
Large-scale and long-term passive acoustic monitoring of 

coastal bottlenose dolphins 

Kaitlin Palmer 

A thesis submitted for the degree of PhD 
at the 

University of St Andrews 
 

  

2020 

Full metadata for this thesis is available in 
 St Andrews Research Repository 

at: 
https://research-repository.st-andrews.ac.uk/ 

 
 
 

Identifier to use to cite or link to this thesis: 

DOI: https://doi.org/10.17630/sta/932  

 
 

This item is protected by original copyright 

 

 

https://research-repository.st-andrews.ac.uk/
https://doi.org/10.17630/sta/932


 



 

i 

 

Candidate's declaration 

I, Kaitlin Palmer, do hereby certify that this thesis, submitted for the degree of PhD, which is 

approximately 60,260 words in length, has been written by me, and that it is the record of 

work carried out by me, or principally by myself in collaboration with others as 

acknowledged, and that it has not been submitted in any previous application for any 

degree. 

I was admitted as a research student at the University of St Andrews in May 2014. 

I received funding from an organisation or institution and have acknowledged the funder(s) in 

the full text of my thesis. 

  

Date    2802/2019   Signature of candidate  

  

Supervisor's declaration 

I hereby certify that the candidate has fulfilled the conditions of the Resolution and 

Regulations appropriate for the degree of PhD in the University of St Andrews and that the 

candidate is qualified to submit this thesis in application for that degree. 

  

Date   28/02/2019    Signature of supervisor  

  

Permission for publication 

In submitting this thesis to the University of St Andrews we understand that we are giving 

permission for it to be made available for use in accordance with the regulations of the 

University Library for the time being in force, subject to any copyright vested in the work not 

being affected thereby. We also understand, unless exempt by an award of an embargo as 

requested below, that the title and the abstract will be published, and that a copy of the work 

may be made and supplied to any bona fide library or research worker, that this thesis will be 



 

ii 

 

electronically accessible for personal or research use and that the library has the right to 

migrate this thesis into new electronic forms as required to ensure continued access to the 

thesis. 

I, Kaitlin Palmer, confirm that my thesis does not contain any third-party material that 

requires copyright clearance. 

The following is an agreed request by candidate and supervisor regarding the publication of 

this thesis: 

  

Printed copy 

No embargo on print copy. 

  

Electronic copy 

No embargo on electronic copy. 

  

`  

Date   28/02/2019    Signature of candidate  

  

  

Date   28/02/2019    Signature of supervisor 

  



Underpinning Research Data or Digital Outputs 

Candidate's declaration 

I, Kaitlin Palmer, hereby certify that no requirements to deposit original research data or 
digital outputs apply to this thesis and that, where appropriate, secondary data used have 
been referenced in the full text of my thesis. 

  

 14/02/2020  

Date       Signature of candidate  



 

iii 

 

Abstract 

Bottlenose dolphins in eastern Scotland are a protected and wide-ranging population exposed 

to a variety of stressors throughout their available habitat. Previously, most studies have 

focused effort on areas where animals are known to congregate. These areas are easily 

accessible and cost-effective for visual surveys. However, there is a need to understand the 

behaviour and habitat use of the population throughout its habitat.  In response to this need, 

the Scottish Government initiated the East Coast Marine Mammal Acoustic Study consisting 

of 40 passive acoustic monitoring devices deployed along the coastline. While acoustic 

loggers are a cost-effective way of collecting longitudinal information, the returned data are 

subject to fluctuating detection probability and species misclassification. Subsequently there 

are two aims in this thesis. First, I seek to validate the use of autonomous detectors in large-

scale and long-term studies where multiple species are present. This includes building a 

classifier to discriminate between groups of acoustically dissimilar species and investigating 

how transmission loss and ambient noise could bias occupancy results. Second, occupancy 

data from the array are analysed in order to understand spatial and temporal trends in habitat 

use and behaviour. The outputs of this thesis include an acoustic classification system capable 

of increasing the taxonomic resolution achievable in autonomous logger outputs and a 

framework for investigating detection probability in a complex acoustic system. The resulting 

habitat models were consistent with previous surveys showing that that depth and distance to 

the coast were important predictors for bottlenose dolphin presence. Finally, I found differing 

patterns in diel activity between a known foraging location and habitat not associated with 

foraging.  Results from this thesis will provide tools for future researchers seeking to use 

passive acoustic monitoring techniques as well as baseline information about bottlenose 

dolphin habitat use and behaviour across the Scottish coastline. 
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Chapter 1 

General Introduction 

1.1.  Overview 

Many animals require a variety of habitats to meet their biological needs and these 

requirements vary with space and time. The temporal scale of any given species’ habitat use 

can vary with life stage, season, or even circadian rhythms (Meyer et al., 2000, Heithaus and 

Dill, 2002, Barlow and Taylor, 2005, Nowacek, 2005, Moe et al., 2007, Wang et al., 2010, 

Onorato et al., 2011, Benjamins et al., 2017). Similarly, animal activity cycles vary over a 

variety of spatial and temporal scales. Most vertebrates follow circadian rhythms and many 

undergo seasonal migrations; shifting behaviour cycles and energy budgets throughout a 

migratory cycle (Egevang et al., 2010, Stevick et al., 2010, Stevick et al., 2016).  

Understanding the ecological needs of animals as they shift between behavioural states and 

move within their habitat is paramount to conservation efforts (Sutherland, 1998, Anthony 

and Blumstein, 2000). Currently, the predominant methodology for enacting marine 

conservation measures is through the implementation of marine protected areas (MPAs). 

Within MPAs, activities that have the potential to negatively impact the conservation status 

of species may be regulated.  MPAs usually have fixed boundaries, which means that only a 

part of the population of a wide-ranging highly mobile species will be present within the 

boundary at any one time. Networks of MPAs can help in such cases, but their effectiveness 

will depend crucially on accurately understanding the movements of animals across the 

population’s range. Thus, complex spatial and temporal movements pose a challenge for 

efforts aiming to main critical habitat integrity and minimise negative interactions.  

The focus of this thesis is on a small population of coastal bottlenose dolphins (Tursiops 

truncatus) that reside in the waters off eastern Scotland. Over the last several decades, this 

population has been extensively monitored. However, much of the work has focused on 

either areas of high foraging activity or the Special Area of Conservation (SAC) established 

for the population under the Natura 2000 network of the European Habitats Directive (Hastie 

et al., 2003a, Hastie et al., 2004a, Bailey and Thompson, 2006, New et al., 2013, Cheney et 

al., 2014, Merchant et al., 2014a, Pirotta et al., 2015a). These habitats, though ecologically 
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important, represent only a small proportion of the habitat available to the population and 

through which they are known to transit. It is within these underserved areas that large 

offshore windfarms are planned. Thus, there is a need to understand if and how areas outside 

of the SAC are used by this population.  

Gaining a basic understanding of the movement and behaviour patterns of cetaceans is 

extremely challenging. The entirety of their lifecycle takes place in the ocean and most 

animals are observable from the surface for only brief periods. This makes visual surveys and 

behaviour studies challenging. Fortunately, most produce acoustic signals (calls) that can be 

detected metres to kilometres away. Thus, for many species, it is often easier to detect them 

acoustically than it is to observe them visually. For this reason, bioacoustic studies have been 

implemented to address numerous biological and ecological questions.  

Acoustic surveys are not without their challenges. Principal among these are detecting calls, 

discriminating between different acoustically active species, and deriving density and 

abundance estimates, accounting for environmental covariates that result in varying detection 

probabilities (Caillat, 2013, Frasier et al., 2016). Fixed acoustic recorders are often deployed 

for weeks and months at a time. Typically, this results in long periods without any animal 

detections punctuated by short bouts of acoustic activity. Finding these bouts of activity can 

involve a variety of different detection algorithms all with their own true positive, false 

positive, true negative and false negative rates. In the North Sea there are several species of 

dolphin, all of which produce echolocation clicks (Hammond et al., 2002a, Weir et al., 2007, 

Anderwald et al., 2010). Species misclassification can introduce bias into habitat use models 

if the non-target species are not accounted for. Similarly, the area monitored by acoustic 

instruments is dependent on the instrument settings and sensitivity, local bathymetry, water 

depth, and ambient noise levels (Kyhn et al., 2008, Kyhn et al., 2012, Nuuttila et al., 2013a, 

Sostres Alonso and Nuuttila, 2014). For example, acoustic instruments deployed near 

shorelines may monitor a smaller area than instruments deployed in deeper water where the 

instrument is surrounded by available habitat. These issues must be accounted for prior to 

attempting to address habitat use by any species using passive acoustic methods (Helble et 

al., 2013). 

The overall aim of this thesis is to add to the existing body of knowledge concerning the 

habitat use and behaviour of bottlenose dolphins across the eastern Scottish coast. Data for 

this thesis rely exclusively on the passive acoustic detections produced by a long-term and 
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large-scale passive acoustic study off the eastern Scottish coast. In Chapter 2 I build an 

acoustic classification system to reduce the influence of number of detections from non-target 

dolphin species on the occupancy models used in chapters 4 and 5. In Chapter 3 I address the 

potential bias caused by site-specific changes in detection probability using the sonar 

equations – a series of equations relating detection probability to the acoustic environment. 

After addressing these methodological issues, Chapters 4 and 5 investigate distribution and 

site-specific behaviour of dolphins, respectively. The remainder of this chapter discusses 

bottlenose dolphin ecology, passive acoustic surveys in general and lastly provides details of 

the acoustic array used in this study.  

1.2.  Conservation 

The goals of conservation biology include maintaining biological diversity and ensuring 

continued community survival over time (Callicott et al., 1999, Trombulak et al., 2004). At 

the most basic level, for any given species, successful conservation efforts mean that 

mortality does not exceed fecundity over biologically relevant timescales. Typically, 

management and conservation plans focus on reducing the number of plants or animals killed 

through anthropogenic activities. Biological removal from a population may be either acute, 

resulting in immediate mortality (e.g. hunting, fishing, deforestation) or chronic where the 

reproduction rate is depressed through chronic exposure to a negative stimuli or deprivation 

(La Marca et al., 2005).Thus, for endangered populations managers must both mitigate acute 

mortality as well as maintain proper habitat integrity to avoid, or offset, chronic stressors.   

Maintaining habitat integrity is arguably the larger task and is challenging particularly for 

highly mobile species. Migratory or far-ranging animals are exposed to a variety of different 

threats throughout their habitat. For example, in the Southern Ocean, the Tristan albatross 

(Diomedea dabbenena) populations have plummeted due to anthropogenic mortality in both 

land and sea. Mature albatrosses are routinely killed in long-line fishing gear (Cuthbert et al., 

2005). Meanwhile, eggs and chicks are subject to predation from mice introduced to the 

nesting islands (Wanless et al., 2007). Furthermore, far ranging animals often cross human 

boundaries where protections may differ between regions. For instance, grey wolves (Canus 

lupus) are protected within Yellowstone National Park, USA, but face considerable hunting 

pressure outside the park boundaries (Naughton-Treves et al., 2003). 
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The order Cetartiodactyla includes a variety of species that are wide-ranging and or 

migratory. Throughout their habitat, all cetaceans are exposed to chronic and/or acute 

anthropogenic impact induced by ship-strike, entanglement, bycatch, hunting, chemical 

contamination, and anthropogenic noise (Lewison et al., 2004, Merrick and Cole, 2007, 

Wright et al., 2007, Jepson et al., 2016, Clapham, 2017). Therefore, understanding the 

biological needs of the animals throughout their habitat as well as the threats present is 

critical for conservation efforts to succeed.  

Failure to understand habitat use can produce catastrophic consequences. For instance, in the 

summer of 2017 the foraging habitat of the North Atlantic right whales (Eubalaena glacialis) 

shifted from the Bay of Fundy where numerous measures were in place to reduce ship strike 

and entanglement to the Gulf of St Lawrence where no such measures existed. This resulted 

in the death of at least 17 individuals (Taylor and Walker, 2017). Over the last two decades 

habitat shift has been observed in bottlenose dolphins on the eastern Scottish Coast (Wilson 

et al., 2004). In the late 1990s a Special Area of Conservation (SAC) was proposed in the 

inner Moray Firth, the area believed at that time to contain the main area of concentration of 

the population(Cheney et al., 2018). However, in the years following the proposal of the 

MPA, the population’s range expanded and it has since been suggested that the SAC may 

thence afford less protection for the population than was initially intended (Wilson et al., 

1997b, Wilson et al., 1999, Wilson et al., 2004, Thompson et al., 2013a). 

 

1.3.  Bottlenose Dolphins 

1.3.1.  Conservation Status and Populations 

Bottlenose dolphins are a cosmopolitan species with populations found in tropical and 

temperate waters worldwide. While some populations may be decreasing in abundance 

(Currey et al., 2007, Bejder et al., 2006), the International Union for Conservation of Nature 

lists the species as a whole under the status of ‘least concern’, indicating a low risk of 

extinction (IUCN 2018). However, bottlenose dolphins are listed under Appendix 2 of the 

Convention on the Conservation of Migratory Species of Wild Animals (CMS) indicating 

they are in need of or would benefit from international co-operation on conservation efforts. 

They are also listed under Appendix II of the Convention on International Trade in 
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Endangered Species (CITES) which lists species for which trade must be controlled, as well 

as Annex IV of the European Habitats Directive which necessitates strict protection be 

applied across the whole of the species range within the EU. 

Several ecotypes have been identified or proposed in different areas of the world. For 

example, in the Northwest Atlantic on and offshore ecotypes have been identified as distinct 

stocks with overlapping distributions (Torres et al., 2003). Similar near/offshore distinctions 

have been made throughout their range (Duffield et al., 1983, Hoelzel et al., 1998). Within 

the nearshore ecotypes, some populations are thought to be ‘resident’ and display annual or 

inter-annual site-fidelity while others undergo seasonal and/or annual migrations (Bearzi, 

2005, Genov et al., 2008). Accordingly, home range sizes vary considerably between 

populations. In Sarasota, FL, USA the population is considered ‘resident’ and animals are 

infrequently sighted more than 20km from their ‘core range’(Blair and Kaufmann, 1981).  

However, in eastern Scotland bottlenose dolphins frequently travel hundreds of kilometres 

between foraging locations.(Wilson et al., 1997a, Hastie et al., 2004b, Arso Civil et al., 

2019). 

 

1.3.2.  East Scotland population 

The bottlenose dolphin population in eastern Scottish waters is the only known ‘resident’ 

population of bottlenose dolphins in the North Sea and is protected by a variety of UK and 

EU legislation. Within the UK this includes the Wildlife and Countryside Act (1981), the 

Countryside and Rights of Way Act (2000). Additionally, bottlenose dolphins are listed as 

protected species under Annex IV (species of community interest in need of strict protection) 

of the EU Habitats Directive. The population is listed as ‘recovered’ at approximately 189 

individuals with a credible interval of 155-216 individuals (Cheney et al., 2018). Since the 

1990s, research on this population has provided invaluable information about the abundance, 

distribution, movements, fecundity and mortality rates of bottlenose dolphins as well as 

documented a range expansion (Hammond and Thompson, 1991, Wilson et al., 1997b, 

Wilson et al., 1999, Hastie et al., 2004b, Wilson et al., 2004, Bailey and Thompson, 2006, 

Cheney et al., 2013, Quick et al., 2014). However, these studies were largely undertaken 

within the bounds of the SAC reflecting the originally studied ‘core’ habitat of the population 

and highest density of animals. Since the late 1990s, research has focused increasingly in 
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additional areas where animals are also concentrated, particularly the St Andrews Bay and 

Tay estuary area (Arso Civil et al., 2019). Several studies have elucidated factors likely to 

influence foraging activity as well as habitat selection and fine-scale such as tidal direction, 

bathymetry gradient and timing relative to the migratory cycle of salmonid fishes (Hastie et 

al., 2004b, Bailey and Thompson, 2006, Pirotta et al., 2014b, Arso Civil et al., 2019).  

The lack of dedicated survey effort in offshore and more remote areas means that the overall 

distribution of the animals along the coast is not well documented. The most recent 

assessment of condition of the SAC and the status of the population is that since 2000 the 

number of dolphins using the SAC has remained stable but the proportion of the population 

using the SAC has declined by about 7% per year. The likely explanation is that the Scottish 

east coast population as a whole has increased. The condition status of the SAC is currently 

assessed as “Favourable (recovered)” (Cheney et al., 2018).  

Presently, the population is known to utilise several estuaries outside of the Moray Firth, 

including Aberdeen (Dee estuary), Montrose Basin, the firth of Forth and the Firth of Tay 

(Culloch and Robinson, 2008). Approximately 52% of the population uses the St Andrews 

Bay and Tay Estuary during the summer (Arso Civil et al., 2019, Quick et al., 2014). These 

are considerably greater proportions than were initially thought to reside partially or primarily 

outside of the Moray Firth (Curran et al., 1996).   

The drop in the proportion of animals using the SAC and the increase in the population have 

coincided with increased development of offshore renewable energy.  Presently, two large 

offshore windfarms are planned for eastern Scottish waters. The Inch Cape wind farm will 

consist of 72 turbines placed 15km from the Angus coast, just north of the Firth of Tay. The 

Neart na Gaoithe wind farm consisting of 64 to 125 turbines is similarly planned for the 

waters off Fife. This raises the potential for negative interactions between the bottlenose 

dolphin population and anthropogenic activities resulting from the construction, operation 

and decommissioning of the turbines, and reinforces the importance of previous and current 

monitoring in areas outside the Moray Firth where animals are concentrated (Arso Civil et al., 

2019, Quick et al., 2014).  

 



General Introduction 

7 

 

1.3.3.  Vocal Behaviour 

Bottlenose dolphins are capable of producing a wide variety of acoustic signals including 

whistles, clicks, pops and brays (Au et al., 1978, Connor and Smolker, 1996, Janik, 2000a, 

Boisseau, 2005). These signals may be divided into three general categories; whistles, 

broadband clicks, and burst pulse sounds (Caldwell and Caldwell, 1965, Connor and 

Smolker, 1996, Janik and Slater, 1998, Perrin et al., 2009). Broadband clicks are the most 

frequently produced vocalizations and are used primarily for echolocation. Whistles are 

frequency modulated tones that are thought to function primarily in mediating social 

interactions (Tyack, 1997, Janik and Slater, 1998, Smolker and Pepper, 1999). Signature 

whistles, a subset of an animal’s whistle repertoire, are used to broadcast the individual 

identity of the caller (Janik and Slater, 1998, King et al., 2014). Finally, burst-pulses consist 

of a series of broadband clicks with peak frequencies in the ultrasonic range with very short 

inter-click intervals. While burst-pulses are closer to clicks in structure than whistles, they are 

thought to be associated with socialising rather than foraging. (Overstrom, 1983, Ridgway et 

al., 1991, Herzing, 1996). Echolocation clicks, burst pulses, and whistles all contain species-

specific characteristics that may help differentiate them from other species (Rendell et al., 

1999, Rankin et al., 2017). Moreover, signature whistles may be used to track individual 

bottlenose dolphins and thereby help inform movement estimates (Caldwell and Caldwell, 

1965, King et al., 2014). 

1.3.4.  Study Methodologies 

Coastal bottlenose dolphins have been, and continue to be, some of the best studied cetacean 

populations. The relative ease of access to wild populations in addition to their robustness to 

disturbance (e.g. temporary restraint and/or captivity), have allowed researchers to learn more 

about this species than, arguably, any other cetacean species. Moreover, captive studies of 

this species have provide invaluable biological insights into the behaviour of both captive and 

wild animals including the cultural transmission of acoustic signals, development of acoustic 

signatures between cow/calf pairs, and the existence of behaviour-specific sound production 

(Overstrom, 1983, McCowan and Reiss, 1995a, McCowan and Reiss, Krutzen et al., 2005). 

Captive studies have also allowed for detailed physiological investigations into, among other 

things, caloric intake, growth rate, and husbandry (Peddemors et al., 1992, Kastelein et al., 

2002, Wells, 2009).  
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However, field studies are still required to understand habitat selection, demographics, and 

the population-specific behaviour of wild populations. Survey methods for wild populations 

include focal follows with or without acoustic surveys, affixing temporary or permanent tags, 

and transect surveys (Blair and Kaufmann, 1981, Janik, 2000a, Hastie et al., 2004b, Quick 

and Janik, 2008, Thompson et al., 2011b). Depending on the research aims, field studies may 

use any combination of visual, acoustic, and tagging methods. Such studies have been 

integral in understanding habitat use and movement of bottlenose dolphins in general and the 

eastern Scottish population specifically (Wilson et al., 1999, Cox et al., 2004, Wilson et al., 

2004, Currey et al., 2007, Cheney et al., 2013, Hammond et al., 2013).   

Tagging studies involving GPS or satellite linked instruments have similarly provided 

information regarding swimming speed, dive duration, movement patterns, and survivorship 

of rehabilitated animals (Mate et al., 1995, Wells et al., 1999, Mazzoil et al., 2008, Balmer et 

al., 2010). However, tagging studies are generally invasive and provide detailed information 

on the targeted individual(s) only.  

Focal follows provide detailed information on the behaviour of one or a few animals at a 

time. The method is often preferred when there is need to discriminate the behaviours of the 

target animals from those of nearby conspecifics. Focal follows typically involve either visual 

observations or combined visual observations with acoustic recording. Studies using visual 

only follows have been extremely successful in monitoring habitat selection by several 

bottlenose dolphin populations including those in both Scotland and Florida, USA (Allen, 

2000, Arso Civil et al., 2019). Visual focal follows have also investigated the behaviour of 

animals in relation to anthropogenic activities such as tourism. Buckstaff (Buckstaff) showed 

a negative relationship between the amount of time animals spent resting and the number of 

tourism boats following the animals.  

By incorporating visual observations with towed arrays, researchers can ascribe acoustic 

signals to specific animals or small groups of animals (Buckstaff, 2004, Fripp et al., 2005). 

This combined visual/acoustic methodology has been integral in the investigation into sound 

production under various environmental or behavioural conditions. For example, Quick and 

Janik (Quick and Janik) found that whistle rates of individual bottlenose dolphins decrease 

with increasing group size and increase when animals are socialising. However, the area of 

research that has likely benefitted most from combined visual/acoustic focal follows is 

signature whistle production in wild animals. Discoveries including signature whistle 
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convergence among male ‘alliances’, signature whistle production during reunion events at 

sea, and signal whistle ontogeny, have all relied on focal follow methodology (Smolker and 

Pepper, 1999, Cook et al., 2004, Fripp et al., 2005, Quick and Janik, 2012). However, focal 

follows are necessarily limited in their sample population and may introduce artefacts into the 

analysis if animals react to the survey vessel.  

Transect surveys are primarily used for density and abundance estimation. These surveys 

typically involve covering a defined area of the animals’ range with visual and/or acoustic 

observations. Transect surveys may include boat-based visual observations, visual 

observations from aircraft and/or towed array acoustic arrays. Transect surveys have been 

used in the Mediterranean, European Atlantic, western Indian, and the Gulf of Mexico 

(Blaylock and Hoggard, 1994, Forcada et al., 2004, Fazioli et al., 2006, Nicholson et al., 

2012, Hammond et al., 2013).  

All the methods discussed above have been instrumental in formulating understanding of 

bottlenose dolphin behaviour, demographics, and conservation. However, except for tagging 

studies and towed acoustic arrays, these methods all rely on visual observation of animals at 

the surface and are subsequently limited to periods of good visibility. This precludes or 

complicates research into diel trends, habitat use during periods of foul weather and/or when 

survey vessels are not available. As most acoustic studies are not strictly dependent on visual 

observations, they are able to collect valuable information by monitoring acoustic signals and 

behaviour of the animals while underwater. 

1.4.  Passive Acoustic Surveys 

1.4.1.  Bioacoustic Monitoring  

The sounds of marine mammals were first noted during World War II when sonar operators 

noticed ‘biologic’ sounds when listening for enemy signals. Since then, interest in 

classification, detection and location of biological sounds in the ocean has increased 

exponentially. The field has evolved from focusing on military applications (e.g. was that a 

whale or a submarine?) to wider interest in the behaviour of the animals producing the sounds 

(Fish, 1956). For marine mammals, much of the early literature was dominated by captive 

studies of small odontocetes. These studies provide evidence of the first ‘biosonar’  or 

echolocation in cetaceans (Kellogg et al., 1953, Norris et al., 1961). Following these 
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discoveries, researchers began investigating sound production by cetaceans in the wild. Early 

field studies led to the publication of numerous influential works including the existence of 

humpback whale ‘song’, species-specific contact calls, echolocation in porpoise, and early 

whistle repertoire descriptions (Payne and McVay, 1971, Mohl and Andersen, 1973, Taruski, 

1979, Thompson et al., 1979, Clark and Clark, 1980). Acoustic studies are increasingly being 

used by researchers to monitor marine mammals and gain insights into their behaviour 

(Rendell and Whitehead, 2003). Though a variety of methods involving acoustics has been 

devised over the decades, acoustic survey methods can broadly be described as fixed, towed, 

focal follows, or hybrid methods.  

Fixed bioacoustic studies involve holding recording instruments in place for the duration of 

the study. Because fixed acoustic studies are necessarily limited in the amount of habitat they 

survey, these surveys are often used for site-specific environmental mitigation and 

monitoring where offshore developments may be planned, or to monitor critical habitat 

(Thompson et al., 2013b, Merchant et al., 2014b). Long-term passive acoustic arrays have 

been integral to understanding of behaviour and habitat use of dolphins and porpoise in 

European waters (Thompson et al., 2010b, Simon et al., 2010, Sveegaard et al., 2011, Koblitz 

et al., 2014, Williamson et al., 2016). Long-term recording from fixed arrays has also led to 

the discovery of previously undescribed marine mammal sounds and behaviours including sei 

whale (Balaenoptera borealis) vocalisations and the continuation of humpback whale winter 

‘song’ into the non-breeding season (Clark and Clapham, 2004, Baumgartner et al., 2008). In 

several areas passive acoustic arrays are being used to provide population monitoring for 

endangered or protected marine mammals (Jaramillo-Legorreta et al., 2017, Benke et al., 

2014).  

Towed surveys involve attaching one or several hydrophones to the back of a vessel 

travelling in a pre-determined pattern. Adding acoustic components to large-scale density and 

abundance surveys represents little added cost and can increase data coverage for cryptic 

species and/or when visual observations are untenable.  Acoustic surveys have subsequently 

been the preferred study mythology for species in the Ziphiidae family (Rankin and Barlow, 

2007, Baumann-Pickering et al., 2013). Towed surveys of various have allowed for the 

discovery of previously unknown habitats (Yack et al., 2013). For some species, towed arrays 

can provide insight into diving behaviour without the need for attaching recording 

instruments to the animals. However, as both the individuals and the vessel move throughout 

the environment, accurately assessing the number of animals that are present can be a 
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challenge and is an ongoing area of research.(Marques and Buckland, 2003, Marques et al., 

2013) 

Focal studies include methods that aim to capture the vocalisations from a single animal or 

group of animals. This generally involves placing hydrophone(s) near or even on identified 

individuals or groups. Focal follows have been key in describing cetacean acoustic behaviour. 

Notable contributions from research involving focal follows include the existence of cultural 

‘clans’ in sperm whales (Rendell and Whitehead, 2003) . Additionally, focal follows of wild 

animals are useful in gaining an understanding of the transmission characteristics of acoustic 

signals (Rasmussen et al., 2006, Janik, 2000b) which may be incorporated into applied 

studies (Kusel et al., 2011, Kyhn et al., 2012, Marques et al., 2012, Kusel et al., 2016). 

Finally, hybrid surveys may involve acoustic instruments that shift in space and/or time. 

These surveys may include drifting sensors, such as DASBARs (Griffiths and Barlow, 2016), 

drifting sensors capable of determining range and bearing to signals (Sirovic et al., 2014), or 

drifting recorders or powered gliders (Klinck et al., 2012). The latter has shown potential in 

bridging the gap between towed and fixed sensors.  

Like all survey methods, acoustic surveys are subject to limitation. Fixed acoustic surveys 

provide excellent temporal coverage but limited spatial coverage. Additionally, determining 

the detection range for calling animals is a challenge as multiple sensors are needed to 

localise acoustic signals. Conversely, towed surveys provide improved spatial coverage but 

limited temporal coverage. Accounting for the general movement of animals, avoidance or 

attraction to the survey vessel, and the movement of the survey vessel itself are challenging. 

Last, while focal follows provide in-depth information about the behaviour of a small 

proportion they cannot presently provide long-term monitoring or easily extrapolate findings 

to a larger population.  

1.4.2.  Detection and Classification 

Over the past several decades, acoustic surveys have become an increasingly important 

component of marine ecological studies. As instrumentation and data storage costs have 

decreased, the amount of acoustic data collected has increased exponentially. This is 

especially true for fixed acoustic surveys which collect data 24hrs a day. A typical fixed 

acoustic array, involving only a few instruments deployed for three months, collects 

thousands of hours of continuous data. Processing these data for the presence and absence of 
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animal calls has therefore become a primary challenge for long-term studies using fixed 

acoustic arrays. Consequently, automatic detection and classification algorithms for various 

species and call types have become developing at an increasing rate in both academic and 

commercial fields. 

For dolphins, the disparity between the acoustic characteristics of tonal (e.g., whistles) and 

impulsive sounds (e.g. clicks) has led to the development of independent detection algorithms 

for each class of call. Early detection systems for impulsive sounds included simple energy 

detectors and matched filters for tonal sounds including whistles and large whale calls 

(Stafford et al., 1998, Mellinger and Clark, 2000, Gillespie and Chappell, 2002). However, in 

the decades following, approaches to detection and classification have diversified. For tonal 

sounds, classification algorithms include automatic edge detection and contour extraction as 

well as variety of statistics and modelling procedures (Roch et al., 2007, Moretti et al., 2008, 

Blumstein et al., 2011, Mellinger, 2012a, Denes et al., 2014, Mellinger, 2012b). Artificial 

intelligence and ‘deep learning’ have provided valuable steps forward in the automatic 

detection and classification of bioacoustic sounds of all types (Bahoura and Simard, 2010).  

In addition to detection, ascribing bioacoustic signals to species has also been challenging. 

This is especially true for many small odontocetes, many of which produce similar clicks that 

are hard to differentiate. Even so, several authors have shown that echolocation clicks and/or 

click trains may contain species-specific information (Soldevilla et al., 2008, Baumann-

Pickering et al., 2013). However, for single clicks, species classification is often confounded 

by the directionality of the clicks (Au et al., 1995, Au et al., 1999, Au et al., 2006, Wahlberg 

et al., 2011, Au et al., 2012b, Au et al., 2012a).  When dealing with echolocation clicks alone, 

some authors have advocated grouping the echolocation click trains of acoustically similar 

species (e.g. common and bottlenose dolphins) together rather than attempt to classify 

individual species (Caillat, 2013). For example, in the Southern California Bight, the 

echolocation clicks of Risso’s dolphins have proven difficult to distinguish from those of 

white-sided dolphin (Roch et al., 2008, Roch et al., 2011a). However, the clicks from both 

species differed considerably from those of common and white-beaked dolphins. Thus, where 

single species classification is not possible, studies may divide clicks into groups consisting 

of many similar species. Even so, significant progress has been made in classifying 

echolocation clicks and click trains to species. Both Klinck and Mellinger (2011) and Roch et 

al. (2011a) developed species classifiers for different geographic areas that consider 

echolocation click detections only. Still other systems incorporate information from both 
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echolocation clicks and whistles (Oswald et al., 2003, Rankin et al., 2017) to increase 

classification accuracy.  

In addition to the acoustic data, classification systems may also incorporate information from 

ancillary sources such as a priori knowledge of animal distribution or concurrent visual 

surveys. In the outer Moray Firth, Scotland, several species of dolphins are known to co-

occur. One acoustic study in the area integrated previously documented species presence with 

acoustic detections to ascribe a proportion of the detections to non-bottlenose dolphin species 

(Thompson et al., 2015).  

1.4.3.  Detection Probability 

Ecological surveys seeking to estimate species density, abundance or even occupancy must 

account for the survey effort (Buckland et al., 2005, Royle and Kéry, 2007). Depending on 

the survey design, survey effort is the combination of the total time spent looking, or 

listening, for the animals and/or the total area searched. In both visual and acoustic surveys, 

the total time spent looking or listening for animals is easily measured. However, calculating 

the effective area surveyed is more complicated. The area monitored is dependent on how far 

the animal may be detected from the survey point or transect. The detection function 

describes the relationship between the probability of observing an animal as a function of its 

range from the transect point or line. The integration of the detection function over the 

maximum detection range is referred to as the unconditional probability of detection 

(Buckland et al., 2005) and is key to most density, abundance, or habitat use survey. Failure 

to account for environmental effects that impact the detection function have the potential to 

seriously bias survey efforts and must be addressed in ecological modelling procedures 

(Helble et al., 2013, Marques et al., 2013). 

Such variation in detection conditions are inherent to all field studies (Gonzalez et al., 2017, 

Hammond et al., 2013). Observational studies are affected by visual masking caused by low 

light levels or obstructions (e.g., vegetation, glare, or choppy ocean surface) and acoustic 

studies are similarly affected by noise masking and sound propagation conditions (e.g. 

acoustic shadowing, shipping noise). In both visual and acoustic surveys, fully accounting for 

the probability of detection is not always possible or practical. Thus, researchers have devised 

several methods capable of accounting for changes in detection probability. One method 

involves measuring environmental conditions on a broad or relative scale. Boat-based surveys 
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often include weather and/or sea state measured on the Beaufort scale as categorical detection 

covariates (Marques and Buckland, 2003).  In passive acoustic studies some authors have 

opted to either exclude periods of high ambient noise (Roberts and Read, 2014) or include 

noise level as categorical (low, medium, or high) detection covariate (Marques et al., 2011). 

However, such methods do not account for periods during which no animals were detected. 

This raises the question, were there no detections because animals (or their calls) were not 

present, or because they were masked by the environmental conditions? Thus, a more 

thorough approach involves including environmental covariates throughout the whole survey 

period (Royle and Kéry, 2007, Kéry, 2010). 

In acoustics, the sonar equations have been used to describe the relationship between the 

probability of detecting an animal vocalisation, the environmental conditions, and the 

detection system (Urick). Authors have approached detection probability in acoustic studies 

by either using simulations of vocally active animals or in situ studies where the distance 

between animals and the sensors is measured by a visual observer. Simulation studies include 

those by Kusel et al. (2011), Helble et al. (2013), and Frasier et al. (2016). These researchers 

all used Monte-Carlo simulations to estimate the probability of detection and, ultimately, 

density of vocally active cetaceans. Alternatively, using visual observations from nearby 

cliffs,  Kyhn et al. (2012) and  Nuuttila et al. (2013b) measured the distance between animals 

and echolocation click loggers to empirically measure the detection probability under a 

variety of behavioural conditions.  

When using commercial echolocation detectors such as C-PODs (www.chelonia.co.uk), 

observational approaches to detection probability are required as the manufacturer does not 

release or measure the performance characteristics (relationship between the probability of 

detecting a click and the amplitude at which it arrives) of the system. Even so, observational 

studies carry the additional benefit of being able to measure both how environmental 

conditions impact the probability of detection as well as measure the influence of behavioural 

state on the detection probability.  Nuuttila et al. (2013b) found that the likelihood of 

detecting an echolocating bottlenose dolphin was highly dependent on the animals’ 

behaviour; single dolphins, groups of dolphins, foraging, and travelling all resulted in 

different detection probabilities. Unfortunately, neither Nuuttila et al. (2013b) nor Kyhn et al. 

(2012) measured ambient noise levels or estimated local propagation conditions. Thus, while 

these studies investigated the behavioural aspects of detection probability, they did not 

account for the physics of sound transmission and the masking effect of ambient noise. 
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Accurately accounting for the detection probability at multiple instruments deployed in a 

variety of marine habitats is one of the primary methodological challenges of this thesis 

(Gregory and Rowden, 2001, Gannon et al., 2005, Bailey and Thompson, 2006).  

   

1.5.  The East Coast Marine Mammal Acoustic Study 

1.5.1.  Study Area 

Previous visual studies using photo-identification have provided a solid starting point for 

cetacean habitat use outside of the SAC in areas where animals are concentrated. Monitoring 

areas of lower occurrence has not been a priority. In this study I use data from the 

ECoMMAS to fill this knowledge gap (Marine Scotland Science, 2013). The acoustic 

instruments of the ECoMMAS were, and continue to be, deployed in areas where visual 

survey coverage is lacking. Notably, this includes habitats up to 17 km from the coastline and 

areas exceeding the northern and southern extents of most visual surveys (e.g. Latheron and 

St Abbs). The first three years of the study alone resulted in over 9000 days of continuous 

data collection. 

The ECoMMAS array consists of 30 C-PODs and ten continuous recorders (SM2Ms or 

SM3Ms, www.wildlifeacoustics.com, hereafter SMs) deployed along ~400km of the eastern 

Scottish coast (Figure 1-1). Deployment locations were chosen to maximize spatial coverage 

and minimize the likelihood of being displaced by storms or fishing activity. The array covers 

a variety of bottlenose dolphin habitats along the coast. Each deployment group is arranged 

approximately perpendicular from the coastline. In doing so, instruments in the array cover 

areas of known occupancy, such as the nearshore units in Spey Bay and Cromarty, as well as 

areas not thought represent key bottlenose dolphin habitats such as the offshore deployment 

locations.    

http://www.wildlifeacoustics.com/
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All units were moored to the seafloor using 100kg chain weights. Some deployments were 

furnished with surface markers, while others had acoustic releases to facilitate recovery.  The 

choice of mooring type was based upon vessel traffic in the deployment location. C-PODs 

were deployed in ten groups of three, with moorings within the group deployed 

approximately 5, 10 and 15 km from the coast. Mooring locations are hereafter referred to as 

5, 10, and 15 to indicate that distances from shore were approximate values only.  One SM 

was co-deployed with one of the C-PODs at each deployment group. The SM was attached to 

the same mooring line as the C-POD and the units were separated by more than one metre.  

