

Automating inventory composition

management for bulk purchasing cloud

brokerage strategy

Chalee Boonprasop

A thesis submitted for the degree of PhD
at the

University of St Andrews

2024

Full metadata for this item is available in
St Andrews Research Repository

at:
https://research-repository.st-andrews.ac.uk/

Identifier to use to cite or link to this thesis:

DOI: https://doi.org/10.17630/sta/899

This item is protected by original copyright

https://research-repository.st-andrews.ac.uk/
https://doi.org/10.17630/sta/899

Abstract

Cloud providers offer end-users various pricing schemes to allow them to tailor
VMs to their needs, e.g., a pay-as-you-go billing scheme, called on-demand, and
a discounted contract scheme, called reserved instances. This work presents a
cloud broker that offers users both the flexibility of on-demand instances and some
discounts found in reserved instances. The broker employs a buy-low-and-sell-high
strategy that places user requests into a resource pool of pre-purchased discounted
cloud resources.

A key challenge to buy-in-bulk-sell-individually cloud broker business models is
to estimate user requests accurately and then optimise the stock level accordingly.
Given the complexity and variety of the cloud computing market space, the number
of the regression model and inherently optimisation search space can be intricate.

In this thesis, we propose two solutions to the problem. The first solution is a
risk-based decision model. The broker takes a risk-oriented approach to dynamically
adjust the resource pool by analysing user request time series data. This approach
does not require a training process which is useful at processing the large data stream.
The broker is evaluated with high-frequency real cloud datasets from Alibaba. The
results show that the overall profit of the broker is closely related to the optimal case.
Additionally, the risk factors work as intended. The system hires more reserved
instances when it can afford while leaning to the on-demand otherwise. We can also
conclude that there is a correlation between the risk factors and the profit. On the
other hand, the risk factor possesses some limitations, i.e. manual risk configuration,
limited broker setting.

Secondly, we propose a broker system that utilises the concept of causal discovery.
From the risk-based solution, we can see that if there are parameters correlated with
the profit, then by adjusting those parameters, we can manipulate the profit. We infer
a function mapping from the extracted key entities of broker data to an objective of
a broker, e.g. profit. The technique is similar to the additive noise model, causal
discovery method. These functions are assumed to describe an actual underlying
behaviour of the profit with respect to the parameters. Similar to the risk-based, we
use the Alibaba trace data to simulate long term user requests. Our results show that
the system can infer the underlying interaction model between variables unlock the
profit model behaviour of the broker system.

Acknowledgements

I would like to thank my supervisors (Professor Adam Barker and Yuhui Lin) for
helping and guiding me with this project. Along with that, I would also like to thank
my school (School of Computer Science, University of St Andrews) wholeheartedly.

I would also like to thank my sponsor the Royal Thai Government for the funding
during my PhD study.

Lastly, I would like to thank my parents and friends who helped me finalise this
project within a limited time frame.

Declaration

Candidate’s Declarations
I, Chalee Boonprasop, do hereby certify that this thesis, submitted for the degree
of PhD, which is approximately 50,000 words in length, has been written by me,
and that it is the record of work carried out by me, or principally by myself in
collaboration with others as acknowledged, and that it has not been submitted in any
previous application for any degree. I confirm that any appendices included in my
thesis contain only material permitted by the ’Assessment of Postgraduate Research
Students’ policy.

I was admitted as a research student at the University of St Andrews in May 2017.

I received funding from an organisation or institution and have acknowledged the
funder(s) in the full text of my thesis.

Date: May 5, 2024

Signature of candidate:

Supervisor’s Declaration
I hereby certify that the candidate has fulfilled the conditions of the Resolution and
Regulations appropriate for the degree of Doctor of Philosophy in the University of
St Andrews and that the candidate is qualified to submit this thesis in application for
that degree.

Date:

Signature of supervisor:

8

Permission for publication
In submitting this thesis to the University of St Andrews we understand that we
are giving permission for it to be made available for use in accordance with the
regulations of the University Library for the time being in force, subject to any
copyright vested in the work not being affected thereby. We also understand, unless
exempt by an award of an embargo as requested below, that the title and the abstract
will be published, and that a copy of the work may be made and supplied to any
bona fide library or research worker, that this thesis will be electronically accessible
for personal or research use and that the library has the right to migrate this thesis
into new electronic forms as required to ensure continued access to the thesis. I,
Chalee Boonprasop, confirm that my thesis does not contain any third-party material
that requires copyright clearance. The following is an agreed request by candidate
and supervisor regarding the publication of this thesis:

Printed copy
No embargo on print copy.

Electronic copy
No embargo on electronic copy.

Date: May 5, 2024

Signature of candidate:

Date:

Signature of supervisor:

9

Underpinning Research Data or Digital Outputs

Candidate’s declaration
I, Chalee Boonprasop, hereby certify that no requirements to deposit original
research data or digital outputs apply to this thesis and that, where appropriate,
secondary data used have been referenced in the full text of my thesis.

