro-
priate monitoring for clinically significant AEs."

4.1.4 Semantic analysis of guideline sentences

Similarly to the syntactic analysis, we adapt the approach of Diamantopoulos et al.

(2017) in our semantic analysis step. This step resembles the semantic role labelling

pipeline defined by Björkelund, Hafdell et al. (2009), namely the predicate identifica-

tion, predicate disambiguation, argument identification, and argument classification.

In relation to our problem domain, each step in the pipeline deals with one particular

task as follows:

1. identifying words that are either Action or Object, which corresponds to the

predicate identification. The reasoning behind choosing these two concepts is

because they define the relationships to others. For example, by knowing if a

word is an Action or an Object, we can further find the rest of the concepts

through the relationships acts_on, has_actor, and modifies.

2. classifying words identified in step 1 to their correct concept, similar to the pre-

dicate disambiguation. For every verb and noun that can be either an Action or

an Object, this step classifies them into the actual concept, e.g., have/Action,

monitoring/Object.

3. identifying words that are related to the instances in step 1, which corresponds

to the argument identification. The instances that we are looking for in this step

are the Actor of an Action and the Modifier related to any other concepts.
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For example, this step will recognise patients as an Actor and appropriate as a

Modifier.

4. classifying the relationship holds between a pair of instances from step 1 and

step 3, which corresponds to the argument classification. This step will gener-

ate a pair of words and its corresponding relation such as ⟨patients, have⟩ →

⟨Actor, Action⟩ and ⟨appropriate, monitoring⟩ → ⟨Modifier, Object⟩.

4.1.5 Features

To do the semantic analysis, we build one learning model for every task mentioned

in the previous section. This means that we need to have a set of features for every

learning model as it is more likely that one set of features for a task will not perform

as well when used for different tasks. We based our feature sets on the intersection

between the approach used by Diamantopoulos et al. (2017) and Gildea and Jurafsky

(2002) for SRL.

Most of the basic features have been implemented with spaCy. Furthermore, our

additional features can be derived from the ones that have been provided. These

features are as follows:

1. affected word form, which is the original word, capitalised or not, in the sen-

tence;

2. affected word lemmata taken from the lemmatisation step of the syntactic ana-

lysis;

3. word part-of-speech taken from the part-of-speech tagging of the syntactic ana-

lysis;

4. relation to parent taken from the relation of dependency parsing of the syntactic

analysis;

5. parent part-of-speech derived from the dependency parsing of the syntactic

analysis;

6. child words, similar to the affected word form, but for all children of the current

word, are derived from the dependency parsing of the syntactic analysis;
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7. child part-of-speech, similar to the parent part-of-speech, but applied to all

children of current word;

8. dependency between words, i.e., the words in dependency relations between

the action and its object, the action and its actor, or the modifier and its

action/actor/object;

9. position of affected words, i.e., before or after the predicate;

10. word vector representation, denoting the word embedding or the numerical

representation for every word.

As the learning process can only use numerical representation for the features, we

need to transform every non-number feature into numbers. We use two different

approaches to achieve this, namely:

1. tf-idf to vectorise features 1 and 2. tf-idf, short for term frequency-inverse

document frequency, computes the importance of every word in that particular

feature and rerank them accordingly. In other words, tf-idf will give higher

ranks for rare words and put common words in lower ranks. In our corpus,

every sentence serves as a document.

2. one-hot encoding to vectorise features 3 to 9. A one-hot representation will

generate a 1 by N vector for every categorical value, where N is the size of

the category, i.e., the number of unique values in the category. This encoding

makes sure that there is only a single value 1 in a cell where that particular

value appears and the remaining cells are all 0.

4.1.6 Word embedding

Vectorising categorical features into numerical form, especially using one-hot encod-

ing, will inevitably generate a very sparse matrix where most entries are zero. This

matrix is also heavily affected by the size of the vocabulary, i.e., the bigger the

vocabulary the sparser the matrix will be.

To compensate this phenomenon, we add a word embedding or a word vector repres-

entation (feature 10) which is a dense matrix that captures a semantic representation

of the words in the text. This feature is also used to give more context generalisa-
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tion since some features in our current task are very domain specific, e.g., the word

lemmata feature.

A word embedding of dimension d can also capture the similarity of words such

that words with closer meaning will have close or similar vector representations.

The dimension d is normally set between 50 and 300, i.e., for a word wd, there is

a dense d-dimension vector representing its meaning. The specific word embedding

dimensions that we use in our experiments are further explained in Section 5.2.2

(p. 70).
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Figure 4.3: Word embedding capturing the semantic similarity of words

Figure 4.3 illustrates a 4-dimension word embedding for several words. Note that in

reality these dimensions do not have real meaning, i.e., they only represent latent

relations between the words and are open to many possible interpretations. Here

we illustrate them with some artificial semantic concepts (highlighted in red) so

the similarity between words is comprehensible. Using the cosine similarity4 of two

vectors, we can infer that the word king is closer to queen than to cat. The diagram

on the right side shows how words are related to each other in a 2 dimensional space.

Using word embedding, we can do arithmetic operation to get that (king - man +

woman) ≈ queen.

Initially, we used the word2vec (Mikolov, Chen et al., 2013) to generate the word
4https://en.wikipedia.org/wiki/Cosine_similarity
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vector representation specific to our problem domain and ran several experiments.

However, the result obtained was not promising. We suspect this is due to the small

size of our corpus. In addition, we believe that using word2vec trained on our corpus

will make the word embedding very specialised and less generic. The top results

for the experiments using word2vec will be mentioned in Section 5.2.2 (p. 70) and

Section 5.2.4 (p. 76).

For these reasons, we then explored the use of pre-trained word embeddings as done

by Diamantopoulos et al. (2017). However, slightly different from their approach

which adapting the word vector representation from curriculum learning coined by

Bengio et al. (2009), we utilise pre-trained word embeddings from two different

sources: Global Vector (GloVe) (Pennington et al., 2014)5 and fastText (Mikolov,

Grave et al., 2018)6.

For the GloVe word embedding, there are several available choices. They differ in

terms of the matrix dimension as well as the data source that they are trained on:

• Wikipedia 6B uncased tokens: 50d, 100d, 200d and 300d vectors

• Common Crawl 42B uncased tokens : 300d vectors

• Common Crawl 840B cased tokens: 300d vectors

• Twitter 27B uncased tokens: 25d, 50d, 100d and 200d vectors

We did a set of preliminary experiments on all four tasks using all the possible

choices and found that the 300 dimensions’ performance is better than the 50 and

100 dimensions, while the 200 dimension is slightly worse. We also found that the

result using Common Crawl and Twitter corpus is not better than using Wikipedia.

We suspect this is because there are many non-standard words in the Common Crawl

and Twitter corpus, which will affect the overall embedding values for all words.

Similar to GloVe, fastText also has several choices for its word embedding. They are

as follows:

• Wikipedia news 16B tokens: 300d vectors

5https://nlp.stanford.edu/projects/glove/
6https://fasttext.cc/

Machine Learning for Clinical Guidelines 49

https://nlp.stanford.edu/projects/glove/
https://fasttext.cc/


• Wikipedia news 16B tokens with subword information: 300d vectors

• Common Crawl 600B tokens: 300d vectors

• Common Crawl 600B tokens with subword information: 300d vectors

In the same manner with GloVe, to see the effect of using fastText word embed-

dings, we conducted experiments on all four tasks. However, we found that the

general performance is still lower than using GloVe. Furthermore, the subword in-

formation provided by fastText does not contribute to a better output. Here we

suspect that fastText word embeddings are too generic that they miss to capture in-

trinsic representation for specific words used in clinical text. For this reason, we do

not include fastText word embeddings in our final evaluation. The top results for the

experiments using fastText are mentioned in Section 5.2.2 (p. 70) and Section 5.2.4

(p. 76).

Table 4.3 shows the features and their usage in each semantic analysis step. We only

include here the combination of features that give the best performance.

Action and Object Related concepts
Identification Classification Identification Classification

word form ✓ ✓ ✓ ✓

word lemmata ✓ ✗ ✗ ✗

word POS ✓ ✗ ✓ ✓

dependency relation ✓ ✗ ✓ ✓

parent POS ✓ ✓ ✗ ✗

child words ✓ ✗ ✗ ✗

child POS ✓ ✗ ✗ ✗

dependency words ✗ ✗ ✓ ✓

position ✗ ✗ ✓ ✓

word embedding ✓ ✓ ✓ ✓

Table 4.3: Feature sets and their usage for SRL task. The ✓ denotes the features
used in a particular task while the ✗ otherwise.

4.1.7 Learning

To get the best learning model for our semantic role labelling process, we run our

dataset against several classifiers. To achieve this, we annotate our guideline sen-

tences following the concepts needed for the particular step. For example, in the

first and second step, we only annotated words in the sentences as either Action or
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Object. Then we give the label for those words as either 1 (for potential Action or

Object) or 0 (for others). For the second step, the classifier will learn to distinguish

the words recognised in step 1 as either 1 (for Action) or 0 (for Object).

After comparing several classifiers such as decision tree, random forest, logistic re-

gression, naive Bayes and perceptron, we choose perceptron (Rosenblatt, 1957) as

our learning algorithm as it gives us the best result. We use the free perceptron

library from scikit-learn7. In perceptron, during the training step at time step t, for

every input xj and expected output dj in the training set, the algorithm will calcu-

late the predicted output yj(t) using the weight matrix w(t) and activation function

f as in Equation 4.1. At the end of every training iteration, the weight matrix for

the next time step w(t+ 1) is updated following Equation 4.2 where wi is the weight

for feature i, xj,i is the ith feature value of jth training data, and η is the learning

rate.

yj(t) = f [w(t) · xj] (4.1)

wi(t+ 1) = wi(t) + η · (dj − yj(t))xj,i (4.2)

The learning process will stop when it converges, i.e., the value of |dj −yj| ≤ ϵ where

ϵ is a very small threshold value. Otherwise, it will stop if it reaches the maximum

number of learning iterations.

4.2 NER & Relation Classification

In addition to using a CNL shown in Chapter 3 (p. 23) and SRL (discussed in

the previous section), we also investigated another approach to achieve our goal for

tagging the key concepts in the sentences. In particular, the semantic or ontology

concepts labelling can also be done using Named-Entity Recognition (NER). We

adapt the relation classification technique to link two entities in a relationship. The

models discussed in this section have some resemblance with the work of Grivas et al.
7https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Percept

ron.html

Machine Learning for Clinical Guidelines 51

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Perceptron.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Perceptron.html


(2020). However, as their aim is to mark findings (such as tumour), modifiers (such

as recent, acute, cortical) and negation, we have different entity and relation labels

sets.

4.2.1 NER in biomedical texts

NER is an NLP task for detecting the entity in the text that can be referred to with

a proper name such as a person, a location, an organisation, or even a thing that is

not a proper entity such as date, time, or price (Jurafsky and Martin, 2009).

For example, in the sentence: "[Bill Gates]PERSON, the co-founder of [Microsoft]ORG,

lives in [the USA]GPE.", there are three named-entities, namely: PERSON for Bill

Gates, ORG (stands for organisation) for Microsoft, and GPE (stands for geo-

political entity) for the USA. From this example, we can also see that a named-entity

can span multiple words, as in Bill Gates and the USA.

There are several prominent language processing libraries that have provided NER

as one of their functionalities, for example spaCy, Stanza8 and Flair9. Some of these

libraries have an additional tool to recognise named-entity in biomedical texts such

as Stanza (Yuhao Zhang et al., 2020) and Flair (Akbik et al., 2018). These libraries

have used several biomedical corpora for training their NER modules as shown in

Table 4.4.

Corpus Entity Types

Stanza

AnatEM Anatomy
BC5CDR Chemical, Disease
Linnaeus Species
NCBI-Disease Disease
i2b2-2010 Problem, Test, Treatment

Flair

BioCreative II GM Gene
CHEBI Chemical, Gene, Species
JNLPBA Cell line, Gene
miRNA Disease, Gene, Species
S800 Species

Table 4.4: Some Stanza and Flair biomedical NER corpora

Despite the existence of tools to mark the named-entity in biomedical texts, we
8https://stanfordnlp.github.io/stanza/
9https://github.com/flairNLP/flair
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cannot just use them as they have been trained for different purposes. As discussed

in previous sections, the nature of our task is to mark the process/event in clinical

guidelines which involve an actor, action, object and modifier of a process, which is

different to finding a disease, chemical, gene or species in the text. We found that

the closest NER tags to our problem are the i2b2-2010 corpus tags from Stanza. As

the i2b2-2010 corpus is built for marking the concepts, assertions, and relations in

clinical text, it has some similarities to our domain. Nevertheless, since the tags

in i2b2-2010 are completely different from what we need for our problem (problem,

test, and treatment vs. action, actor, object and modifier), we still need to train our

own model to suit our particular problem.

All patients should have appropriate monitoring for clinically significant AEs

TEST PROBLEM

Theaberrant activation of AP - 1 by gp160 in CD4 positive T cells could result in up - regulation of cytokines

containing AP - 1 sites , e.g. interleukin - 3 and granulocyte macrophage colony - stimulating factor .

PROTEIN

CELL TYPE PROTEIN

PROTEIN

A:

B:

DNA

PROTEIN

Figure 4.4: Two sentences marked with Stanza i2b2-2010 tags

Figure 4.4 shows two sentences, one taken from Stanza (sentence A) and another

from our corpus (sentence B). It can be seen in sentence A that Stanza manages to

recognise protein, cell type, and DNA in a word or group of words. As in our original

sentence B, corpus 12b2-2010 helps Stanza to recognise what a test and a problem

in a clinical sentence are.

4.2.2 Baseline model for NER

In NER, the named-entities are usually marked using the BIO format (short for

beginning-inside-outside). The beginning of an entity type is marked with a B-prefix

tag. I-prefix tag marks every token inside an entity type whereas an O tag is used

for tokens that do not belong to any entity. For example, the prefix GPE tag in New

York will be marked as inO NewB-GPE YorkI-GPE. Using this format, the annotation

model can learn to tag a single word as well as multiple words.
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Figure 4.5 shows our earlier sentence marked in the BIO format. For this task, we

use the concepts from the semantic role labelling as entities. As there are two tags

for each entity, i.e., the B-tag and the I-tag, our label size becomes 9 (from 2n + 1)

namely B-action, I-action, B-actor, I-actor, B-object, I-object, B-modifier,

I-modifier, and O.

All patients should have appropriate monitoring for clinically significant AEs
B-actionB-actor B-modifier B-object

Figure 4.5: A sentence marked with the BIO format

To implement our NER, we build a neural network model using Long Short-Term

Memory (LSTM; Hochreiter and Schmidhuber, 1997). LSTM is different from a

typical Recurrent Neural Network (RNN): while the latter constitutes a class of

neural networks to analyse sequence and time series data, the former can in addition

capture long-term dependencies in the data. An LSTM unit/cell is made up of an

input gate, an output gate, and a forget gate. This mechanism makes an LSTM

cell able to learn an important input, keep it as long as it is deemed important, and

extract it when it is required.

