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Abstract

Separability properties can be seen as generalisations of residual finiteness.

In this thesis we investigate four such properties: monogenic subalgebra sep-

arability, weak subalgebra separability, strong subalgebra separability and

complete separability.

In Chapter 1 we outline the necessary preliminary definitions and results.

We define separability properties in terms of universal algebra, in order to be

able to study these properties in a range of different settings. We also provide

a topological interpretation of these properties. The chapter concludes with

the necessary preliminary information to be able to study these properties

in semigroups.

In Chapter 2 we investigate the separability properties of free objects in

different semigroup varieties. This builds upon work by Hall which shows

that the free group is weakly subgroup separable. The varieties considered

are groups, semigroups, completely simple semigroups, Clifford semigroups

and completely regular semigroups. We also define a new variety, known

as α-groups, to aid in our investigation of the free completely simple semi-

group.

We begin Chapter 3 by investigating which separability properties are in-

herited by the Schützenberger groups of a semigroup. We use the theory

developed to classify precisely when a finitely generated commutative semi-

group has each of four separability properties considered. We conclude the

chapter by studying when separability properties of Schützenbeger groups

pass to semigroups with finitely many H-classes.
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In the final chapter, we consider the preservation of separability properties

under various semigroup-theoretic constructions. The constructions consid-

ered are the 0-direct union, the direct product, the free product, as well as

an investigation into large subsemigroups. We classify precisely when a finite

semigroup preserves both monogeinc subsemigroup separability and strong

subsemigroup separability in the direct product. We conclude the work by

indicating some directions that future research may take.
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Chapter 1

Introduction and Preliminaries

Separability properties have proven to be an important tool in the study of

algebras. The notion of separability involves separating an element of an

algebra from a subset of its complement in a finite homomorphic image. The

most extensively studied separability property is residual finiteness. One

reason for this is the connection of residual finiteness to the word problem.

It was shown that finitely presented, residually finite groups have solvable

word problem by Dyson in [14], and also by Mostowski in [41], who made

use of methods developed by McKisney in [39]. In fact this result can be

generalised to say that any finitely presented, residually finite algebra has

solvable word problem. This was shown by Evans in [15], although Evans

acknowledges that Mal’cev was the first to note this result in [37]. Moving

away from the word problem, Mal’cev showed in [36] that finitely presented,

residually finite groups are Hopfian. More recently residual finiteness has

arisen in relation to Zelmanov’s solution to the restricted Burnside problem.

This result can be interpreted as saying that a finitely generated, residually

finite group of finite exponent is necessarily finite, see [54] and [55]. These

results demonstrate the importance of residual finiteness in understanding

the structure and behaviour of groups and algebras in general.

Within the class of semigroups, residual finiteness has also been a major

focus of study. Mal’cev showed that finitely generated commutative semi-
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groups are residually finite in [37], a result reproved by Lallement in [31].

Many papers focus on residual finiteness in certain classes of semigroups,

such as the work of Lesohin and Golubov on residual finiteness in commuta-

tive semigroups [33], or Golubov’s work on completely 0-simple semigroups

in [18]. Another theme of research has been investigating how the property

of residual finiteness is preserved under certain constructions. For example,

in [19] Golubov shows that an arbitrary free product of residually finite semi-

groups is itself residually finite but an analogous result does not hold for an

arbitrary wreath product of semigroups. More recently, in [22] Gray and

Ruškuc considered how residual finiteness interacts with the direct product

for algebras in general and in the same paper showed that the direct product

of two semigroups is residually finite if and only if both factors are residually

finite. Residual finiteness of algebras continues to be an active area, with de

Witt characterising when the direct product of two monounary algebras is

residually finite in [53].

In this thesis, we investigate four generalisations of residual finiteness. One

of the earliest examples of these in the literature comes from a 1949 paper

by Hall, [27]. Hall showed that in a free group an element can always be

separated from a finitely generated subgroup contained within its comple-

ment. We refer to this property in groups as weak subgroup separability

and as weak subalgebra separability for algebras in general, although many

different names exist in the literature. Just as there is a connection between

residual finiteness and the word problem, there is a link between weak subal-

gebra separability and the generalised word problem. The generalised word

problem for a finitely presented, weakly subalgebra separable algebra is solv-

able, as shown by Evans in [16]. Many classes of groups been have shown to

be weakly subgroup separable. Scott showed that surface groups are weakly

subgroup separable in [51] and Agol showed that fundamental groups of ge-

ometric 3-manifolds are also weakly subgroup separable in [2]. The relation

between group-theoretic constructions and weak subgroup separability has

also been investigated. In [7] Burns showed that the free product of two

weakly subgroup separable groups is itself weakly subgroup separable. How-
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ever, in [3] Allenby and Gregorac give an example of the direct product of two

weakly subgroup separable groups which is not weakly subgroup separable.

The semigroup version of this property has not received as much attention

as the group version, but does appear in the literature, for example in [20].

In this paper, Golubov considers many different separability properties for

semigroups and investigates the intersection and containments of the classes

of semigroups satisfying these properties.

A weaker property than that of weak subalgebra separability is that of mono-

genic subalgebra separability. This is where it is possible to separate an ele-

ment from a monogenic subalgebra contained within its complement. Within

group theory, this property was first introduced by Stebe in 1968 in [52]. The

purpose of its introduction was to use this property a tool in the investigation

into the residual finiteness of Knot groups. In the same paper, Stebe was able

to show that both the direct product of two monogenic subgroup separable

groups and the free product of two monogenic subgroup separable groups

are themselves monogenic subgroup separable. Within group theory, this

property has continued to receive significant attention. For example in [6],

Burillo and Martino consider how this property interacts with the property

of quasi-potency. As with weak subsemigroup separability, monogenic sub-

semigroup separability has only received limited attention, but it is among

the properties considered by Golubov in [20].

It is also possible to consider a strengthening of weak subalgebra separa-

bility. Strong subalgebra separability concerns separating an element from

any subalgebra contained within its complement. Recent work includes [48],

where Robinson et al. investigate this property for classes of groups includ-

ing nilpotent groups, soluble groups and locally finite groups. It is folklore

that strong subgroup separability is not closed under free products. The

fact the direct product preserves strong subgroup separability has been at-

tributed to Mal’cev in [37]. For semigroups, this property has received con-

siderable attention, especially in the 1960s and 1970s. For example, in [17]

Golubov studied this property in commutative semigroups, semigroups with-

out idempotents, and weakly cancellative semigroups, amongst others. In
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[30], Kublanovskĭi and Lesohin give a characterisation of when a finitely gen-

erated commutative semigroup is strongly subsemigroup separable. Golubov

also showed that there exist two strongly subsemigroup separable semigroups

whose direct product is not strongly subsemigroup separable in [21].

The final property we consider is that of complete separability. In this case

we are able to separate an element of an algebra from its complement in a

finite homomorphic image. This means complete separability is the strongest

property we consider. In the case of groups, this property turns out to be

equivalent to being finite. However, this is not the case for all algebras.

For example, there exist infinite completely separable semigroups. In [17],

Golubov was able to characterise when a semigroup is completely separable.

The preservation of complete separability (also weak subsemigroup separa-

bility and strong subsemigroup separability) for the direct product of two

monounary algebras was investigated by de Witt in [53].

The purpose of this thesis is to investigate the properties of monogenic sub-

algebra separability, weak subalgebra separability, strong subalgebra separa-

bility and complete separability for algebras in general with a specific focus

on semigroups. The strands of research undertaken are motivated by the

previous research outlined above. In the remainder of Chapter 1, we outline

the content of this thesis. We will then introduce the necessary preliminary

definitions and results. We formalise the definitions of separability properties

using the machinery of universal algebra. This allows us to to apply these

notions in a general context, and consider many different types of algebras.

Therefore we begin the preliminaries with some basic notions from universal

algebra. Concepts defined include algebras, subalgebras, homomorphisms

and congruences. We also introduce varieties. The guaranteed existence of

free objects within varieties makes them the natural setting to search for

results analogous to Hall’s result for free groups. After this we formally de-

fine separability and give the first preliminary results. At this point, we also

explain the naming convention as well as discuss the various different names

used for these properties in the literature. The remainder of Chapter 1 is

devoted to giving the necessary semigroup preliminaries, including partial
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orders and Green’s relations.

In Chapter 2 we turn our attention to free objects. Hall’s result that the

free group is weakly subgroup separable motivates an investigation into the

separability properties of other free objects. We show that free semigroups

and free monoids are completely separable, a result previously known to

Golubov (see [17]). Given the stark difference between the separability prop-

erties of the free group and the free semigroup, we investigate free objects

in other semigroup varieties to establish how this difference arises. The vari-

eties considered are inverse semigroups, completely simple semigroups, Clif-

ford semigroups and completely regular semigroups. The complex nature of

free completely regular semigroups motivates the definition of a variety of

semigroups, which we call α-groups. The definition of α-groups is designed

so that free α-groups capture some of the structure and behaviour of free

completely regular semigroups whilst being less complex and easier to work

with. Although some success comes from this strategy, the separability prop-

erties of both free completely regular semigroups and free α-groups are yet

to be fully determined.

The material for Chapter 3 is centred around finitely generated commuta-

tive semigroups. Motivation for this is provided by the fact that finitely

generated abelian groups are strongly subgroup separable. We therefore set

out to establish the separability properties of finitely generated commuta-

tive semigroups. To do so we make use of the theory of Schützenberger

groups. We investigate which of our separability properties are inherited by

Schützenberger groups. Through these investigations we are able to show

that for finitely generated commutative semigroups, the properties of com-

plete separability, strong subsemigroup separability and weak subsemigroup

separability coincide and are equivalent to every H-class being finite. We

then show that for the classes of finitely generated semigroups and commu-

tative semigroups the three separability properties mentioned above are in

fact distinct. We conclude Chapter 3 by returning to Schützenberger groups.

For a semigroup with finitely many H-classes, we ask if every Schützenberger

group having a separability property is sufficient for the semigroup to have
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the same separability property itself.

In Chapter 4, the final chapter, we consider how certain semigroup construc-

tions interact with these separability properties. The constructions under

consideration are the direct product and the free product, as well as an in-

vestigation into how these properties pass from large subsemigroups to their

oversemigroups. For all our separability properties except complete separa-

bility, we find that they are not preserved by the direct product, even when

one of the factors is finite. This leads us to ask which semigroups preserve

the separability properties of the other factor in a direct product. We are

able to characterise precisely when a finite semigroup preserves strong sub-

semigroup separability and monogenic subsemigroup separability. The free

product preserves both complete separability and monogenic separability.

However, there exists a strongly subsemigroup separable semigroup whose

free product with any semigroup fails to be strongly subsemigroup separable.

The situation is also similar for weak subsemigroup separability. Although

it is not necessarily true that monogenic subsemigroup separability passes

from a large subsemigroup to its oversemigroup, we conclude Chapter 4 by

showing that for our other separability properties, the property passes from

large subsemigroups to oversemigroups. We conclude the thesis by outlining

some possible directions of future work.

1.1 Algebras and Varieties

The reader is assumed to have an undergraduate level of knowledge in general

algebra, although we reintroduce many familiar notions in terms of univer-

sal algebra. In this section we begin by introducing fundamental concepts

within the area of universal algebra. First we define what we mean by an

algebra, providing examples. We then discuss the notions of subalgebras, ho-

momorphisms, congruences and quotient algebras, culminating with the First

Isomorphism Theorem (Theorem 1.1.22), which links homomorphic images

and quotient algebras.

Finding subalgebras and quotients of an algebra can be thought of as a way
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of constructing new algebras from old. Another way of building new algebras

is through the process of taking direct products, which we will define. This

brings us to varieties, which are classes of algebras closed under taking subal-

gebras, quotients, and direct products. After providing examples of varieties,

we establish an equivalent definition of varieties as equational classes. The

final notion we introduce in this section is that of free algebras, which are

guaranteed to exist within varieties. The definitions and notations of this

section are based upon [8, Chapter 2].

1.1.1 Algebras

Definition 1.1.1. Let A be a non-empty set. For a non-negative integer n,

define

An = {(a1, a2, . . . , an) | ai ∈ A for 1 ≤ i ≤ n}.

Note that we adopt the convention that A0 = {∅}. An n-ary operation on A

is any function f : An → A. We say the arity of such a function f is n. The

image of (a1, a2, . . . , an) under f is denoted by f(a1, a2, . . . , an). A finitary

operation is an n-ary operation for some n. An operation of arity 0, also

called a nullary operation, can be thought as an element of A.

Definition 1.1.2. A type of algebras is a set F of function symbols such

that for each f ∈ F there is a non-negative integer n associated to f . This

integer is called the arity of f and f is said to be a n-ary function symbol.

Let ar : F → Z be the function which returns the arity of a function symbol.

If F = {f1, f2, . . . , fk} is finite, then we adopt the convention that

ar(f1) ≥ ar(f2) ≥ · · · ≥ ar(fk).

Definition 1.1.3. For a type of algebras F , an algebra A of type F is an

ordered pair A = (A,F ), where A is a non-empty set and F is a family of

finitary operations on A in correspondence with F . That is, for every n-ary

function symbol f ∈ F there exists an n-ary operation fA ∈ F . The set A is

known as the underlying set or universe of A. The elements of F are known

as the fundamental operations of A. When the context is clear, we shall write
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f instead of fA. When F = {f1, f2, · · · , fk} is finite, we often denote

A = (A, f1, f2, . . . , fk).

In this case we say that the signature of A is the (ordered) tuple of non-

negative integers

(ar(f1), ar(f2), . . . , ar(fk)).

When it is clear, for brevity will refer to an algebra A = (A,F ) by the

underlying set A.

Example 1.1.4. A semigroup (S, ·) is an algebra of signature (2). For the

binary operation ·, we write x · y to mean ·(x, y). Semigroups satisfy the

identity

x · (y · z) = (x · y) · z.

That is, the binary operation · is associative. When it is clear, we write xy

to mean x · y and xn to mean x · x · . . . · x︸ ︷︷ ︸
n times

.

For a finite example, let L = {x, y}. We define the binary operation · by the

following table.

· x y

x x x

y y y

An exhaustive check confirms that · is associative and so (L, ·) is a semigroup,

which we now will refer to as L.

A semigroup (S, ·) is called commutative if it satisfies the additional property

that

x · y = y · x.

In this case we also say that · is commutative. For example consider (N,+),

where + is the usual addition on N = {1, 2, 3, . . . }. Then, as + is both asso-

ciative and commutative, we have that (N,+) is a commutative semigroup.

From now on we will refer to (N,+) simply as N. The semigroup L given

above is not commutative as x · y = x but y · x = y.
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Example 1.1.5. A monoid (M, ·, 1) is an algebra of signature (2, 0). The

binary operation · is associative. The nullary operation 1 is interpreted as an

element of the underlying set M . Apart from the associativity of ·, monoids

also satisfy the following identity

1 · x = x · 1 = x.

That is, the element 1 is an identity of M . An example of a monoid is

(N0,+, 0), where + is the usual addition on non-negative integers and 0 is

the number zero.

Every monoid can be viewed as a semigroup by only considering the under-

lying set and the binary operation. For every semigroup (S, ·) we can define

an associated monoid. Let S1 = S ∪ {1}, where S and {1} are assumed to

be disjoint. Extend the binary operation · on S to a binary operation · on

S1 by defining

x · y = x · y, z · 1 = 1 · z = z

for all x, y ∈ S and z ∈ S1. It easy to check that · is associative. Then

(S1, ·, 1) is a monoid. We refer to S1 as S with an identity adjoined. For

example, it is easy to see that (N0,+, 0) is actually N1.

For the semigroup L from Example 1.1.4, we have that L1 is the monoid with

multiplication table given below.

· x y 1

x x x x

y y y y

1 x y 1

Again, a monoid (M, ·, 1) is called commutative if · is commutative. We have

that N1 is a commutative monoid but L1 is not a commutative monoid. In

general we have that for a semigroup S, the monoid S1 is commutative if

and only if the semigroup S is commutative.

Example 1.1.6. A group (G, ·,−1 , 1) is an algebra of signature (2, 1, 0). The

binary operation of · is associative and 1 gives an identity element. Hence
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groups can be thought of as both semigroups and monoids. For the unary

operation −1, we write x−1 to mean −1(x). Groups satisfy the additional

identity that

x · x−1 = x−1 · x = 1.

We say that x−1 is the inverse of x and that −1 is the inversion map. When

it is clear we will write x−n to mean x−1 · x−1 · . . . · x−1︸ ︷︷ ︸
n times

and we adopt the

convention that x0 = 1 for all x ∈ G. We have that (xn)−1 = x−n.

Consider (Z,+,−, 0) where + is the usual addition of integers, − represents

the negation of an integer and 0 is the number zero. Then (Z,+,−, 0) is a

group with identity 0 and for z ∈ Z, the integer −z is the (additive) inverse

of z. From now on will refer to (Z,+,−, 0) simply as Z.

If the binary operation of a group is commutative, then the group is called

abelian. The group Z is an example of an abelian group.

Definition 1.1.7. Let A = (A,F ) and B = (B,F ) be two algebras of the

same type. Then B is a subalgebra of A if B ⊆ A and for every function

symbol f , the map fB is the restriction of fA to the set B. In this case we

write B ≤ A.

Remark 1.1.8. For an algebra A, any non-empty set B ⊆ A that is closed

under the fundamental operations of A can be viewed as a subalgebra of A

by taking the fundamental operations of B to be the restrictions to B of the

fundamental operations of A. In this manner, we can view finding all the

subsets of A which are closed under the fundamental operations of A as a

method of finding new algebras.

Example 1.1.9. Consider Z as a semigroup. Then it is clear to see that

N ≤ Z, i.e. N is a subsemigroup of Z.

If we consider Z as a monoid, then we have that N1 ≤ Z. That is, N1 is a

submonoid of Z. The algebra N cannot be considered as a submonoid of Z,

as N is not equipped with an identity operation.

Not every subset of an algebra need be closed under the fundamental oper-
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ations. Therefore it is natural to ask for any subset, what is the smallest

subalgebra it is contained within. The following definition provides the an-

swer.

Definition 1.1.10. Let A = (A,F ) be an algebra and let X be a non-empty

subset of A. Define

〈X〉 =
⋂
{B | X ⊆ B and (B,F ) is a subalgebra of A}.

As X ⊆ A, this is an intersection of a non-empty set. It is also clear that

X ⊆ 〈X〉, and so 〈X〉 is non-empty. For each function symbol f , define an n-

ary operation f 〈X〉 on 〈X〉 by setting f 〈X〉 to be the restriction of fA to the set

〈X〉. This is well-defined, as if a1, a2, · · · , an ∈ 〈X〉, then fA(a1, a2, · · · , an) ∈
〈X〉 because 〈X〉 is an intersection of subalgebras. Then 〈X〉 can be viewed

as a subalgebra of A. We refer to this subalgebra as the subalgebra generated

by X. When X = {x1, x2, . . . , xk} is finite, we often write 〈x1, x2, . . . , xk〉
to denote the subalgebra generated by X. In this case we say that 〈X〉 is

finitely generated. When an algebra can be generated by a set of size 1, then

we say that it is monogenic.

Example 1.1.11. We have already seen that N is a subsemigroup of Z. It is

clear that we have N = 〈N〉 but we also have that N = 〈1〉. So N is a finitely

generated subsemigroup of Z and N is monogenic.

Remark 1.1.12. If at least one of the fundamental operations of an algebra

A is a nullary operation, then we can extend Definition 1.1.10 to include the

subalgebra generated by the empty set. Let X ⊆ A be the non-empty set of

constants that corresponds to the set of nullary operations. Then X must be

contained in every subalgebra of A. So we define 〈∅〉 = 〈X〉. For example,

when we have a group G, the subgroup generated by the empty set is {1}, the

subgroup consisting of just the identity element. Even though every group

G can be considered as a semigroup, we cannot talk of the subsemigroup

generated by the empty set because none of the fundamental operations of a

semigroup is nullary.

When dealing with functions between algebras of the same type, it is natural
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to restrict our attention to those which respect the fundamental operations

and hence preserve, to varying extents, algebraic structure. This is formalised

below.

Definition 1.1.13. Suppose A = (A,F ) and B = (B,F ) are algebras of the

same type. A function φ : A→ B is called a homomorphism from A to B if

φ(fA(a1, a2, . . . , an)) = fB(φ(a1), φ(a2), . . . , φ(an)),

for each n-ary f ∈ F and a1, a2, . . . , an ∈ A. If φ is surjective it is known as

an epimorphism. An injective epimorphism is known as an isomorphism. An

isomorphism can be considered as a relabelling of elements, without altering

any of the algebraic structure. Hence if there exists an isomorphism between

A and B, we consider A and B to represent the same algebraic object. In

this case we say that A and B are isomorphic. We write A ∼= B.

Example 1.1.14. The inclusion map ι : N → Z is a semigroup homomor-

phism. It is not epimorphism. For example there does not exist n ∈ N such

that ι(n) = 0.

Recalling the semigroup L from Example 1.1.4, the constant map φ : Z→ L

given by z 7→ x for all z ∈ Z is a semigroup homomorphism. Note that φ is

not a group homomorphism as L is not a group.

Let ψ : L→ N be any function. Let n = ψ(x). Then ψ(xx) = ψ(x) = n but

ψ(x) + ψ(n) = 2n 6= n. Hence ψ is not a homomorphism. This argument

has shown that there are no semigroup homomorphisms from L to N.

Consider σ : L → L given by x 7→ y and y 7→ x. This is clearly a bijection

and it is easy to check that it is a semigroup homomorphism. Hence σ is

an isomorphism. An isomorphism from an algebra to itself is known as an

automorphism.

The following lemma shows that homomorphisms are preserved under com-

position.

Lemma 1.1.15. Let A,B,C be algebras of type F and let φ : A → B and
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ψ : B → C be homomorphisms. Then ψ◦φ : A→ C is also a homomorphism.

Proof. This follows since for an n-ary operation f ∈ F , we have that

ψ ◦ φ
(
fA(a1, . . . , an)

)
= ψ

(
fB(φ(a1), . . . , φ(an))

)
= fC (ψ ◦ φ(a1), . . . , ψ ◦ φ(an)) .

Example 1.1.16. For a singleton set A = {a} and type of algebra F , A can

be viewed as an algebra of type F . This is done by setting fA(a, a, . . . , a︸ ︷︷ ︸
n times

) = a,

where f ∈ F is of arity n. The algebra A is said to be trivial. If A = {a}
and B = {b} are both trivial algebras of type F , then the only function

φ : A → B is a isomorphism. Therefore as any two trivial algebras are

isomorphic, we will refer to the trivial algebra non-ambiguously.

Just as functions that are homomorphisms interest us, for partitions of an

algebra we will focus our attention to those which respect the fundamental

operations, as defined below.

Definition 1.1.17. For a set A, a set ρ ⊆ A×A is known as an equivalence

relation on A if for a, b, c ∈ A we have

1. reflexivity: (a, a) ∈ ρ;

2. symmetry: if (a, b) ∈ ρ then (b, a) ∈ ρ;

3. transitivity: if (a, b), (b, c) ∈ ρ then (a, c) ∈ ρ.

We will often write a ρ b to mean (a, b) ∈ ρ. The equivalence class of an

element a ∈ A is the set [a]ρ = {b ∈ A | a ρ b}. The set of all equivalence

classes forms a partition of A. Additionally, for an algebra A = (A,F ) and

equivalence ρ on A, if for each n-ary operation f ∈ F we have

4. compatibility: if (ai, bi) ∈ ρ for i ∈ {1, 2, . . . , n}, then

(fA(a1, a2, . . . , an), fA(b1, b2, . . . , bn)) ∈ ρ,

then ρ is said to be a congruence on A. In this case we refer to the sets [a]ρ

as congruences classes.
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For a congruence ρ, we denote the set of all congruence classes as A/ρ. The

set A/ρ can be viewed as an algebra of type F in the following way. For an

n-ary operation f ∈ F and [a1]ρ, [a2]ρ, . . . , [an]ρ ∈ A/ρ, define

fA/ρ([a1]ρ, [a2]ρ, . . . , [an]ρ) = [fA(a1, a2, . . . , an)]ρ.

The fact this operation is well-defined follows from the compatibility of ρ.

The algebra (A/ρ, F ) is known as the quotient of A by ρ. The map φρ : A→
A/ρ given by a 7→ [a]ρ is a homomorphism known as the canonical map. In

the case that a congruence ρ has only finitely many congruence classes, we

call it a finite index congruence.

Example 1.1.18. Any non-trivial algebra A comes equipped with two dis-

tinct congruences. The universal congruence on A is the set A × A, and is

denoted by ∇A. The quotient A/∇A is isomorphic to the trivial algebra. The

diagonal congruence on A is the set {(a, a) | a ∈ A} and is denoted by ∆A.

The quotient A/∆A is isomorphic to A. For the trivial algebra, the universal

congruence and the diagonal congruence coincide.

Consider the group Z. For n ∈ N, consider ρn ⊆ Z × Z given by (y, z) ∈ ρ
if y ≡ z (mod n). It is easy to check that ρn satisfies all four conditions

from Definition 1.1.17, and therefore ρn is a congruence on Z. Note that

ρn is a group congruence, but also a semigroup congruence and a monoid

congruence.

Now consider the quotient group Z/ρn. As ρn has n congruence classes, Z/ρn
is a finite group. We also have that {[1]ρn} generates Z/ρn. When a group

can be generated by a set of size 1 it is known as cyclic. As two cyclic groups

of the same size are isomorphic, we have that Z/ρn is the cyclic group of

order n. We will normally denote Z/ρn by Cn.

Remark 1.1.19. Just as subalgebras provide us with a way of finding new

algebras, congruences also provide means for constructing new algebras,

namely the quotient algebras.

Remark 1.1.20. For a group G, a subgroup N ≤ G is known as normal
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if g−1Ng = N for all g ∈ N . We denote that N is a normal subgroup of

G by N E G. If ρ is a congruence on G, then the congruence class of the

identity element [1]ρ is a normal subgroup and g ρ h if and only if gh−1 ∈ [1]ρ.

Equally, if N is a normal subgroup of G, then the binary relation ρN defined

on G by

g ρN h if and only if gh−1 ∈ N

is a congruence on G. Hence, congruences on G are in correspondence with

normal subgroups and a congruence on a group is completely determined

by the congruence class of the identity element. We will often write G/N

instead of G/ρN and Ng instead of [g]ρN . We can do this because [g]ρN =

{ng | n ∈ N}. A congruence class Ng is known as a coset of N .

We now establish a link between quotient algebras and homomorphic images.

Before we can state the result, we will need some definitions.

Definition 1.1.21. Let A and B be algebras of the same type and let φ :

A→ B be a homomorphism. Define the kernel of φ to be the set

ker(φ) = {(a1, a2) | φ(a1) = φ(a2)} ⊆ A× A.

The image of φ is the set

im(φ) = {φ(a) | a ∈ A} ⊆ B.

Theorem 1.1.22 (First Isomorphism Theorem). Let A and B be algebras

of the same type and let φ : A→ B be a homomorphism. Then

(i) ker(φ) is a congruence on A;

(ii) im(φ) is a subalgebra of B;

(iii) im(φ) ∼= A/ρ.

For a proof of Theorem 1.1.22, see [8, Section 2.6]

We have seen two important ways of constructing new algebras from old

ones; finding subalgebras and finding homomorphic images. We conclude

this subsection by presenting another important method for constructing
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algebras.

Definition 1.1.23. Let (Ai)i∈I be an indexed family of algebras of type F .

The direct product A = Πi∈IAi is an algebra of type F . The underlying set is

the Cartesian product Πi∈IAi. For a ∈ Πi∈IAi we denote the ith coordinate

of a by a(i). For an n-ary operation f ∈ F and a1, a2, . . . , an ∈ A, we define

fA(a1, a2, . . . , an)(i) = fAi (a1(i), a2(i), . . . , an(i)) .

That is, fA is defined coordinate wise. The empty direct product Π∅ is

defined to be the trivial algebra.

For j ∈ I we define the projection map πj : Πi∈IAi → Aj by a 7→ a(j). For

each j ∈ I, the map πj is a surjective homomorphism.

In the case that I = {1, 2, . . . , n} is a finite set, we often write A1 × A2 ×
· · · × An instead of Πi∈IAi.

Example 1.1.24. Recall the semigroup L from Example 1.1.4. The under-

lying set of L×L is the set {(x, x), (x, y), (y, x), (y, y)}. The binary operation

is given by the following multiplication table.

· (x, x) (x, y) (y, x) (y, y)

(x, x) (x, x) (x, x) (x, x) (x, x)

(x, y) (x, y) (x, y) (x, y) (x, y)

(y, x) (y, x) (y, x) (y, x) (y, x)

(y, y) (y, y) (y, y) (y, y) (y, y)

The value of π1(x, y) = x and π2(x, y) = y. Note that when the argument of

a function is a tuple, we will omit one set of brackets for ease of reading.

1.1.2 Varieties

Now we have met subalgebras, homomorphic images and direct products, we

can can define varieties.

Definition 1.1.25. A non-empty class of algebras K of type F is a variety

if K is closed under taking subalgebras, homomorphic images and direct
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products. We often identity F by giving the signature of the algebras of

type F .

Example 1.1.26. The class of all semigroups forms a variety of signature

(2). It is easy to see that the associativity of the binary operation is inherited

by subsemigroups, homomorphic images and direct products. Perhaps more

interestingly, the class of all commutative semigroups forms a variety.

The class of all groups forms a variety of signature (2, 1, 0). However the class

of all groups does not form a variety of signature (2). Not every subsemigroup

of a group need be a group. For example, N is a subsemigroup of Z, but N
is not a group.

Previously we have described some varieties given in Example 1.1.26 by giving

their type and a set of identities that they satisfy. It turns out that this is

another way of thinking about varieties. Before we can state this in proper,

we need to formalise the notion of identity which itself relies on the notion

of terms, which we now define.

Definition 1.1.27. Let X be a set. The elements of X will be known as

variables. Let F be a type of algebras. Let F0 ⊆ F be the set of function

symbols with arity 0. The set TF(X) of terms of type F over X is the

smallest set such that

(i) X ∪ F0 ⊆ TF(X);

(ii) if p1, . . . , pn ∈ TF(X) and f ∈ F is an n-ary operation, then the string

f(p1, . . . , pn) ∈ TF(X).

Example 1.1.28. Suppose that F = {·,−1 } is of signature (2, 1) and X =

{x, y}. Then the following are terms:

x, x · y, (y · x) · y, y · (x · y), y−1, ((x · x−1) · y−1)−1.

Now suppose that F = {1} is of signature (0). Then TF(∅) = {1}.

Definition 1.1.29. An identity of type F over X is an expression of the
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form

p = q,

where p, q ∈ TF(X). Given an algebra A of type F and a function φ : X → A

we can replace each variable x ∈ X appearing in p with φ(x) to obtain a string

pφ, and replace each variable x ∈ X appearing in q with φ(x) to obtain a

string qφ. An algebra A of type F satisfies an identity p = q if for any

function φ : X → A the strings pφ and qφ represent the same element of A.

Example 1.1.30. We have already seen that semigroups by definition satisfy

the identity

x · (y · z) = (x · y) · z.

Consider the semigroup N. It does not satisfy the identity

x · x = x.

For example, if we replace x by the number 1, the left hand side of this

identity becomes 1 + 1 = 2 which is not equal to the right hand side which

is 1.

Definition 1.1.31. Let Σ be a set of identities of type F and define M(Σ)

to be the class of algebras of type F satisfying Σ. Note that M(Σ) is non-

empty as the trivial algebra satisfies any identity. A class K of algebras is

an equational class if there exists a set of identities such that K = M(Σ).

Theorem 1.1.32 (Birkhoff). A class of algebras K is an equational class if

and only if K is variety.

Birkhoff’s Theorem (a proof of which can be found in [8, Theorem 11.9]) is

powerful as it allows us to describe a variety by the set of identities that its

members satisfy. In many instances this will be easier than showing a variety

is closed under subalgebras, homomorphic images and direct products. The

final concept that we introduce in this section is that of free algebras.

Definition 1.1.33. Let K be a class of algebras of type F . For an algebra

F ∈ K and a subset X ⊆ F , we say that F is free on X if for any algebra A ∈
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K and any function φ : X → A we can uniquely extend φ to a homomorphism

φ : F → A. That is, the following diagram commutes

X F

A

ι

φ
φ

where ι is the inclusion map. An algebra which is free is said to have the

universal property. The set X is called a basis.

Example 1.1.34. The semigroup N is a free semigroup on the set {1}. To see

this, suppose that S is any semigroup and φ : {1} → S is given by φ(1) = s,

for some s ∈ S. As {1} is a generating set for N, if φ can be extended to

homomorphism then this extension is unique. The map φ : N→ S where for

n ∈ N we have φ(n) = sn is a homomorphic extension of φ and hence N is

free on {1} as desired.

The group Z is a free group on the set {1}. To see this, suppose that G is

any group with identity element e and φ : {1} → G is given by φ(1) = g, for

some g ∈ G. As {1} is a (group) generating set for Z, if φ can be extended to

a homomorphism then this extension is unique. The map φ : Z→ G, where

for z ∈ Z we have φ(z) = gz, is a homomorphic extension of φ and hence Z
is a free group on {1}.

However, there does not exist a set X ⊆ Z such that Z is a free as a semigroup

onX. To show this, it is sufficient to show that there cannot exist a homomor-

phism from Z to N. Suppose that φ : Z→ N is any function. Then φ(0) = n

for some n ∈ N. Then φ(0 + 0) = φ(0) = n and φ(0) + φ(0) = n + n = 2n.

But 2n > n. Hence φ is not a homomorphism and Z is not a free semigroup.

The next lemma shows that free algebras with a basis of a given cardinality

are unique up to isomorphism.

Lemma 1.1.35. Let A and B be algebras of type F such that A is free on the

set X and B is free on the set Y . If |X| = |Y | then A and B are isomorphic.
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Proof. [8, Theorem 10.7]

The last result of this section establishes the existence of free algebras within

varieties.

Theorem 1.1.36. For a variety K and a non-empty set X there exists an

algebra A ∈ K such that A is free on X.

Proof. [8, Theorem 10.12]

Remark 1.1.37. The trivial group is a free group on the empty set. How-

ever, even within varieties, it need not be that there exists an algebra which

is free on empty set.

Of course free objects can exist in classes of algebras which are not varieties.

But if we are given a variety, we are guaranteed that there exist free algebras.

Given a variety K and an algebra A, we have that A is the homomorphic

image of some free algebra in K. To see this, let X be a non-empty generating

set for A. The there exists FX ∈ K which is free on X, where |X| = |X|.
Then there exists a bijection φ : X → X. As FX is free, there is a unique

extension of φ to a homomorphism φ : FX → A. As X is a generating set

for A, it must be that φ is an epimorphism and hence A is a homomorphic

image of a free algebra.

1.2 Separability

We now come to separability properties, which are the main topic of this

thesis.

Definition 1.2.1. For a class of algebras K of type F , an algebra A ∈ K
and a collection C of subsets of A, we say that A has the separability property

with respect to C if for any a ∈ A and any subset X ⊆ A \ {a} belonging

to the collection C, there exists a finite algebra B ∈ K and homomorphism

φ : A→ B such that φ(a) /∈ φ(X). In this case we say that a can be separated

from X and that φ separates a from X. Equivalently, A has the separability
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property with respect to C if for any a ∈ A and any C-subset X ⊆ A \ {a}
there exists a finite index congruence ρ on A such that [a]ρ 6= [x]ρ for all

x ∈ X. In this case we say that ρ separates a from S.

For an algebra A we say that:

� A is monogenic subalgebra separable if A has the separability property

with respect to the collection of all monogenic subalgebras;

� A is weakly subalgebra separable if A has the separability property with

respect to the collection of all finitely generated subalgebras;

� A is strongly subalgebra separable if A has the separability property

with respect to the collection of all subalgebras;

� A is completely separable (CS) if A has the separability property with

respect to the collection of all subsets.

Notation 1.2.2. When our class K is the variety of all groups we shall

say monogenic subgroup separable, weakly subgroup separable and strongly

subgroup separable. Similarly when we are working within the variety of

semigroups we shall say monogenic subsemigroup separable (MSS), weakly

subsemigroup separable (WSS) and strongly subsemigroup separable (SSS).

Note that we are reserving the use of the MSS, WSS and SSS for semigroup

separability properties only.

Remark 1.2.3. The four separability properties listed in Definition 1.2.1

have been studied for many classes of algebras under various different names.

Monogenic subgroup separable groups are known both as cyclic subgroup

separable (for example see [6]) and ΠC groups ([52]). Weakly subgroup sep-

arable groups are known both as locally extended residually finite groups

(LERF) ([3]) or simply as subgroup separable groups ([24]). Weak subalge-

bra separability is also known as finite divisibility [16]. Strongly subgroup

separable groups are also know as extended residually finite groups (ERF)

([3]). SSS semigroups have been called finitely divisible ([17]) and finitely

separable ([30]). CS semigroups are also known as semigroups with finitely

divisible subsets ([17]). Due to the many different and sometimes inconsistent

names used for these properties, we have decided to introduce our own terms,
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i.e., monogenic subalgebra separability, weak subalgebra separability, strong

subalgebra separability and complete separability. In our nomenclature, the

names are designed to describe the properties and highlight the relationship

between the different properties.

Below we define what is perhaps the best known separability property, al-

though it is not normally thought of in such terms.

Definition 1.2.4. An algebra A of type F is called residually finite if for

every pair of distinct elements a, b ∈ A there exists a finite algebra C of type

F and a homomorphism φ : A→ C such that φ(a) 6= φ(b).

Residual finiteness therefore can be viewed as the separability property with

respect to the collection of all singleton subsets. It turns out that knowing

an algebra is residually finite provides huge insight into the structure of the

algebra. The structural characterisation of when an algebra is residually

finite will be discussed in the commentary around Theorem 3.4.4. For now

we present the first example of separability in a semigroup.

Example 1.2.5. The semigroup Z is residually finite but not MSS. To see

that it is residually finite, let y, z ∈ Z be such that y 6= z. Let n = |y−z|+1.

Note that n ∈ N and that y 6≡ z (mod n), as the absolute difference between

y and z is n − 1 6= 0. Hence the congruence ρn defined in Example 1.1.18

separates y from z.

Now we show that Z is not MSS. Consider the monogenic subsemigroup N
and the element 0 ∈ Z \ N. Let ∼ be an arbitrary finite index congruence

on Z. Then, as N is an infinite set, there exist i, j ∈ N with i < j such that

i ∼ j. As ∼ is a congruence we have

0 = i+ (−i) ∼ j + (−i) ∈ N.

Therefore 0 cannot be separated from the monogenic subsemigroup N and

hence Z is not MSS.

Remark 1.2.6. It is true that Z is monogenic subgroup separable. In fact

it is strongly subgroup separable. This is shown in Theorem 3.1.4.
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Separability properties are examples of finiteness conditions, which are de-

fined below.

Definition 1.2.7. For a class of algebras K, a finiteness condition is a prop-

erty which every finite member of K satisfies.

Lemma 1.2.8. Every separability property is a finiteness condition.

Proof. Let P be a separability property, let A be a finite algebra, let C be

the collection of subsets corresponding to P, let X ∈ C and let a ∈ A \X.

Then the diagonal congruence ∆A separates a from X. Hence A has property

P.

Finiteness conditions are studied because they allow a way of understanding

the structure and behaviour of infinite algebras by some finite description.

As already alluded to, if we know that an algebra is residually finite then we

have significant insight into its structure. Throughout this thesis, we will see

that we can classify algebras that satisfy certain separability properties. One

of the earliest (and most straightforward) examples is Theorem 1.2.19, which

states that a group is CS if and only if it finite. Before this, we establish

some basic but useful results linking different separability properties.

Proposition 1.2.9. For an algebra A the following hold.

(i) If A is completely separable then it is strongly subalgebra separable.

(ii) If A is strongly subalgebra separable then it is weakly subalgebra sepa-

rable.

(iii) If A is weakly subalgebra separable then it is monogenic subalgebra sep-

arable.

Proof. Each claim follows immediately from the definitions.

The next two lemmas show that within the varieties of groups and semi-

groups, monogenic subalgebra separability also implies residual finiteness.

Lemma 1.2.10. If G is a monogenic subgroup separable group then G is

residually finite.
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Proof. For a group, the property of being residually finite is equivalent to

being able to separate every non-identity element from the identity 1. As the

trivial subgroup {1} is monogenic, the result follows.

Lemma 1.2.11. If S is a monogenic subsemigroup separable semigroup then

S is residually finite.

Proof. Let s, t ∈ S such that s 6= t. If s /∈ 〈t〉, then we can separate s from

〈t〉 using the monogenic subsemigroup separability of S. In particular we can

separate s from t. Similarly if t /∈ 〈s〉 then we can separate s and t.

Now assume that s ∈ 〈t〉 and t ∈ 〈t〉. Then s = ti for some i ∈ N and t = sj

for some j ∈ N. Then we have that s = sij. Let k ∈ N \{1} be minimal such

that s = sk. Note that k 6= 2, as in that case sn = s for all n ∈ N and in

particular s = t. Then

sk−1 · sk−1 = sk−1 · s · sk−2 = sk · sk−2 = s · sk−2 = sk−1.

That is 〈sk−1〉 = {sk−1}. Then sj−1 6= sk−1. If we had equality then t =

sj = sk = s. So, using the monogenic subsemigroup separability of S, we

can separate sj−1 from sk−1. That is, there exists a finite semigroup P and

homomorphism φ : S → P such that φ(sj−1) 6= φ(sk−1). Now suppose that

φ(s) = φ(t) = φ(sj). Then as φ is a homomorphism we would have that

φ(sk−1) = φ(s)φ(sk−2) = φ(sj)φ(sk−2) = φ(sj−1)

which is a contradiction. Hence φ separates s and t and S is residually

finite.

It is not true that in every class of algebras we have that monogenic subalge-

bra separability implies residual finiteness, as the following example shows.