Figure 1-1 Survey locations for the ECOMMAS project C-POD (black) and joint C-POD/SM deployment sites 

(red). Deployment sites indicated by nearest large town: Latheron (Lat), Helmsdale (Hel), Cromarty (Cro), Spey Bay 

(Spe), Fraserburgh (Fra), Cruden Bay (Cru), Stonehaven (Sto), Arbroath (Abr), Fife Ness (FiN), St Abbs (Stb). All 

units were placed at approximately 5, 10, or 15km from the coast. 
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The full ECoMMAS array was deployed in the spring of each year (2013-2015) and 

recovered in the autumn of the same year. In 2015 there were two deployments with the array 

first being deployed in early spring and subsequently being recovered and re-deployed in 

July. The second deployment in 2015 was then recovered in autumn of the same year. Of the 

30 C-PODs in each deployment an average of 6.5 C-PODs per deployment were either lost or 

failed to collect data. Data from 2013 were used in chapters 2 and 3 while data from 2013-

2015 were used in chapters 4 and 5 

1.5.2.  Instrumentation 

Echolocation Click Loggers (C-PODs) 

C-PODs (http://www.chelonia.co.uk) and their predecessor TPODs are low-cost echolocation 

click loggers. The instruments represent a class of detector called zero-crossing recorders. C-

PODs are low cost in comparison to most consumer acoustic recorders and simple processing 

procedures make them attractive for large-scale surveys (Carstensen et al., 2006a, Thompson 

et al., 2010a, Kyhn et al., 2012, Brookes et al., 2013, Jaramillo‐Legorreta et al., 2017).They 

are different from continuous recording systems that measure sound pressure a specified 

number of times per second (the sampling frequency) by the electrical output of a 

piezoelectric sensor. Instead, C-PODs work by recording the time of every Nth oscillation of 

the piezoelectric element that crosses the neutral position (zero crossing). Thus, in the 

absence of any signal, the C-POD collects no data as the piezoelectric element is not moving. 

Similarly, high frequency sounds consisting of short periods will produce more data than low 

frequency sounds with longer periods between subsequent oscillation.  Unlike most 

commercial recorders that allow users to select the sample frequency, in C-PODs ‘N’ is set 

by the manufacturer and not disclosed. The data collected by C-PODs are processed for the 

presence of echolocation click trains using proprietary classifiers that require validation by 

outside user groups.  

The click features (referred to as “details” in the accompanying software) logged by C-PODs 

are non-standard in the acoustics field and so require careful interpretation. Specifics of the 

click features are proprietary and defined by the manufacturer as the time of the click, 

measured with 5µs resolution, dominant zero-crossing frequency (fZC, which should not be 

confused with peak frequency), end zero-crossing frequency (derived from the last zero-
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crossing interval), bandwidth measured on an “arbitrary scale” (manufacturers description), 

and click duration measured as the number of cycles at the dominant frequency (NCycles). C-

PODs also document a metric of amplitude which, though reported as sound pressure level, is 

not corrected for hydrophone frequency response (Dahne et al., 2013). 

Laboratory studies have investigated the detection thresholds, and directivity pattern of the C-

POD instrument, and field studies have measured the detection radius of the system (C-POD 

plus KERNO classifier) and made direct comparisons with adjacently deployed continuous 

recorders (Dahne et al., 2013, Nuuttila et al., 2013b, Verfuß et al., 2013, Roberts and Read, 

2014, Sostres Alonso and Nuuttila, 2014). Laboratory validation found that C-PODs 

minimum detection thresholds were generally consistent between instruments and 

sensitivities were roughly uniform (Dahne et al., 2013). In situ studies reported very low false 

positive detections rates for the system but found that the detection radius varied considerably 

depending on the deployment depth and the behaviour of the animals around the system 

(Nuuttila et al., 2013b, Roberts and Read, 2014, Sostres Alonso and Nuuttila, 2014).     

Both C-PODs and T-PODs have been used extensively to monitor dolphin and porpoise 

habitat use in the Moray Firth. Results from these studies have provided insight into the 

relative density of animals, winter habitat use, effects of ambient noise, and foraging 

behaviour of both species (Thompson et al., 2011a, Brookes et al., 2013, Thompson et al., 

2013a, Thompson et al., 2013b, Bailey et al., 2014a, Pirotta et al., 2014a, Williamson et al., 

2017). However, one of the major challenges in passive acoustic monitoring in general and 

with C-PODs in particular is discriminating between different odontocetes. While C-PODs 

reliable discriminate between porpoises and dolphins they cannot so easily discriminate 

between multiple dolphin species.   

In the Inner Moray firth, bottlenose dolphins are the most frequently sighted odontocete and 

passive acoustic studies routinely assume that all detections represent bottlenose dolphins.  

However, the same assumption does not hold outside of the Moray Firth where multiple 

delphinids are known to inhabit the same area (Weir et al., 2007, Anderwald et al., 2010). 

Recent studies have begun to address this issue by using visual surveys to predict the 

probability that a given echolocation click train was produced by bottlenose dolphins 

(Thompson et al., 2015). However, this methodology relies on the presence of both types of 

surveys in the area and provides little temporal resolution.  As such, similar studies for the 



General Introduction 

19 

 

entire coastline are not practical for the ECoMMAS and there is subsequently a need to 

develop a classification system for C-POD detections. 

Continuous Recorders (SMs) 

Acoustic recorders sample the pressure on the hydrophone at a given rate, accurately 

recording the acoustic environment between the minimum response frequency of the 

hydrophone and the Nyquist frequency. Numerous marine recording systems are 

commercially available and vary considerably in cost and deployment specifications. The 

ECoMMAS used SM2Ms and SM3Ms (www.wildlifeacoustics.com, hereafter SMs). In 2013 

the duty-cycle was set to a 10 min 50/50 on/off sequence. In subsequent deployments the 

duty-cycle was set to 10 min on 20 min off in order to increase data coverage period. Post-

processing the acoustic data for the presence of echolocation clicks (Chapter 2) and ambient 

noise levels (Chapter 3) was done using freely-available PAMGuard software (Gillespie et 

al., 2009).  

1.6.  Thesis Structure 

In this thesis my primary aim is to add to the existing knowledge of bottlenose dolphin 

habitat use and behaviour by investigating large scale trends in acoustic occupancy. However, 

because of the complexities in using C-POD detectors, the first two chapters of this thesis aim 

to validate the available data to ensure that the occupancy values are primarily based on 

detections of the species of interest and are robust to changes in detection probability. 

Building on the first two chapters, the following chapters add to the existing knowledge of 

the habitat use and behaviour of the eastern Scottish bottlenose dolphin population.    

In Chapter 2, I compare groups of echolocation clicks recorded by the SMs to the 

echolocation features documented by the C-PODs. I build a classification system that is 

capable, with considerable variation, of discriminating between the echolocation clicks to two 

groups of dolphins white-beaked and Risso’s (Lagenorhynchus albirostris, Grampus griseus) 

vs. short-beaked common (Delphinus delphis) and bottlenose dolphins. 

In Chapter 3, I investigate whether site-specific transmission loss and continuously varying 

ambient noise levels measured across the ECoMMAS array have the potential to bias the 

relative occupancy rates produced by the C-PODs. In this Chapter I use the sonar equations to 

estimate how much changes in detection probability may influence the occupancy rates 

http://www.wildlifeacoustics.com/
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reported by the C-PODs. Because C-PODs are black-box detection systems I was not able to 

account for the detector performance. Because of the lack of detector performance metrics, 

here I focus on the implications of bias in the detection probability rather than the exact 

calculation of the detection probability.  

In Chapter 4, I use the results of Chapters 2 and 3 to investigate dolphin acoustic occupancy 

rates produced by the ECoMMAS array where acoustic occupancy is defined as the binary 

presence/absence acoustic signals of the species of interest. The chapter reports the 

proportion of days where dolphin click trains were detected (acoustic occupancy rate) at the 

30 deployment sites across the first three years of the study and uses generalised estimating 

equations (GEEs) to model temporal trends in detections at each of the deployment groups. 

Finally, generalised additive mixed models (GAMMs) are used to model and map bottlenose 

dolphin acoustic occupancy across the entire eastern Scottish coastline.  

In Chapter 5, I look for trends in detections on an hourly scale. As with Chapter 4, this 

chapter uses the results of Chapter 2 to discriminate between the echolocation click trains of 

different species present in the array.  I use GAMMs to model the probability of detecting an 

echolocation click train at different locations in the array as a function of diel and tidal 

phases.  

In Chapter 6, I synthesise ecological implications from Chapters 4 and 5 into the wide body 

of knowledge currently available for this population of bottlenose dolphins. I also discuss 

where passive acoustic monitoring studies fit in the overall conservation aims for this 

population and how data from the ECoMMAS array specifically can contribute to those aims. 

Finally, I also investigate whether large-scale passive acoustic monitoring surveys for this 

population of bottlenose dolphins are, in fact, as cost effective as touted (Van Parijs et al., 

2009). 
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Chapter 2 

Increasing the Taxonomic Resolution of Echolocation Click Loggers  

2.1.  Introduction 

Passive acoustic monitoring is an established method of studying the movement, distribution 

and behavior of acoustically active species (Fenton, 1982, Van Parijs et al., 2009, Brookes et 

al., 2013, Kalan et al., 2015, Kloepper et al., 2016). The field of cetacean ecology has 

especially benefited from advances in acoustic monitoring as these animals are largely 

visually inaccessible to researchers for the majority of their lives. Moreover, cetaceans 

produce acoustic signals that can be detected by acoustic recorders and data loggers. 

Accordingly, passive acoustic monitoring has provided invaluable insights into the habitat 

use (Mellinger et al., 2007, Van Parijs et al., 2009), communication (Parks et al., 2009), 

population size (Jaramillo-Legorreta et al., 2017, Harris et al., 2013), and behavior 

(Buckstaff, 2004, Koschinski et al., 2008, Nuuttila et al., 2013b, Pirotta et al., 2014b) of 

multiple genera. Moreover, passive acoustic monitoring is directly involved in both long-term 

and real-time conservation efforts for protected cetacean species (Clark et al., 2005, Van 

Parijs et al., 2009, Jaramillo-Legorreta et al., 2017, Klinck et al., 2012). 

Taxonomic classification of the echolocation clicks of odontocetes is an ongoing problem in 

passive acoustic surveys. The received characteristics of any given click depend on the 

animal’s behavior as well as the filtering effects of the cranial anatomy, the propagation 

environment and the parameters of the recording system (Au et al., 1985, Au et al., 1995, 

Carlström, 2005, Johnson et al., 2006, Deruiter et al., 2009, Au et al., 2012a, Roch et al., 

2015).  Since echolocation signals are highly directional, the received amplitude and spectral 

characteristics of echolocation clicks further depends on the orientation of the vocalizing 

animal with respect to the receiver (Rasmussen et al., 2004, Wahlberg et al., 2011, Au et al., 

2012c). Together, these filtering effects render it virtually impossible to classify individual 

echolocation clicks to species.  

 

Researchers have addressed the classification task by averaging echolocation click 

characteristics across multiple clicks, click trains, and/or acoustic encounters. In doing so, 
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group and species-specific features in echolocation clicks have been discovered. For 

example, Baumann-Pickering  (Baumann-Pickering et al., 2013) compared the location of 

satellite tagged animals to passive acoustic recordings and was able to describe species-

specific characteristics of false killer whale (Pseudorca crassidens) and short finned pilot 

whale (Globicephala macrorhynchus) echolocation clicks. Similarly, distributions of peak 

frequency, center frequency, click duration, inter-click interval (ICI) and bandwidth have 

been useful in discriminating between the echolocation clicks of melon-headed whales 

(Peponocephala electra), Gray’s spinner dolphins (Stenella longirostris longirostris) and to a 

lesser extent, bottlenose dolphins (Tursiops truncatus) (Baumann-Pickering et al., 2010). In 

other studies, the structure of the frequency spectrum has proven useful in classifying click 

trains. In the Pacific, the echolocation clicks of white-sided dolphins (Lagenorhynchus 

obliquidens) and Risso’s dolphins (Grampus griseus) have been shown to display consistent 

peaks and notches in spectral energy below 48 kHz (Roch et al., 2007).  Risso’s dolphins 

click trains contained peaks in energy at 22.4, 25.5, 30.5 and 38.7 kHz and at 22.2, 26.6, 33.7 

and 37.3 kHz for white-sided dolphins. The spectral location was sufficient to discriminate 

between the two species but site and instrument-specific anomalies reduced the confidence of 

the classifications (Roch et al., 2007).  In the same habitat, bottlenose dolphin and common 

dolphin (Delphinus delphis) echolocation clicks were found to have a more uniform energy 

distribution between 40 and 80 kHz (Soldevilla et al., 2008). Echolocation clicks from these 

species were nearly indistinguishable but easily discriminated from the peak and notch 

structure of Risso’s and white-sided dolphins, especially when site and instrument specific 

parameters were accounted for (Roch et al., 2011b, Roch et al., 2015). Uniform energy 

between 40-120 kHz was recorded for on-axis clicks of bottlenose dolphins in the Indian 

Ocean, and held for off axis angles up to ~13°, beyond which peaks and notches in energy 

were observed but were dependent on the angle between the animal and the recording system 

(Wahlberg et al., 2011). Similarly, in the North Atlantic Calderan et al. (2013) investigated 

whether the peaks and notches in spectral energy observed in Pacific animals were also 

present in clicks produced by Risso’s and white-beaked dolphin (Lagenorhynchus 

albirostris), the latter having morphologically similar cranial structure to Pacific white-sided 

dolphins. A towed arrays in western Scottish waters suggested that a similar peak-and-notch 

structure was present in both species (Booth et al., 2011). Taken together, these studies 

suggest that the presence of stable peak-and-notches in spectral energy may be useful for 

increasing taxonomic resolution from acoustic recordings.  
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While significant progress has been made in classifying echolocation clicks in continuous 

recordings, little effort has been directed toward classifying echolocation clicks in click 

logging devices. C-PODs (Chelonia, Ltd.) are commercially available click logging devices 

popular in marine studies. The C-POD system returns a series of summary parameters related 

to detected clicks but does not save the waveform of the clicks themselves. Consequently, the 

volume of data collected by these systems is drastically less, while some of the click 

frequency/time information is preserved.  Such systems are efficient, have low false positive 

detection rates, and produce generally consistent output between units (Dahne et al., 2013, 

Roberts and Read, 2014).  For these reasons, C-PODs are a popular tool used to study 

odontocete behavior and ecology worldwide (Carstensen et al., 2006b, Koschinski et al., 

2008, Bailey et al., 2010, Pirotta et al., 2014a, Jaramillo‐Legorreta et al., 2017).  For species 

with mid- to high-frequency echolocation clicks, long-term and full spectrum (fs >200 kHz) 

continuous recordings are often impractical due to the high up-front cost of continuous 

recorders, high data volumes, time-consuming post-processing to extract echolocation clicks, 

and limited recording duration compared to click loggers.   

Data collected by the C-POD data are generally processed to detect the presence of 

odontocete echolocation click trains with the accompanying KERNO classifier. The KERNO 

software is capable of discerning between dolphin and porpoise clicks based on the frequency 

and bandwidth of the detections. However, C-PODs currently lack the ability to discriminate 

between most dolphin species. Thus, where users can be relatively confident that only the 

target dolphin species is present, the use of C-PODs has proven to be both cost and time 

effective (Simon et al., 2010, Pirotta et al., 2015a). However, where the scientific and/or 

regulatory concern focuses on a single species within a large habitat, the ability to 

discriminate between target and non-target species becomes a critical aspect of the research 

methodology.  

The motivation for this study is the need to efficiently monitor the resident population of 

bottlenose dolphins found on the eastern coast of Scotland. This population is protected by a 

variety of UK and EU regulations including the designation of a Special Area of 

Conservation (SAC) in the Moray Firth. However, the population expanded its range in the 

1990s (Wilson et al., 2004, Cheney et al., 2014) and the proportion of the population using 

the SAC is decreasing (Cheney et al., 2018). Additionally, the construction of large offshore 

wind farms is planned off Eastern Scotland for the coming years. Determining what effect, if 

any, the construction, operation, and decommissioning of these structures will have on these 
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animals is important for long term conservation goals. Thus, a better understanding of how 

the population uses the entire Eastern Scottish coast habitat is needed. 

 One of the primary challenges to meet this objective using passive acoustic monitoring 

techniques lies in discriminating between target (bottlenose dolphin) and non-target species 

known to occur in the area. These include common dolphin, Risso’s dolphin and white 

beaked dolphin (Lagenorhynchus albirostris) (Weir et al., 2007, Quick et al., 2014). 

Thompson et al. (2013a) addressed the multi-species concern by integrating visual 

observations of various dolphin species and echolocation click detections from C-PODs. In 

their study, effort-controlled visual survey data from 1980 through 2010 were combined with 

up to three seasons worth of C-POD detections from the Moray Firth. Results from their 

study strongly suggested that bottlenose dolphins primarily occupy the nearshore areas (<10 

km from the coast) within the inner Moray Firth while a greater diversity of dolphin species 

were found in the offshore waters.  

Discriminating between any dolphin species in C-POD data would represent a major step 

forward in the application of such systems in multi-species contexts. This challenge of 

species discrimination has been recognized and approached by researchers working with a 

similar group of species in Irish waters (Robbins et al., 2016). In that study the authors used 

multi-dimensional scaling techniques to try and discriminate between visually-confirmed 

Risso’s, common and bottlenose dolphin detections in C-POD data. The authors found that 

the limited metrics produced by the C-POD system in combination with their own post-

processing metrics were insufficient to classify detections to species. This result is 

unsurprising given the difficulty in discriminating between common and bottlenose dolphin 

clicks even with continuous, full-spectrum recordings (Soldevilla et al., 2008, Roch et al., 

2011b).   

In the present study I investigated the potential for discriminating between echolocation 

clicks with distinct peaks and notches, hereafter termed “frequency banded” and those that, 

when averaged across encounters, lack distinct peaks and troughs in spectral energy below 48 

kHz, referred to hereafter as “broadband”. I denote this task as “categorization” rather than 

classification as I am not seeking to identify the exact species producing the click-types. I 

used data from acoustic recorders deployed alongside C-PODs to build a model that 

discriminated between broadband and frequency-banded clicks in C-POD data, and then used 
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this model to classify data from a larger set of C-PODs for which there was no co-deployed 

recorder.  

2.2.  Methods 

2.2.1.  Data Collection  

Acoustic recordings and C-POD logs from the first year of the ECoMMAS study (2013) were 

used in the analysis of this chapter. Because ten of the C-PODs were deployed on the same 

moorings as the SM2Ms, I was able to compare the continuous recordings from the SM2Ms, 

from which I could identify broadband and frequency banded echolocation click trains, to the 

C-POD detection logs. The C-PODs logged continuously from the deployment date, while 

SM2Ms were programmed to commence recording on August 13th, 2013 with a 10 minute 

on/off duty cycle and sampling rate of 96 kHz and 12 dB gain. All units recorded until their 

battery capacity was exhausted and were recovered between October and November of the 

same year, as weather allowed (Table 2-1). For units displaced during the deployment, the C-

POD outputs related to temperature, angle of the device and sonar detection were examined 

to determine the date on which the device was moved out of position.  All data from midnight 

of that day onwards were removed from the analysis.   
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      Training Data 

Location name 

(SM=SM2M unit) 

Data 

From  

Data 

To  

# 

Days 

# Click 

Trains  
# Encounters 

Broadband  Frequency- 

banded 

Latheron 05 31/07 23/10 84 480 26  337 (9) 

Latheron 05 SM 10/08 14/10 65     

Latheron 10 20/06 09/10 111 71 3   

Latheron 15 20/06 07/10 109 36 4   

Helmsdale 10 20/06 10/10 112 144 6   

Helmsdale 05 01/08 22/10 82 0 0   

Helmsdale 15 20/06 06/10 108 5 1   

Helmsdale 15 SM 10/08 25/09 46     

Cromarty 05 01/08 21/10 81 3680 199   

Cromarty 10 01/08 25/08 24 105 9   

Cromarty 15 01/08 23/10 83 23 4 22 (2)  

Cromarty 15 SM 10/08 15/10 66     

Spey Bay 05 24/07 22/10 90 330 24   

Spey Bay 10 20/06 06/10 108 0 0   

Spey Bay 10 SM 10/08 12/10 63     

Spey Bay 15 - - -     

Fraserburgh 05 25/07 24/10 91 859 21  303 (8) 

Fraserburgh 05 SM 10/08 07/10 58     

Fraserburgh 10 - - -     

Fraserburgh 15 - - -     

Cruden Bay 05 26/07 26/11 123 910 29   

Cruden Bay 05 SM 10/08 12/10 63     

Cruden Bay 10 - - -     

Cruden Bay 15 19/06 26/11 160 541 31   

Stonehaven 05 26/07 26/11 123 955 34 226 (7) 32 (2) 

Table 2-1 Locations, dates and number of days for which usable data were obtained for all deployed devices 

(SM suffix indicates SM2M units, all others are C-PODs). For C-PODs, the number of click trains logged, the 

number of acoustic encounters, and the number of broadband or frequency banded click trains contributed to the 

training dataset, along with – in parentheses – the number of unique days represented by that contribution, are 

also given All dates are dd/mm in 2013. Five C-POD deployments that returned no usable data are omitted – 

Spey Bay 15, Fraserburgh 10 and 15, Cruden Bay 10, and Stonehaven 10. 
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Stonehaven 05 SM 10/08 03/10 54     

Stonehaven 10 - - -     

Stonehaven 15 19/06 26/11 160 1047 77   

Arbroath 05 27/07 26/10 91 224 16   

Arbroath 10 27/07 25/10 90 20 2   

Arbroath 10 SM 10/08 11/10 62     

Arbroath 15 21/06 27/11 159 887 44   

Fife Ness 05 27/07 28/10 93 183 22   

Fife Ness10 27/07 28/10 93 0 0   

Fife Ness 10 SM 10/08 18/10 69     

Fife Ness 15 21/06 10/10 111 55 3   

St Abbs 05 27/07 27/11 123 55 6 5 (1)  

St Abbs 05 SM 10/08 03/10 54     

St Abbs 10 27/07 25/10 90 71 4   

St Abbs 15 20/06 27/11 160 72 8   

 

 

2.2.2.  C-POD Click Detection and Feature Extraction  

C-POD data were downloaded and processed for echolocation click detections using the 

manufacturer’s software and accompanying KERNO classifier (v2.042). The KERNO 

software classifies impulsive detections into one of the following four groups: “Sonar”, 

“NBHF” (narrowband high-frequency click trains often indicative of porpoise species), 

“Other Cet” (wideband clicks indicative of most dolphin species) and “Unk” (representing 

unclassified/unknown clicks). The C-POD software and KERNO classifier group “NBHF” 

and “Other Cet” signals into short “click trains” based on temporal proximity and assign a 

“click train ID” to each such group.  The manufacturer states that this detection and 

classification system allows multiple clicking animals to be differentiated from each other. 

The KERNO classifier also assigns a quality class to each detection (high, moderate, or low) 

indicating the probability that the click train was correctly discriminated from other “non-

train” sources such as snapping shrimp or rain (Tregenza, 2016).  

For this analysis, all “high” or “moderate” quality “Other Cet” detections were selected, and 

the accompanying click features, referred to as “click details” by the manufacturer, were 

exported to a text file. For each click train (i.e. all clicks with the same “click train ID”), I 
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also calculated the median inter-click-interval, mean dominant zero-crossing frequency, mean 

bandwidth and mean click duration (NCycles).  

2.2.3.  C-POD Data Quality 

Initial data exploration was undertaken to identify collinearity between click train features 

documented by the C-POD. The distributions of all train features were visually inspected, and 

I excluded all click trains for which there were insufficient data to produce reliable models 

(i.e. the tails of the distributions). Thus, all click trains with median inter-click-intervals 

greater than or equal to 0.4 seconds, mean click durations greater than or equal to 11 cycles 

(NCycles), mean bandwidths greater than or equal to 7 (manufacturers arbitrary units), or 

dominant frequencies less than 30 kHz were excluded from the categorization portion of the 

analysis (resulting in the removal of ~1% of all logged click trains).  

I then grouped C-POD click trains into “acoustic encounters,” consisting of all click trains on 

the same C-POD occurring within 30 minutes of another click train (Thompson et al., 2011a). 

In this process I assumed that each encounter was produced by the same animal or group of 

animals and that groups of acoustically dissimilar species (e.g., Risso’s and bottlenose 

dolphins) were not represented in the data. This is consistent with visual observations 

indicating that mixed odontocete groups, especially any containing bottlenose dolphins, are 

extremely rare in Scottish coastal waters (Ross and Wilson, 1996, Hammond et al., 2002b). 

 

2.2.4.  Identifying Broadband and Frequency Banded Click Trains in the C-POD Detections  

The few click features documented by the C-POD system are not sufficient to allow users to 

visually discriminate between click trains matching the broadband and frequency banded 

categories described above. Thus, I used continuous recordings to identify time periods with 

clearly identifiable bouts of broadband or frequency banded click trains. These periods were 

compared to the click log produced by the C-POD at the same mooring. Where echolocation 

click trains were present on both instruments at the same time, I assumed that the 

echolocation click trains had originated from the same animal or group of animals.  

Data from the SM devices were downloaded, converted to spectrograms (1024 point fast-

Fourier transform, 10.67 ms window, and 50% overlap) and processed for echolocation clicks 
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using PAMGuard click detecting software (Gillespie et al., 2009). Click detection trigger was 

set to 10 dB and click detections were manually scanned for the presence of high signal-to-

noise echolocation click encounters and annotated as such. Echolocation clicks from high 

SNR encounters containing at least 500 clicks were extracted and the average spectrum was 

inspected for the presence of either distinct peaks or notches in energy indicative of white-

beaked or Risso’s dolphins or unimodal energy between 20 and 40 kHz suggestive of 

bottlenose and/or common dolphins.  While visually inspecting the continuous recordings for 

high SNR frequency banded click trains, I did not seek an exact match the location of the 

spectral energies as reported by Calderan et al. (2013) or Soldevilla et al. (2008). Both 

environment and recording equipment impart site and equipment-specific filter effects on the 

received signals (Roch et al., 2015), so I expected some variation in the received 

characteristics of echolocation clicks. Neither did I attempt to differentiate between species 

within the two click encounter types (e.g. common vs bottlenose dolphin). Instead encounters 

where the average spectrum contained at least two peaks in energy between 35 and 43 kHz 

and with >3 dB peak-to-peak difference between successive peaks and notches were 

annotated as “frequency banded”. Click encounters for which there was a unimodal peak in 

energy between 20 and 30 kHz were annotated as broadband (Figure 2-1). 
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The times of acoustic encounters documented by the C-PODs were compared with the times 

of broadband and frequency banded click trains observed in the continuous SM2M 

recordings. The train features from “high” or “moderate” quality “other cetacean” trains 

coinciding with visually confirmed broadband and frequency banded encounters in the 

continuous recordings were used to build and train categorization models.  

To increase the volume of C-POD click trains from broadband encounters, click train features 

from the Cromarty 05 C-POD, for which there was no adjacent SM2M recorder, were 

randomly selected for inclusion in the broadband training dataset. Despite the lack of 

concurrent acoustic recordings, I am confident that the vast majority of the click trains logged 

by the C-POD at this location were produced by bottlenose dolphins and as such represented 

my broadband category. The area in and around the Cromarty and inner Moray Firths has 

Figure 2-1 Spectrograms (left; fs 96  kHz,, 10.67 ms Hann window, 50% overlap) and concatenated click spectrums 

(right) of echolocation clicks within from frequency banded (top) and broadband (bottom) acoustic encounters. Top 

row: 10 seconds of recordings from a frequency banded encounter consistent with white beaked and/or Risso’s 

dolphins and 3000 concatenated echolocation clicks from the frequency banded encounter. Bottom row: 10 seconds 

of recordings from a broadband encounter containing whistles and echolocation clicks consistent with bottlenose 

and/or common dolphins. 
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been continuously surveyed for the last 25 years and is a well-known bottlenose dolphin 

habitat (Hammond and Thompson, 1991, Wilson et al., 2004, Cheney et al., 2013, Thompson 

et al., 2015, Pirotta et al., 2015b). These studies strongly suggest that no dolphin species 

besides bottlenose regularly occupy the area. To further reduce the probability of including 

frequency banded click trains in the broadband training data, only click trains from the month 

of August, coinciding with timings from the majority of visual surveys, were added to the 

training dataset. 

Obtaining a representative sample of echolocation click behaviors is important in order to 

produce an accurate categorization system. Of the 1195 C-POD click trains that could be 

linked to trains in the adjacent SM recordings only 270 (22%) were broadband. I added only 

as many click trains from the Cromarty 05 site as needed to provide an equal number of 

broadband and frequency banded click trains for the categorization task.  I could have 

reasonably included all of the data from the Cromarty 05 C-POD based on the overwhelming 

evidence showing that the area is primarily occupied by bottlenose dolphins. However, I 

chose to limit the number of auxiliary click trains included from this C-POD for two reasons. 

First, the Cromarty 05 unit contained almost as many “OtherCet” click trains as the other 25 

recovered C-PODs combined. Therefore, I sought to reduce potential bias introduced by site-

specific behavior present in the data from that unit. Second, the Cromarty Firth is a known 

“hotspot” for bottlenose dolphin foraging (Hastie et al., 2004b, Hastie et al., 2006, Pirotta et 

al., 2014b). Thus, I would expect to document more clicks with shorter inter-click-interval 

(reflecting the production terminal buzzes characteristic of prey capture attempts) near that 

location (Pirotta et al., 2014b). Including an excessive number of buzzes in the training data 

would introduce bias towards low ICI’s within the broadband category.  

2.2.5.  Model-based Prediction and Categorization  

The above procedures generated a set of C-POD click trains, with measured features, for 

which I was reasonably confident of the species group producing the clicks. I used these 

acoustically verified click trains to build and characterize a binomial family generalized 

additive model (GAM) that output the predicted probability that each click train consisted of 

broadband clicks. The covariates for this model included: median inter-click-interval, mean 

zero-crossing frequency, mean click bandwidth and mean click duration. The GAM 

categorization model was created in R version 3.2.4 revised (R Core Team, 2016) with the 

MGCV package version 1.8-12 (Wood, 2006). 
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Here, my goal was to build and select the GAM model best able to discriminate between the 

two echolocation click train encounters documented on the eastern Scottish coast. Thus, a k-

fold cross validation approach was used to characterize candidate GAM models and provide 

parameters for final model selection.  

 

 

 

For model comparison, all candidate GAMs were assessed using 200 iterations of a 5-fold 

cross-validation procedure and train categorization threshold of 0.425 (Tt; Equation 2-1). 

Thus, all click trains with predicted P exceeding 0.925 were categorized as broadband and 

those less than 0.075 were categorized as frequency banded (Figure 2-2). Click trains with 

predicted probabilities between 0.075 and 0.925 were considered too ambiguous to categorize 

and were therefore denoted as “unclassified”.  

 

Figure 2-2 Predicted probability of a C-POD echolocation click train being associated with broadband 

encounter from the adjacent recordings (P, Equation 2-1). Points represent C-POD click trains associated 

with broadband (black) and frequency banded (grey) click encounters in the adjacent SM2M recordings. 

Horizontal lines represent the minimum classification threshold (Tt, Equation 2-2) above and below which 

click trains were classified as broadband and frequency banded, respectively. Click trains failing to meet the 

threshold (i.e. between the lines) were deemed too ambiguous to classify and left uncategorized. 
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 𝑇𝑟𝑎𝑖𝑛 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝑃) = {

  𝑃 ≥ 0.5 + 𝑇𝑡  → 𝐵𝑟𝑜𝑎𝑑𝑏𝑎𝑛𝑑
  𝑃 ≤ 0.5 − 𝑇𝑡 → 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑏𝑎𝑛𝑑𝑒𝑑

0.5 − 𝑇𝑡 < 𝑃 < 0.5 + 𝑇𝑡 → 𝑈𝑛𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑
 Equation 2-1 

 

For each model iteration 1/5th of the verified C-POD click trains were randomly selected and 

used as the validation set. The remaining 4/5ths of the verified C-POD click trains were used 

to build the GAM models. In this portion of the analysis acoustic encounters were not 

considered and all verified click trains were treated as independent. For each iteration, I 

calculated the following metrics: proportion of broadband and frequency banded click trains 

that met either categorization threshold (proportion classified), the proportion of correctly 

categorized click trains (correct categorization rate), and the proportion of incorrectly 

categorized click trains (incorrect categorization rate). Performance values for each GAM 

were calculated using the same train threshold for all models (Tt, Equation 2-1). I then 

calculated the mean and standard deviation of all performance metrics across the 200 

iterations and used these values to select the model meeting my selection criteria.   

Model selection focused on reducing the proportion of frequency banded click trains 

incorrectly categorized as broadband, and thereby minimize the chances of artificially 

inflating the bottlenose dolphin acoustic occupancy rates throughout the survey area. I also 

sought to categorize the highest proportion of click trains possible, regardless of type. Thus, 

my model selection criterion (SC; Equation 2-3) was defined as 

 𝑆𝐶 = 3𝐹𝑃𝑓 + 𝑈 Equation 2-2 

 

 where FPf was the false positive rate for frequency banded click trains and U was the 

proportion of uncategorized click trains. I introduce a scalar value of three representing my 

qualitative decision to penalize frequency banded click trains incorrectly categorized as 

broadband over click trains left uncategorized. The selection criterion was calculated for all 

candidate models and the GAM with the lowest criterion score was used to predict the 

probability that each click train was comprised of broadband clicks. 
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2.2.6.  Encounter Likelihood  

By itself, the GAM model could not account for the fact that click trains recorded in close 

succession were most likely produced by the same individual or group of animals. To 

incorporate this information and increase the proportion of categorized click trains, I 

calculated the joint likelihood of each acoustic encounter by taking the product of all GAM 

predictions within the acoustic encounter. I then calculated the joint likelihood that all click 

trains comprising each encounter were either broadband or frequency banded. The two 

likelihoods were then combined into a likelihood ratio (LR; Equation 2-3) calculated as   

 𝐿𝑅 =
∏ 𝑃𝑖
𝑛
𝑖=1

∏ (1−𝑃𝑖)
𝑛
𝑖=1

  Equation 2-3 

 

where Pi is the predicted probability from the GAM categorization model that the ith of n 

click trains in the acoustic encounter was broadband. Since the model was binary, the 

likelihood that an encounter was comprised of frequency banded click trains was calculated 

by simply replacing Pi with (1 - Pi) to give the denominator of Equation 2-3. As with the 

click train analysis, a minimum likelihood encounter threshold (Te;  Equation 2-4) was chosen 

above and below which all trains within acoustic encounters were categorized as broadband 

or frequency banded:  

 

 𝐸𝑛𝑐𝑜𝑢𝑛𝑡𝑒𝑟 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 =

{
 

 
𝐵𝑟𝑜𝑎𝑑𝑏𝑎𝑛𝑑, 𝐿𝑅 ≥  𝑇𝑒

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝐵𝑎𝑛𝑑𝑒𝑑, 𝐿𝑅 ≤ 1 /𝑇 𝑒

𝑈𝑛𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑,
1

 𝑇𝑒
<  𝐿𝑅 <  𝑇𝑒

 Equation 2-4 

 

 

In this portion of the analysis I therefore needed to choose a minimum likelihood threshold 

(Te) that balanced the risk of incorrectly classifying encounters against the risk of failing to 

classify most encounters. I compared the encounter categorization produced by the likelihood 
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ratios to the validated training data to determine the correct and incorrect encounter 

classification rates. Through a process of trial and error I found that Te=5, so that the 

evidence had to be five times as strong for one option than the other for a positive 

classification to be made, produced the optimal balance of maximizing classification rates 

while minimizing classification errors. Thus, all encounters with likelihood ratios above 5 

were classified as broadband and encounters with likelihood ratios below 1/5 were classified 

as frequency banded. All click trains from encounters with likelihood ratios (LR) between 1/5 

and 5 were deemed too ambiguous for categorization and were left unclassified. Finally, the 

GAM and the encounter analysis were applied to the full C-POD data set for which 

simultaneous acoustic recordings were not available.  

2.3.  Results 

2.3.1.  Echolocation Click Encounters in C-PODs and Continuous Recordings 

All SM2M units were successfully recovered in late 2013, but four C-PODs were not 

recovered, while four others were on moorings that had been displaced, or had stopped 

recording early, and subsequently excluded from the analysis (Table 2-1). The number of 

usable recording days varied considerably between units based on battery life and/or 

displacement during the survey period. The median number of usable days for the C-PODs 

was 108 (range 24-160). Due to the increased power and storage requirements, the SM2M 

units recorded for fewer days than the C-PODs, with a median number of recording days of 

62.5 (range 46 -69; Table 2-1). 