Figure 4.6 shows our NER model using LSTM. We use bidirectional LSTM to re-

cognise the pattern in the sentence in both forward and backward directions. For

every sentence, the model has two inputs: the part-of-speech of the words in the

sentence as well as the word vector representation from GloVe. Each input is passed

to a bidirectional LSTM and the outputs are concatenated into a three dense neural

layer.

Although Figure 4.6 only shows that the input is represented by word embeddings

and part-of-speech, we also ran many experiments using the combination of all pos-

sible feature sets as in Table 4.3 (p. 50). We also conducted experiments to see

the effect of using different word embeddings such as word2vec and fastText. The

experiments conducted and their results will be discussed further in Section 5.2.2

(p. 70).
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Figure 4.6: Named-entity recognition model implemented using BiLSTM

4.2.3 Baseline model for relation classification

After getting the labeled entities in the text, the next task is to connect them into

a meaningful relation. This task is called relation classification and is essential for

further text analysis, such as for information extraction, question answering and

knowledge base population (Nguyen and Grishman, 2015).

Concretely, given two nominals in a sentence, relation classification will classify the

semantic relation between them (Hendrickx et al., 2010). In other words, given a

sentence S with the annotated pairs of nominals e1 and e2, the aim is to identify the

relation between e1 and e2. For example, in the sentence: "The cup contained tea

from dried ginseng", the relation between tea and ginseng is ENTITY-ORIGIN.

Despite the original setting being only between two nominals, we adapt this approach

to allow the identification of the relationship that we have from previous approaches

as shown in Table 2.2 (p. 15). For our domain, we have four bidirectional relations:

acts-on, modifier, owner, and receiver and four unidiretional relations: actor-

of, choice, joint, and other. In total, we have 12 labels for our model to learn.
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Table 4.5 (p. 57) shows these relationships and their example. For example, in the

sentence: "For people who cannot <e1> tolerate </e1> <e2> aminosalicylates </e2>,

consider a time-limited course of a topical or an oral corticosteroid.", tolerate is the first

entity whereas aminosalicylates is the second entity in the relationship acts-on.

Our relation classification model is adapted from the work of Zeng et al. (2014) that

used a Convolutional Neural Network (CNN) to learn the features at a sentence

level. These features are combined with lexical level features in order to predict the

relationship between two marked entities. Instead of using the 50 dimensions Google

News pre-trained word embedding as in (Zeng et al., 2014), we use word embedding

from GloVe and fastText to see the effect of the learning process as discussed in

Section 4.1.6. Furthermore, we do not add the WordNet features into our model.
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Figure 4.7: Relation classification model implemented using BiLSTM

Figure 4.7 (p. 56) shows our relation classification model for a single word in a

sentence. As the inputs, a word in a sentence is represented by its word embedding

from GloVe or fastText and its relative positions to the first and the second entities.

These positions mark the distance of this particular word to the entities for which

the model is trying to identify a relationship. The position value 0 indicates that

this particular word is one of these two entities.
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Relationship Sentence
acts-on(e1,e2) For people who cannot tolerate aminosalicylates , consider a

time-limited course of a topical or an oral corticosteroid.
acts-on(e2,e1) Vaccination in patients with AIIRD should ideally be

administered during stable disease.
modifier(e1,e2) For people who cannot tolerate aminosalicylates, consider a

time-limited course of a topical or an oral corticosteroid.
modifier(e2,e1) Request the oestrogen receptor, progesterone receptor and hu-

man epidermal growth receptor 2 status of all invasive breast
cancers simultaneously at the time of initial histopathological
diagnosis.

owner(e1,e2) Maintain blood pressure below 130/80 mmHg for people with
advanced pancreatic cancer .

owner(e2,e1) If dipstick screening is positive, use albumin:creatinine ratio
or protein:creatinine ratio to quantify proteinuria in pregnant
women .

receiver(e1,e2) For people who cannot tolerate aminosalicylates, consider a
time-limited course of a topical or an oral corticosteroid.

receiver(e2,e1) Maintain blood pressure below 130/80 mmHg for people with
advanced pancreatic cancer.

actor-of(e1,e2) For people who cannot tolerate aminosalicylates, consider a
time-limited course of a topical or an oral corticosteroid.

choice For people who cannot tolerate aminosalicylates, consider a
time-limited course of a topical or an oral corticosteroid.

joint Request the oestrogen receptor , progesterone receptor and
human epidermal growth receptor 2 status of all invasive breast
cancers simultaneously at the time of initial histopathological
diagnosis.

other For people who cannot tolerate aminosalicylates, consider a
time-limited course of a topical or an oral corticosteroid .

Table 4.5: Relationships and their example. To declutter the table and for an aes-
thetic reason, we replace the <e1></e1> and <e2></e2> notations to mark the
first and the second entities by highlighting them in yellow and green respectively.
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word All ... have ... monitoring ...
word vectors [..., ...] ... [..., ...] ... [..., ...] ...
position1 -3 ... 0 ... 2 ...
position2 -5 ... -2 ... 0 ...

Table 4.6: Input example for relation classification model

Table 4.6 shows an example of inputs for recognising the relationship between have

and monitoring in the sentence: "All patients should <e1> have </e1> appropriate

<e2> monitoring </e2> for clinically significant AEs.".

The model learns from these inputs using bidirectional LSTM and combines the

outputs to be used in the subsequent layers. The convolutional layer will learn local

features in the sentences. The last three layers are dense layers where the final one

is responsible for identifying the probability of the 12 labels.

4.2.4 Fine-tuning state-of-the-art models

In addition to creating our neural baseline model, we also conducted several experi-

ments using some existing pre-trained models. Since good generic NER models that

have been trained with huge datasets are available, it is intuitive to build our own

model on top of them. To make these models more relevant to our own domain

specific task, we adjust the model’s weights by training them using our own dataset.

This approach is called fine-tuning the models.

4.2.4.1 Fine-tuning spaCy model for NER

There are two notable models that we will discuss, namely spaCy and BERT. As we

briefly explained in Section 4.2.1 (p. 52), spaCy provides NER among many other

functionalities in its library. spaCy allows us to train its model so it can be more

specific to our problem. For this task, we need to slightly change the input format

as spaCy uses the Begin-Inside-Last-Unit-Outside (BILUO) format instead of the

BIO format. The BILUO format differentiates between the last entity of a tag in

compound words (using the L-tag) as well as a single word tag (using the U-tag).

Unlike our baseline model whose inputs are the word embedding and the part-of-

speech, fine-tuning the spaCy model only uses the word tokens as spaCy has its
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internal modules such as POS tagger and dependency parser. Figure 4.8 illustrates

the difference between the BIO and the BILUO formats.

Measure N-terminal pro-B-type natriuretic peptide in people with suspected heart failure
B-action B-object I-object I-object I-object B-actor B-modifier B-object I-object

Measure N-terminal pro-B-type natriuretic peptide in people with suspected heart failure
U-action B-object I-object I-object L-object U-actor U-modifier B-object L-object

BIO format

BILUO format

Figure 4.8: A sentence marked with the BIO and the BILUO formats

For fine-tuning spaCy, we used the large spaCy model en_core_web_lg whose

NER model has been pretrained using OntoNotes10 as its dataset and GloVe word

vectors trained on Common Crawl.

4.2.4.2 Fine-tuning BERT model

The limitation of pre-trained word embeddings Despite the benefit of us-

ing pre-trained word embeddings such as GloVe or fastText to capture the latent

semantic of words, it also has some drawbacks as pre-trained word embeddings are

static and context independent. This means that they do not have different rep-

resentations for different meanings of the same word. In other words, they cannot

disambiguate the word sense based on the context it is used in. For example, GloVe

has only one entry for the word right even though its meaning is totally unrelated in

"She is right" and "Turn right". Therefore, dynamic and context sensitive word embed-

dings are more favourable to capture higher semantics phenomena and to overcome

the oversimplification in the representation.

BERT as a dynamic and context sensitive word embedding BERT, short

for Bidirectional Encoder Representations from Transformers (Devlin et al., 2018),

is a pre-trained neural model based on the Transformer architecture (Vaswani et al.,

2017), both developed by Google. Similar to RNN and LSTM, Transformer is also

used to handle sequential data like texts. However, instead of using a recurrent

network, Transformer uses a self attention mechanism to obtain the context of the
10https://catalog.ldc.upenn.edu/LDC2013T19
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words in a text, i.e., how one word in the text is related to every other word in

the sentence including itself, and to capture these long-term dependencies. The

bidirectional nature added in BERT allows it to capture the context of a word in

forward and backward directions which gives performance improvement.

Figure 4.9: The Transformer architecture (Vaswani et al., 2017)

Encoder, decoder and Transformer Figure 4.9 shows the architecture of Trans-

former. An input sentence is fed as a sequence of tokens to the encoder (the left

part) and the output from the encoder is fed to the decoder (the right part). The

original architecture has six layers of encoders (Nx = 6) and six layers of decoders.

The encoder consists of two layers: self multi-head attention and feed forward. The

crux of the transformer is self-attention: a mechanism for an encoder to attend to

the context of a specific token while reading the input sequence. For every token,

the output of this layer will be a matrix showing its relationship to each token in the

text, including itself. In the sentence: "I have a cat. It sat on a mat.", the token It

will have a higher value in its relationship with the token cat than the token mat.

The decoder layer is similar to the encoder with additional masked self multi-head

attention layer to perform a cross-attention mechanism over the output of the en-

coder. It is worth noting that Transformer only uses the standard feed forward
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neural network. Nevertheless, with a self-attention mechanism, it still outperforms

RNN and LSTM due to its ability to understand the context of a token even to the

most distant part of the sentence, hence reducing the locality bias.

Another visible difference between RNN/LSTM and Transformer is in the way they

process the input. Unlike RNN and LSTM, which process the input text sequentially

token by token so the network understands the whole sentence, Transformer processes

in parallel all tokens in the text to its network. This parallelisation can help decrease

the training time as well as the time required for learning the long-term dependency

in the text. However, the tokens’ position in the text is a crucial factor to understand

their meanings. To keep this information, Transformer uses positional encoding to

mark the token order in the text. This positional encoding is combined with the

input embedding in the encoder and output embedding in the decoder.

Although Transformer based architecture like BERT has become the state-of-the-

art model for capturing and extracting language representation, it is also worth to

note that this is not always the case. In some scenarios, traditional neural model

such as LSTM can even outperform BERT. For example, experiments conducted by

Makarenkov and Rokach (2020) show that for the proper word choice task11 and

binary classification for political perspective in news articles, LSTM, BiLSTM and

logistic regression can yield better performance than BERT. Another experiment

carried out by Ezen-Can (2020) shows that BiLSTM achieves higher results than a

BERT model for intent classification task using a chatbot corpus. The similarity

between these two findings are they both have small datasets. Furthermore, training

BERT model needs powerful computing machine such as Graphics Processing Unit

(GPU) for the training to run faster. We discuss this further by comparing the

running time of our experiments using Central Processing Unit (CPU) and GPU in

Section 5.2.2 (p. 70) and Section 5.2.4 (p. 76).

BERT variants BERT uses the same architecture as Transformer minus the de-

coder layer but with bidirectional functionality to the self-attention mechanism.

Since it is an encoder representation, it generates the embedding for each word in the

11The proper word choice task aims to replace a target word in a sentence s based on the context
of the target in s (Makarenkov and Rokach, 2020).

Machine Learning for Clinical Guidelines 61



text based on its respective context. In the last couple of years, BERT has shown bet-

ter performance compared to other models in many natural language understanding

(NLU) tasks, such as natural language inference (NLI), sentiment analysis, question

answering, and NER.

Since its inception, BERT has many variants that are developed either due to the

difference in the size of the architecture, the domain that they are trained on, or

the kind of task that needs to be addressed. For our fine-tuning BERT model, we

consider several BERT variants to compare their performance. Table 4.7 shows the

original Transformer architecture detail and a list of BERT models that we fine-tune.

For the relation classification task, we only fine-tune the top two models that give

best performance in NER task to save time and resources.

Model name Detail
Transformer L=6, E=512, H=512, A=8, Parameters=3M
BERTBASE L=12, E=768, H=768, A=12, Parameters=110M
ALBERTBASE L=12, E=128, H=768, A=12, Parameters=11M
RoBERTaBASE L=12, E=768, H=768, A=12, Parameters=110M
Bio_ClinicalBERT L=12, E=768, H=768, A=12, Parameters=110M

Table 4.7: BERT models for fine-tuning (including the original Transformer). L is
the number of layers, E is the size of the input word embeddings, H is the dimension
of the hidden unit size, and A denotes the number of attention heads.

BERTBASE uses the encoder architecture from Transformer with different size in

input embedding, layers, hidden units and heads. For this task, we use the basic

bert-based-cased that has been train on cased English texts. We chose this

model, rather than bert-based-uncased, as we consider the occurrence of terms

in uppercase or lowercase matters in clinical texts as it is common in NER. Besides

this, there are also other BERT models which differ in the size of the layers, the

uncased/lower case treatment, multilingual BERT, etc.

ALBERTBASE (A Lite BERT) reduces two parameters in BERT to increase the

training speed and to lower the memory consumption of BERT (Lan et al., 2019).

The first one is the reduction of the input embedding to the magnitude of 6 (Table 4.7).

Another difference is the cross-layer parameter sharing, i.e., instead of having a separ-
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ate parameters for each encoder layers, ALBERT uses only one encoder’s parameter

weights that is shared to all 12 layers.

RoBERTaBASE improves BERT’s training procedure by modifying some hyper-

parameters (Y. Liu et al., 2019). It also uses much larger batch-training sizes, learn-

ing rates, and training corpus for a total of 160 GB of text. Due to this improvement,

RoBERTa outperforms BERT’s accuracy in many NLP tasks.

BIO_ClinicalBERT was created by Alsentzer et al. (2019) based on BERT and

BioBERT (Lee et al., 2020). BioBERT itself is built from BERT trained on bio-

medical domain corpora, namely PubMed abstracts12 and PMC full-text articles13.

BIO_ClinicalBERT added more training data from 2 million notes in the MIMIC-III

Clinical Database14. This makes BIO_ClinicalBERT very good at NLP tasks for the

clinical domain.

4.3 Summary

In this chapter, we discussed our foundations for applying machine learning tech-

niques to capture the key information in clinical guidelines in contrast to the ap-

proach we discussed in Chapter 3 (p. 23). We explained the semantic role labelling

approach and its feature set. We also discussed the named-entity recognition ap-

proach and the relation classification between two entities using neural models of

our own or fine-tuned some state-of-the-art models.

Details on the experiments we conducted are discussed separately in the next chapter.

This includes all experiments’ setup and results for the machine learning approaches

that we have discussed in this chapter.

12https://pubmed.ncbi.nlm.nih.gov/
13https://www.ncbi.nlm.nih.gov/pmc/
14https://physionet.org/content/mimiciii/1.4/
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Les grandes personnes aiment les chiffres.

Antoine de Saint-Exupéry, Le Petit Prince

5
Experiments and Evaluation

In this chapter, we describe the experiment and the performance of our machine

learning model to label and to link the key components in clinical guideline sen-

tences. First, we describe how we set up our experiment environment by discussing

the nature of our dataset. We then explain the performance of running several ex-

periments and analyse lessons learnt. Finally, we will discuss how we may improve

the learning models for our purposes. Part of the work presented in this chapter

has been published in Rahman and J. Bowles (2021a) and Rahman and J. Bowles

(2021b).