Example 1.2.12. A group G is called simple if its only normal subgroups

are the trivial subgroup {1} and G itself. An infinite simple group cannot

be residually finite as it only has one finite quotient, the trivial group, which
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does not separate any points. There exist infinite simple groups which are

generated (as groups) by two elements, for example see [38].

We will consider a variety K of signature (2, 1, 0, 0, 0). Elements of this

variety can be viewed as groups with an additional two nullary operations

and no additional identities. Consider an infinite simple group G generated

by the set {g, h}. We can consider G as a member of K by setting the

first extra nullary operation to be g and the second to be h. Then every

subalgebra contains g and h and, as every subalgebra is closed under the

fundamental group operations, the only subalgebra is G itself. Hence G is

trivially monogenic subalgebra separable. But we have already observed that

G is not residually finite.

We have already seen in Example 1.2.5 that there exist semigroups which

are residually finite but not MSS. Within this thesis we will show that our

four stronger separability properties do not coincide in the class of semi-

groups. An MSS semigroup which is not WSS is given in Example 3.3.24. A

WSS semigroup which is not SSS is given in Example 3.4.6. Finally, an SSS

semigroup which is not CS is given in Example 3.4.7.

Now we show that separability properties are inherited by subalgebras.

Proposition 1.2.13. Let A be an algebra and let B be a subalgebra of A. Let

P be any of the following properties: complete separability, strong subalgebra

separability, weak subalgebra separability, monogenic subalgebra separability

and residual finiteness. If A has property P then B also has property P.

Proof. As A has property P, it has the separability property with respect

to C, where C is the collection of subsets of the type associated with P. Let

X ⊆ B be a subset of the relevant type and let b ∈ B \X. Then X is also

a subset of the relevant type in A and b ∈ A \ X. Then as A has property

P, there exists a finite algebra U and homomorphism φ : A→ U such that

φ(b) /∈ φ(A \ X). Let φ|B : B → U be the restriction of φ to U . Then

φ|B (b) /∈ φ|B (B \X) and B has property P.
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In Chapter 3 we will be interested in the semigroup separability properties of

groups. Example 1.2.5 and Proposition 1.2.13 allows to give conditions for a

group to be MSS, WSS or SSS, but first we need the following definition.

Definition 1.2.14. A group G is known as torsion or periodic if for every

g ∈ G, there exists n ∈ N such that gn = 1, the identity element. The

smallest such n is known as the order of g and this is denoted by o(g).

Lemma 1.2.15. If a group G is not torsion then there exists a subgroup of

G isomorphic to Z.

Proof. As G is not torsion there exists g ∈ G such that gn 6= 1 for all n ∈ N.

We claim that if gi = gj for i, j ∈ Z, then i = j. For a contradiction assume

that gi = gj but that i 6= j. Without loss of generality, assume i < j. Then

gj−i = 1. But this contradicts that g is a non-torsion element. Hence Gp〈g〉
is an infinite monogenic group and therefore Gp〈g〉 is isomorphic to Z.

Lemma 1.2.16. Every subsemigroup of a torsion group is a subgroup.

Proof. Let G be a torsion group and let S be a subsemigroup of G. Let

g ∈ S. Then as G is torsion there exists some n ∈ N such that gn = 1. As

S is closed under multiplication, we have that 1 ∈ S and S is closed under

the identity operation. Furthermore, as gn−1 · g = g · gn−1 = 1 we have that

g−1 = gn−1. Hence S is closed under the inversion map. As S is closed under

all the fundamental group operations, we have that S is a subgroup of G.

Proposition 1.2.17. For a group G we have:

(i) G is monogenic subsemigroup separable if and only if G is torsion and

monogenic subgroup separable;

(ii) G is weakly subsemigroup separable if and only if G is torsion and

weakly subgroup separable;

(iii) G is strongly subsemigroup separable if and only if G is torsion and

strongly subgroup separable.
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Proof. Let P be one of the following properties: monogenic subsemigroup

separability, weak subsemigroup separability and strong subsemigroup sepa-

rability. First we show that if G is not torsion, that G does not have property

P. If G is not torsion, then by Lemma 1.2.15 there exists a subgroup H

of G isomorphic to Z. Therefore H is not MSS by Example 1.2.5. As sub-

semigroups of MSS semigroups are themselves MSS by Proposition 1.2.13, it

cannot be the case that G is MSS. As all SSS and WSS semigroups are MSS

by Proposition 1.2.9, it cannot be the case that G has property P.

Now suppose that G is torsion and monogenic subgroup separable. As G

is torsion, every monogenic subsemigroup is actually a monogenic subsemi-

group by Lemma 1.2.16. Hence G is MSS. The cases for weak subsemigroup

separability and strong subsemigroup separability are similar.

We are also able to classify when a group is CS, which relies on the following

theorem.

Theorem 1.2.18 (Lagrange). Let G be a group and H be a subgroup of G.

Then any two cosets Hg and Hk have the same cardinality.

Theorem 1.2.19. A group is completely separable if and only if it is finite.

Proof. As separability properties are finiteness conditions by Lemma 1.2.8,

we have that every finite group is CS. Now suppose that G is completely

separable. Then there exists a finite index congruence on G such that {1}
is a congruence class. Then every congruence class is a singleton by Theo-

rem 1.2.18. As there are only finitely many singleton congruence classes, it

must be that G is finite.

The next result will be utilised many times. It says that if we can separate

an element from a finite number of sets then we can separate it from their

union.

Proposition 1.2.20. Let A be an algebra of type F , let X1, X2, . . . , Xn be

subsets of A and let a ∈ A be such that a /∈ Xi for i ∈ {1, 2, . . . , n}. If a can
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be separated from Xi for all i ∈ {1, 2, . . . , n}, then a can be separated from

X =
⋃n
i=1 Xi.

Proof. For each i, as a can be separated from Xi, there exists a finite index

congruence ρi on A such that [a]ρi 6= [x]ρi for all x ∈ Xi. Consider ρ =⋂n
i=1 ρi ⊆ A × A. It is known that an intersection of congruences is also a

congruence (see [8, Chapter 1]). Furthermore, as each ρi is a finite index

congruence, then ρ will have finitely many congruences classes. Indeed, the

congruence classes of ρ are the non-empty intersections of the form

[x1]ρ1 ∩ [x2]ρ2 ∩ · · · ∩ [xn]ρn .

Finally, let y ∈ X. Then there exists i ∈ {1, . . . , n} such that y ∈ Xi. Then

(a, y) /∈ ρi, and so (a, y) /∈ ρ. Hence ρ separates a from X.

An immediate consequence of this is that residual finiteness can be regarded

as the separability property with respect to finite subsets. The following

result utilises Proposition 1.2.20 to show that in a weakly subgroup separable

group, we can extend separation from finitely generated subgroups to finite

unions of cosets of such subgroups.

Corollary 1.2.21. Let G be a weakly subgroup separable group and let H ≤
G be finitely generated. If for cosets Hg1, Hg2, . . . , Hgn we have that g /∈⋃n
i=1Hgi then g can be separated from

⋃n
i=1Hgi.

Proof. By Proposition 1.2.20 it is sufficient to show that for 1 ≤ i ≤ n, g can

be separated from Hgi. As g /∈ Hgi then gg−1
i /∈ H. As G is weakly subgroup

separable then there exists as finite group K and homomorphism φ : G→ K

such that φ(gg−1
i ) /∈ φ(H). If φ(g) ∈ φ(Hgi), then φ(gg−1

i ) ∈ φ(H), which is

a contradiction and so the result holds.

1.2.1 A Topological Viewpoint

Separability properties can be viewed topologically. Although for the purpose

of this thesis we consider them as algebraic properties, for completeness we
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briefly outline the topological viewpoint. Basic knowledge of topology is

assumed. We begin with the definition of a topological algebra.

Definition 1.2.22. A topological algebra is a pair (A, τ), where A is an

algebra of type F and τ is a topology on A such that for each f ∈ F , the

fundamental operation fA is continuous in the product topology.

The requirement for each of the fundamental operations to be a continuous

map is designed to ensure that the topology interacts with the algebraic

operations. The topology linked to separability properties is known as the

profinite topology. We introduce this topology via a basis.

Lemma 1.2.23. Let A be an algebra. Then the set BA, consisting of all

congruences classes of all finite index congruences, is a basis for a topology.

Proof. To show that BA is a basis it is sufficient to show:

(i) for all a ∈ A, there exists B ∈ BA such that a ∈ B; and

(ii) for B1, B2 ∈ BA, there exists B3 ∈ BA such that B1 ∩B2 ⊆ B3.

As ∇A is a finite index congruence on A, we have that A ∈ BA and so (i)

holds. Suppose now that B1, B2 ∈ BA. If B1 ∩ B2 = ∅, then condition (ii)

holds trivially. Now suppose that B1 ∩ B2 6= ∅. As B1, B2 ∈ BA, there exist

finite index congruence ρ1, ρ2 on A such that B1 is a congruence class of

ρ1 and B2 is a congruence class of ρ2. Furthermore, ρ1 ∩ ρ2 is also a finite

index congruence on A and B1 ∩ B2 is a congruence class of ρ1 ∩ ρ2. Hence

B1 ∩ B2 ∈ BA and condition (ii) holds, completing the proof that BA is a

basis.

Definition 1.2.24. The profinite topology τA on an algebra A is the topology

with a basis BA.

Proposition 1.2.25. For an algebra A, (A, τA) is a topological algebra.

Proof. The fact that each fundamental operation is continuous follows from

the fact that every (finite index) congruence is compatible with each funda-

mental operation.
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We now express our separability properties in topological terms.

Proposition 1.2.26. For an algebra A we have:

(i) A is residually finite if and only if the profinite topology is Hausdorff;

(ii) A is monogenic subalgebra separable if and only if every monogenic

subalgebra is closed in the profinite topology;

(iii) A is weakly subalgebra separable if and only if every finitely generated

subalgebra is closed in the profinite topology;

(iv) A is strongly subalgebra separable if and only if every subalgebra is

closed in the profinite topology;

(v) A is completely separable if and only if the profinite topology is discrete.

Proof. (i) (⇒) If A is residually finite, for every distinct pair a, b ∈ A, there

exists a finite index congruence ρ such that [a]ρ 6= [b]ρ. Then [a]ρ, [b]ρ ∈ BA
and [a]ρ is an open neighbourhood of a and [b]ρ is an open neighbourhood

of b. As congruence classes of ρ partition A, we conclude that [a]ρ ∩ [b]ρ = ∅
and hence τA is Hausdorff.

(⇐) Assume that τA is Hausdorff and let a, b ∈ A be distinct. Then there

exists B1, B1 ∈ BA such that a ∈ B1, b ∈ B2 and B1 ∩B1 = ∅. That is, there

is exist finite index congruences ρ on A such that B1 is a congruence class

of ρ. As b /∈ B1, we conclude that B1 = [a]ρ 6= [b]ρ and hence A is residually

finite.

(ii) (⇒) As A is monogenic subsemigroup separable, for every monogenic

subalgebra C and every point x ∈ A\C, there exists a finite index congruence

ρx on A such that [x]ρx 6= [c]ρx for all c ∈ C. That is, C ⊆ A \ [x]ρx . Note

that A \ [x]ρx is a closed set. Then C =
⋂
x∈A\C A \ [x]ρx and we conclude

that C is closed in the profinite topology.

(⇐) Let C be a monogenic subalgebra of A and let x ∈ A \ C. As we are

assuming that C is closed in the profinite topology, we have that A \ C is

an open set. That is, there exists B ∈ BA such that x ∈ B and B ⊆ A \ C.

Then B is a congruence class for some finite index congruence ρ on A and

B = [x]ρ 6= [c]ρ for all c ∈ C. Hence ρ separates x from C and A is monogenic
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subalgebra separable.

The proofs for (iii) and (iv) are similar to the proof for (ii).

(v) (⇒) As A is completely separable, for each a ∈ A there exists a finite

congruence ρa such that [a]ρa = {a}. Hence {a} ∈ BA for all a ∈ A and we

conclude that the profinite topology is discrete.

(⇐) Assume that the profinite topology is discrete. Then for each a ∈ A

the set {a} ∈ BA. That is, {a} is a congruence class of some finite index

congruence ρa. From this we conclude that A is completely separable.

1.2.2 The Word Problem and the Generalised Word Problem

In this subsection, we provide more motivation for the study of separability

properties via two decision problems; the word problem and the generalised

word problem. We state these problems in terms of presentations, although

they do not have to be couched in this language.

Definition 1.2.27. Let A be an algebra and let R ⊆ A× A. Define

R] =
⋂
{ρ | R ⊆ ρ and ρ is a congruence on A}.

Note that as A × A is a congruence on A, this intersection is non-empty.

As the intersection of congruences is a congruence, we have that R] is a

congruence. We call R] the congruence generated by R.

Definition 1.2.28. Let K be a variety of algebras. For a non-empty set Y ,

denote the free algebra on Y by FY . A presentation is a pair (X,R), where

X is a non-empty set of generators and R ⊆ FX × FX is a set of relations.

For (u,w) ∈ R, we often write u = w. We write the presentation (X,R) as

〈X | R 〉. An algebra A is said to be given by the presentation 〈X | R 〉 if

A ∼= FX/R
]. In this case we write A ∼= 〈X | R 〉. The algebra A is said to be

finitely presented if there exists a finite set of generators X and a finite set

of relations R such that A ∼= 〈X | R 〉.

Example 1.2.29. We have already seen that N is a free semigroup which is

31



monogenic. Hence N ∼= 〈 {x} | ∅ 〉. When both set of generators and the set

of relations are finite, we often dispense with the set brackets. So here we

write N ∼= 〈x | 〉.

Consider the finite cyclic group Cn. From Example 1.1.18 we know that

Cn = Z/ρn. We have observed that Z is the free group which is monogenic.

It can be shown that ρn is generated as a congruence by the set {(0, n)}.
Hence Cn is given by the group presentation 〈x | xn = 1 〉.

Remark 1.2.30. We have already observed that within a variety, every

algebra is a homomorphic image of a free algebra. That is, for every algebra

A, there exists a non-empty set X and epimorphism φ : FX → A. Then

A ∼= FX/ker(φ). In other words, A is given by the presentation 〈X | ker(φ) 〉.
This shows that every element of a variety can be given by a presentation.

However, there is no need for this presentation to be unique.

Definition 1.2.31. The following question is known as the word problem.

Given a finitely presented algebra 〈X | R 〉 of type F , does there exist an

algorithm that on input of u, v ∈ TF(X) decides if u and v represent the

same element in 〈X | R 〉?

The following variation is known as the generalised word problem. Given a

finitely presented algebra 〈X | R 〉 of type F , does there exist an algorithm

that on input of u, v1, v2, . . . , vn ∈ TF(X) decides if u represents an element

of the subalgebra 〈v1, v2, . . . , vn〉 of the algebra 〈X | R 〉?

Theorem 1.2.32. If a finitely presented algebra is residually finite then its

word problem is decidable. Equally, if a finitely presented algebra is weakly

subalgebra separable then its generalised word problem is decidable.

Proof. [16, Theorem 2.1 and 2.2]

1.3 Semigroup Preliminaries

In this section we introduce some basic notions in the field of semigroup

theory. The notation used is based on [28]. For the remainder of this work
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the adopt the following notation.

Notation 1.3.1. We reserve 〈X〉 to denote the subsemigroup generated by

the set X. In the case we wish to consider an algebra of another type gen-

erated the set X, we will use some appropriate additional notation. For

example, if we wish to denote the subgroup generated by X, we will write

Gp〈X〉. Similarly, we reserve A ≤ B to mean that A is a subsemigroup of

B. Again we will use additional notation where appropriate. For example,

we will use A ≤Gp B to show that A is a subgroup of B. Finally, we reserve

〈X | R 〉 for semigroup presentations. When we wish to consider presenta-

tions of other types of algebras, we will use additional notation. For example,

we will use Gp〈X | R 〉 for group presentations.

The results we present are needed to understand the structure and substruc-

tures of semigroups. We introduce Green’s relations J , L, R and H. The

relation J partitions a semigroup based upon principle ideals, and the parts

come equipped with a partial ordering revealing the structure of a semigroup.

Green’s relations L and R provide additional structural information. The

relation H allows us to identity the maximal subgroups of a semigroup. The

separability properties of these subgroups often prove vital in understanding

the separability properties of the semigroup as a whole. But first we begin

with partially ordered sets and semilattices.

1.3.1 Partially ordered sets and semilattices

In this subsection we introduce the notion of partially ordered sets. These

are interesting mathematical objects in their own right and also often appear

in theorems concerning the structure of semigroups. There is also one class

of partially ordered sets, semilattices, which can be viewed as a variety of

semigroups. We present both viewpoints of semilattices and justify their

equivalence. Following this we describe free semilattices. We begin with the

definition of a partially ordered set.

Definition 1.3.2. For a set X, a subset ω ⊆ X × X is known as a partial

order on X if for x, y, z ∈ X we have

33



1. reflexivity: (x, x) ∈ ω;

2. anti-symmetry: if (x, y), (y, x) ∈ ω then x = y; and

3. transitivity: if (x, y), (y, z) ∈ ω then (x, z) ∈ ω.

We often write x ≤ y to mean (x, y) ∈ ω. A partially ordered set is a pair

(X,≤), where X is a set and ≤ is a partial order on X.

Example 1.3.3. The normal ordering ≤ on Z, given by x ≤ y if x − y is

negative or zero, is a partial order.

For a set X, there is a partial order on the power set P(X) given by A ≤ B

if A ⊆ B.

Definition 1.3.4. In a partially ordered set (X,≤), an element x ∈ X is

minimal if there does not exist y ∈ X such that y ≤ x. An element x ∈ X
is called the minimum element if x ≤ z for all z ∈ X.

Remark 1.3.5. It follows from the definition that if a minimum element

exists, it must be unique. This is why we call it the minimum element. It is

also clear that the minimum element is a minimal element, and in the case

that the minimum element exists, it is the only minimal element.

Example 1.3.6. In (Z,≤) there are no minimal elements. This follows as

for any z ∈ Z, we have that z − 1 ≤ z. In (P(X),⊆) it is clear that the

empty set ∅ is the minimum element. An example of a partially ordered set

with minimal elements but not minimum element is given in Example 1.3.8.

Definition 1.3.7. For a partially ordered set (X,≤), an element z is called

a lower bound of x and y if z ≤ x and z ≤ y. A lower bound z of x and y is

called the greatest lower bound of x and y if for any lower bound t of x and

y we have t ≤ z.

Example 1.3.8. In (P(X),⊆) the least lower bound of A and B is A ∩B.

Given any set X, the diagonal congruence ∆X is also a partial order on X.

Given any two distinct elements of x and y, there are no lower bounds of x

and y, so certainly there is no greatest lower bound.
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Consider the set X = {x, y, z, t} with partial order

{(x, x), (y, y), (z, z), (t, t), (z, x), (t, x), (z, y), (t, y)}.

Then both z and t are lower bounds of x and y. However, as z and t are

incomparable, there is not greatest lower bound for x and y. Note that both

z and t are both minimal elements, but there does not exists a minimum

element.

Definition 1.3.9. A semilattice is a partially ordered set (X,≤) such that

for each pair of elements x, y ∈ X, the greatest lowest bound of x and y

exists. We denote the greatest lowest bound by x∧ y. Note by definition we

have that x ∧ y = y ∧ x.

Example 1.3.10. For a non-empty set X, let Pω(X) denote the set of all

finite subsets of X. Then (Pω(X) \ {∅},⊇) is a partially ordered set. Fur-

thermore (Pω(X) \ {∅},⊇) is a semilattice with A ∧B = A ∪B.

There is an equivalent definition of semilattices as semigroups.

Definition 1.3.11. A semilattice is a semigroup S which satisfies the fol-

lowing identities:

x2 = x, xy = yx.

The following proposition establishes the equivalence of the two definitions

for semilattices.

Proposition 1.3.12. Given a partially order set (X,≤) which is a semilat-

tice in the order-theoretic sense, we can define a binary operation · on X by

defining x · y = x∧ y. Under this binary operation, X is a semilattice in the

semigroup-theoretic sense.

Equivalently, given a semigroup S which is a semilattice in the semigroup-

theoretic sense, we can define a partial order on S by s ≤ t if st = s. Under

this partial ordering, S is a semilattice in the order-theoretic sense.

Proof. [28, Proposition 1.3.2]
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Definition 1.3.11 defines semilattices in terms of identities, and hence the

class of all semilattices forms a variety of signature (2). For a non-empty

set X, the free semilattice on X is precisely the object Pω(X) \ {∅} given in

Example 1.3.10. The underlying set is the collection of all non-empty finite

subsets of X and the binary operation is set union.

Theorem 1.3.13. The semigroup Pω(X) \ {∅} is the free semilattice on X.

Proof. We show that Pω(X) \ {∅} is free on the X = {{x} | x ∈ X}, which

is clearly in bijection with X. Note that as every element of Pω(X) \ {∅}
is a finite union of elements of X, we have that X is a generating set for

Pω(X) \ {∅}.

Let S be a semilattice and φ : X → S given by {x} 7→ sx, for some sx ∈ S.

Then the only way to extend φ to a homomorphism φ : Pω(X) \ {∅} → S

is by {x1, x2, . . . , xn} 7→ sx1sx2 . . . sxn , where xi ∈ X for 1 ≤ i ≤ n. Note

that as S is commutative, it does not matter what order the elements of the

subsets occur in. Furthermore, φ is a homomorphism as

φ({x1, . . . , xm} ∪ {xm+1, . . . , xn}) = φ({x1, . . . , xm, xm+1, . . . , xn}

= sx1 . . .xm sxm+1 . . . sxn

= φ({x1, . . . , xm})φ({xm+1, . . . , xn}),

where xi ∈ X for 1 ≤ i ≤ n.

Not only is it intriguing that this class of partially ordered sets can be viewed

algebraically as semigroups, it is also true that semilattices provide the un-

derlying structure for some classes of semigroups. Examples of this will be

seen throughout this thesis; one such instance is Proposition 3.3.6. In the

next subsection we see that each semigroup comes equipped with a partial

ordering via Green’s relation J .
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1.3.2 Ideals and Green’s Relations

Green’s relations are arguably the most important tools for understanding

the structure of semigroups. These can be defined in terms of ideals, so we

begin with ideals.

Definition 1.3.14. An subset I of a semigroup S is:

� a left ideal if IS ⊆ S;

� a right ideal if SI ⊆ S;

� an ideal if I is both a left ideal and a right ideal.

Remark 1.3.15. For an ideal I ⊆ S, we have I2 ⊆ I. Therefore I is closed

under multiplication and is a subsemigroup. However, not every subsemi-

group is an ideal as the following example shows.

Example 1.3.16. Consider I = {n ∈ N | n ≥ 4} ⊆ N. Then I is an ideal.

To see this let i ∈ I and n ∈ N. As i + n = n + i > i ≥ 4 we have that

n+ i, i+ n ∈ I as required.

Now consider T = {2} ∪ I ⊆ N. We have already observed I is an ideal,

so to check that T is closed under multiplication we only need check that

2 + 2 ∈ T , which it is. Hence T is a subsemigroup. But T is not an ideal as

2 + 1 = 3 /∈ T .

Definition 1.3.17. For a semigroup S and an element a ∈ S, the principal

ideal generated by a is the set S1aS1. This can be viewed as the smallest

ideal (by containment) that contains the element a.

Example 1.3.18. The ideal I from Example 1.3.16 is the principal ideal

generated by the element 4.

For every ideal of semigroup there is an associated congruence, which we now

define.

Definition 1.3.19. For an ideal I ≤ S, we can define a congruence ρI on S

by:

s ρI t if and only if s, t ∈ I or s = t.
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This congruence is known as the Rees congruence on S by I. We denote the

quotient of this congruence by S/I and the congruence class of s ∈ S by [s]I .

Note that if s ∈ S \ I, then [s]I = {s}. Furthermore, I itself forms the

remaining congruence class. We have observed that ρI has partitioned S,

so it is an equivalence relation. To confirm that ρI is a congruence we need

to check that it is compatible with multiplication. Let [x]I , [y]I be two ρI

classes. Now either both [x]I and [y]I are singletons, in which case there is

nothing to check, or at least one of [x]I or [y]I is the ideal I. Then no matter

what representatives we pick, xy ∈ I and hence ρI is an ideal.

Example 1.3.20. Consider the ideal I from Example 1.3.16. Then the

corresponding Rees congruence has four classes: [1]I , [2]I , [3]I and I. The

multiplication table of the quotient N/I is given below.

· [1]I [2]I [3]I I

[1]I [2]I [3]I I I

[2]I [3]I I I I

[3]I I I I I

I I I I I

Definition 1.3.21. An element 0 of a semigroup S is said to be a zero if

0s = s0 = 0 for all s ∈ S.

Example 1.3.22. In a Rees quotient S/I, the congruence class I is a zero

element. This follows from the fact I is an ideal. Given a semigroup S with

zero element 0, the set {0} is an ideal of S.

Definition 1.3.23. For a semigroup (S, ·), we can define an associated semi-

group which has a zero. Let S0 = S ∪ {0}, where S and {0} are assumed to

be disjoint, and define multiplication · on S0 by

x · y = x · y, z · 0 = 0 · z = 0,

where x, y ∈ S and z ∈ S0. It is easy to check that · is associative and

therefore (S0, ·) is a semigroup. We refer to S0 as S with a zero adjoined.

Example 1.3.24. Recall the semigroup L from Example 1.1.4. The L0 is
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the semigroup with the following multiplication table.

· x y 0

x x x 0

y y y 0

0 0 0 0

We now turn our attention to Green’s relation J and its related partial

ordering.

Definition 1.3.25. Green’s relation J on a semigroup is an equivalence

relation on S given by

sJ t if and only if S1sS1 = S1tS1.

That is, two elements are J -related if and only if they generate the same

principal ideal. We denote the J -class of an element x by Jx.

Example 1.3.26. For k ∈ N, the set N1kN1 = {n ∈ N : n ≥ k}. Therefore

kJm if and only if k = m. That is Jk = {k}. Hence, for N, Green’s relation

J coincides with the diagonal equivalence ∆N.

Note that for any semigroup with a zero element 0, we have that J0 = {0}.

Definition 1.3.27. A partial order can be put on the J -classes of a semi-

group S in the following way:

Ja ≤ Jb if S1aS1 ⊆ S1bS1.

Remark 1.3.28. It follows immediately that for x, y ∈ S1 and a ∈ S we

have

Jxay ≤ Ja.

Example 1.3.29. For k ∈ N we have already observed that N1kN1 = {n ∈
N : n ≥ k}. Therefore Jk ≤ Jm if and only k ≥ m.

Using the above partial ordering we can define the following ideal.
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Definition 1.3.30. For a non-minimal J -class J of a semigroup S, define

I(J) =
⋃
{Js | s ∈ S, J � Js}.

Then I(J) is an ideal in S. To see this first note that as J is non-minimal,

there must exist a J -class Jx such that Jx ≤ J and Jx 6= J . Therefore I(J)

is non-empty. Now let a ∈ I(J) and s ∈ S. From Remark 1.3.28, we have

that both Jas ≤ Ja and Jsa ≤ Ja. If as /∈ I(J), then J ≤ Jas. But, as the

ordering on the J -classes is transitive, this would imply that J ≤ Ja, which

is a contradiction. Hence as ∈ I and similarly sa ∈ I, completing the proof

that I(J) is an ideal. Note that J ⊆ S \ I(J).

Example 1.3.31. For k ∈ N, we have that I(Jk) = {n ∈ N | n > k}.

We now define consider Green’s relations L and R.

Definition 1.3.32. Green’s relation L on a semigroup is an equivalence

relation on S given by

sL t if and only if S1s = S1t.

That is, two elements are L-related if and only if they generate the same

principal left ideal. We denote the L-class of an element x by Lx. Green’s

relation R on a semigroup is an equivalence relation on S given by

sR t if and only if sS1 = tS1.

That is, two elements are R-related if and only if they generate the same

principal right ideal. We denote the R-class of an element x by Rx.

Example 1.3.33. Consider the semigroup L from Example 1.1.4. As xL1 =

{x} and yL1 = {y}, we conclude that L is L-trivial, i.e. its L classes are

singletons. But L1x = L1y = {x, y} are so have that L has just one R-class.

From the definitions, it follows that L,R ⊆ J . Finally, we consider Green’s

relation H.

Definition 1.3.34. Green’s relation H on a semigroup is an equivalence
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relation on S given by

sH t if and only if sL t and sR t.

We denote the H-class of an element x by Hx.

It follows from the definitions that H ⊆ L,R. Green also defined one further

relation, D, but as we do not utilise it during this thesis we refrain from

defining it.

Example 1.3.35. As H ⊆ J and from Example 1.3.26 we know that J
and the diagonal congruence ∆N coincide for N, we must have that H also

coincides with ∆N.

It turns out that the H-classes that contain idempotents are precisely the

maximal subgroups of a semigroup, as the following proposition formalises.

Proposition 1.3.36. For an H-class H of semigroup S, the following are

equivalent:

(i) H is a maximal subgroup of S;

(ii) H contains an idempotent;

(iii) the intersection H ∩H2 is non-empty.

Proof. [28, Corollary 2.2.6].

The following extension of Proposition 1.3.36 is considered folklore, but we

provide a proof for completeness.

Lemma 1.3.37. Let H be a H-class of a semigroup S. If H ∩Hn 6= ∅ for

any n ≥ 2, then H is a maximal subgroup.

Proof. Suppose h1, h2, . . . , hn, h ∈ H such that h1h2 . . . hn = h. Since h1, h2,

hn−1, hn and h are pairwise H-related there exist s, t, u, v ∈ S1 such that

hs = h1, hnt = h2, uh = hn, vh1 = hn−1.

41



Then

h · shn = h1hn, h1hn · th3h4 . . . hn = h,

h1u · h = h1hn, h1h2 . . . hn−2v · h1hn = h.

Hence (h, h1hn) ∈ H. Then H ∩H2 6= ∅ and it follows that H is a group by

Proposition 1.3.36.

To complete this section, we consider monogenic semigroups. Not only is un-

derstanding the structure of monogenic subsemigroups important for under-

standing monogenic subsemigroup separability, we also use finite monogenic

subsemigroups to show examples of Green’s relation H.

Example 1.3.38. A monogenic semigroup A = 〈a〉 is either infinite, in

which case A ∼= N, or it is finite. In the case where A is finite, there exists

positive integers m and r such that am = am+r. The smallest such value of

m is called the index of A and the smallest such value of r is called the period

of A. To simplify statements, we will say that N has index ∞. Every finite

monogenic semigroup has a presentation of the form 〈 a | am = am+r 〉, where

m is the index and r is the period.

We have already seen Green’s relation H for N in Example 1.3.35. For a

finite monogenic semigroup A, given by the presentation 〈 a | am = am+r 〉,
the H relation is as follows. For 1 ≤ i ≤ r − 1, the H-class of ai is the set

{ai}. None of these H-classes are groups. The set {am, am+1, . . . , am+r−1}
forms a group H-class. This H-class will always be a cyclic group. Hence a

monogenic semigroup is a group if and only if its index is 1. For proof of the

above claims see [28, Theorem 1.2.2].

1.3.3 Actions

The actions of semigroups and groups will feature throughout this thesis.

They often appear in constructions of specific semigroups, such as in Def-

inition 2.3.2, or in describing how a subalgebra acts on some subset, for

example Schützenberger groups which feature in Chapter 3. Here we will

define both semigroup and group actions and provide some basic examples
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and properties.

Definition 1.3.39. Let S be a semigroup with binary operation ∗. A right

semigroup action of S is a set X along with an operation · : X × S → X

which is compatible with the multiplication of S. That is,

x · (s ∗ t) = (x · s) · t,

for all x ∈ X and s, t ∈ S. We can define left semigroup actions in an

analogous way.

Example 1.3.40. Every semigroup acts on itself by right multiplication.

This follows from the fact that multiplication is associative. More generally,

given a homomorphism φ : S → T , we can define an action · : T × S → T

by t · s = t ∗φ(s), where ∗ is the binary operation of T . The compatibility of

φ guarantees that this is an action.

Definition 1.3.41. Let G be a group with binary operation ∗ and identity 1.

A right group action of G is a set X along with an operation · : X ×G→ G

which is a right semigroup action along with the additional property that

x · 1 = x

for all x ∈ X. Left group actions are defined in an analogous way.

Example 1.3.42. Every group acts on itself by conjugation. That is, for a

groupG with multiplication ∗, the map · : G×G→ G given by x·g = g−1∗x∗g
is an action.

Although actions are not the main area of study of this thesis, it will be

useful to know some properties of group actions, especially to understand

Schützenbeger groups. We conclude this chapter by listing the properties of

group actions that are of interest to us and providing examples.

Definition 1.3.43. The action of a group G on a set X is:

� transitive if for all x, y ∈ X there exists g ∈ G such that x · g = y;

� free if x · g = x implies that g = 1;
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� regular if it is both free and transitive.

Example 1.3.44. Consider a non-trivial abelian group A with multiplication

∗ acting upon itself by conjugation. Then x ·a = a−1 ∗x∗a = x for all x ∈ X
and a ∈ A. Hence, this action is neither transitive nor free.

Consider the action of Z on the set {0, 1} by x · z = (x+ z) (mod 2). Then

as 0 ·0 = 0, 1 ·0 = 1, 0 ·1 = 1 and 1 ·1 = 0, the action is transitive. However,

this action is not free. For example 0 · 2 = 0 but 2 is not the identity of Z.

On the other hand, the action of any group G on itself by right multiplication

is regular.
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Chapter 2

Separability Properties of Free

Objects

In this chapter we consider the separability properties of free objects in dif-

ferent semigroup varieties. By semigroup varieties we mean varieties where

there is at least one associative binary operation. This work is motivated by

a result of Hall. In [27, Theorem 5.1], Hall shows that free groups are weakly

subgroup separable. We also show that the free group is not strongly sub-

semigroup separable, except in two special cases. Our aim is to understand

the separability properties of free objects in other semigroup varieties. The

obvious variety to start with is that of semigroups itself. It turns out that

the free semigroup exhibits very different behaviour to that of the free group;

the free semigroup is completely separable.

Having established this difference, we further endeavour to understand for

which semigroup varieties the separability properties of the free objects be-

have like those of the free group and which behave like those of the free semi-

group. Somewhat surprisingly it turns out that free inverse monoids are also

completely separable. To try and find examples of semigroup varieties which

behave like the variety of groups, we consider semigroups which are unions

of groups and hence turn our attention to the variety of completely regular

semigroups. We are able to deal with the sub-varieties of completely simple

semigroups and Clifford semigroups, whose free objects indeed do mirror the
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behaviour of free groups. However, free completely regular semigroups prove

to be hard to handle. In order to simplify matters, we define a new variety

of semigroups, known as α-groups. The variety is designed to encapsulate

the behaviour of completely regular semigroups whilst removing some of the

structural complexity. We are able to show that free α-groups are monogenic

subalgebra separable but it still remains an open question if they are weakly

subsemigroup separable. Whether free completely regular semigroups are

weakly subsemigroup separable also remains an open question.

2.1 Free Groups

We begin by defining the basic concepts of alphabets, words and then free

semigroups and free monoids. This is necessary as it allows us to describe the

underlying set not only of free groups, but the underlying set of several of the

algebraic objects we meet in this chapter. Although we define free semigroups

and free monoids here, we leave the discussion of their separability properties

to the next subsection. This ordering reflects that separability properties of

the free group were studied earlier than those of free semigroups and free

monoids.

Definition 2.1.1. An alphabet A is a set. A word over A is a finite sequence

a1a2 . . . an, where ai ∈ A for 1 ≤ i ≤ n. For a word w, the length of

w is the length of the sequence that makes up w and is denoted by |w|.
The unique word of length zero is called the empty word and is denoted

by ε. The set of all non-empty words over an alphabet A is denoted by

FA. The set of all words over an alphabet A is denoted by FMA. For

words w = a1 . . . am and u = b1 . . . bn the sequence a1 . . . amb1 . . . bm is the

concatenation of w by u and is denoted by wu. It is clear that concatenation

of words is associative and therefore both FA and FMA are semigroups under

the operation of concatenation. Furthermore FMA is a monoid with identity

ε. The semigroup FA is the free semigroup on A and the monoid FMA is the

free monoid on A.

More information on free monoids and free semigroups, including a proof
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that FMA is a monoid and free on A and that FA is a semigroup and free on

A, can be found in [28, Section 1.6 and Chapter 7].

Example 2.1.2. Let A = {a, b}. Then w = ab is a word of length 2 over A

and u = bba = b2a is a word of length 3 over A. We have that wu = ab3a

and uw = b2a2b.

We can now define free groups.

Definition 2.1.3. Let X be a set and let X−1 be a set disjoint from X such

that there exists a bijection φ : X → X−1. For each x ∈ X, set x−1 = φ(x).

Furthermore, for x−1 ∈ X−1, set (x−1)−1 = x. At this stage x−1 does not

yet represent the inverse of x. Let X± = X ∪ X−1. We call a word over

X± reduced if it contains no occurrences of contiguous subwords of the form

xx−1 or x−1x, where x ∈ X. Such pairs are known as cancelling pairs. Let

FGX be the set of all reduced words over X±.

We now define a binary operation ∗ on FGX . Let v = x1 . . . xm, w = y1 . . . yn

be elements of FGX , where xi, yj ∈ X± for 1 ≤ i ≤ m and 1 ≤ j ≤ n. Define

v ∗ w = x1 . . . xm−ryr+1 . . . yn,

where r is the largest value of 0 ≤ k ≤ min{m,n} for which none of xmy1,

xm−1y2, . . . , xm−k+1yk is reduced. When it is clear from the context, we

will write uv for u ∗ v. If r > 0 then we say that cancellation has occurred

between v and w. Then under this operation FGX is a group with identity ε.

The inverse of v is v−1 = x−1
m x−1

m−1 . . . x
−1
1 . Furthermore FGX is free on the

set X.

For more on FGX , including a proof that it is a group and that it is free on

X, see [29, Chapter 1].

Several of the free objects we meet in this chapter can be defined in terms of

free groups. The following theory of Nielsen will prove useful in understand-

ing the separability properties of these objects. In [42], Nielsen proved that

every finitely generated subgroup of FGX is free. In order to do this, Nielsen

defined Nielsen reduced sets and showed that if H ≤Gp FGX is finitely gener-
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ated, then there exists a finite generating set for H which is Nielsen reduced.

For more on Nielsen’s method, see [29, Chapter 3].

Before we give the definition of Nielsen reduced sets, we establish some no-

tation.

Notation 2.1.4. For a set W ⊆ FGX , define W−1 = {w−1 | w ∈ W} and

W± = W ∪W−1.

Definition 2.1.5. A set W ⊆ FGX is called Nielsen reduced if for all

u, v, w ∈ W±, the following conditions hold:

(i) |u| 6= 0;

(ii) u 6= v−1 =⇒ |uv| ≥ |u|, |v|;
(iii) u 6= v−1 and v−1 6= w =⇒ |uvw| > |u| − |v|+ |w|.

Example 2.1.6. Consider the set X = {a, b, c}. Then it is easy to check that

W = {ab−1c, c−1ab} is Nielsen reduced. However the set

U = {abca, c−1c−1bc, a−1c−1bc} is not Nielsen reduced. It is true that U

satisfies the first two conditions of Definition 2.1.5. However, by setting

u = abca, v = a−1c−1bc and w = c−1b−1cc we have that uvw = abcc. Hence

|uvw| = 4 and |u| − |v| + |w| = 4 and so the third condition fails to be

satisfied.

The following lemma gives some sufficient conditions for a subset of the free

group to be Nielsen reduced.

Lemma 2.1.7. Let W ⊆ FGX such that for all u, v ∈ W±, the following

hold:

(i) |u| 6= 0;

(ii) u 6= v−1 =⇒ |uv| > |u|, |v|.

Then W is Nielsen reduced.

Proof. By assumption, W satisfies conditions (i) and (ii) from Definition 2.1.5.

Therefore we only need show that W satisfies condition (iii) from Defini-

tion 2.1.5. Let u, v, w ∈ W± such that u 6= v−1 and v−1 6= w. Now, by
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condition (ii) of the assertion of the lemma, we can write u = u1u2 and

v−1 = u−1
2 v′, so that uv−1 = u1v

′ where there is no cancellation between u1

and v′, |u2| < |u|
2

and |u2| < |v−1|
2

. Indeed, if |u2| ≥ |u|
2

then

|uv−1| = |u1v
′| = |u|+ |v−1| − 2|u2| < |v−1|,

which contradicts assumption (ii) of this lemma. A similar contradiction

occurs if |u2| ≥ |v−1|
2

. In a similar manner we write w = w1w2 and v−1 =

v′′w−1
1 , so that v−1w = v′′w2 where there is no cancellation between v′′ and

w2, |w1| < |w|
2

and |w1| < |v−1|
2

. Putting both of these observations together

we can write v = u−1
2 v1w

−1
1 , where |v1| ≥ 1. Then

|uv−1w| = |u1v1w2| = |u|+ |v|+ |w| − 2|u2| − 2|w1| > |u| − |v|+ |w|,

as 2|u2| + 2|w1| < 2|v|. Hence condition (iii) of Definition 2.1.5 is satisfied

and W is Nielsen reduced.

For a finite set W ⊆ FGX , Nielsen gave an algorithm that would output a

finite set W ⊆ FGX , such that W is Nielsen reduced and Gp〈W 〉 = Gp〈W 〉.
This is summarised below.

Theorem 2.1.8. [29, Lemma 3.1 and Theorem 3.1] If H ≤Gp FGX is finitely

generated, then there exists a finite set W ⊆ FGX such that W is Nielsen

reduced and Gp〈W 〉 = H.

We now state the motivating theorem for this chapter.

Theorem 2.1.9. [27, Theorem 5.1] The free group FGX is weakly subgroup

separable.

We turn our attention to the other separability properties of free groups.