Date: May 5, 2024

Signature of candidate:

Permission for Electronic Publication

In submitting this thesis to the University of St Andrews I understand that I am giving
permission for it to be made available for use in accordance with the regulations of
the University Library for the time being in force, subject to any copyright vested in
the work not being affected thereby. I also understand that the title and the abstract
will be published, and that a copy of the work may be made and supplied to any
bona fide library or research worker, that my thesis will be electronically accessible
for personal or research use unless exempt by award of an embargo as requested
below, and that the library has the right to migrate my thesis into new electronic
forms as required to ensure continued access to the thesis. I have obtained any
third-party copyright permissions that may be required in order to allow such access
and migration, or have requested the appropriate embargo below.

The following is an agreed request by candidate and supervisor regarding the
electronic publication of this thesis:

Access to printed copy and electronic publication of thesis through the
University of St Andrews.

Date: May 5, 2024

Signature of candidate:

Signature of supervisor:

I want to thank everyone who takes part in helping me finish this
project. This study has been particularly challenging due to the

unique situation during my time at St Andrews. And special
thanks to my family, who are always with me through all ups and

downs.
Chalee

CONTENTS

Contents i

List of Figures iv

List of Tables ix

1 Introduction 1
1.1 Cloud Computing . 1
1.2 Cloud Brokerage System . 2
1.3 Broker Inventory Optimisation Problem . 3
1.4 Our Approaches . 5

1.4.1 Risk Factors in a Brokerage System Inventory Management 7
1.4.2 Decision model Generator Broker System 7

1.5 Hypothesis & Contribution . 8
1.6 Organisation of Dissertation . 9

2 Literature Review 13
2.1 Cloud Computing . 14

2.1.1 Definition of Cloud Computing . 15
2.1.2 Cloud Computing Services . 15

2.2 Cloud Market Space Complications . 18
2.3 Cloud Brokerage System . 20

2.3.1 Broker’s Challenges . 21
2.3.2 Commercial Cloud Brokers . 22
2.3.3 Cloud Brokerage System Research . 23

2.4 Time Series . 26
2.4.1 Time Series Analysis . 30
2.4.2 Time Series Model . 31
2.4.3 Feature Engineering . 32

2.5 Gaussian Process . 33
2.5.1 Gaussian Process for Time Series Modelling 33

2.6 Causal Analysis and Additive Noise Model 34
2.6.1 Discussion . 38

2.7 Summary . 39

3 Background 41

i

II CONTENTS

3.1 Profit Maximising Cloud Brokerage Systems 41
3.2 Time Series Forecasting Models . 43
3.3 Gaussian Process . 46
3.4 Casual Inference using Additive Noise Models 47
3.5 Summary . 49

4 Cloud brokerage strategy and cloud inventory optimisation 51
4.1 Cloud Brokerage System . 51
4.2 Cloud Computing as Commodity Model . 53
4.3 Cloud Broker Inventory Strategy and Problem Formulation 54

4.3.1 Problem Formulation . 54
4.3.2 Optimisation of Targets . 56
4.3.3 Data Estimation and Inventory Adjustment 58

4.4 Proposed Solutions . 61
4.5 Scope of the Work . 62
4.6 Summary . 65

5 Risk-Based Cloud Brokerage 67
5.1 Risk Concept Usage in a Cloud Brokerage System 67
5.2 Inventory Optimisation and User Request Placement using Risk Analysis 69

5.2.1 Quantitative Risk Factors . 71
5.2.2 Normalised Linear Risk Analyser . 72
5.2.3 Decision-Making Function . 73

5.3 Detailed Specification & Implementation . 74
5.4 Evaluation . 78

5.4.1 Simulation Environment . 78
5.4.2 Broker Setting . 79
5.4.3 Experimental Results . 80

5.5 Related Works . 86
5.6 Future Directions . 87
5.7 Summary . 87

6 Automatic Profit Model Generator Cloud Brokerage 89
6.1 Automatic Profit Model Generating Approach 89
6.2 Stacked Cloud Brokerage Strategy . 95
6.3 Brokerage System Profit Model . 98
6.4 System Workflow & Architecture . 100

6.4.1 System Workflow & Components . 100
6.4.2 Feature Synthesis . 102
6.4.3 Model Generation Based on the Additive Noise Model 104
6.4.4 Independence Criterion & Health Check 108

6.5 Experimental Results . 109
6.5.1 Time Steps & the Period of Calculation 109
6.5.2 Data . 111
6.5.3 Results . 111

CONTENTS III

6.6 Related Works & Future Directions . 119
6.7 Summary . 121

7 Future Works & Conclusion 123
7.1 Contributions . 123

7.1.1 Risks in Cloud Brokerage Operation 123
7.1.2 Hidden Parameters in Random Process 124
7.1.3 Behaviour of Parameters in The Brokerage System 124
7.1.4 Decision System For Cloud Broker Inventory 125

7.2 Cloud Brokerage System Research & Future Work 126
7.2.1 Performance Related Cloud Brokerage System 126
7.2.2 Matching Application Characteristics 127
7.2.3 Optimisation of Broker Inventory . 129
7.2.4 Additional Research Domains in Cloud Brokerage Systems 131

7.3 Conclusion . 131

References 135

LIST OF FIGURES

1.1 Figure shows a cloud broker process starting from analysing customer data to cloud
inventory adjustment. Customers data, e.g. VM types, usage time, are passed through
the data analysis process, such as the demand estimation. After that, data analysis
is used to build cloud instance buying logic or aid the broker’s decision-making,
forming the broker inventory. 4