Together the C-PODs identified 10,753 high or moderate quality “Other Cet” click trains, 

representing undetermined delphinid species (Table 2-1). The number of “Other Cet” click 

trains logged by each C-POD varied from zero (recorded by the Helmsdale 10, Spey Bay 10 

and Fife Ness 10 units; Figure 2-1) to a maximum of 3662 (recorded by the Cromarty 05 

unit). Of these, 1% represented click trains from the tails of the click feature distributions and 

were therefore excluded from the analysis. Data exploration indicated that dominant 

frequency and end frequency were collinear and so the latter was excluded from the 

categorization analysis.  
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2.3.2.  C-POD Echolocation Click Features  

Five of the 10 C-PODs deployed with adjacent SM2Ms registered click trains that were also 

identifiable in the full spectrum SM2M recordings (Table 2-1). The lack of concurrent 

detections in the other five C-POD/SM2M pairs could partly be attributed to the very few 

echolocation click detections by either the SM2M or the C-POD at those locations (e.g., Spey 

Bay and Fife Ness 10). In other cases, such as Cruden Bay 05, the failure to detect clicks on 

the adjacent SM2M likely arose from the duty cycle of the SM2M units which precluded 

visual categorization of the echolocation clicks. Last, differences in detection probability 

between the C-PODs and SM2M units may result in fewer click trains overall being recorded 

by the C-PODs. 

In total, 925 click trains detected by the KERNO classifier occurred concurrently with 

visually confirmed broadband (n=253) or frequency banded (n=672) click train encounters in 

the continuous recordings. The vast majority of verifiable broadband click trains (89%) were 

extracted from the Stonehaven 05 deployment. This distribution was therefore not 

representative of either the spatial or temporal scale of the survey. To obtain a more 

representative sample of broadband click features, 419 click trains were randomly selected 

from the Cromarty 05 C-POD, where long term sighting records confirm the overwhelming 

presence of bottlenose dolphins and added to the broadband training. Four hundred and 

nineteen were used to include an equal number of frequency banded and broadband click 

trains with which I built the GAM for categorization (see Methods).  

2.3.3.  Categorization Model Performance 

The model with the best categorization score was a tensor product smooth with mean zero-

crossing frequency, mean bandwidth and median inter-click interval. Tensor smooths are 

multi-variate functions that allow for interactions between inputs with different units (e.g. 

frequency in kHz, and Number of Cycles). Five-fold cross validation resulted in a mean false 

categorization rate of 1.4% for verified frequency banded click trains and, on average, 

categorized 40% of the training data (Figure 2-3, Table 2-1). 
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Broadband Click Trains Frequency Banded Click Trains     

Formula 
TCR FCR TCR FCR Unclassified 

 Selection 

Criterion 

Speciesid~te(MedICI, MeanNCycles, Meanzfc) 0.49 ± 0.02 0.02 ± 0.01 0.29 ± 0.02 0.01 ± 0.01 0.60 ± 0.01 0.638 

Speciesid~te(MedICI, MeanNCycles, Meanzfc)+s(MeanBW) 0.49 ± 0.02 0.02 ± 0.01 0.29 ± 0.02 0.02 ± 0.01 0.59 ± 0.01 0.640 

Speciesid~te(MedICI, MeanNCycles, MeanBW)+s(Meanzfc) 0.48 ± 0.03 0.03 ± 0.01 0.28 ± 0.04 0.02 ± 0.01 0.60 ± 0.03 0.644 

Speciesid~te(MedICI, MeanNCycles, MeanBW, Meanzfc) 0.47 ± 0.03 0.03 ± 0.01 0.27 ± 0.03 0.02 ± 0.01 0.61 ± 0.02 0.658 

Speciesid~te(MedICI, MeanNCycles, MeanBW) 0.47 ± 0.03 0.03 ± 0.01 0.27 ± 0.03 0.02 ± 0.01 0.61 ± 0.02 0.659 

Speciesid~te(MedICI, MeanBW, Meanzfc)+s(MeanNCycles) 0.52 ± 0.03 0.02 ± 0.02 0.20 ± 0.05 0.02 ± 0.01 0.62 ± 0.05 0.681 

Speciesid~te(MedICI,MeanNCycles)+s(MeanBW)+s(Meanzfc) 0.48 ± 0.03 0.02 ± 0.01 0.19 ± 0.03 0.02 ± 0.01 0.65 ± 0.02 0.693 

Speciesid~s(MedICI)+te(MeanNCycles, MeanBW, Meanzfc) 0.48 ± 0.03 0.01 ± 0.01 0.21 ± 0.03 0.02 ± 0.01 0.64 ± 0.03 0.693 

Speciesid~te(MedICI, MeanNCycles)+s(Meanzfc) 0.49 ± 0.03 0.02 ± 0.01 0.19 ± 0.03 0.02 ± 0.01 0.65 ± 0.02 0.698 

Speciesid~te(MedICI, MeanNCycles)+s(MeanBW) 0.48 ± 0.03 0.02 ± 0.01 0.18 ± 0.02 0.02 ± 0.01 0.65 ± 0.02 0.704 

Speciesid~s(MedICI)+te(MeanNCycles, Meanzfc)+s(MeanBW) 0.48 ± 0.03 0.01 ± 0.01 0.18 ± 0.02 0.02 ± 0.01 0.66 ± 0.02 0.717 

Speciesid~te(MeanNCycles, Meanzfc)+s(MedICI) 0.47 ± 0.03 0.01 ± 0 0.16 ± 0.02 0.02 ± 0.01 0.67 ± 0.02 0.728 

Speciesid~te(MedICI, Meanzfc)+s(MeanNCycles)+s(MeanBW) 0.47 ± 0.02 0.01 ± 0.01 0.14 ± 0.02 0.02 ± 0.01 0.68 ± 0.02 0.729 

Speciesid~s(MedICI)+te(MeanNCycles, MeanBW)+s(Meanzfc) 0.47 ± 0.03 0.01 ± 0.01 0.14 ± 0.03 0.02 ± 0.01 0.68 ± 0.02 0.734 

Speciesid~s(MedICI)+s(MeanNCycles)+te(Meanzfc, MeanBW) 0.46 ± 0.03 0.01 ± 0.01 0.15 ± 0.03 0.02 ± 0.01 0.68 ± 0.02 0.735 

Table 2-2 Mean and standard deviation for the true classification rate (TCR), false classification rate (FCR), and proportion of unclassified click trains for each model as estimated by the k-fold cross 

validation. Mean and standard deviation of the GAM classification model performance metrics for the top 15 models using a classification threshold (Tt, Equation 2-2) of ±0.425.  
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Parametric Coefficients 

Formula: ClickTrain~te( MedICI, MeanNCycles, Meanzfc, 

family=Binomial, link=logit) 

Intercept Estimate  Standard Error z-value Pr(>|z|) 

-0.3500 0.1254   -2.791 0.00525 

Approximate Significance of Smooth Terms 

Est. df Reference df Chi squared P-value 

69.28   79.31   612 <.001 

 

 

Table 2-3 Results of the binomial GAM used to analyze click type (ClickTrain) using a tensor smooth of median inter-click 

interval (MedICI), mean number of cycles in clicks (MeanNCycles) and mean zero crossing frequency (meanzfc). 

Figure 2-3 Two dimensional representations of the four-dimensional  tensor-smooth binomial classification 

GAM.  Shade indicates the probability that a given click train was broadband (black) or frequency banded 

(white) based on the mean inter-click-interval (Median ICI), mean number of cycles (e.g. duration) of the 

clicks, and mean zero-crossing frequency (Mean fZC) of the click trains. Points represent training data for 

broadband (black) and frequency banded (light gray) click trains. 
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When applied to the full C-POD dataset (minus the training data), the model categorized a 

total of 3968 (37%) of the click trains, of which 2737 were identified as broadband and 1231 

frequency banded. The remaining 63% of the click trains failed to meet either categorization 

threshold (Tt). As expected, the proportion of click train types varied across the deployment 

sites. C-PODs near the inner Moray Firth (Cromarty and Spey Bay) contained primarily 

broadband click trains and units to the north and south (Helmsdale and Fraserburgh) 

contained primarily frequency banded click trains. Uncategorized click trains were present on 

all units and, with the exception of the Cromarty locations, generally represented the majority 

of the click trains detected at each deployment site (Figure 2-4).  
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Figure 2-4 Upper Panel: The proportion of click trains classified as broadband (black), frequency banded (gray) 

or unknown (white) by the GAM classification model with a minimum classification threshold of ±0.425(Tt  

Equation 2-2).  Lower Panel: The proportion of click trains classified as broadband, frequency banded or 

unknown by the combination of the GAM click-train classification and the encounter likelihood ratio. Asterisks 

indicate joint C-POD/SM2M deployment locations from which training data were derived. Displaced units (SpB 

05, Fra 10, Fra 15, Cru 10, Sto 10) not shown. 

 

 

 

2.3.4.  Encounter Likelihood  

The 10,753 click trains documented by the 26 recovered C-PODs represented 573 encounters. 

Twelve encounters coincided with visually verified broadband trains recorded by the adjacent 

SM2M recordings and 27 encounters coincided with visually verified frequency-banded click 

trains in the SM2M recordings (Table 2-1). Using a minimum likelihood ratio of five (Te = 5), 

10 of the verified broadband click-train encounters were correctly categorized, two were 

incorrectly categorized as frequency banded encounters and none were left unclassified, 

while 24 of the 27 verified frequency banded encounters were correctly categorized, none 

were incorrectly categorized and three were left unclassified.  When the likelihood model was 

applied to the remaining data, 264 (43%) total encounters were categorized as broadband, 

273 (45%) as frequency banded and the remaining 75 (12%) were left unclassified (  

The highest daily acoustic occupancy rates were observed at the Cromarty 05 deployment 

location, with other peaks around the Latheron, Fraserburgh, Arbroath and Fife Ness sites 

(Figure 2-5). No encounters of either type were documented by the Helmsdale 10, Spey Bay 

10 and Fife Ness 10 units.  The daily acoustic occupancy rates of broadband and frequency 

banded click encounters differed between locations. Deployments near the inner Moray Firth 

showed higher daily acoustic occupancy rates for broadband click encounters than frequency 

banded click encounters while the converse was true for the Latheron, Fraserburgh and 

Cruden Bay sites.  These results are consistent with long-term studies in the area that have 

shown regular bottlenose dolphin presence in and around the SAC (Hammond and 

Thompson, 1991, Wilson et al., 1997b, Quick et al., 2014). Interestingly, encounters in 
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Stonehaven and Arbroath showed similar rates of detection positive days for both broadband 

and frequency-banded click types, indicating the presence of multiple species.   

 

 

2.4.  Discussion 

The categorization results reported here for C-POD detections are consistent with the visual 

surveys available for areas outside of the Moray Firth. This study identified primarily 

broadband encounters in the data from all three Cromarty C-PODs. This finding is 

unsurprising given that a portion of the broadband training detections were derived from the 

Cromarty 05 unit. However, the prevalence of broadband click trains at the other two 

Cromarty deployment sites is consistent with previous studies in the area.   Based on the long 

history of visual observations in the area, it is reasonable to assume that the click trains 

classified as frequency banded at the site represented misclassifications. Similarly, broadband 

encounters were more prevalent than frequency banded click trains in the C-POD detections 

at the Fife Ness and St Abbs sites, where bottlenose dolphins are the most frequently sighted 

species (Cheney et al., 2013). Approximately equal numbers of broadband and frequency 

banded detections occurred through the Grampian region (Cruden Bay, Stonehaven and 

Arbroath), which agrees well with  reported sighting rates for bottlenose and white-beaked 

dolphins between Cruden Bay and Stonehaven (Anderwald et al., 2010). Similarly, Weir et 

al. (2007) report multiple sightings of white-beaked dolphins in and around the Aberdeen 

area (between Cruden Bay and Stonehaven).  

Daily acoustic occupancy rates from the C-POD data suggest a degree of spatial partitioning 

between species producing broadband and frequency-banded clicks. Broadband click 

encounters comprised the majority of the detection positive days logged by the C-PODs 

deployed in the inner Moray Firth (Cromarty). Contrary to my expectations, the acoustic 

encounters on the Helmsdale C-PODs, which were located within the Moray Firth SAC, were 

dominated by frequency banded click trains. This suggests that, over the 2013 deployment 

period, bottlenose dolphins were not the most common species using this portion of the SAC.  
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Outside of the SAC, both broadband and frequency banded click encounters were frequently 

observed. However, for each deployment group (e.g., Fife Ness, Arbroath etc.) broadband 

click trains were more common in the nearshore (~5 km) than the offshore deployment sites 

(~10 and 15 km). This is consistent with previous studies that suggest bottlenose dolphins 

preferentially use nearshore areas (Quick et al., 2014) . The Stonehaven C-PODs contained a 

Figure 2-5 Daily occupancy of broadband echolocation click encounters (blue), frequency banded echolocation 

click encounters (yellow) and uncategorized echolocation click train encounters (dark gray). Gray blocks indicate 

times when the C-PODs were recording and black rectangles indicate periods for which there were simultaneous 

SM2M recordings. 
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mix of broadband and frequency banded encounters, matching visual surveys indicating that 

both bottlenose and white beaked dolphins are commonly sighted in that area (Weir et al., 

2007, Anderwald et al., 2010). These results hint at the possibility of areas along the eastern 

Scottish coast having different ecological importance for the two groups. This has been 

confirmed for bottlenose dolphins in the inner Moray Firth where foraging buzzes are more 

frequently documented near known “hotspots” (Hastie et al., 2004b, Pirotta et al., 2014b). 

However, fewer data are available for the other species present in the area and/or outside of 

the Moray Firth. 

The similarity between my results and previously published sightings data indicates that the 

C-POD encounter categorization system presented here works well for eastern Scottish 

waters. However, it would be inappropriate to directly apply this categorization tool to C-

POD detections collected from other regions. Recent classification studies on similar species 

groups using full spectrum recording (fs = 200 kHz) have shown that deployment location 

and instrument type can adversely affect the performance of click train classifiers (Roch et 

al., 2015). It is unclear whether this might be the case with C-POD data for which fewer click 

features are collected. While it is possible that the zero-crossing method combined with the 

limited click parameters are more robust to site and/or instrument specific variations, it could 

just as easily be the case that the limited click features recorded by the C-PODs are more 

susceptible to such variations. Thus, future studies seeking to use this classifier or these 

methods must not omit a validation process. Ideally this would involve comparing C-POD 

detections with concurrent visual sightings (e.g., Roberts and Read 2014, Robbins et al., 

2015, Nuutilia et al. 2013). However, where visual observations are not possible or practical, 

pairing C-PODs with continuous recorders is an alternative method.  

The use of C-POD data processed only with the KERNO classifier is justified in surveys 

where the researchers can be confident that the majority of detections represent single 

dolphin and/or porpoise species. This is the case for the dolphin detections within the inner 

Moray Firth where bottlenose dolphins represent the principle dolphin species. Similarly, 

throughout the North Sea, harbor porpoise (Phocoena phocoena) represent the only resident 

cetacean capable of producing “NBHF” clicks and are, therefore, unlikely to be confused 

with other species. In such contexts, C-PODs and similar devices can directly inform studies 

of cetacean abundance and behavior (Jaramillo-Legorreta and Rojas-Bracho, 2011, Kyhn et 

al., 2012, Brookes et al., 2013, Wilson et al., 2013, Pirotta et al., 2014b, Williamson et al., 

2016). However, where multiple odontocete species with similar click features are present, 



Increasing the Taxonomic Resolution of Echolocation Click Loggers 

44 

 

additional methods are needed to increase taxonomic resolution. This study highlights the 

benefits of developing methods to increase taxonomic precision in detections from low-cost 

click loggers when full acoustic audits are impossible or impractical. This is especially 

pertinent given that C-PODs and their predecessor T-PODs are widely used for monitoring 

and mitigation associated with offshore industrial activities (Carstensen et al., 2006b, 

Scheidat et al., 2011).  

In this work I relied on several assumptions, but a key one was that all click trains detected 

by the C-PODs were produced by one of the four most common species seen in the area. C-

PODs are capable of recording echolocation clicks from all odontocetes with the exception of 

sperm whales (Physeter macrocephalus) for which the energy is below the sensitivity of the 

instruments (Dahne et al., 2013). This includes clicks from species that, while infrequent, are 

known to visit the eastern Scottish coast including killer whales (Orcinus orca), long-finned 

pilot whales (Globicephala melas), and Atlantic white sided dolphins (Lagenorhynchus 

acutus). Based on published click characteristics (Deecke et al., 2005, Eskesen et al., 2011), 

click trains from these species would likely be classified as broadband click encounters by 

this categorization system. Thus, it is possible that some of the “Other Cet” click trains 

detected by the C-PODs represented one or more of these species. However, previous visual 

surveys indicate that such species are infrequent visitors to the eastern Scottish coast and 

could therefore contribute only a trivial amount of noise to the encounter rates presented here. 

Regardless, the ambiguity in dolphin detections reiterates the need to inform acoustic-only 

methods with other sources of information about the study system. 

The interpretation of these results assumed that stable frequency banding, or the lack thereof, 

in echolocation clicks was diagnostic of the species-group producing them. This assumption 

is debated in the literature, with several authors providing evidence of species discrimination 

based on the spectral location of peaks and notches (Houser et al., 1999, Soldevilla et al., 

2008, Calderan et al., 2013), while others have postulated that spectral banding cannot be 

diagnostic of species (Wahlberg et al., 2011). While an in-depth analysis of this debate is 

outside of the scope of this study, careful consideration is prudent to understand the validity 

of the categorization analysis presented here.  Currently two hypotheses exist regarding how 

frequency banding might be produced. Wahlberg et al. (2011) and Rasmussen et al. (2004) 

measured on-axis clicks from free-ranging bottlenose and white sided dolphins, respectively. 

Both studies fitted a baffled piston model to the received clicks, and Wahlberg et al. (2011) 

suggested that the banding found in other species was attributed to the off-axis banding 
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effects dictated by the piston aperture size. However, these studies primarily analyzed clicks 

from on-axis angles and may therefore have missed the filter effects caused by the cranial 

anatomy. If this is the case then it does not preclude the independent documentation of stable 

spectral peaks and notches in the spectra of clicks recorded off-axis from a number of species 

with similar cranial morphology (Soldevilla et al., 2008, Au et al., 2012c).  

The off-axis spectral characteristics of echolcoation clicks have been measured for bottlenose 

dolphins. Au et al. (2012c) measured the entire biosonar field around captive bottlenose 

dolphins and found that, off-axis, echolocation clicks degraded into discrete pulses most 

likely produced by the phonic lips and internal reflections from within the animal’s head (Au 

et al., 2012c). Multiple pulses, when processed with an FFT or DFT algorithm, result in 

“ripples” in the spectrum consistent with the peaks and notches described by Soldevilla et al. 

(2008). However, as with sperm whales, the inter-pulse-interval in bottlenose dolphin 

echolocation clicks is highly sensitive to the off-axis angle (Goold, 1996). Therefore, when 

energy is averaged across multiple clicks collected from a variety of angles relative to the 

animal, the peaks and notches in spectral energy from this species become less distinct. 

Unfortunately, detailed studies of off-axis clicks from “frequency banded” species including 

Risso’s, white-beaked and white-sided dolphins are lacking. However, it is possible that 

differences in cranial morphology between the species groups could account for differences 

in the stability of spectral peaks and notches. For example, assuming the multi-pulse model of 

echolocation click propagation, more uniform path lengths between the phonic lips and 

melon for frequency banded species would result in consistent inter-pulse-intervals. This 

would subsequently lead to less variation in the spectral location in peak and notch energy for 

off-axis clicks in these species. Additional studies are needed to determine whether or not this 

is the case.  

Assuming the presence of stable spectral peaks and notches is diagnostic of species group, 

on-axis clicks will necessarily confound my ability to discriminate between broadband and 

frequency banded click trains in both the SM2M recordings and the C-POD encounter 

categorization model (Au et al., 1974, Au et al., 1999, Rasmussen and Miller, 2002, 

Rasmussen et al., 2004, Wahlberg et al., 2011, Au et al., 2012a). Moreover, if a 

disproportionately large selection of on-axis click trains were included in the training data, 

this would add considerable noise to the final categorization task. I limited this outcome by 

restricting the selection of C-POD click trains used to build the GAM to periods during which 
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more than 500 high SNR click trains could be identified in the adjacent SM2M recordings. 

This conservative selection criterion reduced the probability of creating a biased sample of 

clicks from any particular beam angle and thereby increased my confidence in the accuracy 

of the categorization task.  

Our categorization model included ICI as a predictor, yet it is known that odontocetes modify 

their inter-click-interval depending on their behavioral state (Johnson et al., 2006, Pirotta et 

al., 2014b, Janik, 2000b). This has the potential to introduce two confounding factors into the 

analysis presented here. First, there is question of whether ICI can be used to discriminate 

between different species (or groups) of dolphins. Additionally, there is the potential that the 

categorization task is describing behavior (e.g. foraging vs. travel) rather than species group. 

In addressing whether ICI can be used for species discrimination I note that the GAM model 

selected here used a tensor smooth across all three click train features recorded by the C-

POD. Thus, ICI itself did not predict the click-train category. Instead, prediction was based 

on the relationship between median ICI, mean zero-crossing frequency and mean bandwidth. 

Accordingly, while ICI itself has not been widely used to discriminate between species,  

Johnson et al. (2006) note that in Blainsville’s beaked whales (Mesoplodon densirostris) 

there is a species-specific relationship between ICI, peak frequency and bandwidth of the 

individual clicks. For this species, as the animal approaches a prey target decreasing ICIs are 

linked with decreasing click durations and increasing click bandwidths and peak frequencies. 

Thus, while inter click interval, bandwidth or peak frequency alone would be inadequate to 

categorize echolocation clicks, the relationship between these variables may be sufficiently 

different in some species to allow for categorization and/or classification. 

Concerning whether my sample of echolocation clicks represented a biased distribution of 

clicking behaviors (e.g. primarily click trains associated with foraging or travelling), I note 

that the training data were obtained from multiple times and locations throughout the survey. 

Therefore, click trains associated with foraging, travelling and socializing activities should all 

be represented in the training data for both echolocation click types (Pirotta et al., 2014b). K-

fold cross validation involved subsetting trains from multiple acoustic encounters. This 

methodology was necessary as very few acoustic encounters could be correlated with the 

adjacent SM2M recordings (10 broadband and 17 frequency banded encounters; Table 2-1). 

This also meant I was forced to train and test my model on the same data - with more verified 
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acoustic encounters I could have better characterized in vs. out of sample model performance, 

and this should still be the aim for future studies.  

Because there were so few verified encounters, I was not able to explore variance in 

classification accuracy. However, in the years following this initial study the C-PODs and 

SM units returned more data. While there were still insufficient encounters to run an entire k-

fold analysis, I was able to look at the proportion of encounters that were correctly and 

incorrectly identified by the classifier. Through this process I produced a confusion matrix 

used in Chapters 4 and 5 (see Appendix -2 for details). 

As with any acoustic classifier, the one I have developed is not immune to miscategorisation. 

There are several ways in which future studies may account for this misclassification error.  

First, the performance of this categorization system should be tailored to the research 

objectives by modifying encounter thresholds based on cost functions derived from study 

objectives. For example, in this study a single encounter threshold was set above and below 

which encounters were categorized as broadband or frequency banded. However, studies for 

which there is a high cost to false negative detections may wish to take a more conservative 

approach. In such cases, the likelihood categorization threshold (Te) could be either decreased 

or excluded altogether; opting instead to include all click trains with a GAM prediction score 

above a given threshold (Boyer et al., 2013) in the final analysis. Alternatively, future studies 

may seek to incorporate misclassification error directly into the analysis. Bayesian occupancy 

models, in particular, offer sufficient flexibility to allow for the incorporation of correct and 

incorrect classification rates across all categories (Miller et al., 2011).  

Provided the above considerations are kept in mind, it would be worthwhile to investigate 

whether this categorization system might perform comparably to C-POD detections collected 

from other habitats. Similar dolphin species compositions have been observed in western 

Scotland (MacLeod et al., 2005), Ireland (Robbins et al., 2016), California (Soldevilla et al., 

2008), and in the Mediterranean Sea (Frantzis and Herzing, 2002). If the C-POD 

categorization system derived here performs comparably in other habitats, it suggests a wider 

application of these GAM/likelihood methods may be possible.  
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2.5.  Conclusions 

This study indicates that it is possible to increase the taxonomic resolution of low-cost click 

loggers by using statistical methods to discriminate between acoustically similar species 

groups. By comparing continuous recordings to logged C-POD detections I was able to 

identify and discriminate between the broadband and frequency banded click trains produced 

by the two pairs of dolphin species most commonly encountered in Eastern Scottish coastal 

waters.  
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Chapter 3 

Ambient Noise and Transmission Loss Bias Acoustic Occupancy Rate 

Estimates 

3.1.  Introduction 

Over the past three decades, several survey methodologies have been developed to estimate 

the density, abundance and distribution patterns of plants and animals. Notable among these 

are distance sampling techniques (Harris et al., 2013), and occupancy analysis (Bailey et al., 

2007, Bailey et al., 2014b). In distance sampling, the range (distance) between the survey 

point or transect line and the survey targets (e.g. plants or animals) is measured and used to 

estimate the proportion of animals ‘missed’ by the survey as a function of range. This 

relationship is referred to as the detection function. Using this function, researchers can 

extrapolate the estimated organismal density or abundance over the survey area, assuming the 

survey data are a representative sample of the area. Distance sampling techniques are 

particularly well suited for visual transect surveys that provide excellent spatial coverage and 

the ability to measure or estimate the distance between the transect and the survey target 

(Thomisch et al., 2016, Gonzalez et al., 2017, Vacquié-Garcia et al., 2017). Occupancy 

surveys report only organismal presence or absence (but more appropriately detection or non-

detection) time and location and thus produce information on the proportion of time a site 

was occupied. Unlike distance sampling, occupancy studies do not incorporate explicit 

knowledge of the range between the target and the observer used to calculate the detection 

function. Instead, researchers collect covariate information and use this to estimate either the 

absolute survey effort or the relative survey effort between different locations/survey periods.  

As a result, occupancy studies often have less inferential power because the detection 

function is not part of the analysis; researchers need only know whether or not the species of 

interest was present. In contrast, when detection functions are available the precision of the 

analysis improves as the detection range of each instrument or observer can be accounted for. 

Detection functions as found in distance sampling and spatially explicit capture-recapture 

(SECR) are critical for density and abundance studies where the primary goal is to determine 

the number of animals present in a given area during the survey period. Occupancy studies 
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can provide habitat use information but cannot make the inferential step between presence to 

abundance when the area monitored is unknown.  

The relative ease of collecting occupancy information lends well to longitudinal studies 

which may modify survey methodology throughout the lifespan of the project. Finally, 

spatially explicit capture-recapture (Dawson and Efford, 2009) incorporates occupancy 

measures across multiple sensors to estimate detection functions. By determining the survey 

locations at which organisms were and were not detected, the maximum range over which the 

organism is likely to be detected (‘home range’) can be estimated. While SECR includes 

many of the positive attributes of both distance and occupancy analysis, detectors must be 

closely spaced such that each organism or cue is detected by multiple instruments (ideally 

half of the survey locations). For acoustic surveys of baleen whales, where propagation 

distances often exceed tens of kilometres, SECR sensors can similarly be spaced several 

kilometres apart (Marques et al., 2011). However, for small odontocete SECR surveys, the 

sensors must be densely spaced to accurately estimate the propagation distance. Thus, for a 

limited instrumentation budget SECR methods may cover smaller areas than studies designed 

using occupancy analysis.    

Regardless of the methodology chosen, at least some knowledge of the probability of 

detecting the survey target is required to produce accurate estimates of density, abundance, 

and/or distribution. In distance and SECR methodologies, the unconditional probability of 

detecting the target species is the integral of the detection function over the maximum 

detection range (Buckland et al., 2005, Borchers and Efford, 2008, Efford et al., 2009). 

Occupancy analysis incorporates detection probability by modelling the observed occupancy 

as the product of the true occupancy (whether or not the organism was there) and the 

observation process (whether or not the observer detected the organism). The detection 

probability for occupancy studies is the inverse logit of the observation process (Royle and 

Kéry, 2007). 

In British waters, long-term acoustics studies have been used to investigate the spatial and 

temporal distribution of harbour porpoise and bottlenose dolphins, as well as model the 

potential impacts of anthropogenic activities (Simon et al., 2010, Brookes et al., 2013, 

Williamson et al., 2016, Harris et al., 2017) . In these studies, the presence of an acoustic 

signal of the animal (e.g., click or whistle) is used as a proxy for true occupancy. Here I use 

the term ‘acoustic occupancy’ to indicate the presence of an animal based on the detection of 
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this call. This term differs from true occupancy in that animals may be present but not 

detected because they either do not produce acoustic signals or their signals are not detected 

by the instruments. 

Despite the influential nature of such studies, none have explicitly considered differences in 

detection probability between monitoring sites and have implicitly assumed no such 

differences exist. Differences in propagation conditions, varying ambient noise and animal 

behaviour are all known to influence the maximum detection range and subsequently the 

probability of detecting a calling animal (Kusel et al., 2011, Nuuttila et al., 2013b).  These 

changes have the potential to bias survey results by under or overestimating the area 

monitored through various acoustic means including continuous recorders and C-PODs 

thereby biasing the extrapolation calculations in their density or abundance estimates. 

The issue of detection probability in long-term acoustic surveys has been noted by several 

authors who estimated detection functions for C-PODs by comparing the range between 

animals visible at the surface to the presence or absence of echolocation click detections in 

the C-POD record (Simon et al., 2010, Kyhn et al., 2012, Roberts and Read, 2014). This 

methodology is highly accurate and provides site-specific detection probability information. 

However, relying on visual surveys to determine detection ranges is highly labour intensive 

and not feasible in offshore or large-scale acoustic studies such as the East Coast Marine 

Mammal Acoustic Study (Marine Scotland Science). Where measuring the range between the 

calling animal and the sensor is not possible, acoustic models based on the sonar equations 

represent an alternative methodology for estimating maximum detection ranges and detection 

probabilities (Kusel et al., 2011, Frasier et al., 2016, Kusel et al., 2016). Acoustic modelling 

techniques lack the empirical validation used in visual studies, but they are flexible and 

applicable to survey conditions that preclude direct range estimates to detected individuals.   

In this chapter, I use acoustic modelling and simulation techniques to estimate the maximum 

detection range of the C-PODs as a function of deployment location and ambient noise level. 

These values are combined with acoustic occupancy records from the C-PODs to estimate 

whether fluctuating detection probabilities have, if not accounted for, the potential to bias 

estimated bottlenose dolphin acoustic occupancy rates reported by the array. Due to low 

acoustic occupancy rates in this chapter I assume all detections are produced by bottlenose 

dolphins. 
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3.2.  Methods 

3.2.1.  Overview 

In this chapter I use a Bayesian framework to assess whether transmission loss and ambient 

noise levels measured across the survey area are likely to bias the relative acoustic occupancy 

rates reported by the C-PODs in the ECoMMAS array. Here I use the sonar equations to 

estimate the relationship between the area monitored for bottlenose dolphins by the C-PODs 

at 10 of the 30 survey locations as a function of ambient noise level. My methods follow 

previous simulation studies that estimate the effects of transmission loss and ambient noise 

levels on the area monitored by passive acoustic devices (Kusel et al., 2011, Frasier et al., 

2016). However, because performance metrics for the KERNO classifier have not been 

released by the manufacturer, I was unable to produce accurate detection probability 

estimates. Instead, I assumed three potential performance scenarios for the C-POD and 

determined which, if any, resulted in significant bias in the relative acoustic occupancy levels 

reported by the systems.  

 

Figure 3-1 Illustration of the available bandwidth of the noise monitoring system, the approximate bandwidth of 

bottlenose dolphin echolocation click trains and the estimated bandwidth of the C-POD monitoring system. Arrows 

and grey box indicate bandwidth over which the SONAR equations are integrated to establish detection range. Note 

noise monitoring does not overlap with the main energy band of either the dolphin clicks or the C-POD monitoring 

system. 
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A key aspect of this work concerns relating ambient noise level measurements to the source 

levels of bottlenose dolphins, propagation conditions around each C-POD, and the sensitivity 

of the C-POD click train detector. C-PODs “listen” for echolocation clicks in frequencies up 

to 250 kHz while the continuous recorders in the ECoMMAS sampled at 96 kHz (48 kHz 

Nyquist frequency). Therefore, the bandwidth of the available ambient noise level recordings 

did not cover the same bandwidth of either the animals’ echolocation clicks nor of the click 

detector (Figure 3-1).  

To address the incongruity of the acoustic recording systems and the paucity of information 

about the KERNO classifier, I used simulations to estimate the maximum area monitored by 

the C-PODs as a function of ambient noise level and deployment location. Accordingly, my 

work relies on various simplifying assumptions. Where assumptions are necessary, I estimate 

parameters such that both the variation in area monitored and subsequently detection 

probability at each deployment location are moderately overestimated. When faced with 

uncertainty in these assumptions, decisions were made always to maximise the likelihood of 

site characteristics and ambient noise biasing the acoustic occupancy estimates. Therefore, if 

the relative acoustic occupancy at each site is unchanged between the naïve analysis (where 

changes in detection area are ignored) and models where detection area is accounted for, I 

can be somewhat confident that transmission loss and noise levels are not biasing the relative 

acoustic occupancy results.   

In this analysis, I estimated the maximum area monitored at each C-POD deployment 

location as a function of ambient noise level. I then related the area monitored by the C-POD 

to a detection probability by logit-transforming the data. This procedure converts the 

response variable to a scale limited between 0 and 1 and is common in all binomial models. 

Detection probability was then integrated into a Bayesian hierarchical acoustic occupancy 

model to determine whether site-specific and noise-dependent detection probabilities could 

bias understanding of bottlenose dolphin habitat use. The Bayesian approach provides a 

flexible platform to investigate these issues as well as establishing a framework which may 

be easily updated if and/or when C-POD performance parameters become available. 

In sections 3.2.3 to 3.2.5 I describe how each component of the sonar equation is calculated 

or estimated to estimate the maximum area monitored by each C-POD as a function of 

deployment location and ambient noise level. In Section 3.2.8 I describe the Bayesian 
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hierarchical models used to incorporate the observed acoustic occupancy rates from the C-

PODs with the detection area monitored by each C-POD via the detection probability metric. 

Unless otherwise specified in this work, all reported sound levels are referenced to 1µPa. 

3.2.2.  Data Quality 

In this chapter I used data from C-PODs that were co-deployed with SM units (Figure 1-1) 

from the 2013 ECoMMAS deployments. I further restricted C-POD data to include only 

periods that coincided with the availability of ambient noise levels from the co-deployed 

SMs. C-POD data were downloaded and processed using the accompanying KERNO 

classifier for the presence of “high” and “moderate” quality echolocation clicks. This resulted 

in very few ‘other cetacean’ echolocation click trains and subsequently very low hourly 

acoustic occupancy rates (Figure 2-5). I therefore chose not to pre-process the echolocation 

click trains to remove frequency banded click trains (Chapter 2). Doing so would result in so 

few click trains being included that the acoustic occupancy rate would approach zero, 

regardless of the propagation conditions and ambient noise levels. 

All available noise levels and click detections from the 2013 deployment were included in the 

noise level analysis.  

3.2.3.  Area Monitored 

The area monitored by an acoustic detector is dependent on the detection thresholds of the 

instrumentation system and the signal to noise ratio (SNR) at which the sounds of interest 

(here echolocation clicks) are received (Equation 3-1). The SNR of a click measure at a 

sensor is determined by the source level (SL) at which the click was produced, the directivity 

index (DI) of the click, the transmission loss (TL) between the animal and the sensor, and the 

ambient noise level (NL) at the sensor. Both source level and directivity index are determined 

by the animal’s behaviour and, for the purposes of this study, are considered constant. 

Transmission loss is dependent on the range (r) between the animal and the sensor and, in 

coastal regions with complex bathymetry, the angle (θ) between the source and receiver. 

Finally, ambient noise levels (NL) vary over time (t) as a function of local conditions 

including storm and anthropogenic activity. Critically, the sonar equations assume that all 

sound levels are measured over the same bandwidth.  
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For an ideal acoustic detection system, the maximum range at which an echolocation click 

can be detected (rmax) is defined by the range beyond which the signal to noise ratio of the 

click at the receiver falls below the detection threshold (TH) of the receiving system 

(Equation 3-2).  

 

The area monitored by a sensor at time t is approximated by Equation 3-3 where n is the 

number of angles (θ) as which the maximum detection range (rmax) is measured.  

 𝐴(𝑡) ≈
𝜋

𝑛
∑ 𝑟max

2 (𝜃)
𝑛

1
 

Equation 3-3 

 

Equations 3-2 and 3-3 represent simplified solutions for a continuous source. However, for 

impulsive sounds including sonar pings and echolocation clicks, the SNR value is dependent 

on the integration window over which the signal is averaged. Increasing the integration 

window results in a lower SNR as the power of the impulse is averaged over a longer 

duration. The energy flux density, E, for a pulsed sonar with a peak-to-peak amplitude 

denoted by SL’, as measured at the source, is then defined by Equation 3-4. 

 10𝑙𝑜𝑔10(𝐸) = 𝑆𝐿
′ + 10𝑙𝑜𝑔10(𝜏0) Equation 3-4 

 

where τ0 is the duration of the emitted pulse in seconds.  By substitution and the introduction 

of the integration time (τe) the SNR equation may be re-written as an Energy to Noise ratio 

defined as Equation 3-5. 

 
𝑆𝑁𝑅(𝑟, 𝜃, 𝑡) = 𝑆𝐿 − 𝐷𝐼 − 𝑇𝐿(𝑟, 𝜃) − 𝑁𝐿(t) 

Equation 3-1 

 𝑇𝐻 − 𝑆𝑁𝑅(𝑟𝑚𝑎𝑥 , 𝜃, 𝑡) = 0 Equation 3-2 
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 𝑆𝑁𝑅(𝑟, 𝜃, 𝑡) =  𝑆𝐿′ + 10𝑙𝑜𝑔10 (
𝜏0
𝜏𝑒
) − 𝑁𝐿(𝑡) − 𝑇𝐿(𝑟, 𝜃) 

Equation 3-5 

  

For full details on this method see Kusel  (2016).  