5.1 Dataset Analysis

Our dataset has a total of 379 sentences all written in English: 216 of them are taken

from The National Institute for Health and Care Excellence (NICE)1, 98 are from The

Scottish Intercollegiate Guidelines Network (SIGN)2, and 65 are from The Annals

of the Rheumatic Disease (ARD)3. These sentences are gathered from guidelines for

various diseases to capture the nature of the sentences in a clinical guideline setting.
1https://www.nice.org.uk/
2https://www.sign.ac.uk/
3https://ard.bmj.com/
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Table 5.1 shows some of the diseases and their sources used in this study. In general,

we found that the structure of the sentences from Scottish Intercollegiate Guidelines

Network (SIGN) is mostly in passive voice when compared to the ones from Scottish

Intercollegiate Guidelines Network (SIGN) and Scottish Intercollegiate Guidelines

Network (SIGN). As the aim of this study is to formally check actions in clinical

guidelines, we only picked sentences that have explicit activity and ignored narrative

sentences.

There are 7967 tokens and 1414 types (unique tokens) in our dataset distribution.

The shortest sentence has 9 tokens whereas the longest has 66. Figure 5.1 shows

the sentence distribution over token counts. The histogram shows that the data

distribution is slightly right skewed. The token counts distribution has a mean of

21.02, median of 19, and standard deviation of 8.26.

Source Code Disease type

NICE

NG28 Type 2 diabetes
NG129 Chron’s disease
NG118 Renal and ureteric stones
NG122 Lung cancer
NG128 Stroke and transient ischaemic
CG182 Chronic kidney disease

SIGN

SIGN152 Cardiac arrhythmias
SIGN158 Asthma
SIGN135 Ovarian cancer
SIGN133 Hepatitis C
SIGN134 Breast cancer

ARD

76/1/17 Cardiovascular disease with rheumatoid
75/3/499 Psoriatic arthritis
74/7/1327 Spondyloarthritis
72/12/1905 Glucocorticoid therapy in rheumatic diseases
70/3/414.short Inflammatory rheumatic diseases

Table 5.1: Data source for our corpus.

The annotation of the dataset was performed by the author to mark the concepts

and relations as shown in Table 5.3. Some difficulties became evident when dealing

with an Actor or an Object as well as a Modifier. For example, the annotator

might at times mix up tagging a word as an Actor in a passive sentence instead of

an Object, and vice versa. Determining if there is a Modifier in a phrase can also be

challenging. For example, in the phrase: "adjuvant therapy ", the annotator initially

Experiments and Evaluation 65

https://www.nice.org.uk/guidance/NG28
https://www.nice.org.uk/guidance/NG129
https://www.nice.org.uk/guidance/NG118
https://www.nice.org.uk/guidance/NG122
https://www.nice.org.uk/guidance/NG128
https://www.nice.org.uk/guidance/cg182
https://www.sign.ac.uk/media/1089/sign152.pdf
https://www.sign.ac.uk/media/1773/sign158-updated.pdf
https://www.sign.ac.uk/media/1073/sign135_oct2018.pdf
https://www.sign.ac.uk/media/1071/sign133.pdf
https://www.sign.ac.uk/media/1072/sign134.pdf
https://ard.bmj.com/content/76/1/17
https://ard.bmj.com/content/75/3/499
https://ard.bmj.com/content/74/7/1327
https://ard.bmj.com/content/72/12/1905
https://ard.bmj.com/content/70/3/414.short


Figure 5.1: Sentence distribution over token counts. X axis denotes the interval of
token size in a sentence. Y axis denotes the number of sentences having a particular
token size.

marked both words as an Object phrase. On further examination, it was then revised

so that adjuvant is the Modifier of the Object therapy , i.e., adjuvant is the adjective

of therapy . We believe that it will also be more difficult if we want to have a more

fine-grained concept in our annotations. This will also affect the performance of the

learning model as currently there is not enough data to support many label instances,

and hence the model will not be able to properly learn the representation for each

label. Although all considerations have been taken into account, it is still possible

that there are inconsistencies and/or ambiguities left in our final dataset (Rahman

and J. Bowles, 2021b).

To check the quality of the annotation, we take 10% random subset from the training

set to be annotated by a second annotator following the annotation scheme. We

chose the second annotator who has some background in medical environment4. This

process will show the clarity to follow the annotation scheme as well as to get the

metrics of the annotation’s quality. Table 5.2 shows the Inter-Annotator Agreement

(IAA) for the concepts and relationships. With Cohen’s Kappa and F1-score above

80%, it shows that there is a strong agreement between the two annotators (McHugh,

2012). This also shows that the annotation scheme is adequate to give a clear

instruction for others to follow.
4At the time of this annotation was conducted, the second annotator had just finished their

PhD from the School of Medicine, University of St Andrews.
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Concept Relationship
Cohen’s Kappa 85.0 88.1
F1-score 83.7 80.9

Table 5.2: Inter-Annotator Agreement (IAA) for the concept and relationship in-
stances (in %).

Description

Concept

Action an operation performed on some Object by an Actor
Actor the performer of an Action or the owner of an Object
Object the entity that an Action is performed on
Modifier all modifiers of an Action, an Actor, or an Object

Relationship

actor-of the Actor of an Action
acts-on the Object that an Action is performed on
choice for two entities connected by or
joint for two entities connected by and
modifier an entity that modifies another entity
owner the Actor who owns an Object
receiver for the Actor who receives an Action
other for other kind of relationships

Table 5.3: Concepts and relationships in clinical guideline

The final concepts and relationships with their definition are explained in Table 5.3.

As we discussed in Section 4.2.3 (p. 55), we introduced several new relationships

that were absent in Table 4.2 (p. 43). We have the original actor-of, acts-on

and modifier. We also have several additional relationships between two entities,

namely choice, joint, owner, receiver, and other.

Table 5.4 shows the counts of named-entity instances in three different formats: the

basic, BIO and BILUO. The basic format is used in the Semantic Role Labelling

(SRL) model, whereas the BILUO format is used for fine-tuning the spaCy model.

We use the BIO format for the baseline neural model and the fine-tuned Bidirec-

tional Encoder Representations from Transformers (BERT) models as discussed in

Section 4.2.2 (p. 53). This table also shows that for the Object and Modifier en-

tities in our dataset, they can occur as a single word or as a phrase (marked by

the existence of BILUO tags), whereas for the Actor and Action entities, they only

happen as a single-token entity (marked by the only existence of an U tag).

We can see that the dataset is imbalanced; in the basic format, Action, Object and

Modifier concepts appear frequently whereas the Actor concept is underrepresented,

Experiments and Evaluation 67



Concept #Instances (%) BIO tag #Instances (%) BILUO tag #Instances (%)
U-object 915 11.5
B-object 593 7.4
I-object 175 2.2
L-object 593 7.4

B-object 1507 18.9 U-modifier 794 10
I-object 769 9.7 B-modifier 134 1.7
B-modifier 928 11.6 I-modifier 91 1.1

Action 630 26.2 I-modifier 225 2.8 L-modifier 134 1.7
Actor 261 10.8 B-action 472 5.9 U-action 472 5.9
Object 691 28.7 B-actor 281 3.5 U-actor 281 3.5
Modifier 825 34.3 O 3785 47.5 O 3785 47.5
Total 2407 7697 7697

Table 5.4: Counts of named-entity instances in the original, BIO, and BILUO format.

that is, between 2.4 to 3.2 times rarer. The specialisations into the BIO and BILUO

formats could not alleviate this problem as the ratios between the most common

and the rarest entities are now 6.8 and 10.5, excluding the O tag. This phenomenon

of class imbalance can affect the learning performance as the models may be biased

towards the majority classes or may disregard the minority classes completely in

extreme cases (Johnson and Khoshgoftaar, 2019).

The counts of relationship instances are shown in Table 5.5. The contrast in the

number of instances between actor-of and acts-on is due to the fact that there

are many actions without explicit actors in our dataset. Furthermore, some actors

are not involved in any action, i.e., they just have some properties to modify them.

The relationships are further specialised for the positions of their arguments. In the

phrase: "<e1> give </e1> vitamins to young <e2> people </e2>", the relationship

between give and people is receiver(e1,e2) as the receiver of the giving comes

after the action of giving. Whereas in the sentence: "For <e1> people </e1> with

diabetes, <e2> give </e2> insulin.", it is receiver(e2,e1) as the receiver comes

before the giving action. We use this specialised format for the baseline and the

fine-tuned BERT models, whereas the basic one is used for the SRL model.

Although technically actor-of, acts-on, modifier, owner, and receiver can have

two different order of arguments, in our dataset, the actor of an action always comes

before the action in all actor-of instances. Furthermore, it is also clear that the
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Relationship #Instances (%) Relationship #Instances (%)
actor-of(e1,e2) 176 6.7
acts-on(e1,e2) 493 18.8
acts-on(e2,e1) 75 2.9
choice 116 4.4

actor-of 176 6.7 joint 150 5.7
acts-on 568 21.7 modifier(e1,e2) 576 22
choice 116 4.4 modifier(e2,e1) 216 8.3
joint 150 5.7 other 351 13.4
modifier 792 30.3 owner(e1,e2) 225 8.6
other 351 13.4 owner(e2,e1) 6 0.2
owner 231 8.8 receiver(e1,e2) 87 3.3
receiver 234 8.9 receiver(e2,e1) 147 5.6
Total 2618 2618

Table 5.5: Counts of relationship instances

distribution of instances is imbalanced, as the ratios between the most common

and the rarest relationship instances is 6.8 for the basic format and 110 for the

specialised one. Similarly to Named-Entity Recognition (NER), this imbalance may

undoubtedly affect the performance of the learning models.

5.2 Experiments

After finalising the dataset, we ran several experiments to evaluate the performance

of our SRL approach, NER, and relation classification. We use the common evalu-

ation metrics precision, recall and F1-score. Precision is defined as the percentage

of predicted instances that are correct, whereas recall is defined as the percentage of

correct instances that are predicted by the model. The F1-score is computed as the

harmonic mean of precision and recall.

5.2.1 Experiments on Semantic Role Labelling (SRL)

Table 5.6 shows the performance of several classifiers for the SRL approach. For each

classifier, we perform evaluation using tenfold cross-validation setting, i.e., in every

fold, there will be ten equal portions of data where one portion out of ten will be

used as testing. We can see variations of trend for each performance metric. Random

forest has the best performance (79.4%) for correctly predicting the concepts and
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relations in the sentences, i.e., 4 out of 5 annotations are correct. Meanwhile, per-

ceptron is the best for predicting all correct concepts and relations (68.3%), roughly

7 out of 10 correct annotations can be predicted. Using the F1-score, the best one

is achieved by perceptron (64.0%) (highlighted in gray).

Classifier Precision Recall F1-score
Decision tree 74.9 50.7 60.4
Random forest 79.4 47.4 59.3
Perceptron 60.3 68.3 64.0

Table 5.6: Semantic role labelling evaluation scores for several classifiers (in %).

5.2.2 Experiments on Named-Entity Recognition (NER)

For the NER approach using neural network models, the performances can be seen in

Table 5.7. Here, we only show five experiments using Global Vector (GloVe) embed-

dings and two top results using word2vec and fastText. We ran experiments using

every possible combination of features from Table 4.3 (p. 50). We found the best F1-

score of 86.7% using the combination of POS feature and GloVe embeddings of size

300. For word2vec, the best result is achieved when the embedding dimension equals

to 100 with the combination of POS and parent POS as its features. Additionally,

when using fastText, the top score is attained when using Wikipedia dataset and

combined with POS as the features. All five GloVe models shown in the table use

Wikipedia as the dataset.

Input features Precision Recall F1-score
GloVe 300 + POS 85.4 88.1 86.7
GloVe 200 + POS & Lemma 85.5 87.9 86.7
GloVe 300 + POS & Parent 84.6 88.8 86.6
GloVe 300 + POS & Dependency 85.3 87.6 86.4
GloVe 300 + POS & Parent & Dependency 85.6 87.2 86.4
fastText 300 + POS 82.9 83.1 83.0
word2vec 100 + POS & Parent 79.3 81.7 80.5

Table 5.7: Named-entity recognition evaluation scores for several word embeddings
and input features (in %)

From the results shown in Table 5.6 and Table 5.7, we can say that the performance

of the SRL approach is always under the NER model using LSTM. For further
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experiments and comparisons, we will only use the NER model with 300 dimensions

GloVe embeddings and POS feature as our baseline (highlighted in gray).

5.2.3 Fine-tuning spaCy and BERT models for NER

In addition to building our baseline model, we also fine-tuned some state-of-the-art

architectures such as spaCy (p.58) and BERT (p.59) for the NER task as discussed

in Section 4.2.4 (p. 58). Concretely, we fine-tuned BERT and some of its variants

namely ALBERT (p.62), RoBERTa (p.63), and BIO_ClinicalBERT (p.63). At the

time of this experiments were conducted, we used the large spaCy model en_-

core_web_lg that has been pre-trained using the transition-based chunking model

(Lample et al., 2016). In its current development, spaCy uses RoBERTa model as

its backend5.

The performance of our baseline NER model Table 5.7 compared to fine-tuning

spaCy and BERT variants is shown in Table 5.8. We can see that the baseline model

performs better than the fine-tuned spaCy model by a margin of ≈ 5%. For the

BERT model, the performances range from almost equal for ALBERT to better by

a margin of ≈ 3% for BIO_ClinicalBERT. Since BIO_ClinicalBERT has been pre-

trained on clinical texts and our domain is clinical guideline texts, we suspect this

to be the reason why it outperforms other BERT variants for the NER task.

Model Precision Recall F1-score
Baseline 85.4 88.1 86.7
spaCy 80.8 82.5 81.6
BERT 87.7 90.4 89.0
ALBERT 86.9 87.9 87.4
RoBERTa 87.0 89.6 88.3
BIO_ClinicalBERT 88.4 90.2 89.3

Table 5.8: Evaluation F1-score values for NER model (in %)

For multiclass classification, there are several average metrics that can be used when

calculating the precision, recall, and F1-score, such as6:

5https://spacy.io/usage/v3#features-transformers
6https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.htm

l
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• micro: Calculate metrics globally by counting the total true positives, false

negatives and false positives.

• macro: Calculate metrics for each label, and find their unweighted mean. This

does not take label imbalance into account.

• weighted: Calculate metrics for each label, and find their average weighted by

support (the number of true instances for each label). This alters ’macro’ to

account for label imbalance; it can result in an F-score that is not between

precision and recall.

As we have seen in the dataset analysis, the concept classes in our corpus are mostly

imbalance. Therefore, when calculating the performance for each instance, we will

use the weighted average as it takes into account the number of class instance.

Table 5.9 shows the performance detail of the baseline model, fine-tuned BERT

and BIO_ClinicalBERT per NER class instance. In two cases, namely Action and

Object, BERT is slightly better than BIO_ClinicalBERT. However, for recognising

Actor and Modifier, BIO_ClinicalBERT is better than BERT.

