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Abstract

1. Traditional models think of concepts as nodes and associations as
links between nodes. Distributed neural representations suggest a
model of relationships between concepts where explicit links are
not even necessary. Similarity and multiple inheritance can be
expressed as vector similarity. High dimensional multiple
categorisation is implicit in the neural representation itself.

2. Sparse representations (low fraction of active neurons) are found at
different levels of the sensory system, and can be assumed to be
present in semantic representations. It is efficient to consider a
sparse activity vector as a mathematical set: the set of active units.

3. Semantic relationships can be represented implicitly by different
kinds of overlap between these sets of 'features’, rather than with
direct links. Set algebra can be used to combine representations for
expressing and indexing new concepts or items. The advantages of
neural representations can be rescued for practical applications
where neural network learning would be currently unfeasible.

4. Efficient and precise ‘concept' search can be based on sets.

Most of today's catalogues and directories have a #ree structure where each item 1s assigned to a single category corresponding
to a branch of the tree. Traditional cognitive models of the relationships between concepts are usually also captured in graphs
(often also trees, e.g. semantic nets), where the nodes are the concepts and the links express relationships. The rich and
multifaceted structure of relationships between concepts is not captured well by these models. This results in poor retrieval
performance even in computerised systems. Distributed neural representations studied in both artificial and biological neural
networks, however, suggest a different model.

Neural representations consist of a large set of neurons, only some of which are active when representing an item. For each
distinguishable item, a different pattern of activity can be observed. This pattern can be described by a vector, whose
components correspond to the activities of the neurons. In a high-level, semantic neural representation, two similar items
would be represented as two similar, 1.e. highly overlapping patterns of activities. But neural representations encode more than
just the amount of similarity between items. As each neuron, or subset of neurons, encodes one particular aspect or feature of
the represented item, the pattern of activity corresponding to two items also reveals the nature of the relationship between the
items. Note that the relationships between items are represented implicitly in the relationships of the patterns of activity, and
need not be made as explicit links as in the graph models.
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An important property of neural representation is sparsemess, i.e. the average fraction of active neurons. Neural
representations in the sensory system have been found to be sparse experimentally, and theoretical models explicitly
maximising sparseness result in reasonable fits to data from primary visual cortex.

Assuming that the neural activity i1s binary (inactive/active or 0/1), the activity vectors can be described equivalently a ser of
active units. If the representation 1s sparse, 1.€. the fraction of active units is small, this is also an efficient (short) description
of the vector. (This 1s also known as the sparse representation of a vector).
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If items are represented as mathematical sets, their relationships can be described as overlapping sets and visualised with Venn
diagrams. Venn diagrams show sets as closed curves and their elements as items inside the curves graphically.
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Inheritance ('kind-of') relationships between items map into subset relationships between feature sets. The more specific
concept has all the features of the more general concept, in addition to the unique features specific to it. The more general item
1s therefore represented as a subset in the feature-set representation. Further generalisation corresponds to nested subsets. Any
tree hierarchy (such as a semantic net) can therefore be converted to a set of feature-sets. The features need not have names
themselves (i.e. they can be 'microfeatures'); they only impose relationships between named concepts that contain them.
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Note the duality between the 'sets of things' and the 'set of features' representations. In the traditional 'sets of things' model
each concept is a set of the things that belong to that concept, so 'animal' 1s a subset of 'living-thing' (as only some living
things are animals). In the 'sets of features' model, the most general concept corresponds to the smallest set, with each
specialisation adding more features to form supersets.

One of the drawbacks of semantic nets is the difficulty of inference. As representing all possible (combinatorially large
number of) associations explicitly 1s impractical, 'spreading activation' was proposed to work out indirect relationships. The
assumption was that association is transitive, so "if assoc(A,B) and assoc(B,C) then assoc(A,C)". While this 1s sometimes true
(e.g. "assoc(tomato,cherry) and assoc(cherry,fire engine) then assoc(tomato, fire engine)" - because they are all red), it 1s not
generally true: assoc(cherry, fire engine) and assoc(cherry, lemon) but NOT assoc(fire engine, lemon). This latter i1s not
transitive because the association between cherry and fire engine is along a different aspect (colour) than that between cherry
and lemon (function). Spreading activation fails in such cases.

Feature sets deal with transitivity appropriately.
They represent not just association, but also the fire engine
nature of the association. The association between
cherry and fire engine, and that between cherry
and lemon, correctly, does not imply that lemon
and fire engine are associated. The overlap
between the first pair involves colour-related
features, while that between the second pair
function-related features.
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(set algebra) can be used to combine concepts to N
ceg,A={efg;B={g h1j;
x deﬁne new ConceptS, A and B are sets; e, f, g, h, 1, j are elements
. * set union: AuB={e f, g h 17}
) eXpreSS querles° * set intersection: ANB={g}
* set difference: A\B = {e, f}

. * set expressions: e.g, (AN B)\(CuD)
Oversimplified example:

e definiti . Comments:
clnitions. - "I"is a set with a single newly generated feature
thing := ! - animal is a set of two features (one in thing, one
animal := thing U ! new)

- penguin contains the bird features except the flying

penguin := (bird \ fly) U related features, plus the antarctic specific features
(antarctic \ place) (but not place features in antarctic, as penguin is not
. query: a place)
cold U animal - question: "What is an animal related to cold?"
- penguin - answer: penguin !

The query performs a search for the smallest stored sets of maximal overlap with the query set efficiently.

The result can be displayed graphically in 2D. The best match 1s close to origin of coordinate system (0,0). Vertical axis 1s
generality/specificity axis (more general concepts above, more specific below). Horizontal axis is dissimilarity (more similar 1s
placed closer to the left).
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