1.2 A broker system works by taking customers’ queries, analyse them and then order
cloud instances to be placed in the cloud inventory. The “analyse” step is what
dictates the broker’s inventory composition which directly influence the profit level
of the broker. 6

2.1 Cloud computing as a platform can be categorised into layers of operation. From
the hardware level, such as the infrastructure, to the software level, such as the
application layer, cloud computing offers customers solutions that suit all users. . . 16

2.2 The figure shows the difference between the scenario with and without the middle
man. Cloud instances are more complicated than typical computers. The instances
are units of a computer that are segmented from a larger mainframe in a data centre.
The specification page is a basic description of computer specifications that are not
comparable across multi-cloud. 19

2.3 The blue line is Dow Jones Industrial Average (DJIA) movements. The index
movement behaviour follows a random walk pattern. The green line shows a rolling
prediction of the DJIA using long-term-short-term memory artificial neural network.
The relatively simple up and down movement of the index proved to be difficult to
predict. 28

2.4 A Directed Acyclic Graph (DAG) showing the causal relations between the variables:
Customers, Sales, Cashback, Pro f it. The behaviour between variables follows the
function fi. From the example, the Pro f it adhere both the Sales and Cashback with
f3 and f4 respectively. In other words, the Customers and Cashback cause Sales;
and Sales and Cashback cause Pro f it. 37

3.1 (Left) The graph shows the structure of a broker inventory with number reserved
instances. (Right) The graph shows the user request slots. 44

iv

LIST OF FIGURES V

4.1 Cloud brokerage problem in this work focuses mainly on the inventory adjustment
system. Individual queries from cloud customers create customer demand data. The
demand data also contributes directly to the revenue of the broker. On the other
hand, a broker inventory data consisted of cloud instances data, i.e. on-demand and
reserved instances rent by the broker. This part of the data contributes directly to the
cost of the broker. Lastly, profit is the value of revenue over cost. 55

4.2 (LEFT) Typical two parameters optimisation problem with three constraints. The
domain (in dotted pattern) is available throughout all of the evaluation points i.e.
corners of the constraints. (RIGHT) In future values optimisation, the domain is not
fully available. Thus, the system has to fill these missing data points by predictions. 57

4.3 The graph shows an example of number of query over time. The vertical axis is the
number of query collectively can roughly estimate the demand of cloud customers.
The horizontal axis is the time. 59

4.4 Cloud broker inventory consists of many cloud instances which are there to
accommodate customer queries. In this graph, we assume that the query demand is
quantifiable, and therefore we can assign them to each cloud instance in its inventory.
The graph also shows that if the duration of the instance is fixed, then there is a
chance that some of the instances might not be utilised which is the main problem of
the profit loss. 59

4.5 The automatic model builder filter the parameters which associate with the profit
and infer the model F . With the model, we can form the relationship of ek and profit.
Thus, we can make an effective adjustment at ek to influence the profit. 63

4.6 There are many areas of cloud brokerage system research. In our broker model, there
are three main parts which contribute to the system, performance capture, inventory,
and allocation. However, only the dotted rectangle is the main focus of this work. . 64

5.1 A broker model to simplify the choice of VMs from various pricing schemes. Users
can both enjoy the flexibility as from on-demand instances and have discounts as
from contract instance. 68

5.2 Solving a time series data problem involves predicting future values. For example,
at t1 the current user orders exceed the inventory size, some of the orders have
to be offloaded to the on-demand instances; t2 is a point where the inventory is
underutilised. Accuracy predictions are the key to reduce the cost and make the
optimal decision on which scheme type of VMs the user order will be placed on. . . 69

5.3 Risk-analysis based decision making process. 70
5.4 Using volume of the inventory as a risk factor: V1 +V2 72
5.5 Plots showing the decision curve when risk is low (0.1), medium (0.5) and high

(0.9). x-axis is a random number generated between [0,1] with equal probability.
When y 0.5, the broker will create a reserved instance. The length of the arc
curve represents the corresponding likelihood. A guideline of y = 0.5 is provided
for reference. 74

5.6 Detailed specification of the decision making process with risk analysis 75
5.7 Workflows illustrating the broker’s responses to a user request when a VM is available

(A) and when a no VM is available (B). 76
5.8 Abstract type definition and specification for the broker model 77

VI LIST OF FIGURES

5.9 The graph shows a comparison of profits between each broker system of the input
Dataset 1. The broker system components of each system are shown in Table 5.3.
The input is divided into multiple parts of 4 months to illustrate each period’s profit
level better. Both risk-based systems outperform the pure reserved and reach close
to the theoretical maximised profit. The results are consistent throughout the data. . 81

5.10 The graph illustrates the normalised profit level of input dataset 2. In this dataset, the
pure reserved instance struggles to return a profit. On the other hand, the risk-based
system manages to stay close to the best case. With the inclusion of risk adjustment
feedback, the profit level manages to edge closer to the actual best case values. . . . 82

5.11 (TOP) A scatter plot of a normalised profit level of Dataset 1. The magnitude
of the difference between each system is relatively similar throughout the system.
Generally, we can see a pattern that the risk-taking outperform the no-risk adjustment
system and Auto-ARIMA system for the majority of the period. (BOT) A scatter
plot of a normalised profit level of Dataset 2. In Dataset 2, we can see that the
Auto-ARIMA and no risk adjustment perform similarly while still trailing behind
the risk-taking. Overall, the difference is larger than that of the Dataset 1 result. . . 83