Baseline BERT BIO_ClinicalBERT
Entity type P R F1 P R F1 P R F1
Action 92.5 99.0 95.6 94.2 99.0 96.6 95.1 98.0 96.5
Actor 97.6 80.4 88.2 90.6 94.1 92.3 90.7 96.1 93.3
Modifier 81.5 79.8 80.6 86.1 83.4 84.7 87.8 86.0 86.9
Object 80.6 88.0 84.1 85.9 91.4 88.6 86.2 89.4 87.8
Weighted 85.4 88.1 86.7 87.7 90.4 89.0 88.4 90.2 89.3

Table 5.9: Instance score for NER (in %)

The scores in Table 5.9 are calculated following the evaluation metrics defined by

Tjong Kim Sang and De Meulder (2003):

"Precision is the percentage of named entities found by the learning sys-

tem that are correct. Recall is the percentage of named entities present

in the corpus that are found by the system. A named entity is correct

only if it is an exact match of the corresponding entity in the data file."

It is obvious that the definition above only takes into account strict cases where either

(1) the predicted entity is the same with the gold-standard, (2) the model predicts
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entity that is not in the gold-standard, or (3) the model misses predicting an entity

in the gold-standard. These three cases and one neutral case where the model and

the gold-standard agree that there is no entity are illustrated in Table 5.10 rows 1,

2, 3 and 4. However, as we can see, this definition discards partial matches due to

the wrong boundary (rows 6 and 7) or the cases where the model predicts the wrong

entity (row 5). These last three phenomena, rows 5 - 7, are called a labelling error

(le), a boundary error (be), and a label-boundary error (lbe) by Chris Manning7. He

argues that using only F1-score can be misleading when it is used to measure the

performance of a NER model.

Case Example

1 The gold-standard and the model prediction are the same GS: O B-object I-object O
MP: O B-object I-object O

2 The model predicts an entity not in the gold-standard GS: O O O O
MP: O B-object I-object O

3 The model misses an entity GS: O B-object I-object O
MP: O O O O

4 The model and the gold-standard agree that there is no entity GS: O O O O
MP: O O O O

5 The model predicts the wrong entity GS: O B-object I-object O
MP: O B-actor I-actor O

6 The predicted entity is correct but the boundary is not GS: O B-object I-object O
MP: B-object I-object I-object O

7 The predicted entity and the boundary are wrong GS: O B-object I-object O
MP: B-actor I-actor I-actor O

Table 5.10: Cases for measuring a NER model. GS stands for "gold standard"
whereas MP stands for "model prediction". For example, in the case number 2, the
actual labels are "O O O O" but the second and the third labels are wrongly predicted
as "B-object" and "I-object" by the model.

To take into account the cases where the model can predict the wrong entities or

the wrong boundaries, a different evaluation is proposed based on the drug-drug

interactions extraction in biomedical texts (I. Segura-Bedmar, Martınez and Herrero-

Zazo, 2013). The method calculates the performance based on strict evaluation,

exact and partial boundary matching (regardless to the entity type), as well as

the entity type matching. This alternative evaluation uses the scoring categories

proposed by the Message Understanding Conference (MUC; Chinchor and Sundheim,

1993), namely:

• Correct (COR): the gold-standard and the model prediction match;
7https://nlpers.blogspot.com/2006/08/doing-named-entity-recognition-dont.html
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• Incorrect (INC): the gold-standard and the model prediction do not match;

• Partial (PAR): the gold-standard and the model prediction have some overlap;

• Missing (MIS): the model misses an entity in the gold-standard;

• Spurious (SPU): the model predicts an entity not in the gold-standard;

Furthermore, there are two additional metrics for the measurement of annotations

of the gold-standard and the model predictions:

1. The number of annotations in the gold-standard

POSSIBLE(POS) = COR + INC + PAR +MIS = TP + FN (5.1)

2. The number of annotations produced by the system

ACTUAL(ACT ) = COR + INC + PAR + SPU = TP + FP (5.2)

Now the calculation of precision and recall can be defined based on the new evaluation

categories as defined in the formulae below. Note that although the strict and

exact match fall into the same formula (the same with partial and type match), the

individual category (such as the number of COR, INC, PAR, MIS or SPU) may give

different value.

• Strict and exact match

Precision = COR

ACT
= TP

TP + FP
(5.3)

Recall = COR

POS
= TP

TP + FN
(5.4)

• Partial and type match

Precision = COR + 0.5 ∗ PAR
ACT

(5.5)

Recall = COR + 0.5 ∗ PAR
POS

(5.6)

Following the new strategies, we calculate the F1-score of the baseline and the fine-

tuned BERT and BIO_ClinicalBERT using the strict, exact and partial evaluations
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Figure 5.2: Heatmaps of the difference between the baseline, BERT and BIO_-
ClinicalBERT NER confusion matrix based on the strictness of entity classification.
The X -axis shows the evaluation strategy, and the Y -axis shows the named-entities.
The numbers are showing F1-scores (in %)

incorporating the nervaluate8 library. The result is shown as heatmaps in Fig-

ure 5.2.

For the Actor entity, compared to BERT and BIO_ClinicalBERT, the baseline

model has the lowest performance following the strict evaluation, but almost the

same for the exact and partial ones. This means that the mistakes for the Actor

entity prediction in the baseline model are due to the boundaries or the prediction

of nonexistent entities (row 2 in Table 5.10).

Moreover, the baseline model cannot perform well to predict the Object entity, no

matter what evaluation is used, as the score between strict, extract and partial

evaluation cannot reach 90%. This phenomenon does not happen for BERT and

BIO_ClinicalBERT. This trend is also similar for the Modifier entity that suffers

the lowest score in the baseline model.

By contrast, all models perform really well when predicting the Action entity. We

suspect this is because the Action entity is almost always a verb in the sentence.

However, not all verbs in the sentence are Action entities. The examples below

illustrate this phenomenon.

The patients have undergone surgery. Dynamic have

8https://github.com/ivyleavedtoadflax/nervaluate
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The patients have diabetes. Stative have

In the dynamic have, the verb have serves as the marker for the real Action entity

which is undergone, while it serves as the marker for the owning/owner relationship

in the stative have. As all models have F1-score greater than 95% for the strict, exact

and partial evaluations, we can say that all models have learnt good representations

for the Action entity.

Finally, although the performance of the baseline model is lower than the other

models, in terms of training time, BERT and BIO_ClinicalBERT took considerably

longer time to train. For 50 epochs, it took ≈ 10 minutes to train the baseline,

whereas BERT and BIO_ClinicalBERT took ≈ 50 minutes. Another disadvantage

is that BERT and BIO_ClinicalBERT need more computation resources, such as

big memory and Graphics Processing Unit (GPU), which are not always available

in most computing environments. The need of GPU also affects the prediction time

as running the prediction on Central Processing Unit (CPU) is noticeably slower

compared to the baseline model. This factor can be used as consideration when

integrating the model into a bigger system: lower performance but faster process or

vice versa.

5.2.4 Experiments on relation classification

Precision Recall F1-score
word2vec 100 82.9 82.5 82.7
fastText 300 Wikipedia 83.1 83.3 83.2
GloVe 300 Common Crawl 840B tokens 85.8 84.0 84.5
GloVe 300 Wikipedia 85.6 85.5 85.3
GloVe 200 Wikipedia 88.0 87.8 87.8
GloVe 300 Common Crawl 42B tokens 87.9 88.6 87.8
GloVe 100 Wikipedia 89.0 88.2 88.4

Table 5.11: Evaluation of F1-score (in %) on relation classification for several GloVe
word embeddings with varying dimension size.

The result for relation classification is shown in Table 5.11. To calculate the value

for each metric, we compared the model prediction against the gold standard. We do

not calculate directly from the output of the NER model hence we do not propagate

the NER errors. Here, we have the top seven models built under the architecture
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described in Figure 4.7 (p. 56), varying on the word embeddings sources and di-

mensions. The highest F1-score is achieved by using the 100 dimensions GloVe

embeddings trained on Wikipedia data. We can see the trend that the performance

is better if the word embeddings dimension is lower. None of the top seven models

achieves a score greater than 90%. Similar to the results shown in Table 5.7 (p. 70),

our experiments using word2vec and fastText as word embeddings are not better

than using GloVe. For further experiments and comparisons, we will use the model

using 100 dimensions Wikipedia GloVe embeddings as the baseline (highlighted in

gray). The performance detail, with the fine-tuned models, is further explained in

Table 5.13 (p. 78)

5.2.5 Fine-tuning BERT models for relation classification

Table 5.12 shows the comparison of the baseline model with two BERT variants.

Different from NER, we did not run experiments using ALBERT and RoBERTa for

this task as we only take the top 2 BERT models from NER. Further consideration

factors include the limited amount of memory and GPU resources that we have.

Model Precision Recall F1-score
Baseline 89.0 88.2 88.4
BERT 92.7 91.6 91.8
BIO_ClinicalBERT 91.2 90.1 90.3

Table 5.12: Evaluation F1-score values for NER model (in %)

Similarly to NER, BERT and BIO_ClinicalBERT have better performance than

the baseline model. However, surprisingly, BERT performs better here than BIO_-

ClinicalBERT not only in terms of the F1-score, but also in the precision and in the

recall. Our explanation for this is that the relation tags are quite generic and do

not really need clinical knowledge. Therefore, for this reason BERT can perhaps be

better at generalising its learning process, leading to a better performance.

The performance detail for relation classification is shown in Table 5.13. In three

relationships, namely acts-on(e2,e1), modifier(e2,e1) and receiver(e1,e2),

the baseline model performs better than BERT and BIO_ClinicalBERT in terms of

the F1-score. Especially for receiver(e1,e2), even though its instances are few,

the baseline can capture its representation better than BERT. This phenomenon is
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Baseline BERT BIO_ClinicalBERT
Relations P R F1 P R F1 P R F1
actor-of(e1,e2) 88.9 80.0 84.2 95.2 100 97.6 87.0 100.0 93.0
acts-on(e1,e2) 92.5 90.7 91.6 98.1 96.3 97.2 98.1 96.3 97.2
acts-on(e2,e1) 50.0 50.0 50.0 27.3 75.0 40.0 27.3 75.0 40.0
choice 70.0 87.5 77.8 85.7 75.0 80.0 85.7 75.0 80.0
joint 100.0 87.5 93.3 88.9 100 94.1 80.0 100.0 88.9
modifier(e1,e2) 96.3 91.2 93.7 100 96.5 98.2 96.5 96.5 96.5
modifier(e2,e1) 59.3 80.0 68.1 73.3 55.0 62.9 73.3 55.0 62.9
other 84.9 87.5 86.2 90.9 93.8 92.3 89.7 81.3 85.3
owner(e1,e2) 100.0 96.2 98.0 100 96.2 98.0 96.2 96.2 96.2
owner(e2,e1) 0 0 0 0 0 0 0 0 0
receiver(e1,e2) 90.0 90.0 90.0 80.0 80.0 80.0 88.9 80.0 84.2
receiver(e2,e1) 95.2 90.9 93.0 95.7 100 97.8 100 100 100
Weighted 89.0 88.2 88.4 92.7 91.6 91.8 91.2 90.1 90.3

Table 5.13: Evaluation score for relation classification (in %)

not always true. Another case worth noting is the acts-on(e2,e1): both BERT and

BIO_ClinicalBERT perform equally, where the models can predict more instances

of acts-on(e2,e1) in the test set (the recall score). However, for the baseline,

the model is equal when correctly predicting the instances (the precision score) as

well as when predicting the correct instances (the recall score). And lastly, for

owner(e2,e1), no model can predict it correctly. This is unsurprising as there are

only 6 such instances in our dataset which explains why the models cannot learn this

representation properly.

Figure 5.3 shows the heatmaps of the relation classification’s confusion matrix for the

three models. We can see that in general, different models make similar mistakes. For

owner(e2,e1), both the baseline and BERT model tend to assign receiver(e2,e1)

while BIO_ClinicalBERT assigns other. Using the notation introduced in Table 4.5

(p. 57), the sentence below is an instance for this phenomenon where proteinurea is

the first element and women is the second element. The baseline and BERT somehow

recognise that the word women is the receiver of the proteinurea action.

If dipstick screening is positive, use albumin:creatinine ratio or pro-

tein:creatinine ratio to quantify <e1> proteinuria </e1> in pregnant

<e2> women </e2>.
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Figure 5.3: Heatmaps of the difference between the baseline, BERT and BIO_ClinicalBERT relation classification confusion matrix.
The numbers are showing F1-scores (in %)

Experim
ents

and
Evaluation

79



For acts-on(e2,e1), both BERT and BIO_ClinicalBERT have the tendency to

mistakenly assign receiver(e2,e1), whereas the baseline assigns modifier(e2,e1).

This case happens mostly in passive voice where the verb can act as a participle or an

adjective. For the former case, BERT and BIO_ClinicalBERT consider the second

element as an action and the first element is the receiver of the action. In contrast,

the baseline model falls to the latter case where the second element is an adjective

for the first element. The sentence below is an instance of this phenomenon where

osteoporosis is the first element and assessed is the second element.

In patients with axial SpA without syndesmophytes in the lumbar spine

on conventional radiography, <e1> osteoporosis </e1> should be <e2>

assessed </e2> by hip DXA and AP-spine DXA.

In contrast to the previous case, all models tend to label modifier(e2,e1) as acts-

on(e2,e1). However, with further investigation, this is not a mistake in the model

but an incorrect annotation. As a verb can function as a participle or an adjective

in passive voice, we suspect the annotator made a mistake when annotating the

gold-standard. This phenomenon shows that the models can learn very well to

differentiate between the two cases. The sentence below illustrates the phenomenon.

Where appropriate, functional tests, including the exercise tolerance <e1>

test </e1>, should be <e2> considered </e2> to aid in the risk strati-

fication of patients with known CAD.

In terms of running time, the difference between the baseline model and BERT

is even greater for this task compared to NER. For 50 epochs, our model took ≈

30 minutes whereas BERT and BIO_ClinicalBERT took ≈ 3.5 hours and ≈ 5.5

hours, respectively. Due to the limitation of our GPU memory, we also lowered our

training batch size to 8 for BERT and BIO_ClinicalBERT which affected the overall

training time. Likewise with NER, this factor can also be taken into consideration

when integrating the model into a bigger system, as the prediction time is much

longer for BERT and BIO_ClinicalBERT than the baseline model.
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5.3 Improving the Models

After running the experiments, there are still a few options if we want to improve

our models further:

Investigate the data The misclassified samples can be used further to see if

there is a consistent labelling error. If there are overlapping cases, we can create new

concepts/relationships or merge old ones where applicable.

Cleaning up the data We see that the dataset itself still contains label noise, i.e.,

the annotator may have used the wrong label. Refining the dataset could improve

the quality of the data as well as the performance of the models. Furthermore, we

also believe that having more annotators can increase the quality of the data.

Another way to handle label noise is label smoothing. A study on the CIFAR-10

image data has shown that smoothing exhibits denoising effects by making the models

less overconfident when drawing the decision boundaries (Lukasik et al., 2020).

Resampling the dataset One way to make the dataset more balanced is by

resampling during training. There are several ways of doing this, such as over-

sampling (or replicating) the minority classes and/or undersampling (or eliminating)

the majority classes (Batista et al., 2004), or bootstrapping (Reed et al., 2015).