 

3.2.4.  Noise Levels 

Within the context of this study, I refer to ambient noise as continuous noise that has the 

potential to mask biological signals, reduce the signal-to-noise ratio of such signals when 

received by the sensors (Kusel et al., 2016). In the shallow waters of the North Sea, such 

masking noise is largely attributable to local shipping and storm activity (Urick, 1983). 

Unlike continuous recorders, C-PODs do not monitor ambient noise caused by wind, wave or 

shipping activity but report “sediment transport noise” that the manufacturer refers to only as 

“noise”. Sediment transport noise is caused by particles suspended in the water column 

colliding with the instrument housing. The quality of sediment transport noise is similar to 

the clicks and pops produced by biological sources (e.g. echolocation clicks and snapping 

shrimp). As such, sediment transport is more likely to impact the performance of the KERNO 

classifier rather than masking echolocation clicks from the sensor. Thus, I refer to sediment 

transport as “interference” and use “noise” to refer only to continuous noise that acts to mask 

the echolocation clicks from the sensor.   

In the sonar equations, ambient noise (NL) is the RMS of the noise integrated over the 

bandwidth of the detector and reported in dB referenced to 1µPa (for ocean environments). 

C-PODs record time with 0.2μs resolution which corresponds to a sample frequency of 

500kHz. Monitoring ambient noise over the entire frequency band of the C-POD detector is 

prohibitively expensive in terms of processing power, storage, and deployment duration. The 

SM units sampled at 96kHz, which precluded measuring noise levels above the Nyquist 

frequency of 48kHz.  

Third octave noise levels were calculated using PAMGuard software with 1 kHz as the 

reference frequency and the highest third octave centre at 40.3 kHz, although only the upper 

bands were used in subsequent analysis as they were closest to the frequencies of the signals 

of interest. This is considerably lower than the peak frequency of bottlenose dolphin 
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echolocation clicks and well below the upper end of the C-POD detection band.  Therefore, 

to simplify estimation of the ambient noise levels within the bandwidth of the echolocation 

clicks and the C-POD sensor, I assumed that the average energy in each spectrum (dB/Hz) in 

the 40.3 kHz band was the same as the average energy in the next 1/3 octave bands that cover 

the frequency range of the echolocation clicks. This is consistent with recent studies that have 

measured noise in bands up to 150kHz (Hermannsen et al., 2014).  I used the spectral 

characteristics of bottlenose dolphin echolocation clicks reported by Wahlberg et al. (2011),   

and assume that most of the click energy is between 20 and 120 kHz. The median hourly 

noise level (NLest) was then estimated using Equation 3-6 where NL is the median hourly 

noise level in the 1/3rd octave band centred on 40.3kHz; 1_3BW is the bandwidth of the 

selected 1/3rd octave band (here 9.28 kHz) and D_BW is the theoretical bandwidth of the 

detector, here 100 kHz .  

 𝑁𝐿𝑒𝑠𝑡 =  𝑁𝐿 − 10 ∗ 𝑙𝑜𝑔10(13BW) + 10 ∗ 𝑙𝑜𝑔10(DBW) Equation 3-6 

 

My principal objective was understanding whether site specific trends in in ambient noise 

levels could bias acoustic occupancy results. For example, acoustic sensors placed near an 

active vessel port may experience diel trends in ambient noise levels from local fishing 

activity, lowering detection probabilities during periods of high activity and thereby skewing 

the acoustic occupancy results for those sensors. Conversely, storm systems that cover most, 

if not all, of the ECoMMAS area would not be expected to introduce substantial bias into the 

results of any given sensor compared to others but could potentially give misleading results in 

temporal analyses.  

I measured the distribution of median hourly noise levels from all the SM units to determine 

whether any sites experienced large (>2dB) variations in noise levels relative to the rest of the 

array. I also calculated pairwise Pearson correlations for all hourly noise levels across all 

sensors to produce a correlation matrix for all ten instruments. Large correlation coefficients 

between distantly spaced SM units are suggestive of acoustic sources affecting large spatial 

scales (e.g. storm systems) and acting to increase the ambient noise level across the entire 

array. However, higher correlations between adjacent SM’s compared to distant ones may be 

attributable to localised sources such as fishing activity, construction or permanent shipping 

lanes.  
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Only noise levels from 2013, between August 10th and September 24th, inclusive, were 

included in this part of the analysis, those being the dates for which ambient noise levels were 

available for all 10 SM units.  

3.2.5.  Transmission Loss 

The AcTUP Bellhop ray tracing model (Porter, 2011)  was used to estimate the propagation 

conditions in and around each deployment location. Ray tracing models were selected over 

other commonly used propagation models such as parabolic equations or multipath 

expansions due to their applicability to high frequency sounds in shallow water 

environments. Furthermore, a recent study indicated that ray-tracing algorithms produce the 

most accurate transmission loss estimates within a complex range-dependent environment  

(Farcas et al., 2016).  

The Bellhop model creates a two-dimensional grid representing the transmission loss as a 

function of range and depth from a source. Bellhop parameters include the frequency of the 

source, source depth, sound speed profile at the source location, bathymetry profile, and 

sediment characteristics including density, sound speed and attenuation (dB/wavelength). 

Bathymetry and sound speed profiles with 1 arc second resolution (~30m) were obtained for 

each deployment location from the EDINA Marine Digimap service 

(http://digimap.edina.ac.uk) and NOAA World Ocean Atlas 

(http://www.nodc.noaa.gov/OC5/woa13) respectively. Detailed sediment surveys at each of 

the ECOMASS deployment locations have not been carried out. However, sediment 

modelling studies in the North Sea have indicated high sand and mud content throughout the 

ECOMASS survey area (Stephens and Diesing, 2015). Thus, I assumed a silt bottom with a 

sound speed of 1575m/s, density of 2400 kg/m3 and 0.01 dB/λ attenuation for all locations. 

This assumption would be inappropriate for low frequency sounds such as baleen whale calls 

for which transmission through the seafloor sediment contributes significantly to the sound 

field (Weirathmueller et al., 2014). However, at higher frequencies (>10kHz), sound 

absorption by the medium becomes a major contributor to transmission loss. At 35khz, the 

transmission loss due to absorption alone is ~7dB/km (Fisher and Simmons, 1977). 

Therefore, the assumption of homogenous sediments throughout the survey area is unlikely to 

result in major discrepancies when considering relative detection ranges. 

Twenty transmission loss grids were created at 18° intervals centred at each deployment. 
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Similar to previous studies (Helble et al., 2013, Frasier et al., 2016), I employed the acoustic 

reciprocity principle (Rayleigh, 1876) which allows the source and receiver locations to be 

switched within the environment. Thus, I simulated an omni-directional source (rather than 

receiver) at each C-POD deployment location. This assumption allowed me to efficiently 

calculate the transmission loss between the deployment site and all range-depth values 

encompassed by the transmission loss grids (Figure 3-2). Propagation models were run on 

MATLAB (2014) using the AcTUP package (v2.2). 

 

 

Bellhop models for each deployment site were created using source frequencies of 30, 40, 

and 45 kHz. These frequencies correspond to the frequencies incorporated in the 38 kHz 1/3rd 

octave noise bands (~35 – 48 kHz) and, as such, are an appropriate comparison. Higher 

frequencies were not included for two reasons. First, they were greater than the upper limit of 

the noise monitoring instruments. Second, propagation models become less reliable with both 

increasing frequency, and decreasing water depth as is the case on the eastern Scottish coast 

(Urick, 1983). The propagation models for all frequencies were then averaged for each angle 

(θ) such that the average transmission loss at each angle could be calculated as a function of 

range and depth between the sensor and receiver. Finally, transmission loss values were again 

averaged over the water depth extending to the sediment in order to calculate transmission 

loss as a function of range and angle only (TL(r, θ); Equation 3-5).  

Figure 3-2 Example of a Bellhop transmission loss grid created for Stonehaven 5km deployment site and 35kHz. 

Vertical axis represents water depth, horizontal axis is range from the receiver (white circle), solid black line is 

the ocean bed, and grayscale represents the transmission loss between source and receiver. 
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While the acoustic reciprocity principle is mathematically sound, transmission loss models 

such as the ray-tracing algorithms use simplifying assumptions for computational efficiency. 

As such, switching source (animal) and receiver (C-POD) may result in different 

transmission loss values and is in violation of the assumptions used here. To test the extent of 

this violation I measured the maximum range at which animals could be heard at each 

deployment site for all of the angles tested I then set the sound source at the maximum 

detection range and estimated the maximum detection range in the opposite direction (i.e. 

switching source and receiver locations). Through this process I estimated a new maximum 

area monitored for each survey location. The proportional difference in area monitored 

between the original transmission loss model and the validation model was incorporated into 

the Bayesian occupancy analysis as an additional variance on the total area monitored. See 

Appendix 1- Bellhop Error for details. 

3.2.6.  Source Level and Pulse Duration 

Cetacean echolocation clicks are a complex acoustic signal for which the received 

characteristics are not easily predicted. Echolocation clicks are generally thought to be 

produced by using air pressure to separate the phonic lips which then produce an impulsive 

sound when they slap back together. The impulse is propagated through the animal’s head 

and into the environment via a complex process involving multiple reflections off both 

internal and external structures (Goold, 1996, Soldevilla et al., 2010b, Au et al., 2012c).  The 

received spectral characteristics of the echolocation clicks are therefore dependent on, among 

other things, the receiver characteristics, the animal’s aspect relative to the receiver, and the 

behaviour of the animal at the time the click was produced (Au and Benoit-Bird, 2003; Roch 

et al., 2015). Further complicating the issue, source levels of echolocation clicks are most 

often collected from on-axis angles and reported as peak-to-peak values (Rasmussen et al., 

2004, Clausen et al., 2011). On-axis measurements represent only a small portion of the 

echolocation clicks that will be documented by any moored passive acoustic system, and 

peak-to-peak values represent the maximum energy over a limited frequency range. 

Therefore, selecting a representative source level value or values over which to estimate the 

probability of detection is a challenge.  

My approach to this problem considers that on-axis clicks will result in the largest detection 

range for each C-POD. Here I assume the peak-to-peak source level was 220 dBpp re 1µPa 

and the source signal duration was 15µs (SL’, τ0;  Equation 3-5). These values represent the 
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upper end of the reported maximum source levels for free-ranging bottlenose dolphins 

(Wahlberg et al., 2011).  

3.2.7.  Detector Characterization 

 All acoustic detection systems contain both a minimum detection threshold, the pressure at 

which a signal must be received in order for the signal to be registered by the recorder, and an 

SNR threshold, the level above the ambient noise a signal must exceed in order to be 

detected. In a simple energy detector, the SNR threshold is triggered if a peak in pressure 

exceeding the detection threshold (TH, Equation 3-2) occurs within the integration window 

of the system (τe, Equation 3-5).  A constant SNR threshold results in false alarm 

probabilities (i.e. false detections) varying as a function of ambient noise (Urick, 1983, 

Urazghildiiev et al., 2009).  Alternative detection methods use adaptive thresholds that shift 

in response to ambient noise levels. In doing so, adaptive thresholds maintain a constant false 

alarm rate despite changes in ambient noise conditions (Gillespie, 1997, Gillespie and Caillat, 

2008). For C-PODs, Dahne  (2013) report the minimum detection threshold of ~120 dBpp  

narrowband signals at 60 kHz. The SNR threshold, however, has not been characterised nor 

is it known whether the C-PODs detection system approximates a constant or adaptive 

threshold. The C-POD manufacturer describes the behaviour of the detection threshold as 

follows:  

If noise [i.e. interference] levels are high enough to push the detection threshold up, the average SPL of the 

weakest clicks in the multipath clusters in trains should be louder. The multipath minima have been used as 

there are relatively few direct-path clicks in any train that are close to the detection threshold. Including the 

echo replicates in the multipath clusters increases the useful data volume. The ‘Noise levels’ export option gives 

values for the number of all clicks, the number of multipath minima and their mean value (‘ Nclx, nMMM, 

MMM’). This approach needs investigation and validation.  

The statement above suggests that the system may employ adaptive SNR thresholds. 

However, how the system behaves in response to either ambient noise or sediment 

interference is ill-defined and, as the manufacturer states, un-validated. Moreover, the 

manufacturer conflates detector interference with ambient noise levels, further confounding 

any understanding of his system. This means researchers must either make assumptions 

regarding thresholding behaviour or undertake extensive testing on behalf of the 

manufacturer. As tank calibrations in the 20-120 kHz range were impractical, I used 

simulations based on third party publications and reasonable approximations where no data 
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exist. My approach assumes a constant rather than an adaptive SNR threshold. As with noise 

levels and transmission loss, this assumption leads to greater fluctuation in area monitored by 

the sensors than would be expected were I to assume an adaptive SNR threshold (for details 

see Zimmer 2011 pp 116) and is therefore a conservative approach with respect to my 

research questions. For the reasons stated above, I do not attempt to simulate any adaptive 

thresholding performed by the C-PODs. 

For the simulations, I assumed that all received clicks must both exceed 120dBpp as well as 

the SNR threshold of the system. To account for the lack of knowledge regarding detector 

performance, I investigated three potential SNR threshold values (TH; Equation 3-2) 

including 1, 10, and 15dB above ambient noise. 

The integration period (τe) and detector threshold (TH) have opposite effects on the area 

monitored by a C-POD. As integration time increases, the detection threshold must decrease 

in order to maintain consistent detector performance. This reduces the maximum detection 

range of the C-POD. Conversely, for shorter integration periods, the maximum area 

monitored increases as signals more easily exceed the threshold. However, in the latter 

scenario, false positive detections also increase. Since the manufacturer provides no 

information on this subject, I investigated three potential integration times 1500, 5000, and 

8000 μs. These values were paired with SNR thresholds of 1, 10, and 15dB. Without 

knowledge of the detector performance, the choice of integration times and SNR thresholds 

was somewhat arbitrary and was limited by processing time. However, in selecting these 

values I sought to include a broad range of potential detection ranges and probabilities. The 

lower limit of the integration period was set to be larger than the average click duration for 

bottlenose dolphins.  The upper limit of the integration time was set to be less than previously 

reported inter-click intervals for bottlenose dolphin buzzes and click trains (Luís et al., 2016, 

Noren et al., 2017).   

3.2.8.  Acoustic Occupancy Models 

Bayesian occupancy models based on Royle and Kéry (2007) were created to estimate 

acoustic occupancy rates at each of the 10 sites. In both models, the presence or absence of 

acoustic detections was described by the effective detection probability (effp). The effective 

detection probability considers both the true occupancy (true.occ) and the observation 

process. True occupancy is the ecologically meaningful portion of the metric that describes 
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the proportion of time that echolocating animals were present within the maximum detection 

radius of the system. The observation process relates to the detection probability which 

represents some proportion of the maximum detection area that occurs under low ambient 

noise conditions and no acoustic shadowing. Because explicit knowledge of the detection 

function is not known, here ψ was modelled as the relative area monitored by each site. 

Through this procedure, detections were normalized by the spatial effort represented by the 

area monitored. 

The first model estimated the probability (Occ) that each survey location (j) was acoustically 

occupied during each hour (i) of the deployment using a Bernoulli distribution (Equation 

3-7). By analysing on an hourly scale, this model incorporated both spatial (site-specific 

transmission loss) and temporal (ambient noise level) aspects of the detection probability.  

 

 𝑃(𝑂𝑐𝑐𝑖.𝑗)~𝑑𝑏𝑒𝑟𝑛(𝑒𝑓𝑓𝑝𝑖,𝑗) Equation 3-7 

  

The effective detection probability was defined as the product of the true occupancy 

(true.occ) at each site and the observation process (ψ, Equation 3-8). 

 

 𝑒𝑓𝑓. 𝑝𝑖,𝑗 = 𝑡𝑟𝑢𝑒. 𝑜𝑐𝑐𝑗 ∗ 𝜓𝑖,𝑗 Equation 3-8 

 

The true acoustic occupancy rate at each of the sites was represented by the logistical 

transform of a linear model (Equation 3-9) where α is the site-specific acoustic occupancy 

rate. Intercept and α priors were minimally informative normal distributions with mean of 0 

and standard deviation of 104.  

   

 𝑙𝑜𝑔𝑖𝑡(𝑡𝑟𝑢𝑒. 𝑜𝑐𝑐𝑗) = 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝛼(𝑆𝑖𝑡𝑒𝑗) Equation 3-9 

 

I then scaled the area monitored by each instrument and deployment location in order to 

relate the area monitored to the observation process. Scaling was done by centring and 
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transforming the data. For each threshold model, I centred the data by subtracting the median 

area monitored for all sites and all times from the area monitored at each site and time. I then 

divided each centred area by the standard deviation of the area monitored values at each 

deployment location.  The observation process (ψ) was defined as the inverse logistical 

transform of the scaled area monitored (scaledArea) by each sensor (j) at each hour (i; 

Equation 3-10). Variability introduced by errors in the Bellhop transmission estimation was 

incorporated by assuming that the area monitored by each site and each hour was drawn from 

a normal distribution with the mean centred on the estimate of the area monitored and the 

standard deviation described by the estimate of the Bellhop model error (Appendix 1). 

 

 𝑙𝑜𝑔𝑖𝑡(𝜓𝑖,𝑗) = 𝑑𝑛𝑜𝑟𝑚 ( 𝑠𝑐𝑎𝑙𝑒𝑑𝐴𝑟𝑒𝑎𝑖,𝑗 , 𝜎𝑖,𝑗) Equation 3-10 

 

Results from the models considering the area monitored were compared to a “null” model 

that did not include the observation process. The null model represents a uniform detection 

probability across all sites and times and is the standard method for analysing C-POD data 

(Jaramillo‐Legorreta et al., 2017, Jaramillo-Legorreta and Rojas-Bracho, 2011, Roberts and 

Read, 2014)  

The transmission loss simulations indicated larger variation between deployment locations 

than within a survey period for each deployment. This finding suggests that local bathymetry 

and transmission loss likely had a greater influence on detection probability than did 

changing noise levels. Thus, the second model aggregated the data and considered only the 

spatial aspects of the detection function. In this model the effective occupancy rate (effp) at 

each deployment location (j) was modelled as a binomial distribution of the number of 

detections (Det) and the number of monitored hours (N) at each deployment location 

(Equation 3-11; Table 3-3).  

 

 𝐷𝑒𝑡𝑗~𝑏𝑖𝑛𝑜𝑚(𝑒𝑓𝑓𝑝𝑗, 𝑁𝑗) Equation 3-11 
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As with the Bernoulli model, the effective detection probability at each site (j) was defined as 

the product of the true occupancy (true.occ) and the detection probability (ψ) at each 

deployment location (Equation 3-11). True occupancy and detection probability followed 

Equations 3-9 and 3-10 excluding the hourly covariate. Non-informative priors for α were 

used to limit model bias. Intercept and α priors were set to normal distribution with mean of 0 

and standard deviation of 104. Bayesian models were created and run in R v.3.3.2 (R Core 

Team, 2016) using the runjags package (Denwood, 2008).  

 

3.3.  Results 

3.3.1.  Acoustic Detections and Continuous Recordings 

Dolphin positive hours for deployment times and locations with both C-POD and SM 

coverage were generally low. With the exception of the Fraserburgh 05 unit, hourly acoustic 

occupancy rates for all locations during the period of SM coverage were less than 1%. At the 

Fraserburgh 05 site, 1.09% of the hours contained at least one dolphin detection (Table 3-1). 
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Deployment 

Location 

Dolphin 

Positive 

Hours (total) 

Observed Proportion of 

Acoustically Occupied 

Hours 

Lat_05 23 0.77 

Hel_15 1 0.04 

Cro_15 4 0.13 

SpB_10 0 0.00 

Fra_05 22 1.09 

Cru_05 17 0.74 

Sto_05 12 0.93 

Abr_10 2 0.10 

FiN_10 1 0.04 

Stb_05 6 0.21 

 

  

Table 3-1 Deployment summary for combined SM2M/C-POD moorings. Dolphin positive hours indicate total 

number of hours with both C-POD and SM2M coverage for which there was at least one click train detected by the 

KERNO Classifier. Observed proportion of acoustically occupied hours is the proportion of combined monitoring 

hours containing echolocation click trains 
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3.3.2.  Noise Levels 

Median hourly noise levels in the 40.3 kHz 1/3rd octave band ranged from ~90 to ~109 dB for 

all units. The noise level distributions were similar across all deployment locations with 

minimum, 25th, 50th and 75th quartiles all within 1 dB (Table 3-2) for all sites. Maximum 

noise levels varied by >10 dB but such high levels represented outliers in the data. 

  Min 
25th 

Quartile 
50th 

Quartile 
75th 

Quartile 
Max 

Lat_05 90.5 90.7 91 91.6 108.9 

Hel_15 90.4 90.5 90.8 91.2 97.1 

Cro_15 90.6 90.9 91.3 91.8 99.3 

SpB_10 90.6 90.8 91.2 91.8 103.7 

Fra_05 90.5 90.6 91 91.5 98.2 

Cru_05 90.4 90.8 91.2 91.6 97.9 

Sto_05 90.5 90.6 90.9 91.2 97 

Arb_10 90.5 90.6 90.9 91.2 100.5 

FiN_10 90.6 91 91.2 91.6 99.1 
Stb_05 90.4 90.6 90.9 91.7 102.2 

 

Table 3-2 Summary statistics for the median hourly noise levels in the 40.3 kHz 3rd octave band. 
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All Pearson’s correlation scores were positive (Figure 3-3) and the median score between 

noise levels across pairs of units was 0.31 (25th and 75th percentile 0.22 and 0.46). The 

highest levels of correlation were observed between the Cruden Bay and Stonehaven units (r 

= 0.66) and the lowest between Latheron and Fife Ness (r = 0.13). Uniformly positive 

correlation scores across the extent of the deployment suggest that the underlying factors 

influencing ambient noise levels across the array were related. Higher correlation scores were 

observed in adjacent SM units than between units spaced further apart indicating that noise 

levels from units closer together share more similarity than to those from more distantly 

spaced units (Figure 3-4).  

Figure 3-3 Pearson’s pairwise correlation scores (lower) for the 40.3kHz third octave band for the ten deployment 

locations during periods of SM coverage.  Size of the coloured dots represent strength of the correlation 

(correlation values in corresponding lower panel) and colours indicate direction of the correlation from strongly 

negative (red) through natural (white) and strongly positive (blue) 
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3.3.3.  Area Monitored 

As expected, the 05 units monitored less area than the mid or offshore units-regardless of the 

threshold model selected (Table 3-3, Figure 3-5).  Models using threshold 2 (τe = 8000 µs, 

TH=10 dB) produced the largest estimate of the area monitored by the C-PODs throughout 

the deployment, with median values exceeding 25 km2 for all deployment locations. This 

threshold also produced the lowest variation in area monitored throughout the deployment 

period with a median coefficient of variation of 1.72 as opposed to 3.0 and 3.2 for threshold 

models 1 and 3.  

Figure 3-4 Pearson’s correlation score plotted against distance between SM units. While some correlation can be 

explained by the proximity between units, much of the correlation is left unexplained. 
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 Median Area Monitored (km2) Equivalent Detection Radius (km) Scaled Area Monitored 

Deployment 

Location 
Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 

Lat_05 10.14 29.58 6.49 1.01 1.73 0.81 -1.03 -0.94 -0.57 

Hel_15 13.64 46.69 7.53 1.18 2.18 0.87 0.91 0.98 0.59 

Cro_15 13.05 43.32 7.58 1.15 2.10 0.88 0.58 0.6 0.65 

SpB_10 13.58 42.97 7.94 1.17 2.09 0.90 0.88 0.56 1.06 

Fra_05 10.11 27.79 6.39 1.01 1.68 0.81 -1.05 -1.15 -0.68 

Cru_05 11.75 43.49 6.21 1.09 2.10 0.79 -0.14 0.62 -0.89 

Sto_05 11.7 27.95 7.51 1.09 1.68 0.87 -0.16 -1.13 0.58 

Abr_10 13.86 46.41 7.65 1.19 2.17 0.88 1.03 0.95 0.73 

FiN_10 13.37 45.66 7.52 1.16 2.15 0.87 0.76 0.86 0.59 

Stb_05 8.76 25.89 5.16 0.94 1.62 0.72 -1.79 -1.36 -2.07 

 

  

Table 3-3 Modelling variables for the binomial occupancy model. Median Area Monitored is the median area monitored by C-PODs at 

each of the deployment locations under the three modelled conditions. Model 1: τe = 1500 µs  and SNR =1 dB, Model 2: τe  = 5000 µs  

and SNR =10 dB, Model 3: τe = 8000 µs  and SNR = 15 dB. Equivalent Detection Radius represents the median detection radius at each 

of the monitored sites and scaled Area Monitored is median the area monitored by each C-POD relative to the mean area monitored at 

all C-POD deployment locations.  
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Figure 3-5 Density distribution of the monitored area estimates (km2) for the 10 C-PODs with adjacent SM units throughout the 

2013 and 2014 SM recording period.  Model 1: SNR threshold = 1dB and integration window (τe) of 1500 µs, Model 2: SNR 

threshold=10dB and integration window (τe) of 5000 µs and Model 3: SNR threshold=15 dB and integration window (τe) of 

8000 µs. 
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3.3.4.  Modelled Acoustic Occupancy Rates 

Acoustic occupancy rates differed significantly between deployment locations, where 

significance is defined by non-overlapping Bayesian highest probability density intervals 

(HPDI).  In all models, the acoustic occupancy rates of the nearshore (05) units including 

Latheron, Fraserburgh, Cruden Bay and Stonehaven were significantly higher than the 

offshore (10 and 15) units. Similarly, relative acoustic occupancy rates showed considerable 

variation between the null model and those with disparate SNR and integration times (Figure 

3-6, Table 3-4).  
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Figure 3-6 Natural log of the posterior distributions for the true occupancy rates for each deployment site and model. Integration periods (τe) and detector thresholds 

(TH) were 1 dB and 1500 µs for Model 1, 10 dB and 5000 µs for Model 2 and 15dB and 8000µs for Model 3.  
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  Model  

  Null Model 1 Model 2 Model 3 

Latheron 0.2 (0.1-0.3) 1.4 (0.9-2.3) 1.0 (0.6-1.5) 1.9 (1.1-3.2) 

Helmsdale 0.0 (0.0-0.1) 0.0 (0.0-0.1) 0.0 (0.0-0.1) 0.0 (0.0-0.1) 

Cromarty 0.1 (0.1-0.1) 0.1 (0.1-0.2) 0.1 (0.1-0.2) 0.1 (0.1-0.2) 

Spey Bay 0.9 (0.8-1.1) 2.0 (1.6-2.5) 3.7 (2.7-5.2) 1.4 (1.2-1.8) 

Fraserburgh 0.7 (0.6-0.8) 1.6 (1.3-1.8) 1.1 (0.9-1.3) 2.5 (2.0-3.1) 

Cruden Bay 1.1 (0.9-1.2) 4.2 (3.1-6.0) 4.5 (3.2-6.7) 3.3 (2.5-4.4) 

Stonehaven 0.0 (0.0-0.0) 0.0 (0.0-0.0) 0.0 (0.0-0.0) 0.0 (0.0-0.0) 

Arbroath 0.1 (0.1-0.2) 0.2 (0.1-0.3) 0.2 (0.1-0.3) 0.2 (0.1-0.3) 

Fife Ness 0.0 (0.0-0.1) 0.0 (0.0-0.1) 0.0 (0.0-0.1) 0.0 (0.0-0.1) 

St Abbs 0.2 (0.1-0.3) 1.4 (0.9-2.3) 1.0 (0.6-1.5) 1.9 (1.1-3.2) 

 

3.4.  Discussion 

Analysis from this chapter suggests that the differential effects of ambient noise and site-

specific transmission loss are sufficient to bias estimates of relative acoustic occupancy in the 

ECoMMAS survey area. . The nearshore deployment locations both detected more dolphin 

echolocation clicks and monitored a smaller area than the offshore deployment locations 

(Figure 3-5). Thus, the models including detection probability demonstrated a greater 

difference in acoustic occupancy between the near and offshore deployment location than the 

model that did not include detection probability. This, effectively, caused a greater difference 

in acoustic occupancy rates between the least and most occupied sites. In the case of the 

ECoMMAS array, the error introduced by varying detection probability likely results in 

overestimating habitat use of inshore areas. While no error is ideal, the bias in this case would 

not result in systematic changes in the management of the population given that the nearshore 

trend has been previously described in visual studies. 

However, if the nearshore deployments either detected fewer echolocation clicks or 

monitored a smaller area than the offshore deployment locations, the interpretation of these 

Table 3-4 Median predicted percent (%) of acoustically occupied hours for the four different models (columns) 

at each of the 2013 and 2014 SM2M deployment sites (rows). In parenthesis are the 25th and 75th percentile 

values.  
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results would change. Under this alternative scenario, the inclusion of detection probability 

would result in a smaller difference in acoustic occupancy between the least and most 

occupied sites. Thus, caution is warranted as teasing apart detection and acoustic occupancy 

probability would pose a considerable challenge to managers seeking to identify important 

areas.   

Trends in median hourly noise levels in the 40.3 kHz 1/3rd octave band were highly 

correlated across sites (Figure 3-3). This suggests that storms, moving across large portions 

of the study area, dominate the hourly noise levels. The correlated noise levels and similar 

distributions suggest that relative impacts of noise at each sensor were small. However, 

correlation in Pearson’s scores indicate a relationship between the level of correlation and the 

distance between sensors. Thus, the degree of correlation in noise levels reduces with 

distance. Future studies seeking to fully account for the effects of noise level on occupancy, 

density, or abundance metrics should consider this in their analysis. Accordingly, the results 

presented in Chapter 4 may incorporate limited bias introduced by varying ambient noise 

levels at distant survey locations. Previous studies have demonstrated that in areas of high 

tidal flow (<3m/s Macaulay pers. comm. 2/10/2017), high levels of ambient noise are present 

in the soundscape above 120kHz (Macaulay et al., 2017). The C-PODs in this study were 

subject to high tidal flow but were not deployed in extreme flow environments such as a tidal 

race. Therefore, while I expect that some degree of ambient noise is present above 48 kHz, I 

do not expect that the levels match those observed by Macaulay  (2017).  Similarly, the 

source level I used represented the maximum recorded peak-to-peak level reported by 

Wahlberg et al. (2011) and was therefore likely an overestimate of the average click source 

level produced in the wild. Finally, using frequencies below the peak frequency of 

echolocation clicks in the propagation model likely underestimates the transmission loss 

between the source and receiver. These were purposeful choices made to overcome the lack 

of explicit data concerning how the C-PODs may perform in this area. The combination of 

these decisions resulted in larger estimates of the area monitored and greater fluctuations in 

estimated detection probability due to ambient noise levels than previous studies have 

estimated and are likely the case (Nuuttila et al., 2013b, Roberts and Read, 2014, Sostres 

Alonso and Nuuttila, 2014). Because the relative acoustic occupancy rates were generally 

similar regardless of whether detection probability was incorporated in the model, I can be 

somewhat confident that the effects of ambient noise level and transmission loss will not 
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severely skew the acoustic occupancy results in this study if they are not accounted for in 

analysis.  

Results from this work are consistent with in situ studies that have shown that the likelihood 

of detecting an echolocating dolphin with a C-POD is influenced by the local conditions. 

Nuuttila et al. (2013b) and Roberts and Read (2014) investigated the maximum range at 

which bottlenose dolphins could be detected by C-PODs. Nuuttila et al. (2013b) report 

maximum detection ranges of ~2km for bottom-mounted C-PODs deployed in 17-22 m 

water. Roberts and Read (2014) report a maximum detection range of ~1km for units 

deployed at 4.5m depth. The difference in estimated detection ranges in these studies 

suggests that variation in propagation conditions with water depth may result in large changes 

in detection probability. Sostres Alonso and Nuuttila (2014) investigated this by comparing 

the click details resulting from C-PODs deployed at the same location but vertically spaced 

along the mooring. They found little difference in the number of detection positive minutes 

between units at the same mooring but noted that the average sound pressure level (as 

measured by the C-POD) was lower for C-PODs higher in the water column. However, since 

neither study reported noise levels it is impossible to judge whether differences in detection 

ranges were due to different noise levels, propagation conditions or a combination of the two.  

Previous studies have shown that the probability and maximum detection range of bottlenose 

dolphins depends on the behavioural state of the animals (Nuuttila et al., 2013b). Because it 

was out of the logistical scope of this study, these considerations were not integrated into the 

model. Looking at behaviour across the array using the acoustic instruments is an interesting, 

albeit challenging prospect. One approach used by Pirotta  (2014b) was to look at the 

proportions of click trains with low ICI clicks indicative of foraging.  

This work incorporated several assumptions regarding the C-POD detection and classification 

system. Because so there were so few detections, use of the species-classification system 

developed in Chapter 2 was not possible. This may be a concern for future studies seeking to 

better understand how different species may be affected by changing noise and/or 

transmission loss characteristics. Thus, it is not possible to draw any firm conclusions 

regarding detection probability and how that may change between different species. 

Similarly, while I assumed all detections were bottlenose dolphin, the results may not hold 

under the source level constrains of other species. Future researchers seeking to investigate 

this may consider replacing click source levels and frequency distributions used here with 
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those from different species (e.g. white-beaked or Risso’s dolphins). Moreover, studies 

looking to include multiple species in their density, occupancy, or abundance estimates may 

expand on the analysis code used here to incorporate source level distributions, species 

classification uncertainty (i.e. Caillat, 2013), and any number of environmental parameters. 

The inability to discriminate between species in this portion of the analysis has the potential 

to bias occupancy rates under conditions where temporal trends in acoustic activity interact 

with changes in detection probability. For instance many species display variable diel 

acoustic activity (Carlström, 2005, Matthews et al., 2014, Baumann-Pickering et al., 2015) 

and differences between species would bias this research if conflated with diurnal 

fluctuations in ambient noise (Radford et al., 2008). Thus, one species producing sounds 

during a quieter part of the day would be more detectable than another producing calls when 

ambient noise levels were elevated, perhaps as boats return or leave the ports along the coast. 

Additionally, changes in detection probability were not modelled as a function of tidal state. 

However, tidal-drive changes in detection probability and species composition poses the 

same challenges to data interpretation. The continued use of C-PODs in such environments 

would benefit from more research in both these areas. 

The choice of SNR thresholds and integration times was a based on a balance between 

available computing resources and the ability of the models to inform biological 

interpretations. The thresholds chosen represented three potential scenarios between the 

relative effects of ambient noise (within sensor variation) and transmission loss (between 

sensor variation). The first model represented a compromise between intra-sensor variation 

and intra-sensor variation. In the second model, the effects of transmission loss dominated 

and the variation between sensors greatly outweighed the variation within sensors. Finally, in 

the third model intra-sensor variation approached a similar scale as inter-sensor variation. 

This model would be chosen where site-specific noise regimes would be expected to 

dominate. A grid search of SNR thresholds and integration time would have provided a more 

comprehensive analysis of the potential area monitored by the systems. The approach used 

here was approximately the diagonal through the grid space and given the lack of variation in 

the results obtained it does not appear that a comprehensive search of all possible 

combinations of SNR and integration times would be worthwhile for ecological studies. More 

generally, the approach necessitated here represents linear approximation of what is 

undoubtedly a non-linear detection (C-Pod) and classification (Kerno) system. These 

simulations provide some insight into possible behaviour of the system. However, to 
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appropriately integrating C-POD dolphin detections into ecological metrics including density, 

abundance will require controlled validation studies (e.g. Dahne et al., 2013). 

The assumptions necessitated by this chapter were necessitated the “black box” nature of the 

C-POD/KERNO system. This will continue to be a limitation of this and future studies using 

C-PODs as their primary data source(s). The major benefit of C-PODs is their ability to 

monitor very high frequencies (>200kHz) and to quickly process data for the presence of 

echolocation click trains in a cost-effective package. As costs associated with collecting and 

processing high frequency continuous recordings come down, researchers may consider more 

straightforward methods for effectively implementing large-scale acoustic studies. This may 

include replacing C-PODs with continuous recorders able to sample over longer durations. 

This chapter investigated the potential effects of propagation conditions and ambient noise 

levels on the absolute and relative acoustic occupancy rates produced by C-PODs in the 

ECoMMAS array. The Bayesian approach used here is flexible and may easily incorporate 

both observation and ecological processes into the modelling (Pardo et al., 2015). The 

consistent noise levels recorded across the array in combination with acoustic occupancy 

rates robust to changes in detection probability suggest that, for this study, accounting for 

transmission loss and noise levels may not impact the survey outcome. Thus, in the addition 

to the Bayesian approach, the limited effects of transmission loss and noise level allow for 

multiple modelling approaches including GLMs and GEEs to be applied to the ecologically 

relevant aspects of the survey. While these results were not sensitive to the changes in 

detection probability modelled here, this will not be the case for many, if any, other large-

scale acoustic studies. As advocated by previous authors, future studies must consider these 

effects on the probability of detecting an animal prior to making claims about acoustic 

occupancy (Marques et al., 2011, Helble et al., 2013). 

Finally, this chapter presents a methodology that is suitable for investigating the effects of 

detection probability on acoustic occupancy surveys. This approach may be integrated into 

related methodologies including distance sampling and SECR to better understand whether 

non-detection in acoustic surveys results from animal absence or a reduction in the monitored 

by the instruments. Understanding this relationship is critical for monitoring large spatial 

scales as well as estimating population sizes for acoustically active animals. 
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3.5.  Conclusions 

In this chapter I found that the effects of ambient noise level and transmission loss were not 

sufficient to bias hourly acoustic occupancy rates at the subset of C-PODs that were co-

deployed with the SM2/3Ms. Because median hourly noise levels were correlated across the 

array, noise caused by wind and wave action is unlikely to bias acoustic occupancy rates at 

C-PODs for which continuous noise monitoring was not available.  