5.12 The graph shows the profit of the broker in the q1 y2 period in Dataset 1. From
the average utilisation of both systems, the risk-based has a higher utilisation lower
profit. A higher average reserved instance usage does not always translate to a higher
profit. 84

5.13 The graph of a profit difference between pure reserved and the best case and average
usage time of users. A typical assumption for highly frequent small requests data is
that it should suit the broker with more on-demand instances rather than the one that
relies heavily on the reserved instances. However, from the graph, it does not appear
to be the case. 84

5.14 The graph compares percentage of over or under estimate the future values of
the Auto-ARIMA (RED) and quarterly profit (BLUE). From the result, the profit
of a broker seems to be negatively effect by the over-estimation rather than the
under-estimation. 85

6.1 A cloud broker operation starts from taking customers orders, process them and then
makes adjustments accordingly. The additive noise model broker extracts important
data features and selectively builds a model from the associate features. The model
is then used in the decision optimiser to make an optimal broker inventory adjustment. 90

6.2 Typical workflow of a system that involves future values needs a data estimation
process. a) A simple predict-optimised utilised time series prediction and use the
predicted data to optimised the broker system. b) A model-based behaviour capture
uses a system model built from the data to optimised the system. 91

6.3 The graph shows the customers’ demand in this example. The demand follows a
random walk model. 92

6.4 The graph shows the overall causal structure of created by the causal discovery
between parameters. In this example, ts.mean affects both reserved instance and
on-demand instance but only the ts.value affect the on-demand. 94

LIST OF FIGURES VII

6.5 Instance 1 of a cloud broker is a more powerful cloud instance. Therefore, it is able
to accommodate more virtual machine images than instance 2 or 3. If we assume
that all virtual machine is of the same performance level, then instance 1 can do the
same amount work as instance 2 and 3 put together. 96

6.6 Some queries that cannot be accommodate by the existing cloud instances in the
inventory can be offloaded to another type of cloud instance. 97

6.7 The automatic model system introduces an additional layer of hypothesis testing
from the generated features to automate feature selection and filtering processes. . . 101

6.8 Each moving window of a raw time series is calculated to a single data point in
multiple aggregated features. 102

6.9 (Top) P(x) represents the profit data, with black dots illustrating the samples for the
Gaussian process. The Gaussian process function, depicted in red, is defined by
mean and standard deviation. (Bottom) This graph displays three sample functions
derived from the distribution, serving as single-point “prediction” models. 106

6.10 (Top) P(x) represents the profit data, with black dots indicating the observation
sample with added noise. (Bottom) Similar to a normal Gaussian process, the sample
functions are depicted as single-point predictions. 107

6.11 Hilbert-Schmidt independence criterion use a kernel method to transform data from
its original space to a feature space which is easier to identify the independence
property. 109

6.12 Example of the data distribution of the users requests. (Left) The starting requests
per time step (Right) the termination requests per time step. 111

6.13 (LEFT) The figure shows typical causal model on the left-hand side. The causal
relation function (F) is the behaviour of the effect parameter when the independent
parameter change. (RIGHT) This figure shows causal model with hidden parameters
(Is) i.e. inventory composition. f3 and f4 are fixed functions which contribute to
the profit values while f1 and f2 are the regressed models from the independent
parameter to the inventory composition. 112

6.14 The figure shows the changes in profit data distribution after intervention on the
independent parameter. 113

6.15 The DAG of the broker system when the data is volatile. The hypothesis testing
from automatic model generation select a model with SD and MEAN parameter of the
starting data that associate with the profit. 114

6.16 The figure shows the movements of profit over time. 115
6.17 (TOP) The graph shows profit function infer from the Gaussian process with a

correspondence parameters (feature extracted from the data). (BOTTOM) A function
realisation for a point prediction. 116

6.18 (TOP) The graph shows profit function infer from the Gaussian process with a
correspondence parameters (feature extracted from the data). (BOTTOM) A function
realisation for a point prediction. In this figure, we can see the overfitting problem
and high error function approximation. 117

6.19 (TOP) The graph shows profit function infer from the Gaussian process with
correspondence parameters (feature extracted from the data). (BOTTOM) A function
realisation for a point prediction. 118

VIII LIST OF FIGURES

6.20 (TOP) The short-term-long-term memory artificial neural network time series
prediction brokerage system result is shown. The solid red line is the number
of reserved instance while the solid blue line is the average reserved instance usage.
(MID) The figure shows the number of reserved instances in the broker inventory
and average utilisation of the reserved instances with the Auto-ARIMA. (BOTTOM)
The result from the auto-model system shows overall lower number of reserved
instances but higher utilisation. 120

6.21 The graph shows profit comparisons between the auto-model, Auto-ARIMA and
the artificial neural network system. Generally, the profit trend is going in the same
direction as expected from all the working algorithms. However, there are some
areas in which the auto-model generate a higher level of profit. While there are
some areas that the other two systems that perform better. However, overall, the
auto-model can generate a higher profit level than the other two competing systems. 121

7.1 A map of cloud brokerage components . 127
7.2 The diagram shows a performance matching workflow and components. Cloud

applications and cloud instances go through a similar key feature capturing process.
After that, the matching algorithm between cloud application characteristics and
cloud instance performance from the database takes over. The result is the best cloud
instance for the application. 128