Apply larger models As we had some limitations with the computing resources

available, we could not apply larger models when training our data. In combination

to having larger datasets, applying larger models may improve the models’ perform-

ance. However, we have to make a trade-off between gaining better performance and

reducing the carbon footprint when training large models (Hao, 2019; Dhar, 2020)

5.4 Summary

In this chapter, we have discussed the experiments conducted over our machine

learning models. We found that fine-tuning state-of-the-art architectures give us the

best performance. We also found that, in addition to the size of our dataset, we need
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to consider the effect of label noise and imbalanced datasets. We discussed different

solutions to address the identified problems.

In the next chapter, we will discuss how our annotated clinical guideline sentences

can be transformed further and be explored for formal verification.
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Toute leur vie était régie non par des lois, des statuts ou des règles,

mais selon leur volonté et leur libre arbitre.

François Rabelais, Gargantua

6
Formal Model Generation and

Verification

In this chapter, we describe how we transform guideline texts into formal specific-

ation. This transformation process starts after we extract the concepts either by

parsing the guideline texts written in the Controlled Natural Language (CNL) or

using Machine Learning (ML) as discussed in Chapter 3 and Chapter 4 respectively.

We begin by explaining different logic forms that can be used for reasoning in our

framework, i.e., Propositional Logic (PL), First-Order Logic (FOL), Linear Temporal

Logic (LTL), and Computation Tree Logic (CTL). We will then discuss the task of

model checking and the use of model checking tools such as UPPAAL and PRISM,

as well as constraint solver such as Z3 to verify the transformed guideline text.

Figure 6.1 shows the pipeline of a clinical guideline verification. Once the formal

specification is generated (either for a model checker or a constraint solver), it can be

verified against some properties. In addition, further information may be extracted

from available health records and added to the specification to help the verification

process.
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Clinical guidelines
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Figure 6.1: Pipeline for verifying a clinical guideline

The use of a model checker or a constraint solver are quite different. Temporal logics

such as LTL and CTL (and further variants) are used in model checking to capture

properties we want to check against a model. In the context of medical guidelines, we

can use model checking to verify, for instance, treatment options across a guideline

where the guideline represents the model. Some guidelines, however, do not lend

themselves to be represented as a model. In such cases, a constraint solver approach

may be more useful as we will see in this chapter. Part of the work presented in this

chapter has been published in Rahman and J. K. F. Bowles (2017).

6.1 Logical Form

To verify the correctness of the clinical guideline texts, they need to be transformed

into some formal specification. Further, we can specify some propositions or proper-

ties in logical forms to check if they are entailed by the specification. In other words,

the specification will be the model to prove if the given properties are correct or not.

This section will briefly explain some logics that will be used to define properties of

the model checker or constraint solver mentioned in Section 6.2 (p. 89). For example,

we specify the properties written in timed computation tree logic, a variation of com-

putation tree logic, when checking against UPPAAL and PRISM. For Z3 constraint

solver, the properties are expressed in a language family of first-order logic.
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6.1.1 Propositional Logic

Propositional logic can be used to formally represent statements through the use of

propositions and certain logical connectors. Each proposition has its truth value and

they can be combined using the logical connectors to form compound propositions.

A stand alone proposition that is not connected to the others is called an atomic

proposition. The connectors in propositional logic are negation (¬), conjunction (∧),

disjunction (∨), implication (→) and equivalence (↔).

Propositional logic can represent and be used to make inference about the world.

For example, if r denotes the sentence: "it rains", w denotes the sentence: "the street

is wet", example A1, A2, and A3 are valid propositional sentences.

(A1 ) "if it rains, the street is wet" is represented by r → w

(A2 ) "it rains and the street is wet" is represented by r ∧ w

(A3 ) "it does not rain or the street is not wet" is represented by ¬r ∨ ¬w

The logical connectors define the truth value of the propositions. Table 6.1 shows

the truth value of two propositions P and Q with the logical connectors where T

denotes true and F denotes false.

P Q ¬P P ∧ Q P ∨ Q P → Q P ↔ Q
T T F T T T T
T F F F T F F
F T T F T T F
F F T F F T T

Table 6.1: Propositional logic truth table

6.1.2 First-order Logic

Although propositional logic is useful to model facts about things in general, it still

has some limitations. For example, propositional logic can be used to model the

sentences: "Socrates is a human" and "Plato is a human" as p and q respectively.

But it lacks the ability to say that both Plato and Socrates belong to the human

domain.

On the other hand, FOL has the ability to express that an individual of some sort
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of domain is being considered, as well as to express the equality of two propositional

symbols. Together with the connectors from propositional logic, this makes first-

order logic more powerful in expressing statements about the world.

Using the previous example of Plato and Socrates, these statements below are valid

first-order logic sentences.

(B1) Human(socrates)

(B2) Mortal(socrates)

(B3) ∀xHuman(x) → Mortal(x)

(B4) ∃xHuman(x) ∧Mortal(x)

(B1) and (B2) show two predicates to model the Human and the Mortal domain

and socrates is a member of these domains. Two new quantifier symbols present in

(B3) and (B4). The symbol ∀ in (B3) is the universal quantifier and used to say

"for all" or "for every". In other words, it tells that for all x, if x is a member of the

Human domain, then x is also a member of the Mortal domain, i.e., every human is

mortal. Another quantifier is the existential quantifier, marked as ∃ in (B4), to say

"there exists" or "there is". Statement (B4) can be read as there is x that is both

Human and Mortal.

6.1.3 Temporal Logic and Linear Temporal Logic

Linear Temporal Logic (LTL) extends propositional logic and has the ability to model

and reason about situations that involve an ordering of events. As the name suggests,

it assumes a linear interpretation of time (one possible future), consider discrete time

(as opposed to continuous time) which can be seen as an abstraction. Temporal logic

only considers the relative ordering of events and assumes discrete time (Baier and

Katoen, 2008). For example, LTL can be used to express: "the elevator door opens

after the open button is pressed" even though there is no precise timing of when the

elevator door will exactly open after the button is pressed. Other more expressive

logics with additional characteristics (e.g., bounded temproal operators) exist and

can be used when it is important to reason about time, etc. LTL is the simplest

temporal logic that we can define, and hence our starting point.
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Operator symbol Alternative symbol Explanation
3ψ F ψ ψ is eventually true in the future
2ψ G ψ ψ is globally/always true
⃝ψ X ψ ψ is true in the next state
ψ1 U ψ2 ψ1 is true until ψ2 becomes true

Table 6.2: Temporal operators in LTL. ψ denotes a formula.

Temporal logics such as LTL are interpreted over models known as (labelled) trans-

ition systems. These models are state-based representations of a system. Table 6.2

shows operators present in LTL to express modality that are absent in propositional

logic. Besides these modal operators, LTL also inherits the connectors from propos-

itional logic.

Definition 6.1 (LTL formulae) LTL formulae ψ under atomic proposition a are

defined in the following grammar:

ψ ::= a | true | ψ1 ∧ ψ2 | ¬ψ | ⃝ ψ | ψ1Uψ2

Following the Definition 6.1, in LTL, for each state at a moment of time, there is

only one possible successor state. Therefore, each time moment has a unique possible

future (Baier and Katoen, 2008). Implicitly, a state satisfies an LTL formula if all

paths from the given state satisfy it, analogous to having a universal quantifier ∀

(Huth and Ryan, 2004). Figure 6.2 illustrates a path for an LTL formula 23a →

23b from an initial state s1.

S1

a

S2

a

S3

b arbitrary

Sm

a

Sn

barbitrary

Figure 6.2: An LTL path for 23a → 23b formula

In Figure 6.2 above, a holds in the initial state s1. 3b holds in state s1 because

there is a state in the future of s1 (for instance s3) where b holds. 23b holds in

s1, because at all future states of s1, 3b holds. This effectively means that b will

occur infinitely often. A more complex formula such as 23a → 23b holds at s1, iff

23a holds at s1 then 23b at s1. Following the operators mentioned in Table 6.2

(p. 87), ⃝a holds in s1 since a still holds in the next state s2. And lastly, a U b also

holds in s1 as a holds in s1 and s2 and not anymore in s3 where b holds. Satisfaction
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of arbitrary formula ψ is determined by checking the individual atomic proposition

that make up ψ.

The examples below show two sentences written as LTL formula.

(C1) 23open_button_pressed → 23door_opened

(C2) 2(¬crit1 ∨ ¬crit2)

Example (C1) shows how temporal operators can be used in combination. The

formula means that if the open button is pressed infinitely often, then the door will

open infinitely often. Figure 6.2 illustrates an LTL path for this formula where a and

b denote open_button_pressed and door_opened respectively. The second example

(C2) shows the property that is expected from any system, that it is always true that

no two processes are accessing their critical section at the same time. In our context,

LTL can be used, for instance, to express an expected outcome of a medication: "if

a patient takes paracetamol, then the fever will eventually subside."

6.1.4 Computation Tree Logic

Another logic that uses temporal logic as its base is Computation Tree Logic (CTL).

CTL can express an existence of a path that satisfies a formula, in contrast to LTL

that implicitly uses the universal quantifier to all its states. In other words, in CTL

we do not care only about one possible future for a state s1, but all possible future

states that can be reached from s1, and we can write properties to that effect.

Definition 6.2 (CTL state formulae) CTL state formulae over atomic proposi-

tion a and a path formula ψ are defined in the following grammar:

ϕ ::= true | a | ϕ1 ∧ ϕ2 | ¬ϕ | ∃ψ | ∀ψ

Definition 6.3 (CTL path formulae) CTL path formulae over atomic proposi-

tion a and a state formula ϕ are defined in the following grammar:

ψ ::= ⃝ϕ | ϕ1Uϕ2

In CTL, the formula is expressed as state and path formula. The former is used

to assert states and their branching structure, while the latter is used to assert the
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temporal properties of paths (Baier and Katoen, 2008). The examples below show

the two LTL formulae (C1) and (C2) written in CTL.

(D1) ∀2∀3open_button_pressed → ∀2∀3door_opened

(D2) ∀2(¬crit1 ∨ ¬crit2)

The formula in example (D1) means that when open button is pressed infinitely

often in all path, the door will also open infinitely often. Figure 6.3 illustrates this

formula where a and b denote open_button_pressed and door_opened respectively.

Example (D2) tells that for every state in all path, there is only one process accessing

the critical section at a time.

a

a

a a

b b b b

Figure 6.3: A CTL tree for ∀2∀3a → ∀2∀3b formula

6.2 Constraint Solver and Model Checker

Logics such as LTL, CTL, and many others, are used in automated verification with

model checkers whereas FOL is useful in the context of finding solutions that satisfy

sets of constraints. Model checkers require a finite representation of a model and

we can check whether certain properties hold against the model or not. We explore

which approach can be more useful in the context of clinical guidelines.

Once a clinical guideline has been transformed into a formal specification, it can be

used for reasoning and for instance to check the validity of some properties. Here

properties can be anything, such as if some treatments would conflict with others

given for another disease, or if a guideline has some missing gaps of information

that need to be addressed. To achieve this task, either a constraint solver or a
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model checker can be used. The choice will make the transformation into formal

specification differ in accordance to the target specific tools. Here we consider the

use of the Z3 constraint solver (Moura and Bjørner, 2008) as well as UPPAAL

(Behrmann et al., 2004) and PRISM (Kwiatkowska et al., 2011) model checkers.

6.2.1 Transforming and verifying guidelines in UPPAAL

UPPAAL1 is an integrated tool environment, created by a longstanding collabora-

tion between the universities of Uppsala and Aalborg, for modelling, validation and

verification of real-time systems seen as networks of timed automata (Behrmann

et al., 2004). Timed automata (TA) add the notion of time to standard automata

(based on a finite set of states and labelled transitions between them) through a set

of variables called clocks (Alur and Dill, 1994). Clocks are special variables which

can be inspected or reset but not assigned a value (they can be seen as stopwatches).

A time unit represents a second, minute or month, depending on what is a sensible

unit for the model (note that there is no time in our diabetes therapy algorithm

snippet). A constraint can be placed on locations (the term used for states in a TA)

to denote a location invariant (to indicate for instance how long the automaton can

remain in the location) and on transitions where it acts as a guard.

In UPPAAL, we can create several instances of processes with the same behaviour.

The behaviour is captured in a so-called template (a TA), and one or more instances

of that template can be declared for runtime verification. In the example of the

type 2 diabetes therapy algorithm shown in Figure 3.1 (p. 25), we need a template

for the behaviour captured in the algorithm for treating diabetes, and an additional

template to simulate a (random) change of the value of HbA1c in the blood for a

given patient. Further templates can be added as needed, for instance to capture

other disease parameters, etc. These combined templates can be used to represent

treatments and the state of individual parameters and tools such as UPPAAL can

be used to simulate what may happen to a patient with these conditions over time,

as well as infer longterm consequences of treatments.

1https://uppaal.org/
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6.2.1.1 Guideline transformation

The process of generating templates from the T2D therapy algorithm is done auto-

matically by traversing the case frames generated by Algorithm 1 (p. 36) in Sec-

tion 3.1.2.2. This process is illustrated by the generate_template function in Al-

gorithm 2 following the roles definition from Section 3.1.2.2 (p. 33). As UPPAAL

specifications are stored in Extensible Markup Language (XML) format, this func-

tion, besides writing the output to an XML file, also generates an output of an

XML tree object. The implementation of these algorithms has been done in Python

programming language.

Algorithm 2: Algorithm for generating UPPAAL template
1 def generate_template(case_frames):
2 xml_tree = ElementTree()
3 var_set = set()
4

5 for f ∈ case_frames do
6 num = f.num
7 cpt, cac, cmd, ctv = f.cpt, f.cac, f.cmd, f.ctv
8 agt, act, pat, tov, cact = f.agt, f.act, f.pat, f.tov, f.cact
9

10 get_variables (var_set, cpt, pat)
11 set_values (var_set, ctv, tov)
12 add_invariant (xml_tree, num, cac, cmd, var_set)
13 add_location (xml_tree, num, agt, act, cact, var_set)
14

15 if act == ’consider’ then
16 cond = make_branching_condition (cpt, ctv)
17 make_branching (xml_tree, num, cond, var_set)

18

19 build_hba1c_template ()
20 write_to_file (xml_tree)

Looking back to the example of case frames in Table 3.2 (p. 37) generated from the

sentence: "1 if HbA1c level rises to 48 mmol/mol (6.5%) on lifestyle interventions, the

doctor shall: offer standard-release metformin, support to aim for an HbA1c level of 48

mmol/mol (6.5%)." (highlighted in green in Figure 6.4), line 10 and 11 in Algorithm 2

will identify all variables from CPT and PAT roles and their respective values from

CTV and TOV. If the value contains a number, the type of the variable is int,
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otherwise it is bool. For example, finding HbA1c can have value of 48, 53, and 58

made it an int variable. To mark if a drug is taken or not, for example in the phrase:

"standard-release metformin", we set its type as bool.

Next, an invariant is generated for every condition found in the case frame (line 12).

With respect to the invariants, a location is also generated for every action found in

the case frame (line 13). The locations are built sequentially from the first sentence

to the last following the sentence order information in NUM role. Whenever the

verb rises is found in CAC role, its CTV value is used as the upper limit for the

current location’s invariant and as the lower limit for the transition’s guard to the

next location. Updates in transitions are done by setting the boolean variable from

PAT to true.