As free groups are weakly subsemigroup separable, we immediately have

that they are monogenic subgroup separable and residually finite by Propo-

sition 1.2.9 and Lemma 1.2.10. As we have seen in Theorem 1.2.19, a group

is completely separable if and only if it is finite. It is well known that the

group FGX is finite if and only if X = ∅. In this case FGX is isomorphic to

the trivial group.
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When |X| = 1, we have that FGX
∼= Z. As every subgroup of a cyclic group

is cyclic, every subgroup of Z is finitely generated. Then by Theorem 2.1.9,

Z is strongly subgroup separable.

For |X| ≥ 2, the free group FGX is not strongly subsemigroup separable as

the following example shows.

Example 2.1.10. Let X be a set such that |X| ≥ 2. Let a, b ∈ X be distinct

and consider the subgroup H ≤Gp FGX with generating set

W = {aiba−i | i ∈ N}. Let w be a reduced word over W±, whose length over

W± is n. Then, as a reduced word over X, w contains precisely n occurrences

of b or b−1. Furthermore, w must begin and end with a or a−1. From these

observations we conclude that b ∈ FGX \H. Let φ : FGX → G, where G is a

finite group. Let m = o(φ(a)). Then

φ(b) = φ(amba−m) ∈ φ(H).

Hence FGX is not strongly subgroup separable.

The above observations are summarised below.

Lemma 2.1.11. The free group FGX is:

(i) completely separable if and only is X = ∅;
(ii) strongly subgroup separable if and only if |X| ≤ 1.

2.2 Free Monoids and Free Semigroups

Given Hall’s result that the free group is weakly subgroup separable, it is nat-

ural to consider the separability properties of free objects in other semigroup

varieties. The obvious variety to begin with is that of semigroups itself. This

question was considered by Golubov who showed that free semigroups and

free commutative semigroups are completely separable [17, Corollaries 1 and

2]. Golubov’s proof relied on upon a characterisation of completely separable

semigroups which we will consider in Chapter 4. This characterisation al-

lowed Golubov to construct homomorphisms to show that these semigroups
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are completely separable. We present a proof that it is completely separable.

This proof makes use of an ideal and its Rees quotient, though it can be

easily shown that the resulting congruences are the same as those Golubov

gives.

Theorem 2.2.1. The free monoid FMX is completely separable.

Proof. Let w ∈ FMX . Let Xw ⊆ X be the set of letters that appear in the

word w. As w has finite length it must be that Xw is finite. Let |w| = n.

Define the set I(w) as follows:

I(w) = {u ∈ FMX : |u| > n or u contains a letter in X \Xw}.

Then I(w) is an ideal. Indeed, if u ∈ I(w) and v, z ∈ FMX , then either u

contains a letter in X\Xw and therefore so does vuz, or |u| > n and therefore

|vuz| > n. In either case vuz ∈ I(w), and hence I(w) is an ideal.

Furthermore, from the definition of I(w) it is clear that w ∈ FMX \I(w). If a

word v is in FMX \I(w), then |v| ≤ n and v is a word over the finite set Xw.

Hence the set FMX \I(w) is finite. Therefore the Rees quotient FMX /I(w)

is finite. Furthermore, as w ∈ FMX \I(w), we have [w]I(w) = {w}. Hence,

FMX is completely separable.

As FX is a subsemigroup of FMX , any separability property of FMX is in-

herited by FX by Proposition 1.2.13.

Corollary 2.2.2. The free semigroup FX is completely separable.

The above result can also be found in [45, Proposition 2.4]. In these lectures

notes, Pin uses the language of topology. Indeed, he gives a metric on the free

semigroup and uses this metric to define a topology, which turns out to be

the same as the profinite topology on the free semigroup. Pin uses this theory

to give results concerning recognisable languages, a well studied application

of semigroup theory, but one which is not considered in this thesis.
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2.3 Free Inverse Semigroups

Having observed the stark difference between the separability properties of

the free semigroup and the free group, it could be conjectured that the va-

rieties closer to the variety of semigroups have completely separable free ob-

jects, whilst the free objects in those varieties which are closer to the variety

of groups have weaker separability properties.

This conjecture is backed up by the evidence that the free commutative

semigroup, the free monoid and free commutative monoid are completely

separable. Each of these three varieties can be considered closer to the variety

of semigroups than to the variety of groups, in particular as there is no notion

of inversion within these varieties.

To test this conjecture, it seems natural to investigate the separability prop-

erties of the free objects in a variety close to the variety of groups. The

obvious choice of variety is that of inverse semigroups. Indeed, when in-

verse semigroups where first introduced by Vagner, they were referred to as

“generalised groups”.

Inverse semigroups form a variety of signature (2,1), with the binary opera-

tion of multiplication which will be represented by concatenation of elements,

and the unary operation of inversion which will be represented by −1. The

class of inverse semigroups satisfy the following identities:

(xy)z = x(yz), (x−1)−1 = x, xx−1x = x, xx−1yy−1 = yy−1xx−1.

Where groups algebraically represent symmetries, realised as permutations,

inverse semigroups capture the notion of partial symmetries represented by

partial bijections of a set. More on inverse semigroups can be found in [28,

Chapter 5].

We will consider free inverse monoids, as free inverse semigroups are subsemi-

groups of free inverse monoids. There exists different ways of representing

the free inverse monoids. Here we present them as McAlister triples. This

method is chosen as it easily allows the Green’s relations of free inverse
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monoids to be described. In particular, Green’s relation J is used in the

construction of ideals that show that the free inverse monoid is completely

separable.

Definition 2.3.1. Let (X ,≤) be a partially ordered set and let Y ⊆ X such

that

(i) Y is a meet semilattice with respect to ≤,

(ii) Y is downward closed.

Let G be a group that acts on X from the left such that for g, h ∈ G and

A,B ∈ X we have the following three conditions:

(∀B ∈ X )(∀g ∈ G)(∃A ∈ X )(gA = B),

gA = gB ⇐⇒ A = B,

A ≤ B ⇐⇒ gA ≤ gB.

Suppose that the triple has (G,X ,Y) has the properties

(iii) GY = X ,

(iv) for all g ∈ G, gY ∩ Y 6= ∅.

A triple (G,X ,Y) satisfying conditions (i)-(iv) is a McAlister triple. Given

such a triple, let

M(G,X ,Y) = {(A, g) ∈ Y ×G | g−1A ∈ Y}

with multiplication

(A, g)(B, h) = (A ∧ gB, gh),

and inversion

(A, g)−1 = (g−1A, g−1).

Then M(G,X ,Y) is an inverse semigroup, see [28, Theorem 5.9.2].

In fact, McAlister triples form a special class of inverse monoids known as E-

unitary inverse semigroups. The definition of this class is not important for

our purposes except that free inverse monoids can be represented as McAl-

ister triples, as is shown in the following definition.
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Definition 2.3.2. Let X be a non-empty set and let G = FGX . For a word

w = w1w2 . . . wn ∈ FGX , let w↓ = {ε, w1, w1w2, . . . , w1w2 . . . wn}. That is w↓

is the set of all prefixes of w. A non-empty subset A ⊆ FGX is called saturated

if for every w ∈ A we have that w↓ ⊆ A. Let

Y = {A ⊆ FGX | A is finite and saturated}. Define an order ≤ on Y by

A ≤ B if and only if A ⊇ B.

Then Y is a meet semilattice (where A ∧B = A ∪B). The group FGX acts

on Y by

gA = {gw | w ∈ A}.

Let X = {gA | g ∈ FGX , A ∈ Y}. Then X is a partially ordered set under

the ordering

A ≤ B if and only if A ⊇ B.

The action of FGX on Y can be extended naturally to an action on X . Then

the triple (FGX ,X ,Y) is a McAlister triple. Furthermore,

FIMX
∼= M(FGX ,X ,Y), where FIMX is the free inverse monoid on the

set X.

For a proof that FIMX is isomorphic to M(FGX ,X ,Y), see [28, Theorem

5.10.2]. From now on, we will identify FIMX with ( FGX ,X ,Y). In order to

show that FIMX is completely separable, we will use Green’s relation J . We

make use of the following lemma.

Lemma 2.3.3. Let (A, g) ∈ FIMX . Then there only exist finitely many

(B, h) ∈ FIMX such that (A, g) ≤J (B, h).

Proof. If (A, g) ≤J (B, h), then there exist (C, t), (D, z) ∈ FIMX such that

(C, t)(B, h)(D, z) = (A, g). That is C ∪ tB ∪ thD = A and thz = g. As B is

a saturated set, ε ∈ B. Hence t ∈ tB ⊆ A. Since A is finite, there are only

finitely many choices for t. Similarly, as D is a saturated set, ε ∈ D. Hence

th ∈ thD ⊆ A. Given that A is finite and we have already established there

are only finitely many choices for t, it must be that there are only finitely

many choices for h.
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Now, as tB ⊆ A, it must be that B = t−1Z, where Z ⊆ A. Given that A

only has finitely many subsets and that there are only finitely many choices

for t, we conclude that there can only be finitely many possibilities for B.

Putting this together, we get that there are only finitely many possibilities

for (B, h), as desired.

Theorem 2.3.4. The free inverse monoid FIMX is completely separable.

Proof. Let (A, g) ∈ FIMX . Define

I(A, g) = {(B, h) ∈ FIMX | (B, h) �J (A, g).}.

Then by Definition 1.3.30, I(A, g) is an ideal and (A, g) ∈ FIMX \I(A, g).

Furthermore, by Lemma 2.3.3, FIMX \I(A, g) is finite. Therefore the Rees

quotient FIMX /I(A, g) is finite and [(A, g)]I(A,g) = {(A, g)}. Hence FIMX is

completely separable.

2.4 Free Completely Simple Semigroups

The fact that FIMX is completely separable is somewhat surprising. The idea

that the extra structure associated with inversion would mean that FIMX

would behave like FGX has shown to be wrong. On closer inspection, we

can see this expectation was perhaps a little naive. From [28, Proposition

5.9.4, (2) and (3)], we can see that for (A, g), (B, h) ∈ FIMX we have that

(A, g)H(B, h) if and only if A = B and g−1A = h−1B. In other words, FIMX

is H-trivial and in particular every subgroup of FIMX is trivial. Therefore

even though FGX plays an important role in the description of FIMX , none

of the group structure of FGX is inherited by FIMX .

In order to identify the point where free objects in semigroup varieties switch

from being completely separable to having separability properties similar to

that of the free group, we need to take one step closer to the variety of

groups. The obvious variety to choose would be that of completely regu-

lar semigroups, indeed a completely regular semigroup is a union of groups.
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However, the completely regular case proves to be difficult. Therefore we

start with two examples of semigroups varieties which are contained within

the class of completely regular semigroups and whose separability proper-

ties prove relatively easy to determine. The first of these is the variety of

completely simple semigroups.

A semigroup S is simple if the only ideal of S is S itself. A simple semigroup

is called completely simple if it is both simple and a union of groups. For

equivalent definitions of completely simple semigroups, see [28, Theorems

3.3.2 and Theorems 3.3.3]. Completely simple semigroups form a variety

of signature (2,1), with the binary operation of multiplication which will

be represented by concatenation of elements, and the unary operation of

inversion which will be represented by −1. The class of completely simple

semigroups satisfies the following identities:

(xy)z = x(yz), (x−1)−1 = x, xx−1x = x, xx−1 = x−1x,

xyx(xyx)−1 = xx−1.

Rees showed that the class of completely simple semigroups coincides with

the class of Rees matrix semigroups over groups [28, Theorem 3.3.1]. Let

G be a group. Let I,Λ be non empty sets and P = (pλi) be a Λ × I ma-

trix with entries from G. The Rees matrix semigroup over the group G is

S = M [G; I,Λ;P ] = (I ×G× Λ) with multiplication

(i, a, λ)(j, b, µ) = (i, apλjb, µ),

and inversion

(i, g, λ)−1 = (i, p−1
λi g

−1p−1
λi , λ).

For i ∈ I and λ ∈ Λ the set {i} × G × {λ} is a maximal subgroup of

M [G : I,Λ;P ] isomorphic to G.

In [10, Theorem 7.4] Clifford gave the following description of the free com-

pletely simple semigroup on a set X.

Definition 2.4.1. Let X be a non-empty set. Let 1 be a distinguished
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element of X. Let Q = {qx | x ∈ X} ∪ {pyz | y, z ∈ X \ {1}}. The set Q is

a set of formal symbols consisting of two disjoint subsets, one indexed by X

and the other indexed by (X \ {1})× (X \ {1}). Let FGQ be the free group

on Q. Define py1 = p1z = ε for all y, z ∈ X and let P be the X ×X matrix

(pyz) over FGQ. Then FCSX ∼= M(FGQ;X,X;P ), where FCSX is the free

completely simple semigroup on the set X. The set X = {(x, qx, x) | x ∈ X}
forms a free generating set.

We use this description to show that FCSX is weakly subalgebra separable.

Recall that subalgebras are non-empty subsets that are closed under multi-

plication and inversion and hence are completely simple semigroups. In the

proof, we will make use of the following lemma.

Lemma 2.4.2. A completely simple semigroup M [G; I,Λ, P ] is finitely gen-

erated if and only if G is finitely generated and the sets I and Λ are finite.

Proof. This follows from [4, Main Theorem].

Theorem 2.4.3. The free completely simple semigroup FCSX is weakly sub-

algebra separable.

Proof. Let FCSX = M [FGQ;X,X;P ]. Let U be a finitely generated subal-

gebra of FCSX and let v = (y, w, z) ∈ FCSX \U . As U is finitely generated,

then by Lemma 2.4.2 there exists a finitely generated group G, finite sets I

and Λ and a Λ×I matrixM with entries fromG such that U ∼= M [G; I,Λ;M ].

Then there exists an embedding ι : M [G; I,Λ;M ] → M [FGQ;X,X;P ].

Therefore, we identify I,Λ ⊆ X, G ≤Gp FGQ and M as the induced subma-

trix of P obtained by considering only the rows indexed by the set Λ and

columns indexed by the set I.

To show that FCSX is weakly subalgebra separable we will find a finite group

H, a finite set Ω, an Ω × Ω matrix A over H and a homomorphism φ :

M [FGQ;X,X;P ]→M [H; Ω,Ω;A] such that φ(v) /∈ φ(U).

As U is finitely generated, there exists a finite subset Ω ⊆ X such that

U ∪ {v} ⊆ FCSΩ. Let Ω = Ω ∪ {0}, where {0} is disjoint from Ω.
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If U ∩ ({y} × FGQ×{z}) = ∅, set H = {1}, the trivial group, and set φ :

FGQ → H to be the trivial homomorphism. Otherwise U∩({y}×FGQ×{z})
is a maximal subgroup of U . In this case U ∩({y}×FGQ×{z}) is isomorphic

to the finitely generated subgroup G of FGQ.

Let ψ : {y} × FGQ×{z} → FGQ be given by (y, u, z) 7→ upzy. We show ψ is

an isomorphism. As

ψ((y, u, z)(y, v, z)) = ψ(y, upzyv, z) = upzyvpzy = ψ(y, u, z)ψ(y, v, z),

we have that ψ is an homomorphism. If ψ(y, u, z) = ψ(y, v, z) then upzy =

vpzy and therefore u = v, showing that ψ is injective. Finally, for u ∈
FGQ we have ψ(y, up−1

zy , z) = u, showing that ψ is surjective and indeed a

homomorphism.

Therefore U ∩ ({y} × FGQ×{z}) = {y} × Gp−1
zy × {z}. Then saying that

v ∈ FCSX \U is equivalent to saying that w ∈ FGQ \Gp−1
zy . As FGQ is

weakly subgroup separable by Theorem 2.1.9 and Corollary 1.2.21, there

exists a finite semigroup H and a homomorphism φ : FGQ → H such that

φ(w) /∈ φ(Gp−1
zy ).

Let A be the Ω× Ω matrix (aωµ) with entries from H where

aωµ =

φ(pωµ) if ω, µ ∈ Ω,

1H otherwise.

Let φ : M [FGQ; I, I;P ] → M [H; Ω,Ω;A] be the unique extension to a ho-

momorphism of the function given by

(x, qx, x) 7→

(x, φ(qx), x) if x ∈ Ω,

(0, 1H , 0) otherwise.

By construction, φ(µ, u, ν) = (µ, φ(u), ν) for (µ, u, ν) in the subalgebra gen-

erated by the set {(ω, qω, ω) | ω ∈ Ω}. As v is an element of this subalgebra

and U is contained in this subalgebra, we can conclude that φ(v) /∈ φ(U) and
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that FCSX is weakly subalgebra separable.

When |X| ≥ 2, every maximal subgroup of FCSX is isomorphic to FGY ,

where |Y | = |X| + |X − 1|2. In particular, FGY is not strongly subgroup

separable by Lemma 2.1.11. As subgroups are example of subalgebras in the

variety of completely simple semigroups, it cannot be the case that FCSX is

strongly subalgebra separable, as otherwise FGY would have inherited strong

subgroup separability by Proposition 1.2.13.

When |X| = 1, it is easy to see that FCSX ∼= Z. In this case the only

subalgebras are subgroups, and therefore FCSX is strongly subalgebra sep-

arable but not completely separable by Lemma 2.1.11. These observations

are summarised below. Note that FCSX is not defined for X = ∅.

Lemma 2.4.4. The free completely simple semigroup FCSX is not completely

separable and is strongly subalgebra separable if and only if |X| = 1.

Not only do the separability properties of FCSX mirror those of free groups,

they rely heavily upon the separability properties of free groups. In showing

that FCSX is weakly subalgebra separable we utilised the fact the free group

is subgroup separable. When FCSX is not strongly subalgebra separable, it

is because it has a subgroup which is isomorphic to a non-strongly subgroup

separable free group. This seems to demonstrate that the separability prop-

erties of unions of groups are very closely tied to the separability properties

of those groups.

2.5 Free Clifford Semigroups

Another variety that lives within the class of completely regular semigroups

is that of Clifford semigroups. Whereas all maximal subgroups of a com-

pletely simple semigroup are isomorphic, this does not have to be the case

with Clifford semigroups. This gives rise to the potential of a more nuanced

relationship between the separability properties of a Clifford semigroup and

the separability properties of the underlying groups. However, in the case
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of the free Clifford semigroup, we obtain a similar result to that of the free

completely simple semigroup.

Clifford semigroups form a variety of signature (2,1), with the binary oper-

ation of multiplication which will be represented by concatenation and the

unary map of inversion which will be represented by −1. The variety of

Clifford semigroups satisfies the following identities:

(xy)z = x(yz), xx−1x = x, (x−1)−1 = x, xx−1 = x−1x,

xx−1yy−1 = yy−1xx−1.

A semigroup S is a Clifford semigroup if and only if it is a strong semilat-

tice of groups, which we define below. For equivalent definitions of Clifford

semigroups see [28, Theorem 4.2.1].

Definition 2.5.1. We say that a semigroup S is a semilattice of semigroups

if for some semilattice Y , we can write S as a disjoint union of subsemigroups

S =
⋃
α∈Y Sα, such that SαSβ ⊆ Sαβ for all α, β ∈ Y . In this case we write

S = S[Y ; {Sα}].

Additionally suppose that for all α ≥ β ∈ Y , there exists a homomorphism

φα,β : Sα → Sβ such that

(i) φα,α = 1Sα for all α ∈ Y ;

(ii) φα,βφβ,γ = φα,γ for all α ≥ β ≥ γ ∈ Y .

We define a multiplication on S =
⋃
α∈Y Sα. For x ∈ Sα and y ∈ Sβ, define

xy = φα,αβ(x)φβ,αβ(y).

Under this multiplication S is a semigroup known as a strong semilattice of

semigroups. In this case we write S = S[Y ; {Sα}; {φα,β}].

The following is a description of the free Clifford semigroup on a set X. This

is taken from [28, Exercise 5.40]. In the notes at the end of Chapter 5 of [28],

Howie attributes this description to Liber in [34].

Definition 2.5.2. Let X be a non-empty set. Let Y be the semilattice
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of non-empty finite subsets of X under the operation of union. Then Y is

the free semilattice on X. For α ∈ Y , let FGα denote a copy of the free

group on α. We will write elements of FGα as ordered pairs (w, α), where

w is an element of the free group on α. A free basis for FGα is the set

{(a, α) | a ∈ α}. For α, β ∈ Y , such that α ⊆ β define the group homomor-

phism φα,β : FGα → FGβ to be the unique homomorphic extension of the map

given by (a, α) 7→ (a, β) for all a ∈ α. Then FCliffX ∼= S[Y ; {FGα}; {φα,β}],
where FCliffX is the free Clifford semigroup on X. With this notation, we

can see that for (w, α), (v, β) ∈ FCliffX we have

(w, α)(v, β) = (wv, α ∪ β),

and

(w, α)−1 = (w−1, α).

The set {(x, {x}) | x ∈ X} is a free generating set for FCliffX .

Theorem 2.5.3. The free Clifford semigroup FCliffX is weakly subalgebra

separable.

Proof. Let FCliffX = S[Y ; FGα;φα,β]. Let U be a finitely generated subalge-

bra of FCliffX and let (w, α) ∈ FCliffX \U . To show that FCliffX is weakly

subalgebra separable we will find: a finite semilattice Z; a family of finite

groups {Hµ}µ∈Z ; for µ ≥ ν ∈ Z, a family of homomorphisms ψµ,ν : Hµ → Hν ;

and a homomorphism ξ : S[Y ; {FGα}; {φα,β}] → S[Z; {Hµ}; {ψµ,ν}] such

that ξ(w, α) /∈ ξ(U).

As U is finitely generated, there exists a non-empty finite set Ω ⊆ Y such

that U ∪ {(w, α)} ⊆ FCliffΩ. Let Ω = Ω∪ {0}, where {0} is disjoint from Ω.

Let Z be the free semilattice on Ω. That is, let Z be the set of all non-empty

(finite) subsets of Ω under union. Note that |Z| = 2|Ω| − 1.

If G = U∩FGα = ∅, then for µ ∈ Z set Hµ = {1}, the trivial group. Then for

µ ≥ ν ∈ Z set ψµ,ν to be the identity map. This family of homomorphisms

certainly satisfies conditions (i) and (ii) from definition Definition 2.5.1.
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Otherwise G is non-empty. In this case G is a finitely generated subgroup of

FGα. Indeed, if V is a finite generating set for U , then G has generating set

V = {(v, α) | there exists β ≥ α ∈ Y such that (v, β) ∈ V }.

To show that V is generating set for G first assume that (u, α) ∈ G. Then

(u, α) = (u1, β1)δ1 . . . (un, βn)δn ,

where for 1 ≤ i ≤ n we have (ui, βi) ∈ V and δi ∈ {±1}. Furthermore,

it must be the case that in the semilattice Y , α = β1 . . . βn. In particular,

βi ≥ α for 1 ≤ i ≤ n. Hence

(u, α) = (u1, α)δ1 . . . (un, α)δn

and (u, α) ∈ Cliff〈V 〉, the subalgebra generated by V . That is, G ⊆ Cliff〈V 〉.

Now assume that (v, α) ∈ Cliff〈V 〉. Then there exist (v1, γ1), . . . , (vm, γm) ∈
V such that v = vη11 . . . vηmm , where for 1 ≤ i ≤ m we have ηi ∈ {±1} and

γi ≥ α. As G is non-empty, there exists some (v′, α) ∈ G. Then

(v, α) = (v1, γ1)η1 . . . (vm, γm)ηm(v′, α)(v′, α)−1,

and (v, α) ∈ G. Hence Cliff〈V 〉 ⊆ G, completing the proof that G is a finitely

generated group.

As α ⊆ Ω, we can realise G as a finitely generated subsemigroup of FGΩ

such that w ∈ FGΩ \G. Then as FGΩ is weakly subgroup separable by Theo-

rem 2.1.9, there exists a finite group H and a homomorphism

σ : FGΩ → H such that σ(w) /∈ σ(G). Let Z = {0, 1} be the two ele-

ment semilattice with identity element 1 and zero element 0. Let H1 = H,

let H0 = {e} be the trivial group and let ψ1,0 : H1 → H0 be the trivial homo-

morphism. Then it is clear that S[Z; {Hµ};φµ,ν ] is isomorphic to H with a

zero element adjoined. Define ξ : S[Y ; {FGα}; {φα,β}] → S[Z; {Hµ}; {ψµ,ν}]
by
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(z, δ)→

(σ(z), 1) if δ ≥ α,

(e, 0) otherwise.

Now if (z, δ) ∈ U and δ ≥ ω, then (z, α) ∈ U . This follows as U ∩ FGα 6= ∅,
and so for any (v′, α) ∈ U , we have that (z, α) = (z, δ)(v′, α)(v′, α)−1. Using

this observation, we can see that ξ is a homomorphism which separates (w, α)

from U as desired.

When |X| ≥ 2, FCliffX contains a subgroup isomorphic to FGX . In par-

ticular, FGX is not strongly subgroup separable by Lemma 2.1.11. As sub-

groups are example of subalgebras in the variety of Clifford semigroups, it

cannot be the case that FCliffX is strongly subalgebra separable, as oth-

erwise FGX would have inherited strong subgroup separability by Proposi-

tion 1.2.13.

When |X| = 1, it is easy to see that FCliffX ∼= Z. In this case the only

subalgebras are subgroups, and therefore FCliffX is strongly subalgebra sep-

arable but not completely separable by Lemma 2.1.11. These observations

are summarised below. Note that FCliffX is not defined for X = ∅.

Lemma 2.5.4. The free Clifford semigroup FCliffX is not completely sepa-

rable and is strongly subalgebra separable if and only if |X| = 1.

2.6 Free Completely Regular Semigroups

We now come to the variety of completely regular semigroups. A completely

regular semigroup is a union of groups and so it seems most likely that the

behaviour of free objects in this variety will closely match that of free groups.

However, even giving a description of the free completely regular semigroup

proves to be difficult. We present a partial description of the free completely

regular semigroup on a set of size two to demonstrate its complexity. In

order to understand the separability properties of free completely regular

semigroups, we define a new variety of semigroups, which we call α-groups.
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The definition was chosen so that the free objects in this new variety mimic

some of the behaviour of free completely regular semigroups. We are able to

show that the free α-groups are monogenic subalgebra separable. However, it

remains an open question if the free objects are weakly subalgebra separable.

Even with this result, it remains an open question if free completely regular

semigroups are monogenic subalgebra separable. The title of this section is

somewhat of a misnomer, as most of the section is dedicated to α-groups and

not free completely regular semigroups. However, it is hoped that α-groups

will provide a means to understanding free completely regular semigroups in

the future.

Completely regular semigroups form a variety of signature (2, 1) with the

binary operation of multiplication which will be represented by concatenation

of elements, and the unary operation of inversion which will be represented

by −1. The class of of completely regular semigroups satisfies the following

identities:

(xy)z = x(yz), (x−1)−1 = x, xx−1x = x, xx−1 = x−1x.

Observe that both completely simple semigroups and Clifford semigroups

satisfy these identities and so these classes are contained within the class of

completely regular semigroups. For more on completely regular semigroups,

including a proof that they are a union of groups, see [28, Chapter 4].

For a non-empty set X, let FCRX denote the free completely regular semi-

group on X. When |X| = 1, it is the case that FCRX
∼= Z. However, when

|X| ≥ 2 the situation becomes increasingly more complex. Indeed, Clifford

dedicates the majority of [10] to giving a description of FCRX for |X| = 2.

Here, we provide a partial summary of that description, highlighting the

underlying structure without specifying the multiplication.

For |X| = 2, the semigroup FCRX is a semilattice of completely simple

semigroups. The underlying semilattice is the free semilattice on a set of

size two. The completely simple semigroups in the two maximal positions of

this semilattice are copies of the integers, which we denote by Z and Z. The
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remaining completely simple semigroup is M [FGY ;Z ∪ Z,Z ∪ Z;P ], where

Y is a countably infinite set. Clifford gives a formula for the entries of the

matrix P , and then ten equations to describe the multiplication between the

three completely simple subsemigroups.

From the underlying semilattice structure, we can see that the two copies

of the integers are acting on the semigroup M [FGY ;Z ∪ Z,Z ∪ Z;P ]. The

semigroup M [FGY ;Z ∪ Z,Z ∪ Z;P ] is difficult to get a handle on, but it is

built from copies of FGY , the free group on a countably infinite set. Therefore

the variety of α-groups will be designed so that the free objects will contain

a copy of FGY , with the free cyclic group acting upon it.

It is already known that FCRX is residually finite [44, Theorem 3.12]. From

the limited description above we can establish precisely when FCRX is strongly

subalgebra separable and completely separable. When |X| ≥ 2, FCRX con-

tains a copy of FGY , the free group on a countable set. As subgroups are

examples of subalgebras (i. e. subsets which are closed under multiplication

and inversion), and FGY is not strongly subgroup separable by Lemma 2.1.11,

it cannot be that FCRX is strongly subalgebra separable.

When |X| = 1, we have that FCRX
∼= Z. In this case the only subalgebras

are subgroups, and therefore FCRX is strongly subalgebra separable but not

completely separable by Lemma 2.1.11. These observations are summarised

below.

Lemma 2.6.1. For any non-empty X, the free completely regular semigroup

FCRX is not completely separable. Furthermore, FCRX is strongly subalgebra

separable if and only if |X| = 1.

So the separability properties of FCRX left to determine are those of monogenic-

subalgebra separability and weak subalgebra separability.

2.6.1 Free α-groups

The class of α-groups is defined as a variety of signature (2, 1, 1, 1, 0). The

binary operation is that of multiplication which will be represented by con-
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catenation of elements. The first unary operation is inversion which will be

represented by −1. The next unary operation will be represented by σ, with

σ(x) meaning σ applied to the element x. The final unary operation will be

represented by σ−1, again with σ−1(x) meaning σ−1 applied to x. Finally,

the nullary operation is identity, represented by the element 1.

An α-group satisfies the identities for a group, i.e.

(xy)z = x(yz), (x−1)−1 = x, xx−1 = x−1x = 1, 1x = x1 = x.

Additionally it also satisfies the following identities:

σ(σ−1(x)) = σ−1(σ(x)) = x, σ(xy) = σ(x)σ(y).

These identities guarantee that σ and σ−1 are mutually inverse automor-

phisms of the underlying group. To see this, first assume that σ(x) = σ(y).

Then

x = σ−1(σ(x)) = σ−1(σ(y)) = y.

This shows that σ is injective. Similarly we have that σ−1 is injective. For any

x, we have that σ(σ−1(x)) = x, which shows that σ is surjective. Similarly we

have that σ−1 is surjective. As σ(σ−1(x)) = σ−1(σ(x)) = x, it must be that

σ and σ−1 are mutually inverse bijections. Finally, as σ(xy) = σ(x)σ(y), we

have that σ, and therefore σ−1, are automorphisms. With this observation,

any α-group can be given by a pair (G, σ), where G is a group and σ : G→ G

is an automorphism of G. This explains the choice of the name α-group, with

α chosen to represent the fact that each of these algebras is a group with an

associated automorphism.

Our aim is to understand the separability properties of free α-groups. Be-

fore we can do this, we must first understand α-group homomorphisms. Let

(G, σ) and (H,ψ) be α-groups and let φ : G→ H. For φ to be an α-group ho-

momorphism, it it necessary that φ is a group homomorphism. Additionally,

we need that φ ◦ σ = ψ ◦ φ. That is, the following diagram commutes.
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G G

H H

σ

φ φ

ψ

We now give a description of free α-groups.

Definition 2.6.2. For some non-empty set X = {xi | i ∈ I}, where I is an

index set, let X = {x(i,z) | i ∈ I, z ∈ Z}. Let FGX be the free group on X

and let σ : FGX → FGX be the unique extension to a homomorphism of the

map given by x(i,z) 7→ x(i,z+1). As the restriction σ|X : X → X of σ to the

basis set X is both injective and surjective, then σ itself is an automorphism

of FGX . Hence (FGX , σ) is an α-group. Furthermore, (FGX , σ) is free on

the set {x(i,0) | i ∈ I}. Note that |{x(i,0) | i ∈ I}| = |X|.

Theorem 2.6.3. The α-group (FGX , σ) is free on the set {x(i,0) | i ∈ I}.

Proof. Let Y = {x(i,0) | i ∈ I}. For Y to be a free basis for (FGX , σ), it must

be that for any α-group (G,ψ) and any function φ : Y → (G,ψ), φ can be

extended uniquely to an homomorphism φ : (FGX , σ)→ (G,ψ).

Let (G,ψ) be an α-group and let φ : Y → (G,ψ) be a function. For φ to be

extended to a homomorphism, it must be the case that φ(σ(x)) = ψ(φ(x))

for x ∈ X. That is, any extension of φ to a homomorphism must also

be an extension to the map x(i,z) 7→ ψz(φ(x(i,0))). This map is defined on

the group basis X, so there is a unique extension to a group homomor-

phism φ : FGX → G. This group homomorphism has the property that

φ(x(i,z+1)) = ψ(φ(x(i,z))). To check that φ is also an α-group homomorphism,

we need to check that for all w ∈ FGX we have φ(σ(w)) = ψ(φ(w)).

Let w = xδ1(i1,z1)x
δ2
(i2,z2) . . . x

δn
(in,zn), where for 1 ≤ j ≤ n we have ij ∈ I, zj ∈ Z
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and δj ∈ {±1}. Then σ(w) = xδ1(i1,z1+1)x
δ2
(i2,z2+1) . . . x

δn
(in,zn+1). So

φ(σ(w)) = φ(x(i1,z1+1))
δ1φ(x(i2,z2+1))

δ2 . . . φ(x(in,zn+1))
δn

= ψ(φ(x(i1,z1))
δ1)ψ(φ(x(i2,z2))

δ2) . . . ψ(φ(x(in,zn))
δn)

= ψ((φ(x(i1,z1))
δ1)(φ(x(i2,z2))

δ2) . . . (φ(x(in,zn))
δn))

= ψ((φ(xδ1(i1,z1+1)x
δ2
(i2,z2+1) . . . x

δn
(in,zn+1))))

= ψ(φ(w)),

as desired.

Therefore we call (FGX , σ) the free α-group on the set X, and denote it by

FαGX . Note that the underlying group of FαGX is the free group FGX .

When X is countable, this is the free group on an countably infinite set.

Furthermore, the automorphism σ can be realised as an action of Z on FGX ,

being the extension of the mapping x(i,z) ·1 = x(i,z+1). Hence FαGX captures

the structure of FCRX that we wished to simulate.

We now turn to the combinatorics of FαGX , which proves to be an important

tool in understanding the separability properties of FαGX .

Lemma 2.6.4. Let w ∈ FαGX , let η1, η2 ∈ {±1} and let k ∈ Z \ {0}. Then

|wη1σk(wη2)| ≥ |w|.

Proof. Let w = xδ1(i1,z1)x
δ2
(i2,z2) . . . x

δn
(in,zn) be a reduced word in FGX , where

for 1 ≤ j ≤ n we have ij ∈ I, zj ∈ Z and δj ∈ {±1}. Then σk(w) =

xδ1(i1,z1+k)x
δ2
(i2,z2+k) . . . x

δn
(in,zn+k).

Case 1: First we assume that n = 2m + 1 is odd and that η1 = η2 = 1.

Then

wη1σk(wη2) = xδ1(i1,z1)x
δ2
(i2,z2) . . . x

δn
(in,zn)x

δ1
(i1,z1+k)x

δ2
(i2,z2+k) . . . x

δn
(in,zn+k).

We argue that x
δm+1

(im+1,zm+1) is not cancelled. Indeed, if it were then for 1 ≤
j ≤ m+ 1 we would have that δj = −δn−(j−1), ij = in−(j−1) and z1 + k = zn.

68



But this implies that δm+1 = −δm+1, which is not possible. Hence less than

half of either wη1 and σ(wη2) cancel, and the result holds.

Case 2: The case when n is odd and η1 = η2 = −1 works in a similar manner

to Case 1.

Case 3: Now assume that n is odd and that η1 = 1 and η2 = −1. Then

wη1σk(wη2) = xδ1(i1,z1)x
δ2
(i2,z2) . . . x

δn
(in,zn)x

−δn
(in,zn+k)x

−δn−1

(in−1,zn−1+k) . . . x
−δ1
(i1,z1+k).

Cancellation can only occur if zn = zn + k. But as k 6= 0 this is not possible

and so no cancellation occurs. Hence the result holds.

Case 4: The case when n is odd and η1 = −1 and η2 = 1 works in a similar

manner to Case 2.

Case 5: Now assume that n = 2m is even and that η1 = η2 = 1. Then

wη1σk(wη2) = xδ1(i1,z1)x
δ2
(i2,z2) . . . x

δn
(in,zn)x

δ1
(i1,z1+k)x

δ2
(i2,z2+k) . . . x

δn
(in−1,zn+k).

We argue that xδm(im,zm) is not cancelled. Indeed, if it were cancelled then for

1 ≤ j ≤ m + 1 we have δj = −δn−(j−1), ij = in−(j−1) and zj + k = zn−(j−1).

But then zm + k = zm+1 and zm+1 + k = zm. Hence k = 0, which is a

contradiction. Hence at most half of wη1 and σk(wη2) cancel and the result

holds.

Case 6: The case when n is even and η1 = η2 = −1 works in a similar

manner to Case 5.

Case 7 and 8: The case when n is even and η1 = −η2 works in a similar

manner to Case 3.

Corollary 2.6.5. Let w ∈ FαGX \{ε}. Then there exists a decomposition

of w = vuσk(v−1), where v, u ∈ FαGX , k ∈ Z and there is no cancellation

between v and u nor between u and σk(v−1).

Proof. Let w = xδ1(i1,z1)x
δ2
(i2,z2) . . . x

δn
(in,zn) be a reduced word in FGX , where for

1 ≤ j ≤ n we have ij ∈ I, zi ∈ Z and δi ∈ {±1}. If δn = δ1 then the only
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option for v is v = ε, and so we take u = w.

Otherwise, consider the case when δn = −δ1. If i1 6= in, then again the

only option for v is v = ε, and so we take u = w. Then we are left

with the case that i1 = in. We first deal with the case that zn = z1. In

this case k = 0. Let j be maximal index such that (xδ1(i1,z1) . . . x
δj
(ij ,zj)

)−1 =

x
δn−(j−1)

(in−(j−1),zn−(j−1))
. . . xδn(in,zn). We know that j ≥ 1 and as w 6= ε, we have that

j < n
2
. Let v = xδ1(i1,z1) . . . x

δj
(ij ,zj)

. Then we take u to be x
δj+1

(ij+1,zj+1) . . . x
δn−j
(in−j ,zn−j)

.

In this case we have that u 6= ε. Hence we have u and v satisfying the state-

ment and we have chosen v to be as long as possible.

Finally, let zn − z1 = k 6= 0. Then there is cancellation between w and

σk(w−1). Lemma 2.6.4 tells us that the number of cancelling pairs is at most
n
2
. Suppose there are j cancelling pairs. Set v to be the prefix of w of length

j and u to be the remaining middle section as we did above. Note that in

this case, we can have that u = ε. Again we have u and v satisfying the

statement and we have chosen v to be as long as possible.

Our aim is to show that FαGX is monogenic subalgebra separable. Separa-

tion involves mapping into some finite α-group (G, τ). As τ is an automor-

phism of a finite group, it has finite order. With this in mind, we define a

family of infinite α-groups, where the associated automorphisms have finite

order. It turns out that any α-group homomorphism from FαGX into a finite

α-group will have to factor through one of these infinite α-groups.

Definition 2.6.6. For a non-empty set X = {xi | i ∈ I}, where I is some

index set, let Xn = {a(i,k) | i ∈ I, k ∈ {0, 1, . . . , n − 1}}. Let FGXn be the

free group on Xn. Let ψn be the unique extension to a homomorphism of the

map a(i,k) 7→ a(i,(k+1) modn). Then as ψn induces a permutation of the basis

of FGXn , ψn is an automorphism. Hence (FGXn , ψn) is an α-group.

The following lemma asserts that any α-group homomorphism from FαGX

to a finite α-group has to factor through (FGXn , ψn) for some n ∈ N.

Lemma 2.6.7. Let ξ : FαGX → (G, τ) be an α-group homomorphism into

a finite α-group where the order of τ is n. Let φn : FαGX → (FGXn , ψn)
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be the unique extension to an α-group homomorphism of the map given by

x(i,0) 7→ a(i,0) where i ∈ I. Then there exists an α-group homomorphism

ξ : (FGXn , ψn)→ (G, τ) such that ξ = ξ ◦ φn.

Proof. The homomorphism ξ is completely determined by where it sends the

set {x(i,0) | i ∈ I}. For i ∈ I, let gi = ξ(x(i,0)). Then define

ξ : (FGXn , ψn) → (G, τ) to be the unique extension to a group homomor-

phism of the map a(i,j) 7→ τ j(gi), where i ∈ I and 0 ≤ j ≤ n − 1. A unique

extension exists as {a(i,j) | i ∈ I, 1 ≤ j ≤ n − 1} is a basis for the free

group FGXn . To show that ξ is an α-group homomorphism we need to show

that ξ ◦ ψn = τ ◦ ξ. It is sufficient to show this for the group generating set

{a(i,j) | i ∈ I, 0 ≤ j ≤ n− 1}. Let i ∈ I and 0 ≤ j ≤ n− 1. Then

ξ(ψn(a(i,j))) = ξ(a(i,(j+1) modn))

= τ j+1(gi)

= τ(τ j(gi))

= τ(ξ(a(i,j))),

as desired. Finally, we note that for i ∈ I we have

ξ(x(i,0)) = gi = ξ(a(i,0)) = ξ(φn(x(i,0))).

Then ξ = ξ ◦ φn. That is, the following diagram commutes.

FαGX (FGXn , ψn)

(G, τ)

φn

ξ
ξ

We make use of this factorisation when showing that FαGX is monogenic

subalgebra separable. For this to work, we need (FGXn , ψn) to be monogenic

subalgebra separable. We are able to go one better, as the following theorem

demonstrates.
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Theorem 2.6.8. The α-group (FGXn , ψn) is weakly subalgebra separable.