7.3 Causal discovery methods are used to infer relationships and causal parameters
from a dataset. Should the population (or its distribution) undergo changes, the
inferred data may become outdated. To address this, a causal model storage system
is implemented. This system archives models so that they can be retrieved and reused
when similar data patterns are encountered in the future. 130

LIST OF TABLES

2.1 An example of the specification page on the Amazon EC2 cloud provider. 25

5.1 Summary of User requests times series data for simulation 79
5.2 Statistic description of both datasets . 79
5.3 Component usage in each broker strategies . 80
5.4 Comparative values from the base case . 81
5.5 The correlation tests between profit difference of best case and pure reserved and

average usage time of users. 82
5.6 The correlation tests between profit difference of best case and pure reserved and

risk factors. 85

6.1 The arrows indicate causal relationship of parameters. 93
6.2 A set of extracted time series features . 104
6.3 Mean and variant of each section of the data . 113

ix

1CHAPTER ONE

INTRODUCTION

1.1 Cloud Computing

Cloud computing is currently one of the most talked-about technologies. Up until now, many of
the businesses have been moved or planned to move their infrastructure to the cloud (48; 30).
The move is to improve and enhance the capability of the business by taking advantage of the
strengths of cloud computing. Not only businesses, regular computer enthusiasts and small
businesses are now interested in the adoption of the cloud as well (65). Cloud computing as an
entity has changed the computing paradigm as we know it.

Cloud computing as a concept is defined as “cloud computer is a model for enabling ubiquitous,
convenient, on-demand network access to a shared pool of configurable computing resources
(e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned
and released with minimal management effort or service provider interaction” by the National
Institute of Standards and Technology (90). From the definition, cloud computing is a convenient
method of accessing computing resources over the network. Remote access benefits the pooling
resources giving access to higher performing computers rather than the usage of local machines.
However, more often than not, the process of selecting and configure cloud computers create the
first barrier of complication for cloud customers. Without access to the physical hardware, cloud
users are at the mercy of network connection from the local machine to the cloud. Offloading
computing workloads from the local computer to the cloud need the connection to be good
enough to ensure the experience of using the cloud. Thus, cloud computing only started to take off
when the computing power can be accessed over a network quickly, i.e. via broadband internet.
Even then, computer users come up with the first cloud concept within the institution whose
mainframe access time has to be shared (16; 72). After the idea become commercialised, cloud
computing surged in popularity in recent years due to the popularity of off-loading computing

1

2 CHAPTER 1. INTRODUCTION

power from personal devices (smartphone, laptops) to the data centre taking advantage of higher
computing power (89).

In the market space, there is a considerable number of cloud providers. Each of them tries to
offer the best cloud experience to the customers. The selection of cloud instances, performance,
stability, geo-location coverage, and price are among many features that the providers try to
offer to the customers to compete with each other. On the pricing offering, cloud providers try
to provide lower prices and various pricing schemes. On the surface level, the pricing schemes
from cloud providers are simple to understand and cater well to customers’ need. For example,
on-demand instances are for customers who need to use cloud computing for a short time. It
offers good flexibility in exchange for a higher price compared to other pricing schemes. On the
other hand, the reserved instances offer a substantially lower price than the on-demand for the
same performance. The condition of the reserved instance is a lengthy contract time or, in some
cases, high upfront cost. For a customer, these pricing schemes create choices and constraints
at the same time. Customers with low time usage have no alternative but to pay higher prices.
Together with diverse instance specifications, cloud computing is a complex entity which new
cloud customers might not be entirely familiar (114).

1.2 Cloud Brokerage System

The origin of a brokerage service starts from the complexity and choices of the services in
the market. A broker job is to streamline the complexity, make the process easier for the
customers, and earn a profit. The behaviour is not strictly unique to the cloud market. In a cloud
environment, the responsibility of the broker is more than just streamlining the market. Some
brokerage services offer assistance such as a common market space, value-added merchandise
(cloud instance) and more. This work focuses on the broker that offers lower price cloud instances
to the customers, making it more affordable for ordinary customers. The challenge of a broker is
to balance its inventory composition such that it can turn more profit.

Cloud brokerage service is to connect and bridge the gap between cloud providers and cloud
customers (33). This gap is the difficulty in the adoption of the cloud, especially for relatively
new cloud customers. The first barrier is the complexity of the cloud instance. For example,
cloud compute units description from many providers are not entirely explicit. Providers usually
display the specification as “vCPU”. Therefore, customers have a difficult time choosing the best
instance for their applications.

Another barrier that deter cloud usage is the price of cloud services. Although, cloud providers
advertise that in many cases, using the cloud is more convenient and cheaper. However, in reality,

1.3. BROKER INVENTORY OPTIMISATION PROBLEM 3

cloud instances usage per unit of time is a lot more expensive than using the computers on-site,
particularly in a small scale deployment and short term usage (129). Therefore, this work focuses
on the cloud inventory data estimation and optimisation strategy of the broker. The solution tries
to generate more profit through the price differences of multiple cloud pricing schemes. The
profit is passed to cloud customers making the overall cost of the cloud cheaper. A cheaper cloud
will bring more customers to accelerate cloud adoption and help develop cloud computing in
general. The growth in cloud customers should benefit both the industry and the development of
cloud technology (77).