Whenever the action consider is found in ACT role, some branches to the next

location are generated as this keyword is used to express several drugs that can

be given to a patient. Figure 6.4 below, taken from the T2D therapy algorithm,

illustrates this phenomenon (highlighted in yellow):

Figure 6.4: A text snippet from the T2D therapy algorithm

To model how HbA1c can change its value, a simple template that always increments

the value of HbA1c is also created. Here, we assume 40 ≤ HbA1c ≤ 60 to capture

the progression from being healthy to taking the first treatment (i.e., 48 ≤ HbA1c),

and having the first intensification and the second intensification (i.e., 58 ≤ HbA1c).
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Transforming the T2D therapy algorithm Figure 6.5 (p. 94) shows the ori-

ginal model generated automatically. In this model, we only show the therapy path

where standard-release metformin is tolerated (marked by the first bullet point in

Figure 6.4), the first intensification (the middle section in Figure 6.4) and the second

intensification (the bottom section in Figure 6.4). The locations have a location

invariant on the value of HbA1c to indicate that if HbA1c rises above a certain value

(for instance above 48 in the location Normal) then the location must be left and a

treatment given. The different transitions between intensifications show the differ-

ent options available and are dependant on the first treatment received: the taken

medications are captured by a boolean variable with the same name and the value

is set as true.

When investigating the generated model, we noticed that there is no transition that

takes the system (in this case a potential patient) back to the initial location Normal.

As it may be more realistic to assume that other factors (such as changing life style

habits and diet) can have an effect and recovery is possible, we want to refine the

model to take this into account. This means that the model should cover a situation

where the patient’s condition turns back to normal after a time under treatment.

On the other hand, this may not be a very frequent outcome and ideally we would like

to quantify the likelihood of such a recovery to happen as opposed to a deterioration

of the condition as given in the model of Figure 6.5 (p. 94). This can be done

with Probabilistic Timed Automata which extend TA with probabilistic transitions

(Norman et al., 2013). The quantification of such transitions (probability values)

can be done by analysing large datasets of records for patients with diabetes.
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Figure 6.5: Generated model for adults with T2D that tolerate metformin
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Refining the T2D therapy algorithm model We manually modify the model

generation process to create some branch points after a treatment is taken. A branch

is created whenever we find the verb aim denoting the situation when the doctor tries

to stabilise the HbA1c level after giving a treatment. At present, we give a value of

20 and 80 as the weight to go back to a normal state and to the next (deteriorated)

state respectively. We choose these two values by considering the likelihood that

for a person with type 2 diabetes to get better is smaller in general than to get

worse. In reality, these values can vary between each branching points, i.e., patients

will have lower chance to get better in the second intensification stage than the first

intensification.

Figure 6.6 (p. 96) shows the graphical model with branch points. To keep the model

more readable, we currently only show going back to a normal state, but further

possible transition branches include returning to any other previous treatment state

with different weights. The real weights can be obtained by running statistical

analysis on registry records of people who are admitted for having T2D. One way

to do this is by checking the progression of taking one, two or three combination

of drugs that marked the first and second intensification. We also add the first

alternative path where modified-release metformin is used. This will create a mirror

of locations and transitions which only differs on the guard for the first transition.

The actual model generation is done by generating an XML file which can then be

visualised in the UPPAAL tool as in Figure 6.6 (p. 96) (after minor adjustments to

take into account the visual placement of the elements). The XML file contains all

the information of locations, location invariants, transitions and variables, but can

also be given directly on the command line to the model checker for verification.
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Figure 6.6: Model for adults with T2D that tolerate metformin modified with branching points.
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6.2.1.2 Verification

We verify our model against some properties as shown in Table 6.3 (p. 98). The

properties selected are used primarily to evaluate the approach. UPPAAL takes

properties written in a restricted form of the timed CTL (TCTL; Henzinger et al.,

1994). The properties were verified against the model in Figure 6.6 after an initial

analysis of the original model and its refinement to include recovery.

The property

A[] !diab.SecondIntensification1 && !diab.SecondIntensification2

illustrates the situation where a second intensification of the therapy has been

reached, either by taking standard release metformin or modified metformin, de-

noted by diab.SecondIntensification1 and diab.SecondIntensification2 re-

spectively. The property itself only holds if and only if second intensification is never

reached, and the fact that it is not satisfied will result in a trace that shows a second

intensification of the therapy being reached.

Another similar property, A[] !deadlock2, is not satisfied because the model at

present and as generated from the therapy algorithm contains no further steps after

second intensification and hence deadlocks at that point. This suggests that further

discussions with clinicians are required to understand available options from that

point and what is realistic. A self-loop on the find location can be addedd to avoid

a deadlock scenario.

From the model in Figure 6.6, we can also see that there is a possibility of never

reaching a first intensification or second intensification shown by verifying the for-

mulae:

E<> !diab.FirstIntensification1 && !diab.FirstIntensification2

E<> !diab.SecondIntensification1 && !diab.SecondIntensification2

The model finds that these two properties are satisfiable. Again, these situations

2deadlock is a keyword in UPPAAL which can be used to verify any model to check for the
absence of deadlocks.
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UPPAAL Queries Expected Verification
Result

Remark

A[] !deadlock D D There is a path that leads to
a deadlock.

E !diab.FirstIntensification1 &&
!diab.FirstIntensification2

U U There exists a path where
first intensification is never
reached.

E !diab.SecondIntensification1 &&
!diab.SecondIntensification2

U U There exists a path where
second intensification is
never reached.

A[] !diab.SecondIntensification1
&& !diab.SecondIntensification2

D D There is a path that reaches
a second intensification.

diab.FirstIntensification2 –>
diab.SecondIntensification2

D D There is a path in which
a second intensification will
never be reached from a first
intensification.

Table 6.3: UPPAAL model verification result. UandDstand for satisfied and
not satisfied respectively.

became possible because we added a scenario where the patient’s condition improves

after getting some treatment.

Finally, the last property which is written in temporal implication notation

diab.FirstIntensification2 –> diab.SecondIntensification2

also shows the possibility of never evolving to a second intensification after reaching

the first intensification. The model finds the implication of this property to be

unsatisfiable as we added branches for a patient to get better. In other words, there

are possible paths in the model where even though a patient may at some point be

at a stage of FirstIntensification2, the patient never progresses in their diabetes

to reach the stage for a SecondIntensification2.

6.2.2 Transforming and verifying guidelines in PRISM

As we have seen in the previous section, when modelling clinical guidelines, we may

also need to capture their probalistic behaviour. For example, in Figure 6.6 (p. 96),

we set 20-80 weights to model the probability of a patient getting better/worse after

taking a drug prescription. Similarly to UPPAAL, PRISM is a probabilistic model

checker for systems which can exhibit stochastic behaviour3 (Kwiatkowska et al.,

3https://www.prismmodelchecker.org/
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2011). It supports discrete and continuous time models as well as deterministic or

nondeterministic behaviour. Furthermore, PRISM can also be used for simulation

and statistical model checking. For these reasons, and also for providing multimodel

output from our framework, we also transform the T2D therapy algorithm into a

PRISM specification.

To generate a PRISM model, we also traverse the case frame in a similar manner as

described in the previous section. However, as PRISM requires probabilities when

defining updates in a command, we use the statistical probability taken from the

trends in diabetes medication in Scotland reported in (Greiver et al., 2021). Besides

capturing the trends in drug use in the Scottish population between 2012 and 2017,

it also shows the double and triple therapy drugs combination in Figure 6.7.

Figure 6.7: Percentage of drugs combination for double and triple therapy (Greiver
et al., 2021)

6.2.2.1 Guidelines transformation

For T2D, we will use the probabilistic timed automata (PTA) model provided by

PRISM, amongst many other models such as discrete-time Markov chains (DTMCs),

Markov decision processses (MDPs), probabilistic automata (PAs), continuous-time

Markov chains (CTMCs), and priced probabilistic timed automata (PPTAs) (Hart-

manns and Hermanns, 2015). In PRISM, a model is composed of modules interacting

with each other. Each module has its own variables whose values represent the state

of the module. The state of all modules will determine the state of the whole model.

A set of commands in the module is defined to describe its behaviour in the following

form:
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[action] guard → prob_1: update_1 + ... + prob_n: update_n;

Each command comprises a guard to express the enabling condition and several

updates with their respective probabilities. An action can be provided to a command

for labelling purpose or for synchronisation with other modules.

The process for generating a PRISM model is illustrated by the generate_model

function in Algorithm 3. This function will generate two modules, one for the drugs

therapy and another one for modelling the HbA1c progress. Similar to UPPAAL,

we define all variables that do not have numeric value as bool type, i.e., all drugs

mentioned. However, to simplify the process as well as to make it clearer, we manu-

ally set the lower bound and the upper bound of HbA1c to the minimum and the

maximum values it can have in accordance with the text. Similarly to the UPPAAL

conversion, we also implement this algorithm in Python.

Algorithm 3: Algorithm for generating PRISM model
1 def generate_model(case_frames):
2 var_set = set()
3 treatment_branching = list()
4 actions = list()
5 conditions = list()
6 commands = list()
7 location_index = [0..]
8

9 for f ∈ case_frames do
10 num = f.num
11 cpt, cac, cmd, ctv = f.cpt, f.cac, f.cmd, f.ctv
12 agt, act, pat, tov, cact = f.agt, f.act, f.pat, f.tov, f.cact
13

14 get_variables (var_set, cpt, pat)
15 set_values (var_set, ctv, tov)
16 make_commands (var_set, commands)
17 if act == ’consider’ then
18 make_branching_condition (cpt, ctv, conditions)
19 make_treatment_branching (location_index, conditions, var_set,

treatment_branching)

20

21 therapy_module = build_therapy_module (var_set, actions, commands)
22 hba1c_module = build_hba1c_module (var_set, actions, conditions)
23 write_to_file (therapy_module, hba1c_module)
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A further difference with UPPAAL’s model is that we use an integer number to mark

the location of the state. Whenever there is an update, such as taking a drug, the

model updates its state by moving to the next location. The new location can have

the same value as the current one (to mark continuation) or a greater one (to mark

progression). Moreover, we add a new drug that does not exist in the original text,

namely GLP, but is commonly prescribed according to the study (Greiver et al.,

2021).

As PRISM specifications are textual, it is easier to edit PRISM models, as opposed to

updating UPPAAL models which are given in XML. In addition to manually adding

the new drug GLP, we also update the action name in command statements since the

therapy module should synchronise with the HbA1c progression module. Initially,

actions are named with integer denoting the location name. To make it easier for

the reader to understand, we update it to reflect the situation when the command

is executed, e.g., first_treatment, first_intensification, etc. Finally, we add some state

labels in our model for facilitating the verification process. For example, to mark

the states where a combination of two or three drugs is taken (in first and second

intensification), we add labels doubleMetSU, doubleMetDPP4, or tripleMetSUDPP4.

Our final PRISM model can be seen in Listing 6.1 (p. 102).
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Listing 6.1: PRISM specification
1 pta
2
3 module therapy
4 o : [0..5];
5 x : clock;
6 metformin : bool init false;
7 su : bool init false;
8 dpp4 : bool init false;
9 pioglitazone : bool init false;

10 sglt2 : bool init false;
11 glp : bool init false;
12
13 [first_treatment] o=0 ->
14 (o'=1) & (metformin'=true);
15 [first_treatment_branching] o=1 ->
16 0.83:(o'=1) + 0.17:(o'=2);
17 [first_intensification] o=2 ->
18 0.42:(o'=3) & (su'=true) +
19 0.29:(o'=3) & (dpp4'=true) +
20 0.13:(o'=3) & (sglt2'=true) +
21 0.10:(o'=3) & (pioglitazone'=true) +
22 0.06:(o'=3) & (glp'=true);
23 [second_treatment_branching] o=3 ->
24 0.68:(o'=3) + 0.32:(o'=4);
25 [second_intensification] o=4 & su=true ->
26 0.51:(o'=5) & (dpp4'=true) +
27 0.23:(o'=5) & (sglt2'=true) +
28 0.14:(o'=5) & (glp'=true) +
29 0.12:(o'=5) & (pioglitazone'=true);
30 [second_intensification] o=4 & dpp4=true ->
31 0.7:(o'=5) & (su'=true) +
32 0.22:(o'=5) & (sglt2'=true) +
33 0.08:(o'=5) & (glp'=true);
34 [second_intensification] o=4 & sglt2=true ->
35 0.59:(o'=5) & (su'=true) +
36 0.34:(o'=5) & (dpp4'=true) +
37 0.07:(o'=5) & (pioglitazone'=true);
38 [second_intensification] o=4 & pioglitazone=true ->
39 0.83:(o'=5) & (su'=true) +
40 0.17:(o'=5) & (sglt2'=true);
41 [second_intensification] o=4 & glp=true ->
42 0.82:(o'=5) & (su'= true) +
43 0.18:(o'=5) & (dpp4'=true);
44 endmodule
45
46 module hba1c_unit
47 p : [0..5];
48 y : clock;
49 hba1c : [45..65];
50
51 invariant
52 (p=0 => hba1c<=48) &
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53 (p=1 => hba1c<=58) &
54 (p=2 => hba1c<=58)
55 endinvariant
56
57 [first_treatment] p=0 -> (p'=1) & (hba1c'=48);
58 [first_intensification] p=1 -> (p'=2) & (hba1c'=53);
59 [second_intensification] p=2 -> (p'=3) & (hba1c'=53);
60 endmodule
61
62 label "normal" = o=0;
63 label "firstTreatment" = o=2;
64 label "firstIntensification" = o=3;
65 label "secondTreatment" = o=4;
66 label "secondIntensification" = o=5;
67 label "doubleMetSU" = o=3 & su=true;
68 label "doubleMetDPP4" = o=3 & dpp4=true;
69 label "doubleMetSGLT2" = o=3 & sglt2=true;
70 label "doubleMetPioglitazone" = o=3 & pioglitazone=true;
71 label "doubleMetGLP" = o=3 & glp=true;
72 label "tripleMetSUDPP4" = o=5 & su=true & dpp4=true;
73 label "tripleMetSUSGLT2" = o=5 & su=true & sglt2=true;
74 label "tripleMetSUGLP" = o=5 & su=true & glp=true;
75 label "tripleMetSUPioglitazone" = o=5 & su=true &
76 pioglitazone=true;
77 label "tripleMetDPP4SGLT2" = o=5 & dpp4=true & sglt2=true;
78 label "tripleMetDPP4GLP" = o=5 & dpp4=true & glp=true;
79 label "tripleMetSGLT2Pioglitazone" = o=5 & sglt2=true &
80 pioglitazone=true;
81

6.2.2.2 Verification

Similarly to verifying the UPPAAL model, we also verify the PRISM model against

several properties in Table 6.4. These properties are also selected primarily for the

purpose of checking our approach. It is worth noting that we also add the probability

of staying in a state, e.g., the probability of not having first/second intensification.