Proof. Let H be a subalgebra of (FGXn , ψn) finitely generated by the set

W = {w1, w2, · · · , wk}. Note that H is finitely generated as a subgroup of

FGXn . Indeed, as H is the closure of W under multiplication, inversion and

the unary operations ψn and ψ−1
n , and ψn is an automorphism of finite order,

it follows that W ∪ ψn(W ) ∪ ψ2
n(W ) . . . ψn−1

n (W ) is a group generating set

for H. Let u ∈ (FGXn , ψn) \ H. As FGXn is weakly subgroup separable

by Theorem 2.1.9, there exists a finite group G and a group homomorphism

φ : FGXn → G such that φ(u) /∈ φ(H). We will use this to build a finite

α-group in which u can be separated from H.

Consider the finite group Gn = G×G× · · · ×G︸ ︷︷ ︸
n times

. The mapping σn : Gn →

Gn given by (g1, g2, . . . , gn) 7→ (g2, g3, . . . , gn, g1) is an automorphism of Gn.

To show this, let g = (g1, g2, . . . , gn) and h = (h1, h2, . . . , hn) ∈ Gn. If

σn(g) = σn(h), then for 1 ≤ j ≤ n we have gi = hi and therefore g = h. Hence

σn is injective. Note that σn(gn, g1, . . . , gn−1) = g and so σn is surjective.

Finally,

σn(gh) = σn(g1h1, g2h2, . . . , gnhn)

= (g2h2, g3h3, . . . , g1h1)

= (g2, g2, . . . , g1)(h2, h3, . . . , h1)

= σn(g)σn(h)

and therefore σn is a homomorphism and so also an automorphism. Hence

(Gn, σn) is a finite α-group.

Let φ(a(i,k)) = b(i,k) ∈ G. Define

c(i,k) = (b(i,kmodn), b(i,(k+1) modn), . . . , b(i,(k+n−1) modn)) ∈ Gn.

Note that σn(c(i,k)) = c(i,(k+1) modn). Define φ : (FGXn , ψn) → (Gn, σn) by

the unique extension to a group homomorphism of the map a(i,k) 7→ c(i,k). A

unique extension exists as FGXn is a free group. To confirm that that φ is
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an α-group homomorphism we need to check that for all w ∈ (FGXn , ψn) we

have φ(ψn(w)) = σn(φ(w)). It is sufficient to check that this holds for some

generating set of (FGXn , ψn). The set {a(i,0) | i ∈ I} generates (FGXn , ψn).

Then

φ(ψn(a(i,0))) = φ(a(i,1 modn))

= c(i,1 modn)

= σn(c(i,0))

= σn(φ(a(i,0)))

as desired. Hence φ is an α-group homomorphism.

Finally, to see that φ(u) /∈ φ(H) we consider the projection π1 : Gn →
G given by (g1, g2, . . . , gn) 7→ g1. By construction we have φ = π1 ◦ φ.

So it cannot be the case that φ(u) ∈ φ(H), else φ(u) ∈ φ(H) which is a

contradiction. Hence (FGXn , ψn) is weakly subalgebra separable.

We are now ready for the main result of this subsection.

Theorem 2.6.9. The free α-group FαGX is monogenic subalgebra separable.

Proof. Let H be a monogenic subalgebra of FαGX generated by the set

{w} and let y ∈ FαGX \H. Let φn : FαGX → (FGXn , ψn) be the unique

extension to a α-group homomorphism given by x(i,0) 7→ a(i,0), where i ∈ I.

By Lemma 2.6.7 and Theorem 2.6.8 it is sufficient to find an N ∈ N such that

φN(y) /∈ φN(H). If we can find such an N we can factor through (FGXN , ψN)

and use the weak subalgebra separability of (FGXN , ψN).

Case 1: The first case is when w = ε. In this case we need to find N ∈ N
such that φN(y) 6= ε. Let

y = xδ1(b1,s1)x
δ2
(b2,s2) . . . x

δp
(bp,sp)

be a reduced word in FGX , where for 1 ≤ j ≤ p we have bj ∈ I, sj ∈ Z and

δj ∈ {±1}. Furthermore, we may assume that sj ≥ 0 for 1 ≤ j ≤ p. If not,

there exists some n ∈ N such that sj +n ≥ 0 for 1 ≤ j ≤ p. We can separate
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y from H if and only if we can separate σn(y) from H. To show this assume

that we cannot separate σn(y) from H. Then for every finite α-group (G,ψ)

and α-group homomorphism φ : FαGX → (G,ψ), there exists h ∈ H such

that φ(h) = φ(σn(y)) = ψn(φ(y)). But as H is invariant under σ and σ−1 we

have that σ−n(h) ∈ H. Then

φ(σ−n(h)) = ψ−n(φ(h)) = ψ−n(ψn(φ(y)) = φ(y)

and y cannot be separated from H. A similar argument shows that if y

cannot be separated from H then neither can σn(H).

Let m1 = max{sj | 1 ≤ j ≤ p}. Let N > m1. Then

φN(y) = aδ1(b1,s1)a
δ2
(b2,s2) . . . a

δp
(bp,sp).

In particular, |φN(y)| = p > 0 and so φN(y) 6= ε as desired. Note that this

shows that FαGX is residually finite. This follows as FαGX can be viewed

as a group, and for a group to be residually finite it is sufficient that every

non-identity element can be separated from the identity. We have shown

that for FαGX , this separation can also occur in a finite α-group.

Now we will deal with the case when w 6= ε. By Corollary 2.6.5

w = vuσk(v−1), and here we choose v to be as long as possible.

Case 2: We will deal with the case when |u| ≥ 1. The proof for this case is

organised as follows.

(1) Establish a constant m.

(2) For n > m, give a group basis Bn for φn(H).

(3) Show that there exists N > m such that φN(y) /∈ φN(H).

(1) Let

v = xη1(c1,t1)x
η2
(c2,t2) . . . x

ηq ,

(cq ,tq)

be a reduced word in FGX , where for 1 ≤ j ≤ q we have cj ∈ I, tj ∈ Z and

ηj ∈ {±1}. Note that v could be empty. Let

u = xκ1(d1,z1)x
κ2
(d2,z2) . . . x

κr,
(dr,zr)
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be a reduced word in FGX , where for 1 ≤ j ≤ r we have dj ∈ I, zj ∈ Z and

κj ∈ {±1}. If v 6= ε, let k ∈ Z be such that w = vuσk(v−1). We may assume

that for 1 ≤ j ≤ q we have tj ≥ 0 and tj + k ≥ 0 and for 1 ≤ j ≤ r we have

zj ≥ 0. If not, there exists some n ∈ N such that tj + n ≥ 0 and tj + k + n

for 1 ≤ j ≤ q and zj + n ≥ 0 for 1 ≤ j ≤ r. As H is invariant under σ and

σ−1, we have that {σn(w)} is also a generating set for H.

Let y be as in Case 1 and let m1 be as in Case 1. We may assume that

min{s1, s2, . . . , sp} = min{z1, z2, . . . , zr} by applying σ or σ−1 an appropriate

number of times to y. Let

m2 = max{{tj | 1 ≤ j ≤ q} ∪ {tj + k | 1 ≤ j ≤ q}},

and let

m3 = max{{zj | 1 ≤ j ≤ r} ∪ {zj + k | 1 ≤ j ≤ r}}.

Let m = max{m1,m2,m3}.

(2) Consider n > m. We claim that the set

Bn = {φn(w), ψn(φn(w)), ψ2
n(φn(w)), . . . , ψn−1

n (φn(w))}

is a group basis for φn(H). To see this, first note that B′ = {σz(w) | z ∈ Z}
is a group generating set for H. Then φn(B′) = Bn is a group generating set

for φn(H). To show it is a basis for φn(H) it is sufficient to show that it is

Nielsen reduced (see Definition 2.1.5).

Firstly, let α = ψj1n (φn(w)) ∈ Bn, were 0 ≤ j1 ≤ n− 1. Then

α =aη1(c1,(t1+j1) modn) . . . a
ηq
(cq ,(tq+j1) modn)a

κ1
(d1,(z1+j1) modn) . . . a

κr
(dr,(zr+j1) modn)

a
−ηq
(cq ,(tq+j1+k) modn) . . . a

−η1
(c1,(t1+j1+k) modn).

But as n > m2,m3, this is a reduced word. In particular |α| = 2q + r > 0.

Hence, condition (i) of Definition 2.1.5 is satisfied.

For 0 ≤ j2 ≤ n − 1 and µ1, µ2 ∈ {±1}, let αµ1 = ψj1n (φn(w))µ1 ,

βµ2 = ψj2n (φn(w))µ2 ∈ B±n be such that if j1 = j2 then µ1 6= −µ2. Can-
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cellation in αµ1βµ2 only occurs if µ1 = µ2 = 1 and (t1 + j1 + k) ≡ (t1 + j2)

(mod n), or µ1 = µ2 = −1 and (t1 + j1) ≡ (t1 + j2 + k) (mod n). In the first

case we have that j2 ≡ (j1 + k) (mod n). We claim that the pair

aκr(dr,(zr+j1) modn)a
κ1
(d1,(z1+j2) modn)

does not cancel in the product αβ. Indeed, if it were to cancel then dr = d1,

κr = −κ1 and (zr + j1) ≡ (z1 + j2) (mod n). If this were the case it cannot

be that zr = z1 + k, as we have chosen v to be as long as possible. But

(zr + j1) ≡ (z1 + j2) (mod n) =⇒ (zr + j1) ≡ (z1 + j1 + k) (mod n)

=⇒ zr ≡ (z1 + k) (mod n),

since we have already observed that j2 ≡ (j1 + k) (mod n). As we have

chosen n > m3, this would imply that zr = z1 + k, which is a contradiction.

Hence the pair does not cancel. Similarly in the second case the pair

a−κ1(d1,(z1+j1) modn)a
−κr
(dr,(zr+j2) modn)

does not cancel. Hence

|αµ1βµ2| ≥ 2q + 2r > 2q + r = |αµ1|, |βµ2|.

So Bn satisfies condition (ii) of Definition 2.1.5. As in condition (ii) we

actually have a strict inequality, it follows that condition (iii) must also be

satisfied by Lemma 2.1.7. Hence Bn is a group basis for φn(H).

(3) As n > m1, we have that

φn(y) = aδ1(b1,s1)a
δ2
(b2,s2) . . . a

δp
(bp,sp).

Now suppose that that φn(y) ∈ φn(H). Then φn(y) can be expressed uniquely

as a reduced word over Bn. For 0 ≤ ` ≤ n− 1, if the element

α = ψ`(φn(w)) = ψ`(φn(vuσk(v−1)) ∈ Bn
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appears in the decomposition of φn(y), then

{(zj + `) (mod n) | 1 ≤ j ≤ r} ⊆ {s1, s2, . . . , sp}.

This is because the ψ`n(φn(u)) will not be cancelled by our analysis in part

(2).

Let `0 = max{|si− sj| | 1 ≤ i, j ≤ p}+ 1. Then there exists n0 ∈ N and such

that for all n ≥ n0 and `0 ≤ ˆ̀≤ n− 1 there exists 1 ≤ j ≤ r such that

(zj + ˆ̀) (mod n) /∈ {s1, s2, . . . , sp}.

Hence, for n ≥ n0, if φn(y) ∈ φn(H), then φn(y) is in the subgroup generated

by the set

Bn = {φn(w), ψn(φn(w)), ψ2
n(φn(w)), . . . , ψ`0−1

n (φn(w))}.

There exists N ≥ n0 such that

ψ`0N (φN(w)) =aη1(c1,t1+`0) . . . a
ηq
(cq ,tq+`0)a

κ1
(d1,z1+`0) . . . a

κq
(dr,zr+`0)

a
−ηq
(cq ,tq+`0) . . . a

−η1
(c1,t1+`0).

That is, the map φN , which replaces an occurrence of x with an a and also

reduces the second coordinate in the subscript, does not change any of the

subscripts for words in the subgroup generated by the set

B
′
= {w, σ(w), σ2(w), . . . , σ`0−1(w)}.

Hence, if φN(y) ∈ φN(H), then y is in the subgroup generated by B
′

and

hence y ∈ H. This is a contradiction and so φN(y) /∈ φN(H).

Case 3: Finally we consider the case when u = ε and |v| ≥ 1. As previously,

the proof for this case is organised as follows.

(1) Establish a constant m.

(2) For n > m, give a group basis Bn for φn(H).

(3) Show that there exists N > m such that φN(y) /∈ φN(H).
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(1) Let y and m1 be as in Case 1. Let v be as in Case 2 and let m2 be as

in Case 2. Again assume min{s1, s2, . . . , sp} = min{z1, z2, . . . , zr}. Now let

m = max{m1,m2}.

(2) Consider n > m such that k divides n. Then just as in Case 2, we have

that

Yn = {ψjn(φn(w)) | 0 ≤ j ≤ n− 1}

is a group generating set for φn(H). However, it is not obvious that Yn is a

group basis for φn(H). We claim that

Bn = {ψjn(φn(v)) · ψj+dkn (φn(v−1)) | 0 ≤ j ≤ k − 1, 1 ≤ d ≤ n

k
− 1}

is a group basis for φn(H). Note that we use · to show multiplication in

(FGXn , φn) here for clarity.

First we will show that Bn is a generating set for φn(H). To do this we

will show that Yn ⊆ Gp〈Bn〉 and that Bn ⊆ Gp〈Yn〉. Firstly, for some

0 ≤ j ≤ n− 1 let z = ψjn(φn(w)) ∈ Yn. Then

z = ψjn(φn(vσk(v−1)) = ψjn(φn(v)) · ψj+kn (φn(v−1)).

Now j = λk + ρ for some λ ∈ {0, 1, . . . , n
k
− 1} and ρ ∈ {0, 1, . . . , k − 1}. If

λ = 0 then

z = ψρn(φn(v)) · ψρ+k
n (φn(v−1)) ∈ B.

If λ = n
k
− 1 then

z−1 = ψλk+ρ+k
n (φn(v)) · ψλk+ρ

n (φn(v−1))

= ψρn(φn(v)) · ψρ+λk
n (φn(v−1)) ∈ Bn.

Otherwise 0 < λ < n
k
− 1. Then b1 = ψρn(φn(v)) · ψρ+λk

n (φn(v−1)),
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b2 = ψρn(φn(v)) · ψρ+(λ+1)k
n (φn(v−1)) ∈ Bn and

b−1
1 · b2 =

(
ψρ+λk
n (φn(v)) · φρn(φn(v−1))

)
·
(
ψρn(φn(v)) · ψρ+(λ+1)k

n (φn(v−1))
)

= ψρ+λk
n (φn(v)) · ψρ+(λ+1)k

n (φn(v−1))

= ψjn(φn(v)) · ψj+kn (φn(v−1))

= z.

Hence Yn ⊆ Gp〈Bn〉.

Now for some 0 ≤ j ≤ k − 1 and 1 ≤ d ≤ n
k
− 1 let b = ψjn(φn(v)) ·

ψj+dkn (φn(v−1)) ∈ Bn. Then

z1 = ψjn(φn(v)) · ψj+kn (φn(v−1)),

z2 = ψj+kn (φn(v)) · ψj+2k
n (φn(v−1)),

...

zd = ψj+(d−1)k
n (φn(v)) · ψj+dkn (φn(v−1)) ∈ Yn.

Furthermore, we have that

b = z1 · z2 · . . . · zd.

Hence Bn ⊆ Gp〈Yn〉 and therefore we conclude that Bn is a group generating

set for φn(H).

To show that Bn is a basis for φn(H) it is sufficient that any non-empty

reduced product over Bn is not equal to ε. To do this we will make use of

facts about the length over X of reduced products of one or two elements of

Bn. Let α = ψj1n (φn(v)) · ψj1+d1k
n (φn(v−1)) ∈ Bn, where 0 ≤ j1 ≤ k − 1 and

1 ≤ d1 ≤ n
k
− 1. Then

α =aη1(c1,(t1+j1) modn)a
η2
(c2,(t2+j1) modn) . . . a

ηq ,

(cq ,(tq+j1) modn)

a
−ηq
(cq ,(tq+j1+d1k) modn)a

−ηq−1

(cq−1,(tq−1+j1+d1k) modn) . . . a
−η1
(c1,(t1+j1+d1k) modn).

As n > m2, cancellation could only occur if (tq+j1) ≡ (tq+j1+d1k) (mod n).

However, d1k < n. Hence no cancellation occurs and so |α| = 2q > 0.
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Now let β = ψj2n (φn(v)) · ψj2+d2k
n (φn(v−1)) ∈ Bn, where 0 ≤ j2 ≤ k − 1 and

1 ≤ d2 ≤ n
k
− 1. Also let µ1, µ2 ∈ {±1} be such that if (j1, d1) = (j2, d2) then

µ1 6= −µ2. Consider αµ1βµ2 . If µ1 = µ2 = 1 then no cancellation occurs as

(t1+j1+d1k) 6≡ (t1+j2) mod (mod n). This follows as 0 ≤ j1, j2,≤ k−1, and

j1+d1k < n but d1 ≥ 1. Similarly, if µ1 = µ2 = −1 there is no cancellation as

(t1+j1) 6≡ (t1+j2+d2k) (mod n). If µ1 = 1 and µ2 = −1 then no cancellation

occurs as this would imply that (j1, d1) = (j2, d2). Finally, if µ1 = −1 and

µ2 = 1 then cancellation will occur if j1 = j2. However, only q pairs of letters

will cancel as the pair

a
ηq
(cq ,(t1+j1+d1k) modn)a

−ηq
(cq ,(t1+j2+d2k) modn)

will not cancel as (j1, d1) 6= (j2, d2). Hence |αµ1βµ2 | ≥ 4q − 2q = |α|, |β|.

Now consider a reduced product over Bn. That is, let

g = bµ11 b
µ2
2 . . . bµrr ,

where for 1 ≤ j ≤ r we have bj ∈ Bn, µj ∈ {±1}. The fact that this product

is reduced means that for 1 ≤ j ≤ r − 1 if bj = bj+1 then µj = µj+1. From

the analysis above, for 1 ≤ j ≤ r − 1 we can see that cancellation occurs

in b
µj
j b

µj+1

j+1 if and only if (µj, µj+1) = (−1, 1), in which case precisely half of

b
µj
j and b

µj+1

j+1 cancel. Also there is no cancellation between b
µj−1

j−1 and b
µj
j , nor

between b
µj+1

j+1 and b
µj+2

j+2 as the ordered indices cannot be (−1, 1). Hence, for

1 ≤ j ≤ r, at most half of b
µj
j cancels and so g 6= ε. Therefore Bn is a group

basis for φn(H).

We note that |Bn| = |Yn|, and as Gp〈Bn〉 = Gp〈Yn〉 we also have that Yn

is a group basis for φn(H). However, it will be more convenient for us to

work with Bn than Yn. Furthermore, we note that if cancellation occurs in a

reduced word over Bn, the only possibility is that ψjn(φn(v−1)) cancels with

ψjn(φn(v−1)) where 1 ≤ j ≤ k − 1.

(3) As n > m1, we have that

φn(y) = aδ1(b1,s1)a
δ2
(b2,s2) . . . a

δp
(bp,sp).
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Now suppose that that φn(y) ∈ φn(H). Then φn(y) can be expressed uniquely

as a reduced word over Bn. For 0 ≤ j′ ≤ k − 1 and 1 ≤ d ≤ n
k
− 1, if the

element α = ψj
′
n (φn(v)) · ψj′+dkn (φn(v−1)) ∈ B appears in the decomposition

of φn(y), then

{(tj + j′ + dk) (mod n) | 1 ≤ j ≤ q} ⊆ {s1, s2, . . . , sp}.

This is because the ψj+dkn (φn(v−1)) will not be cancelled by our analysis in

part (2).

Let `0 be the same as in Case 2. Then there exists n0 ∈ N such that for all

n ≥ n0 such that k divides n and for all `0 < ˆ̀≤ n−1, there exists 1 ≤ j ≤ r

such that

(zj + j′ + ˆ̀k) (mod n) /∈ {s1, s2, . . . , sp}.

Hence, for such an n, if φn(y) ∈ φn(H), then φn(y) is in the subgroup gener-

ated by the set

Bn = {ψjn(φn(v)) · ψj+dkn (φn(v−1)) | 0 ≤ j ≤ k − 1, 1 ≤ d ≤ `0}.

There exists N ≥ n0 such that

ψk−1+`0d
N (φN(v−1)) = a

−ηq
(c1,tq+k−1`0d) . . . a

−η1
(cq ,t1+k−1+`0d).

That is, the map φN , which rewrites an occurrence of x with an a and also

reduces the second coordinate in the subscript, does not change any of the

subscripts for words in the subgroup generated by the set

B
′
= {σj(v) · σj+dk(v−1) | 0 ≤ j ≤ k − 1, 1 ≤ d ≤ `0}.

Hence, if φN(y) ∈ φN(H), then y is in the subgroup generated by B
′

and

hence y ∈ H. This is a contradiction and so φN(y) /∈ φN(H).

Hence, in all three cases we have been able to separate y from H an we

conclude that FαGX is monogenic subalgebra separable.

Remark 2.6.10. The above argument works because for every n ∈ N we
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are able to find a group basis Bn for φn(H) that has useful properties. In the

case that H is finitely generated, it is not clear if we would be able to find

a basis with such nice properties. Thus whether FαGX is weakly subalgebra

separable remains unknown. However, FαGX is not strongly subalgebra

separable by the following example.

Example 2.6.11. Let X = {xi | i ∈ I} be a non-empty set and fix i ∈ I.

Let H be the subalgebra of FαGX generated by the set

Y = {x(i,0)x(i,1)x
−1
(i,0)} ∪ {x(i,0)x(i,n)x(i,0) | n ≥ 2}.

First we show that x(i,0)x(i,0) is not an element of H.

To see this observe that

Z = {x(i,z)x(i,z+1)x
−1
(i,z) | z ∈ Z} ∪ {x(i,z)x(i,z+n)x(i,z) | z ∈ Z, n ≥ 2}

is a group generating set for H. We show that Z is Nielsen reduced. For

u ∈ Z± we have that |z| = 3 > 0 and so condition (i) of Definition 2.1.5

holds.

Let u, v ∈ Z± such that u 6= v−1. Cancellation in uv can only occur in the

following cases:

� u = x(i,z)x(i,z+1)x
−1
(i,z) and v = x(i,z)x(i,z+n)x(i,z),

� u = x(i,z)x
−1
(i,z+1)x

−1
(i,z) and v = x(i,z)x(i,z+n)x(i,z),

� u = x−1
(i,z)x

−1
(i,z+n)x

−1
(i,z) and v = x(i,z)x(i,z+1)x

−1
(i,z),

� u = x−1
(i,z)x

−1
(i,z+n)x

−1
(i,z) and v = x(i,z)x

−1
(i,z+1)x

−1
(i,z).

In all cases we have that |uv| ≥ 4 > |u|, |v| as n ≥ 2 and hence condition (ii)

of Definition 2.1.5 holds. Because we achieved a strict inequality in regards

to condition (ii), condition (iii) will automatically hold by Lemma 2.1.7, and

so Z is Nielsen reduced. By the above analysis, for any u ∈ Z±, the middle

letter of u will not cancel when u appears as part of a reduced product over

Z. Then, by induction on the length of an element of a product over Z±, any

element of H has length at least 3 and therefore x(i,0)x(i,0) is not an element

of H.
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Now we show that x(i,0)x(i,0) cannot be separated from H. Let (G,ψ) be a

finite α-group and let φ : FαGX → (G,ψ) be an α-group homomorphism.

Let n0 be the order of the group G and n1 be the order of the automorphism

φ. Then

φ(H) 3φ((x(i,0)x(i,1)x
−1
(i,0))

n0−1 · x(i,0)x(i,n1+1)x(i,0))

=φ(x(i,0)x
n0−1
(i,1) x(i,n1+1)x(i,0))

=φ(x(i,0))ψ(φ(x(i,0)))
n0−1ψn1+1(φ(x(i,0)))φ(x(i,0))

=φ(x(i,0))ψ(φ(x(i,0)))
n0−1ψ(φ(x(i,0)))φ(x(i,0))

=φ(x(i,0))φ(x(i,0))

=φ(x(i,0)x(i,0)).

Hence x(i,0)x(i,0) cannot be separated from H and so FαGX is not strongly

subalgebra separable.

The above example provides more evidence that the behaviour of FαGX

mimics that of FCRX ; see Lemma 2.6.1.

In this chapter we have investigated the separability properties of the free ob-

jects in different varieties of semigroups. We have seen that the free monoid,

free semigroup and free inverse monoid are all completely separable. How-

ever, the free group, the free completely simple semigroup and free Clifford

semigroup are all weakly subalgebra separable and only strongly subalgebra

separable in a limited number of instances. This naturally led us to consider

the separability properties of the free completely regular semigroup. Given

the complexity of the structure of the free completely regular semigroup,

we defined a new variety of semigroups, α-groups, in such a way that the

structure of the free objects of this variety capture some of the behaviour of

free completely regular semigroups. We were able to show that free α-groups

are monogenic subsemigroup separable. We conclude this chapter with some

open problems.

Open Problem 2.6.12. Is the free α-group FαGX weakly subalgebra sep-

arable?
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Open Problem 2.6.13. For |X| ≥ 2, is the free completely regular semi-

group FCRX weakly subalgebra separable or monogenic subalgebra separa-

ble?
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Chapter 3

Schützenberger Groups and Finitely

Generated Commutative

Semigroups

In this chapter we consider the separability properties of finitely generated

commutative semigroups. This line of enquiry arises from the fact that

finitely generated abelian groups are strongly subgroup separable. In Section

3.1 we see why this is true, by way of the classification of finitely generated

abelian groups. However, an equivalent classification for finitely generated

commutative semigroups is not known and so we must approach their sepa-

rability properties by a different route.

We have already seen that there exists finitely generated commutative semi-

groups which are not even MSS in Example 1.2.5. This example will prove

key in understanding the separability properties of finitely generated com-

mutative semigroups. In order to understand these properties we make use of

two pieces of machinery. The first is the theory of Schützenberger groups. A

Schützenberger group is a group associated with an H-class of a semigroup.

In Section 3.2 we show that Schützenberger groups inherit complete separa-

bility and strong subsemigroup separability. The Schützenberger groups of

commutative semigroups also inherit weak subsemigroup separability. Given

the additional fact that any Schützenberger group of a finitely generated com-
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mutative semigroup is a finitely generated abelian group, we end up with a

strong understanding of separability properties of Schützenberger groups of

finitely generated commutative semigroups.

The second piece of machinery we use is a structural theorem for finitely

generated commutative semigroups. This states that a finitely generated

commutative semigroup is a semilattice of archimedean semigroups. Armed

with these tools, in Section 3.3 we are able to show that a finitely generated

commutative semigroup is MSS if and only if every maximal subgroup is

finite. Additionally, we show that in the class of finitely generated commuta-

tive semigroups, the properties of complete separability, strong subsemigroup

separability and weak subsemigroup separability coincide, and are equivalent

to every H-class being finite. The fact that the properties of complete sepa-

rability and strong subsemigroup separability coincide for finitely generated

commutative semigroups was already known to Kublanovskĭi and Lesohin,

see [30, Corollary 1]. We present their methods in contrast to those developed

within this chapter.

Given that the properties of complete separability, strong subsemigroup sep-

arability and weak subsemigroup separability coincide for finitely generated

commutative semigroups, it is natural to ask whether they coincide in some

larger class of semigroups. In Section 3.4 we show that this is not the case for

the class of commutative semigroups nor the class of finitely generated semi-

groups. We also consider the semigroup separability properties of abelian

groups.

In the final section of this chapter, we turn our attention once again to

Schützenberger groups. This time we ask if all Schützenberger groups of a

semigroup have a separability property, then does the semigroup itself have

this property. The answer to this question in general is no. However, by

restricting our attention to semigroups with only finitely many H-classes,

and therefore only finitely many Schützenberger groups, we are able to show

in this case the answer will be yes for the properties of complete separability

and monogenic subsemigroup separability. For the property of strong sub-
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semigroup separability the answer is still no even when there are only finitely

many H-classes, whilst for weak subsemigroup separability the problem re-

mains open.

This chapter is largely based on the paper [40], co-written by the author.

This material is included with the permission of all co-authors.

3.1 Finitely Generated Abelian Groups

This chapter arises from the desire to investigate the separability properties

of finitely generated commutative semigroups. This is motivated by the fact

that finitely generated abelian groups are strongly subgroup separable. This

result is folklore, but in this section we provide a proof. This proof is based

upon a characterisation of finitely generated abelian groups, which we give

below.

Theorem 3.1.1. For a finitely generated abelian group A, we have that

A ∼= Z× Z · · · × Z︸ ︷︷ ︸
n times

×Cd1 × Cd2 × · · · × Cdk ,

where n is finite and, for 1 ≤ i ≤ k, Cdi is a finite cyclic group.

More on finitely generated abelian groups, including a proof of Theorem 3.1.1,

can be found in [29, Chapter 6]. This characterisation allows us to show that

finitely generated abelian groups are strongly subgroup separable, making

use of the following corollary.

Corollary 3.1.2. Every finitely generated abelian group is residually finite.

Proof. This follows as any finitely generated abelian group can be realised

as the direct product of finitely many residually finite groups. We have

already observed that all finite groups are residually finite and Example 1.2.5

establishes that Z is residually finite. In Lemma 4.1.1, we see that the direct

product preserves residual finiteness.

We also make the following observation, which proves important throughout
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this chapter.

Corollary 3.1.3. A finitely generated abelian group is infinite if and only if

it contains a subgroup which is isomorphic to Z.

We are now able to state the main theorem of this section. This result is

folklore, but we provide a proof for completeness.

Theorem 3.1.4. Every finitely generated abelian group is strongly subgroup

separable.

Proof. Let A be a finitely generated abelian group, let H be a subgroup of

A and let a ∈ A \H. As A is abelian, we have that H is a normal subgroup

of A. Let φ : A → A/H be the canonical homomorphism. Then we have

that φ(h) = H1A for all h ∈ H but φ(a) = Ha 6= H1A. As A/H is the

quotient of a finitely generated abelian group, it is also finitely generated.

By Corollary 3.1.2, we have that A/H is residually finite. Hence there exists

a finite group G and a group homomorphism ψ : A/H → G such that

ψ(H1a) 6= ψ(Ha). Then the homomorphism ψ ◦ φ : A→ G separates a from

H. Hence, A is strongly subgroup separable.

This result relies upon the characterisation given in Theorem 3.1.1. Whilst

there is a characterisation of finitely generated commutative semigroups

(Proposition 3.3.6), it does not readily lead to results concerning separability

properties in the same way that Theorem 3.1.1 does for finitely generated

abelian groups. One would hope we could gain a result similar to Theo-

rem 3.1.4. However this is not the case. Indeed we have already seen in

Example 1.2.5 that Z, which is finitely generated as a commutative semi-

group by the set {1,−1}, is not even MSS.

We investigate the separability properties of finitely generated commutative

semigroups via the separability properties of their Schützenberger groups.

There proves to be a strong link between the two.
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3.2 Schützenberger Groups

In this section we investigate which semigroup separability properties are in-

herited by Schützenberger groups. We first define Schützenberger groups.

For an H-class H of a semigroup S, we are able to associate a group called

the Schützenberger group of H. Schützenberger groups capture how a certain

submonoid of S1 acts of H. We being by defining this submonoid.

Definition 3.2.1. For an H-class H of a semigroup S, the right stabiliser of

H in S is

Stab(H) = {s ∈ S1 | Hs = H},

where Hs = {hs | h ∈ H}.

Lemma 3.2.2. For an H-class H of a semigroup S, we have that Stab(H)

is a submonoid if S1.

Proof. First note that as s1 = s for all s ∈ S, it is certainly true that

H1 = H, and therefore 1 ∈ Stab(H). Now let s, t ∈ Stab(H). Then

H(st) = (Hs)t = Ht = H,

and so st ∈ Stab(H). Hence Stab(H) is a submonoid of S1.

The following lemma gives a useful criterion for an element of a semigroup

to belong to the stabiliser of an H-class.

Lemma 3.2.3. For an H-class H of a semigroup S and s ∈ S1, if there

exists some h ∈ H such that hs ∈ H, then s ∈ Stab(H).

The above result result follows directly from Green’s Lemma, which can be

found in [28, Lemma 2.2.1].

The following lemma is utilised several times throughout this chapter.

Lemma 3.2.4. For a non-group H-class H of a semigroup S, we have H ∩
Stab(H) = ∅.
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Proof. For a contradiction suppose that there exists x ∈ H∩Stab(H). Then,

as x ∈ Stab(H), we would have x2 ∈ H. So x2 ∈ H ∩H2. Then H is a group

by Lemma 1.3.37, which is a contradiction.

We now define Schützenberger groups via the Schützenberger congruence.

Definition 3.2.5. For an H-class H of a semigroup S, define a congruence

σH on Stab(H), called the Schützenberger congruence of H, by

(x, y) ∈ σH ⇐⇒ hx = hy for all h ∈ H.

Then Γ(H) = Stab(H)/σH is a group, known as the Schützenberger group of

H.

Schützenberger groups are known to have many useful properties, some of

which are summarised in the following proposition.

Proposition 3.2.6. For Γ(H), the Schützenberger group of an H-class H,

we have that:

(i) The map · : H × Γ(H)→ H given by h · [x]σH = hx is a group action.

(ii) This action is regular, that is both transitive and free.

(iii) |Γ(H)| = |H|.
(iv) If H is a group then Γ(H) ∼= H.

It should noted that one could similarly define a group Γl(H) in an analo-

gous way by considering the left stabiliser of H. However, it turns out that

Γl(H) ∼= Γ(H). For more on Schützenberger groups and proofs of the above

claims, see [32, Section 2.3].

We now consider which of our separability properties are inherited by

Schützenberger groups. This is motivated by the following result of Gray

and Ruškuc.

Theorem 3.2.7. [23, Theorem 3.1] Every Schützenberger group of a residu-

ally finite semigroup is residually finite.

We show that the semigroup properties of CS and SSS are inherited by
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Schützenberger groups. By way of contrast, it is not true that every Schützen-

berger group of a WSS semigroup is WSS, as will be seen in Example 3.4.13.

However, we are able to give a sufficient condition on the stabiliser of an H-

class of a WSS semigroup to ensure that the corresponding Schützenberger

group is also WSS. We begin with the following result.

Proposition 3.2.8. If a semigroup S has an infinite non-group H-class H,

then S is not strongly subsemigroup separable.

Proof. Fix some h ∈ H and let T = 〈H \ {h}〉. If h ∈ T , then h ∈ Hn for

some n ≥ 2. But this contradicts that H is not a group by Lemma 1.3.37.

Therefore h /∈ T .

Let ∼ be a finite index congruence on S. Then there exist distinct elements

x, y ∈ H \ {h} such that x ∼ y. As xH h, there exists some s ∈ S1 such that

xs = h. So

h = xs ∼ ys.

By Green’s Lemma [28, Lemma 2.2.4], multiplication on the right by s per-

mutes H. Therefore ys 6= xs and ys ∈ H \ {h} ⊆ T . Hence, h cannot be

separated from T in a finite quotient and S is not SSS.

With the above proposition, we are able to show that the properties of

strong subsemigroup separability and complete separability are inherited by

Schützenberger groups.

Corollary 3.2.9. Every Schützenberger group of a strongly subsemigroup

separable semigroup is itself strongly subsemigroup separable.

Proof. Let S be an SSS semigroup. First we consider the Schützenberger

groups of non-group H-classes. Let H be an H-class which is not a group.

Then, by Proposition 3.2.8, H is finite. Also by Proposition 3.2.6, we have

that |Γ(H)| = |H|, where Γ(H) is the Schützenberger group of H. So Γ(H)

is finite and certainly SSS.

Now consider a group H-class G. By Proposition 3.2.6 we have that Γ(G) ∼=
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G. As G is a subsemigroup of an SSS semigroup, it is itself SSS by Proposi-

tion 1.2.13. Hence Γ(G) is SSS, as desired.

Corollary 3.2.10. Every H-class of a completely separable semigroup is

finite (and hence every Schützenberger group is completely separable).

Proof. Let S be a CS semigroup. First we consider the Schützenberger groups

of non-group H-classes. Let H be an H-class which is not a group. Then

by Proposition 3.2.8 H is finite. Also by Proposition 3.2.6, we have that

|Γ(H)| = |H|, where Γ(H) is the Schützenbeger group if H. So Γ(H) is

finite.

Now consider a group H-class G. By Proposition 3.2.6 we have that Γ(G) ∼=
G. As G is a subsemigroup of a CS semigroup, it is itself CS by Proposi-

tion 1.2.13. Hence G is finite by Theorem 1.2.19, as desired.

It is not true that every Schützenberger group of a WSS semigroup is it-

self WSS, as will be demonstrated in Section 3.4. Indeed, Example 3.4.13

shows that a Schützenberger group of a WSS semigroup need not even be

MSS. Therefore it also true that Schützenberger groups of MSS semigroups

need not be MSS. However, it is true that Schützenberger groups of WSS

commutative semigroups are also WSS. We deduce this from the following

result.

Lemma 3.2.11. Let S be a weakly subsemigroup separable semigroup and let

H be an H-class of S. If there exists an element h ∈ H such that ah = ha for

all a ∈ Stab(H), then the Schützenberger group Γ(H) is weakly subsemigroup

separable.

Proof. If H is a group then Γ(H) ∼= H by Proposition 3.2.6. As H is a

subsemigroup of a WSS semigroup, it is itself WSS by Proposition 1.2.13.

Hence Γ(H) is WSS.

Now assume that H is not a group. For x ∈ Stab(H), we will denote [x]σH
by [x], where σH is the Schützenberger congruence. Let T = 〈t1, t2, . . . , tn〉 ≤
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Γ(H) and let z ∈ Γ(H)\T . For i ∈ {1, . . . , n} choose xi ∈ Stab(H) such

that [xi] = ti, and also choose u ∈ Stab(H) such that [u] = z. Let T =

〈h, x1, x2, . . . , xn〉 ≤ S.

First we will show that hu /∈ T . For a contradiction assume that hu ∈
T . Then as hxj = xjh for 1 ≤ j ≤ n, we have hu = hit for some t ∈
〈x1, x2, . . . , xn〉1 and i ≥ 0. We split into three cases: i = 0, i = 1, and i > 1.

(i) If i = 0 we have hu = t ∈ Stab(H). But then h · hu = ht ∈ H. But

as h, hu ∈ H we have that h2u ∈ H ∩ H2. Then by Lemma 1.3.37, H is a

group. This is a contradiction, so i 6= 0.

(ii) If i = 1 we have hu = ht. As [u] /∈ T , it must be that [u] 6= [t]. But

this contradicts that the action of Γ(H) on H is free; see Proposition 3.2.6.

Hence i 6= 1.

(iii) Finally, assume i > 1. Then as hu ∈ H, we have that hit ∈ H. But as

h, ht ∈ H, we have that hit ∈ H i. So hit ∈ H ∩H i. Then, by Lemma 1.3.37,

H is a group. This is a contradiction, so i 6> 1.

As all possibilities lead to a contradiction, it must be the case that hu /∈ T .

As S is WSS, there exists a finite semigroup U and homomorphism φ : S → U

such that φ(hu) /∈ φ(T ). Let Hφ(h) ⊆ U be the H-class of φ(h).

Now φ(Stab(H)) ⊆ Stab(Hφ(h)). To see this let b ∈ Stab(H). Then hb ∈ H.

So there exist w, v, x ∈ S1 such that wh = hb, vhb = h and hbx = h. Then

as φ is a homomorphism, we have that

φ(h)φ(b) = φ(hb), φ(hb)φ(x) = φ(h),

φ(w)φ(h) = φ(hb), φ(v)φ(hb) = φ(h).

That is, φ(h)φ(b)H φ(h). Then, by Lemma 3.2.3, φ(b) ∈ Stab(Hφ(h)).

Consider the Schützenberger group Γ(Hφ(h)). Again, for x ∈ Stab(Hφ(h)),

we denote [x]σHφ(h) by [x]. Then the map θ : Γ(H) → Γ(Hφ(h)) given by

[x] 7→ [φ(x)] is a homomorphism. First we show that θ is well-defined. That

is, if we have x, y ∈ Stab(H) such that [x] = [y], then θ([x]) = θ([y]). This

follows as if [x] = [y], then h′x = h′y for all h′ ∈ H. Then, as φ is a
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homomorphism, we have

φ(h′)φ(x) = φ(h′)φ(y). (3.1)

for all h′ ∈ H. We want to show that h′′φ(x) = h′′φ(y) for all h′′ ∈ Hφ(h).

For a contradiction, assume that there exists h′′ ∈ Hφ(h) such that h′′φ(x) 6=
h′′φ(y). As h′′H φ(h), there exists ` ∈ φ(S)1 such that `h′′ = φ(h). Further-

more left multiplication by ` permutes Hφ(h) by Green’s Lemma ([28, Lemma

2.2.4]). Hence we conclude that φ(h)φ(x) = `h′′φ(x) 6= `h′′φ(y) = φ(h)φ(y).

But this contradicts equation 3.1, and so h′′φ(x) = h′′φ(y) for all h′′ ∈ Hφ(h).

That is φ(x)σHφ(h) φ(y), completing the claim that θ is well-defined.

To see θ is a homomorphism, let x, y ∈ Stab(H). Then

θ([x][y]) = θ([xy]) = [φ(xy)] = [φ(x)φ(y)] = [φ(x)][φ(y)] = θ([x])θ([y]),

and so θ is a homomorphism.

Finally, we show that θ([u]) /∈ θ(T ). Indeed, if θ([u]) ∈ θ(T ) then θ([u]) =

θ([t]) for some [t] ∈ T . In this case φ(h)φ(u) = φ(h)φ(t), where

t ∈ 〈x1, x2, . . . , xn〉1. This contradicts φ(hu) /∈ φ(T ). Hence Γ(H) is WSS.