There are numerous service brokerages, and each of them aims to add features or ease the process
of using cloud computing. As mentioned earlier, cost is an issue. A broker system that utilises
cheaper instances such as reserved instances as their primary commodity in its inventory and
resells the cloud instances to the customers as an on-demand type can benefit from the price
difference and pass these profits to the customers. By doing so, customers can still enjoy the
benefit of on-demand flexibility while can control many of the quality of services (QoS), such as
performance and latency.

1.3 Broker Inventory Optimisation Problem

Cloud computing space is a lucrative market. Therefore, the providers are trying to cater to as
many customers as possible. This leads to a sizeable number of choices, whether the instance
types or pricing schemes. A broker is a cloud customer as well. Thus, it too has to deal with
the complexity of cloud computing. Examples of pricing schemes are on-demand and reserved
instances. An on-demand instance is the most straightforward pay per usage type by the unit
time, i.e. hour. A reserved instance is a long-term instance where there is a fixed contract of
usage.

The value proposition of each pricing scheme varies from customer to customer. If the customer
values performance per time above anything else, then the best value would be the reserved
instance that offers the highest performance for the money. However, if a customer values
flexibility, then an on-demand type of instance would be better suited. For a broker, the concept of
value cannot be measured by the price per performance or price per duration alone. Nevertheless,
the objective of a broker when renting cloud instances from cloud providers is to have the
best cloud instances that generate the best profit in its inventory. Hence, deciding the pricing
scheme of cloud instances added to the inventory when needed plays a vital role in the system’s
profitability.

Given that cloud customers demand cannot be controlled by the broker, finding the right

4 CHAPTER 1. INTRODUCTION

Customers
Data Data analysis Cloud

inventory

buying cloud instance

Cloud provider

Cloud instance
buying logic

Figure 1.1: Figure shows a cloud broker process starting from analysing customer data to cloud inventory
adjustment. Customers data, e.g. VM types, usage time, are passed through the data analysis process,
such as the demand estimation. After that, data analysis is used to build cloud instance buying logic or aid
the broker’s decision-making, forming the broker inventory.

combination of cloud instances in its inventory is not trivial. One solution would be that if a
broker can predict customers’ demand and match them with the right set of cloud instances, then
the broker can achieve an optimal profit level. Generally speaking, there are two main aspects in
an attempt to achieve the goal of having an optimal profit, data analysis (data estimation) and
inventory buying decision logic (optimisation).

From Figure 1.1, data analysis is a process of figuring out useful information within the data.
Typically, the information is used for making a decision or keeping the operation running
efficiently. Data analysis by a broker is the first step after receiving customers queries to find
what aspect of the data is valuable to the broker system. The preparation step is the transformation
of an individual query into usable data. Since the broker system processes individual queries
chronologically, time series is the main data type that our broker uses. The next step in the broker
system is to predict or estimate the demand. It is arguably one of the most important steps toward
the high efficient broker. An accurate estimation would lead to good inventory preparation and
thus best fit the customers’ data. The demand prediction starts from deciding which aspects of
the data need to be estimated, such as the overall demand, short term, or long term queries. The
main issue with the prediction is the accuracy of the result. High accuracy is the ultimate goal
and is challenging to achieve, especially when the data is volatile.

Buying logic is a decision-making process used in conjunction with the prediction to decide
which cloud instances are to be in the inventory. Once the prediction results are obtained, a
system builds a buying logic or a function based on the outcome. If the aim is to make an optimal
decision for the broker, then a popular approach is to consider it an optimisation process, i.e.
choosing the best cloud instance composition for the customers’ data.

1.4. OUR APPROACHES 5

An optimisation is a process of selecting the best values of target variables within constraints
of the system. It is the ideal method for determining the combination of cloud instances in the
broker inventory on paper. However, an optimisation requires a well-defined domain which
means unless the prediction is accurate, the broker system will not have the best result. Given
that reserved instance duration typically ranges from one to three years, an accurate forecast of
the data is less likely.

Since making decisions far into the future is difficult, a just-in-time (JIT) decision model is better
suited for the system. A just-in-time function is also called a decision function. For example,
a broker can set up a function that uses more reserved instances when the demand goes up.
Alternatively, a broker can set the number of reserved instances in the inventory to be precisely
the value of an average number of customer queries per unit time. All of these functions are valid
decision methods. Nevertheless, to create a practical decision function, the system requires a
more elaborate method. The decision function can created by multiple methods. Most notably, a
form of regression can, in theory, find a model which a broker can use as a decision function. For
example, a regression method can find a model of broker composition given historical data of
optimal inventory composition to the customers’ data. With the constructed model, a broker can
follow the decision made by the optimal data and adjust the inventory according to the model
and new customers data.

However, applying a regression method also has a non-trivial pre-processing, such as the selection
of independent variables (128). Also, there could be variables other than the chosen independent
one that are not in the model and influence the dependent variable. Additionally, a strong
correlation from the regression does not simply imply a cause and effect relationship (83).
Therefore, the decision model might make a wrong decision causing a lower yield in profit.
Hence, a model of a system that infers the cause and effect as much as possible should be able to
unlock the insight needed to make a better decision.