Different from UPPAAL, this time we can ask the model for a specific probability of

an event. For example, the property

Pmax=? [F "tripleMetSUDPP4"]

asks the probability of having triple therapy Metformin, SU and DPP4. The probab-

ility given by PRISM is very close to the cumulative probability shown in Figure 6.7

(p. 99).
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We have verified the PRISM model against all possible drugs combinations. Over-

all, we get the same values with our cumulative probability. There are several

cases where the calculated probabilities do not match the cumulative probabilit-

ies. For example, the triple therapy Metformin-SU-Pioglitazone has 13% probability,

Metformin-DPP4i-SGLT2i has 11% probability, and Metformin-DPP4i-GLP has 3%

probability in constrast to 11%, 13%, and 5% respectively. We believe that this dif-

ference is a result from a rounding error when we put the probabilities in our model

taken from Figure 6.7 (p. 99).

Properties Result Remark
Pmax=? [F "doubleMetSU"] 0.4199 The probability of double

therapy Metformin-SU
Pmax=? [F "doubleMetDPP4"] 0.2899 The probability of double

therapy Metformin-DPP4i
Pmax=? [F "tripleMetSUDPP4"] 0.4171 The probability of triple

therapy Metformin-SU-
DPP4i

Pmax=? [F "tripleMetSUSGLT2"] 0.1732 The probability of triple
therapy Metformin-SU-
SGLT2i

Pmax=? [F "tripleMetDPP4SGLT2"] 0.1079 The probability of triple
therapy Metformin-DPP4i-
SGLT2i

Table 6.4: PRISM model verification result

6.2.3 Transforming and verifying guidelines in Z3

Z3 is a Satisfiability Modulo Theory (SMT) solver created by Microsoft and which

can be used for deciding if a formula is satisfiable under first-order theories4 (Moura

and Bjørner, 2008). Besides Z3, there are other constraint solver such as Conjure

(Frisch, Jefferson et al., 2005; Akgun et al., 2011), MiniZinc (Nethercote et al.,

2007), Essence (Frisch, Harvey et al., 2008), CVC4 (Barrett et al., 2011) and Yices

(Dutertre, 2014). They differ mainly in terms of the built-in first-order theories that

they support, how straightforward it is to specify the constraint problems as well as

their performance when solving problems. The decision to use Z3 is mainly because

we are quite familiar with it compared to other solvers.

4http://research.microsoft.com/projects/z3
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A formula is satisfiable if there are assignments of values for its variables that make

it true. An SMT solver is used in broad applications such as software tests using

bounded model checking (Clarke et al., 2004), directed automated random testing

(DART; Godefroid et al., 2005), or automatic exploit generation (AEG; Avgerinos

et al., 2014); as network security tests for finding protocol manipulation attacks

(Kothari et al., 2011), checking access control for web applications (Ghotbi and

Fischer, 2012), or checking data flow security (Son et al., 2013); and as resource

scheduling and optimisation (Erkinger, 2013; Nieuwenhuis and Oliveras, 2006).

Despite Z3’s main applications being static checking, test case generation, and pre-

dicate abstraction, we can also use it to prove any model that can be supported

in first-order logic. As it gains more users, Z3 now provides bindings to another

programming language, therefore it can be programmed through scripts. Some sup-

ported languages are .NET, C, C++, Java, OCaml and Python. As the previous

cases, we use Python in our implementation.

We use Z3 for modelling guidelines that do not have clear ordering, in other words,

where we do not have a clear process or model to describe treatment options for

a disease. This is the case when following the recommendations for chronic kidney

disease. We transform every concept into Z3 sorts (or variables) and add properties

as assertions to check the satisfiability of the whole specification.

Figure 6.8: A simple system equation

Listing 6.2: Z3 example
1(declare−fun circle () Int)
2(declare−fun square () Int)
3(declare−fun triangle () Int)
4(assert (= (∗ 2 circle) 10))
5(assert (= (+ (∗ circle square) square) 12))
6(assert (= (− (∗ circle square) (∗ triangle circle)) circle))
7(check−sat)
8(get−model)
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Figure 6.8 shows an example of a simple system of equations involving three vari-

ables5. Listing 6.2 shows how the equations are captured as formulas in Z3. Running

the Z3 code in Listing 6.2, we check that the problem is satisfiable (line 7) and gen-

erate a solution (line 8). The output is shown in Listing 6.3. Here, the obtained

solution (model) finds the assignment of 1, 2 and 5 for triangle, square, and circle,

respectively. When trying to find valid assignments for the given variables, an SMT

solver generates one solution (if it exists), though more than one solution may be

available.

Listing 6.3: Z3 output
1sat
2(model
3 (define−fun triangle () Int 1)
4 (define−fun square () Int 2)
5 (define−fun circle () Int 5)
6)

6.2.3.1 Guideline transformation

To illustrate the transformation process, we take these sentences from the Chronic

Kidney Disease (CKD) guideline6:

1. "Offer a low-cost renin-angiotensin-aldosterone system antagonist to

people with CKD and diabetes and an ACR of 3 mg/mmol or more

(ACR category A2 or A3)."

2. "Offer a low-cost renin-angiotensin-aldosterone system antagonist to

people with CKD and hypertension and an ACR of 30 mg/mmol or

more (ACR category A3)."

3. "Offer a low-cost renin-angiotensin-aldosterone system antagonist to

people with CKD and an ACR of 70 mg/mmol or more (irrespective

of hypertension or cardiovascular disease)."

We pass these sentences into the NER and relation classification models to get the

entities and their relationships. From the list of entities and relationships in every

5https://sat-smt.codes/SAT_SMT_by_example.pdf
6https://www.nice.org.uk/guidance/cg182/resources/algorithms-pdf-498987181
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sentence, we create triples in the form [entity1, relationship, entity2]. The triples below

are formed from the first sentence above:

["Offer", "acts-on(e1,e2)", "system antagonist"]

["low-cost renin-angiotensin-aldosterone", "modifier(e1,e2)", "system antag-

onist"]

["Offer", "receiver(e2,e1)", "people"]

["people", "owner(e1,e2)", "CKD"]

["people", "owner(e1,e2)", "diabetes"]

["CKD", "joint", "diabetes"]

["people", "owner(e1,e2)", "ACR"]

["diabetes", "joint", "ACR"]

["ACR", "other", "3 mg/mmol"]

["3 mg/mmol", "modifier(e2,e1)", "more"]

From these triples, we apply the function generate_specification in Algorithm 4

for transforming the triples into a Z3 specification. We use the z3-solver7 library

to help run the specification directly from Python.

By passing the list of triples in a sentence, we construct components such as the

premise, conclusions, and all sorts (or variables) to create the specification. We do

this until all sentences have been processed. The last step is to add an implication

construct in Z3 by passing the premise and conclusion. Listing 6.4 shows the output

for processing the first in the CKD guideline.

Listing 6.4: Z3 specification for sentence 1 in the CKD guideline
1(declare−fun low−cost_renin−angiotensin−aldosterone_system_antagonist () Bool)
2(declare−fun diabetes () Bool)
3(declare−fun ckd () Bool)
4(declare−fun acr () Bool)
5(assert (=> (and acr ckd diabetes) low−cost_renin−angiotensin−

aldosterone_system_antagonist))

7https://github.com/Z3Prover/z3
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Algorithm 4: Algorithm for generating Z3 model
1 def construct_components(triples):
2 owner = get_owner(triples)
3 premise = get_premise(triples, owner)
4 choice = get_compound(triples, ’or’)
5 joint = get_compound(triples, ’and’)
6 all_sort = get_sort(triples, premise, choice, joint)
7 conclusion = set(all_sort) - set(premise)
8

9 return premise, conclusion, all_sort
10

11 def generate_specification(sentences):
12 premise, conclusion, all_sort = list(), list(), list()
13 solv = Solver()
14

15 for s ∈ sentences do
16 premise_, conclusion_, all_sort_ = construct_components(s.triples)
17 premise.append(premise_)
18 conclusion.append(conclusion_)
19 all_sort.append(all_sort_)
20

21 p_clause = create_z3_clause(premise)
22 c_clause = create_z3_clause(conclusion)
23 solv.add(Implies(p_clause, c_clause))
24 solv.check()
25 solv.model()
26 solv.sexpr()

There are some points worth to note from Listing 6.4. First, we lower case all words

and replace the space between compound words with a dash. For example, "low

cost" and "renin angiotensin aldosterone" will become "low-cost and "renin-angiotensin-

aldosterone. Next, a modifier and a modifiee are connected into a single sort by

underscore. Thus, the modifier "low-cost renin-angiotensin-aldosterone" and the mod-

ifiee "system antagonist" in ["low-cost renin-angiotensin-aldosterone", "modifier(e1,e2)",

"system antagonist"] will produce a sort named "low-cost_renin-angiotensin-aldosterone_-

system_antagonist".

Next, we cannot capture negation in the relationship. Our learning model can cap-

ture the ownership between people and CKD, diabetes or ACR. However, it is still
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the case even if the preposition with changes to without. Knowing the absence of a

sort, we could have added the assertion as false for that sort in the Z3 specification.

Lastly, we can see that the transformation assigns ACR as a boolean sort instead of

integer and does not assert its value to be greater than or equal to 3 (mg/mmol). This

is due to currently we only have the other relationship to capture the relationship

between ACR and its value. As can be seen from the list of triples above, the

important triples for ACR in the sentence are ["ACR", "other", "3 mg/mmol"] and ["3

mg/mmol", "modifier(e2,e1)", "more"]. Due to the relationships’ genericness, none of

it can be used to infer the sort of ACR. To get a better result, we need to have more

representative relationships than those shown in Table 5.5 (p. 69), with the caveat

that the number of instances should be significant for the model to learn. Listing 6.5

shows the final specification for sentence 1 after manual revision.

Listing 6.5: Z3 specification for sentence 1 in the CKD guideline (revised)
1(declare−fun low−cost_renin−angiotensin−aldosterone_system_antagonist () Bool)
2(declare−fun diabetes () Bool)
3(declare−fun ckd () Bool)
4(declare−fun acr () Int)
5(assert (=> (and (>= acr 3) ckd diabetes) low−cost_renin−angiotensin−

aldosterone_system_antagonist))

6.2.3.2 Verification

For the verification of Z3 specification taken from the CKD guideline, we do it

incrementally to see the output of the SMT solver adding one sentence at a time.

Listing 6.6: Z3 output for sentence 1 in the CKD guideline
1sat
2(model
3 (define−fun low−cost_renin−angiotensin−aldosterone_system_antagonist () Bool
4 false)
5 (define−fun acr () Int
6 3)
7 (define−fun diabetes () Bool
8 true)
9 (define−fun ckd () Bool

10 false)
11)

Listing 6.6 shows the output for checking the satisfiability of Listing 6.5 and printing

the model. For this particular specification, one values assignment that Z3 found to
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make the whole formula satisfiable is 3 for ACR, true for Diabetes, false for CKD and

false for "low-cost renin angiotensin aldosterone system antagonist". Obviously, there

are many other assignments where the formula is still satisfiable and we can ask Z3

to output them one by one.

Listing 6.7: Z3 specification for sentence 1, 2 and 3 in the CKD guideline
1(declare−fun low−cost_renin−angiotensin−aldosterone_system_antagonist () Bool)
2(declare−fun acr () Int)
3(declare−fun diabetes () Bool)
4(declare−fun ckd () Bool)
5(declare−fun hypertension () Bool)
6(assert (=> (and ckd diabetes (>= acr 3)) low−cost_renin−angiotensin−

aldosterone_system_antagonist))
7(assert (=> (and ckd hypertension (>= acr 30)) low−cost_renin−angiotensin−

aldosterone_system_antagonist))
8(assert (=> (and ckd (>= acr 70)) low−cost_renin−angiotensin−

aldosterone_system_antagonist))

Finally, Listing 6.7 combines all specifications from the three sentences in the CKD

guideline. When we ask Z3 to find if satisfiability and the model (if it exists), one

of them is shown in Listing 6.8.

Listing 6.8: Z3 output for sentence 1, 2 and 3 in the CKD guideline
1sat
2(model
3 (define−fun low−cost_renin−angiotensin−aldosterone_system_antagonist () Bool
4 false)
5 (define−fun acr () Int
6 0)
7 (define−fun hypertension () Bool
8 true)
9 (define−fun diabetes () Bool

10 true)
11 (define−fun ckd () Bool
12 true)
13)

Using Z3, we can keep adding more statements in the form of assertions and ask

Z3 to provide the model configuration where everything holds. This is suitable in a

situation where we want to combine sentences from different guidelines in addition

to particular information from a patient’s condition.
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6.3 Summary

In this chapter, we described the process of generating formal specifications and

verifying them against some properties. We briefly explained the logical forms that

we used to specify the properties. We then described the process to convert guidelines

into formal specifications accepted by tools such as UPPAAL, PRISM and Z3. The

choice of the verification tool will depend on the guideline text itself and how much

information is available.

The transformation still runs in semi-automatic way as we need to include more

realistic situations in UPPAAL, add probabilities from extracted patient data in

PRISM, and fix problems with variable types in Z3 due to the limitation of the

annotation tags. Finally, we run some verification checks as a proof of concept that

the models we generate are correct for our current task at hand.
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In other words, apart from the known and the unknown, what else

is there?

Harold Pinter

7
Conclusions

Clinical guidelines are often written in human natural language therefore they are

also often ambiguous and/or incomplete. For example, a guideline on blood glucose

lowering for people with type 2 diabetes might have missing recommendations for

when patients improve, or might suggest the use of a drug or a combination of drugs

without precise dosage information. This thesis looked into this problem by con-

tributing with an approach that allows us to consider clinical guidelines and patient

information in natural language, and how to convert that into machine readable in-

formation for automated reasoning. To do so, we address two big challenges: (1) how

to extract the main concepts from guideline texts and (2) how to convert guidelines

into formal specifications.

One of our main goals is to automatically get the key concepts contained in clinical

guidelines. We performed our study from various domains, such as automatic test

case generation in software engineering using Controlled Natural Language (CNL)

and Semantic Role Labelling (SRL) techniques, as well as medical entities annotation

in biomedical corpus using dictionary lookup, rule-based or machine learning.

To address the first challenge, we followed two approaches. The first approach to

annotate the key concepts for clinical process uses CNL. We showed that by writing
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clinical guidelines in accordance to our handcrafted rules, it is easier to get the main

information from the text. Defining a domain-specific CNL makes the guideline

representation as close as possible as human natural language although it adds more

restrictions on the sentence structure. This approach is also suitable when the dataset

size is not very large. However, we note that a CNL is not easy to maintain as it is

difficult to have a grammar that can accommodate all possible sentence structures.

A second alternative approach looks into the possibility of annotating the key con-

cepts in clinical guidelines without restricting the sentence structure. This was done

by creating machine learning models on annotated clinical guideline corpus using

SRL, Named-Entity Recognition (NER) and relation classification with bidirectional

Long Short-Term Memory (LSTM). We also discussed fine-tuning state-of-the-art

neural networks models for the NER and relation classification tasks to compare

the results with our baseline models. Using the approach that we introduced here,

we minimise the amount of restriction imposed to writing guideline text and give

more possibilities to deal with much larger corpus containing sentences with various

structures.

We conducted several experiments and evaluations for our machine learning models.

We found that, in general, fine-tuned models using Bidirectional Encoder Represent-

ations from Transformers (BERT) and its variants perform better than the baselines.