We immediately obtain the following lemma concerning commutative semi-

groups.

Corollary 3.2.12. Every Schützenberger group of a weakly subsemigroup

separable commutative semigroup is itself weakly subsemigroup separable.

Although Schützenberger groups of weakly subsemigroup separable semi-

groups need not in general be weakly subsemigroup separable, it remains an

open question if they are necessarily weakly subgroup separable.

Open Problem 3.2.13. Let S be a semigroup and let H be an H-class of S.

If S is weakly subsemigroup separable, is Γ(H) weakly subgroup separable?

In the final part of this section we provide some partial solutions to this

problem, one of which is utilized in the proof of Proposition 3.4.11.
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Proposition 3.2.14. Let S be a semigroup and let H be an H-class of S. If S

is weakly subsemigroup separable, then Γ(H) satisfies the separability property

with respect to the collection of all finitely generated abelian subgroups.

Proof. First we consider when H is a group. By Proposition 3.2.6 we have

that Γ(H) ∼= H. As H is a subsemigroup of an WSS semigroup, it is it-

self WSS by Proposition 1.2.13. Then as every finitely generated abelian

subgroup is also a finitely generated commutative subsemigroup, Γ(H) sat-

isfies the separability property with respect to the collection of all finitely

generated abelian subgroups.

Suppose thatH is not a group. LetG be a finitely generated abelian subgroup

of Γ(H) and let b ∈ Γ(H)\G. Now, G is generated (as a group) by some set

{a1, . . . , an} ∪ G0, where each ai is non-torsion and G0 is the finite torsion

subgroup of G, see Theorem 3.1.1. As in the proof of Lemma 3.2.11, we shall

just write [s] for [s]σH . Let U denote the subsemigroup

{u ∈ Stab(H) : [u] ∈ G}

of Stab(H). For each i ∈ {1, . . . , n}, select xi, yi ∈ U such that [xi] = ai and

[yi] = a−1
i . Also, fix an element h ∈ H.

The remainder of this proof is organised as follows.

(1) We show that for each i ∈ {1, . . . , n}, there exists α(i), β(i) ∈ N such

that x
α(i)
i h = hy

β(i)
i .

(2) We build a finitely generated subsemigroup T of S such that T ∩H =

{hu | u ∈ U}.
(3) We find a finite group K and a homomorphism θ : Γ(H) → K such

that θ(b) /∈ θ(G).

(1) Let i ∈ {1, . . . , n}, and write x = xi, y = yi. We first show that hy ∈
〈h, x〉. Since S is weakly subsemigroup separable, it suffices to show that hy

cannot be separated from 〈h, x〉 by a finite index congruence. Indeed, if ∼
is a finite index congruence on S, there exist k, ` ∈ N with k < ` such that
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hxk ∼ hx`. Then

hy = hxkyk+1 ∼ hx`yk+1 = hx`−k−1 ∈ 〈h, x〉.

Since 〈x〉 ⊆ Stab(H) and H is not a group, it must be the case that 〈x〉∩H =

∅ by Lemma 3.2.4. This means that hy /∈ 〈x〉. If hy ∈ 〈h〉, then hy = hn for

some n ≥ 2. In this case H ∩Hn 6= ∅ and so H is a group by Lemma 1.3.37.

This is a contradiction and so hy /∈ 〈h〉. Therefore, as hy ∈ 〈h, x〉, every way

of expressing hy as a product over {h, x} contains at least one occurrence of

h and at least one occurrence of x. Fix one such product. Post-multiplying

hy by an appropriate power of y, we deduce that hyj = uh for some j ∈ N
and u ∈ 〈h, x〉. Note that for z ∈ N we have

hyjz = uhyj(z−1) = u2hyj(z−2) = · · · = uzh.

We now show that hxj ∈ 〈h, u〉 using a similar argument. Indeed, if ∼ is

a finite index congruence on S, there exist k, ` ∈ N with k < ` such that

hyjk ∼ hyj`, and hence

hxj = hyjkxj(k+1) ∼ hyj`xj(k+1) = hyj(`−k−1) = u`−k−1h ∈ 〈h, u〉.

Noting that u is in the left stabiliser of H, by a similar argument as for 〈x〉, we

deduce that 〈u〉∩H = ∅. Therefore hxj /∈ 〈u〉. It is also true that hxj /∈ 〈h〉,
by an similar argument to that which shows that hy /∈ 〈h〉. Therefore, as

hxj ∈ 〈h, u〉, every way of expressing hxj as a product over {h, u} contains

at least one occurrence of h and at least one occurrence of u.

So hxj = w1hw2 for some w1 ∈ 〈u〉1 and w2 ∈ 〈h, u〉1 ⊆ 〈h, x〉1, with

(w1, w2) 6= (1, 1). Then w1 = uk for some k ∈ N0. Hence w1h = ukh = hyjk.

It cannot be the case that hxj = w1h. If it were, then hxj = hyjk, which

would imply that

hxj(k+1) = hxjxjk = hyjkxjk = h.

In this case, [x] is a torsion element of Γ(H), which is a contradiction. There-

fore hxj 6= w1h and it must be that w2 6= 1.
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We cannot write w2 as sht for some s ∈ 〈x〉1 and t ∈ 〈h, x〉1. Indeed, if we

could, then since w1h ∈ H and x ∈ Stab(H), we would have hxj ∈ H∩Hn for

some n ≥ 2. Then by Lemma 1.3.37 H is a group, which is a contradiction.

We must then have w2 ∈ 〈u〉. But u ∈ 〈h, x〉, so we conclude that u = xm for

some m ∈ N. Then, as hyj = uh, we have hyj = xmh, as desired. Now set

α(i) = m and β(i) = j. We fix α(i) and β(i) for the remainder of this proof.

(2) Now we build a finitely generated subsemigroup T of S such that T ∩H =

{hu | u ∈ U}. For each i ∈ {1, . . . , n}, let mi = max{α(i), β(i)}. For each

g ∈ G0, select ug ∈ U such that [ug] = g. We define a finite set

W = {xj11 . . . xjnn | 0 ≤ ji ≤ mi − 1 for 1 ≤ i ≤ n} ∪ {ug | g ∈ G0} ⊆ U.

Let X = {xα(i)
i | 1 ≤ i ≤ n}, and let T be the subsemigroup of S generated

by

Z = X ∪ {hw | w ∈ W}.

Note, as U ⊆ Stab(H), by Lemma 3.2.4 we have that U ∩ Z = X and

H ∩ Z = {hw | w ∈ W}. We also have Z is finite as both X and W are

finite. We prove that T ∩H = {hu | u ∈ U}.

First, let h′ ∈ T∩H. Then h′ = z1 . . . zk for some zj ∈ Z. If every zj ∈ X, then

h′ ∈ Stab(H). Then by Lemma 3.2.4 we have that H is a group, which is a

contradiction. Therefore, there exists a minimal j such that zj = hw for some

w ∈ W. Then for each i < j, we have zi ∈ X and hence zih ∈ hU from (1).

So we deduce that h′ = hw′zj+1 . . . zk for some w′ ∈ U. Let u = w′zj+1 . . . zk.

We shall show that u ∈ U .

Let i1, i2, . . . , im be the indices such that zi1 , zi2 , . . . , zim ∈ H, where

j + 1 ≤ i1 < · · · < im ≤ k.

Let h` = zi`zi`+1 . . . zi`+1−1 for ` ∈ {1, . . . ,m − 1}, and let hm = zim . . . zk.

Then h` ∈ H for each ` ∈ {1, . . . ,m}. But then

h′ = (hw′zj+1 . . . zi1−1)h1 . . . hm ∈ H ∩Hm+1.
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Then, by Lemma 1.3.37, H is a group, which is a contradiction. We conclude

that zi ∈ X for every i ∈ {j + 1, . . . , k}. It follows that u ∈ U and hence

h′ ∈ {hu | u ∈ U}.

For the reverse containment, let u ∈ U. Since G is abelian, we have [u] =

ak11 . . . aknn c, where for i ∈ {1, . . . , n} we have ki ∈ Z and c ∈ G0. Consider

i ∈ {1, . . . , n}. If ki ≥ 0, let pi ∈ N ∪ {0} and ri ∈ {0, . . . , α(i) − 1} be

such that ki = piα(i) + ri, and let qi = si = 0. If ki < 0, let qi ∈ N and

si ∈ {0, . . . , β(i) − 1} be such that ki = −qiβ(i) + si, and let pi = ri = 0.

Now let ti = max{ri, si}. Recalling that we have chosen uc ∈ Stab(H) such

that [uc] = c, it follows that

hu =
(
x
α(1)
1

)q1 . . . (xα(n)
n

)qn(
hxt11 . . . x

tn
n uc

)(
x
α(1)
1

)p1 . . . (xα(n)
n

)pn
,

so hu ∈ T ∩H, and hence T ∩H = {hu | u ∈ U}.

(3) Finally, we find a finite groupK and a homomorphism θ : Γ(H)→ K such

that θ(b) /∈ θ(G). Choose v ∈ Stab(H) such that [v] = b. Then hv /∈ T . This

is because hv /∈ {hu | u ∈ U}, since v /∈ U and the action of Γ(H) is regular.

Since S is WSS, there exists a finite semigroup P and a homomorphism

φ : S → P such that φ(hv) /∈ φ(T ). Let Hφ(h) denote the H-class of φ(h),

and let K be the finite group Γ(Hφ(h)). As in the proof of Lemma 3.2.11,

the map θ : Γ(H)→ K, given by [t] 7→ [φ(t)], is a homomorphism such that

θ(b) /∈ θ(G), as required.

The fact that the weak subsemigroup separability of a semigroup guarantees

that its Schützenberger groups have the separability property with respect to

finitely generated abelian subgroups immediately gives us the following.

Corollary 3.2.15. Let S be a semigroup and let H be an H-class of S. If S

is weakly subsemigroup separable and Γ(H) is abelian, then Γ(H) is weakly

subgroup separable.

As every cyclic group is a finitely generated abelian group, we also have the

following corollary.
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Corollary 3.2.16. Let S be a semigroup and let H be an H-class of S. If S is

weakly subsemigroup separable, then Γ(H) is monogenic subgroup separable.

However the following remains an open question.

Open Problem 3.2.17. Let H be an H-class of a semigroup S. If S is

monogenic subsemigroup separable, is Γ(H) monogenic subgroup separable?

In Section 3.5 we return to Schützenberger groups and consider the following

question: if all the Schützenberger groups of a semigroup have a separability

property, does the semigroup itself have that property?

3.3 Finitely Generated Commutative Semigroups

In this section, we consider when a finitely generated commutative semigroup

has each of our separability properties. The following is already known.

Theorem 3.3.1. [31, Theorem 3] Every finitely generated commutative semi-

group is residually finite.

Lallement attributes the above theorem to Mal’cev in [37]. To discern other

separability properties of finitely generated commutative semigroups we make

use of the theory concerning separability properties of Schützenberger groups

which was developed in the previous section. We also make use of the struc-

tural theory of finitely generated commutative semigroups, which we now

present.

In commutative semigroups, Green’s relations L, R, J and H coincide.

Therefore, instead of talking of the partial ordering of J -classes that was

described in Remark 1.3.28, we will instead speak of a partial ordering on

H-classes. This ordering, in terms of H-classes, is restated below.

Definition 3.3.2. For a commutative semigroup S, inclusion among princi-

pal ideals induces a partial ordering on H-classes:

Hx ≤ Hy if S1x ⊆ S1y.
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Commutative semigroups are built from archimedean semigroups, which we

now define.

Definition 3.3.3. An archimedean semigroup is a commutative semigroup

S such that for each a, b ∈ S there exists n > 0 such that Han ≤ Hb.

It is worth noting that some authors do not include commutativity as part

of the definition for archimedean semigroups. However, here we follow the

definition given by Grillet in [25, Chapter 4].

Example 3.3.4. The semigroup N is archimedean. As we have seen in

Example 1.3.35, N is H-trivial. This, combined with Example 1.3.29, gives

us that for m,n ∈ N we have Hm ≤ Hn if and only if m ≥ n. As for all

m,n ∈ N, there exists a k ∈ N such that km ≥ n, we have that Hkm ≤ Hn

and so N is archimedean.

The following lemma will be useful in ascertaining the number of idempotents

in a finitely generated commutative semigroup.

Lemma 3.3.5. An archimedean semigroup has at most one idempotent.

Proof. Let A be an archimedean semigroup and suppose that e, f ∈ A are

idempotents. Then by definition there exist m,n > 0 such that Hem ≤ Hf

and Hfn ≤ He. But as em = e and fn = f , we have that He ≤ Hf and

Hf ≤ He. Hence He = Hf . As a consequence of Proposition 1.3.36, any H-

class can have at most one idempotent, and so we conclude that e = f .

We immediately see that any (commutative) semigroup with more than one

idempotent is not archimedean. Recalling Definition 2.5.1, we have the fol-

lowing structural theorem for commutative semigroups.

Proposition 3.3.6. [25, Theorem 4.2.2] A commutative semigroup S is a

semilattice of archimedean semigroups S(Y, {Sα}α∈Y ). Furthermore, if S is

finitely generated, then Y is finite.

We refer to the subsemigroups that make up the semilattice as the archimedean

components of S.
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Corollary 3.3.7. A finitely generated commutative semigroup contains only

finitely many idempotents.

Proof. This follows as Proposition 3.3.6 tells us that a finitely generated

commutative semigroup is a finite semilattice of archimedean semigroups and

Lemma 3.3.5 tells us an archimedean semigroup has at most one idempotent.

In the remainder of this section it will be important to understand how

archimedean semigroups with idempotents behave. To achieve this we need

two definitions.

Definition 3.3.8. We call a semigroup with a zero nilpotent if every element

has a power equal to 0.

Example 3.3.9. Any null semigroup is also a nilpotent semigroup.

The following lemma helps us understand finitely generated nilpotent semi-

groups.

Lemma 3.3.10. A finitely generated commutative semigroup in which every

element has finite index is finite.

Proof. Let S be a finitely generated commutative semigroup. Let X =

{x1, x2, . . . , xk} be a generating set for S. For i ∈ {1, 2, . . . , k}, define mi to

be the index of xi and define ri to the period of xi. Define n = max{mi+ ri |
1 ≤ i ≤ k}. Let s ∈ S be such that s can be written as a product over

X of length ` such that ` ≥ kn. Then by the pigeonhole principle, there

exists xi ∈ X such that there are at least n occurrences of xi in this product.

Then, as n ≥ mi + ri, these n occurrences of xi can be replaced by n − ri
occurrences of xi. We have found a new expression for s of length `− ri. If

`− ri ≥ kn, we may iterate the process until we have an expression for s of

length strictly less that kn. Therefore any element of S can be written as a

product over X of length at most kn− 1, and hence S is finite.
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Corollary 3.3.11. A finitely generated commutative nilpotent semigroup is

finite.

Proof. It follows from the definition of nilpotency that every element in a

nilpotent semigroup has finite index.

We now give the second definition needed to characterise archimedean semi-

groups with idempotent.

Definition 3.3.12. An ideal extension of a semigroup S by a semigroup Q

is a semigroup E such that S is an ideal of E and the Rees quotient E/S is

isomorphic to Q.

Example 3.3.13. Let N = {n | n ∈ N} be a copy of N. Let E = N∪N with

multiplication (written additively) inherited from N and N, and for m ∈ N
and n ∈ N define

m+ n = n+m = m+ n.

This multiplication is associative and therefore E is a semigroup. Further-

more, N is an ideal of E. From the observation of Example 1.3.16, we have

that E/N = N0
. As N0 ∼= N0, we have that E is an ideal extension of N by

N0.

The following result provides a characterisation of archimedean semigroups

with idempotents.

Proposition 3.3.14. [25, Proposition 4.2.3] A commutative semigroup S is

archimedean with an idempotent if and only if S is either a group or an ideal

extension of a group by a nilpotent semigroup.

In general, the structure of archimedean semigroups is complex. For more

about the decomposition of commutative semigroups into archimedean sub-

semigroups, see [25, Chapter 4].

As with the ordering of J -classes, for all a, x ∈ S we have that

Hxa ≤ Ha.
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With this observation is mind, we are able to give the following well-known

result regarding the Schützenberger groups of finitely generated commutative

semigroups.

Lemma 3.3.15. Every Schützenberger group of a finitely generated commu-

tative semigroup is a finitely generated abelian group.

Proof. Let S be a finitely generated commutative semigroup and let H be

an H-class of S. Let X be a finite generating set for S. Then the semigroup

S1 is generated by the set X ∪ {1}. Therefore S1 is a finitely generated

commutative monoid. We show that Stab(H) is also finitely generated and

commutative.

As Stab(H) is a submonoid of S1, it is commutative. We claim that Y = (X∪
{1})∩Stab(H) is a generating set for Stab(H). As Stab(H) is a submonoid of

S1, we certainly have that 〈Y 〉 ⊆ Stab(H). We need to show that Stab(H) ⊆
〈Y 〉. For a contradiction, assume that there exists s ∈ Stab(H) such that

s /∈ 〈Y 〉. Therefore, any possible way as expressing s as a product of elements

of X ∪ {1} must contain at least one occurrence of an element in X \ Y .

Consider x ∈ X \ Y . Then, by the definition of Y , it must be the case

that x /∈ Stab(H). Then for h ∈ H we have Hhx < Hh = H, as Hx 6= H.

Given that any decomposition of s must contain such an x, we conclude

that Hhs ≤ Hhx < H. Hence Hs 6= H. This is a contradiction. Therefore

Stab(H) ⊆ 〈Y 〉.

As Stab(H) is a finitely generated commutative monoid, any quotient of

Stab(H) is also finitely generated and commutative. Hence, we conclude

that Γ(H), the Schützenberger group of H, is a finitely generated abelian

group.

The ordering of H-classes leads to a family of ideals. Before we define these

ideals, we give the following result about the ordering of H-classes.

Lemma 3.3.16. For a commutative semigroup S, if there exists a minimal

H-class H, then H is the minimum H-class.
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Proof. Suppose that H is minimal. Then if Hs ≤ H it must be that Hs = H.

We must show that H ≤ Ht for all t ∈ S. Let t ∈ S and fix h ∈ H. Then

Hht ≤ H and Hht ≤ Ht. But as H is minimal, it must be the case that

Hht = H. Then H ≤ Ht, as required.

Recall that for each non-minimum J -class of a semigroup S, there is an

associated ideal I(J), see Definition 1.3.30. Since Green’s relations J and H
coincide for commutative semigroups, we restate the definition of this ideal

in terms of H-classes.

Definition 3.3.17. For an non-minimal H-class H of a commutative semi-

group S, define

I(H) =
⋃
{Hs | s ∈ S,Hs � H}.

In order to determine the separability properties of finitely generated com-

mutative semigroups, when dealing with a non-minimal H-class H we shall

often pass to the Rees quotient S/I(H). The following proposition is needed

to justify this strategy.

Proposition 3.3.18. Let H be a non-minimal H-class of a commutative

semigroup S, and denote I(H) by I. For an H-class H ′ of S, let φ : S → S/I

to the canonical homomorphism. Let x ∈ S. Then the following hold:

(i) φ(H ′) is an H-class of S/I;

(ii) H ′ ≥ H if and only if φ(H ′) ≥ φ(H);

(iii) φ(H) is the unique minimal non-zero H-class in S/I;

(iv) x ∈ Stab(H) if and only if φ(x) ∈ Stab(φ(H)).

Proof. Recall that S/I consists of a zero element, namely I, and singleton

sets {s}, where s ∈ S \ I. Denote the zero element of S/I by 0.

(i) Let h′ ∈ H ′ and let V denote that the H-class of φ(h′). We show that

V = φ(H ′). If H ′ � H, then φ(H ′) = {0}, and in particular φ(h′) = 0. As

the H-class of 0 is {0}, we have that V = φ(H ′).

Now suppose that H ′ ≥ H. In this case φ(h′) 6= 0 and hence V 6= {0}. Let
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φ(s) ∈ φ(H ′). Then as h′, s ∈ H ′ there exist x, y ∈ S1 such that h′x = s and

sy = h′. Then φ(h′)φ(x) = φ(h′x) = φ(s) and φ(s)φ(y) = φ(sy) = φ(h′).

This shows that φ(h′)H φ(s) and so φ(H ′) ⊆ V .

Now let φ(v) ∈ V . Then there exist a, b ∈ (S/I)1 such that φ(h′)a = φ(v)

and φ(v)b = φ(h′). If a is not the identity element of (S/I)1, let a′ ∈ S such

that φ(a′) = a. Otherwise let a′ be the identity of S1, in which case we say

φ(a′) is the identity of (S/I)1. Similarly, if b is not the identity element of

(S/I)1, let b′ ∈ S such that φ(b′) = b. Otherwise let b′ be the identity of S1.

As V 6= {0}, we have φ−1(φ(h′)) = {h′} and φ−1(φ(v)) = {v}. Then

φ(h′a′) = φ(h′)φ(a′) = φ(h′)a = φ(v)

and so h′a′ = v. Similarly vb′ = h′. Therefore

h′H v and V ⊆ φ(H ′).

We conclude that φ(H ′) is an H-class of S/I.

(ii) First suppose that H ′ ≥ H. Then for h′ ∈ H ′ and h ∈ H, we have that

S1h ⊆ S1h′. Let x ∈ (S/I)1φ(h). Then there exists y ∈ (S/I)1 such that

yφ(h) = x. If y is not the identity in (S/I)1, pick y′ ∈ S such that φ(y′) = y.

Otherwise let y′ be the identity of S1. Then y′h ∈ S1h′. So there exists

z ∈ S1 such that y′h = zh′. If z is the identity of S1 set φ(z) to the identity

of (S/I)1. Then

x = yφ(h) = φ(y′)φ(h) = φ(y′h) = φ(zh) = φ(z)φ(h′)

and x ∈ (S/I)1φ(h′). Hence φ(H ′) ≥ φ(H).

Now suppose that φ(H ′) ≥ φ(H). For a contradiction assume that H ′ � H.

Then by the definition of I, we have that φ(H ′) = {0}. As {0} is the H-class

of the zero element, we have φ(H ′) = {0} < φ(H). This is a contradiction,

and so H ′ ≥ H.

(iii) By the definition of I, we have that φ(H) is a non-zero H-class in S/I.

Let V be a non-zero H-class in S/I. We need to show that V ≥ φ(H). There
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exists s ∈ S such that φ(s) ∈ V . Let H ′ denote the H-class of s. Then by

part (i) we have that V = φ(H ′). As V = φ(H ′) is non-zero we have that

H ′ ≥ H and so by part (ii), V = φ(H ′) ≥ φ(H), as desired.

(iv) Let x ∈ Stab(H). Then Hx = H. Then φ(Hx) = φ(H)φ(x) = φ(H)

and so φ(x) ∈ Stab(φ(H)).

Now suppose that φ(x) ∈ Stab(HI). Let h ∈ H. Then by part (i), φ(h)φ(x) =

φ(h) for some h ∈ H. By the definition of I we have that φ−1(φ(h)) = {h}.
Then hx = h. By Lemma 3.2.3, this is sufficient to show that x ∈ Stab(H),

as desired.

In order to make use of the strategy of using the Rees quotient S/I(H), we

need to understand the structure of S/I(H). In particular, we want to know

the relationship between the archimedean components of S/I(H) and the

stabiliser of H. We first need the following lemma.

Lemma 3.3.19. Let S be a finitely generated commutative semigroup and

let H be an H-class. Fix s ∈ S with Hs ≥ H. Then

Stab(H) = {x ∈ S1 | Hsxn ≥ H for all n ∈ N}.

Proof. First we assume that H is the minimum H-class in S. In this case

S1 = Stab(H). To see this fix h ∈ H. Then for any x ∈ S1 we have

Hhx ≤ Hh = H. But as H is the minimum H class we have that Hhx = H.

That is, hx ∈ H and so x ∈ Stab(H) by Lemma 3.2.3. Furthermore, as H

is the minimum H-class we have Hsxn ≥ H for all s ∈ S, x ∈ S1 and n ∈ N.

Hence the result follows.

Now assume that H is a non-minimal H-class. We claim that

I(H) ∩ {x ∈ S1 | Hsxn ≥ H for all n ∈ N} = ∅.

To see this let i ∈ I(H). Then by the definition of I(H), we have Hi � H.

But Hsin ≤ Hi for all n ∈ N. In particular we have that Hsin � H for all

n ∈ N. Hence i /∈ {x ∈ S1 | Hsxn ≥ H for all n ∈ N}, completing the proof

106



of the claim. As both Stab(H) ⊆ S1 \ I, and {x ∈ S1 | Hsxn ≥ H for all n ∈
N} ⊆ S1 \ I, we may factor out by I(H). Hence we assume that H is the

unique minimal non-zero H-class.

Let x ∈ Stab(H). For a contradiction assume that there exists n ∈ N such

that Hsxn � H. Then, as H is the unique minimal non-zero H-class, we have

sxn = 0. As Hs ≥ H, there exists t ∈ S1 such that st ∈ H. Then

0 = sxnt = stxn ∈ Hxn = H,

which is a contradiction. Hence Stab(H) ⊆ {x ∈ S1 | Hsxn ≥ H for all n ∈
N}.

Now assume that Hsxn ≥ H for all n ∈ N. Fix h ∈ H. Assume for a con-

tradiction that x /∈ Stab(H). Then as Hhx < H and as H is the minimal

no-zero H-class, we have that hx = 0. As S is finitely generated and commu-

tative, by Theorem 3.3.1 it is residually finite. Let ∼ be an arbitrary finite

index congruence on S. Then there exist m,n ∈ N, with m < n, such that

sxm ∼ sxn. As Hsxm ≥ H, there exists t ∈ S1 such that sxmt = h. Then

h = sxmt ∼ sxnt = sxmtxn−m = hxn−m = 0.

As ∼ is arbitrary, we have shown we cannot separate h and 0 in a finite

quotient. This contradicts S being residually finite and so x ∈ Stab(H).

Hence the result holds.

Corollary 3.3.20. Let S be a finitely generated commutative semigroup and

let H be a non-minimal H-class. Let I = I(H). If A is an archimedean

component in S/I not containing the zero element 0, then A ⊆ Stab(HI).

Proof. Let a ∈ A. As A is a subsemigroup we have an ∈ A for all n ∈ N. In

particular we have that an 6= 0 for all n ∈ N. So Ha·an ≥ HI for all n ∈ N by

part (iii) of Proposition 3.3.18. Hence a ∈ Stab(HI) by Lemma 3.3.19.

We now present a lemma that plays a crucial role in determining the sepa-

rability properties of finitely generated commutative semigroups.
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Lemma 3.3.21. Let S be a finitely generated commutative semigroup and

let H be a finite H-class of S. Let h ∈ H. Then there exists a finite index

congruence ρ on S such that [h]ρ = {h}.

Proof. We split into two cases, the first is that H is not a group, and the

second is that H is a group.

Case 1. Assume that H is not a group. Then by Lemma 1.3.37, H2 6= H.

In particular, H is not the minimal H-class. Denote I(H) by I. Factoring

out I, we may assume that H is the unique minimal non-zero H-class in S.

For x ∈ S, let Ax denote the archimedean component of the element x. As

H is not a group, we have H2 = {0} and in particular h2 = 0. We claim that

Ah = A0. To see this, recall that the S is a semilattice of archimedean com-

ponents. For an element a of a semilattice, we have that a = a2. As we have

observed that h2 = 0, we conclude that h and 0 in the same archimedean

component, completing the claim. Then as 0 is an idempotent, we have

that Ah is the ideal extension of a group by a nilpotent semigroup (Proposi-

tion 3.3.14). As the H-class of a zero element is trivial, we conclude that the

only subgroup of Ah is trivial. That is, Ah is a nilpotent semigroup. Now

from Corollary 3.3.20, it follows that all archimedean components apart from

Ah are subsets of Stab(H). Furthermore Stab(H) ∩ Ah = ∅. This follows

as Ah is a nilpotent semigroup. Hence for all a ∈ Ah, there exists n ∈ N
such that an = 0. Then han = 0, showing it is not possible for a to be in

Stab(H). Therefore, it follows that S1 is the disjoint union of Stab(H) and

Ah. Consider any finite generating set for S, and write it as X ∪ Y , where

X ⊆ Stab(H) and Y ⊆ Ah. Then 〈X〉 ⊆ Stab(H) and, as Ah is non-empty,

it must be the case that Y is non-empty. Note that U = 〈Y 〉 is finite by

Corollary 3.3.11 as Ah is a finitely generated commutative nilpotent semi-

group. We may assume that X is non-empty, for otherwise S = U is a finite

semigroup and the result holds.

Let X = {x1, x2, . . . , xm} and let X = {x1, x2, . . . , xm} be disjoint from X.

Let FCX denote the free commutative monoid on X. Let φ : FCX → Stab(H)

be the unique extension to a homomorphism of the map given by xi → xi.
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For u ∈ U define

Iu = {w ∈ FCX | uφ(w) ∈ H}.

If Iu is non-empty, it is an ideal of FCX . Indeed, if w ∈ Iu and z ∈ FCX , then

since uφ(w) ∈ H and φ(z) ∈ Stab(H), we have that uφ(wz) = (uφ(w))φ(z) ∈
H.

We claim that Iu is finitely generated as an ideal. To see this note that FCX

is isomorphic to N|X|0 . The ideals of the latter semigroup are upward closed

sets under the component-wise ordering on tuples. By Dickson’s Lemma ([13,

Lemma A]), N|X|0 has no infinite antichains when considered as a partially

ordered set with the aforementioned partial order. That is, in N|X|0 there

does not exist an infinite subset such that every pair of elements is pairwise

incomparable. It then follows that every ideal of N|X|0 is finitely generated as

an ideal, and hence so is every ideal of FCX , proving the claim.

Let U ′ = {u ∈ U | Iu 6= ∅}. For each u ∈ U ′ let Zu be a finite generating set

for Iu, and let

Z =
⋃
u∈U ′

Zu.

As U is finite, we have that Z is finite. For each z ∈ Z, we have

z = x
α1(z)
1 x

α2(z)
2 . . . xαm(z)

m

for some αi(z) ∈ N0. Define

n = max{αi(z) | z ∈ Z, 1 ≤ i ≤ m}.

Let ρ be the congruence on S generated by {(xni , x
n+|H|
i ) | 1 ≤ i ≤ m}. First

we note that S/ρ is finite. To see this let φ : S → S/ρ be the canonical

homomorphism. Then S/ρ is a finitely generated commutative semigroup

generated by the set φ(X)∪φ(Y ). As each of the generators has finite index,

S/ρ is finite by Lemma 3.3.10. We show that [h]ρ = {h}.

Let (h, t) ∈ ρ. We need to show that t = h. Clearly it is sufficient to

assume that t is obtained from h by a single application of a pair from the
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generating set of ρ. So, let h = sxpi and t = sxqi where 1 ≤ i ≤ m, s ∈ S1

and {p, q} = {n, n+ |H|}.

If (p, q) = (n, n + |H|) then t = hx
|H|
i . Since xi ∈ Stab(H), [xi]σ is an

element of the Schützenberger group Γ(H). As |Γ(H)| = |H|, it follows that

[x
|H|
i ]σ = [xi]

|H|
σ = [1]σ. Hence t = hx

|H|
i = h.

Now we consider the case when (p, q) = (n + |H|, n). As h /∈ Stab(H), we

have s ∈ Ah\{0}. Any way of decomposing s into generators must contain

at least one element from Y . Therefore, we have that s = us′, where u ∈ U ′

and s′ ∈ Stab(H). Fix some

w = xβ11 x
β2
2 . . . xβmm ∈ FCX

such that φ(w) = s′. As h = us′x
n+|H|
i ∈ H, we have that

wx
n+|H|
i = xβ11 x

β2
2 . . . x

βi+n+|H|
i . . . xβmm ∈ Iu.

Then there exist z ∈ Z and w′ = xγ11 . . . xγmm ∈ FCX such that

zw′ = wx
n+|H|
i .

For 1 ≤ j ≤ m, we have that

αj(z) + γj =

βj if j 6= i,

βi + n+ |H| if j = i.

As αi(z) ≤ n by definition, it must be the case that γi ≥ |H|. Then

wxni = zxγ11 . . . xδi . . . x
γm
m

where δ = γi − |H| ≥ 0. Hence wxni ∈ Iu and so sxni = t ∈ H. As h = tx
|H|
i ,

a similar argument as above proves that h = t, as required.

Case 2. Now we assume that H is a group. By Proposition 3.3.14, Ah is

either a group or the ideal extension of H by a nilpotent semigroup. Hence

Ah ⊆ Stab(H), as H is an ideal of Ah. If H is the minimal H-class of S, then

S1 = Stab(H). If H is not minimal, we may assume that it is the unique
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minimal non-zero H-class of S (by taking the Rees quotient by I(H)). We

claim that for a ∈ S1 \ {0}, we have a ∈ Stab(H). This is because we have

that Ha ≥ H (from the definition of I(H)). Then there exists b ∈ S1 such

that ab ∈ H. As H is a group, we have that H ⊆ Stab(H) and therefore

ab ∈ Stab(H). Hence a ∈ Stab(H), completing the proof of the claim. As it

is clear that 0 /∈ Stab(H) we conclude S1 \ {0} = Stab(H).

In either case, let X be a finite generating set for Stab(H). As in Case 1,

let X = {x1, x2, . . . , xm} be a set in bijection with X, let FCX denote the

free commutative monoid on X, and let φ : FCX → Stab(H) be the unique

extension to a homomorphism of a bijection X → X. Define

J = {w ∈ FCX | φ(w) ∈ H}.

Then J is an ideal of FCX and hence is finitely generated as an ideal. Let Z

be a finite generating set for J (as an ideal). As before let

z = x
α1(z)
1 x

α2(z)
2 . . . xαm(z)

m

for some αi(z) ∈ N0 and define

n = max{αi(z) | z ∈ Z, 1 ≤ i ≤ m}.

Let ρ be the congruence on S with generating set {(xn, xn+|H|) | x ∈ X}.
Again we have that S/ρ is finite. An argument essentially the same as that

of Case 1 shows that [h]ρ = {h}, completing the proof.

We are now ready to give a characterisation of when a finitely generated

commutative semigroup is MSS. We have already seen that Z is not MSS in

Example 1.2.5. It turns out that the only way a finitely generated commu-

tative semigroup can fail to be MSS is if it contains a copy of Z.

Theorem 3.3.22. A finitely generated commutative semigroup S is mono-

genic subsemigroup separable if and only if every subgroup is finite.

Proof. (⇐) Assume that every subgroup of S is finite. Let U = 〈u〉 ≤ S for
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some u ∈ S and let v ∈ S \U . Consider H, the H-class of v. If H is a group,

then it is finite. By Lemma 3.3.21, there exists a finite index congruence ρ

on S such that [v]ρ = {v}. In particular, ρ separates v from U .

Now consider the case when H is not a group. We claim that |H ∩ U | ≤ 1.

To see this assume that |H ∩ U | ≥ 2. Then there exist positive integers i, j,

with i < j, such that ui, uj ∈ H. Let k = j− i. So we have uk ∈ Stab(H) by

Lemma 3.2.3. Then (ui)k+1 = (ui)(uk)i ∈ H. So by Lemma 1.3.37 we have

that H is a group. This is a contradiction and so |H ∩ S| ≤ 1.

Now we note that in a commutative semigroup, H is a congruence. To see

this let a, b ∈ S such that aH b. Then there exist x, y ∈ S1 such that ax = b

and by = a. We show that atH bt for all t ∈ S. This follows as atx = axt = bt

and bty = byt = at. Hence H is a congruence.

We have that [v]H = H. Note every H-class of S/H is a singleton. Then by

factoring through S/H and evoking Lemma 3.3.21, there exists a finite index

congruence ρ on S such that [v]ρ = H. If U ∩ H = ∅, then ρ separates v

from U . Otherwise |U ∩H| = 1. Let u` ∈ U ∩H. By Theorem 3.3.1 we have

that S is residually finite and so there exists a finite index congruence σ on

S such that [v]σ 6= [u`]σ. Then ρ ∩ σ is a finite index congruence on S that

separates v from U , giving monogenic subsemigroup separability.

(⇒) We show the contrapositive. Assume that S contains an infinite sub-

group G. As the maximal subgroups of S are the group H-classes (Proposi-

tion 1.3.36), we may assume that G is an H-class. Then the Schützenberger

group Γ(G) is isomorphic to G by Proposition 3.2.6. Then by Lemma 3.3.15

we have that Γ(G), and therefore G, is an infinite finitely generated abelian

group. So G contains a copy of Z by Corollary 3.1.3. As Z is not MSS by

Example 1.2.5, S cannot be MSS, as subsemigroups inherit the property of

monogenic subsemigroup separability by Proposition 1.2.13.

We now turn our attention to the properties of weak subsemigroup separa-

bility, strong subsemigroup separability and complete separability.

Theorem 3.3.23. Let S be a finitely generated commutative semigroup.
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Then the following are equivalent:

(1) S is completely separable;

(2) S is strongly subsemigroup separable;

(3) S is weakly subsemigroup separable;

(4) every H-class of S is finite.

Proof. From Proposition 1.2.9 we have that (1) implies (2), and (2) implies

(3).

(3) =⇒ (4). We will show the contrapositive. Assume that S con-

tains an infinite H-class H. Then, by Proposition 3.2.6, we have that the

Schützenberger group Γ(H) is infinite. By Lemma 3.3.15, we have that

Γ(H) is an infinite finitely generated abelian group. Hence Γ(H) contains a

copy of Z by Corollary 3.1.3. As Z is not WSS by Example 1.2.5, Γ(H)

cannot be WSS as subsemigroups inherit the property of weak subsemi-

group separability by Proposition 1.2.13. But then S cannot be WSS as

Schützenberger groups of commutative WSS semigroups are themselves WSS

by Corollary 3.2.12.

Lemma 3.3.21 gives us (4) implies (1).

Using these characterisations we are able to give an example of a finitely

generated commutative semigroup which is MSS but not WSS (and therefore

not SSS nor CS).

Example 3.3.24. Let T = N × N. Let N = {xz | z ∈ Z} ∪ {0} be a null

semigroup with zero element 0. Let S = T ∪N with multiplication inherited

from T and N , and for z ∈ Z and (i, j) ∈ T define

xz · (i, j) = (i, j) · xz = xz+i−j,

0 · (i, j) = (i, j) · 0 = 0.

An exhaustive check confirms that this multiplication is associative and hence

S is a semigroup. It is also clear that the multiplication is commutative so S is
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a commutative semigroup. Note that the set {(1, 0), (0, 1), x0} is a generating

set for S and so S is a finitely generated commutative semigroup.

There is only one idempotent contained in S, the element 0. Hence any

subgroup of S is contained in H0, the H-class of 0. As 0 is a zero element

for the entirety of S we have that H0 = {0}. Hence every subgroup of S is

finite and S is MSS by Theorem 3.3.22

Now consider the set X = {xz | z ∈ Z} ⊆ S. We claim that X is contained

in Hx0 . Let xz ∈ X. If z = 0 then it is clear that xz ∈ Hx0 . If z < 0 then

xz · (z, 0) = x0 and x0 · (0, z) = xz. As S is commutative, this is sufficient

to show that xz ∈ Hx0 . A similar argument deals with the case when z > 0.

Hence we have that Hx0 is infinite. So S is not WSS by Theorem 3.3.23.

3.3.1 A Comparison with Previously Known Results

In [30] Kublanovskǐı and Lesohin show that the properties of complete sepa-

rability and strong subsemigroup separability coincide for finitely generated

commutative semigroups. They also give characterisations of when a finitely

generated commutative semigroup has one, and hence both, of these sepa-

rability properties. To understand these characterisations we briefly outline

their setup and results, without giving proofs.

Let S be a finitely generated commutative semigroup with finite generating

set A. For s ∈ S, let Cs = A ∩ Stab(Hs). Then Cs is finite and can be

empty. We denote |Cs| by ks. Then 〈Cs〉1 = Stab(Hs). Consider the free

commutative monoid Nks0 on ks generators. There is a canonical homomor-

phism φ : Nks0 → Stab(Hs). We note that Stab(s), the point stabiliser of s,

is a submonoid of Stab(Hs). Let Ws = φ−1(Stab(s)) ≤ Nks0 be the pre-image

of Stab(s). We can view Nks0 as a submonoid of the free abelian group Zks .
Consider the subgroup Gs ≤ Zks generated by Ws. As Gs is a subgroup

of Zks , we have Gs
∼= Zms for some ms ≤ ks. Using this, the authors ob-

tain the following characterisation for SSS finitely generated commutative

semigroups

Theorem 3.3.25. [30, Theorem 1] A finitely generated commutative semi-
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group S is strongly subsemigroup separable if and only if ms = ks for all

s ∈ S.

From the proof of this result they obtained two corollaries, summarised as

follows:

Corollary 3.3.26. [30, Corollaries 2 and 3] For a finitely generated commu-

tative semigroup S the following are equivalent:

(1) S is completely separable;

(2) S is strongly subsemigroup separable;

(3) if a, b ∈ S are such that a ∈ bnS for all n ∈ N, then there exists m ∈ N
such that a = bma.

Theorem 3.3.23 enhances the result of Corollary 3.3.26 by showing that for

a finitely generated commutative semigroup, weak subsemigroup separabil-

ity is also equivalent to complete separability. The characterisation of CS

finitely generated commutative semigroups in terms of H-classes given in

Theorem 3.3.23 removes the need for the parameters ks and ms of Theo-

rem 3.3.25. The methods developed to give this characterisation were also

utilised in characterising when a finitely generated commutative semigroup is

MSS. In particular, Lemma 3.3.21 is used in both the proof Theorem 3.3.22

and Theorem 3.3.23. The proofs we provide are independent of the work of

Kublanovskĭı and Lesohin, although the reader may note parallels between

the methods used.

3.4 Beyond Finitely Generated Commutative Semigroups

Given that for finitely generated commutative semigroups, the three proper-

ties of complete separability, strong subsemigroup separability and weak sub-

semigroup separability coincide, the following questions naturally arise.