1.4 Our Approaches

Our system takes all given individual cloud customers queries and allocates them to respective
cloud instances in its inventory as shown in Figure 1.2. The orders from customers are analysed,
then the broker decides which cloud instances are to be put in the inventory. The decision model
is the heart of the system, where the results made by it must fulfil many of the broker’s conditions
such as the guaranteed resource allocation or minimum computing power given to the customer.

In our system, customers’ queries data consisted of starting time, performance level, and
termination time. Starting time and performance level is, as the name suggests, a timestamp

6 CHAPTER 1. INTRODUCTION

Customers

Time step

Customers Customers

Cloud
inventory

Order Order Order

Reserved 1Buy

Analyse

t1 tnt2

Cloud
inventory

On-demand 1
Reserved 2Buy

Analyse

Cloud
inventory

On-demand kBuy

Analyse

Figure 1.2: A broker system works by taking customers’ queries, analyse them and then order cloud
instances to be placed in the cloud inventory. The “analyse” step is what dictates the broker’s inventory
composition which directly influence the profit level of the broker.

of the starting query and the performance level requested by the customers. The termination
time is not notified before hand by the user to the broker. The termination process triggers when
the customer finishes the job ,making the cloud instances from brokers behave similarly to an
on-demand instance.

The broker inventory is a set of cloud instances that consist of multiple pricing schemes and
performance levels. For example, in a normal setup, an inventory with n reserved instances of
the same performance level, m on-demand instances can host up to k customer queries of the
same or multiple performance level.

Although, reserved instances are used as the primary instance in the inventory. If the situation
demands, the broker can offload some of the queries to more expensive but less committed
instances, i.e. on-demand instances, to reduce the chance of some reserved instances being
underutilised. If the broker determine that the chance of newly created reserved instance is going
to be underused, then the broker might order on-demand instances to be used in its inventory.

To build a decision function, we make an assumption that there are parameters associated or
correlated with the profit of the broker. Suppose these parameters are manipulated or changed.
Then profit of the broker system also changes. For example, hand-picked parameters such as
risk factors from the solution in Chapter 5 can build a decision function to make the system

1.4. OUR APPROACHES 7

perform better profit-wise than a typical time series prediction method. Also, another approach
is discovering the variables through an auto-model generator, a causal discovery-like method
used to infer a relationship function between profit and other parameters in a broker system.

1.4.1 Risk Factors in a Brokerage System Inventory Management

The indicator method has been used in many financial applications where certainty and
predictability are hard to come by (13). Indicators are parameters that try to predict the behaviour
of the future values of a time series (108). The indicator indicates or predicts the directional
movement of the future value in a time-series. The development of indicator usually involves
the historical observation and manual data mapping. A similar approach is applied to the broker
problem.

Adjusting broker inventory is done when the broker inventory cannot accommodate the incoming
requests from cloud customers. The adjustment process is triggered by every exceeding query
over the inventory capacity. Therefore, for every exceeding request, the broker has to choose a
cloud instance. If the reserved instance is selected, then a broker could make a profit from the
price difference. However, if the broker chooses an on-demand instance, the broker will make no
profit.

The risk factors system is created with the risk concept in mind (25; 53). The principle of risk is
that lower risk can bring lower profit (or deficit) and higher risk can bring higher profit (or deficit).
The risk factor system aims to solve an unbalanced decision-making the broker inventory system.
Assuming that there are some problems in the prediction, the underestimated solution will place
more queries into more expensive on-demand instances. The chances of purchasing reserved
instances into the inventory are lower, resulting in a potential loss of profit made from cheaper
reserved instances. On the other hand, if the system overestimates the demand, the idle time
of reserved instances is higher. Since the reserved instances usually have a significant upfront
cost, it could lead to bad overall profit. We have set up a risk factors system so that they are to
deal with a problem that might happen in the future. The risk factors are similar to the indicator
where they try to help a broker make correct decisions when adjusting its inventory, since the
risk factors are predetermined and shaped by situation rather than historical data-driven.

1.4.2 Decision model Generator Broker System

While risk factor is one concept that deals with uncertainty, the risk assessment process, on the
other hand, is a tedious process and relies on human input and expertise. The next natural step
for the broker system is to try to reduce the human involvement and develop a methodology of

8 CHAPTER 1. INTRODUCTION

identifying the decision-making function as its accompany parameters.

We develop a broker process which aim to find broker inventory composition from a set of
parameters. It starts with feature extraction of the data as candidates for the model similar to
the risk factors of the previous system. The feature parameters are potential parameters that
might influence the profit. A typical method of finding or filter out these features, whether or
not they are associated with the profit, is to perform a correlation test. The correlation test is
a suitable method of finding the relation of an already known connection. However, a strong
assumption (known relationship) is not easy to conclude. Hence, in this work, we are adapting
the method from the additive noise model into our system (55). The additive noise model has
three main components: function approximation, added noise, and independent testing. The
chosen features and their inference functions are used as the profit model of a broker. Then, the
inventory configuration is adjusted following the model. As a result, we build a more flexible
profit model and require fewer human inputs.

1.5 Hypothesis & Contribution

The main claim of this work is:

A cloud brokerage service that primarily manages reserved instances can offer cloud
services to customers at lower costs by developing a profit model that thoughtfully
considers various parameters and their interactions.

We identify and solve the following components to evaluate our hypothesis.