  



Daily Acoustic Occupancy, Temporal Trends, and Spatial Modelling 

80 

 

Chapter 4 

Daily Acoustic Occupancy, Temporal Trends, and Spatial Modelling  

4.1.  Introduction 

Conservation and management efforts require explicit knowledge of how plants and/or 

animals are distributed, how they utilise their available habitat, and how these distributions 

vary over time (Sutherland, 1998, Anthony and Blumstein, 2000, Embling et al., 2010, 

Onorato et al., 2011, Jaramillo‐Legorreta et al., 2017). Knowledge of the temporal behaviour 

patterns of animals can shed light on the environmental, ecological, and /or anthropogenic 

factors that drive species distribution (Thompson et al., 2013a, Thompson et al., 2013c, 

Merchant et al., 2014b). These relationships can and should be integrated into ecological 

models such as those used to estimate the consequences of anthropogenic disturbance for 

populations (Liley and Sutherland, 2007, Harwood et al., 2014, King et al., 2015, Pirotta et 

al., 2015a). 

Worldwide, bottlenose dolphins are often found in shallow coastal waters, although offshore 

populations also exist (Leatherwood and Reeves, 1983). Bottlenose dolphins are generalist 

predators, foraging on a variety of fish and molluscs (Connor et al., 2000, Hastie et al., 

2004b, Nowacek, 2005, Sargeant et al., 2005, Bailey and Thompson, 2006, Weir et al., 2007). 

In the coastal waters of eastern Scotland, bottlenose dolphins are known to forage on 

migratory and diadromous fish including herring, mackerel and salmon (Janik, 2000a). They 

are also known to utilise geographic features such as deep channels and tidal fronts to 

optimise foraging efficiency (Mendes et al., 2002, Hastie et al., 2006, Sargeant et al., 2005).  

 Over the last three decades there has been considerable effort made to understand the 

population dynamics, distribution, and habitat use of this population of dolphins. Historically, 

however, the majority of the studies have taken place within the Moray Firth SAC and 

specifically within the Inner Moray Firth (Janik and Thompson, 1996, Wilson et al., 1997b, 

Hastie et al., 2003b, Bailey and Thompson, 2006, Hastie et al., 2006, Bailey et al., 2010, 

Pirotta et al., 2014b, Thompson et al., 2015). Visual and acoustic surveys of dolphins in the 

Moray Firth have elucidated much about the fine-scale habitat selection of the animals, 

functional mechanisms underlying some points of aggregation, and potential effects of man-
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made noise on this population (Thompson et al., 2013a, Wilson et al., 1999, Wilson et al., 

2004, Cheney et al., 2018).  

The SAC represents a small but important portion of the habitat used by the population (Arso 

Civil et al., 2019, Cheney et al., 2018). In addition to studies in the SAC, others have focused 

on points of aggregation elsewhere along the coast including Aberdeen harbour and the Firth 

of Tay (Anderwald et al., 2010, Arso Civil et al., 2019). In these locations, researchers have 

linked fine scale movement and foraging to tidal fronts and bathymetric features. There have 

also been a handful of regional scale surveys covering >100km of habitat. Anderwald et al. 

(2010) compile visual sightings from boat and land-based surveys covering much of the 

available habitat South and East of Inverness. Results from their report showed that much of 

the availability is occupied by bottlenose dolphins. Similarly, in addition to surveying the 

Firth of Tay and Firth of Forth, Arso Civil et al. (2019) covered much of the area between St 

Andrews and Aberdeen in a series of ten boat-based surveys between 2012 and 2013. 

Between 2001 and 2005 the southern coast of the outer Moray Firth extending from 

Lossiemouth to Fraserburgh was subject to visual survey effort consisting of 393 survey trips 

covering coastal habitat extending approximately 6 km from shore (Robinson et al., 2007, 

Culloch and Robinson, 2008). Finally, in 2007 and 2008, fourteen timing porpoise detectors 

(T-PODs, www.chelonia.co.uk) were deployed within the Moray Firth SAC and four units 

were deployed at key sites around the Scottish coastline (Thompson et al., 2011a). T-PODs 

record the timing of dolphin and porpoise clicks but do not document any species 

identification. Results from this survey indicated that high use areas identified in the T-POD 

data coincided with visual sightings of bottlenose dolphins and that temporal patterns of 

detection in summer and winter were similar between sites located within the Moray Firth 

SAC high-use areas and low-use areas outside of the Firth (Thompson et al., 2011a). 

Boat-based survey efforts have historically focused their efforts in areas of high animal 

density in order undertake photo-ID research (Wilson et al., 1999). However, extensive 

offshore construction projects are planned for the coming years and animals will likely be 

exposed to noise and anthropogenic disturbance throughout their range. The differential use 

by animals within their range means that different individuals may be subject to different 

levels of exposure to different anthropogenic activities (Pirotta et al., 2015a). These activities 

included the construction and operation of offshore wind farms, as well as port developments 

in the Cromarty Firth, Aberdeen, Peterhead and Fraserburgh (Pirotta et al., 2015a, Graham et 

al., 2017).   
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Improving understanding of trends in occupancy throughout the species range will help to 

interpret how human activities may impact the population. Large scale ship or aerial line 

transect surveys of the eastern Scottish coastline are likely to suffer from low detection rates. 

Fixed passive acoustic monitoring (PAM) surveys represent an alternative to vessel-based 

surveys and can produce simultaneous high-resolution time-series data for multiple survey 

locations. This type of passive acoustic monitoring has proven successful in monitoring both 

harbour porpoise and dolphins within the Moray Firth (Pirotta et al., 2014a, Williamson et al., 

2017). The ECoMMAS array seeks to build on previous studies by monitoring habitat use 

primarily outside of the previously studied areas of concentration.  

Data collected by the ECoMMAS array are long term (~12 months over three years) and 

large scale (~400km of coastline) and these data may be sufficient to describe temporal 

patterns in occupancy as well as spatial analysis of habitat use. However, acoustic data pose 

various challenges that necessitate a flexible approach to their analysis. The ECoMMAS 

array provides extremely good temporal coverage (except, currently, in winter) but limited 

spatial coverage when compared to acoustic studies in the Moray Firth. Deployment groups 

in the ECoMMAS were spaced between 17 and 50 km apart whereas the CPODs used in 

Pirotta et al. (2014b) were generally less than 5 km apart. Moreover, that array consisted of 

39 locations spread over a survey area of approximately 150km of coastline, though not all 

locations were surveyed every year. In comparison, the ECoMMAS covered approximately 

400km of coastline with 2/3rds of the units being greater than 5km from the nearest coastline.  

Additionally, ECoMMAS data, like all PAM data, are subject to misclassification errors 

(false positive detections, Chapter 2) and potentially fluctuating detection probabilities 

(Chapter 3). As in many ecological studies, autocorrelation in detections is present in passive 

acoustic surveys (Lichstein et al., 2002). Acoustic encounters lasting from minutes to days 

violate the assumption of independence in observations, as the probability of detecting an 

echolocating animal in any given period is often related to whether or not an animal was 

detected in the previous period. Thus, care is needed when working with time series data as 

failing to account for autocorrelation violates the assumption of independent sampling. 

Finally, the density of sensors in the array is low, which may preclude meaningful spatial 

analysis.  

With these considerations in mind I took a three-step approach to analysing the ECoMMAS 

data. The first aim was to report acoustic occupancy rates from the ECoMMAS survey for the 

first three years of the study. This has not been done for acoustic data outside of the Moray 
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Firth and is useful baseline knowledge. Following on, the second aim was to model temporal 

trends in acoustic occupancy at the ten survey group sites. Identifying and characterising any 

consistent temporal patterns in annual occupancy may help to identify short and long-term 

changes in habitat use at the survey locations. These results should be informative in 

assessments of the effects of construction, operation, and decommissioning of offshore wind 

farms on dolphin habitat use throughout Scottish coastal waters. The final aim was to 

determine whether it was possible to produce a habitat scale spatial-temporal acoustic 

occupancy model for the eastern Scotland bottlenose dolphin population. In doing so I sought 

to identify and combine spatial and temporal predictors into a cohesive model for bottlenose 

dolphin habitat use along the Eastern Scottish coast.  

Finally, the results in Chapter 4 indicate that varying detection probabilities across the spatial 

extent of the array could result in a biased interpretation of trends in habitat selection. To 

investigate this possibility, Appendix 5 includes a sensitivity analysis of the habitat models 

used in this analysis.  

 

4.2.  Methods 

4.2.1.  Data Collection 

Thirty C-PODs were deployed in the spring of 2013, 2014 and 2015. In 2013 instruments 

were deployed between June 18th and July 30th, as weather allowed, and recovered in October 

(Figure 4-1).  In 2014 the array was deployed between May 16th and May 19th and recovered 

in November of the same year. In 2015, the array was deployed and recovered twice. The 

first deployment took place between April 18th and 22nd. C-PODs were recovered and 

redeployed between July 5th and 13th and retrieved in November. With the exception of the 

first 2015 deployment which was recovered prior to internal resource exhaustion, all units ran 

continuously until either storage or battery capacity was exhausted (Figure 4-1). Recovery of 

the acoustic units occurred after the units had ceased recording.   

4.2.2.  Data Quality 

C-POD data from the 2013-2015 ECoMMAS deployments were downloaded and processed 

with the KERNO classifier for the presence of high or moderate quality “other cetacean” 
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click trains. All click trains were subsequently processed with the click train categorisation 

system described in Chapter 2. From the classified echolocation click train detections I 

created a daily acoustic occupancy table that documented whether or not (1/0) each of the 

three click train categories (broadband, frequency banded or unknown – see Chapter 2) was 

detected by the C-POD.  Unfortunately, there is insufficient taxonomic resolution to 

discriminate between the click types of common (Delphinus delphis) and bottlenose dolphins 

encountered in eastern Scottish waters (Chapter 2). However, common dolphins are very 

rarely seen in the North Sea (Reid et al., 2003, Hammond et al., 2017). Thus, it is highly 

likely that all echolocation click trains classified as broadband represent bottlenose dolphins.  

For each day of each C-POD deployment I calculated the probability that a broadband 

echolocation click train encounter was detected (P(Broadband); Appendix 2) by taking the 

average of the hourly probabilities obtained from the confusion matrix in Chapter 2 

(broadband = 0.5, frequency banded = 0.06 and unknown = 0.5).  The daily broadband 

detection probability was then used as the response variable in the temporal analysis.  

4.2.3.  Temporal Covariates 

Temporal covariates comprised Julian day (1-365), season (spring, summer or autumn), and 

year. Spring was defined as the months of April and May (there were no data in March). 

Summer was defined as June, July, and August and autumn was defined as September, 

October, and November. Winter was not included as there were no data between the months 

of November and April.  

4.2.4.  Spatial Covariates 

Spatial covariates were included as either continuous or factor variables based on the 

available degrees of freedom. Previous studies have identified the following spatial covariates 

as potential predictors for the presence of bottlenose dolphins: distance to nearest point of 

aggregation (e.g. Cromarty Firth and River Dee), distance to shore, depth, and slope 

(Thompson et al., 2015). 

Points of aggregation included eight estuaries that were either of known or suspected 

ecological importance to the species. River estuaries were selected from the Atlantic Salmon 

Rivers Database (http://www.nasco.int/RiversDatabase.aspx). These included the Cromarty 

Firth, Firth of Tay, and the rivers Ness and Dee (Hastie et al., 2004; Cheney et al., 2013; 

http://www.nasco.int/RiversDatabase.aspx
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Quick et al., 2014). To these known points of aggregation, the mouths of the rivers Spey, 

North Esk and Tweed were added (Table 4-1). Distance to nearest point of aggregation was 

reported as a continuous variable measured by the distance between each C-POD and the 

nearest point of aggregations.  

Distance to shore was measured as either a three-level factor corresponding to whether each 

C-POD was deployed in nearshore (05), midshore (10), or offshore (15) habitat, or as a 

continuous predictor. For the spatial-temporal model of acoustic occupancy, distance to shore 

was reported as the continuous range between the deployment location and the distance to the 

nearest 0 m isobath (Pante and Simon-Bouhet, 2013).   

Deployment depth (in metres) was recorded from the ship at the time of deployment. The 

gradient of the seabed (henceforth slope, measured in radians) was estimated from the NOAA 

ETOPO1 database (Amante, 2009), with 1 arc-second resolution (~30m). Spatial data were 

processed using the ‘marmap’ R package (Pante and Simon-Bouhet, 2013). Slope was 

calculated in radians using the Fleming and Hoffer algorithm through the ‘raster’ R package 

(Fleming and Hoffer, 1979, Hijmans and van Etten, 2014) . Both depth and slope were 

modelled as continuous predictors. 

Point of 

Aggregation  Latitude Longitude 

Cromarty Firth 57.6958 -3.9900 

Spey 57.6658 -3.6386 

Chaonory Point 57.5775 -4.0844 

Dee 57.1447 -2.0603 

North Esk 56.7044 -2.4447 

Tay Firth 56.4506 -2.7731 

Tweed 55.7639 -1.9836 

 

Table 4-1 Name and location of ecologically relevant and potentially relevant points of aggregation 
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4.2.5.  Acoustic Occupancy Rates 

The first goal of this work was to report daily acoustic occupancy rates at each of the 30 

deployment sites for the entire survey duration.  Data from the ECoMMAS array represents 

the first large-scale acoustic study of dolphins and porpoises outside of the Moray Firth. I 

report daily acoustic occupancy rates for C-PODs at all deployment locations represented in 

the ECoMMAS array (Figure 1-1).  

Site-Specific Temporal Trends 

The second goal of this work was to produce models capable of characterising as much of the 

temporal variation in the observed occupancy as possible. In this analysis I fit generalised 

estimating equations with cubic splines (GEEGAMs) to each of the ten deployment groups 

based on a priori knowledge that bottlenose dolphins forage at different locations throughout 

their range (Hastie et al., 2004b, Pirotta et al., 2014b). GEEGAMs are flexible modelling 

structures that are capable of handling binary data where the majority of the observations are 

0. Even so, it is not possible nor valuable to fit curved splines to a series of all zeros. For that 

reason, I only included data from C-PODs where there were at least two detection positive 

days. Autocorrelations in detections were accounted for by including  autoregressive 

correlation structure with detections grouped by C-POD deployment location and year was 

included into the models (Box et al., 2015). 

Model selection focused on determining the form of the relationship between the daily 

probability of detecting a broadband echolocation click encounter and Julian day of year.  For 

each deployment group I investigated four models. Predictor variables for all models 

included a factor indicating whether the C-POD location represented a near (05), mid (10) or 

offshore (15) deployment location (ShoreDist), a three-level factor for survey year and a 

continuous integer for Julian day of year. The first model (Equation 4-1) assumed an 

interaction between the shore distance and Julian day of year and that the pattern in 

detections throughout the year could be modelled by a cubic B-spline. The second model 

assumed an interaction between the cubic B-spline and the survey year (Equation 4-2). The 

third model (Equation 4-3) had no interactions between the cubic B-spline and the shore 

distance or survey year and the fourth model (Equation 4-4) assumed a parametric 

relationship between the daily probability of detecting a broadband echolocation click train 

and the Julian day of year. In accordance with previous studies, or cubic spline models, a 
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single knot was set at the mid survey date (Pirotta et al., 2011). It was not possible to include 

more than one knot in the spatial models as the additional degrees of freedom prevented 

model convergence. All models were created in R v.3.3.2 using the ‘geepack’ package 

(Halekoh et al., 2006). B-splines were introduced into the models using the ‘splines’ package 

(R Core Team, 2016).  

 

 

𝑃(𝐵𝑟𝑜𝑎𝑑𝑏𝑎𝑛𝑑)~ 𝑌𝑒𝑎𝑟 +  𝑆ℎ𝑜𝑟𝑒𝐷𝑖𝑠𝑡 ∗ 

𝑏𝑠(𝐽𝑢𝑙𝑖𝑒𝑛𝐷𝑎𝑦, 𝑘𝑛𝑜𝑡𝑠 =  𝑚𝑒𝑑𝑖𝑎𝑛(𝐽𝑢𝑙𝑖𝑎𝑛𝐷𝑎𝑦)) 

Equation 4-1 

 

 

𝑃(𝐵𝑟𝑜𝑎𝑑𝑏𝑎𝑛𝑑)~ 𝑆ℎ𝑜𝑟𝑒𝐷𝑖𝑠𝑡 + 𝑌𝑒𝑎𝑟 ∗ 

𝑏𝑠(𝐽𝑢𝑙𝑖𝑒𝑛𝐷𝑎𝑦, 𝑘𝑛𝑜𝑡𝑠 =  𝑚𝑒𝑑𝑖𝑎𝑛(𝐽𝑢𝑙𝑖𝑎𝑛𝐷𝑎𝑦)) 

Equation 4-2 

 

 

𝑃(𝐵𝑟𝑜𝑎𝑑𝑏𝑎𝑛𝑑)~ 𝑆ℎ𝑜𝑟𝑒𝐷𝑖𝑠𝑡 + 𝑌𝑒𝑎𝑟 + 

𝑏𝑠(𝐽𝑢𝑙𝑖𝑒𝑛𝐷𝑎𝑦, 𝑘𝑛𝑜𝑡𝑠 =  𝑚𝑒𝑑𝑖𝑎𝑛(𝐽𝑢𝑙𝑖𝑎𝑛𝐷𝑎𝑦)) 

Equation 4-3 

 

 𝑃(𝐵𝑟𝑜𝑎𝑑𝑏𝑎𝑛𝑑)~ 𝑆ℎ𝑜𝑟𝑒𝐷𝑖𝑠𝑡 + 𝑌𝑒𝑎𝑟 +  𝐽𝑢𝑙𝑖𝑎𝑛𝐷𝑎𝑦 
Equation 4-4 

 

Alkaike’s information criterion (AIC) scores are commonly used to select between candidate 

GAM or GLM models. However, because GEEs are not likelihood-based models AIC scores 

cannot be calculated. Thus, I used the quasi-likelihood criterion (Pan, 2001) to select between 

the four temporal acoustic occupancy models. Quasi-likelihood criterion selection mirrors 

AIC selection. However, since QIC scores are calculated under the independence model 

criterion, they are appropriate for selecting between GEE models.  

In assessing model fits, I followed the methods reported by Pirotta et al. (2011). For each 

deployment group, I used the model with the lowest QIC to predict the probability of 

detecting a broadband echolocation click. I then created receiver operating curves (ROCs) to 

determine the relationship between the detection threshold, and the false positive and false 

negative rates for each model. Using the ROC, I selected an optimal detection threshold 

above which I considered the model to have detected a broadband echolocation click 
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encounter and below which I assumed that no broadband echolocation click encounter was 

detected.  Using this detection threshold, I then created confusion matrices to measure the 

proportion of detection positive and detection negative days correctly identified by the model. 

Finally, I calculated the area under the curve (AUC) for the ROC curve to describe the model 

goodness-of-fit. With a binomial model, AUC scores of 0.5 indicate that the model correctly 

predicted 50% of the observations. Therefore, AUC scores at or below 0.5 represent a model 

that performed as well as would be expected by chance alone. I calculated AUC scores for 

each model for each deployment group (e.g. Latheron, Helmsdale etc.). I also calculated 

AUC scores for all 30 deployment locations to investigate site-specific model performance. 

These analyses were done in R using the ROCR v1.0-7 and PresenceAbsence v1.19  

packages (Sing et al., 2005, Freeman, 2007).  

 

4.2.6.  Spatial-Temporal Habitat Modelling 

The third goal of this work was to produce a comprehensive spatial temporal model of 

bottlenose dolphin habitat use. I used generalised additive mixed models (GAMMs) (Wood, 

2006) to incorporate both spatial and temporal variables, with unit location as a random 

effect. Bottlenose dolphins are known to move along the coast encountering different 

locations where foraging occurs (Wilson et al., 1997b, Quick et al., 2014). Thus, an ideal 

model would investigate interactions between the Julian day of the year, locations where 

animals are known to aggregate for foraging or other reasons, and the remaining spatial 

covariates (seabed slope, deployment depth, and distance to shore). Unfortunately, the small 

detection sample size meant that I was limited in the interactions that could be included. 

Instead, the full model included individual smooth terms of slope, distance to point of 

aggregation, depth, and distance to shore. As interactions in smooths are centred using the 

MGCV package, interaction factors were also added as a main effect as per package 

recommendations. As with site-specific temporal trends, an autoregressive correlation 

structure with detections grouped by deployment location was included in the model (Box et 

al., 2015).  

Model covariates were investigated for collinearity using variance inflation factors (VIF) and 

any covariates with VIF scores greater than three were considered collinear (Craney and 

Surles, 2002). Finally, adjusted R-squared and AUC scores were used to describe model fit. 
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4.3.  Results 

4.3.1.  Acoustic Occupancy Rates 

Together, the data retrieved from the C-PODs represented 11,663 days of monitoring. 

However, at only 16 of the 30 C-PODs deployment sites were devices retrieved in all three 

years. Periods of recording effort also differed between years (Figure 4-1). As expected, the 

C-POD deployed nearest to the Cromarty Firth (Cromarty 05) showed the greatest acoustic 

occupancy rate, with 78% of the days containing at least one broadband detection in 2013 and 

83% in 2015. In 2014 the Cromarty 05 unit was displaced and not recovered (Table 4-2). 

There was a wide variation in both the rate of acoustic occupancy for all click trains as well 

as those identified as broadband by the click train classifier (Chapter 2). C-PODs deployed at 

the northerly and southerly ends of the survey area (Latheron and St Abbs) had very low 

(<5%) acoustic occupancy rates of broadband clicks for all survey years. In general, 

broadband acoustic occupancy rates at the nearshore (05) deployment locations were greater 

than the more offshore (10 or 15) locations (Table 4-2).  
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Figure 4-1 Spatial and temporal coverage (grey box) of ECoMMAS C-PODS for 2013 (top panel), 2014 (middle panel), and 2015 (lower panel). 

Coloured bars represent acoustic encounters. Encounters classified as broadband are coloured blue, frequency banded yellow, and encounters failing to 

meet either classification threshold are mauve. 
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C-PODs in the Stonehaven deployment group were notable for having the second highest 

overall acoustic occupancy rates. Moreover, a nearly even mix of both broadband and 

frequency banded echolocation click trains were recorded throughout the deployments 

(Figure 4-1). The C-PODs detected echolocation click trains on more than 15% of the survey 

days and broadband echolocation clicks indicative of either bottlenose or common dolphin 

echolocation click trains were identified on at least 10% of the survey days. 
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  2013 2014 2015 

  
Occ. Rate (All) Occ. Rate (Broadband) Occ. Rate (All) 

Occ. Rate 

(Broadband) 
Occ. Rate (All) Occ. Rate (Broadband) 

Lat_05 0.19 (0.12 - 0.28) 0.00 (0.00- 0.04) 0.00 (0.00 - 0.04) 0.00 (0.00- 0.04) 0.20 (0.15 - 0.26) 0.00 (0.00- 0.03) 

Lat_10 0.03 (0.01 - 0.08) 0.01 (0.00- 0.05) #VALUE! #VALUE! 0.04 (0.02 - 0.08) 0.01 (0.00- 0.04) 

Lat_15 0.04 (0.01 - 0.09) 0.01 (0.00- 0.05) #VALUE! #VALUE! 0.02 (0.01 - 0.05) 0.00 (0.00- 0.02) 

Hel_05 0.05 (0.02 - 0.12) 0.00 (0.00- 0.04) 0.12 (0.08 - 0.17) 0.03 (0.01 - 0.06) 0.14 (0.09 - 0.20) 0.07 (0.04 - 0.12) 

Hel_10 0.00 (0.00 - 0.03) 0.00 (0.00- 0.03) #VALUE! #VALUE! 0.02 (0.01 - 0.06) 0.00 (0.00- 0.03) 

Hel_15 0.01 (0.00 - 0.05) 0.00 (0.00- 0.03) 0.01 (0.00 - 0.06) 0.00 (0.00- 0.04) 0.00 (0.00 - 0.02) 0.00 (0.00- 0.02) 

Cro_05 0.89 (0.8 - 0.94) 0.78 (0.68 - 0.86) #VALUE! #VALUE! 0.95 (0.91 - 0.97) 0.83 (0.77 - 0.87) 

Cro_10 0.32 (0.17 - 0.52) 0.12 (0.04 - 0.3) 0.35 (0.26 - 0.46) 0.25 (0.17 - 0.35) 0.37 (0.27 - 0.48) 0.28 (0.19 - 0.39) 

Cro_15 0.02 (0.01 - 0.08) 0.02 (0.01 - 0.08) 0.00 (0.00 - 0.04) 0.00 (0.00- 0.04) 0.04 (0.02 - 0.08) 0.03 (0.01 - 0.06) 

SpB_05 0.22 (0.15 - 0.32) 0.13 (0.08 - 0.22) 0.21 (0.11 - 0.38) 0.09 (0.03 - 0.24) 0.14 (0.10 - 0.19) 0.08 (0.05 - 0.13) 

SpB_10 0.00 (0.00 - 0.03) 0.00 (0.00- 0.03) #VALUE! #VALUE! 0.00 (0.00 - 0.05) 0.00 (0.00- 0.05) 

SpB_15 #VALUE! #VALUE! 0.01 (0.00 - 0.05) 0.01 (0.00- 0.05) 0.03 (0.01 - 0.06) 0.02 (0.01 - 0.05) 

Fra_05 0.13 (0.08 - 0.21) 0.00 (0.00- 0.04) 0.21 (0.13 - 0.33) 0.2 (0.12 - 0.31) 0.11 (0.07 - 0.16) 0.06 (0.03 - 0.1) 

Fra_10 #VALUE! #VALUE! #VALUE! #VALUE! 0.00 (0.00 - 0.03) 0 (0.00- 0.03) 

Fra_15 #VALUE! #VALUE! 0.04 (0.02 - 0.10) 0.03 (0.01 - 0.08) 0.08 (0.05 - 0.13) 0.05 (0.03 - 0.09) 

Cru_05 0.19 (0.13 - 0.26) 0.02 (0.00- 0.06) 0.04 (0.02 - 0.10) 0.01 (0.00- 0.05) 0.13 (0.07 - 0.22) 0.01 (0.00- 0.07) 

Cru_10 #VALUE! #VALUE! 0.15 (0.09 - 0.23) 0.04 (0.02 - 0.1) 0.00 (0.00 - 0.43) 0 (0.00- 0.43) 

Cru_15 0.16 (0.11 - 0.23) 0.06 (0.03 - 0.10) 0.15 (0.09 - 0.23) 0.03 (0.01 - 0.09) #VALUE! #VALUE! 

Sto_05 0.17 (0.11 - 0.25) 0.10 (0.06 - 0.16) #VALUE! #VALUE! 0.36 (0.30 - 0.44) 0.27 (0.21 - 0.34) 

Sto_10 #VALUE! #VALUE! 0.12 (0.06 - 0.21) 0.05 (0.02 - 0.13) 0.07 (0.04 - 0.12) 0.04 (0.02 - 0.07) 

Sto_15 0.30 (0.23 - 0.37) 0.11 (0.07 - 0.16) 0.10 (0.06 - 0.19) 0.01 (0.00- 0.06) 0.12 (0.06 - 0.20) 0.06 (0.03 - 0.14) 

Table 4-2 Daily occupancy rates for unprocessed C-POD data (All) and detections classified as “broadband” by the classification system. 95% binomial confidence intervals in 

parenthesis 
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Abr_05 0.17 (0.11 - 0.26) 0.07 (0.03 - 0.14) 0.11 (0.06 - 0.18) 0.05 (0.02 - 0.12) 0.27 (0.18 - 0.38) 0.09 (0.04 - 0.17) 

Abr_10 0.02 (0.01 - 0.08) 0.00 (0.00- 0.04) 0.02 (0.01 - 0.09) 0.00 (0.00- 0.05) 0.04 (0.02 - 0.08) 0.02 (0.01 - 0.06) 

Abr_15 0.18 (0.13 - 0.25) 0.05 (0.03 - 0.1) #VALUE! #VALUE! 0.03 (0.01 - 0.06) 0.02 (0.01 - 0.05) 

FiN_05 0.18 (0.12 - 0.27) 0.09 (0.04 - 0.16) 0.07 (0.03 - 0.16) 0.03 (0.01 - 0.1) 0.07 (0.04 - 0.11) 0.03 (0.02 - 0.07) 

FiN_10 0.00 (0.00 - 0.04) 0.00 (0.00- 0.04) 0.01 (0.00 - 0.06) 0.01 (0.00- 0.06) 0.02 (0.01 - 0.09) 0.01 (0.00- 0.07) 

FiN_15 0.03 (0.01 - 0.08) 0.01 (0.00- 0.05) 0.02 (0.01 - 0.07) 0.01 (0.00- 0.06) 0.00 (0.00 - 0.05) 0.00 (0.00- 0.05) 

Stb_05 0.05 (0.02 - 0.10 ) 0.02 (0.01 - 0.07) 0.06 (0.03 - 0.12) 0.02 (0.01 - 0.07) 0.04 (0.01 - 0.10) 0.04 (0.01 - 0.1) 

Stb_10 0.03 (0.01 - 0.09) 0.01 (0.00- 0.06) 0.02 (0.01 - 0.07) 0.02 (0.01 - 0.07) 0.02 (0.01 - 0.05) 0.01 (0.00- 0.04) 

Stb_15 0.04 (0.02 - 0.08) 0.02 (0.01 - 0.06) #VALUE! #VALUE! 0.01 (0.00 - 0.07) 0.00 (0.00- 0.05) 
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4.3.2.  Site-Specific Temporal Trends  

Delta-QIC scores between the top and next best models were used for model selection. Low 

delta-QIC scores (<3) indicate considerable model selection uncertainty. Temporal model 

performance at some sites was poor with AUC scores at individual deployment sites less than 

0.5 (Table 4-3). The low acoustic occupancy rates across most sites meant that all the 

temporal models generally did well at predicting periods without detections but poorly at 

predicting detection positive days. At least 50% of detection negative days were properly 

predicted by the models for each of the deployment groups. However, with the exception of 

the Cromarty group, no model was able to predict more than 6% of the broadband detection 

positive days. The minimum AUC score for the 10 models was 0.46 for the Latheron group 

indicating the model preformed no better than would be expected by chance. The maximum 

AUC was 0.9, observed at the Cromarty group. At individual C-POD deployment locations, 

AUC values ranged from 0.02 at the Latheron 15 location to .96 at the Cromarty 05 location 

(Table 4-3). 

Large (>3) ΔQIC and high (>0.75) AUC scores indicated a more confident model selection 

and better model fit at the Latheron 05, Stonehaven 15 and Arbroath 10 deployment 

locations. Of these, only the Stonehaven 15 location contained broadband echolocation click 

trains on greater than 1% of the days. Thus, high AUC scores at the other locations are highly 

biased by the correct prediction of days without dolphin detections; the models essentially 

predicted 0 for all days and received high AUC scores because there were so few detections.  

In other words, they had very high precision but unacceptably low recall. 

For sites with the highest acoustic occupancy of broadband click trains, Cromarty 05 and 

Stonehaven 15, GEEGLM models suggested peaks in the acoustic occupancy likelihood on 

August 15th and July 31st, respectively. At other locations, including deployment sites in the 

Fraserburgh, Arbroath and Fife Ness groups, temporal trends in acoustic occupancy were 

highly stochastic. Poor model fits (AUC <0.50) for deployment sites within these groups 

make it difficult to identify the presence and/or persistence of patterns in daily acoustic 

occupancy (Figure 4-2).  
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Group Formula 
Delta 

QIC 

Group 

AUC 

Group 

Pres. 

Group 

Abs. 
Unit  

Unit 

AUC 

Unit 

Pres. 

Unit 

Abs. 

Lat P(Broadband) ~ 

ShoreDist + Year + 

JulianDay 

4.56 0.46 0 0.90 Lat_05 0.92 0.01 0.74 

      
Lat_10 0.38 0.01 0.92 

      
Lat_15 0.02 0.02 0.02 

Hel P(Broadband) ~ 

Year + ShoreDist * 

bs(JulianDay, knots 

= mean(JulianDay)) 

0.03 0.88 0.05 0.60 Hel_05 0.83 0.05 0.74 

      
Hel_10 0.95 0.00 0.93 

      
Hel_15 - - - 

Cro P(Broadband) ~ 

ShoreDist + Year + 

bs(JulianDay, knots 

= mean(JulianDay)) 

0.98 0.90 0.41 0.47 Cro_05 0.62 0.76 0.03 

      
Cro_10 0.66 0.19 0.41 

      
Cro_15 0.77 0.02 0.61 

SpB P(Broadband) ~ 

ShoreDist + Year + 

JulianDay 

2.22 0.69 0.09 0.47 SpB_05 0.57 0.05 0.69 

      
SpB_10 - - - 

      
SpB_15 0.62 0.02 0.41 

Fra P(Broadband) ~ 

Year + ShoreDist * 

0.49 0.77 0.02 0.87 Fra_05 0.81 0.04 0.82 

Table 4-3 Daily acoustic occupancy model results for the 10 deployment groups (Group). Model formula 

indicates the final model form selected via QIC selection where P(Broadband) is the probability of detecting a 

broadband echolocation click train (shortened from Equations 4-1 – 4-4). Model formula selected for each 

deployment group as well as the area under the ROC curve (AUC), proportion of presences correctly identified 

(Pres) and proportion of absences correctly identified (Abs) AUC is the area under the curve identified by 

through the ROC analysis and represents a measure of the goodness of fit. Presence and Absence represent the 

proportion of true presences and absences (within sample) correctly identified by the model. Dashes indicated 

location where modelling was not possible due to low numbers of detections or failure to recover the C-PODs 

deployed at that location. ShoreDist represents the three-level factor for the near (05), mid (10), and offshore 

(15) deployment locations.  
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bs(JulianDay, knots 

= mean(JulianDay)) 
      

Fra_10 - - - 
      

Fra_15 0.69 0.06 0.53 

Cru P(Broadband) ~ 

ShoreDist + Year + 

JulianDay 

3.89 0.63 0.1 0.3 Cru_05 0.64 0.04 0.64 

      
Cru_10 0.23 0.12 0.12 

      
Cru_15 0.61 0.03 0.71 

Sto P(Broadband) ~ 

Year + ShoreDist * 

bs(JulianDay, knots 

= mean(JulianDay)) 

5.69 0.79 0.1 0.71 Sto_05 0.71 0.16 0.58 

      
Sto_10 0.63 0.04 0.65 

      
Sto_15 0.81 0.10 0.75 

Abr P(Broadband) ~ 

Year + ShoreDist * 

bs(JulianDay, knots 

= mean(JulianDay)) 

13.93 0.79 0.09 0.43 Abr_05 0.60 0.10 0.55 

      
Abr_10 0.96 0.03 0.91 

      
Abr_15 0.78 0.07 0.50 

FiN P(Broadband) ~ 

ShoreDist + Year + 

bs(JulianDay, knots 

= mean(JulianDay)) 

1.64 0.82 0.05 0.76 FiN_05 0.81 0.06 0.69 

      
FiN_10 - - - 

      
FiN_15 0.69 0.00 0.67 

Stb P(Broadband) ~ 

ShoreDist + Year + 

JulianDay 

3.93 0.64 0.02 0.59 Stb_05 0.57 0.04 0.39 

      
Stb_10 0.73 0.01 0.89 

      
Stb_15 0.46 0.03 0.23 
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Figure 4-2 Observed (points) and 95% confidence interval of the modelled acoustic occupancy (shaded) for the near (05) 

mid (10) and offshore (15) deployment sites (panels) in 2013. Colour indicates shore distance. 
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Figure 4-3 Observed (points) and 95% confidence interval of the modelled acoustic occupancy (shaded) for the near (05) 

mid (10) and offshore (15) deployment sites (panels) in 2014. Colour indicates shore distance. 
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Figure 4-4 Observed (points) and 95% confidence interval of the modelled acoustic occupancy (shaded) for the near (05) 

mid (10) and offshore (15) deployment sites (panels) in 2015. Colour indicates shore distance. 
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4.3.3.  Spatial-Habitat Modelling 

Spatial covariates showed some degree of similarity but since VIF scores were less than three 

all model covariates were initially retained (Appendix 4). In the full model, the estimated 

degrees of freedom (EDF) for slope were less than one and thus this predictor was removed. 

In the final model all terms were significant with the exception of season (Table 4-4). The 

AUC score of the final model was 0.86.  

Model Formula 

P(Broadband) ~ s(DistToPOa, bs = "ts", k = 3) + s(Depth,  bs = "ts") + s(DistToShore, bs = "ts") + 

POAName + Season 

Parametric coefficients 

 Estimate Std. Error t value Pr(>|t|) 

(Intercept) -2.71 0.18 -15.28 <.001 

POAName:Dee -0.63 0.35 -1.81 0.07 

POAName: North Esk -1.02 0.31 -3.22 0.00 

POAName:Spey -1.24 0.28 -4.50 <.001 

POAName:Tay Firth -0.64 0.35 -1.83 0.07 

POAName:Tweed -2.41 0.44 -5.46 <.001 

Season:Spring -0.07 0.16 -0.40 0.68 

Season:Summer 0.03 0.12 0.27 0.78 

Approximate significance of smooth terms 

 
EDF Ref.df F p-value 

s(DistToPOA) 1.92 2 55.26 <.001 

s(Depth) 4.69 9 6.23 <.001 

s(DistToShore) 4.96 9 9.10 <.001 

R-sq.(adj) =  0.322,   Scale est. = 1,   n = 9181         

 

Table 4-4 GAMM summary for the parametric and smooth coefficient estimates, standard errors, estimated 

degrees of freedom (EDF), reference degrees of freedom (Ref.df), F, t and p-values for the final habitat model. 