� For commutative semigroups in general (not necessarily finitely gener-

ated), do the properties of complete separability and strong subsemi-

group separability coincide?
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� For commutative semigroups in general, do the properties of strong

subsemigroup separability and weak subsemigroup separability coin-

cide?

� For finitely generated semigroups in general (not necessarily commu-

tative), do the properties of complete separability and strong subsemi-

group separability coincide?

� For finitely generated semigroups in general, do the properties of strong

subsemigroup separability and weak subsemigroup separability coin-

cide?

In this section we answer all of these questions in the negative. But we

begin with a brief survey of the semigroup separability properties of abelian

groups.

3.4.1 Semigroup Separability Properties of Abelian Groups

Recall the following result concerning the semigroup-theoretic separability

properties for groups.

Proposition 1.2.17. For a group G we have:

(i) G is monogenic subsemigroup separable if and only if G is torsion and

monogenic subgroup separable;

(ii) G is weakly subsemigroup separable if and only if G is torsion and

weakly subgroup separable;

(iii) G is strongly subsemigroup separable if and only if G is torsion and

strongly subgroup separable.

We will now discuss the situation for abelian groups. It is known that a

group is residually finite if and only if it is isomorphic to a subdirect product

of finite groups, see [12, Corollary 2.7.2]. As every finite abelian group is

itself a direct product of finite cyclic groups, it follows that an abelian group

is residually finite if and only if it is isomorphic to a subdirect product of

finite cyclic groups.

In order to discuss monogenic subsemigroup separability and weak subsemi-
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group separability in abelian groups, we first give the following definition and

lemma.

Definition 3.4.1. A semigroup is called locally finite if every finitely gener-

ated subsemigroup if finite.

Lemma 3.4.2. Let S be a semigroup which is both residually finite and locally

finite. Then S is weakly subsemigroup separable.

Proof. Let T ≤ S be finitely generated and x /∈ T . Then as S is locally finite,

T is finite. Then as S is residually finite, we can separate x from T .

For an abelian group to be weakly subsemigroup separable, it is necessary

for it to be residually finite. It is also necessary for it to be torsion, as

noted above. Since torsion abelian groups are locally finite, being residually

finite and torsion are sufficient conditions for an abelian group to be weakly

subsemigroup separable by Lemma 3.4.2. It also follows that an abelian group

is monogenic subsemigroup separable if and only if it is residually finite and

torsion. That is, the properties of monogenic subsemigroup separability and

weak subsemigroup separability coincide for abelian groups.

In [17], Golubov characterises when commutative semigroups are strongly

subsemigroup separable. We can apply his result to abelian groups but first

we need the following definition.

Definition 3.4.3. For an abelian group A and for a prime p, the p-primary

component of A is the set

Ap = {a ∈ A | o(a) = pn for some n ∈ N}

where o(a) is the order of the element a. We say that Ap has finite exponent

if there exists n ∈ N such that o(a) ≤ pn for all a ∈ Ap.

Then [17, Theorem 2] tells us that an abelian group A is strongly subsemi-

group separable if and only if A is torsion and for each prime p, the p-primary

component has finite exponent.
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Finally, Theorem 1.2.19 tells us that a group is completely separable if and

only if it is finite. We summarise all these observations in the following

theorem.

Theorem 3.4.4. Let A be an abelian group.

(1) A is residually finite if and only if it is isomorphic to a subdirect product

of finite cyclic groups.

(2) A is monogenic subsemigroup separable if and only if A is weakly sub-

semigroup separable.

(3) A is weakly subsemigroup separable (and hence monogenic subsemi-

group separable) if and only if it is torsion and residually finite.

(3) A is strongly subsemigroup separable if and only if it is torsion and for

each prime p, the p-primary component has finite exponent.

(4) A is completely separable if and only if it is finite.

3.4.2 Non-finitely Generated Commutative Semigroups

In this subsection we show two things. Firstly, that the properties of weak

subsemigroup separability and strong subsemigroup separability do not co-

incide for commutative semigroups. Secondly, that the properties of strong

subsemigroup separability and complete separability do not coincide for com-

mutative semigroups. We first give an example of a commutative semigroup

that is weakly subsemigroup separable but not strongly subsemigroup sepa-

rable. In order to do this, we first establish the following result.

Proposition 3.4.5. If a residually finite semigroup S has N as a homomor-

phic image, then it is weakly subsemigroup separable.

Proof. Let T ≤ S be finitely generated and let x ∈ S \ T . By assumption

there exists a homomorphism φ : S → N. Let n = φ(x). The set I =

{m | m > n} ⊆ N is an ideal of N. Let ψ : N → N/I be the canonical

homomorphism.

Since T is finitely generated and φ(st) > φ(s) for any s, t ∈ S, it follows that
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the set

Y = {t ∈ T | φ(t) = n}

is finite. Since S is residually finite, there exists a finite semigroup P and

homomorphism σ : S → P such that σ(x) /∈ σ(Y ). Then (ψ ◦ φ) × σ : S →
N/I × P given by s 7→ (ψ ◦ φ(s), σ(s)) separates x from T .

Example 3.4.6. Consider S = N× Z. Now, S is residually finite since it is

the direct product of two residually finite semigroups, see Lemma 4.1.1. As

the projection map onto the first factor gives a homomorphic image which

is N, we conclude that S is weakly subsemigroup separable by Proposition

3.4.5.

We now show that S is not strongly subsemigroup separable. Consider N×
N ≤ S and the element (2, 0) /∈ N × N. Let ∼ be a finite index congruence

on S. Then there exist i, j ∈ Z with i < j such that (1, i) ∼ (1, j). Then

(2, 0) = (1, i)(1,−i) ∼ (1, j)(1,−i) = (2, j − i) ∈ N× N.

Hence, S is a commutative semigroup which is weakly subsemigroup separa-

ble but not strongly subsemigroup separable.

We are left to find an example of a strongly subsemigroup separable com-

mutative semigroup which is not completely separable. Our example is a

group.

Example 3.4.7. Let C2 denote the cyclic group of order 2. Let G = CN2 be

the Cartesian product of countably many copies of C2. By Theorem 1.2.19,

G is not completely separable. But from Theorem 3.4.4, an abelian group

is strongly subsemigroup separable if and only if it is torsion and for each

prime p, the p-primary component is bounded in the exponent. As every

non-identity element in G has order 2, G certainly satisfies these conditions.

Hence G is strongly subsemigroup separable.
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3.4.3 Finitely Generated Semigroups

In the previous section we showed that being commutative is not on its own

a sufficient condition for the three properties complete separability, strong

subsemigroup separability and weak separability to coincide. In this section

we will show that being finitely generated is also not on its own a sufficient

condition. That is, we provide two examples of finitely generated semigroups,

one of which is weakly subsemigroup separable but not strongly subsemigroup

separable, and the other strongly subsemigroup separable but not completely

separable.

First we give an example of a finitely generated semigroup which is weakly

subsemigroup separable but not strongly subsemigroup separable. We do

this by introducing a construction of semigroups and establishing necessary

and sufficient conditions for this construction to be weakly subsemigroup

separable and finitely generated. For the construction and proof, we will use

the following notation.

Notation 3.4.8. For a subset Z ⊆ G of an abelian group G, let XZ = {xz |
z ∈ Z} be a set disjoint from G.

Construction 3.4.9. Let T be a semigroup, and let G be an abelian group

such that there exists a surjective homomorphism φ : T → G. Let N =

XG∪{0} be a null semigroup with identity element 0, such that N is disjoint

from T . Let S(T,G, φ) = T ∪ N , with multiplication inherited from T and

N , and for t ∈ T and xg ∈ XG we define the following multiplication:

xg · t = xgφ(t),

t · xg = xg(φ(t))−1 ,

t · 0 = 0 · t = 0.

An exhaustive check confirms this multiplication is associative and therefore

S(T,G, φ) is a semigroup.

This construction is designed to have the following property.

Lemma 3.4.10. In Construction 3.4.9, the set XG forms a non-group H-
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class and the Schützenberger group of this H-class is isomorphic to G.

Proof. Let e denote the identity of G and let H denote the H-class of xe.

First we show that H = XG. Note that for all s ∈ S(T,G, φ), we have that

s · xe, xe · s ∈ XG ∪ {0}. This means that H ⊆ XG ∪ {0}. But as 0 is a

zero element for the entirety of S(T,G, φ), it cannot be the case that 0 ∈ H.

Hence H ⊆ XG.

Now let xg ∈ XG. As φ is surjective there exist u, v ∈ T such that φ(u) = g

and φ(v) = g−1. Then

xe · u = xg, xg · v = xe, v · xe = xg, u · xg = xe.

That is, xgH xe and so XG ⊆ H. Hence we have that H = XG, as desired.

As XG is idempotent free, we have that H is not a group.

Now we show that Γ(H) is isomorphic to G. First note that Stab(H) = T 1.

Let φ : T 1 → G be the extension of φ given by 1 7→ e and t 7→ φ(t) for

all t ∈ T . Then for u, v ∈ T 1, we claim that [u]σ = [v]σ if and only if

φ(u) = φ(v), where σ is the Schützenberger congruence. To see this, first

assume that [u]σ = [v]σ. Then for all g ∈ G, we have that xg · u = xg · v. So

it must be that gφ(u) = gφ(v) and so φ(u) = φ(v). Equally, if φ(u) = φ(v)

then it must be that xg · u = xg · v for all g ∈ G and hence [u]σ = [v]σ.

The claim gives us ψ : Γ(H)→ G, given by [u]σ 7→ φ(u), is well-defined and

injective.

We now show that ψ is a group isomorphism. First let [u]σ, [v]σ ∈ Γ(H).

Then

ψ([u]σ[v]σ) = ψ([uv]σ) = φ(uv) = φ(u)φ(v) = ψ([u]σ)ψ([v]σ).

Hence ψ is a homomorphism. Finally, as φ is surjective, we have that ψ is

also surjective. Hence ψ is an isomorphism, as desired.

We now give necessary and sufficient conditions for S(T,G, φ) to be weakly

subsemigroup separable.
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Proposition 3.4.11. Let T be a semigroup, let G be an abelian group such

that there exists a surjective homomorphism φ : T → G, and let S =

S(T,G, φ). Then S is weakly subsemigroup separable if and only if T is

weakly subsemigroup separable and G is weakly subgroup separable.

Proof. (⇒) First assume that S is weakly subsemigroup separable. Since T

is a subsemigroup of S, it must be weakly subsemigroup separable by Propo-

sition 1.2.13. Since G is abelian and isomorphic to a Schützenberger group

of S, it follows from Corollary 3.2.15 that G is weakly subgroup separable.

(⇐) Now assume that T is weakly subsemigroup separable and G is weakly

subgroup separable. Let Y ⊆ S be a finite set, U = 〈Y 〉 ≤ S and v ∈ S\U .

Let N ⊆ S be as in Construction 3.4.9. Let Y1 = Y ∩ T and Y2 = Y ∩ N .

We split into cases.

Case 1. Assume that v ∈ T . Note that T ∩ U = 〈Y1〉. As T is weakly

subsemigroup separable and v /∈ 〈Y1〉, there exists a finite semigroup P and

homomorphism ψ : T → P such that ψ(v) /∈ ψ(T \〈Y1〉). Define ψ : S → P 0

by

s 7→

ψ(s) if s ∈ T,

0 otherwise.

Then ψ is a homomorphism and ψ(v) /∈ ψ(U).

Case 2. Now assume that v ∈ N and Y2 = ∅. Then U ⊆ T . Let ρ be the

congruence on S with classes T and N . Then [v]ρ 6= [u]ρ for all u ∈ U as

required.

Case 3. Finally assume that v ∈ N and Y2 6= ∅. Note that 0 ∈ Y 2
2 ⊆ N ,

and hence v 6= 0. Let v = xg and Y2 ∩XG = {xg1 , . . . , xgn}. Let H ≤Gp G be

the subgroup generated (as a group) by the set φ(Y1). Then we claim that

U ∩N = XZ ∪ {0},

where Z =
⋃n
i=1Hgi. For the proof of this claim we extend the definition of

φ to a function from T 1 to G, by setting φ(1) = e, where e is the identity
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of G. We first show that U ∩ N ⊆ XZ ∪ {0}. We have already noted that

0 ∈ U . Now let xk ∈ (U ∩ N) \ {0}. Then xk ∈ 〈Y 〉. As 〈Y1〉 ≤ T , it

must be that any way as expressing xk as a product of elements of Y must

contain at least one element of Y2 \ {0}. Let xgi be that element. Then the

decomposition of xk as product of elements of Y has the form xk = s1xgis2,

where s1, s2 ∈ U1. Now if either of s1 or s2 ∈ N , we we would have that

xk = 0, which is a contradiction. Hence s1, s2 ∈ T 1 and hence s1, s2 ∈ 〈Y1〉1.

Then k = giφ(s1)−1φ(s2) ∈ Z, as desired. Hence U ∩N ⊆ XZ ∪ {0}.

Now we show XZ∪{0} ⊆ U∩N . Again {0} ∈ U∩N . Now let xk ∈ XZ . Then

k ∈ Hgi for some i ∈ {1, 2, . . . , n}. That is k = hgi for some h ∈ φ(〈Y1〉)1.

Then h = φ(s1)−1φ(s2), for some s1, s2 ∈ 〈Y1〉1. Then xk = s1xgis2 ∈ U ∩N ,

as desired. This completes the proof of the claim.

As v /∈ U , it follows that g /∈
⋃n
i=1Hgi. As G is weakly subgroup separable

there exists a finite groupK and homomorphism ψ : G→ K such that ψ(g) /∈
ψ (
⋃n
i=1Hgi) by Corollary 1.2.21. Let P = S(K,K, id) = K∪XK∪{0}. Note

that P is finite. Let ψ : S → P be given by

s 7→


(ψ ◦ φ)(s) if s ∈ T,

xψ(a) if s = xa for some a ∈ G,

0 if s = 0.

Then it is straightforward to check that ψ is a homomorphism with ψ(v) /∈
ψ(U).

The next lemma provides necessary and sufficient conditions for S(T,G, φ)

to be finitely generated.

Lemma 3.4.12. Let T be a semigroup, let G be an abelian group such that

there exists a surjective homomorphism φ : T → G, and let S = S(T,G, φ).

Then S is finitely generated if and only if T is finitely generated.

Proof. If S is finitely generated, then as T is the complement of an ideal,

it must also be finitely generated. Conversely, if T is generated by a finite
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set Y , then it is easy to see that S is generated by Y ∪ {xe}, where e is the

identity of G.

We provide an example of a weakly subsemigroup separable semigroup S

that has the following properties:

� S is finitely generated, non-commutative, but not strongly subsemi-

group separable;

� S has a Schützenberger group which is not weakly subsemigroup sepa-

rable.

Example 3.4.13. Let F2 = {a, b}+ be the free semigroup on {a, b}. Let

φ : F2 → Z be the surjective homomorphism given by a 7→ 1 and b 7→ −1. As

F2 is completely separable by Corollary 2.2.2 and Z is weakly subgroup sep-

arable by Theorem 3.1.4, it follows that S(F2,Z, φ) is weakly subsemigroup

separable by Proposition 3.4.11. Since F2 is finitely generated, S(F2,Z, φ)

is finitely generated by Lemma 3.4.12. It is clear that S(F2,Z, φ) is not

commutative.

By Lemma 3.4.10 we have that XZ is an infinite non-group H-class with

Schützenberger group isomorphic to Z, which is infinite. Hence S(F2,Z, φ)

is not strongly subsemigroup separable by Proposition 3.2.8. Also note that

from Example 1.2.5, we have the Schützenberger group isomorphic to Z is

not MSS, and therefore certianly not WSS. Notice that, due to the way the

right and left actions of F2 on XZ are defined, the H-class XZ does not satisfy

the condition of Lemma 3.2.11.

We conclude this section by exhibiting an example of a finitely generated

semigroup which is strongly subsemigroup separable but not completely sep-

arable.

Example 3.4.14. Let F = {a, b, c}+ be the free semigroup on the set

{a, b, c}. Let I ≤ F be the ideal generated by the set {x2 | x ∈ F}. Let

S = F/I be the Rees quotient of F by I. We can view S as the set of all

square-free words over the alphabet {a, b, c} with a zero adjoined. Multipli-
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cation in S is concatenation, unless concatenation creates a word containing

a contiguous subword which is a square, in which case the product is zero.

Certainly S is finitely generated by {a, b, c}.

First we will show that S is not completely separable. It is known that there

exists an infinite square-free sequence w = x1x2x3 . . . over {a, b, c}, see [35,

Chapter 2]. Then every finite prefix of w is a non-zero element of S. Let

wi = x1x2 . . . xi ∈ S. For i < j, let vi,j = xi+1xi+2 . . . xj ∈ S. Let ∼ be a

finite index congruence class on S. Then there exist i, j ∈ N, with i < j,

such that wi ∼ wj. Then

wj = wivi,j ∼ wjvi,j = wivi,jvi,j = 0.

So we have shown that it is not possible for 0 to be separated from S \ {0}
in a finite quotient. Hence, S is not completely separable.

Now let T ≤ S. Then 0 ∈ T . For x ∈ S\{0} let |x| denote the length of x

in terms of the generators {a, b, c}. Now let v /∈ T where |v| = n. Let

I = {x ∈ S | |x| > n} ∪ {0}.

Then I is an ideal. Clearly the Rees quotient S/I is finite. Furthermore,

[v]I = {v}. Hence, S is strongly subsemigroup separable.

3.5 Semigroups with Finitely Many H-classes

In Section 3.2 we asked which of our separability properties are inherited by

Schützenberger groups. We showed in Corollary 3.2.9 and Corollary 3.2.10

that the properties of complete separability and strong subsemigroup sepa-

rability are inherited by Schützenberger groups. Although it is not true that

every Schützenberger group of a WSS semigroup is itself WSS or even MSS,

as demonstrated in Example 3.4.13, we showed in Corollary 3.2.15 that weak

subsemigroup separability is inherited by Schützenberger groups of commu-

tative semigroups.

One may ask whether the properties are inherited in the opposite direction,
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that is, if every Schützenberger group of a semigroup S has a separability

property must S itself satisfy the same property? This, however, turns out

not to be true. Let P be any of the properties of complete separability,

strong subsemigroup separability, weak separability, monogenic separability

or residual finiteness. A semigroup whose Schützenberger groups all have

property P may not itself have property P. One example is the bicyclic

monoid, given by the monoid presentation Mon〈 b, c | bc = 1 〉. The bi-

cyclic monoid is H-trivial, meaning that every H-class is a singleton, so every

Schützenberger group is the trivial group and certainly completely separable.

However the bicyclic monoid is not even residually finite [11, Corollary 1.12].

In fact this direction fails comprehensively even for commutative semigroups,

as the next example shows.

Example 3.5.1. Let A = 〈a〉 ∼= N. Let B = {bi | i ∈ N} ∪ {0} be the

countable null semigroup. Let S = A∪B with multiplication between A and

B as follows:

aibj = bja
i =

bj−i for j > i,

0 otherwise,

ai0 = 0ai = 0.

An exhaustive case analysis shows that this multiplication is associative and

clearly it is commutative. We claim that S is H-trivial. First note that 0

is a zero element for the entirety of S. We always have that the H-class of

a zero element is a singleton. Not consider an element bi ∈ B \ {0}. Now,

biS = {bj | 1 ≤ j < i} ∪ {0}. So there does not exist t ∈ biS such that

bi ∈ tS. Hence Hbi = {bi}. Finally consider an element ai ∈ A. We have

that aiS = {aj | j > i} ∪B. So there cannot exist t ∈ aiS such that ai ∈ tS.

So Hai = {ai} and so S is H-trivial.

However, S is not residually finite. Suppose that ∼ is a finite index con-

gruence on S. Then there exist i, j ∈ N, with i < j, such that bi ∼ bj.

Then

0 = bia
j−1 ∼ bja

j−1 = b1.

126



So we cannot separate 0 and b1 in a finite quotient so S is not residually

finite.

Remark 3.5.2. In the semigroup S of Example 3.5.1, both the ideal B and

the Rees quotient S/B ∼= N0 are CS. That is, S is the ideal extension of a

CS semigroup by a CS semigroup. However, this is not enough to guarantee

that S is residually finite, let alone CS.

In the remainder of this section we restrict our attention to the class of

semigroups which have only finitely many H-classes. This is motivated by

the following result.

Theorem 3.5.3. [23, Theorem 7.2] Let S be a semigroup with finitely many

H-classes. Then S is residually finite if and only if all its Schützenberger

groups are residually finite.

We shall investigate whether there are analogous results for the properties of

complete separability, strong subsemigroup separability, weak subsemigroup

separability and monogenic subsemigroup separability.

For complete separability, the analogous result holds.

Proposition 3.5.4. Let S be a semigroup with only finitely many H-classes.

Then the following are equivalent:

(1) S is completely separable;

(2) all the Schützenberger groups of S are completely separable;

(3) S is finite.

Proof. (1)⇒ (2). If S is completely separable, then all of its Schützenberger

groups are completely separable by Corollary 3.2.10.

(2) ⇒ (3). If a Schützenberger group is completely separable it is finite by

Theorem 1.2.19. As a Schützenberger group is in bijection with the corre-

sponding H-class, and S has only finitely many H-classes, we conclude that

S is finite.

(3) ⇒ (1). Clear.
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From Corollary 3.2.9, we know that every Schützenberger group of an SSS

semigroup is itself SSS. However, even when a semigroup has only finitely

many H-classes, every Schützenberger group being SSS does not guarantee

that the semigroup is SSS, as the following example demonstrates.

Example 3.5.5. LetG be an infinite strongly subsemigroup separable abelian

group. The existence of such a group is established by Theorem 3.4.4. Then,

recalling Construction 3.4.9, S = S(G,G, id) has three H-classes: G, XG and

{0}. The Schützenberger groups of the H-classes are isomorphic to G, G and

the trivial group respectively. Then certainly every Schützenberger group is

SSS. However, since XG is an infinite non-group H-class, S is not strongly

subsemigroup separable by Proposition 3.2.8.

We now turn our attention to weak subsemigroup separability. Along with

monogenic subsemigroup separability, this is an example of a separabil-

ity property that is not necessarily inherited by Schützenberger groups, as

demonstrated by Example 3.4.13. However, when we restrict to a semi-

group with only finitely many H-classes, the following remains an open prob-

lem.

Open Problem 3.5.6. Is it true that a semigroup with only finitely manyH-

classes is weakly subsemigroup separable if and only if all its Schützenberger

groups are weakly subsemigroup separable?

Indeed, we do not even know if either direction of the above statement holds.

We restrict our attention to locally finite semigroups with only finitely many

H-classes. By concentrating on this smaller class of semigroups we will be

able to evoke Lemma 3.4.2, which says that a semigroup which is both resid-

ually finite and locally finite is weakly subsemigroup separable. We will focus

our attention on semigroups where every maximal subgroup is solvable, which

is defined below.

Definition 3.5.7. A group G is solvable if there exist subgroups

1 = G0 <Gp G1 <Gp · · · <Gp Gk = G
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such that Gj−1 is normal in Gj and Gj/Gj−1 is abelian for j ∈ {1, 2, · · · , k}.

It is clear from the definition that abelian groups are solvable. This line of

investigation allows us to give the following partial answer to Open Prob-

lem 3.5.6.

Theorem 3.5.8. Let S be a semigroup with only finitely many H-classes

whose maximal subgroups are all solvable. Then S is weakly subsemigroup

separable if and only if all its Schützenberger groups are weakly subsemigroup

separable.

In particular we note that a commutative semigroup with finitely many H-

classes is weakly subsemigroup separable if and only if all its Schützenberger

groups are weakly subsemigroup separable. To prove Theorem 3.5.8 we make

use of several lemmas.

A semigroup S is called an epigroup if every element of S has a power which

lies in a subgroup of S.

Lemma 3.5.9. A semigroup S with finitely many H-classes is an epigroup.

Proof. Let s ∈ S. As S has finitely many H-classes there exist i, j ∈ N with

i < j such that siHsj. Let H be the H-class of si. Then sj−i ∈ Stab(H).

Hence (si)j−i = (sj−i)i ∈ Stab(H), so (si)j−i+1 = si(si)j−i ∈ H. Therefore

Hj−i+1 ∩H 6= ∅, and so H is a group by Lemma 1.3.37.

Lemma 3.5.10. Let S be a semigroup with finitely many H-classes. If every

maximal subgroup of S is torsion then S is periodic.

Proof. By Lemma 3.5.9, S is an epigroup. Let s ∈ S. Then there is a power

of s in a torsion subgroup of S; in particular, there exists i ∈ N such that

si = e, where e is idempotent. Hence s2i = e2 = e = si and S is periodic.

Corollary 3.5.11. Let S be a semigroup with finitely many H-classes. If S

is monogenic subsemigroup separable, then S is periodic.
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Proof. As S is MSS, then so are all of its maximal subgroups by Proposi-

tion 1.2.13. For a group to be MSS it is necessary for it to be torsion. Indeed,

if a group is not torsion it contains a subgroup isomorphic to Z and therefore

is not MSS by Example 1.2.5 and Proposition 1.2.13. Therefore the result

follows by Lemma 3.5.10.

Corollary 3.5.12. Let S be a semigroup with finitely many H-classes. If

every Schützenberger group of S is monogenic subsemigroup separable then

S is periodic.

Proof. If every Schützenberger group is MSS, then every maximal subgroup

of S is MSS and hence torsion, so S is periodic by Lemma 3.5.10.

At this point on our journey to prove Theorem 3.5.8, we briefly pause to

consider the property of monogenic subsemigroup separability. The theory

developed so far allows us to give the following result.

Theorem 3.5.13. Let S be a semigroup with finitely many H-classes. Then

S is monogenic subsemigroup separable if and only if every Schützenberger

group of S is monogenic subsemigroup separable.

Proof. (⇒) Assume that S is MSS. Then by Corollary 3.5.11 we have that

S is periodic. Let Γ(H) be some Schützenberger group of S. As Γ(H) is

the quotient of a periodic monoid, it must be that Γ(H) is torsion. So any

monogenic subsemigroup U of Γ(H) is finite. Let v ∈ Γ(H) \ U . As S is

MSS and therefore residually finite, we have that Γ(H) is residually finite by

Theorem 3.5.3. Therefore we can separate v from U .

(⇐) Assume that every Schützenberger group of S is MSS. Let U be a mono-

genic subsemigroup of S and let v ∈ S \U . By Corollary 3.5.12 we have that

S is periodic. Hence U is a finite set. As every Schützenberger group of S is

MSS, they are certainly residually finite. Then by Theorem 3.5.3, we have

that S is residually finite. Hence we can separate v from U , as desired.
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Remark 3.5.14. We note that a semigroup with finitely many H-classes is

MSS if and only if it is residually finite and periodic. The forward direction

follows as MSS semigroups are residually finite by Lemma 1.2.11 and MSS

semigroups with finitely many H-classes are periodic by Corollary 3.5.11.

The backward directions follows as in a periodic semigroup every monogenic

subsemigroup is finite and and residually finiteness can be thought of as the

separability property with respect to the collection of finite subsets.

We now continue on our quest to prove Theorem 3.5.8. We show that an

epigroup with finitely many J -classes is locally finite if and only if all its max-

imal subgroups are locally finite. We first consider the case when a semigroup

with a zero only has two J -classes. For this we need some definitions.

Definition 3.5.15. A semigroup S with a zero is called 0-simple if the only

ideals of S are {0} and S and S2 6= {0}. A 0-simple semigroup is called

completely 0-simple if it is both 0-simple and an epigroup.

For equivalent definitions of completely 0-simple semigroups see [28, Theorem

3.2.11]. Rees showed that the class of completely 0-simple semigroups coin-

cides with the class of Rees matrix semigroups over zero-groups [28, Theorem

3.2.3], which we now define.

Definition 3.5.16. For a group G, let the zero-group G0 be G with a zero

adjoined. Let I,Λ be non empty sets and P = (pλi) be a Λ× I matrix with

entries from G0 such that no row or column of P consists entirely of zeros.

The Rees matrix semigroup over the zero-group G0 is S = M0[G; I,Λ;P ] =

(I ×G× Λ) ∪ {0} with multiplication given as follows:

(i, a, λ)(j, b, µ) =

(i, apλjb, µ) if pλj 6= 0,

0 if pλj = 0,

(i, a, λ)0 = 0(i, a, λ) = 0 · 0 = 0.

In a completely 0-simple semigroup M0[G; I,Λ;P ], theH-class of the element

(i, a, λ) is {i} ×G× {λ}. This is a maximal subgroup if and only if pλi 6= 0,

in which case it is isomorphic to G.
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Lemma 3.5.17. A completely 0-simple semigroup S = M0[G; I,Λ;P ] is

locally finite if and only if G is locally finite.

Proof. Suppose that S is locally finite. As S has a subsemigroup isomorphic

to G, and local finiteness is inherited by subsemigroups, it follows that G is

locally finite.

Now suppose that G is locally finite. Let T = 〈(i1, g1, λ1), . . . , (in, gn, λn)〉.
We will show that the intersection of T with a non-zero H-class is finite. Let

K be the subgroup of G generated by the set

{g1, g2, . . . , gn} ∪ {pλkil | pλkil 6= 0, 1 ≤ k, l ≤ n}.

As K is finitely generated, it is finite. Let H = {i} ×G× {λ} be a non-zero

H-class. Then H ∩ T ⊆ {i} × K × {λ} and hence H ∩ T is finite. Now T

can only intersect finitely many non-zero H-classes. Indeed, if T intersects

{j} × H × {µ}, then j ∈ {i1, i2, . . . , in} and µ ∈ {λ1, λ2, . . . , λn}. Hence it

follows that T is finite.

Lemma 3.5.18. Let S be an epigroup with finitely many J -classes. Then

S is locally finite if and only if all its maximal subgroups are locally finite.

Proof. (⇒) The forward direction follows as subsemigroups inherit local

finiteness.

(⇐) Now assume that all the maximal subgroups of S are locally finite. We

assume that S has a zero element. If not we may adjoin one as S0 is also

an epigroup with finitely many J -classes (precisely one more than S) and

all the maximal subgroups of S0 are also locally finite. Our argument shall

show that S0 is locally finite, and as S ≤ S0, we will have also shown that S

is locally finite. We proceed by induction on the number of J -classes.

A semigroup with a zero and only one J -class is trivial, so the result certainly

holds for the base case.

132



We now assume that S has more than one J -class. Let I be the minimal non-

zero ideal of S. Then I is 0-simple or a null semigroup, see [25, Proposition

2.4.9]. In the case that I is 0-simple, as S is an epigroup then so is I and

therefore I is completely 0-simple. Furthermore, the maximal subgroups of

I are the maximal subgroups of S contained in I, see [28, Proposition 2.4.2]

Therefore we conclude that I is locally finite by Lemma 3.5.17. Note that

null semigroups are also locally finite. Indeed, if X is a non-empty finite set

of a null semigroup with zero element 0, then 〈X〉 = X∪{0} (note this union

is not necessarily disjoint).

As I is a minimal non-zero ideal, I is the union of at least two J -classes and

so the Rees quotient S/I has fewer J -classes than S. Hence S/I is locally

finite by the inductive hypothesis. Let T be a finitely generated subsemigroup

of S. As S/I is locally finite, it follows that the Rees quotient T/(T ∩ I) is

finite. Then the set T \ (T ∩ I) is finite. Hence T ∩ I is a subsemigroup with

finite complement in T . Therefore, as T is finitely generated, T ∩ I is also

finitely generated by [49, Theorem 1.1]. Then T ∩ I is finite as I is locally

finite. Then T = (T \ (T ∩ I)) ∪ (T ∩ I) is finite and hence S is locally

finite.

Lemmas 3.5.9 and 3.5.18 together yield:

Corollary 3.5.19. Let S be a semigroup with finitely many H-classes. Then

S is locally finite if and only if all its maximal subgroups are locally finite.

We are now in a position to prove Theorem 3.5.8.

Proof of Theorem 3.5.8. Let S be a semigroup with finitely many H-classes

whose maximal subgroups are all solvable.

(⇒) Firstly assume that S is WSS. Then S is residually finite and therefore

its Schützenberger groups are residually finite by Theorem 3.5.3. As S is

WSS and only has finitely many H-classes, S is periodic by Corollary 3.5.11.

Then all its Schützenberger groups are torsion. Torsion solvable groups are

locally finite, see [47, p. 5.4.11]. Hence the Schützenberger groups are both
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residually finite and locally finite, so they are WSS by Lemma 3.4.2.

(⇐) Now assume that all the Schützenberger groups of S are WSS. Then

they are certainly residually finite and it follows that S is residually finite by

Theorem 3.5.3. Furthermore, as S only has finitely many H-classes and all

its Schützenberger groups are weakly subsemigroup separable, S is periodic

by Corollary 3.5.12. Then all its maximal subgroups are torsion and solvable

so it follows that they are locally finite. Hence S is locally finite by Corollary

3.5.19 and therefore S is WSS by Lemma 3.4.2.

If there is any hope of solving Open Problem 3.5.6, we must consider cases

where an infinite Schützenberger group is weakly subsemigroup separable but

not solvable. One such example is the Grigorchuk group, which is a finitely

generated infinite torsion group that is weakly subgroup separable (and hence

WSS), see [24]. In particular, the following problem remains open.

Open Problem 3.5.20. Let G be the Grigorchuk group, let I and Λ finite

sets, and let P = (pλi) a Λ× I matrix with entries from G0 such that no row

or column consists entirely of zeros. Is the semigroup M0[G; I,Λ;P ] weakly

subsemigroup separable?
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Chapter 4

Separability Properties and

Semigroup Constructions

In this chapter we consider how various semigroup constructions preserve

our separability properties. The constructions we consider are natural and

important ways of building new semigroups from old. This motivates the

investigation into how these constructions interact with different separability

properties. More motivation is provided by the fact that the group-theoretic

versions of many of these constructions have been studied in relation to

group separability properties. Furthermore, it is also known how residual

finiteness interacts with the semigroup version of these constructions. All

this information is presented when we introduce each construction.

In Section 4.1 we consider direct products. In this section we ask two ques-

tions. Firstly, for a separability property P , if semigroups S and T both have

property P , does S × T necessarily have property P? Secondly, if S × T has

property P , do both S and T necessarily have property P? We work through

the properties in turn. The answer to the first question turns out be no for

all our separability properties except complete separability. This motivates

us to ask when a semigroup preserves a separability property in the direct

product. That is, what conditions do we need on a semigroup T such that

S × T has property P for every semigroup S with property P . We are able

to characterise when a finite semigroup is SSS-preserving (Theorem 4.1.18)
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and when a finite semigroup is MSS-preserving (Theorem 4.1.42). In Section

4.2, we perform a similar investigation for free products of semigroups. In

Section 4.3 we consider if separability properties can pass from large sub-

semigroups to their oversemigroups. Whilst being a large subsemigroup can

be considered a semigroup property rather than a semigroup construction,

the theory developed does allow us to say that if S has a property P , then

so do S1 and S0.

We now give a flavour of the results in this chapter by considering one of the

simplest semigroup constructions: the 0-direct union.

Definition 4.0.1. Let (Si)i∈I be a family of pairwise disjoint semigroups,

with |I| > 1. The underlying set of the 0-direct union Z = 0
⋃
i∈I Si is the

set
(⋃

i∈I Si
)
∪ {0}, where {0} is assumed to be disjoint from each Si. For

each a ∈ Z \ {0}, there exists a unique k ∈ I such that a ∈ Sk. We call k the

index of a. Let σ : Z \ {0} → I be the map which takes an element to its

index. We define a product on Z in the following way. For a, b ∈ Z define

a · b =

ab if σ(a) = σ(b),

0 otherwise,

0 · a = a · 0 = 0.

It is easy to check that this multiplication is associative and hence Z is a

semigroup.

Example 4.0.2. Let S1 = {e1} and S2 = {e2} be copies of the trivial

semigroup. Then Z = 0
⋃
i∈{1,2} Si is a three element semilattice. It has two

maximal elements, e1 and e2, and one minimal element, 0.

We now show that all our separability properties except complete separability

are inherited by the 0-direct union.

Proposition 4.0.3. Let P be on the following separability properties: resid-

ual finiteness, monogenic subsemigroup separability, weak subsemigroup sep-

arability and strong subsemigroup separability. If a family (Si)i∈I of pairwise

disjoint semigroups each have property P, then so does Z = 0
⋃
i∈I Si.
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Proof. Let X ⊆ Z be a subset of the type associated with property P and

let y ∈ Z \X. We split into cases.

Case 1. First we assume that y ∈ Z \ {0}. Then y ∈ Si for some i ∈ I. We

now split into two subcases: Si ∩X = ∅ and Si ∩X 6= ∅.

Case 1a. Assume that Si ∩X = ∅. Let φ : Si → {e} be the homomorphism

from Si to the trivial semigroup. Define φ : Z → {e}0 by

a 7→

φ(a) if a ∈ Si,

0 otherwise.

Then φ is a homomorphism. Observe that φ(y) = e but φ(X) = {0}. Hence

φ separates y from X.

Case 1b. Now assume that Si ∩ X 6= ∅. In this case Si ∩ X is a subset

of Si of the type associated with property P . As Si has property P , there

exists a finite semigroup P and a homomorphism φ : Si → P such that

φ(y) /∈ φ(Si ∩X). Define φ : Z → P 0 by

a 7→

φ(a) if a ∈ Si,

0 otherwise.

Then φ is a homomorphism. We have that φ(y) /∈ φ(Si ∩X). Furthermore,

φ(y) ∈ P but φ(X \ (Si ∩X)) = {0}. Hence φ separates y from X.

Case 2. Now assume that y = 0. We claim that there exists i ∈ I such

that X ⊆ Si. This is clear when property P is residual finiteness and X is

a singleton. For the other properties X is a subsemigroup, and so if there

exist x, x′ ∈ X such that x ∈ Si and x′ ∈ Sj, where i 6= j, then xx′ = 0 ∈ X.

This contradicts that y /∈ X and hence the claim holds.

Let φ : Si → {e} be the homomorphism from Si to the trivial semigroup.
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Define φ : Z → {e}0 by

a 7→

φ(a) if a ∈ Si,

0 otherwise.

Then φ is a homomorphism. Observe that φ(y) = 0 but φ(X) = {e}. Hence

φ separates y from X. This completes the proof of this claim and of the

proposition.

The following lemma shows that the 0-direct union of an infinite family of

pairwise disjoint is never complete separable.

Lemma 4.0.4. Let (Si)i∈I be a family of pairwise disjoint semigroups, where

I is infinite. Then Z = 0
⋃
i∈N Si is not completely separable.

Proof. Let ∼ be an arbitrary finite index congruence on Z. Then there exists

z, z′ ∈ Z \ {0} such that z ∼ z′ but z ∈ Si and z′ ∈ Sj with i 6= j. Therefore

0 = zz′ ∼ z′z′ ∈ Sj.

Hence |[0]∼| > 1. As ∼ was arbitrary we conclude that Z is not completely

separable.

However, when we are taking the 0-direct union of a finite number of com-

pletely separable semigroups the resulting semigroup is also completely sep-

arable.

Proposition 4.0.5. For completely separable semigroups S1, S2, . . . , Sk the

0-direct union Z = 0
⋃
i∈{1,...,k} Si is completely separable.

Proof. Let y ∈ Z. We split into two cases: y ∈ Z \ {0} and y = 0.

Case 1. Assume that y ∈ Z \ {0}. Then y ∈ Si for some i ∈ {1, 2, . . . , k}.
As Si is completely separable there exists a finite semigroup P and homo-

morphism φ : Si → P such that φ(y) /∈ φ(Si \ {y}). Define φ : Z → P 0
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by

a 7→

φ(a) if a ∈ Si,

0 otherwise.

Then φ is a homomorphism. We have that φ(y) /∈ φ(Si \ {y}). Furthermore

φ(y) ∈ P but φ(Z \ Si) = {0}. Hence φ separates y from Z \ {y} as desired.

Case 2. Now assume that y = 0. For i ∈ {1, 2, . . . , k}, let Ti = {ei} be a

copy of the trivial semigroup. Let T = 0
⋃
i∈{1,...,k} Ti. Note that |T | = k + 1

and so T is certainly finite. Define φ : Z → T as

a 7→

ei if a ∈ Si,

0 otherwise.

Then φ is a homomorphism the only element φ sends to 0 in T is 0. That is,

φ(0) /∈ φ(Z \ {0}). This completes the proof that Z is completely separable.

Combining the observation from Lemma 4.0.4 with

Proposition 4.0.5, along with the fact subsemigroups inherit complete sepa-

rability by Proposition 1.2.13, we obtain the following result.

Corollary 4.0.6. A 0-direct union Z =0
⋃
i∈I Si is completely separable if

and only if I is finite and for each i ∈ I the semigroup Si is completely

separable.

The fact that in general the 0-direct union does not preserve complete sep-

arability indicates that separability properties do not always behave in pre-

dictable ways when it comes to semigroup constructions. We note that if

a 0-direct union Z = 0
⋃
i∈I Si has a separability property P , then for each

i ∈ I, the semigroup Si has property P . This is because Si is a subsemigroup

of Z and inherits property P by Proposition 1.2.13. However, the situation

may not always be so straightforward. Indeed, in Section 4.1, we see that a

direct product may have a separability property when one of the factors that

make up the direct product does not have that separability property.
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4.1 Direct Products

The material in this section is largely based upon [43], co-written by the

author. In this section we investigate how semigroup separability properties

interact with the direct product. We have already seen in Example 1.2.5 that

Z is residually finite but not MSS. Recall that every residually finite algebra

is a subdirect product of finite algebras ([12, Corollary 2.7.2]). Therefore Z
can be realised as a subsemigroup of some direct product of finite semigroups,

all of which are completely separable. But as Z is not even MSS, this suggests

that an investigation into how arbitrary direct products preserve separability

properties is unlikely to bear much fruit. Therefore, we will restrict our

attention to direct products of finitely many semigroups. It is sufficient to

consider a direct product containing only two factors. Hence, throughout we

use direct product to refer to the direct product of two algebras, and not

in its more general meaning. The starting point for this investigation are

some previously known results concerning residual finiteness and the direct

product. The fact that residual finiteness of the factors implies the residual

finiteness of the direct product is universally true for algebraic structures.