However, the trends also show that all models tend to make mistakes on similar is-

sues. We discussed several factors that might explain this phenomenon: (1) the

small amount of sentences in our dataset, (2) the class imbalance in our dataset, and

(3) possible mistakes in the annotation. Nevertheless, we also found evidence where

the models can learn better to mitigate such annotation mistakes. We also explored

several methods to improve the performance of an ML-based annotation approach.

Comparing the result of the baseline model with the fine-tuned ones, we recognise

a trade-off between time and precision level. Indeed, faster approach may be less

precise when compared with slower alternatives.

To address our second challenge, we showed how to transform guidelines into several

formal specifications for formal verification. This transformation is done from the

marked concepts using CNL and machine learning models. Although we can generate
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the formal models and verify some properties, we also found that our current machine

learning annotations are quite generic and are partially incomplete therefore some

manual edits are still needed prior to formalisation. For example, we still cannot

capture the comparative case in the text, e.g., ACR of 3 mg/mmol or more. Our

current machine learning models also lack the ability to identify negation or an

absence of an event, e.g., for patient without diabetes" vs. for patient with diabetes".

We believe that having a bigger dataset to enable more annotation concepts might

address these issues with the caveat that the dataset should have balance classes

between positive and negative instances. Our current dataset has very few instances

of negation, hence the trained model will be biased to mark most concepts as positive.

7.1 Key Contributions and Findings

There are several contributions and findings in this thesis:

❋ We have learnt to annotate clinical guidelines with process labels. Having the

annotations, we can use them further to formally verify the guidelines.

➼ The approach to address the annotation can range from creating grammar

rules to learning from data. The former one is suitable when the text

structure is less varied and the dataset size is small. For a more scalable

strategy, with the support of adequate dataset size, the latter approach

is preferable. With advances in Natural Language Processing (NLP),

machine learning and computation power, many options can be used,

including creating simple models manually, or fine-tuning some existing

state-of-the-art models.

➼ As humans are more dependent of computer software/hardware, tools

and techniques for verification have increasingly become more developed

in recent years. In the context of verifying clinical guidelines, we have the

options to either use a model checker or a Satisfiability Modulo Theory

(SMT) solver. The decision largely depends on the representation of the

system that we want to check. For example, for dealing with a state-based

system possibly with stochastic and/or timed information, we may be able

Conclusions 114



to explore the use of model checkers such as UPPAAL or PRISM. For the

case where a model is not available and the system can be specified as a

set of constraints that need to be fulfilled, SMT solvers such as Z3 may be

a better option. We note that many other model checkers and constraint

solvers exist and could have been used instead.

❋ The whole approach in this thesis is still semi-automatic, from representing the

guidelines sentences to generating the formal specifications and properties. To

achieve a (near) fully automatic process, we suggest to have a bigger dataset

(as it is the case in machine learning) since we can have more refined and less

generic annotations, which help the transformation into formal specifications

more smoothly.

➼ Although this thesis domain is clinical guidelines, the approach that we

presented can also be applied in other domains. To do so, a set of new

lexicons (and maybe grammar rules) needs to be defined following the

CNL approach. In terms of a machine learning approach, new models need

to be created or fine-tuned as our current models only learnt from clinical

guideline texts, hence they cannot associate the tags to words in different

domain (e.g., tagging user profile as Object in a software requirement

domain). From here to the conversion into formal specification, the steps

would also need small adjustments to handle new keywords for the new

domain. The same is also true for the machine learning outputs: new tags

will add new triplet rules, hence some adjustments are needed as well.

❋ We have created a small clinical guidelines dataset annotated with action pro-

cess and relationships. This dataset can be used further as a comparative study

for developing new and better techniques1.

7.2 Future Work

There are many possible directions for future work. Firstly, we have developed some

models to annotate action process in clinical guidelines. These annotations can
1The dataset can be found on the repository in this url: https://github.com/rah-man/Clini

calGuideline
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still be further developed by adding more complex entities and relationships. For

example, our current entities still lack the notion of time and quantity as presented

by Miksch et al. (1997) to name but a few. In terms of relationships, the concept of

negation and modality can also be introduced. For the former, a rule-based approach

such as NegEx (W. Chapman et al., 2001; Mehrabi et al., 2015) or NegBio (Peng et

al., 2018) or machine learning based method such as NegTool (Enger et al., 2017) can

be considered. We can also consider to do multitask-learning, i.e., training several

tasks together in a single model, to do NER and finding negation as is done by Grivas

et al. (2020). In terms of modality extraction, some research has been done on the

use of deontic modalities in the field of legal text (Dragoni et al., 2016; Camilleri

and Schneider, 2017).

When verifying the guidelines in formal specification, it is also useful if the properties

to be checked can be given in natural language. Some notable work and study to

achieve this for example translating natural language into temporal logic (Dzifcak et

al., 2009; Brunello et al., 2019) or by using combinatory categorial grammar (CCG;

Zettlemoyer and Collins, 2009; Kwiatkowksi et al., 2010; Matuszek et al., 2013). In

the opposite direction, the output from a model checker or an SMT solver like Z3

would also be more useful if translated to human language. One example of the

work towards the interpretability towards medical explainable artifical intelligence

(Medical XAI; Tjoa and Guan, 2019) is generating treatment plans from Z3 output

by Shaheen et al. (2020) and Shaheen et al. (2021).

In terms of the dataset used, the work in this thesis still requires more data to be

more comparable and useful overall. Having more annotators and a clear annota-

tion guideline would be one step to improve our current data quality that still has

potential noise. A bigger dataset also means more refined annotations that can be

made to help the guidelines conversion into formal specification.

Our current triples format can also be transformed into Resource Description Frame-

work (RDF) format by adding more concepts to link the current ones. For example,

having the Drug concept, we can create an association to say that a metformin Ob-
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ject is also a type of Drug. This can be converted into a knowledge graph2 that

allows us to make information extraction from the data.

Lastly, we also need to present this work to practitioners to get their invaluable

feedback. This also opens the possibility to integrate our work into a clinical decision

support system that will allow for the formulation of a variety of guidelines for

treatment of (chronic) condition as patient-specific information. Ideally, this should

be done through collaboration with clinicians and domain experts.

2https://www.ontotext.com/knowledgehub/fundamentals/what-is-a-knowledge-graph/
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A
Penn and Brown Corpora Tagset

A.1 Penn Corpus Tagset

Table A.1: Penn Corpus Tagset.

Tag Description
CC Coordinating conjunction
CD Cardinal number
DT Determiner
EX Existential there
FW Foreign word
IN Preposition or subordinating conjunction
JJ Adjective
JJR Adjective, comparative
JJS Adjective, superlative
LS List item marker
MD Modal
NN Noun, singular or mass
NNS Noun, plural
NNP Proper noun, singular
NNPS Proper noun, plural
PDT Predeterminer
POS Possessive ending
PRP Personal pronoun
PRP$ Possessive pronoun
RB Adverb
RBR Adverb, comparative
RBS Adverb, superlative
RP Particle
SYM Symbol
TO to

Continued on next page
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Table A.1 – continued from previous page
Tag Description

UH Interjection
VB Verb, base form
VBD Verb, past tense
VBG Verb, gerund or present participle
VBN Verb, past participle
VBP Verb, non-3rd person singular present
VBZ Verb, 3rd person singular present
WDT Wh-determiner
WP Wh-pronoun
WP$ Possessive wh-pronoun
WRB Wh-adverb

A.2 Brown Corpus Tagset

Table A.2: Brown Corpus Tagset.

Tag Description
. sentence closer
( left parenthesis
) right parenthesis
* not, n’t
– dash
, comma
: colon
ABL pre-qualifier
ABN pre-quantifier
ABX pre-quantifier
AP post-determiner
AT article
BE be
BED were
BEDZ was
BEG being
BEM am
BEN been
BER are, art
BEZ is
CC coordinating conjunction
CD cardinal numeral
CS subordinating conjunction
DO do
DOD did

Continued on next page
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Table A.2 – continued from previous page
Tag Description

DOZ does
DT singular determiner
DTI singular or plural determiner/quantifier
DTS plural determiner
DTX determiner/double conjunction
EX existentil there
FW foreign word (hyphenated before regular tag)
HL word occurring in headline (hyphenated after regular tag)
HV have
HVD had (past tense)
HVG having
HVN had (past participle)
HVZ has
IN preposition
JJ adjective
JJR comparative adjective
JJS semantically superlative adjective
JJT morphologically superlative adjective
MD modal auxiliary
NC cited word (hyphenated after regular tag)
NN singular or mass noun
NN$ possessive singular noun
NNS plural noun
NNS$ possessive plural noun
NP proper noun or part of name phrase
NP$ possessive proper noun
NPS plural proper noun
NPS$ possessive plural proper noun
NR adverbial noun
NRS plural adverbial noun
OD ordinal numeral
PN nominal pronoun
PN$ possessive nominal pronoun
PP$ possessive personal pronoun
PP$$ second (nominal) possessive pronoun
PPL singular reflexive/intensive personal pronoun
PPLS plural reflexive/intensive personal pronoun
PPO objective personal pronoun
PPS 3rd. singular nominative pronoun
PPSS other nominative personal pronoun
QL qualifier
QLP post-qualifier
RB adverb
RBR comparative adverb

Continued on next page
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Table A.2 – continued from previous page
Tag Description

RBT superlative adverb
RN nominal adverb
RP adverb/particle
TL word occurring in title (hyphenated after

regular tag)
TO infinitive marker to
UH interjection, exclamation
VB verb, base form
VBD verb, past tense
VBG verb, present participle/gerund
VBN verb, past participle
VBZ verb, 3rd. singular present
WDT wh- determiner
WP$ possessive wh- pronoun
WPO objective wh- pronoun
WPS nominative wh- pronoun
WQL wh- qualifier
WRB wh- adverb
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B
Annotation Guidelines

B.1 Entity Annotation Guide
✍ If an entity spans multiple words, the first word would be marked with B-tag

while the rest of the constituents are marked with I-tag. If an entity only spans
a single word, it should be marked with B-tag.

✍ If a word does not belong to any entity, it should be marked with O.

✍ A noun or a noun phrase taking an action should be marked as an actor (acr).
Note that we do not include the determiner as a part of the entity, i.e., a, the,
some, etc.

For people who cannot tolerate aminosalicylates, consider a time-
limited course of a topical or an oral corticosteroid.

In this example, the word "person" is the one tolerating, hence it is marked as
B-acr.

✍ A noun or a noun phrase receiving an action from a verb should be marked as
an actor (acr).

If the person is aged under 80 years with stage 1 hypertension and
has target organ damage, offer antihypertensive drug treatment.

In this example, the word "person" is receiving the offer, hence it is marked as
B-acr.

✍ An active verb (not stative predicate) should be marked as an action (acn).

If the person is aged under 80 years with stage 1 hypertension and
has target organ damage, offer antihypertensive drug treatment.

In this example, the verb "has" and "offer" are marked as B-acn.

✍ In an action with auxiliary, such as "has established cardiovascular disease",
we only mark "established" as B-acn.
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✍ If there is a verb following another one, such as "consider tapering bDMARDs",
we only mark "tapering" as B-acn.

✍ A noun or a noun phrase denoting a thing than an actor is having or an action
is giving (not receiving) will be marked as an object (obj). The object can have
preposition "of" as its constituent. This can include numbers as well.

If the person is aged under 80 years with stage 1 hypertension and
has target organ damage, offer antihypertensive drug treatment.

In this example, "stage 1 hyptertension" is marked as B-obj, I-obj, and I-obj
respectively. The same with "target organ damage" that is marked as B-obj,
I-obj and I-obj and "drug treatment" that is marked as B-obj and I-obj.

✍ A word or a phrase that serves as an adjective or an adverb modifying an actor,
an object or an action, should be marked as modifier (mod).

If the person is aged under 80 years with stage 1 hypertension and
has target organ damage, offer antihypertensive drug treatment.

In this example, "antihypertensive" is marked as B-mod.

B.2 Relation Annotation Guide
✍ There are eight relationships: actor-of, acts-on, choice, joint, modifier, other,

owner, and receiver.

✍ acts-on, modifier, owner and receiver could have two different instances based
on the direction of the relationship (further discussed below).

✍ Given two entities, e1 and e2, if e1 is the entity who does an action e2, the
relationship is marked as actor-of(e1,e2).

If the <e1> person </e1> is aged under 80 years with stage 1 hy-
pertension and <e2> has </e2> target organ damage, offer anti-
hypertensive drug treatment.

In this example, the relationship for "person" and "has" is actor-of(e1,e2).

✍ Between to entities e1 and e2, if one entity is an action and another entity is
affected by the action, the relationship should be marked as acts-on.

If the person is aged under 80 years with stage 1 hypertension and
has target organ damage, <e1> offer </e1> antihypertensive drug
<e2> treatment </e2>.

In this example, as the action "offer" comes before the object "treatment", their
relationship would be acts-on(e1,e2).

<e1> Treatment </e1> should be <e2> aimed </e2> at reaching
the target of remission.

In this example, the action "aimed" comes after the object "Treatment", hence
their relationship is acts-on(e2,e1).
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✍ If the two entities are joined together logically or explicitly by the word "and",
their relationship would be joint, as shown in the example below between "be-
vacizumab" and "paclitaxel".

Women with platinum resistant relapsed ovarian cancer should be
offered <e1> bevacizumab </e1> in combination with <e2> pacl-
itaxel </e2>.

✍ If the two entities are in an alternative relationship, they should be marked as
choice, as shown between "AS" and "PsA" in the example below.

CVD risk estimation for patients with <e1> AS </e1> or <e2>
PsA </e2> should be performed according to national guidelines.

✍ If an adjective entity modifying another entity, their relationship should be
marked as modifier.

The exercise tolerance test should not be used routinely as a <e1>
first </e1> line diagnostic <e2> tool </e2>.

In the previous example, the word "first" is modifying "tool", hence their rela-
tionship is modifier(e1,e2).

<e1> Request </e1> the oestrogen receptor, and progesterone re-
ceptor <e2> simultaneously </e2>.

In the previous example, the modifier "simultaneously" comes after the entity
"Request", hence their relationship is modifier(e2,e1).

✍ If one of the entity is owning the other, their relationship would be owner.

<e1> Patients </e1> with known <e2> CAD </e2> should be
given treatment.

Here, the relationship between "Patients" and "CAD" is owner(e1,e2).

Request tests to find <e1> CAD </e1> in <e2> patients </e2>
with age under 80 years.

In the previous example, because "CAD" comes before "patients", their rela-
tionship would be owner(e2,e1).

✍ If an entity is receiving an action from another entity, their relationship should
be marked as receiver.

<e1> Patients </e1> with type 2 diabetes should be <e2> given
</e2> metformin.

In this example, the "patients" comes before the action "given", hence their
relationship is receiving(e1,e2).

<e1> Maintain </e1> a blood glucose concentration between 4 and
11 mmol/litre in <e2> people </e2> with acute stroke.

In this example, the "people" is receiving the action "Maintain", hence it is
marked as receiving(e2,e1).
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✍ Only put other as the relationship between two entities if it cannot be deduced.
The example below illustrates this situation.

Do not offer <e1> azathioprine </e1>, mercaptopurine or metho-
trexate as <e2> monotherapy </e2> to induce remission.
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