DistToPOA is the distance (in metres) to the nearest point of aggregation and POAName is the name of the 

nearest point of aggregation.  
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Modelling results suggested that the probability of detecting broadband echolocation click 

train encounters decreased with increasing distance to shore and distance to the nearest point 

of aggregation. However, across the extent of the array, the probability of detecting 

broadband echolocation encounters increased with increasing depth Figure 4-5.  

Figure 4-5 Two dimensional representations of the binomial smooths for the habitat GAM.  Black line 

represents the probability of detecting a broadband echolocation click train on a given C-POD as a function of 

the C-POD’s distance to the nearest Point of Aggregation in metres (top left), deployment depth in metres (top 

right) and distance to shore in metres (bottom). Shaded areas represent 95% confidence intervals and dashes on 

X-axis are rug plot of deployment variables. 
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Figures 4-6 through 4-8 show the predicted daily broadband acoustic occupancy across the 

eastern Scottish coast. Prediction data were limited to those within the confines of the C-POD 

sampling locations, maximum distance from shore 17.9 km, depth 103 m, slope 0.3 radians 

and distance to nearest point of aggregation 67km. The model predicted increased detection 

probability at each of the points of aggregation included in the model (Table 4-1). The model 

predicted that detections were more likely close to shore throughout the east coast habitat 

between the Fife Ness and Cruden Bay units; in coastal areas in the Firth of Forth; in offshore 

areas between the Dee River, Stonehaven, and Spey Bay deployment groups; and in the 

extreme northern end of the survey area. 
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Figure 4-6 Median predicted daily likelihood of detecting a broadband echolocation click train throughout the 

study area. Blue dots represent the location of the points of aggregation. 
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Figure 4-7 Lower 95% Confidence Interval of Predicted daily likelihood of detecting a broadband echolocation 

click train throughout the study area. Blue dots represent the location of the points of aggregation. 
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Figure 4-8 Upper 95% Confidence Interval of Predicted daily likelihood of detecting a broadband echolocation click 

train throughout the study area. Blue dots represent the location of points of aggregation. 



Daily Acoustic Occupancy, Temporal Trends, and Spatial Modelling 

108 

 

 

4.4.  Discussion 

The goals of this chapter were to report acoustic occupancy rates at the 30 survey locations 

represented in the ECoMMAS array, identify temporal trends in acoustic occupancy at each 

of the survey groups, and to determine whether it was possible to produce a habitat-scale 

spatial-temporal acoustic occupancy model for the eastern Scotland bottlenose dolphin 

population. I reported acoustic occupancy rates for all C-PODs for all available years and 

found that temporal trends in acoustic occupancy data were highly stochastic. Temporal 

modelling results revealed a consistent peak in broadband detections at the Stonehaven 15 

deployment location in late July, which may be indicative of important dolphin habitat 

warranting further investigation. The habitat modelling generally agreed with previous 

studies linking distance to shore with the probability of detecting bottlenose dolphins (Quick 

et al., 2014). However, unlike some previous studies (Pirotta et al., 2014a), this model 

suggests that animals are more likely to be detected in deeper water than shallow . Distance 

to the nearest point of aggregation was also retained in the model while bathymetry gradient 

was not. Unfortunately, the data did not contain sufficient degrees of freedom to model both 

spatial and temporal covariates together. Even when season, rather than Julian day, was 

included as the time covariate was not significant in the model (Table 4-4).   

Acoustic occupancy results found that C-PODs deployed inshore (i.e. the 05 units) were more 

likely to detect broadband echolocation click trains than C-PODs deployed in offshore 

locations. The average broadband occupancy rate for the 05, 10 and 15 units was 0.12, 0.03 

and 0.02 detections/day respectively. Even excluding the Cromarty 05 C-POD, the broadband 

occupancy rate for the nearshore deployments was 0.06 detections/day. This finding is 

consistent with visual studies that have suggested that this bottlenose dolphin population is 

primarily coastal and more likely to be observed in shallow waters less than 1-2km from the 

coast (Quick et al., 2014, Arso Civil et al., 2019).  

Data presented in this chapter posed considerable challenges to the temporal modelling.  For 

half of the deployment groups, temporal model selection (ΔQIC) did not strongly favour one 

model over another. Moreover, the models that were selected struggled to accurately predict 

rare occurrences (detections) and could not account for most of the variation present in the 

dataset. This indicates that there was insufficient information or too much variability in the 
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C-POD data to accurately characterise any temporal patterns present in the data. Either way, 

by themselves, these data cannot provide long-term temporal resolution of habitat use. 

However, the lack of temporal resolution is unsurprising when considering the survey design 

and data availability. The data presented here represent only the first three years of a long 

term study and, furthermore, the ECoMMAS provided acoustic survey coverage for locations 

not thought to represent points of aggregation. Thus, low acoustic occupancy rates were 

expected. Even so, C-PODs have very low false positive rates but suffer considerably from 

false negatives (failing to detect dolphin presence). This becomes extremely problematic 

when dealing with habitats with low occupancy rates. Thus, as C-PODs are lost or retired 

from service, managers would do well to replace them with instruments where users can 

adjust the trade-off between false positives and false negatives based on their needs and the 

environmental conditions.  

In addition to survey design, instrument loss and poor temporal replication were problematic. 

While some degree of trawling and displacement of instruments is an unavoidable 

consequence of passive acoustic monitoring, shifting boat time availability between years 

prevented consistent temporal coverage. For example, instruments were deployed during the 

month of August for all 30 deployment sites in all three years. However, in 2014 instruments 

were deployed in April and most exhausted their battery capacity prior to August which 

precluded almost any spatial/temporal replication for 2014. Thus, despite data being collected 

each year at each deployment site, only 3 of the 30 sites provided data for the month of 

August in all three survey years. For comparison, Pirotta et al. (2014b) used data from eight 

years of continuous surveys to produce estimates for dolphin foraging rates within the Moray 

Firth SAC. In addition to representing 2.5 times the duration of the present study, the data 

reported by Pirotta et al. (2014b) were not processed for the presence of different species, 

represented high acoustic and true animal occupancy rates and were collected from a much 

denser array of echolocation click detectors. The average spacing between deployment 

locations in Pirotta et al. (2014b) was 2-3km whereas spacing between deployment groups in 

the ECoMMAS array was 30-50km. Similarly, another acoustic study used data from 62 

deployment locations within the inner Moray Firth to model diel trends in harbour porpoise 

activity (Williamson et al., 2017). Even though the array data in that study was more than 

twice as dense as the ECoMMAS array, the authors did not attempt to model daily acoustic 

occupancy. Finally, in both Pirotta et al. (2014b) and Williamson et al. (2017) there were 

sufficient degrees of freedom in the data to model spatial and temporal interactions whereas 
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modelling efforts for the first three years of the ECoMMAS data could not support covariate 

interactions. Continuing deployments of the ECoMMAS array will ultimately provide better 

temporal coverage which should resolve trends in acoustic occupancy at each of the 

deployment sites and or groups. Well-fitting temporal models for the Eastern Scottish 

Coastline will require considerably more data and, ideally, more consistent data coverage.  

The data in this chapter augment the existing surveys for this population (Wilson, 1995, 

Wilson et al., 1997b, Hastie et al., 2004b, Wilson et al., 2004, Thompson et al., 2011c, 

Cheney et al., 2013, Hammond et al., 2017, Cheney et al., 2018, Arso Civil et al., 2019)  by 

collecting long-term acoustic data from across the majority of the eastern Scottish Coast. 

Moreover, this study demonstrated an approach for incorporating acoustic classifier output 

and uncertainty into ecological models. However, due to the limited nature of the validation 

data, it was not possible to characterise classifier bias which may skew the results. This 

classification does not account for known difference in species distributions. For example, 

bottlenose dolphins are sighted more frequently in nearshore waters than are other species. 

This a priori knowledge could be integrated into the habitat model to offset random error in 

the classification system.  If that holds for the mid and offshore units as well, the models here 

would underrepresent habitat use. The converse is also true if the classifier skewed towards 

frequency banded click trains instead. The latter situation may explain the increased 

likelihood of acoustic occupancy near the outer edge of the survey areas. Should future 

studies need to better account for classifier uncertainty, a Bayesian approach may be justified 

(Caillat, 2013). The Bayesian approach is sufficiently flexible to account for other covariates 

not included in this survey including false negative and false positive rates.  

Data from the ECoMMAS array revealed a mix of both broadband and frequency banded 

click trains at the Stonehaven 15 deployment location. These data suggest that the offshore 

habitat near Stonehaven may represent another area of relatively high occurrence. This 

finding also mirrors the continuous recordings collected from the SM unit at the Stonehaven 

15 location, in which both broadband and frequency banded click trains were confirmed in 

2013, 2014 and 2015 (Chapter 2). The consistency in the predictions between years at the 

Stonehaven 15 location suggests that the habitat may be ecologically meaningful to one or 

more dolphin species over the mid-summer period.  

Unfortunately, the limited taxonomic resolution of the acoustic data (both continuous 

recordings and C-POD detections) means that it is not possible say with any degree of 
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certainty which of the broadband or frequency banded species were present. Thus, the area 

may not be ecologically relevant to bottlenose dolphins, one of the primary targets of the 

ECoMMAS array. Similarly, several studies have noted that while bottlenose dolphins are 

primarily detected within 1-5 km of the coast, they are infrequently observed in offshore 

habitat (Thompson et al., 2011a, Hammond et al., 2017). With regard to the frequency 

banded click trains, both white-beaked and Risso’s dolphins have been sighted from land and 

boat-based visual surveys but are more commonly seen offshore (Weir et al., 2007, 

Hammond et al., 2017). However, nearly all studies of delphinids in the area have found 

considerable variation in occupancy between survey years(Robinson et al., 2007, Culloch and 

Robinson, 2008, Cheney et al., 2014). Thus, visual studies will be needed for confirmation.  

Results from the spatial model generally agreed with previous studies linking smaller 

distances to shore with increased probability of detecting bottlenose dolphins (Pirotta et al., 

2014b, Arso Civil et al., 2019, Quick et al., 2014). However, unlike previous studies, the 

spatial modelling here suggested that broadband acoustic encounters were more likely to be 

detected in deeper water than shallow, and a slight increase in detections >15 km from shore. 

However, without concurrent visual surveys or more advanced click classification (Frasier et 

al., 2017) it is not possible to say whether these clicks represent bottlenose or common 

dolphins.  

This study also found that distance to the nearest selected point of aggregation (often 

coinciding with river mouths) and depth were also important in predicting acoustic 

occupancy. The retention of distance to nearest point of aggregation in the model is supported 

by previous studies that have suggested that foraging opportunities outside the Moray Firth 

may have been a driving factor for the range expansion (Wilson et al., 2004, Cheney et al., 

2014). Thus, locations where foraging may be focussed elsewhere along the coast, such as the 

Tay estuary (Arso Civil et al., 2019), may be as important as Chanonry Point and the Sutors 

within the SAC.   

One of the limitations of this, and most passive acoustic studies is the inability to relate the 

number of detections to the number of animals present. Several studies have attempted to do 

this with more solitary species such as harbour porpoise and beaked whales (Kusel et al., 

2011, Kyhn et al., 2012, Koblitz et al., 2014). Sound production by bottlenose dolphins is 

complex, population, and behaviour dependent (Connor and Smolker, 1996, Herzing, 1996, 

Janik, 2000a, Nowacek, 2005, Quick and Janik, 2008). Context specificity in both the 
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quantity and quality (e.g. amplitude) of the clicks makes accurate estimation of density 

untenable without a-priori knowledge of the behaviour. This study, in particular, was also 

limited by the ‘black-box’ nature of the recording instruments (Nuuttila et al., 2013a, Nuuttila 

et al., 2013b, Robbins et al., 2016).  

Marques et al. (2012) attempted to estimate animal density from acoustic detections for North 

Pacific right whales (Eubalaena japonica). However, the sounds produced by this species are 

omni-directional and relatively infrequent which allows analysts to readily discriminate 

between multiple calls. The same is not true for the dolphin echolocation click trains. Click 

trains may be produced by all animals in the group and the clicks themselves are highly 

directional. Thus, as an animal or group swims by a recorder a small proportion of the clicks 

produced will be detected by the recorder. One option for accounting for rapidly changing 

detection probabilities within a group of odontocetes is to localise individual animals and 

subsequently estimate group size. However, this methodology requires multiple hydrophones 

spaced within a few metres of each other and consequently not appropriate for the 

ECoMMAS array. Alternatively, where localisations are not available, some authors have 

used average group size as a multiplier (Kyhn et al., 2012). This assumes both explicit 

knowledge of group sizes and that the group sizes are stable within the analysis framework. 

Where stable group size estimate or localisations are available, single sensor recordings are a 

reasonable method to estimate animal density. Thus, in order to estimate animal density using 

the ECoMMAS array, future studies will need to incorporate a greater understanding of group 

size and spacing or reconfigure the array to allow for localisations and/or SECR analysis. 

For the reasons above, I believe that there are limited circumstances in which estimating 

density or abundance from C-POD data alone is likely to provide robust results. However, 

presence and absence data from the instruments is valuable under a variety of other 

circumstances including studies of habitat use and site-specific acoustic behaviour. The 

manufacturer reports false positive rates of less than 4% using the C-POD data processed 

with the KERNO classifier alone. This value varies with deployment location and parameters 

chosen (Robbins et al., 2016). The data produced by C-PODs are also capable of 

differentiating between areas of known dense animal occupancy and those with lower 

occupancy, as confirmed by historic transect surveys (Pirotta et al., 2014b). Thus C-PODs 

may be an appropriate choice for preliminary studies or impact assessments that need only to 

determine whether an area is ecologically important for the species of interest, and in 

conjunction with visual surveys (Taylor et al., 2017).  
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Within the Moray Firth, Pirotta (2014b) found that seabed gradient was significant in 

predicting a higher proportion of foraging buzzes in acoustic encounters. While foraging 

buzzes were not modelled here, in this study seabed gradient was not a significant predictor 

of acoustic occupancy in the final habitat model. This suggests that seabed gradient is only 

important within the context of foraging activity.  

Accurately defining which spatial covariates are meaningful predictors of bottlenose dolphin 

daily acoustic occupancy will require a considerable increase in the spatial extent of the 

ECoMASS array. This does not necessarily require deploying additional recording devices or 

modifying the survey design. Instead, visual survey data could be incorporated into the 

habitat models to provide the spatial data lacking in in the ECoMMAS array (Brookes et al., 

2013, Thompson et al., 2015). Boat-based surveys in and around areas of known 

concentration of dolphins not covered by the array would be particularly well suited to 

complement the ECoMMAS data.  

Foraging has been associated with deep channels which are similarly important for shipping. 

Thus far, it has not been possible to deploy acoustic recorders in active shipping lanes or near 

ports as the moorings are perceived as a potential navigational hazard. Moreover, loud and 

variable ambient noise associated with ports will severely bias the acoustic occupancy results 

(Chapter 3). Thus, small boat or land-based surveys may represent the best approach to 

monitoring daily acoustic occupancy rates in these areas. Finally, visual surveys of this 

population represent >25 years of continuous data collection. This vastly surpasses the 

available acoustic data for the population (>10yrs in the Moray Firth and five years of the 

ECoMMAS array of which only the first three years were included). Incorporating all visual 

and acoustic data available could be the best way to develop a cohesive spatial-temporal 

model of occupancy.   

Previous studies have used dense arrays of passive acoustic instruments to look at density, 

abundance, and habitat use as well as spatial and temporal predictors of acoustically active 

species (Sherwin et al., 2000, Moretti et al., 2006, Pirotta et al., 2014b, Weirathmueller et al., 

2014, Williamson et al., 2017). Thus, incorporating ancillary spatial data and/or rotating the 

acoustic monitoring stations could provide sufficient spatial replication to model acoustic 

occupancy outside of the SAC. Adding inshore sensors between each deployment group 

would provide replicates of shore distance, depth, and slope values while increasing the 

resolution for distance to the nearest point of aggregation.  
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Passive acoustic surveys off eastern Scotland will continue be faced with considerable 

misclassification error when identifying dolphin species, regardless of the recording device or 

sample frequency (Roch et al., 2011b, Caillat, 2013). Passive acoustics are also unable to 

distinguish between periods when animals are not present and periods when animals are 

present but not detectable, as may be the case at some of the ECoMMAS deployment 

locations.  Together, these findings highlight the value of combining long term data from 

both visual and acoustic surveys. In doing so, researchers are able to provide robust data on 

long-term trends in dolphin occurrence throughout the habit and in particular for areas of 

ecological or commercial interest (Thompson et al., 2011a).  

4.5.  Conclusions 

These data fill a gap in knowledge about the habitat use of Scottish bottlenose dolphins 

outside of the well-studied areas of concentration including surveying the northern and 

southern extent of the specie’s current main distribution. Results from this chapter support 

previous visual surveys indicating that dolphins are most likely to be detected in nearshore, 

deep and deep habitats. Acoustic results from this study also hinted at areas that may be used 

by more than one dolphin species and may be biologically important. Finally, these data 

represent the first three years of a multi-year longitudinal study. Data from the ECoMMAS 

array have the potential to provide meaningful insights into seasonal and annual variation in 

bottlenose dolphin habitat as well as how these trends may change over time in response to, 

among other things, the construction of offshore wind farms. 
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Chapter 5 

Hourly Occupancy, Tidal State, and Diel Trends   

5.1.  Introduction 

Diel trends in animal behaviour are ubiquitous. Birds, frogs, fish, insects, and mammals all 

display rhythms in behavioural activities that vary from diurnal, to nocturnal, and crepuscular 

(increased activity at dawn and dusk). Moreover, animals may shift their diel trends in 

response to environmental cues. For example, leatherback turtles (Dermochelys coriacea) 

show little or no diel rhythm in diving behaviour during their northern migrations. However, 

during the southern migration animals spend more time at the surface during the day but dive 

deeper at night. For this species the change in diel pattern between the phases of their annual 

migration has been linked to prey availability and thermoregulatory needs throughout their 

migratory cycle (James et al., 2006, Casey et al., 2014). Similarly, anadromous fish show 

considerable plasticity in behavioural rhythms across migration. Changes in water current 

strength and predation risk over even short time and small spatial scales can induce fish to 

switch between having no diel activity patterns to displaying either crepuscular or nocturnal 

peaks in activity (Keefer et al., 2013).  

Knowing how animals use their environment(s) throughout their diel cycle can play a role in 

conservation and management efforts. Both endangered Florida panthers (Puma concolor 

coryi) and Scandinavian brown bears (Ursus arctos) require different habitats throughout 

their diel rhythm (Moe et al., 2007, Onorato et al., 2011). Early studies of both species 

focused on habitat selection during the daytime hours only. As Scandinavian brown bears and 

Florida panthers both display either crepuscular or nocturnal activity patterns, this meant that 

a large proportion of observations were associated with resting animals. Subsequently, 

managers were unaware that the species required different habitats and habitat features for 

the foraging and resting at different times of the 24 hr cycle. Similarly, in aquatic systems 

animals are known to shelter in reef-like habitats during daylight and forage over larger 

and/or open habitat at night (Lawton, 1987, Meyer et al., 2000, Keefer et al., 2013). These 

examples show how maintaining the integrity of all habitats selected by animals throughout 

their circadian cycle is important to long term conservation.  
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Worldwide, cetaceans are protected by a variety of regional and international legislation 

including the European Habitats Directive. For legislation to be effective in restoring or 

maintaining population levels, regulators must have a broad understanding of species’ habitat 

use. This includes movement patterns and energy budgets. Presently, passive acoustic surveys 

are the most common methodology for monitoring cetaceans across the 24 hr scale. Fixed 

passive acoustic surveys are favoured for their ability to collect data over long timescales 

(Carlström, 2005, Wiggins et al., 2005, Baumann-Pickering et al., 2015). Results from fixed 

passive surveys, where instruments are moored in place,  have shown that diel patterns in 

vocalisations are common among cetacean species (Munger et al., 2008, Todd et al., 2009, 

Mussoline et al., 2012, Matthews et al., 2014, Baumann-Pickering et al., 2015). In 

odontocetes, diel patterns in vocalisations have been linked to changes in behaviour 

predicated by differential prey availability and/or shifting foraging strategies throughout the 

24 hr period (Friedlaender et al., 2009, Soldevilla et al., 2010b, Williamson et al., 2017). As 

with terrestrial systems, knowledge of diel patterns in habitat selection and or behaviour can 

inform conservation efforts by identifying how the use of habitats or habitat features may 

vary throughout their circadian cycles. Moreover, identifying diel variation in foraging and/or 

diving behaviour of protected marine mammals can inform mitigation efforts seeking to 

reduce the negative consequences of anthropogenic activities (Mussoline et al., 2012).   

Understanding activity cycles allows monitoring of changes in behaviour that could indicate 

adverse environmental conditions or increased stress (Tyne et al., 2015). Bottlenose dolphins 

(Tursiops truncatus) display flexibility in their daily activity cycles at both spatial and 

temporal scales. For example, in the Indian ocean, bottlenose dolphins undergo an 

on/offshore diurnal migration that balances predation risk and preferred foraging habitat 

(Heithaus and Dill, 2002). Other populations are known to time foraging activity with tidal 

cycles in order to maximise foraging efficiency  (Gregory and Rowden, 2001, Mendes et al., 

2002, Pirotta et al., 2014b), including driving fish onto tidally exposed muddy banks while 

temporarily self-stranding (Hoese, 1971, Silber and Fertl, 1995). In such tidal habitats, 

animals time foraging attempts with tidal cycles in order to maximise their success rate. As 

with diel trends, knowledge of how animals change their behaviour over the tidal cycle can 

provide insights into the ecology of the animals as well as identifying important habitats 

(Hastie et al., 2003a, Hastie et al., 2016, Benjamins et al., 2017).  In this chapter I investigate 

hourly trends in detections as a function of environmental variables across the spatial extent 

of the array. Data produced by the ECoMMAS study represents a potentially important large 
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scale long-term acoustic survey of the eastern Scottish coast. As with Chapter 4, here I am 

limited by the taxonomic resolution of the C-POD data. Thus, I assume that broadband click 

detections are from bottlenose dolphins (see Chapter 2). This assumption, while imperfect, is 

reasonable for coastal deployments given the historically very low detection rate of common 

dolphins (Delphinus delphis) in the area (Hammond et al., 2002b, Reid et al., 2003, Weir et 

al., 2007, Anderwald et al., 2010, Hammond et al., 2013, Hammond et al., 2017, Arso Civil et 

al., 2019).  

 

5.2.  Methods 

5.2.1.  Data Collection and Quality 

The hourly acoustic occupancy data collated in Chapter 4 was also used in Chapter 5. Since 

the goal of this analysis was to understand detection trends on a sub-daily scale, only days 

containing at least one echolocation click train were included in the analysis. This reduced 

the size of the dataset and reduced zero-inflation in the data and decreased the time needed to 

fit the models. Models presented in this chapter, therefore, represent the probability of 

detecting an echolocation click encounter conditional on at least one echolocation click 

encounter being detected during each day or tidal period (P(Broadband)). I again used 

probability values from the classifier to estimate the probability that a broadband click train 

was present. Where two or more encounter types (e.g. ‘Unknown’ and ‘Frequency banded’) 

were present during the same hour I assumed a broadband probability of 0.5. 

Tidal Cycle and Tide State 

Tidal heights were predicted for all C-POD deployments with one-hour resolution using 

POLPRED and POLTIPS software (NERC, 2016). POLPRED software uses a 

‘Hydrodynamic DLL’ coupled with harmonic constants to predict tidal height for any time 

and for a given grid reference (Table 5-1). From the tidal height data, I used local extrema 

and zero crossings to calculate the approximate time of each high tide and subsequently the 

hours relative to high tide (±6hrs).   

Table 5-1 C-POD Deployment latitudes and longitudes and grid centres from which tidal height predictions were calculated.  
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 Deployment Prediction Grid 

UnitLoc Lat Lon Lat Lon 

Lat_05 58.26933 -3.31819 58.2749 -3.3125 

Lat_10 58.22935 -3.20642 58.2249 -3.2125 

Lat_15 58.18674 -3.13592 58.1916 -3.1375 

Hel_05 58.05338 -3.71525 58.0583 -3.7125 

Hel_10 58.00506 -3.61084 58.0083 -3.6125 

Hel_15 57.97570 -3.53584 57.9749 -3.5375 

Cro_05 57.67490 -3.98821 57.6749 -3.9875 

Cro_10 57.68919 -3.88175 57.6916 -3.8875 

Cro_15 57.70668 -3.81072 57.7083 -3.8125 

SpB_05 57.69019 -3.06247 57.6916 -3.0625 

SpB_10 57.74148 -3.03882 57.7416 -3.0375 

SpB_15 57.78698 -3.06426 57.7916 -3.0625 

Fra_05 57.71135 -2.13012 57.7083 -2.1375 

Fra_10 57.77115 -2.14043 57.7749 -2.1375 

Fra_15 57.84919 -2.08981 57.8416 -2.0875 

Cru_05 57.38019 -1.82836 57.3749 -1.8375 

Cru_10 57.38021 -1.73809 57.3749 -1.7375 

Cru_15 57.37728 -1.61809 57.3749 -1.6125 

Sto_05 56.94694 -2.17671 56.9416 -2.1875 

Sto_10 56.95942 -2.11339 56.9583 -2.1125 

Sto_15 56.98064 -2.02174 56.9749 -2.0125 

Abr_05 56.55405 -2.48332 56.5583 -2.4875 

Abr_10 56.49980 -2.37990 56.4916 -2.3875 

Abr_15 56.45966 -2.29863 56.4583 -2.2875 

FiN_05 56.26498 -2.57206 55.9249 -2.1875 

FiN_10 56.25789 -2.49931 55.9583 -2.1625 

FiN_15 56.29006 -2.43306 56.0416 -2.0875 

Stb_05 55.92920 -2.17711 56.2583 -2.5625 

Stb_10 55.96349 -2.16185 56.2583 -2.4875 

Stb_15 56.03335 -2.07541 56.2916 -2.4375 

 

Hour Relative to Solar Noon 
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I report time of the day as hour relative to solar noon where solar noon is defined as the time 

at which the sun reaches its zenith, or daily maximum solar elevation angle (Michalsky, 

1988).  For each hour of each deployment I calculated the hour of the day relative to solar 

noon (-12 to 11). 

 

5.2.2.  Modelling Effects of Hour and Tidal State in and Outside of a Point of Aggregation 

I used binomial GAMMs to model the effects of hour of the day and tidal state on the 

probability of detecting broadband echolocation click detections. As with the Chapter 4, the 

response variable was the hourly probability that a broadband echolocation click train was 

detected, P(Broadband).  Hourly trends in acoustic occupancy were modelled as binomial 

distributions with the hourly P(Broadband) scores as the response variable.  To account for 

temporal autocorrelation, I included an autoregressive correlation structure where hourly 

observations were grouped by date and deployment location (Wood 2011, p322). The 

deployment location (UnitLoc) was included as random effect. All models were created using 

the MGCV package (Wood, 2017) in R v.3.3.2 (R Core Team, 2016). Both hour and tidal 

state were modelled using cyclic cubic regression splines. The start and end points of cyclic 

splines are the same and thus they are appropriate for modelling oscillations such as tidal 

state and hour of the day (Williamson et al., 2017).  

In this analysis candidate models were fit to two subsets of the data. The first subset included 

all deployment locations with the exception of Cromarty 05 (‘non-Cromarty 05 data’). The 

second subset included only data from the Cromarty 05 deployments (‘Cromarty 05 data’). 

This decision was based on two observations. First, C-POD detections from the Cromarty 05 

location were associated with a known foraging location (Hastie et al., 2004b) whereas 

detections from other sites represented either locations not known to be areas where foraging 

occurs or relatively data deficient areas (Wilson et al., 2004). Second, observations from the 

Cromarty 05 location contained nearly as many occupied hours as the 29 other deployment 

location combined. Thus, data from the Cromarty 05 deployment site contained considerably 

more degrees of freedom with which to investigate multiple covariates. In comparison, many 

other deployment sites contained fewer than 10 hours with detections. Thus, patterns in 

detections from the Cromarty 05 site which contained greater statistical power than the 

remaining sites had the potential to bias observations at other locations in the array.  
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For the non-Cromarty 05 data, I compared five ecologically feasible models for the 

relationship between the probability of detecting a broadband echolocation click train and the 

hour of the day relative to solar noon, and hour relative to high tide. The first model modelled 

the probability of detecting a broadband echolocation click as two independent smooths of 

hour of the day and tidal state, without any interactions. The second model considered that 

Scottish bottlenose dolphins are known to utilise tidal races during specific periods of the 

tidal cycle (Mendes et al., 2002, Arso Civil et al., 2019) and therefore the relationship with 

tidal state may only be relevant to C-PODs deployed near the coast. This model built on the 

first model by adding a factor interaction between tidal state and whether the deployment 

represented a near (05), mid (10), or offshore (15) location. The third model was based on 

previous studies showing that odontocetes may vary their diel patterns in response to habitat 

type (Carlström, 2005, Soldevilla et al., 2010a, Williamson et al., 2017).  This model 

investigated the possibility that diel trends in echolocation click trains change between 

different deployment groups and included an interaction between Group id (e.g. Latheron, 

Helmsdale, etc) and hour relative to solar noon. Unfortunately, there were insufficient 

degrees of freedom in the data to model deployment location specific interactions (n=30). 

The remaining two models represented logical extensions of the first three. The fourth model 

considered that the probability of detecting a broadband echolocation click may be a two-

dimensional relationship between tidal state and hour and was subsequently modelled using a 

tensor smooth interaction. The fifth and most complex model considered that tidal state and 

hour of the day may interact with near, mid or offshore deployment locations (n=3). It was 

not possible to include interactions with the 2-D smooth for different groups (n=10) or 

different deployment locations (n=30) because of insufficient degrees of freedom. 

With no deployment location interactions to consider, with distance from shore or 

deployment group for example, only two of the five models derived above were applicable to 

the Cromarty 05 subset. The first consisted of a smooth term for hour of the day relative to 

solar noon, and tidal state. The second model consisted of an interaction between time of the 

day relative to solar noon and tidal state. For both subsets of the data I used AIC to select the 

most likely of the candidate models tested and area under the curve scores (AUC) to assess 

model fit.  
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5.3.  Results 

5.3.1.  Data Collection  

The 2013-2015 ECoMMAS C-POD data represented 223,296 hours of acoustic monitoring 

(Table 5-2). Of those data, 1089 hours (0.49%) contained click detections classified as 

‘broadband’. As expected, the C-PODs deployed nearest to the Cromarty Firth (Cromarty 05) 

contained both the greatest number of detections (158 and 450 in 2013 and 2015) and the 

highest proportion of detection positive hours (8.0 and 9.1% in 2013 and 2015) for broadband 

click trains. These values were nearly tenfold greater than those obtained from the next most 

frequently occupied site, Stonehaven 05, which had hourly acoustic occupancy rates of 0.6% 

and 1.9% for 2013 and 2015 respectively. When excluding Cromarty 05, the median acoustic 

occupancy rates for all units were 0.10%, 0.08% and 0.08% for 2013, 2014, and 2015 

respectively, and the mean acoustic occupancy was 0.19 (n = 25, sd = 0.23), 0.29 (n = 21, sd 

= 0.23), 0.26 (n = 29, sd = 0.23) for the same periods.  
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Deployment 

Location 

Recording Effort (Hrs)   Number of Hours 

with Broadband 

Click Trains 

  Percent of Hours with 

Broadband Click Trains 

  
    

   ̶  ̶  n  ̶  ̶  
 

   ̶  ̶  %  ̶  ̶  

  2013 2014 2015   2013 2014 2015   2013 2014 2015 

Lat_05 2040 2376 4896 
 

0 0 2 
 

0.00 0.00 0.04 

Lat_10 2688 0 4896 
 

1   ̶  2 
 

0.04   ̶  0.04 

Lat_15 2640 0 4896 
 

1   ̶  0 
 

0.04   ̶  0.00 

Hel_05 1992 4512 3192 
 

0 5 10 
 

0.00 0.11 0.31 

Hel_10 2712 0 4896 
 

0   ̶  1 
 

0.00   ̶  0.02 

Hel_15 2616 2376 4896 
 

0 0 0 
 

0.00 0.00 0.00 

Cro_05 1968 0 4920 
 

158   ̶  450 
 

8.03   ̶  9.15 

Cro_10 600 2112 1872 
 

4 46 32 
 

0.67 2.18 1.71 

Cro_15 2016 2328 4920 
 

4 0 7 
 

0.20 0.00 0.14 

SpB_05 2184 792 4896 
 

15 3 18 
 

0.69 0.38 0.37 

SpB_10 2616 0 1872 
 

0   ̶  0 
 

0.00   ̶  0.00 

SpB_15 0 2424 4896 
 

  ̶  1 4 
 

  ̶  0.04 0.08 

Fra_05 2208 1584 4968 
 

0 27 18 
 

0.00 1.70 0.36 

Fra_10 0 0 4968 
 

  ̶    ̶  1 
 

  ̶    ̶  0.02 

Fra_15 0 2424 4968 
 

  ̶  3 16 
 

  ̶  0.12 0.32 

Cru_05 2976 2424 1896 
 

5 2 1 
 

0.17 0.08 0.05 

Cru_10 0 2400 3072 
 

  ̶  4 1 
 

  ̶  0.17 0.03 

Cru_15 3864 2256 0 
 

9 4   ̶  
 

0.23 0.18   ̶  

Sto_05 2976 0 4296 
 

18   ̶  82 
 

0.60   ̶  1.91 

Sto_10 0 1848 4992 
 

  ̶  8 9 
 

  ̶  0.43 0.18 

Sto_15 3864 2088 1872 
 

23 1 9 
 

0.60 0.05 0.48 

Abr_05 2208 2256 1872 
 

6 5 10 
 

0.27 0.22 0.53 

Abr_10 2184 1944 4968 
 

0 0 8 
 

0.00 0.00 0.16 

Abr_15 3840 0 4968 
 

8   ̶  4 
 

0.21   ̶  0.08 

FiN_05 2256 1608 5016 
 

10 2 8 
 

0.44 0.12 0.16 

FiN_10 2256 2328 1944 
 

0 1 1 
 

0.00 0.04 0.05 

FiN_15 2688 2256 1944 
 

1 1 0 
 

0.04 0.04 0.00 

Stb_05 2976 2424 1944 
 

3 2 2 
 

0.10 0.08 0.10 

Table 5-2 ECoMMAS Recording effort across the 30 deployment locations and 3 deployment years and the 

number (n) and percent (%) of the recording hours containing broadband click trains as identified by the 

classifier described in Chapter 2.   
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Stb_10 2184 2424 5016 
 

2 2 4 
 

0.09 0.08 0.08 

Stb_15 3864 0 1944 
 

4   ̶  0 
 

0.10   ̶  0.00 

  
          

  

Total 64416 47184 111696   272 117 700   0.42 0.25 0.63 

 

5.3.2.  Modelling Effects of Location, Time, and Tidal State  

Of the five ecological models tested on the data excluding Cromarty 05, the third model was 

strongly preferred, with a delta-AIC of 39 units relative to the next model (Table 5-3). This 

model contained independent smooths for tidal state and hour of the day relative to solar 

noon, with an interaction between hour of the day and deployment group. In this model 

deployment group was significant (ANOVA29,18571: F=3.7e-5, p<.001) as were interactions 

between the hour of the day and the Helmsdale, Cromarty, Fraserburgh, Stonehaven, 

Arbroath, Fife Ness and St Abbs deployment groups. The effect of tidal state was not 

significant (F = 0, p = 0.71; Table 5-4). The AUC score for this model was 0.75 and the 

adjusted r-squared was 0.02. R-squared, however, does not consider the large proportion of 0 

detection hours and is therefore a biased representation of the model fit. All deployments in 

the non-Cromarty 05 subset where broadband echolocation click trains were common showed 

a minimum in detection probability around solar noon and higher detection rates throughout 

the hours of darkness (Figure 5-1). There was some variation in this relationship at sites with 

low acoustic occupancy rates such as Latheron, Cruden Bay, Fife Ness and St Abbs. At these 

locations the model suggested either no relationship with hour relative to solar noon 

(Latheron) or a slight shift in phase where the minimum detection rate occurred before or 

after solar noon (Cruden Bay, Fife Ness and St Abbs). 
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Non-Cromarty 05 Data 

Model Formula  AIC Δ AIC 

P(Broadband) ~ s(Hour, bs='cc') + s(Tide,  bs='cc') 117429 382 

P(Broadband) ~  ShoreDist + s(Hour, bs='cc') + s(Tide,  bs='cc', by = ShoreDist)  149487 32440 

P(Broadband) ~ GroupId + s(Hour,  bs = 'cc',  by = GroupId) + s(Tide,  bs = 'cc') 117047 0 

P(Broadband) ~ te(Hour,  Tide,  by=ShoreDist,  bs='cc') 117086 39 

P(Broadband) ~ ShoreDist + te(Hour,  Tide,  by=ShoreDist,  bs='cc') 117222 175 

Cromarty 05 Data 

P(Broadband) ~ s(Hour, bs='cc') + s(Tide,  bs='cc') 32429 14 

P(Broadband) ~  te(Hour,  Tide,  bs='cc') 32415 0 

 

 

  

Table 5-3 Model specifications for the five models fitted to the data excluding Cromarty 05 (Non-Cromarty 05) 

and the two models fitted to the Cromarty 05 data. ‘Hour’ is the hour relative to solar noon and tidal state. ‘S’ 

represents smooth terms, ‘te’ represents tensor smooth terms and ‘cc’ represents cyclic cubic regression splines. 