We provide a proof of this fact for completeness.

Lemma 4.1.1. Let A and B be residually finite algebras of type F . Then

the direct product A×B is residually finite.

Proof. Let (a, b), (a′, b′) be distinct elements of A× B. Then at least one of

the following must be true: a 6= a′ or b 6= b′. Suppose that a 6= a′. Then

there exists a finite algebra U of type F and homomorphism φ : A→ U such

that φ(a) 6= φ(a′). Then the homomorphism φ ◦ πS : A × B → U separates

(a, b) from (a′, b′). A similar argument deals with the case when b 6= b′.

However, it is non-trivial to show that if a direct product of semigroups is

residually finite then both factors are residually finite. This was done by

Gray and Ruškuc in [22], giving the following theorem.

Theorem 4.1.2. [22, Theorem 2] The direct product of two semigroups is

residually finite if and only if both factors are residually finite.
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Group Property P CS SSS WSS MSS
G, H are P 3 3 7 3

=⇒ G×H is P Theorem 1.2.19 [37] [3, “The Example”] [52, Thm 4]

Table 4.1: Separability properties of direct products of groups

In a similar vein, it is also universally true that the direct product of two

completely separable algebras is completely separable. This was shown by

Golubov for semigroups in [21, Lemma 2]. On the other hand, the fact that

complete separability is inherited by the factors of the direct product of two

semigroups is non-trivial. We will fully prove both of these facts in Section

4.1.1.

Our aim is to determine for which of our three remaining separability proper-

ties an analogous result holds. In the cases where it does not, we investigate

further to determine what can be said about the separability properties of

direct products.

The preservation of group separability properties with respect to the direct

product has been studied. In [52, Theorem 4], Stebe showed that the direct

product of two monogenic subgroup separable groups is itself monogenic

subgroup separable. It is not true that the direct product of two weakly

subgroup separable groups is necessarily weakly subgroup separable. An

example is given by Allenby and Gregorac in [3, “The Example”]. The direct

product of two strongly subgroup separable groups is known to be strongly

subgroup separable. In [3] Allenby and Gregorac attribute this result to

Mal’cev in [37]. As we have already seen in Theorem 1.2.19, a group is

completely separable if and only if it is finite. Therefore it is trivial that the

direct product of two group is CS if and only if both factors are CS. The

results for groups are recorded in Table 4.1.

For groups G and H, both G and H are always isomorphic to subgroups of

G×H. By Proposition 1.2.13, subgroups inherit all of these properties. So

if G × H has one of these properties then so will both G and H. However,

the situation for algebras in general, and for semigroups in particular, may

not always be so straightforward. Indeed, in [53] de Witt was able to show
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Semigroup Property P CS SSS WSS MSS
S, T are P 3 7 7 7

=⇒ S × T is P Theorem 4.1.7 Ex 4.1.10 Ex 4.1.24 Ex 4.1.43
S × T is P 3 3 7 7

=⇒ S, T are P Theorem 4.1.7 Thm 4.1.11 Ex 3.4.6 Ex 3.4.6

Table 4.2: Separability properties of direct products of semigroups

that there exist monounary algebras A and B such that A is not residually

finite but A × B is completely separable. So factors of a direct product

of monounary algebras which has separability property P need not be P
themselves. We shall observe that within the class of semigroups, a similar

situation occurs with the properties of weak subsemigroup separability and

monogenic subsemigroup separability.

By working through the separability properties in turn, we are able to give

an analogous results table for semigroups to that of groups. We also consider

which separability properties are inherited from the direct product by its

factors. These results are recorded in Table 4.2.

It turns out that the properties of strong subsemigroup separability, weak

subsemigroup separability and monogenic subsemigroup separability are not

necessarily preserved in the direct product. This motivates the following

definition.

Definition 4.1.3. Let P be one of the following properties: strong subsemi-

group separability, weak subsemigroup separability or monogenic subsemi-

group separability. We say that a semigroup T is P-preserving (in direct

products) if for every semigroup S which has property P , the direct product

S × T also has property P .

We note that if a semigroup T is P-preserving then T must have property

P . This is because the trivial semigroup has property P and T is isomorphic

to the direct of itself with the trivial semigroup. In this section we focus on

characterising when finite semigroups are P-preserving. The remainder of

this section is organised by property.
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4.1.1 Complete Separability

In this subsection, we first prove the claim that the direct product of two

completely separable algebras is itself completely separable. For semigroups,

this was shown by Golubov in [21, Lemma 2], though the arguments used do

not generalise to all algebras.

Lemma 4.1.4. Let A and B be completely separable algebras of type F .

Then A×B is also completely separable.

Proof. Let (a, b) ∈ A × B. As A is CS, there exists a finite algebra U1 of

type F and homomorphism from φ1 : A→ U1 such that φ1(a) /∈ φ1(A\{a}).
Similarly, as B is CS, there exists a finite algebra U2 of type F and ho-

momorphism from φ2 : B → U2 such that φ2(b) /∈ φ2(B \ {b}). Then the

map φ : A × B → U1 × U2 given by (x, y) 7→ (φ1(x), φ2(y)) is a homomor-

phism. Furthermore φ(a, b) /∈ φ(A×B \{(a, b)}). Hence A×B is completely

separable.

In order to show that complete separability is inherited by factors of the

semigroup direct product, we will use a characterisation of complete sepa-

rability given by Golubov in [17]. This characterisation depends upon the

following definition.

Definition 4.1.5. For a semigroup S and a, b ∈ S define

[a : b] = {(u, v) ∈ S1 × S1 | ubv = a}.

Using this definition, we have the following characterisation of CS semi-

groups.

Theorem 4.1.6. A semigroup S is completely separable if and only if for

each a ∈ S the set {[a : s] | s ∈ S} is finite.

Using this, we give the following result.

Theorem 4.1.7. The direct product of semigroups S and T is completely

separable if and only if S and T are completely separable.
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Proof. (⇐) This follows from Lemma 4.1.4.

(⇒) This direction is the same as [21, Lemma 2]. We will prove the con-

trapositive, so assume that S is not CS. We show that S × T is not CS. By

Theorem 4.1.6 there exists some a ∈ S such that the set {[a : s] | s ∈ S} is

infinite. Let ∼ be a finite index congruence on S×T . Fix t ∈ T . Then there

exist b, c ∈ S such that [a : b] 6= [a : c] and (b, t) ∼ (c, t). Assume, without

loss of generality, that there exist u, v ∈ S1 such that ubv = a but ucv 6= a.

We split into two cases. The first case is that u, v ∈ S. Then

(a, t3) = (u, t)(b, t)(v, t) ∼ (u, t)(c, t)(v, t) = (ucv, t3).

The second case is that either u = 1 or v = 1. We will deal with the case

that u = 1. A similar argument deals with the case that v = 1. Then

(a, t3) = (b, t)(v, t2) ∼ (c, t)(v, t2) = (cv, t3) = (ucv, t3).

In either case we cannot separate (a, t3) from its complement. Therefore

S × T is not CS.

4.1.2 Strong Subsemigroup Separability

The behaviour of strong subsemigroup separability with respect to the direct

product is not as predictable as that of complete separability or residual

finiteness. Indeed, Golubov showed in [21] that the direct product of two

SSS semigroups need not be itself SSS. The example given involved the direct

product of two infinite SSS semigroups. We show that even when one of the

factors is finite, the direct product of two SSS semigroups need not be SSS

(Example 4.1.10). However, in creating these examples we develop sufficient

theory to show that if a direct product of semigroups is SSS then both factors

are SSS (Theorem 4.1.11).

Lemma 4.1.8. Let S be a semigroup which is not completely separable and

let T be a monogenic semigroup with index m ≥ 4. Then S×T is not strongly

subsemigroup separable.
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Proof. Let x be the generator of T . As S is not CS, by Theorem 4.1.6

there exists some a ∈ S such that the set {[a : s] | s ∈ S} is infinite.

Let ∼ be a finite index congruence on S × T . Then there exist b, c ∈ S

such that [a : b] 6= [a : c] and (b, x) ∼ (c, x). Assume, without loss of

generality, that there exist u, v ∈ S1 such that ubv = a but ucv 6= a. Let

U = 〈(S \ {a}) × {x3}〉 ≤ S × T . We claim that (a, x3) /∈ U . Indeed, if

(a, x3) ∈ U then x3 ∈ {x3k | k > 1}. But this contradicts that m ≥ 4 and

hence we conclude that (a, x3) /∈ U .

We split into two cases. The first is that u, v ∈ S. Then

(a, x3) = (u, x)(b, x)(v, x) ∼ (u, x)(c, x)(v, x) = (ucv, x3) ∈ U.

The second case is when either u = 1 or v = 1. We will deal with the case

that u = 1. Then

(a, x3) = (b, x)(v, x2) ∼ (c, x)(v, x2) = (ucv, x3) ∈ U.

In either case we cannot separate (a, x3) from U . A similar argument deals

with the case that v = 1. Therefore S × T is not SSS.

As there exist SSS semigroups which are not CS (see Example 3.4.7 and

Example 3.4.14), we can use Lemma 4.1.8 to construct an example of a

direct product of a SSS semigroup with a finite semigroup which itself is not

SSS. Before we give the example, we state the following definition.

Definition 4.1.9. A semigroup S with a zero element {0} is called k-

nilpotent if Sk = {0}, where k ∈ N.

Example 4.1.10. As an immediate consequence of Lemma 4.1.8, if we take

the direct product of an SSS semigroup S which is not CS with the finite

4-nilpotent semigroup 〈x | x4 = x5 〉, the resulting semigroup is not SSS.

Despite the negative nature of Lemma 4.1.8, it actually plays a key part in

the proof of the following result.

Theorem 4.1.11. If S × T is strongly subsemigroup separable then both S
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and T are strongly subsemigroup separable.

Proof. Assume S × T is SSS. Without loss of generality we show that S is

SSS. We split into two cases.

The first case is that T contains an idempotent. Then S is isomorphic to a

subsemigroup of the SSS semigroup S × T and hence S must also be SSS by

Proposition 1.2.13

The second case is that T has no idempotents. For a contradiction assume

that S is not SSS. Then S is certainly not CS. As T is idempotent free,

it contains a copy of N. Then S × N ≤ S × T . But S × N is not SSS by

Lemma 4.1.8. This contradicts the strong subsemigroup separability of S×T ,

as all subsemigroups of an SSS semigroup are also SSS by Proposition 1.2.13.

Therefore it must be the case that S is SSS.

This theorem is the final step needed in classifying the separability properties

of the direct product of a semigroup with N, which we now present.

Theorem 4.1.12. For a semigroup S, the following fully characterise the

separability properties of N× S:

(1) N× S is completely separable if and only if S is completely separable;

(2) N× S is weakly subsemigroup separable but not strongly subsemigroup

separable if and only if S is residually finite but not completely separa-

ble;

(3) N× S is not residually finite if and only if S is not residually finite.

Proof. (1) As we know that N is completely separable from Corollary 2.2.2,

the result follows from Theorem 4.1.7.

(2) (⇒) WSS semigroups are residually finite (a consequence of Proposi-

tion 1.2.9 and Lemma 1.2.11). Therefore it follows that S is residually finite

by Theorem 4.1.2 The fact that S cannot be CS is a consequence of Theo-

rem 4.1.7.
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(⇐) The fact that N × S is WSS follows from Proposition 3.4.5, as N × S
must be residually finite and certainly has a homomorphic image isomorphic

to N. The fact that S cannot be SSS follows from Lemma 4.1.8.

(3) This follows from Theorem 4.1.2.

Remark 4.1.13. In the statement of Theorem 4.1.12, the semigroup N can

be replaced by any CS semigroup which has N as a homomorphic image and

the result still holds. Such semigroups include all free semigroups and free

commutative semigroups.

Theorem 4.1.12 highlights the intriguing behaviour of the direct product

with respect to separability properties. On one hand we have N which has

the strongest separability property we know: complete separability. On the

other hand, if we have a semigroup which is just residually finite, the weakest

separability property we consider, and take its direct product with N, we end

up with a separability property in between those of complete separability and

residual finiteness. Furthermore, we cannot take a direct product with N and

end up with a semigroup which is SSS but not CS. Neither can we end up

with a semigroup which is MSS but not WSS.

The rest of this subsection is dedicated to establishing when a finite semi-

group is SSS-preserving. To do this we show that SSS semigroups enjoy a

separability property, in the sense of Definition 1.2.1, with respect to a more

general class of subsets than just subsemigroups.

Proposition 4.1.14. Let S be a strongly subsemigroup separable semigroup

and let V ⊆ S such that V n+1 ⊆ V for some n ∈ N and let s ∈ S \ V . Then

s can be separated from V .

Proof. We proceed by induction on n. The base case n = 1 corresponds to

V being a subsemigroup, and the result follows from S being SSS.

Now consider n > 1. Our inductive hypothesis is that for all U ⊆ S such

that Uk+1 ⊆ U for some k ∈ {1, 2, . . . , n− 1}, and for all s′ ∈ S \ U , we can

separate s′ from U . Let V and s be as in the statement of the proposition.
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If s /∈ 〈V 〉 then as S is SSS, we can separate s from 〈V 〉 and in particular

from V .

So suppose that s ∈ 〈V 〉. Note that as V n+1 ⊆ V , we have that 〈V 〉 =

V ∪ V 2 ∪ · · · ∪ V n and that V n is a subsemigroup of S. Let

L = {` ∈ V | s ∈ `V i, for some 1 ≤ i ≤ n− 1},

which is some set of left-divisors of s. As s ∈ 〈V 〉, we have that L is non-

empty. Let Z = V \ L. Then we claim that s /∈ 〈Z〉. Indeed, if s ∈ 〈Z〉,
then s = zw for some z ∈ Z and w ∈ Zk, where k ∈ N ∪ {0}. If k = 0 then

s = z ∈ Z ⊆ V , which is a contradiction. Otherwise, as V n+1 ⊆ V , we have

w ∈ V i for some i ∈ {1, 2, . . . , n}. If w ∈ V n, then s ∈ V n+1 ⊆ V , which is a

contradiction. Then w ∈ V i for some 1 ≤ i ≤ n− 1. But then z ∈ L, which

is a contradiction. So s /∈ 〈Z〉. As S is SSS, s can be separated from 〈Z〉
and in particular s can be separated from Z.

For i ∈ {1, 2, . . . , n− 1}, define Xi = V ∩ V i+1. Then we claim that

Xn−i+1
i ⊆ Xi. (4.1)

To see this let x1, x2, . . . , xn−i+1 ∈ Xi. Firstly, as Xi ⊆ V ∩ V i+1, we have

x1 ∈ V i+1 and x2, . . . , xn−i+1 ∈ V . Then

x1x2 . . . xn−i+1 ∈ V (i+1)+(n−i+1−1) = V n+1 ⊆ V.

Secondly, noting that n− i+ 1 ≥ 2, we have x1, x2 ∈ V i+1 Then

x1x2 . . . xn−i+1 ∈ V 2(i+1)+(n−i+1−2) = V n+i+1 ⊆ V i+1.

Hence x1x2 · · ·xn−i+1 ∈ V ∩ V i+1 = Xi and we conclude that Xn−i+1
i ⊆ Xi

and (4.1) holds. As s /∈ V we have that s /∈ Xi.

Since 1 ≤ n − i ≤ n − 1 and Xn−i+1
i ⊆ Xi, by our inductive hypothesis we

can separate s from each Xi. For i ∈ {1, . . . , n− 1}, define

Li = {` ∈ L | s ∈ `V i}.
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Note that L =
⋃

1≤i≤n−1 Li. We show that s can be separated from each Li.

Suppose that s cannot be separated from some Li. We claim that sV n−1 ⊆
V i ∩ V n. First for a contradiction, assume that there exists u ∈ V n−1 such

that su ∈ S\V n. Then, as V n is a subsemigroup and S is SSS, it must be the

case that su can be separated from V n. Let ∼ be a finite index congruence

which separates su from V n. As s cannot be separated from Li which is a

subset of V , there exists v ∈ V such that s ∼ v. But then su ∼ vu ∈ V n,

which is a contradiction. Hence if s cannot be separated from Li, we have

sV n−1 ⊆ V n. As Li is non-empty, we have that s ∈ V i+1. But as s ∈ V i+1

and V n+1 ⊆ V , we have that sV n−1 ⊆ V i. Hence sV n−1 ⊆ V n ∩ V i as

claimed. From this we get

sV n ⊆ V ∩ V i+1 = Xi. (4.2)

Now let ∼ be a finite index congruence that separates s from Xi. As s cannot

be separated from Li, there exists ` ∈ Li such that ` ∼ s. But as ` ∈ Li,

there exists u ∈ V i such that `u = s. Then, by the compatibility of ∼, we

have

s = `u ∼ su ∼ su2 ∼ · · · ∼ sun−1 ∼ sun.

By the transitivity of ∼, we obtain that s ∼ sun. As u ∈ V i, we have that

un ∈ V in. But as V n+1 ⊆ V , we conclude that un ∈ V n. So by Equation

(4.2) we have sun ∈ sV n ⊆ Xi. That is, ∼ does not separate s from Xi. This

is a contradiction and so s can be separated from Li.

As V = Z ∪L1 ∪L2 ∪ · · · ∪Ln−1, and for each of the sets in this finite union

there exists a finite index congruence which separates s from said set, we can

separate s from their union by Proposition 1.2.20. That is, we can separate

s from V as desired.

Example 4.1.15. Here we exhibit an example of Proposition 4.1.14 in ac-

tion. Let C2 = {0, 1} be the cyclic group of order 2 with identity element 0.

Consider G = CN2 , the Cartesian product of countably many copies of C2. In

Example 3.4.7 we showed that G is strongly subsemigroup separable. Now
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consider V = {g ∈ G | π1(g) = 1}. That is, V is the set of all elements

that have the non-identity element of C2 in the first coordinate. Note that

V is not a subsemigroup. If we take any two elements of V , their product

will have the identity of C2 is the first coordinate and so V is not closed

under multiplication. However, as in C2 we have that 13 = 1, we conclude

that V 3 ⊆ V . Now let e denote the identity of G. Then e /∈ V . Proposi-

tion 4.1.14 tells us that we can separate e from V . Here we are truly relying

on Proposition 4.1.14. Example 3.4.7 tells us that G is not CS, and we have

already observed that V is not a subsemigroup and so we are unable to use

the strong subsemigroup separability of G. Furthermore, the set V is infinite

and so we cannot use the residual finiteness of G either. Although the proof

of Proposition 4.1.14 does not give a way of constructing a homomorphism

to separate e from V , in this case it is easy to find one. Indeed, we have that

π1(V ) = {1}, but π1(e) = 0. Then the projection map π1 separates e from

V .

The fact that SSS semigroups satisfy the additional separability property of

Proposition 4.1.14 allows us to characterise finite semigroups which are SSS-

preserving. Our characterisation relies on the notion of indecomposability of

elements.

Definition 4.1.16. For a semigroup S and an element s ∈ S, we say that s

is decomposable if s ∈ S2. In this case, there exist t, u ∈ S such that s = tu.

Otherwise we say that s is indecomposable.

Example 4.1.17. Consider N. The element 1 is indecomposable. For any

n ≥ 2, we have that n = (n− 1) + 1 and so n is decomposable.

We are now ready to characterise when a finite semigroup is SSS-preserving.

Theorem 4.1.18. A finite semigroup P is strong subsemigroup separability

preserving if and only if every element of P is indecomposable or belongs to

a subgroup.

Proof. (⇒) We prove the contrapositive, so assume that p ∈ P is not con-

tained in a subgroup but there exist s, t ∈ P such that st = p. As p is not
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contained in a subgroup, we have that pn 6= p for all n ≥ 2. Let G be an

infinite SSS group (one could take G to be the group from Example 3.4.7).

Let U ≤ G × P be generated by the set {(g, p) | g ∈ G \ {1G}}. As pn 6= p

for all n ≥ 2, we have that (1G, p) /∈ U . Let ∼ be a finite index congruence

on G × P . Then there exist g, h ∈ G with g 6= h such that (g, s) ∼ (h, s).

Then

(1G, p) = (g, s)(g−1, t) ∼ (h, s)(g−1, t) = (hg−1, p) ∈ U.

Hence G× P is not SSS and therefore P is not SSS-preserving.

(⇐) Now assume that P is a finite semigroup in which every element not

contained in a subgroup is indecomposable. Let S be an SSS semigroup,

let U ≤ S × P and let (s, p) ∈ (S × P ) \ U . If s /∈ πS(U) ≤ S, then we

can separate (s, p) from U by factoring through S and invoking the strong

subsemigroup separability of S. If p /∈ πP (U), then πP separates (s, p) from

U .

Now assume that both s ∈ πS(U) and p ∈ πP (U). If p is not contained within

a subgroup of P , then p is indecomposable. Then (s, p) is indecomposable in

S × P . Let I = (S × P ) \ {(s, p)}. Then I is an ideal of finite complement

in S × P and [(s, p)]I = {(s, p)}. In particular, (s, p) is separated from U in

the Rees quotient of S × P by I.

The final case to consider is that p is contained in a subgroup of P . Then

for some n ∈ N, we have that pn+1 = p. Let V = πS(U ∩ (S × {p}). First

note that s /∈ V as (s, p) /∈ U . Secondly, as pn+1 = p, we have V n+1 ⊆ V .

Then, by Proposition 4.1.14, we have that s can be separated from V . So

there exists a finite semigroup Q and a homomorphism φ : S → Q such that

φ(v) /∈ φ(V ). Define φ : S × P → Q × P by (a, b) 7→ (φ(a), b). Then φ is a

homomorphism which separates (s, p) from U . Hence S×P is SSS and so P

is SSS-preserving.

Remark 4.1.19. As the set S2 is an ideal of a semigroup S, Theorem 4.1.18

is equivalent to saying that a finite semigroup P is SSS-preserving if and

only if P is the ideal extension of a union of groups by a null semigroup, see
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Definition 3.3.12.

Corollary 4.1.20. The following families of finite semigroups are strong sub-

semigroup separability preserving: groups, Clifford semigroups, completely

simple semigroups, completely regular semigroups, bands, and null semi-

groups.

Proof. As we have already seen groups, completely simple semigroups and

completely regular groups are unions of groups and so finite semigroups from

these classes certainly satisfy the criterion of Theorem 4.1.18. Bands form

a variety of semigroups satisfying the additional identity x2 = x. Hence

every element is idempotent and certainly contained in a subgroup and so

bands are also union of groups. In null semigroups, every non-zero element is

indecomposable and the zero element is idempotent, so finite null semigroups

also satisfy the criterion of Theorem 4.1.18.

Corollary 4.1.21. A finite monoid is strong subsemigroup separability pre-

serving if and only if it is a union of groups.

Proof. In a monoid M there are no indecomposable elements. This is be-

cause if we have an element s in a monoid M , then s1 = s. Hence, by

Theorem 4.1.18, for a finite monoid to be SSS-preserving all of its elements

must be contained in subgroups.

We conclude this subsection with some open problems.

Open Problem 4.1.22. Is there a characterisation of when the direct prod-

uct of two strongly subsemigroup separable semigroups is itself strongly sub-

semigroup separable?

Open Problem 4.1.23. Is it true that the direct product of two strongly

subsemigroup separable semigroups is weakly subsemigroup separable?
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4.1.3 Weak Subsemigroup Separability

How weak subsemigroup separability interacts with the direct product is

more complex than any of the other separability properties we consider.

This has already been exhibited in Open Problem 4.1.23, which states that

even when we strengthen the factor semigroups to be SSS, we still do not

know if this guarantees that the direct product is WSS. In Example 3.4.6,

we have already seen that N × Z is WSS even though Example 1.2.5 tells

us that Z is not even MSS. This provides the first example of a separa-

bility property which is not necessarily inherited by the factors of a direct

product. This complexity means the results in this section are less compre-

hensive than those for the other separability properties considered. In a vein

similar to the strong subsemigroup separability situation, we show that the

direct product of a WSS semigroup with a finite semigroup is not necessar-

ily WSS (Example 4.1.24). Although we do not characterise when a finite

semigroup is WSS-preserving, we show that finite nilpotent semigroups are

WSS-preserving (Theorem 4.1.25). In contrast to the Open Problem 4.1.23,

here we are able to show that the direct product of two WSS semigroups is

MSS (Theorem 4.1.27).

Example 4.1.24. Let S = S[FC2,Z, φ] be as in Example 3.4.13 and let L

be a non-trivial left-zero semigroup (we could take L from Example 1.1.4).

Then S × L is not WSS.

Let y, z ∈ L be distinct. Let

U = 〈(a, y), (x1, z)〉 ≤ S × L.

We claim that

U = {(ai, y) | i ∈ N} ∪ {(xi, z) | i ∈ N} ∪ {(xi, y) | i ∈ Z} ∪ {(0, y), (0, z)}.

We can see this from the following observations. Firstly recall that xia
j =

xi+j, a
jxi = xi−j and xixj = 0. Then, if any product over {(a, y), (x1, z)}

contains two or more occurrences of (x1, z), the first coordinate of this prod-

uct will be zero. If this product begins with (a, y) then we obtain (0, y) and
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otherwise we obtain (0, z). If we want an element of U whose first coordinate

is non-zero, then there is at most one occurrence of (x1, z). First suppose that

there is precisely one occurrence of (x1, z) in the decomposition of our prod-

uct. If the second coordinate of the product is z then our decomposition is of

the form (x1, z)(a, y)n, where n ≥ 0. This gives us the set {(xi, z) | i ∈ N}.
Otherwise the second coordinate of the product is y and our decomposition

is of the form (a, y)(a, y)m(x1, z)(a, y)n, where m,n ≥ 0. This corresponds

to the set {(xi, y) | i ∈ Z}. The final case is that our product only contains

occurrences of (a, y). This gives us the set {(ai, y) | i ∈ N}, completing the

proof of the claim.

In particular, (x0, z) /∈ U . Let ∼ be a finite index congruence on S×L. Then

there exist i, j ∈ N with i < j such that (xi, z) ∼ (xj, z). Then

(x0, z) = (xi, z)(b
i, z) ∼ (xj, z)(b

i, z) = (xj−i, z) ∈ U.

Hence S×L is not weakly subsemigroup separable. By a similar argument, it

can be shown that the direct product of S = S[FC2,Z, φ] with a non-trivial

right-zero semigroup is not WSS.

Example 4.1.24 shows that (non-trivial) finite left-zero and right-zero semi-

groups are not weakly subsemigroup separability preserving. This is some-

what surprising as finite left-zero and finite right-zero semigroups, which are

examples of bands, are strongly subsemigroup preserving by Corollary 4.1.20.

Furthermore, they also turn out to be MSS-preserving by Theorem 4.1.42.

Adding yet another twist to the story, the following theorem shows that finite

k-nilpotent semigroups are WSS-preserving, even though this class contains

semigroups which are neither SSS-preserving nor MSS-preserving. We will

see an example of this in Example 4.1.26.

Theorem 4.1.25. The direct product of a weakly subsemigroup separable

semigroup with a residually finite k-nilpotent semigroup is weakly subsemi-

group separable.

Proof. Let S be a WSS semigroup and let N be a residually finite k-nilpotent
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semigroup with zero element 0, for some k ∈ N. Let U ≤ S × N be finitely

generated and let (s, n) ∈ (S ×N)\U . Fix a finite generating set for U with

the form

(X0 × {0}) ∪ (X1 × {n1}) ∪ · · · ∪ (Xj × {nk}),

where n1, n2, . . . , nj ∈ N \{0} and X0, X1, . . . , Xj are finite subsets of S. Let

X =
⋃j
i=0 Xi and let T = 〈X〉 ≤ S.

Let Z = πN(U) = {z0, z1, z2, · · · , zm} where z0 = 0. Note Z is finite as

k-nilpotent semigroups are locally finite. For 0 ≤ i ≤ m let

Yi = πS(U ∩ (S × {zi})).

Then for 1 ≤ i ≤ m the set Yi is finite. To see this first note that Yi is a

subset of T . Then for y ∈ Yi, we can write y as a product of elements of X.

The maximum length of the product is k−1, as N is a k-nilpotent semigroup

and zi is a non-zero element of N . As X is a finite set, there are only finitely

many such y and so Yi is finite.

Now consider Y0. Certainly T k ⊆ Y0 as N is a k-nilpotent semigroup. We

have that Y0 \ T k is finite as any element of Y0 \ T k can be expressed as

product over X of length at most k − 1.

If s /∈ πS(U) = T then we can separate (s, n) from U by factoring through

S and invoking the weak subsemigroup separability of S. Similarly, if t /∈
πN(U) = Z then we can separate (s, n) from U by factoring through N and

using the residual finiteness of N .

Now assume that s ∈ πS(U) and n ∈ πN(U). Then either

(i) n = 0 and s /∈ Y0, or

(ii) n = zi for some 1 ≤ i ≤ m and s /∈ Yi.

(i) First note that T k ≤ S is a finitely generated by the set

Xk ∪Xk+1 ∪ · · · ∪X2k−1.

As s /∈ T k and S is WSS, we can separate s from T k. As s /∈ Y0 \T k and S is
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residually finite, we can separate s from Y0\T k. Hence, by Proposition 1.2.20,

we can separate s from Y0 = TK ∪ (Y0 \ T k). That is, there exists a finite

semigroup P and homomorphism φ : S → P such that φ(s) /∈ φ(Y0).

As N is residually finite, there exists a finite semigroup Q and homomorphism

ψ : N → Q such that ψ(0) /∈ ψ(Z \ {0}). Then the homomorphism φ × ψ :

S ×N → P ×Q given by (a, b) 7→ (φ(a), ψ(b)) separates (s, n) from U .

(ii) As S is WSS, it is residually finite by Lemma 1.2.11, then there exists a

finite semigroup P and homomorphism φ : S → P such that φ(s) /∈ φ(Yj). As

N is residually finite, there exists a finite semigroup Q and homomorphism

ψ : N → Q such that ψ(zj) /∈ ψ(Z \ {zj}). Then φ × ψ : S × N → P × Q
given by (a, b) 7→ (φ(a), ψ(b)) separates (s, n) from U . This completes the

proof that S ×N is WSS.

Example 4.1.26. Consider the semigroup S given by the presentation

〈x | x3 = x4 〉. This is a finite 3-nilpotent semigroup and hence is WSS-

preserving by Theorem 4.1.25. The element x2 is decomposable but it is not

contained in a subgroup by Example 1.3.38. Hence S is not SSS-preserving

by Theorem 4.1.18. Theorem 4.1.42 states that a finite semigroup is MSS-

preserving if and only if it is a union of groups. Hence, as S itself is a

monogenic semigroup which is not a union of group, we have that S is not

MSS-preserving.

At the point of writing, we are not yet able to characterise when a finite

semigroup is WSS-preserving. We leave this as one of the open problems

concerning weak subsemigroup separability and direct products. However,

before this we provide a positive result showing that the direct product of

two WSS semigroups is MSS.

Theorem 4.1.27. The direct product of two weakly subsemigroup separable

semigroups is monogenic subsemigroup separable.

Proof. Let S and T be WSS semigroups. Let U = 〈(s, t)〉 ≤ S × T be a

monogenic subsemigroup and let (x, y) ∈ (S × T ) \ U . If x /∈ πS(U) = 〈s〉
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then we can separate (x, y) from U by factoring through S and using the weak

subsemigroup separability of S. By a similar argument, we can separate (x, y)

from U if y /∈ πT (U).

Now consider the case that x ∈ πS(U) and y ∈ πS(T ). Then x = si and

y = tj, where i, j ∈ N are such that i 6= j, si 6= sj and ti 6= tj. Firstly we

consider the case when at least one of 〈s〉 and 〈t〉 is infinite. Without loss of

generality, assume that 〈s〉 ∼= N. In this instance si /∈ 〈si+1, si+2, . . . , s2i+1〉 =

{sk | k ≥ i + 1}. Hence we can separate (x, y) from {(sk, tk) | k ≥ i + 1}
by factoring through S and using the weak subsemigroup separability of S.

As S and T are both WSS, they are both residually finite by Lemma 1.2.11.

Hence S × T is residually finite by [22, Theorem 2]. Then we can separate

(x, y) from the finite set {(sk, tk) | k ≤ i}. As we can separate (x, y) from

both {(sk, tk) | k ≤ i} and {(sk, tk) | k ≥ i+ 1}, we can separate (x, y) from

their union by Proposition 1.2.20. Hence we can separate (x, y) from U as

required.

The final case to consider is when both 〈s〉 and 〈t〉 are finite, in which case U

is finite. As S × T is residually finite we can separate (x, y) from U . Hence

S × T is MSS, as desired.

We conclude this subsection with some open problems.

Open Problem 4.1.28. Is there a characterisation of when a finite semi-

group is weakly subsemigroup preserving?

Open Problem 4.1.29. Is there a characterisation of when a direct product

of two weakly subsemigroup separable semigroups is itself weakly subsemi-

group separable?

Open Problem 4.1.30. If the direct product of two semigroups is weakly

subsemigroup separable, is at least one of the factors weakly subsemigroup

separable?
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4.1.4 Monogenic subsemigroup Separability

In Example 3.4.6, we have already seen that the factors of an MSS semigroup

need not themselves be MSS. Also, as with properties of strong subsemigroup

separability and weak subsemigroup separability, the direct product of two

MSS semigroups need not be MSS itself, even when one the factors is finite

(Example 4.1.43). In the process of constructing this example, we develop

the necessary theory to determine when a finite semigroup is MSS-preserving

(Theorem 4.1.42). To show that monogenic subsemigroup separability is not

preserved by the direct product, we consider the semigroup A, given by the

presentation 〈 a, b, c | ab2c = b 〉. This is an MSS semigroup which is not

WSS. The key step in showing this is embedding A into a group. To show

that A can be embedded in a group, we will use a criterion given by Adian

in [1].

Definition 4.1.31. Let 〈X | R 〉 be a presentation. Consider a relation

(u,w) ∈ R. The left pair of (u,w) is the pair (x, y), where x is the leftmost

letter of u and y is the leftmost letter of w. The right pair of (u,w) is the pair

(z, t), where z is the rightmost letter of u and t is the rightmost letter of w.

The left graph of the presentation is the graph with vertex set X such that

{x, y} is an edge if and only if (x, y) is a left pair of some relation. Note that

multiple edges and loops are allowed. The right graph of the presentation is

the graph with vertex set X such that {z, t} is an edge if and only if (z, t)

is a right pair of some relation. The presentation 〈X | R 〉 is said to have

no cycles if both its left graph and its right graph have no cycles (here loops

are cycles and multiple edges create cycles).

Theorem 4.1.32. ([1, Theorem 2.3]) If a presentation has no cycles then the

natural mapping from the semigroup given by the presentation to the group

given by the presentation is an embedding.

Corollary 4.1.33. The mapping φ given by

a 7→ x, b 7→ y, c 7→ y−2x−1y,

from the semigroup A = 〈 a, b, c | ab2c = b 〉 to the free group FG2 on the set
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{x, y} is an embedding.

Proof. Below we draw the left graph of the presentation 〈 a, b, c | ab2c = b 〉.

a

b

c

Now we present the right graph of the same presentation.

a

b

c

As neither of these graphs contains cycles, the presentation 〈 a, b, c | ab2c = b 〉
has no cycles. By Theorem 4.1.32, the natural map from A to the group G

given by the group presentation 〈x, y, z | xy2z = y 〉 is an embedding (note

that to avoid confusion, for the group presentation we have replaced a with

x, b with y, and c with z). As G is a group, the single relation of the group

presentation can be rewritten as z = y−2x−1y. This means that the set

{x, y} is a generating set for G. Hence, we can remove the generator z and

any relation containing z from the presentation for G. This is an example of

a Tietze transformation. Because we only make limited use of this theory,

we do not formally define such transformations here. They are discussed

in detail in [29, Section 4.4], which also justifies their use in finding new

presentations for groups from existing presentations. So we have that G is

given by the group presentation 〈x, y | ∅ 〉. This shows that G is the free

group on the set {x, y} and the proof in complete.

Definition 4.1.34. In the semigroup A = 〈 a, b, c | ab2c = b 〉, the strings

abbc and b represent the same element. Therefore we can define a rewriting

system on A that replaces the string ab2c by b. As the one rule of this rewrit-

ing system is length reducing, the process is terminating. Also, as ab2c does

not overlap with itself, the process is locally confluent and hence confluent.
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For more on rewriting systems, see [5, Section 1.1]. Therefore, each element

of A is represented by a unique word in {a, b, c}+, where this representative

does not contain ab2c as a contiguous subword. Such a word is said to be

in normal form. Note that a contiguous subword of a normal form word is

also a word in normal form. We shall therefore consider the underlying set

of A to be the set of all words over {a, b, c}+ in normal form. Multiplication

is concatenation, except in the case where concatenation creates instances of

ab2c as contiguous subwords, in which case the rewriting rule is applied to

convert the product into normal form.

Lemma 4.1.35. Let A, FG2 and φ : A → FG2 be as in Corollary 4.1.33.

Then φ(w) 6= ε for all w ∈ A.

Proof. Let w be an element of A. We proceed by a case analysis based upon

the number of occurrences of contiguous strings of the letter c appearing in

the word w.

Case 1. The first case in when there are no occurrences of the letter c in

w. Then w ∈ {a, b}+. As φ rewrites an occurrence of a with an x and an

occurrence of b with a y, we have that φ(w) is a non-empty word, as desired.

Case 2. Now we consider the case when w contains precisely one string of

the letter c. We split into three subcases.

Case 2a. Consider w = cn, where n ≥ 1. Observe that

φ(cn) = y−2(x−1y−1)n−1x−1y.

Hence the assertion of the lemma holds. For future cases note that φ(cn)

ends with the suffix x−1y.

Case 2b. Consider w = ucn, where u ∈ {a, b}+ and n ≥ 1. We claim

that when concatenating the words φ(u) and φ(cn), there are at most two

cancelling pairs of letters. Indeed, if there were three cancelling pairs of

letters, then φ(u) would end with xy2 as by Case (2a) we know that φ(cn)

begins with y−2x−1. Hence u would end with ab2. But in this case ucn
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contains the string ab2c, contradicting that ucn is in normal form. It follows

that (x−1y−1)n−1x−1y is a suffix of φ(ucn) and hence φ(ucn) is non-empty.

Again we note that φ(ucn) ends with x−1y. For future cases we consider

when φ(ucn) can begin with a negative letter. In such a case, the entirety

of φ(u) has been cancelled by φ(cn). By our analysis of cancellation between

φ(u) and φ(c) there are only two options: u = b or u = b2.

Case 2c. Consider w = ucnv, where u ∈ {a, b}∗, v ∈ {a, b}+ and n ≥ 1.

Then φ(v) consists of positive letters. By Cases (2a) and (2b), φ(ucn) ends

with a positive letter. Then when concatenating φ(ucn) and φ(v), there can

be no pairs of cancelling letters. Hence φ(ucnv) is non-empty, as desired.

Case 3. Finally we consider the case when w contains more than one string

of the letter c. We can decompose w = w1w2 . . . wkv where:

� w1 = ucn1 , where u ∈ {a, b}∗ and n1 ≥ 1;

� wi = uic
ni , where ui ∈ {a, b}+ and ni ≥ 1 for 2 ≤ i ≤ k;

� v ∈ {a, b}∗; and k ≥ 2;

By our previous case analysis, for each i we have that φ(wi) is a non-empty

word. We now claim that for 1 ≤ i ≤ k, when we concatenate φ(wi) and

φ(wi+1) there is at most one cancelling pair of letters. We have already ob-

served in Cases (2a) and (2b) that φ(wi) must end with x−1y. Therefore, for

cancellation to occur, φ(wi+1) must begin with y−1. By the final observation

of Case (2b), φ(wi+1) can only begin with a negative letter if ui+1 = b or

ui+1 = b2. In the first case, φ(wi+1) = y−1(x−1y−1)ni+1−1x−1y and there is

precisely one cancelling pair when we concatenate φ(wi) and φ(wi+1). In the

second case, φ(wi+1) = (x−1y−1)ni+1−1x−1y and no cancellation occurs when

we concatenate φ(wi) and φ(wi+1) completing the proof of the claim. Note

that if cancellation occurs, than the cancelling pair is yy−1.

Now consider φ(w1)φ(w2) . . . φ(wk)φ(v). As already observed, φ(w1) and

φ(w2) both end with x−1y. By the claim of the previous paragraph, there is

at most one cancelling pair of letters, yy−1, between φ(w1) and φ(w2). So it

must be the case that φ(w1w2) also ends with x−1y. Continuing in this man-

ner, we conclude that φ(w1w2 . . . wk) ends with x−1y. As φ(v) is either empty
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or consists of positive letters, there is no cancellation between φ(w1w2 . . . wk)

and φ(v) and we conclude φ(w) is non-empty, completing the proof of this

case and of the lemma.

In showing that the semigroup A is not WSS, we introduce the idea of sta-

bility.

Definition 4.1.36. A semigroup S is stable if for all s, t ∈ S the following

hold:

(i) sJ st =⇒ sR st;
(ii) sJ ts =⇒ sL ts.

Example 4.1.37. The semigroup N is stable. We have seen in Exam-

ple 1.3.26 that in N, Green’s relation J coincides with the diagonal equiva-

lence ∆N. From the definitions of Green’s relations L and R it follows that

∆N ⊆ L ⊆ J and ∆N ⊆ R ⊆ J . Hence we conclude that J = R = L and

therefore N is stable.

Lemma 4.1.38. Finite semigroups are stable.

Proof. [46, Theorem A.2.4].

The reason the notion of stability will be useful is because of the following

lemma.

Lemma 4.1.39. Let S be a stable semigroup. If for s ∈ S we have that

sJ s2, then Hs is a group.

Proof. As sJ s2 and S is stable, we have that sL s2 and sR s2. That is,

sH s2. Then Hs ∩ H2
s 6= ∅ and we have that Hs is a group by Proposi-

tion 1.3.36.

We are now able to establish the separability properties of the semigroup

A.
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Proposition 4.1.40. The semigroup A given by the presentation 〈 a, b, c |
ab2c = b 〉 is monogenic subsemigroup separable but not weakly subsemigroup

separable.

Proof. Let T = 〈u〉 ≤ A be a monogenic subsemigroup and let v ∈ A\T . Let

FG2 and φ : A → FG2 be as in Corollary 4.1.33. As φ is an embedding, we

have that φ(v) /∈ φ(T ). Let H ≤ FG2 be the cyclic subgroup with generator

φ(u). First we show that φ(v) /∈ H.

For a contradiction, assume that φ(v) ∈ H. As φ(v) /∈ φ(T ), we have that

φ(v) /∈ {φ(u)n | n ∈ N}. By Lemma 4.1.35, φ(v) has positive length and

therefore φ(v) 6= φ(u)0. Therefore φ(v) = φ(u)−n for some n ∈ N. But then

φ(vun) = φ(v)φ(un) = ε. This contradicts Lemma 4.1.35 and we conclude

φ(v) /∈ H.

As FG2 is weakly subgroup separable (Theorem 2.1.9), there exists a finite

group G and homomorphism ψ : FG2 → G such that ψ(φ(v)) /∈ ψ(H). In

particular, ψ ◦ φ : A → G is a homomorphism from A to a finite semigroup

such that (ψ ◦ φ)(u) /∈ (ψ ◦ φ)(T ). Hence A is MSS.

To show that A = 〈 a, b, c | ab2c = b 〉 is not weakly subsemigroup separable,

consider the subsemigroup V = 〈b2, b3〉. As 〈b〉 ∼= N, we have b ∈ S \V .

Let P be a finite semigroup and let σ : A → P be a homomorphism. The

relation ab2c = b ensures that bJ b2 and hence σ(b)J σ(b2). As σ(A) is a

finite semigroup, we have that σ(b)H σ(b2) by Lemma 4.1.38. Hence we have

that Hσ(b) is a group by Lemma 4.1.39. Hence σ(V ) = 〈σ(b)〉 is a finite cyclic

group and in particular σ(b) ∈ σ(V ). Hence A is not weakly subsemigroup

separable.

We use the semigroup A in the proof of our characterisation of finite MSS-

preserving semigroups. In fact, we are able to go one step further and char-

acterise when residually finite periodic semigroups are MSS-preserving. We

note the following fact.

Lemma 4.1.41. A periodic semigroup is monogenic subsemigroup separable
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if and only if it is residually finite.

Proof. Let S be a periodic semigroup. First assume that S is MSS. Then by

Lemma 1.2.11 we have that S is residually finite.

Now assume that S is residually finite. Let T = 〈t〉 be a monogenic subsemi-

group of S and let s ∈ S \T . As S is periodic we have that T is finite. Since

S is residually finite, we can separate s from the finite set T and therefore

we have that S is MSS.

Theorem 4.1.42. A residually finite periodic semigroup is monogenic sub-

semigroup separability preserving if and only if it is a union of groups.

Proof. (⇐) Let T be a residually finite periodic semigroup which is a union

of groups. Let S be a MSS semigroup and let U = 〈(s, t)〉 ≤ S × T . Let

(x, y) ∈ (S × T )\U . We separate into cases. Note, some cases may overlap.

Case 1. Suppose 〈s〉 ≤ S is finite. As T is periodic, we also have that 〈t〉 is

finite. Therefore U is also finite. As S is MSS it is also residually finite and

therefore S × T is residually finite. Hence we can separate (x, y) from U .

Case 2. Suppose that x /∈ πS(U). Then x /∈ 〈s〉 ≤ S. So we can separate

(x, y) from U by factoring through S and invoking the monogenic subsemi-

group separability of S.

Case 3. Suppose that y /∈ πT (U). As πT (U) = 〈t〉 and T is periodic, we have

that πT (U) is finite. So we can separate (x, y) from U by factoring though T

and invoking the residual finiteness of T .

Case 4. Now suppose that 〈s〉 ∼= N, x ∈ πS(U) and y ∈ πT (U). Let r ∈ N
be minimal such that tr+1 = t. Such an r exists as T is periodic and a union

of groups. As x ∈ πS(U), we have that x = si for some i ∈ N. As y ∈ πT (U),

we have that y = tj for some j ∈ {1, 2, . . . , r}. Observe that

πS(U ∩ (S × {tj})) = {sj+rn | n ≥ 0}.
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As (x, y) /∈ U , it must be the case that i 6≡ j (mod r). We split into two

subcases.

Case 4a. First we will deal with the case that y = tr. In this case, y is an

idempotent and we have

πS(U ∩ (S × {tr})) = 〈sr〉.

Hence x = si /∈ 〈sr〉. As S is MSS, there exists a finite semigroup P1 and

homomorphism φ1 : S → P1 such that φ(x) /∈ φ(〈sr〉). As T is residually

finite, there exists a finite semigroup P2 and homomorphism φ2 : T → P2

such that φ2(y) 6= φ(πT (U) \ {y}). Then φ : S × T → P1 × P2 given by

(a, b) 7→ (φ1(a), φ2(b)) is a homomorphism that separates (x, y) from U .

Case 4b. Now assume that j ∈ {1, 2, . . . , r − 1}. Let k be such that

j + k = r. Then as i 6≡ j (mod r), we have that i + k 6≡ j + k (mod r).

Hence (si+k, tj+k) = (si+k, tr) /∈ U . By Case 4a we can separate (si+k, tr)

from U .

We now show that we can separate (x, y) = (si, tj) from U . For a contra-

diction suppose it cannot be separated. Let ∼ be a finite index congruence

which separates (si+k, tr) from U . As (si, tj) cannot be separated from U ,

there exists ` ∈ N such that (si, tj) ∼ (s, t)`. But then

(si+k, tr) = (si, tj)(s, t)k ∼ (s, t)`(s, t)k ∈ U.

This contradicts that ∼ separates (si+k, tr) from U . Hence (x, y) can be

separated from U , completing the proof of this case and of the backward

direction of the proof.

(⇒) Now suppose that T is a residually finite semigroup which is not a union

of groups. We will show that T is not MSS-preserving. As T is not a union

of groups, there exists an element t ∈ T such that for all n ≥ 2 we have

that tn 6= t. Let m be the index and let r be the period of the monogenic

subsemigroup 〈t〉. We have that m ≥ 2 and tm = tm+r. Let i = m− 1.

As before, let A be the monogenic subsemigroup separable semigroup given
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by the presentation 〈 a, b, c | ab2c = b 〉. We will see in Corollary 4.3.11 that

A1 is also MSS. Let U = 〈(b, t)〉 ≤ A1 × T . Observe that

πA1(U ∩ (A1 × {ti+r}) = {bi+nr | n ≥ 1}. (4.3)

Then (bi, ti+r) /∈ U .

Let d ∈ {m,m+ 1, . . . ,m+ r−1} be such that d ≡ 0 (mod r). Then it must

be the case that td is an idempotent. Furthermore, ti+rtd = ti+r. Let ρ be a

finite index congruence on A1 × T . Then

[(a, td)]ρ[(b
2, td)]ρ[(c, t

d)]ρ = [(ab2c, td)]ρ = [(b, td)]ρ.

As also [(b, td)]ρ[(b, t
d)]ρ = [(b2, td)]ρ we have that [(b, td)]ρJ [(b, td)]2ρ. Since

(A1 × T )/ρ is finite, we conclude that the H-class of [(b, td)]ρ is a finite

group by Lemma 4.1.38 and Lemma 4.1.39. In particular there exists k >

2 such that [(b, td)]kρ = [(b, td)]ρ. From this we conclude that [(b, td)]ρ =

[(b1+(k−1)n, td)]ρ for all n ∈ N. Adopting the convention that if i = 1 then

bi−1 is the identity of A1, we observe that

[(bi, ti+r)]ρ = [(b, td)]ρ[(b
i−1, ti+r)]ρ

= [(b1+(k−1)r, td)]ρ[(b
i−1, ti+r)]ρ

= [(bi+(k−1)r, ti+r)]ρ.

From Equation (4.3), we have that (bi+(k−1)r, ti+r) ∈ U . So ρ does not sep-

arate (bi, ti+r) from U . As ρ was arbitrary we conclude that A1 × T is not

MSS and in particular T is not MSS-preserving.

The following example is a consequence of the proof of Theorem 4.1.42. It

shows that the direct product of two MSS semigroups need not be MSS, even

when one of the factors is finite.

Example 4.1.43. The direct product of A1 = 〈 a, b, c | ab2c = b 〉1 and the

two element zero semigroup N = {x, 0} (with the zero element 0) is not

monogenic subsemigroup separable. This follows from the proof of Theo-

rem 4.1.42 and as N is not a union of groups.
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Although it is not true that the direct product of an MSS semigroup with a

residually finite semigroup is necessarily MSS, if we strengthen the assump-

tion of monogenic subsemigroup separability to weak subsemigroup separa-

bility, we obtain a positive result, which we present below. Proposition 4.1.44

can be seen as a successor of Theorem 4.1.42, but it can also be viewed as

a variation of Theorem 4.1.27. The similarities between Proposition 4.1.44

and Theorem 4.1.27 are discussed in Remark 4.1.45.

Proposition 4.1.44. The direct product of a weakly subsemigroup separa-

ble semigroup S with a residually finite periodic semigroup T is monogenic

subsemigroup separable.

Proof. Let U = 〈(s, t)〉 ≤ S × T and let (x, y) ∈ (S × T ) \ U . We split into

cases.

Suppose 〈s〉 ≤ S is finite. As T is periodic, we also have that 〈t〉 is finite.

Therefore U is also finite. As S is WSS it is also residually finite by Proposi-

tion 1.2.9 and Lemma 1.2.11, and therefore S × T is residually finite. Hence

we can separate (x, y) from U .

Suppose that x /∈ πS(U). Then x /∈ 〈s〉 ≤ S. So we can separate (x, y) from

U by factoring through S and invoking the weak subsemigroup separability

of S.

Now suppose that 〈s〉 ∼= N and that x ∈ πS(U). Then x = si for some i ∈ N.

As S is WSS, we can separate si from 〈si+1, si+2, . . . , s2i−1〉 = {sk | k ≥ i+1}.
Hence we can separate (x, y) from {(sk, tk) | k ≥ i+ 1} by factoring through

S and using the weak subsemigroup separability of S. As S is WSS, it is

residually finite by Proposition 1.2.9 and Lemma 1.2.11. Hence S × T is

residually finite by [22, Theorem 2]. Then we can separate (x, y) from the

finite set {(sk, tk) | k ≤ i}. As we can separate (x, y) from both {(sk, tk) |
k ≤ i} and {(sk, tk) | k ≥ i + 1}, we can separate (x, y) from their union by

Proposition 1.2.20. Hence we can separate (x, y) from U as required.

Remark 4.1.45. The statement of Proposition 4.1.44 is reminiscent of The-
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orem 4.1.27. If every residually finite periodic semigroup is WSS, then Propo-

sition 4.1.44 becomes a specific instance of Theorem 4.1.27. However, it is

not known whether every residually finite periodic semigroup is WSS. This

is left as an open question at the end of this section.

We conclude this subsection with some open problems.

Open Problem 4.1.46. Is there a characterisation of when the direct prod-

uct of two monogenic subsemigroup separable semigroups is itself monogenic

subsemigroup separable?

Open Problem 4.1.47. If the direct product of two semigroups is mono-

genic subsemigroup separable, is at least one of the factors monogenic sub-

semigroup separable?

Open Problem 4.1.48. Is every residually finite periodic semigroup weakly

subsemigroup separable?

4.2 Free Products

In this section we investigate how another semigroup construction, the free

product, interacts with our separability properties. After defining the free

product, we will discuss what is already known regarding free products and

residual finiteness. We will also review the results for group separability prop-

erties in relation to the group free product. As with the direct product, we

establish the equivalent results for semigroups. We find that the property of

complete separability is preserved by arbitrary free products (Theorem 4.2.5).

However, neither the property of strong subsemigroup separability nor weak

subsemigroup separability are preserved by this construction (Example 4.2.6

and Example 4.2.8 respectively). On the other hand, the arbitrary free prod-

uct of MSS semigroups is itself MSS (Theorem 4.2.10).

Definition 4.2.1. Let {Si | i ∈ I} be a family of pairwise disjoint semi-

groups. For a ∈
⋃
i∈I Si, there is a unique k ∈ I such that a ∈ Sk. We call k

the index of a. Let σ :
⋃
i∈I Si → I be the map which takes an element to
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its index. The underlying set of the free product F =
∏
i∈I
∗Si is the set of all

finite strings

a1a2 . . . am,

where m ≥ 1, ak ∈
⋃
i∈I Si for k ∈ {1, 2, . . . ,m} and σ(ak) 6= σ(ak+1) for

k ∈ {1, 2, . . . ,m − 1}. We call m the length of the string and denote it by

||a1a2 . . . am|| = m. We define a multiplication on F by

a1a2 . . . am · b1b2 · · · bn =

a1a2 . . . amb1b2 · · · bn if σ(am) 6= σ(b1),

a1a2 . . . am−1cb2 · · · bn if σ(am) = σ(b1),

where c = amb1 ∈ Sσ(am). Under this multiplication F is a semigroup. When

the index set I is finite, say I = {1, 2, . . . , k}, we write F = S1 ∗S2 ∗ · · · ∗Sk.
For more on free products, see [28, Section 8.2].

Example 4.2.2. Let S = 〈 a | 〉 and T = 〈 b | 〉 both be isomorphic to N.

Then S ∗ T = 〈a, b | 〉 is the free semigroup on the set {a, b}. In general, if

we have a semigroup S ′ with presentation 〈X | R 〉 and a semigroup T ′ with

presentation 〈Y | Q 〉, where X and Y are disjoint, then 〈X ∪ Y | R ∪Q 〉 is

a presentation for S ′ ∗ T ′.

It is known that the free product of residually finite semigroups is residually

finite, see [19]. Our aim is then to investigate which of our four separability

properties are preserved under the free product. The group-theoretic versions

of these separability properties have been studied in relation to the group free

product. We do not formally define the group free product, but note that

it is essentially the same as the semigroup free product with one notable

difference, the identity elements are identified with each other. This means

that whilst the semigroup free product of two copies of the trivial (semi)group

is infinite, the group free product of two copies of the trivial group is again the

trivial group. For more on the group free product, see [29, Section 9.6].

The group free product of two groups preserves the following properties:

residual finiteness (shown in [26, Theorem 4.1]), monogenic subgroup sepa-

rability (shown in [52, Theorem 5]), and weak subgroup separability (shown
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Group Property P CS SSS WSS MSS
G, H are P 7 7 3 3

=⇒ G ∗H is P Thm 1.2.19 Ex 4.2.3 [7, Cor 1.2] [52, Thm 5]

Table 4.3: Separability properties of free products of groups

in [7, Corollary 1.2]). It is not true that the free product of two strongly

subgroup separable groups need itself be strongly subgroup separable. This

is folklore but we provide an example.

Example 4.2.3. Let Z be an isomorphic copy of Z. Then Z is strongly

subgroup separable by Theorem 3.1.4. However, Z ∗ Z is isomorphic to the

free group on a set of size two, and hence is not strongly subgroup separable

by Lemma 2.1.11.

For trivial reasons, it is also the case that the free product of two completely

separable groups need not be completely separable. This is because a group

is completely separable if and only if it is finite (Theorem 1.2.19). But the

free product of two non-trivial finite groups is infinite, and so the group

free product does not preserve complete separability. It follows that the free

product of two groups is CS if and only if they are both finite and at least one

of them is trivial. The group results are recorded in Table 4.3. For the rest

of this section we will provide the analogous results for the semigroup free

product, as described in the introduction to this section and recorded in Table

4.4. Unlike the situation for the direct product, given a family of semigroups

{Si}i∈I , for each i ∈ I the semigroup Si is isomorphic to a subsemigroup of

Πi∈I ∗ Si. Hence, if Πi∈I ∗ Si has any one of our separability properties, then

so does each Si by Proposition 1.2.13. We now show that the free product

preserves complete separability, starting with a special case.

Lemma 4.2.4. The free product of finitely many finite semigroups is com-

pletely separable.

Proof. Let S = S1 ∗ S2 ∗ · · · ∗ Sn, where {Si | 1 ≤ i ≤ n} is a finite collection

of pairwise disjoint finite semigroups. Let s = s1s2 . . . sk, where si ∈ Sαi for

some 1 ≤ αi ≤ n and for 1 ≤ i ≤ k − 1 we have Sαi 6= Sαi+1
.
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Semigroup Property P CS SSS WSS MSS
S, T are P 3 7 7 3

=⇒ S ∗ T is P Thm 4.2.5 Ex 4.2.6 Ex 4.2.8 Thm 4.2.10

Table 4.4: Separability properties of free products of semigroups

Consider the set I = {i ∈ S : ||i|| > k}. We claim that I is an ideal. To see

this let i ∈ I and let t ∈ S. Denote ||i|| = p and ||t|| = r and note that p > k

and r ≥ 1. Then ||it||, ||ti|| ≥ ||i||+ ||t|| − 1 = p+ r− 1 > k. Hence it, ti ∈ I,

completing the proof of the claim.

Now consider S \ I, which is the set of all elements of S whose length is

at most k. As each Si is finite, we conclude that S \ I is finite. Note that

s ∈ S \ I. Then the Rees quotient S/I is a finite semigroup and we have that

[s]I = {s}. Hence S is completely separable, as desired.

We use Lemma 4.2.4 in the proof of the general result.

Theorem 4.2.5. A free product of completely separable semigroups is com-

pletely separable.

Proof. Let S =
∏
i∈I
∗Si, where {Si | i ∈ I} is a family of pairwise disjoint

completely separable semigroups. Let s = s1s2 . . . sn ∈ S, where si ∈ Sαi

for some αi ∈ I and for 1 ≤ i ≤ n − 1 we have Sαi 6= Sαi+1
. Let K =

I \ {α1, α2, . . . , αn}. If K = ∅, then S ∼= (Sα1 ∗ Sα2 ∗ · · · ∗ Sαn). As (Sα1 ∗
Sα2 ∗ · · · ∗Sαn) embeds into (Sα1 ∗Sα2 ∗ · · · ∗Sαn)0, it is sufficient to show that

(Sα1 ∗ Sα2 ∗ · · · ∗ Sαn)0 is completely separable. In the case that K is non-

empty, consider the ideal Js ≤ S generated (as an ideal) by the set
⋃
k∈K Sk.

Observe that s ∈ S \Js. Then S/Js ∼= (Sα1 ∗Sα2 ∗ · · · ∗Sαn)0. As [s]Js = {s},
we will identify s as an element of (Sα1 ∗Sα2 ∗ · · · ∗Sαn)0. Again to show that

S is completely separable, it is sufficient to show that (Sα1 ∗ Sα2 ∗ · · · ∗ Sαn)0

is completely separable.

Let S = (Sα1∗Sα2∗· · ·∗Sαn)0. For 1 ≤ i ≤ n, each Sαi is completely separable

so there exists a finite semigroup Pi and homomorphism φi : Sαi → Pi such

that φi(si) /∈ φi(Sαi\{si}). We will assume without loss of generality that the
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family {Pi}1≤i≤n are pairwise disjoint. Then we can define a homomorphism

φ : (Sα1 ∗ Sα2 ∗ · · · ∗ Sαn)0 → (P1 ∗ P2 ∗ · · · ∗ Pn)0 by

t1t2 . . . tm 7→ p1p2 . . . pm, where ti ∈ Sαji and φji(ti) = pi;

0 7→ 0.

Then φ(s) /∈ (φ(S)\{s}). Note that P1 ∗P2 ∗ · · · ∗Pn is completely separable

by Lemma 4.2.4. We will see in Theorem 4.3.12 that (P1 ∗ P2 ∗ · · · ∗ Pn)0 is

also completely separable. Hence we can separate φ(s) from (P1 ∗ P2 ∗ · · · ∗
Pn)0 \{φ(s)}. So by first factoring through S, and then by factoring through

(P1 ∗ P2 ∗ · · · ∗ Pn)0, we can separate s from S \ {s}. Hence S is completely

separable.

We now provide two examples; the first shows that the property of strong

subsemigroup separability is not preserved under the free product, and the

second shows that the property of weak subsemigroup separability is not

preserved under the free product.

Example 4.2.6. Let G be an infinite group with identity element 1. Let T

be any semigroup and let t ∈ T . We show that G ∗ T is not SSS.

Let U = 〈{tgt | g ∈ G \ {1}}〉. As every element of the generating set

has length three (in the free product sense), observe that a product of n

generators will have length 3 + 2(n− 1). From this observation we conclude

that t1t /∈ U . Let ∼ be a finite index congruence on G ∗ T . Then there exist

g, h ∈ G, with g 6= h, such that tg ∼ th. Then

t1t = tg · g−1t ∼ th · g−1t = thg−1t ∈ U.

Hence G ∗ T is not strongly subsemigroup separable.

Remark 4.2.7. In Example 4.2.6, if we choose T to be SSS and G to be

an infinite SSS group (see Example 3.4.7), then we have shown that the free

product of two SSS semigroups need not itself be SSS. However, the argument

that G∗T is not SSS does not depend on T being SSS, so in fact we conclude

that G ∗ S is not SSS for any choice of semigroup S. For this reason, we
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do not define a property of SSS-preserving in free products, as this class of

semigroups would be empty.

Example 4.2.8. Let S = S(F2,Z, φ) be as in Example 3.4.13, let T be any

semigroup and let t ∈ T . We show that S ∗ T is not WSS.

Let U = 〈{txo, a}〉 ≤ S×T . Then txi = tx0 · ai ∈ U for all i ≥ 0. These are

the only elements of length two in U , and so we conclude tx−1 /∈ U . Let ∼
be a finite index congruence on S ∗ T . Then there exist i, j ∈ N, with i < j,

such that txi ∼ txj. Then

tx−1 = txib
i+1 ∼ txjb

i+1 = txj−i−1 ∈ U.

Hence S ∗ T is not weakly subsemigroup separable.

Remark 4.2.9. In the above example, if we choose T to be WSS then we

have shown that the free product of two WSS semigroups is not necessarily

WSS itself. Just as before, we do not need that T is WSS in order to show

that S ∗ T is not WSS. So we can conclude that the class of WSS-preserving

(in free products) semigroups is empty.

We conclude this section by showing that the free product preserves the

property of monogenic subsemigroup separability.

Theorem 4.2.10. A free product of monogenic subsemigroup separable semi-

groups is itself monogenic subsemigroup separable.

Proof. Let {Si}i∈I be a family of MSS semigroups and let S = Πi∈I ∗Si. Let

U ≤ S be generated by {u} and let s ∈ S\U . As both u and s are finite length

strings, there exists a finite subset K ⊆ I such that U ∪ {s} ⊆ Πk∈K ∗ Sk. If

I \K = ∅, then S = (Πk∈K ∗ Sk). As S embeds in S0, it is sufficient to show

that S0 is MSS. If I \K 6= ∅, let J be the ideal of S generated (as an ideal)

by
⋃
i∈I\K Si. Then U ∪{s} ⊆ S \ J . As S/J ∼= (Πk∈K ∗Sk)0, for each n ∈ N

we will identify un as an element as (Πk∈K ∗ Sk)0. We also identify s as an

element of (Πk∈K ∗Sk)0. Therefore, in both cases, it is sufficient to show that

in S = (Πk∈K ∗Sk)0, we can separate s from U . We split into cases based on
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the length of both u and s.

Case 1. First we deal with the case that ||u|| = 1 and ||s|| = 1. Then u ∈ Sα
and s ∈ Sβ for some α, β ∈ K. We split into two subcases: α = β or α 6= β.

Case 1a. First we assume that u, s ∈ Sα. Then U is a subsemigroup of Sα.

As Sα is MSS then there exists a finite semigroup P and a homomorphism

φ : Sα → P such that φ(s) /∈ φ(U). Then we define a map φ : S → P 0 by

w 7→

φ(w) if w ∈ Sα,

0 otherwise.

Then φ is a homomorphism that separates s from U as desired.

Case 1b. Now we assume that α 6= β. Let φ : Sα → {e} be the homomor-

phism from Sα into the trivial semigroup. Then we define a map φ : S → {e}0

by

w 7→

φ(w) if w ∈ Sα,

0 otherwise.

Then φ is a homomorphism. As φ(U) = {e} but φ(s) = 0, we have separated

s from U .

Case 2. Now consider the case that ||u|| = 1 and ||s|| > 1. Then u ∈ Sα for

some α ∈ K. Furthermore U ⊆ Sα. As ||s|| > 1, it cannot be the case that

s ∈ Sα. Let φ : Sα → {e} be the homomorphism from Sα into the trivial

semigroup. Then we define a map φ : S → {e}0 by

w 7→

φ(w) if w ∈ Sα,

0 otherwise.

Then φ is a homomorphism. As φ(U) = {e} but φ(s) = 0, we have separated

s from U .

Case 3. The final case to consider is that ||u|| > 1. Then it must be

the case that ||un+1|| > ||un|| for all n ∈ N. Let ||s|| = m. Then the set

Zs = {t ∈ S | ||t|| > m} ∪ {0} is an ideal of S. To see this, let z ∈ ZS and
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t ∈ S. If either z = 0 or t = 0 then zt = tz = 0 and zt, tz ∈ Zs. Otherwise

||z|| > m and so ||zt||, ||tz|| ≥ ||z|| + ||t|| − 1 > m and again zt, tz ∈ Zs.

Hence Zs is an ideal.

As ||un+1|| > ||un|| for all n ∈ N, there exists a minimal N ∈ N such that

for k ≥ N we have that uk ∈ Zs. Let UN = {u, u2, . . . , uN−1}. From [19] we

have that Πk∈K ∗Sk is residually finite. Hence, S = (Πk∈K ∗Sk)0 is residually

finite by [50, Corolllary 4.6] (which is reproduced as Theorem 4.3.3). As

S is residually finite, there exists a finite semigroup P and homomorphism

φ : S → P such that φ(s) /∈ φ(UN) (if UN = ∅, then let P = {e} be the

trivial semigroup and φ : S → P be the trivial homomorphism).

We now separate s from U \UN . For k ∈ K, let {ek} be a copy of the trivial

semigroup. Consider T = Πk∈K ∗ {ek}. Define Jm = {t ∈ T | ||t|| > m}. It is

clear that Jm is an ideal of T . Furthermore, T/Jm is a finite semigroup of size

km+1, and has a zero element which will denote as 0. Define ψ : S → T/Jm to

be the extension of the map given w 7→ ek, when w ∈ Sk. Then ψ(s) is some

non-zero element of T/Jm as ||s|| = m. However ψ(U \ UN) = {0}. That is,

ψ separates s from U \UN . As φ separates s from UN , by Proposition 1.2.20

we conclude that s can be separated from U , completing the proof.

The monoid free product could form the basis for a future topic of research.

Like the group free product, the identity elements in an monoid free product

are identified with each other. A line of enquiry could be made investigat-

ing the preservation of both semigroup separability properties and monoid

separability properties under the monoid free product, and contrasting these

results to group and semigroup cases.

4.3 Large Subsemigroups

Proposition 1.2.13 showed that subsemigroups inherit separability properties

from the oversemigroup. In this section we investigate conditions under which

knowing that a subsemigroup has a separability property may guarantee that

the oversemigroup also has that separability property. In general it is not true
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that if a semigroup has a separability property, that this property will pass

to the oversemigroup. For example, the subsemigroup {0} ≤ Z is CS, yet we

have seen in Example 1.2.5 that Z is not even MSS. Therefore, we restrict our

attention to a certain type of subsemigroup, known as large subsemigroups.

We first define large subsemigroups, providing examples, and then explain

the motivation for studying them.

Definition 4.3.1. A subsemigroup T ≤ S is known as large if |S \ T | is

finite.

Example 4.3.2. Any semigroup is a large subsemigroup of itself. Any semi-

group S is a large subsemigroup of both S1 and S0. Any subsemigroup of a

finite semigroup is large. Consider N× Z. Choose any finite subset X ⊆ Z.

Then we claim T = (N× Z) \ ({1} ×X) is a large subsemigroup. It is clear

that T has finite complement. It is also a semigroup as each the set {1}×X
is a set of indecomposable elements, and so it must be that T 2 ⊆ T .

The motivation for studying how the separability properties of large sub-

semigroups affects those of the oversemigroup is motivated by the following

theorem of Ruškuc and Thomas.

Theorem 4.3.3. [50, Corollary 4.6] Let T be a large subsemigroup of S.

Then S is residually finite if and only if T is residually finite.

Our aim is then to say for which of our separability properties we can find

analogous results. In all cases except for that of monogenic subsemigroup

separability, it is true that if a large subsemigroup has a separability property

then so does the oversemigroup (Theorem 4.3.12). Proposition 4.3.10 demon-

strates that a semigroup which is not MSS can have a large subsemigroup

which is MSS.

Example 4.3.4. Let A be the semigroup given by the presentation 〈 a, b, c |
ab2c = b 〉, and let S = A∪{d} with multiplication inherited from A, and for
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w ∈ A we define the following multiplication:

di = bi, for i ≥ 2,

wd = wb,

dw = bw.

An exhaustive check confirms that S is a semigroup. Then A is a large

subsemigroup of S. We know that A is monogenic subsemigroup separable

by Proposition 4.1.40.

However, S is not monogenic subsemigroup separable. We show that the ele-

ment b cannot be separated from the subsemigroup 〈d〉. From the definition

of the multiplication, we can see that 〈d〉 = {d} ∪ {bi | i ≥ 2}. But in the

proof of Proposition 4.1.40, when showing that A is not WSS, we showed

that we cannot separate b from 〈b2, b3〉 = {bi | i ≥ 2}. Hence, in S we cannot

separate b from 〈d〉 and S is not MSS, as required.

When it comes to MSS semigroups, there is some good news. We are able

to show that when T is a large subsemigroup of a semigroup S such that

S \ T is also a subsemigroup of S, monogenic subsemigroup separability will

pass from T to S. This and other future results rely on theory developed in

[50]. Before we give a review of this theory, we first define the notion of a

left congruence and of a right congruence on a semigroup.

Definition 4.3.5. Let S be a semigroup and let π be a partition on S. We

say that π is a right congruence on S if (x, y) ∈ π implies that (xs, ys) ∈ π
for all s ∈ S. We say that π is a left congruence on S if (x, y) ∈ π implies

that (sx, sy) ∈ π for all s ∈ S. We say that a left congruence or a right

congruence has finite index if the underlying partition π has finitely many

blocks.

Example 4.3.6. Let G be a group and let H be a subgroup of G. The

set of right cosets {Hg | g ∈ G} form a partition of G. Furthermore, if

x, y ∈ Hg for some g ∈ G, then xk, yk ∈ H(gk) for any k ∈ G. Hence the

right cosets of H form a right congruence of G. Analogously, the set of left
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cosets {gH | g ∈ G} form a left congruence of G.

We note that a semigroup congruence is a partition which is both a left

congruence and a right congruence. With the concept of right congruences

in mind, we can adopt notation from [50].

Notation 4.3.7. For a partition π on S define

� ΣR(π) = {(x, y) ∈ S × S | (xs, ys) ∈ π for all s ∈ S};
� Σ(π) = {(x, y) ∈ S × S | (txs, tys) ∈ π for all s, t ∈ S}.

Note that ΣR(π) is the maximal right congruence contained within π and

Σ(π) is the maximal congruence contained within π.

Now we introduce two lemmas that are crucial to understanding how the

separability properties of large subsemigroups influence those of the over-

semigroup. We use ∆X to denote the diagonal partition on a set X and ∇X

to denote the universal partition on a set X.

Lemma 4.3.8. [50, Theorem 4.3] Let S be a semigroup, let T be a large

subsemigroup of S, and let λ be a left congruence on T having finite index.

Then the right congruence ΣR(λ ∪∆S\T ) has finite index in S.

Lemma 4.3.9. [50, Theorem 2.4] If ρ is a right congruence of finite index

in S, then the congruence Σ(ρ) has finite index in S.

We now turn our attention to the aforementioned result concerning mono-

genic subsemigroup separability.

Proposition 4.3.10. Let T be a large subsemigroup of a semigroup S such

that U = S \ T is a subsemigroup of S. Then S is monogenic subsemigroup

separable if and only if T is monogenic subsemigroup separable.

Proof. (⇒) This follows as subsemigroups inherit monogenic subsemigroup

separability by Proposition 1.2.13.

(⇐) Assume that T is MSS. Let V ≤ S be generated by the set {v} and let

y ∈ S \ V . We split into two cases: v ∈ U and v ∈ T .
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Case 1. Assume that v ∈ U . Note that by assumption U is a finite subsemi-

group of S. Then it must be the case that V is a finite subsemigroup of U .

As T is MSS, it is residually finite by Lemma 1.2.11. Hence S is residually

finite by Theorem 4.3.3. Therefore we can separate y from the finite set V ,

as desired.

Case 2. Now assume that v ∈ T . We split into two subcases: y ∈ U or

y ∈ T .

Case 2a. Assume that y ∈ U . Consider the congruence ξ = Σ(∇T ∪ ∆U).

The congruence ξ will have finite index by Lemma 4.3.8 and Lemma 4.3.9.

Furthermore, [y]ξ = {y}. This follows as ξ is contained within ∇T ∪∆U and

y ∈ U . Hence y is separated form V .

Case 2b. Now assume that y ∈ T . As we assuming that V = 〈v〉 is a

monogenic subsemigroup of T and that T is MSS, there exists a finite index

congruence η on T such that [y]η 6= [vn]η for all n ∈ N. By Lemma 4.3.8 we

have that ΣR(η∪∆U) has finite index in S, and hence so does the congruence

ξ = Σ(η ∪∆U). Furthermore, [y]ξ 6= [vn]ξ for all n ∈ N. This follows as ξ is

contained within η ∪∆U . Hence ξ separates y from V , as desired.

As an immediate consequence of Proposition 4.3.10, we have the following

corollary which shows that monogenic subsemigroup separability is preserved

under two important semigroup constructions: the adjoining of an identity

element and the adjoining of a zero element.

Corollary 4.3.11. Let S be a semigroup. Then the following are equivalent:

(1) S is monogenic subsemigroup separable;

(2) S1 is monogenic subsemigroup separable;

(3) S0 is monogenic subsemigroup separable.

We conclude this section by showing that our other separability properties

pass from large subsemigroups to their overgroups.

Theorem 4.3.12. Let P be one of the following properties: complete sepa-

rability, strong subsemigroup separability or weak subsemigroup separability.
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Let T be a large subsemigroup of a semigroup S. Then S has property P if

and only if T has property P.

Proof. (⇒) Each of the properties is inherited by subsemigroups by Propo-

sition 1.2.13.

(⇐) Assume that T has property P. Let U ⊆ S be a subset of the type

associated with property P and let v ∈ S \ U .

First consider the case where v ∈ T . If U ∩ T = ∅, then the congruence

ξ = Σ(∇T ∪ ∆S\T ) separates v from U . The congruence ξ will have finite

index by Lemma 4.3.8 and Lemma 4.3.9. Furthermore [u]ξ = {u} for all

u ∈ U . This follows as ξ is contained within ∇T ∪ ∆S\T and U ⊆ S \ T .

Hence v is separated from U .

Now we deal with the situation when U ∩ T 6= ∅. Then U ∩ T is a subset of

T of the type associated with property P. In the case that P is complete

separability or strong subsemigroup separability, this is clear. When U is

a finitely generated subsemigroup, we have U ∩ T is a finitely generated

subsemigroup of T by [9, Corollary 3.2]. As T has property P, there exists a

congruence η of finite index in T such that [v]η /∈ [U ∪ T ]η. By Lemma 4.3.8

ΣR(η ∪ ∆S\T ) has finite index in S, and hence so does the congruence ξ =

Σ(η ∩∆S\T ) by Lemma 4.3.9. As ξ is contained in η ∪∆S\T , each η-class is

a union of ξ-classes. Hence ξ separates v from U .

The final case to consider is when v ∈ S \ T . In this case the congruence

ξ = Σ(∇T∪∆S\T ) separates v from U . The congruence ξ will have finite index

by Lemma 4.3.8 and Lemma 4.3.9. Furthermore [v]ξ = {v}. This follows as

ξ is contained within ∇T ∪∆S\T and v ∈ S \ T . Hence v is separated from

U , completing the proof.

Remark 4.3.13. The reason why the argument from the proof of Theo-

rem 4.3.12 does not the extend to the property of monogenic subsemigroup

separability is because it is not necessarily true that the intersection of a large

subsemigroup with a monogenic subsemigroup is itself monogenic. We can
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see this in Proposition 4.3.10, where 〈d〉 ∩A = {bi | i ≥ 2} is not monogenic.
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Concluding Remarks and Future

Work

The work in this thesis has demonstrated that the study of separability prop-

erties of semigroups and algebras is a rich area of mathematical interest.

By considering these properties as part of a systematic framework, we have

been able to undertake a comparison of different properties in various con-

texts. Our investigations have revealed the deep links between separability

properties and structural theory. This is demonstrated by results such as

Theorem 3.3.22, which states that a finitely generated commutative semi-

group is MSS if and only every subgroup is finite, and Theorem 3.3.23,

which establishes the equivalence of complete separability, strong subsemi-

group separability and weak subsemigroup separability for finitely generated

commutative semigroups by giving a characterisation of these properties in

terms of Green’s relation H. The well-established link between separability

properties and classical decision problems, such as the word problem and the

generalised word problem, further motivates the drive to understand these

properties. An intriguing and complex picture of how separability properties

interact with algebraic constructions has emerged from the work in Chapter

4, but this picture is far from complete. Many open problems have been

recorded throughout this thesis, and these have the potential of forming the

basis for future research.

We conclude this work by bringing together some of the open questions al-

ready stated in this thesis. Although these questions have arisen from very

different lines of investigation, it is possible to find a link between them. In
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Chapter 2, we investigated the separability properties of free objects in var-

ious semigroup varieties. Our investigations into the free completely regular

semigroup left us with the following open problem.

Open Problem 2.6.13. For |X| ≥ 2, is the free completely regular semi-

group FCRX weakly subalgebra separable or monogenic subalgebra separa-

ble?

Recall that the free completely regular semigroup on a set of size two con-

sists of two copies of Z which act upon an Rees matrix semigroup over the

free group on a countable basis. Therefore, an understanding of the of the

separability properties of Rees matrix semigroups over groups may aid our

investigations into the free completely regular semigroup. We have already

made some steps in this area with our results concerning the free completely

simple semigroup; the class of Rees matrix semigroups over groups is precisely

the class of completely simple semigroups. In the literature, some separabil-

ity properties of both completely simple semigroups and completely 0-simple

semigroup have been classified. Golubov was able to classify when both

a completely simple semigroup and a 0-simple semigroup are strongly sub-

semigroup separable ([18, Theorems 1 and 2]), as well as considering when

a completely zero-simple semigroup is residually finite ([18, Theorem 3]).

These classifications rely upon the separability properties of the group used

in the constructions of the Rees matrix semigroup, as well as some conditions

being placed on the matrix. Of course Open Problem 2.6.13 is referring not

to subsemigroups, but to subalgebras (which are subsemigroups which are

also closed under the inversion map). Furthermore, we are restricting our

attention to finitely generated and monogenic subalgebras. Nevertheless,

Golubov’s work may prove a useful starting point; it seems reasonable to

expect these separability properties to be reliant upon the group separability

properties of the underlying group as well as properties of the matrix.

In Section 3.5, we investigated separability properties of semigroups with

finitely manyH-classes. In particular, the following questions remain open.

Open Problem 3.5.6. Is it true that a semigroup with only finitely manyH-
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classes is weakly subsemigroup separable if and only if all its Schützenberger

groups are weakly subsemigroup separable?

Open Problem 3.5.20. Let G be the Grigorchuk group, let I and Λ finite

sets, and let P = (pλi) a Λ× I matrix with entries from G0 such that no row

or column consists entirely of zeros. Is the semigroup M0[G; I,Λ;P ] weakly

subsemigroup separable?

Again, Open Problem 3.5.20 makes reference to a completely 0-simple semi-

group. The reason for this is because Rees’ construction allows one to easily

build a semigroup with a specified number ofH-classes, each having the same

Schützenberger group. This time we do want to know about the semigroup

separability properties of the semigroup M0[G; I,Λ;P ]. Therefore, by inves-

tigating weak semigroup separability properties of both completely simple

and completely 0-simple semigroups, we would increase the chance of being

able to answer Open Problem 3.5.20 and also Open Problem 3.5.6.

Finally, we can consider Rees’ constructions in the light of the work of carried

out in Chapter 4. The constructions allows us to build new semigroups from

any base semigroup, not just groups. It is then natural to ask, given a

semigroup S, what can we say about the separability properties of a Rees

matrix semigroup over S. In particular, if S has a separability property P ,

then under what conditions will the Rees matrix semigroup have P? The

work done by Golubov strongly suggests that the answer to this question will

rely upon the matrix used in the construction.

The line of investigation outlined above is just one of the many possible paths

future research into separability properties could take. Other lines of research

could explore the topological interpretation of separability properties, or use

separability properties to tackle decision problems. The study of separability

promises to continue to be an exciting and productive area of mathematical

research.
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Nauk SSSR 95 (1954), pp. 25–28.

[35] M. Lothaire. Combinatorics on words. Addison-Wesley, 1983.

[36] A. Mal’cev. “On isomorphic matrix representations of infinite groups

(Russian)”. Mat. Sb. 8 (1940), pp. 405–422.

187



[37] A. I. Mal’cev. “On homomorphisms onto finite groups”. Ivanov. Gos.
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[49] N. Ruškuc. “On large subsemigroups and finiteness conditions of semi-

groups”. Proc. London Math. Soc. 76 (1998), 383–405.
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