Delta AIC scores (change in AIC from the best model) show a strong preference (Δ AIC) for third model for the 

Non-Cromarty data. For the Cromarty data, the second model was preferred over the first model (Δ AIC = 14).  
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Model Formula 

P(Broadband) ~ GroupId + s(Hour, bs = "cc", by = GroupId) +  s(Tide, bs = "cc") 

Parametric coefficients: 

 
Estimate Std. Error t value Pr(>|t|) 

(Intercept) -4.69 0.32 -14.49 <0.001 

GroupIdHel 0.38 0.47 0.82 0.410 

GroupIdCro 1.56 0.36 4.30 <0.001 

GroupIdSpB 1.08 0.39 2.79 0.005 

GroupIdFra 1.14 0.38 2.97 0.003 

GroupIdCru 0.51 0.40 1.28 0.200 

GroupIdSto 1.20 0.35 3.44 <0.001 

GroupIdAbr 0.53 0.41 1.28 0.200 

GroupIdFiN 0.77 0.45 1.70 0.900 

GroupIdStb 0.92 0.47 1.97 0.049 

     
Approximate significance of smooth terms: 

 
edf Ref.df F p-value 

s(Bahoura and Simard):GroupIdLat <0.001 8 0.00 1.00 

s(Bahoura and Simard):GroupIdHel 1.81 8 0.74 0.020 

s(Bahoura and Simard):GroupIdCro 2.76 8 2.07 <0.001 

s(Bahoura and Simard):GroupIdSpB 1.27 8 0.34 0.10 

s(Bahoura and Simard):GroupIdFra 2.24 8 1.46 <0.001 

s(Bahoura and Simard):GroupIdCru 1.41 8 0.40 0.08 

s(Bahoura and Simard):GroupIdSto 2.81 8 2.77 <0.001 

s(Bahoura and Simard):GroupIdAbr 2.59 8 2.09 <0.001 

s(Bahoura and Simard):GroupIdFiN 2.20 8 1.15 <0.001 

s(Bahoura and Simard):GroupIdStb 1.69 8 0.56 0.05 

s(Tide) <0.001 8 0.00 0.71 

R-sq.(adj) =  0.0232        Scale est. = 1         n = 18600 

Table 5-4 Model summary for the GAMM selected for the data excluding Cromarty 05 data.  
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Figure 5-1 Observed (points) and modelled probability (black line) of detecting a broadband echolocation click train 

as a function of hour of the day relative to solar noon for each deployment group (panel). Shaded areas represent the 

95% confidence intervals of the predictions for both models (Cromarty 05 and non-Cromarty 05). For plotting 

purposes, tidal state was set to 0 hours relative to high water. Excluded from the figure are 6 outlying observations at 

Cromarty 15 (0.2), Spey Bay 15 (0.22, 0.22), Fraserburgh 15 (0.77), Fife Ness 15 (0.51) and St Abbs 15 (0.34). 
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Of the two models tested for the Cromarty 05 dataset, the model with a tensor smooth 

between hour of the day and tidal state was strongly preferred over the model in which hour 

and tidal state were treated as independent smooths, with a delta-AIC of 14. In contrast to the 

models for the larger array, there was a slight increase in the likelihood of detecting a 

broadband echolocation click train at or around solar noon (Figure 5-1). Detections were also 

more likely in the hours preceding high tide and least likely four hours after high tide. 

However, the effect of tidal state was less pronounced than time of day (Figure 5-2). The 

AUC score for Cromarty 05 model the model was 0.57 and the adjusted R-squared was 

0.003. 

Model Formula 

P(Broadband) ~ (Hour, Tide, bs = "cc") 

Parametric coefficients: 

 
Estimate Std. Error 

t 

value Pr(>|t|) 

(Intercept) -2.37 0.06 -42.16 <2e-16 

Approximate significance of smooth terms: 

 
edf Ref.df F p-value 

te(Hour, Tide) 3.39 15 0.588 0.0154 

R-sq.(adj) = 0.0032 Scale est. = 1         n = 6408 

 

Table 5-5 Model parameters and significance for the Cromarty 05 model with the lowest AIC score.  Parameter 

estimates (Estimates) for the parametric term (intercept) on the logit scale, standard error of the estimates (Std. 

Error), t value and P value (Pr(<|t|)). 
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5.4.  Discussion 

In this study I looked for sub-daily trends in detections across the extent of the ECoMMAS 

array. I found two distinct diel patterns in the likelihood of detecting echolocation clicks 

conditional on whether or not the detector was deployed in or near a known foraging location. 

Near this location there was a slight diurnal trend in the detection of broadband echolocation 

Figure 5-2 Model predictions (colour) and observations (points) for the Cromarty 05 model for the probability of 

detecting a broadband echolocation click train as a function of hour of the day relative to solar noon and tidal state. 

Point colours represent the proportion of click trains observed at each hour of the day tidal state where black equals 

zero and white equals one.  
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click trains. Away from this location there was a nocturnal pattern in echolocation click 

detections. I also found that tidal state significantly impacted the likelihood of detecting 

broadband echolocation click trains at the Cromarty 05 location, but no effect was seen at the 

remaining deployment groups.  

Tidal state was determined to be an important factor in predicting dolphin presence at the 

Cromarty 05 site. The relationship between tide and dolphin presence is well established both 

along the Scottish coast and worldwide. Arso Civil et al. (2019) noted changes in habitat 

selection concurrent with tidal speed and direction; animals were more often observed during 

periods and in areas of very low or high tidal flow as compared to times and locations with 

intermediate flow rates. Pirotta et al. (2014b) also noted a relationship between acoustic 

detections and tidal variables at numerous points within the Moray Firth.  It is, therefore, not 

surprising that a relationship between tidal state (a proxy for other tidal variables) was 

retained during the model selection process. These results, in conjunction with visual studies 

lead credence to the notion that throughout the coastline tidal effects are an important 

predictor of bottlenose dolphin occupancy.   

Using widely spaced moored acoustic instruments to describe the vocal behaviour of a wide-

ranging predator is challenging as it is difficult to discriminate between animal movements 

and changes in vocal behaviour. For example, dolphins are known to migrate diurnally in 

order to either maximise foraging efficiency or minimise predation risk. In the Indian ocean 

bottlenose dolphins migrate daily between offshore resting habitat and inshore foraging 

habitat (Heithaus and Dill, 2002). It is conceivable that the diel pattern observed outside of 

the Cromarty location could be caused by migration. However, the most plausible 

explanation for the changes in diel patterns between the larger survey and the known foraging 

location is that the animals are changing their echolocation behaviour. In eastern Scotland 

bottlenose dolphins face little predation pressure so it is unlikely that temporal variation in 

predation risk affects sound production. While mammal eating killer whales are occasionally 

present, they are thought to primarily target pinnipeds (Bolt et al., 2009). Moreover, data 

from the first three years of the non-Cromary 05 sites in the ECoMMAS represented 213,456 

hours of acoustic monitoring at 29 different locations spread across the majority of the 

coastline. Of the data collected, only 14 hours contained broadband detections within one 

hour of solar noon. In comparison, 121 hours contained detections between +11 and -12 hrs 

of solar noon. The paucity of detections near noon, regardless of survey location, strongly 
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suggests that away from the Cromarty 05 site, dolphins have diurnal rhythms in their 

production of echolocation clicks.   

Whether this pattern relates to the production or quality of the clicks remains to be 

determined. There is evidence to suggest that, in the absence of biological needs, bottlenose 

dolphins use echolocation sparingly (Jones and Sayigh, 2002, Gannon et al., 2005).  For 

example, in the western North Atlantic, Jones and Sayigh (2002) found that bottlenose 

dolphins are more likely to produce echolocation clicks while foraging and the rate of 

echolocation per dolphin decreased with increasing group size. This finding was supported by 

playback studies of the same population that indicated dolphins passively listen for 

somniferous fish and produce echolocation clicks after detecting a potential prey item 

(Gannon et al., 2005). These studies suggest that the production of echolocation click trains is 

likely associated with a biological need or where the benefits of producing echolocation 

clicks is greater than those for remaining acoustically cryptic. The shallow waters habitat 

covered by this survey mean that during daylight periods light levels are likely sufficient to 

allow animals to travel or socialise without the need for echolocation. However, when 

actively foraging for highly mobile and/or visually cryptic prey, animals gain considerable 

advantage by employing both echolocation and vision. Alternatively, rather than producing 

fewer clicks during the daytime period, dolphins may be increasing the amplitude and 

therefore detectability of their clicks during periods of darkness (Au and Benoit-Bird, 2003).  

AIC-based model selection suggested that the magnitude and phase of the diel trend in 

detections varied between each of the ten deployment groups. The low r2 value indicates that 

considerable amount of variance is not captured by the models. However, given the nature of 

the data this does not necessarily mean that the trends represented by the models are 

inaccurate. Much of the uncaptured variation can be attributed to sites with few detections. In 

these locations all predictions above 0 resulted in large error between the data and the 

models. However, designing models such that they minimized the r2 error produce models 

that predicted 0 for all times, thereby lacking the ability to predict times when detections are 

likely to occur. This is to say that r2 values, like all metrics, should be interpreted within the 

context of the observations.  For the Latheron deployment group there appeared to be no diel 

trend in detections whatsoever. For the remaining nine groups, the nadir in detections 

occurred within an hour or two of solar noon. Variation in the magnitude and phase-shift of 

the diel pattern could largely be attributed to variation in broadband echolocation click 

occupancy at the deployment groups. In the case of the Latheron group, there were only 5 
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hours containing broadband echolocation clicks detected despite 1824 hrs of monitoring over 

the 2013-2015 survey periods. Thus, the data contained insufficient power to determine 

whether or not diel trends were present at that deployment group. Similarly, Helmsdale and 

St Abbs contained less than twenty hours with broadband echolocation click detections 

despite a combined 49968 hours of monitoring over three years and three 6 C-PODs thereby 

reducing the power of the analysis at these locations. Excluding the Latheron deployment 

group from the data resulted in the first model, which did not include interaction terms nor 

the distance to shore factor, having the lowest AIC in the model set.  

Outside of the Cromarty 05 deployment location, diel rhythms appeared to be the driving 

factor in predicting whether or not broadband echolocation click trains were detected. With 

so few detections, the data lacked sufficient power to identify both diel and tidal trends at the 

same time. Continued deployment of the ECoMMAS array will result in a greater number of 

days with dolphin detections thereby increasing the statistical power in the data. In future it 

should be possible to determine whether relationships between tidal covariates and broadband 

click detections are present at locations disparate from the Cromarty 05 site. However, 

considering potential confounding interactions between tidal state, detection probability, and 

detections, visual studies such as Arso Civil et al. (2019) represent a better approach to this 

specific question with fewer uncertainties requiring behavioural assumptions or mathematical 

gymnastics.  

There was a significant relationship between the probability of detecting a broadband 

echolocation click train and tidal state at the Cromarty 05 deployment site. However, 

properly interpreting the behavioural implications of a relationship between acoustic 

detections and tidal aspects (i.e. phase, height, direction, or speed) is difficult. Within the 

Moray Firth, dolphins are known to use tidal races to corral fish, thereby increasing foraging 

efficiency (Mendes et al., 2002). It is therefore plausible that, like Chanonry point, dolphins 

near the Cromarty 05 site utilise tidal currents to maximise foraging efficiency. However, in 

shallow water the effect of tide on transmission loss is complex and changes in water depth 

will have major impacts on the area monitored by the acoustic sensors (Badiey et al., 2002). 

Thus, changes in the observed number of echolocation click detections may be attributable to 

changes in the area monitored by the system not accounted for in Chapter 3. If, for example, 

the local conditions were such that the area monitored by the sensors was largest at high tide 

but the animals had the lowest likelihood of producing clicks or were furthest from the 

sensors, peaks in detection rates would be observed just before and after high tide.  
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Findings from this study suggest that either the 29 non-Cromarty 05 deployment locations are 

not covering foraging hotspots, or that if the animals are foraging near these locations, their 

echolocation behaviour is different from their behaviour near the Cromarty 05 location. 

Visual surveys of this population have clearly shown that hotspots of foraging activity are 

present outside of the Moray Firth and especially in the Firth of Tay (Arso Civil et al., 2019). 

Unfortunately, it was not possible to deploy sensors near the entrance to the Firth of Tay. 

This means that it was not possible to determine whether the diel trend in detections observed 

at the Cromarty 05 site was indicative of patterns that would be seen at other points of 

aggregation, or whether the pattern is unique to the inshore Cromarty Firth area. Results from 

Chapter 4 suggested that the Stonehaven 15 deployment site may be, or may be close to, a 

previously undescribed area of high use. However, hourly patterns in detections at this site 

did not differ from the other non-Cromarty 05 locations (Figure 5-1). Thus, either the area is 

not a point of aggregation or the acoustic behaviour of the animals around the Stonehaven 

groups does not differ from the other non-foraging deployment locations.  

How the presence of dolphins, behavioural drivers, and the physics of ocean acoustics 

interact to produce spatially and temporally distinct patterns in echolocation click detections 

is complex. As such, care is warranted when ascribing behavioural traits to trends in 

detections. For example, Au and Benoit-Bird (Au and Benoit-Bird) found that as dolphins 

approached a target, both the amplitude and peak frequency of their clicks decrease. 

Decreasing amplitude and peak frequency have opposite effects on the propagation range and 

subsequently detectability of echolocation click trains. Lower amplitude clearly results in a 

lower detection range. Conversely, within limits, lower frequencies propagate further and are 

subsequently more easily detected by passive acoustic systems. This relationship is further 

complicated by the black-box nature of C-PODs.  Nuuttila et al. (2013b) empirically 

measured the detectability of bottlenose dolphin echolocation click trains by C-PODs under 

different behavioural states and group sizes. The authors found that for travelling dolphins, 

the area monitored by the C-PODs decreased with increasing group size, a counter-intuitive 

result. This corresponds with the decrease in echolocation click rate per dolphin while 

travelling described by Jones & Sayigh. However, Nuuttila et al. (2013b) also found that the 

effective area monitored by C-PODs was lower for foraging dolphins than for travelling 

dolphins. These findings highlight how complex interactions between the physics of detection 

system and the behaviour of the animals can produce intricate detection functions that are not 

easily generalizable to other locations survey locations. 
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One of the primary goals of the ECoMMAS array is to fill in knowledge gaps with regard to 

habitat use outside well-studied areas where animals concentrate. However, as with the 

majority of static acoustic arrays, the survey duration is limited by the battery capacity and 

memory in the recording systems. As a result, there is a paucity of data available over the 

winter period. Other populations of dolphins are known to produce acoustic signals only 

under certain behavioural states and or environmental conditions (Jones and Sayigh, 2002, 

Gannon et al., 2005). Thus, if future studies seek to understand acoustic occupancy over a 

greater portion of the annual cycle, it would be prudent to target the duty cycle of the 

ECoMMAS instruments to periods when the animals are most likely to vocalise. 

Finally, knowing how diel trends in detection vary across the extent of the array will be 

useful in future studies looking at habitat use. Results from this chapter suggest that the 

probability of detecting an echolocation click train between greater than 10 hours before or 

after solar noon were approximately the same regardless of whether or not the sensor was in a 

foraging location. Thus, setting duty cycles of acoustic instruments to cover the night-time 

periods may extend data coverage without biasing daily acoustic occupancy rates. Targeting 

the duty-cycle of long-term deployments to cover this period would be the most effective way 

to increase survey coverage with minimal bias caused by diel clicking behaviour.  

5.5.  Conclusions 

Data and modelling efforts from this chapter provided strong evidence that diel trends in 

bottlenose dolphin echolocation behaviour are site-dependent. Diel patterns in detections 

were nocturnal outside of a known foraging area and moderately diurnal near the foraging 

area. These data suggest that foraging is either less likely to occur at locations not associated 

with points of aggregation or that factors producing diel rhythms in foraging behaviour vary 

across the habitat of these dolphins. 
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Chapter 6 

General Discussion  

6.1.  Aims 

The primary aim of this thesis was to increase knowledge of bottlenose dolphin habitat use 

and behaviour outside of the well surveyed areas and times (daylight) in order to better serve 

the conservation goals for the population. This thesis has allowed for advancements in both 

these areas by including data coverage from the full 24hr cycle collected from areas outside 

well surveyed areas. Previous work has focussed on studying animals concentrated in certain 

areas (primarily Moray Firth, waters around Aberdeen, Montrose, St Andrews Bay and the 

Tay Estuary) with areas between these considered likely to be used as movement corridors 

(Cheney et al., 2013, Quick et al., 2014, Arso Civil et al., 2019). However, prior to this study, 

there was insufficient temporal or spatial resolution in the data to support this fully. Chapter 4 

showed that daily acoustic occupancy in areas between previously studied concentrations is, 

as expected, low in comparison to in these previously studied areas. In Chapter 5, the data 

suggested that dolphins were present and acoustically active throughout the 24-hour cycle at 

a point of aggregation (Cromarty) but were either not present or present but not acoustically 

active during the daylight periods at other locations. However, other known points of 

aggregation including the Tay Estuary and Montrose Basin were not acoustically monitored. 

It is not possible to differentiate between the latter two hypothesises with passive acoustic 

data alone. While these findings alone are insufficient to confirm that previously unstudied 

areas are used primarily for transiting, they do suggest that areas outside those where studies 

have previously concentrated are not as frequently or continuously used as the studied areas, 

which include some specific foraging locations.  

Like all methodologies, acoustic surveys are faced with limitations including species 

misclassification and uncertain detection probabilities. C-PODs are especially problematic in 

both of these aspects due to their black-box nature. Thus, better addressing species 

classification and detection probability were important contributions of this thesis. In Chapter 

2, I addressed species misclassification by increasing the taxonomic resolution provided by 

the C-POD data and in Chapter 3 investigated whether site and noise dependent changes in 
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detection probabilities were likely to bias occupancy rates. I found that it is possible to group 

C-POD echolocation click encounters into groups representing broadband or frequency-

banded species of dolphin. I also found that changes in detection probability were unlikely to 

change the interpretation of the acoustic occupancy results presented here.  Finally, in this 

chapter I suggest future research areas that have been highlighted by this thesis.  

6.2.  Key Findings and Interpretations 

C-PODs are popular tools for monitoring odontocetes worldwide. They are predominantly 

used in habitats containing a single species of dolphin or porpoise where there is little risk of 

misclassification (Koschinski et al., 2008, Jaramillo‐Legorreta et al., 2017, Williamson et al., 

2016). However, occasionally C-PODs are deployed in multi-species habitats (Robbins et al., 

2016). In such contexts there is a need for increasing the taxonomic resolution of data output 

from the instruments. Chapter 2 addressed classification by combining data from the SM 

units and the C-PODs deployed in ECoMMAS to increase the taxonomic resolution of the 

detector-classifier system of the C-PODs. This work represents the first successful attempt at 

discriminating between any dolphin species in C-POD data. While I was not able to build a 

classification system specifically for bottlenose dolphins, the grouping methodology initially 

advocated by Caillat (2013) and implemented here was efficient in identifying detections that 

were unlikely to be bottlenose dolphins (i.e. ‘frequency banded’ echolocation click 

encounters). These methodologies allowed me to calculate the probability that a ‘broadband’ 

echolocation click train was present in each hour of a C-POD detection history. The 

broadband probabilities were then used as the response variable in the binomial GEEGAMs 

in Chapter 4 and GAMMs in Chapter 5. By assigning a broadband click probability to each 

hourly observation, as opposed to a binary indicator for presence/absence, I was able to 

preserve some of the uncertainty in the classification system, which is an important aspect of 

passive acoustic surveys (Miller et al., 2011, Caillat, 2013). Furthermore, results from 

Chapter 2 suggest that it may be possible to discriminate between morphometrically similar 

groups of dolphins in other locations as well. To that end the classification model as well as 

the encounter likelihood code have been made freely available online 

(https://github.com/JPalmerK/C-POD-encounter-classification). 

All ecological surveys are subject to environmental variations that impact the probability of 

detecting the target species (Bailey et al., 2007). In boat-based visual surveys this includes 

https://github.com/JPalmerK/C-POD-encounter-classification
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periods of darkness or elevated sea-state. In passive acoustic surveys, varying ambient noise 

levels and location-dependent transmission loss characteristics change the probability of 

detecting a vocalising animal at a given time and place. Previous studies have used the sonar 

equations in conjunction with simulations of diving animals and explicit knowledge of the 

detector performance to measure the bias caused by transmission loss and noise level (Kusel 

et al., 2011, Caillat, 2013, Helble et al., 2013, Frasier et al., 2016, Kusel et al., 2016). In 

Chapter 3, I applied the same principles to the C-POD instrument and detection system to 

estimate survey bias.  

Where previous studies have explicitly calculated the probability of detecting vocalising 

animals, the ‘black-box’ nature of the C-POD and KERNO classification system precluded 

such analysis. I therefore adopted a simulation approach that focused on determining how 

transmission loss and ambient noise levels could bias the relative acoustic occupancy results 

rather than determine the exact detection probability. I relied on third party calibrations of the 

instrument sensitivity (Dahne et al., 2013) and made assumptions about the threshold and 

integration time of the KERNO classifier. These were then combined in a Bayesian 

framework with the noise levels measured by adjacent SM recordings and the detection 

positive hours reported by the KERNO classifier. I produced three models that related 

ambient noise levels and site-specific transmission loss to the probability of detecting a 

bottlenose dolphin echolocation click.  

I found high levels of correlation in the median hourly noise levels from all SMs in the array. 

Unsurprisingly, noise levels from neighbouring instruments had the highest correlation values 

and correlation scores decreased with increasing distance between the sensors. However, 

even noise levels from SMs deployed at the extreme limits of the array (i.e. Latheron and St 

Abbs) were correlated up to ~20%. This suggested that the effects of noise level could bias 

absolute acoustic occupancy rates but would have limited effect on the relative acoustic 

occupancy rates. This was because all survey locations were likely affected by the same 

broad-scale noise variation such as storms. Transmission loss also varied considerably within 

the habitats monitored by the C-PODs, with nearshore and shallow water deployments 

monitoring smaller areas than offshore and/or deeper deployment locations.   

Together, site-specific transmission loss and noise levels resulted in large changes in absolute 

detection probability. The estimated detection probabilities did, in fact, have the potential to 

bias relative acoustic occupancy rates at the survey locations. However, when I combined the 
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hourly acoustic occupancy results from the C-PODs with the detection probabilities I found 

little evidence of relative bias in the acoustic occupancy results.  This suggested that there 

was little value in including hourly detection probabilities in acoustic occupancy analyses in 

future ECoMMAS analysis. 

The method developed in Chapter 3 was implemented in response to the need to address 

detection probability in C-PODs without undertaking concurrent visual surveys across the 

extent of the array (Kyhn et al., 2012, Roberts and Read, 2014). The simulation approach was 

necessitated due to the black-box nature of the C-POD detectors and KERNO classifier. 

However, the simulation approach I developed is flexible and may be applied to survey 

conditions where the detection system is well characterised, but the target animal’s behaviour 

is less understood.  For example, little is known about Bryde’s whales in the Gulf of Mexico, 

including the depth at which they produce vocalisations (Sirovic et al., 2014). Without such 

information, simulation studies using Monte-Carlo models of sound production (e.g. Küsel et 

al., 2011) are not reasonable as received levels are highly dependent on the depth at which 

the animal is calling. The approach presented in Chapter 3 represents a worst-case scenario 

that other researchers may use when the requisite animal behaviour data are lacking.  

Chapter 4 represented a first attempt at modelling the Scottish east coast bottlenose dolphin 

population on a scale approaching its known range (Cheney et al., 2013). I reported acoustic 

occupancy rates for areas between Latheron and St Abbs. I also looked at temporal trends at 

the survey locations and produced a habitat-scale model for acoustic occupancy. The 

GEEGAM and GAMM approach I used in Chapter 4 built on the habitat modelling presented 

by (Arso Civil et al., 2019). Where Arso Civil et al. (2019) dealt with autocorrelation in 

spatial observations arising from focal follows of groups of animals, I contended with 

temporal autocorrelation produced by the continuous nature of the ECoMMAS data. The 

findings from this chapter are largely in agreement with previous visual surveys that suggest 

animals are more likely to be found in certain areas in which foraging may be focussed, near 

the shoreline and in shallow water. However, I hypothesized that the bathymetry gradient, 

which has previously been identified as a predictor of dolphin foraging, was only meaningful 

in predicting acoustic occupancy when considered in the context of areas where foraging is 

focussed (Pirotta et al., 2014b). Supporting this finding, seabed gradient was not retained in 

the best habitat model in the set I tested. I was not, however, able to assess the effects of tidal 

current speed and direction as the POLPRED system is unable to produce predictions for 

these variables close to the shoreline.  
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In Chapter 5 I found compelling evidence that bottlenose dolphins display nocturnal patterns 

in echolocation outside previously studied high-use areas and diurnal trends near an area 

where foraging is focussed (Cromarty). In this study I found two distinct patterns in the 

likelihood of detecting echolocation click trains. Near a known foraging location there was a 

diurnal trend in the likelihood of detecting a broadband echolocation click, while elsewhere 

there was a strong nocturnal pattern in echolocation click detections. I also found that tidal 

state was significant in predicting echolocation presence near the foraging location, but not 

elsewhere. These findings provide important insights into the echolocation behaviour of 

bottlenose dolphins on a large spatial and temporal scale. Previous studies have shown that 

bottlenose dolphins display both spatial and temporal plasticity in their sound production and 

that many populations use echolocation sparingly in the absence of biological needs (Jacobs 

et al., 1993, Jones and Sayigh, 2002, Nowacek, 2005). For example, in the Northwest 

Atlantic, some groups of bottlenose dolphins are more likely to produce echolocation clicks 

while foraging and remain silent under other behavioural states (Jones and Sayigh, 2002; 

Gannon et al., 2005). This pattern of decreasing click production while not actively foraging 

could result in the diel patterns observed here. Additionally, playback studies have indicated 

that animals may listen passively for prey items prior to producing echolocation clicks 

(Gannon et al., 2005). Thus, my findings support the hypothesis of behavioural plasticity in 

echolocation click production by showing an increase in the likelihood of acoustic detections 

during periods of increased darkness and in areas associated with prey availability. 

As with most acoustic studies, this result is confounded by the ambiguity between when 

animals are present and not calling vs when animals are not present. Thus, it is possible that 

the paucity of detections during the daytime hours away from the foraging location was the 

result of animals not being present rather than changing their diel echolocation clicking 

behaviour. However, were animals moving away from the sensors during the day it begs the 

question - where are they going? Other populations of bottlenose dolphins are known to 

migrate offshore during the night to reduce predation risk (Heithaus and Dill, 2002). 

However, the Eastern Scottish bottlenose dolphins face little predation risk. Moreover, if the 

dolphins were making daily onshore/offshore migrations I would expect to see nocturnal 

patterns in detections at the offshore locations (e.g. 10 and 15 units) and diurnal patterns at 

the nearshore locations (05 units). That was not the case as nearly all deployments displayed 

nocturnal trends. Alternatively, the nocturnal trends in detections could have been caused by 

a daily onshore migration to habitat so close to the coastline that animals could not have been 
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detected by the C-PODs. While this hypothesis is technically possible it would require that 

animals avoid the sensors across the entire array, with the exception of Cromarty 05, during 

the daylight hours. This movement pattern is improbable given that the ECoMMAS array is 

deployed over 400 km of habitat and encompasses a variety of distance to shore measures 

ranging from 350m at Spey Bay 05 to 17.5 km at the Arbroath 15 location. A third possibility 

could be that the animals move toward foraging locations during the daytime periods and 

away from them during the evenings. Thus, the Cromarty 05 deployment location could have 

been the only sensor near enough to a foraging location to identify a diurnal increase in 

detections. This scenario seems feasible, particularly since locations of bottlenose dolphin 

foraging activity are associated with areas of high flow rates (Arso Civil et al., 2019). 

Remaining in such areas while not foraging would therefore be energetically costly. Even so, 

under this scenario I would still expect to see a variety in diel rhythms between sites nearer to 

foraging locations (e.g. Cromarty 10) and sites further away (e.g. Cruden Bay and 

Fraserburgh deployment groups) and this pattern was not observed. Thus, while the 

movement hypothesis is worth exploring, it is not presently the most parsimonious 

explanation for the observed rhythms in diel detections.      

Finally, Arso Civil et al. (2019) noted that the area between Stonehaven and Aberdeen is an 

important transiting and foraging area. Results from Chapter 5 confirm that the area off 

Stonehaven is frequented by more than one dolphin species. However, the diel patterns in 

echolocation click detections reported for this site did not differ from the remaining locations 

excluding Cromarty 05. This may suggest that the area outside of Stonehaven is primarily 

used for transiting or socialising as the pattern in diel detections differed from the known 

foraging location (Cromarty 05).   

6.3.  Limitations 

The research presented here was limited in technical scope by the ‘black-box’ nature of the 

C-POD classification system and the ecological interpretations were limited by the low 

detection rates. In this thesis I chose to focus almost exclusively on the C-POD data to 

maximise the available spatial and temporal data available; the C-PODs in the array 

represented a several fold increase in data availability over the available SM units which were 

both fewer and duty-cycled. However, two chapters of this thesis were needed to begin to 

approach detection probability and species classification issues that have been effectively 
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addressed in the continuous monitoring literature (Soldevilla et al., 2008, Frasier et al., 2016). 

Moreover, the taxonomic resolution achieved in Chapter 2 is less than could be managed with 

a simple classifier run without encounter analysis in freely available PAMGuard software 

(Gillespie et al., 2009, Caillat, 2013). The ecological limitations were partially a result of the 

choice of deployment locations and partially by the very high false negative rate of the C-

PODs. 

Similarly, Chapter 3 was primarily limited by a lack of published information about the 

KERNO classifier software. While the chapter would also benefit from knowledge of the 

sound transmission characteristics of the sediment at each location (e.g. shear speed), lack of 

knowledge of the KERNO classifier dominated the uncertainty. Independent research groups 

have compared visual detections to C-POD data classified with the KERNO system to 

establish false positive rates, which are generally very low (Kyhn et al., 2012, Nuuttila et al., 

2013b, Roberts and Read, 2014). However, none of the studies considered the relationship 

between the detector performance and the SNR of the received click trains. Thus, while I am 

relatively confident that the effects of ambient noise on an hourly scale and site-specific 

transmission loss are unlikely to bias acoustic occupancy within the ECoMMAS survey area, 

these results are not applicable to other survey locations – each must be assessed taking into 

account the noise levels and transmission loss of the specific locations.  

On the daily acoustic occupancy scale, it was not possible to create a single model for 

broadband likelihood as a function of survey location and time of the year. Models containing 

linear terms for each deployment location would not converge in either the GAMM or the 

GEEGAM framework. This was largely attributable to the low overall acoustic occupancy 

rates. With so many zeros and so few detections in the data, it was impossible to determine 

which of the covariates were the driving factor predicting the few observed occupied days. It 

is not, however, surprising that the models lacked statistical power. The data presented here 

represent only the first three years of the ECoMMAS project. Other spatial ecology studies of 

this population have either included data collected over a period ranging from eight to almost 

thirty years (Anderwald et al., 2010, Pirotta et al., 2014b), or relied on focal follows that 

increased the number of detection positive periods . Thus, as the ECoMMAS array continues 

to be deployed, the statistical power of models fitted to its data will undoubtedly increase.   

In comparison to other survey methodologies, particularly visual, the data presented 

represented considerable limitations. Like many acoustic studies with small cetaceans we 
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were not able to discriminate between some species, individuals, or many behaviours. It is 

possible to use static acoustic arrays and even C-POD arrays to assess population dynamics 

(Jaramillo-Legorreta et al., 2017). However, the use of static acoustic arrays for population 

dynamics is limited to study areas where the instruments can acoustically cover the entire 

habitat of the animal and, ideally, under circumstances where detection probabilities can be 

calculated with limited error (Kusel et al., 2011, Marques et al., 2011, Marques et al., 2012, 

Harris et al., 2013, Hildebrand et al., 2015). 

 

6.4.  The Value of Large-Scale Passive Acoustic Surveys 

Passive acoustic monitoring is an important part of cetacean research. Acoustic devices can 

‘listen’ for marine mammals during periods of darkness regardless of weather conditions. 

Furthermore, passive acoustic monitoring allows for surveys in areas inaccessible to visual 

studies (Van Parijs et al., 2009). The method is often described as cost effective and in many 

instances, it is. However, using acoustic studies to monitor habitat use is still relatively new 

when compared to visual surveys. Moreover, both delphinid species discrimination and 

survey effort quantification (i.e. determining the total area monitored at any given time) 

remain a challenge for all acoustic surveys  (Binder and Hines, 2014, Frasier et al., 2016, 

Rankin et al., 2017). Unlike photo-id studies, it is not yet possible to easily discriminate 

between individual bottlenose dolphins, as the requisite catalogue of whistles has yet to be 

established for most populations (Sayigh et al., 2013, McCordic et al., 2016). It is therefore 

pertinent to consider whether large-scale passive acoustic surveys such as the ECoMMAS 

are, in fact, cost effective for monitoring this population. The following section presents a 

cost comparison of the ECoMMAS and a boat-based photo-id survey in the same area (Quick 

et al., 2014). 

In this analysis I estimate the cost per effort hour of visual and acoustic studies in the same 

area. I also report the estimated cost per encounter (visual and acoustic) as this metric may be 

more relevant to some studies. Throughout this analysis a variety of cost assumptions are 

made. In each case I either provide a range of expected costs or estimate using the lowest 

reasonable estimate. This analysis will not consider post-processing equipment (e.g. 

computers) or time for either survey technique as the processing time is entirely dependent on 

the survey aims. For example, presence/absence studies may require very little processing 
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time regardless of the survey technique. However, photo-id studies of individual animals 

require considerably more processing time. Additionally, some large funding bodies 

including the United States Office of Naval Research now preclude researchers from 

including computers in grant expenses.  

The cost associated with visual and acoustic surveys can be divided into categories including 

equipment; vessel and crew; and analysis (not considered here). Initial equipment purchases 

for any long-term study are considerable but may be averaged over the life of the project. 

Thus, the average cost of a long-term project may decrease as the duration increases. In the 

following comparison, Quick  (2014) embarked on a two-year study and the ECoMMAS 

covered three years. Subsequently, for average cost calculations I assume a third year of 

visual surveys. For this year I assume equipment costs are equal to the second survey year 

and the number of encounters and survey effort are the average of the previous two years. By 

this process, the initial equipment investment is averaged over three years for both visual and 

acoustic studies.  

Equipment costs for the ECoMMAS included recording devices, moorings, and an 

underwater sound system to trigger the acoustic mooring. Because it is reasonable to deploy 

instruments with surface moorings, and some were, this analysis will not include underwater 

speakers or the acoustic release mooring. Instrumentation costs in the ECoMMAS included, 

C-PODs, SM2Ms, and chain weight moorings. Since all ecological inference derived from 

this study were provided by the C-PODs, the equipment costs will consider these instruments 

only. Moorings can be derived from a variety of materials including bar weights, chains (used 

here), and burlap bags of rocks. For the purposes of this analysis I assume the frugal choice 

of mooring material which can be acquired in most locations without incurring additional 

expense. At the time of writing, C-PODs retail for £2970 each. 

Both visual and acoustic surveys require vessels and qualified crew. For the ECoMMAS, 

vessel and crew costs are limited to the time needed to deploy and retrieve the instruments. 

Visual studies such as Quick  (2014) use vessels for the duration of the survey period. Vessel 

costs vary widely depending on the size of the ship and institutional fees. The ECoMMAS 

array was deployed and recovered using large (>20m) research vessels with several crew and 

scientists. However, C-PODs are relatively small, and deployment and recoveries could have 

been performed by chartering small vessels either from SMRU or coastal ports. Currently, the 

SMRU research vessels used for visual surveys quotes £500 per day for the use of the 7m 
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research boat and the same for one member of crew for a total of £1000/day. Chartered boats 

are typically less expensive, costing approximately £600 per day plus £150 for a 

photographer. The ECoMMAS array required ~7 days each for deployment and recovery. 

Assuming one crew member and one paid researcher I estimate daily vessel costs between 

£750 for a chartered vessel with extra personnel and £1000 for the SMRU vessel. Equipment 

costs for the visual survey include £2000 the first year for a quality camera and £50 

subsequent years for storage media.  

Survey effort varied considerably between the two studies. Furthermore, there was imperfect 

overlap between the spatial coverage of the ECoMMAS and Quick  (2014). Between 2012 

and 2013 there were a total of 50 dedicated visual surveys between the Firth of Forth and 

Aberdeen representing 323 hours of effort. Visual surveys were divided into three sections: 

the Firth of Forth that included habitat primarily within the coastal waters of the forth, St 

Andrews Bay including the Firth of Tay, and the Montrose/Aberdeen section that covered 

habitat between Tayport and Aberdeen (henceforth ‘Aberdeen’). The Firth of Tay is a known 

high use area and was not covered by the ECoMMAS. Similarly, the University of Aberdeen 

typically surveys the Moray Firth including the Cromarty Firth, another high use area. 

Including high-use areas covered by one survey methodology but not the other would likely 

introduce bias into the analysis. Thus, the fairest way to compare the studies was to include 

only areas where there was survey effort for both methodologies. For this reason I included 

only the ‘Aberdeen’ section of the visual and the following ECoMMAS deployment groups: 

Cruden Bay, Stonehaven, and Arbroath C-POD groups. These sections of the two surveys 

(henceforth the Grampian region) covered approximately the same area and excluded high 

use areas.  

The first three years of the ECoMMAS deployments in the Grampian region produced 65,064 

of survey effort and documented 217 unique broadband acoustic encounters. Five C-PODs 

from the region were either lost or failed to collect data (Table 4-2). Assuming the total time 

needed to deploy and recover the C-PODs was eight days per season, the vessel costs for the 

ECoMMAS were between £6000 for a chartered vessel and £8000 for the SMRU vessel and 

extra crew member per year. Two C-PODs were also lost or failed to produce data in 2013 

and 2014 and one in 2015. I assumed these C-PODs were replaced each year resulting in the 

purchase of 11, 2, and 1 C-PODs in 2013, 2014, and 2015 respectively. Thus, for the first 

year of the ECoMMAS in the Grampian region the total cost per collected hour of data was 

£1.76 -£1.86/hr in 2013 when eleven C-PODs were purchased (nine initial and two 
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replacements) and £0.32-£0.39/hr in 2015 when only one unit was replaced (Table 6-1). The 

estimated cost per hour of visual data was £166.06-£197.31/hr in 2012 when the camera 

equipment was purchased and £94.53-£125.78 in 2013. The average cost per survey hour of 

the ECoMMAS was £0.92-£1.01/hr. The three-year average cost per survey hour was 

£109.06-£140.31/hr for the visual survey. 

For the C-PODs in the Grampian the cost per broadband acoustic encounter ranged from 

£560.43– £589.42 in 2013 to £72.34– £88.48 in 2015. The visual surveys in the Aberdeen 

section represented 91.44 hours of effort and documented 49 visual encounters. (Arso Civil et 

al., 2019, Quick et al., 2014). This resulted in a cost per visual encounter of £328.08– 

£389.82 in 2012 and £158.67– £211.12 in 2013. However, after the initial instrumentation 

investment the cost per acoustic encounter dropped to £479.50– £580.83 and £72.34 – £88.49 

in 2014 and 2015 respectively (Table 6-1). In total the cost per acoustic encounter was 

£166.06– £197.31/hr in 2012 when the camera equipment was purchased and £94.53– 

£125.78 in 2013. The average cost per visual encounter was £274.53– £302.21 and £164.38– 

£211.48 (Table 6-1). 
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 Acoustic Visual 

 2013 2014 2015 2012 2013 

Equipment Purchase (C-

PODs/ Camera) 
32670 5940 2970 2000 50 

Vessel Cost Lower Estimate 6000 6000 6000 2593.13 5979.38 

Vessel Cost Upper Estimate 8000 8000 8000 3457.50 7972.50 

Survey Effort (Hours) 21912 15216 27936 27.66 63.78 

Number of Encounters 69 24 124 14 38 

Cost Per Survey Hour (£) 
1.76 0.78 0.32 166.06 94.53 

1.86 0.92 0.39 197.31 125.78 

Cost Per Encounter (£) 
560.43 497.50 72.34 328.08 158.67 

589.42 580.83 88.47 389.82 211.12 

Three Year Average Cost Per 

Survey Hour (£) 

0.92 109.06 

1.01 140.31 

Three Year Average Cost Per 

Encounter (£) 

274.56 164.38 

302.21 211.48 

 

 

The cost analysis presented here does not account for the time needed to move from the data 

source (i.e. photographs, acoustic recordings, or C-POD detections) to response variables 

needed for statistical models (e.g. occupancy, behaviour, etc). For visual surveys of 

presence/absence it is a trivial task to determine when and animals were detected, but full 

photo-ID analysis is more involved and thus expensive. These data may come from either 

Table 6-1 Cost comparison of Quick  2014 ‘Aberdeen’ visual surveys and the ECoMMAS survey within the 

Grampian region (Cruden Bay, Stonehaven, and Arbroath). To calculate average cost over three years in for 

the visual survey, a third survey year was assumed with equipment cost of £50. Survey effort and number of 

encounters was estimated as the average of the preceding years. Equipment cost for the acoustic survey 

includes initial C-PODs and replacement of lost C-PODs. For visual surveys equipment cost includes a high 

quality DSLR camera and lens (2012) and SD cards in 2013. 
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observer logs or inspection of the photographs and timestamps. Depending on the 

assumptions that the researchers are willing to accept the same could be said of C-POD 

detector. The manufacturer has designed the systems to produce daily and hourly occupancy 

tables with the click of a few buttons. In fact, several months of data from a single instrument 

can be processed in under ten minutes producing binary CSV files indicating, for each hour 

or day, whether or not an odontocete click was detected. Thus, in a single species context, 

analysis of C-POD data may be as efficient, if not more, than visual observations.  

The most cost-effective survey technique is directly related to the research question, target 

species, and habitat. For example, with a few notable exceptions (Moretti et al., 2006, 

Jaramillo‐Legorreta et al., 2017), visual transects and photo-id studies are the only way to 

discriminate between individual animals; assess animal health; and estimate population 

levels, survival rates, and birth rates (e.g. Arso-Civil et al., 2019). In contrast, fixed acoustic 

arrays produce far superior temporal coverage for a given financial budget. Therefore, where 

researchers need continuous data for a given site, fixed passive acoustic arrays are generally a 

better choice. This is the case for environmental site assessment in areas of industrial interest. 

Real-time presence absence information such as ‘whale alarms’ that trigger ship speed 

regulations also rely on acoustic detections (Fladung et al., 2011). Finally, acoustic surveys 

are also the obvious choice when habitats are difficult to survey or where detections are 

thought to be sparse, such as the offshore deployment locations in the ECoMMAS. Here, 

fixed passive acoustic arrays produce exploratory data at very low cost. Thus, when more 

detections are recorded than expected, e.g. the Stonehaven group, these data can direct the 

distribution of survey effort to areas of interest. 

For the Eastern Scottish bottlenose dolphin population, the most effective way to conduct 

future studies could be to combine acoustic data from ECoMMAS with focused photo-ID 

surveys in high-use areas (e.g. Cheney et al., 2013). This approach would low-cost survey 

effort for low use areas and focus comparatively high-cost (per hour) visual surveys in areas 

where detailed detections are likely including the Firth of Tay and the Inner Moray Firth. 

Since both studies are ongoing, future research should seek to integrate these data.  

When considering the costs benefits of the ECoMMAS array it is also important to consider 

that the range of commercially available passive acoustic monitoring instruments has 

expanded greatly in recent years. Therefore, the instruments presently used in the ECoMMAS 

array may not continue to be the most cost-efficient options. For example, although C-PODs 
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produce very low false positive rates, their false-negative detection rates are notably worse 

than continuous recording systems. A comparison study of C-PODs and continuous recorders 

showed that C-PODs detected approximately half of the detection positive minutes than were 

reported for an adjacently deployed continuous recorder (Roberts and Read, 2014). Thus, the 

cost per acoustic encounter could drop significantly further if continuous recorders were 

used. There are presently continuous monitoring devices priced similarly to C-PODs that are 

capable of both detecting high frequency echolocation clicks as well as collecting continuous 

recordings at lower sample frequencies. Such instruments may be deployed for timescales 

similar to C-PODs but have fewer of the drawbacks associated with the proprietary software.  

This review does not consider the non-trivial analysis costs. The magnitude of the cost of 

analysis varies considerably depending on the study objectives and, for acoustic surveys, 

instrumentation. For presence/absence studies the analysis cost of photo-id approaches 

negligibility as surveyors presumably are not taking photographs while animals are absent. 

Similarly, C-PODs and their associated software are designed to produce presence/absence 

data by default; providing user-friendly spreadsheets with no human auditing required. The 

presence/absence approach of C-PODs is useful for large-scale single-species surveys where 

a pressing conservation need requires a fast turn-around time (Koblitz et al., 2014, Jaramillo‐

Legorreta et al., 2017). However, multi-species acoustic studies require considerably more 

processing time to differentiate acoustically similar species and/or incorporate classifier 

uncertainty (e.g. Chapters 2 and 4).  Even in high-quality recordings considerable species 

uncertainty may remain (Frasier et al., 2017). In contrast, species uncertainty typically 

presents a lesser challenge in photo-id surveys where high-quality photos are less likely to 

result in species uncertainty. As such, species-level photo-ID studies for presence/absence is 

likely more cost effective.  Individual identification using passive acoustics has not yet been 

shown to be an effective approach in long-term or large-scale basis as has been for visual 

surveys. This makes studies of individual migration, fecundity, and population dynamics 

considerably more challenging for acoustic studies and not typically the method of choice 

except. Finally, measuring marine mammal density is an ongoing challenge for both visual 

and acoustic surveys. Neither is without challenges posed by changing detection 

probabilities,  
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6.5.  Future Directions 

This thesis represents the first analysis of the data output from the ECoMMAS array. The 

long-term dataset represented by the ECoMMAS has the potential to provide invaluable 

insights into the spatial ecology of coastal dolphins. As data from the 2016 and 2017 

deployments are integrated into the analysis, numerous additional ecological questions may 

be asked. The following questions represent suggested future directions for analysis of the 

ECoMMAS array. 

Where do bottlenose dolphins go over the winter months? One of the outstanding questions 

not addressed in this thesis is where bottlenose dolphins go over the winter months. The low 

light levels and adverse sea conditions generally preclude dedicated visual surveys for this 

population over the winter months. As such, the ECoMMAS array is particularly well suited 

to begin to answer these questions. Future studies should consider adding to or adjusting the 

survey design to monitor habitat use over the winter periods. 

What is the relative importance of each of the points of aggregation? The distance to the 

nearest known point of aggregation has been shown to be an important indicator of bottlenose 

dolphin presence on both small and large spatial scales (Arso Civil et al., 2019) . However, in 

this study there were only 30 observation locations. Therefore, there were insufficient degrees 

of freedom in the spatial covariates to model distance to points of aggregation that could be 

important for foraging (river mouths) as a function of the location (e.g. Cromarty Firth, 

Aberdeen Harbour, etc). The ability to include the location of the point of aggregation in the 

spatial-temporal models is important for future studies seeking to investigate the relative use 

of the area around each point of aggregation. Including more spatial covariates into acoustic 

occupancy models could involve either adding more survey locations or-ideally- integrating 

data from boat-based surveys. 

How important is foraging outside the well-studied areas? One study has shown that it is 

possible to infer foraging behaviour from C-POD detections based on the proportion of low 

inter-click-interval clicks within a click train (Nuuttila et al., 2013a). By modelling the 

likelihood of a foraging click train as a function of environmental covariates it is possible to 

infer spatial and temporal drivers of habitat use (Pirotta et al., 2014b). Understanding how 

animals use the available habitat for foraging, resting throughout their range is potentially 

important for managers seeking to maintain the integrity of key habitat features. 
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Unfortunately, there were an insufficient number of echolocation click trains detected during 

the first three years of the ECoMMAS to infer meaningful results from this type of analysis. 

Additional deployment of the ECoMMAS array will, however, produce sufficient acoustic 

encounters to allow behaviour analysis. 

How does the construction of windfarms affect the distribution of bottlenose dolphins? 

Simulations of dolphin behaviour in and around the Moray Firth have suggested that the 

construction of offshore wind farms is unlikely to result in population-level effects (Pirotta et 

al., 2015a). The ECoMMAS project should contribute to an integrated monitoring system to 

determine whether this is the case more generally. As windfarms continue to be approved and 

construction commences, ECoMMAS array data should be combined with photo-id studies in 

high-use areas to understand what, if any, the effect of the construction operation and 

decommissioning of offshore wind farms has on the foraging behaviour, movements, and 

distribution of bottlenose dolphins. 

Can whistles be used to increase certainty and track individuals?  It is well established that 

including clicks and whistles can increase acoustic classifier performance in continuous 

recording PAM (Oswald et al., 2003, Rankin et al., 2017). The ECoMMAS array includes 

both continuous acoustic recorders and echolocation click detectors. Future studies may 

consider leveraging the whistle data to increase the taxonomic resolution provided by the C-

POD classification system (Chapter 2), decreasing the uncertainty associated with the system. 

Similarly, it may be possible to track individual bottlenose dolphins based on signature 

whistles. The SM data collected in this study represents an ideal test case for this hypothesis. 

What is the habitat use and distribution of the other species recorded by in the ECoMMAS 

study? This study did not consider the distribution or temporal trends in dolphins producing 

‘frequency banded’ click trains nor harbour porpoise. Both groups are understudied in 

comparison to bottlenose dolphins. C-PODs are designed specifically for detecting high-

frequency narrow-bandwidth echolocation click trains such as those from harbour porpoise. 

The ECoMMAS array represents the first opportunity to investigate porpoise distribution 

along the Scottish coast. Similarly, very little is known about the white-beaked and Risso’s 

dolphins that are occasionally spotted off the Grampian coast. Results from these data 

suggested a high likelihood of detecting one or both of these species off Stonehaven and 

Latheron. Thus, future photo-id surveys for these species may consider targeting these areas.  
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6.6.  Conclusions 

Bottlenose dolphins are, arguably, the best studied of all cetaceans and the Scottish East 

Coast population has been continuously monitored for last three decades (Hammond and 

Thompson, 1991). Yet much is unknown about this northernmost population of bottlenose 

dolphins. Bottlenose dolphins are flexible in their habitat use and behaviour which makes 

establishing effective long-term conservation measures a challenge (Wilson et al., 2004, 

Cheney et al., 2014). Passive acoustic monitoring has proved to be a cost effective method of 

monitoring animals in multiple habitats and can provide insights into animal behaviour and 

habitat use (Van Parijs et al., 2009). However, as with any survey methodology, care must be 

taken when interpreting the results. Of particular concern to passive acoustic studies is 

species misclassification and detection probability. This thesis contributed to both research 

areas by producing a categorisation system capable of increasing the taxonomic resolution of 

C-PODs as well as investigating how global (e.g. storms) and site-specific transmission loss 

could influence habitat models.  

Previous visual surveys of this population have focused on high-use areas along the east coast 

of Scotland, primarily the inner Moray Firth and the St Andrews Bay/Tay area, but also 

waters off Aberdeen and Montrose. Conversely, the ECoMMAS almost exclusively 

monitored habitat outwith these high-use areas. Results from the ECoMMAS array largely 

supported the findings of visual surveys that suggested the east coast of Scotland bottlenose 

dolphins rely primarily on shallow water, coastal habitats, and target particular locations for 

foraging. Because habitat use may change over time, ongoing monitoring efforts are needed 

to ensure that the management measures in place to conserve the population continue to be 

effective.  

The findings of this research were ultimately limited by the black-box nature of the C-POD 

instrument and KERNO classification system. While these instruments have served the field 

well, their continued use in fundamental research will become increasingly difficult to justify 

unless the manufacturer is more forthcoming with his algorithms. Competing continuous 

recorders are approaching similar price points for the same duration of acoustic coverage and 

the field of automatic detection and classification continues to improve. Providing open-

source data processing and analysis software is increasingly normal practice and increasingly 

required by journals for publication.  For this reason, as C-PODs are lost or retired, I strongly 

recommend that they are replaced with continuous recorders of similar prices. 
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The value of using acoustic instruments for monitoring habitat use by a coastal species comes 

from placing the instruments in areas that difficult to access, or seldomly occupied. In that 

regard, the ECoMMAS array represents an important component of ongoing monitoring 

efforts for this population of animals. However, because the ECoMMAS instruments have 

low detection probabilities, difficulty in discriminating between dolphin species, and are 

sparsely located, data from the array alone are not enough to allow researchers to gain a 

comprehensive understanding of the habitat use by this population of bottlenose dolphins.  
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Appendices  

 

Appendix 1- Bellhop Error 

The transmission loss calculations relies on the assumption of acoustic reciprocity-where 

source and receiver locations may be switched. This principle holds even when the systems 

are subject to damping and friction “as long as they vary as with the first power of velocity” 

(Rayleigh, 1876). Thus, acoustic reciprocity is commonly incorporated into bioacoustic 

studies in order to increase model efficiency and reduce computational load (Kusel et al., 

2011; Helble et al., 2013). However, the ray-tracing approximation implemented in the 

Bellhop model is imperfect and rounding errors are introduced as the distance between the 

source and receiver increases. This produces variance into the detection probability function 

which should be accounted for. In the following section I measure the changes in the total 

area monitored by the C-PODs when transmission loss is calculated with and without 

assuming reciprocity between source (dolphin) and receiver (C-POD) locations. 

Here, I ran the transmission loss models described in Chapter 3 twice. In the first round I 

recorded the maximum detection range as a function of (θ, Equation 3-5) for all deployment 

locations and all frequencies of interest. The maximum range value was determined by the 

smaller of 5km or where the water depth was shallower than 2m. In the second run, reverse 

transmission loss grids were created by placing the source at the maximum detection range 

estimated using the above procedure and at a depth of 1.5m. Using the same procedures, I 
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calculated the maximum detection range for each deployment site and each angle (θ). The 

new maximum rages were used to estimate the total area monitored by each sensor assuming 

noise level of 91 dB, 10dB SNR threshold, and 5000 µs integration. This process was 

repeated for the four frequencies included in the transmission loss modelling (30, 35, 40, and 

45khz). On the second run I again calculated the maximum detection area run only this time 

transposing bathymetry and source locations. 
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For each deployment location I calculated the proportional difference between the maximum 

area monitored using either the standard or reversed bathymetry model. This was also done 

for four different frequencies within the 41kHz 1/3 octave band: 30, 35,40 and 45kHz. The 

mean variation between the models was converted to the standard deviation of the area 

monitored for each site and included in the Bayesian model (See Appendix 3 Simulation 2) 

Appendix 1 Figure 1 Visualisation of the validation procedure. Top panel, simulated acoustic source placed at 

deployment location and the maximum detectable range (red line) is estimated. To validate the reciprocity 

assumption the simulated source is then placed at the maximum detectable range and the maximum range towards 

the original source location is measured (lower panel, red line). Changes in maximum ranges between the two 

simulations indicate that simplifications in the Bellhop ray-tracing algorithm are not justified. 
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  Proportional Differences in Total Area Monitored  

Deployment 

Location 
30 kHz 

35 

kHz 
40kHz 45khz Mean 

Arb_10* 0.04 0.03 0.02 0.01 0.03 

Arb_15 0.00 0.00 0.00 0.01 0.00 

Arb_05 0.04 0.04 0.05 0.06 0.04 

Cro_10 0.01 0.02 0.02 0.03 0.02 

Cro_15* 0.01 0.03 0.02 0.01 0.03 

Cro_05 0.01 0.03 0.07 0.06 0.03 

Cru_10 0.04 0.03 0.02 0.02 0.03 

Cru_15 0.01 0.01 0.00 0.01 0.01 

Cru_05* 0.00 0.01 0.01 0.02 0.01 

Fra_10 0.07 0.03 0.02 0.01 0.03 

Fra_15 0.06 0.06 0.06 0.05 0.06 

Fra_05* 0.12 0.15 0.15 0.17 0.15 

Hel_10 0.04 0.03 0.04 0.04 0.03 

Hel_15* 0.01 0.00 0.01 0.00 0.00 

Hel_05 0.00 0.00 0.01 0.01 0.00 

Lat_10 0.03 0.05 0.03 0.04 0.05 

Lat_15 0.00 0.00 0.00 0.00 0.00 

Lat_05* 0.01 0.02 0.03 0.02 0.02 

SpB_10* 0.04 0.04 0.02 0.01 0.04 

SpB_15 0.04 0.02 0.01 0.01 0.02 

SpB_05 0.01 0.01 0.00 0.02 0.01 

Stb_10 0.15 0.17 0.17 0.18 0.17 

Stb_15 0.00 0.01 0.00 0.00 0.01 

Stb_05* 0.10 0.14 0.16 0.18 0.14 

FiN_10* 0.01 0.00 0.00 0.01 0.00 

FiN_15 0.01 0.00 0.02 0.01 0.00 

FiN_05 0.22 0.15 0.11 0.07 0.15 

Sto_10 0.00 0.00 0.00 0.00 0.00 

Sto_15 0.01 0.01 0.00 0.00 0.01 

Sto_05* 0.03 0.05 0.07 0.07 0.05 

 

Appendix 1 Table 1 Proportional difference between areas monitored assuming acoustic reciprocity principle 

(source at receiver/C-POD location) and testing the validity (Sources placed at maximum received distance)   
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Appendix 2- Confusion Matrix 

This document explores additional analysis undertaken since the publication of the C-POD 

classifier by Palmer  2017. One of the important critiques of the work was that there were 

insufficient encounters in 2013 to test out-of-sample performance of the classification system. 

However, the ECOMMAS array has been each year since and data are now available from 

2014 through 2016. Following the verification procedures described in Palmer et al 2017, the 

2014 and 2015 C-POD deployments were processed using the classifier and verified 

manually using the adjacent SM2M recordings.  

The results of this work are represented in the confusion matrix (Appendix 2 Table 1) where 

rows represent the number of validated observations and columns represent number of 

classifications of each type. For example, in 2014 and 2015 there were a total of 71 validated 

broadband encounters detected by the C-PODs. Of those 56 were correctly classified as 

broadband and 15 were incorrectly classified as frequency banded. Unfortunately, in contrast 

to the 2013 data which contained a large number of verified frequency banded encounters but 

few verified broadband encounters, 2014/2015 contained only 6 verified frequency banded 

encounters.  It is therefore difficult to determine exactly categorisation preforms on out-of-

sample/validation encounters. In lieu of larger sample sizes, I combined classifier 

performance across all three years representing both in sample (2013) and out of sample 

(2014 and 2015) performance (Appendix 2 Table 2).  

 

 GAM/Likelihood Categorization (Out of Sample) 

Verified Category Broadband Frequency Banded 

Broadband 56 15 

Frequency Banded  2 4 

 

 

Appendix 2 Table 1 Confusion matrix for out-of-sample categorisation performance (2014 and 2015) 
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From the combined confusion matrix it was possible to determine the likelihood of a correct 

classification given a classifier output. Similarly, it was possible to calculate the probability 

that any given classification was broadband. 

 

 GAM/Likelihood Categorization 

(All) 

Verified Category Broadband Frequency 

Banded 

Broadband 66 17 

Frequency Banded  2 23 

P(Broadband|Classification) 0.79 0.08 

P(Frequency Banded|Classification) 0.21 0.82 

 

 

  

Appendix 2 Table 2 Confusion matrix for all available acoustic encounters (2013, 2014, 2015) Rows indicate 

number of verified acoustic encounters of each type and columns represent the classification assigned by the 

categorisation system described in Chapter 2. The last two rows indicate the probability that a given encounter 

was broadband or frequency banded given the classification provided by the categorisation | 
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Appendix 3- JAGS Models 

 

Simulation 1 

Simulation 1 assumes perfect detection probability 

model{ 

  for(ii in 1:N){ 

    y[ii] ~ dbern(eff.p[ii]) 

    # Effective detection probability 

    eff.p[ii]<-det.prob*occ.p[ii] 

    # True Occupancy 

    logit(occ.p[ii]) <- intercept+alpha.occ[Site[ii]] 

  } 

  ####  priors  

  det.prob<-1 # Ignoring detection probability 

  alpha.occ[1]<-0 

  # Estimate the fixed effect of site location  

  for(ii in 2:NSites){ 

        alpha.occ[ii] ~ dnorm(0, 10^-6) 

 } 

   

  intercept ~ dnorm(0, 10^-6) 

  #data# N, y, NSites, Site 

  # What we want to monitor: 

  #monitor# alpha.occ, intercept, dic 

  #inits# alpha.occ,intercept 
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Simulation  2 

Simulation 2 incorporates fluctuating detection probabilities into the effective detection 

probability 

 

model{ 

  for(ii in 1:N){ 

    y[ii] ~ dbern(eff.p[ii]) 

     

    # effective detection probability 

    eff.p[ii]<-det.prob[ii]*occ.p[ii] 

     

    # Deteciotn Probability 

    det.prob_temp[ii] ~ dnorm(MedianArea[ii], 1/sqrt(sd[ii])) 

    logit(det.prob[ii]) <- det.prob_temp[ii] 

     

    # True Occupancy 

    logit(occ.p[ii]) <- intercept + alpha.occ[Site[ii]] 

     

  } 

   

  ####  priors 

  # Set Alpha1 to 0 

   alpha.occ[1]<-0 

    # Estimate the fixed effect of site location  

    for(ii in 2:NSites){ 

          alpha.occ[ii] ~ dnorm(0, 10^-6) 

   } 

  intercept ~ dnorm(0, 10^-6) 
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  #data# N, y, NSites, Site, MedianArea, sd 

  # What we want to monitor: 

  #monitor# alpha.occ, intercept, dic 

  #inits# alpha.occ, intercept 

 

} 

  



Appendix 4- Modelling Covariates and Results 

 

204 

 

Appendix 4- Modelling Covariates and Results 

 

Unit 

Location 

Latitude 

(decimal 

deg) 

Longitude 

(decimal 

deg) 

Distance to 

POA (m) 

POA Name Distance to 

Shore (m) 

Slope 

(radians) 

Depth 

(m) 

Lat_05 58.27 -3.32 67174.11 Spey 343.71 0.03 -22.72 

Lat_10 58.23 -3.21 61784.30 Spey 6716.45 0.00 -55.70 

Lat_15 58.19 -3.14 56750.28 Spey 12820.23 0.00 -62.65 

Hel_05 58.05 -3.72 42996.66 Cromarty Firth 1126.94 0.02 -23.06 

Hel_10 58.00 -3.61 41081.71 Cromarty Firth 9003.51 0.00 -41.08 

Hel_15 57.98 -3.54 41153.82 Cromarty Firth 14292.35 0.00 -49.15 

Cro_05 57.68 -3.99 2303.34 Cromarty Firth 352.28 0.02 -9.28 

Cro_10 57.69 -3.88 6495.62 Cromarty Firth 3218.44 0.00 -23.56 

Cro_15 57.71 -3.81 10758.56 Cromarty Firth 6031.93 0.00 -16.13 

SpB_05 57.69 -3.06 2597.30 Spey 2327.72 0.00 -9.79 

SpB_10 57.74 -3.04 7990.26 Spey 7939.74 0.00 -22.46 

SpB_15 57.79 -3.06 12258.46 Spey 12609.51 0.00 -36.00 

Fra_05 57.71 -2.13 57758.17 Spey 1951.28 0.01 -37.15 

Fra_10 57.77 -2.14 57950.65 Spey 8378.79 0.02 -102.98 

Fra_15 57.85 -2.09 62913.85 Spey 16663.97 0.00 -85.00 

Cru_05 57.38 -1.83 29669.71 Dee 1397.01 0.01 -22.00 

Cru_10 57.38 -1.74 32621.90 Dee 5606.67 0.00 -68.88 

Cru_15 57.38 -1.62 37142.66 Dee 11863.60 0.00 -68.04 

Sto_05 56.95 -2.18 23127.84 Dee 529.00 0.03 -28.42 

Sto_10 56.96 -2.11 20895.44 Dee 3503.34 0.00 -46.95 

Sto_15 56.98 -2.02 18406.83 Dee 7371.00 0.00 -56.57 

Abr_05 56.55 -2.48 16900.30 Esk 2475.08 0.01 -33.10 

Abr_10 56.50 -2.38 23140.20 Esk 11158.14 0.00 -48.50 

Abr_15 56.46 -2.30 28704.00 Esk 17855.55 0.00 -50.41 

FiN_05 56.27 -2.57 24037.39 Tay Firth 704.20 0.01 -16.47 

FiN_10 56.26 -2.50 27325.62 Tay Firth 5162.44 0.00 -42.70 

FiN_15 56.29 -2.43 27528.97 Tay Firth 9485.96 0.00 -46.84 

Stb_05 55.93 -2.18 22024.89 Tweed 1307.58 0.03 -32.88 

Stb_10 55.96 -2.16 24862.57 Tweed 5187.84 0.00 -63.74 

Stb_15 56.03 -2.08 30538.02 Tweed 13959.77 0.00 -63.58 

 

Appendix 4 Table 1  Spatial covariates used in modelling habitat use. Distance to POA and name of POA name are the 

distance to and the name of the nearest known or hypothesised point of aggregation. 
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Slope Distance to Shore Distance to 

POA 

Depth 
VIF score 

Slope 1.00    1.81 

Distance to Shore -0.58 1.00   2.36 

Distance to POA 0.19 0.23 1.00  1.65 

Depth 0.23 -0.62 -0.55 1.00 2.17 

  

  

Appendix 4 Table 2 Correlation scores of spatial covariates and variance inflation factor (VIF) scores for the 

GLM of the four spatial variables 
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  Deployment Group 

Model Terms Lat Hel Cro SpB Fra Cru Sto Abr StA Stb 

Intercept -13.93 -5.95 -5.55 -5.49 -2.97 -2.80 -1.55 -1.25 -1.10 -0.94 

ShoreDist10 6.71 -1.24 - -0.80 0.78 - -19.80 - -1.40 -1.88 

ShoreDist15 - -0.34 -2.89 -1.48 1.01 -2.18 -14.19 -1.54 -3.94 -4.28 

Year2014 2.20 0.65 2.03 - -0.35 1.69 -0.66 -0.64 0.12 -0.86 

Year2015 3.86 0.73 1.55 0.47 0.71 -0.23 -0.16 -0.80 0.42 0.15 

JulianDay -       0.01 - 0.01 0.00 - - 0.00 - - 

Julian Day Knot 1 
6.94 - 4.56 - - -7.29 -0.11 - 1.06 0.95 

Julian Day Knot 2 
9.28 - -3.75 - - 4.34 -2.24 - 1.37 -2.14 

Julian Day Knot 3 
7.05 - 4.60 - - -0.66 0.22 - 1.21 -1.38 

Julian Day Knot 4 
10.15 - -6.05 - - -0.47 -0.82 - 0.88 -1.68 

ShoreDist10: 

JulianDay Knot 1 

-7.29 - - - - - 28.44 - - -1.52 

ShoreDist10: 

JulianDay Knot 2 

-31.68 - - - - - 1.34 - - 5.08 

ShoreDist10: 

JulianDay Knot 3 

1.14 - - - - - 21.52 - - -5.24 

ShoreDist10: 

JulianDay Knot 4 

-16.11 - - - - - 20.99 - - 3.78 

ShoreDist15: 

JulianDay Knot 1 

- - -0.58 - - - 15.58 - - -2.06 

ShoreDist15: 

JulianDay Knot 2 

- - 5.04 - - - 11.16 - - 12.56 

ShoreDist15: 

JulianDay Knot 3 

- - 1.55 - - - 12.79 - - -2.54 

ShoreDist15: 

JulianDay Knot 4 

- - 10.02 - - - 14.78 - - 4.68 

Appendix 4 Table 3 Model covariates for each deployment group GEE model 
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Appendix 5- Model Sensitivity Analysis 

In Chapter 4 I created two model families. The first set of models looked at temporal trends 

in detections. That analysis would be sensitive to asynchronous variation in ambient noise 

levels but would be less sensitive to the local bathymetry. As such, and given the lackluster 

model fit with the existing covariates, incorporating the observation process was unlikely to 

change the interpretation.  

The second model aimed to capture both spatial and temporal variation in acoustic 

occupancy. The spatial components of this model could be affected by the results of Chapter 

3. Initially, a Bernoulli GAMM was chosen as to account for autocorrelation in the data 

(detections yesterday increase the likelihood of detections today) as well as non-linear 

interactions between covariates such as depth and distance to the nearest point of aggregation. 

Incorporating detection probability into this model was not possible because the GLM portion 

accepts only offsets (additive) not weights (multiplicative) which are more appropriate in this 

case. This meant that I could not compare the models presented in the thesis chapter to the 

same models with covariates accounting for relative detection probability.  

Thus, to estimate whether variation in site-specific detection probability was likely to have 

influenced the interpretation of acoustic occupancy, I again added binomial models to the 

analysis. Detections and survey effort (monitored days) were binned across the entire survey 

and the scaled median area monitored was used to calculate model weights (Table 1). For the 

twenty sites that did not have noise level measurements, I used median noise levels from the 

nearest SM2M to estimate the median area monitored for all 30 deployment locations. I then 

compared the original Bernoulli model to the binomial models with and without weights to 

determine whether there were any consequential differences in predictions for the spatial 

covariates. For this analysis, the scaled area monitored was calculated by first calculating the 

median area monitored at each of the 30 deployment sites (medianArea). For each 

deployment location (j), the scaled area monitored was calculated as the negative median area 

monitored at the site (j) minus the mean of median area monitored for all sites divided by the 

standard deviation (sd) of the median area monitored for all sites (Equation 1). 

 
𝑆𝑐𝑎𝑙𝑒𝑑𝐴𝑟𝑒𝑎(𝑗) = −

𝑚𝑒𝑑𝑖𝑎𝑛𝐴𝑟𝑒𝑎(𝑗) − 𝑚𝑒𝑎𝑛(𝑚𝑒𝑑𝑖𝑎𝑛𝐴𝑟𝑒𝑎)

𝑠𝑑(𝑚𝑒𝑑𝑖𝑎𝑛𝐴𝑟𝑒𝑎)
 

Equation 1 
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Table 2- Modelling variables for the binomial occupancy model. Scaled Area Monitored is the transformed median area monitored by each C-POD relative to the mean area 

monitored at all C-POD deployment locations. Number of detections is the total number of days with at least one broadband acoustic encounter, and recording effort is the 

total number of days monitored by C-PODs at each location. The remaining columns are the spatial covariates included in the original GAMM. 

 

Deployment 

Location 

Number 

of 

Detections 

Scaled Area 

Monitored 

Recording 

Effort (d) 

Distance to Point 

of Aggregation 

(m) 

Distance to 

Shore (m) 
Depth (m) 

Point of 

Aggregation 

Name 

Lat_05 1 -1.42194 388 67174.11 348.3342 22.72 Spey 

Lat_10 3 0.747323 316 61784.3 6726.511 55.7 Spey 

Lat_15 1 0.815956 314 56750.28 12832.87 62.65 Spey 

Hel_05 14 -0.73243 404 42996.66 1128.979 23.06 Cromarty Firth 

Hel_10 1 0.806094 317 41081.71 9019.115 41.08 Cromarty Firth 

Hel_15 0 0.856988 412 41153.82 14312.38 49.15 Cromarty Firth 

Cro_05 234 -2.16619 287 2303.339 348.1128 9.28 Cromarty Firth 

Cro_10 47 0.528196 191 6495.624 3228.515 23.56 Cromarty Firth 

Cro_15 8 0.40755 386 10758.56 6049.193 16.13 Cromarty Firth 

SpB_05 32 -1.50757 328 2597.296 2326.304 9.79 Spey 

SpB_10 0 0.360979 187 7990.257 7943.911 22.46 Spey 

SpB_15 5 0.37342 305 12258.46 12624.89 36 Spey 

Fra_05 25 -1.66052 365 57758.17 1943.69 37.15 Spey 

Fra_10 1 -0.33662 207 57950.65 8381.02 102.98 Spey 

Fra_15 13 0.247357 308 62913.85 16671.61 85 Spey 

Cru_05 4 0.431141 304 29669.71 1407.862 22 Dee 

Cru_10 4 0.41528 105 32621.9 5617.515 68.88 Dee 

Cru_15 12 0.49049 255 37142.66 11872.56 68.04 Dee 

Sto_05 61 -1.63868 303 23127.84 539.7511 28.42 Dee 

Sto_10 12 0.828057 285 20895.44 3520.705 46.95 Dee 

Sto_15 23 0.782991 326 18406.83 7390.412 56.57 Dee 

Abr_05 18 0.462499 264 16900.3 2482.573 33.1 Esk 
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Abr_10 5 0.820151 379 23140.2 11184.97 48.5 Esk 

Abr_15 12 0.81311 367 28704 17891.69 50.41 Esk 

FiN_05 17 -1.28857 370 24037.39 713.8489 16.47 Tay Firth 

FiN_10 2 0.719804 272 27325.62 5172.812 42.7 Tay Firth 

FiN_15 2 0.877347 287 27528.97 9517.364 46.84 Tay Firth 

Stb_05 8 -1.91303 306 22024.89 1313.59 32.88 Tweed 

Stb_10 6 0.222643 401 24862.57 5195.129 63.74 Tweed 

Stb_15 4 0.658167 242 30538.02 13969.05 63.58 Tweed 

 

  



 

210 

 

 

Figure 1 Comparison of model predictions for the Bernouli model (blue) and binomial 

models (orange). Uncorrected binomial model includes spatial covariates only, corrected 

binomial model includes spatial covariates and weight variable model weight (Table 2). 

 

Figure 1 shows the results of the original GAMM compared to the GAMs with and without 

model weights accounting for the relative area monitored. In all three models, there was very 

little difference between predictions of acoustic occupancy as a function of distance to shore 

and distance to the nearest point of aggregation. With depth, there was some difference 
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between the binomial and the Bernoulli model response, but little difference between the 

binomial models with and without weights. All models showed increasing likelihood of 

detecting animals with increasing depth. However, the binomial models suggest greater 

variation in deeper water than did the Bernoulli model.  

 

Overall, differences between all three model predictions were small. For all instances, the 

probability of detecting a broadband echolocation click increased with decreasing distance to 

shore, point of aggregation and increasing depth. Thus, the interpretation and subsequent 

recommendations of the thesis and manuscript remains constant, regardless of which model is 

used.  

Investigating the impacts of site-specific detection probability is a crucial aspect of acoustic 

modelling. While the results presented here were robust to the habitats covered by the C-

PODs, I do not expect this to be the case in other locations. Specifically, areas in the SAC 

where large number of dolphins are present may show greater variability in model response 

depending on whether or not detection probability is included.  
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