• HYP 1 - A bulk buying cloud broker operates under some risks from the uncertainty of
the user requirements. These risks can be managed by identification of the risk factors and
functional risk management.

• HYP 2 - A random process in a structural system has hidden causal parameters and relations
that we can infer.

• HYP 3 - In an optimal system, parameters behave under certain underlying relations.

• HYP 4 - We can use the behaviour of the parameters to build a decision system for the cloud
broker inventory.

Our solutions can have extended usages outside of the cloud computing area. Our methods’ cri-
teria are the uncertainty of the incoming data while the cost of planning the data accommodation

1.6. ORGANISATION OF DISSERTATION 9

is high. For example, we can use the risk-based solution with the financial portfolio adjustment,
while the auto-model can be used in agricultural planning.

The main contributions in the area of cloud computing research are:

1. A risk-based cloud inventory optimisation approach that utilises risk analysis to dynamically
adjust instances stocking level without assuming the underlying distribution of user requests.

2. A novel approach using automatic profit model generator based on the additive noise model
combined with feature selection method and the model health check toward the broker
inventory optimisation for a profit.

3. A systematic cloud broker framework that automatically extracts features from time series
for given goals.

4. An evaluation of both approaches using the data from Alibaba.

1.6 Organisation of Dissertation

A short description of each chapter in this dissertation is given below.

Chapter 2 presents the literature survey about cloud computing, cloud brokerage service, time
series data, causal discovery, and the additive noise model. A brokerage system enhances
the capability of cloud computing or, in some cases, reduces the cost of using cloud
computing. One key challenge is to optimise the inventory by analysing customer demand
time series data. In addition to the time series analysis, a causal discovery method can also
be used to find the connections between broker parameters and the profit value.

Chapter 3 is the background that explains the main technologies in this work. First, the details
of profit maximising of a cloud broker were given. The model of using reserved instances
as the primary instance of cloud inventory can be profitable under certain conditions. After
that, the detailed Auto-ARIMA model is given as one of the main comparison models
in this work. The ARIMA model is one of the most popular time series models and the
Auto-ARIMA simplifies fine-tuning the parameters and thus produces the best possible
result within the constraints. Next, the Gaussian process is explained. The Gaussian
process is the model generator in our broker system. Lastly, the causal discovery method
is used as a model generator and parameter filtering in the additive noise model.

Chapter 4 shows the problem formulation and research motivations. It starts from the cloud
broker business model and its challenges. The challenges include optimisation, data

10 CHAPTER 1. INTRODUCTION

estimation, and the profit model. Together, they form a research motivation. Lastly, this
chapter proposes solutions and a high-level explanation of the two approaches, a cloud
broker system based on risk-based solution and auto-model generator.

Chapter 5 shows a broker strategy that utilised risk factors. We build a broker inventory
decision-making system that uses the risk factors and corresponding decision function.
The combined functions form a linear decision model. The risk factors assessed from
potential scenarios where the broker investment in reserved instances might cause a deficit
in profit, such as the remaining reserved instances contract length in the inventory. The
decision-making process decides between two types of cloud instances, on-demand and
reserved. The decision making is triggered when there is a need to expand the broker
inventory, i.e. customer requests exceed the size and availability of the broker. The logic
behind risk factors is that if the risk is high, the system would balance itself and reduce the
risk by adjusting the decision threshold. Therefore, the broker can avoid the unwanted idle
reserved instance while lowering the opportunity cost. On the other hand, coming up with
risk factors relies on human intuition and manually crafted associated functions, restricting
the system’s expansion.

Chapter 6 shows an extension of the broker profit system, rather than using the decision function
from the risk factors. The broker uses an automatic profit model generator by utilising a
method similar to the additive noise model (ANM). The ANM is one of the causal discovery
method aiing to infer cause and effect relationship. Typically, the ANM is used to identify
the causal pair of parameters. We are adapting the ANM to build a profit model from a
selection of parameters. At the heart of the ANM, the Gaussian process is used to build
an approximate function of the relation. Together with the independent testing between
parameters, ANM produces a relation function that rejects or accepts the connection
between parameters. This mechanism selects functional parameters concerning the profit.
Utilising this technique, a broker can build a comprehensive map of the parameters that
affect the system’s ultimate target, profit. The identified model is used as a decision model
when planing the broker inventory. The method can automatically filter the generated
features and build a function around the chosen ones. As such, it can generate the decision
model from the input data similar to the risk-based approach. The auto-model generator is
more flexible than the risk-based due to the minimisation of human input.

Chapter 7 presents future directions of research and development in cloud brokerage system in
general. This includes the topics that are not discussed in previous chapters. It starts with
research directions of cloud brokers, such as cloud instance performance measurements
and cloud instance matching. A good matching should make the decision on the suitable

1.6. ORGANISATION OF DISSERTATION 11

cloud instance trivial for customers. Next, the broker inventory optimisation is discussed,
followed by cloud services. Lastly, the conclusions of the dissertation are presented.

2CHAPTER TWO

LITERATURE REVIEW

Cloud broker research is a multifaceted field that draws on various computer science disciplines.
The rise of cloud computing was fueled by increasing demands for computing power and
the advent of feasible remote access technologies. Since then, cloud computing has gained
tremendous popularity in both private and public sectors. Consequently, numerous companies
have begun investing in cloud infrastructure to secure an early market presence. As the market
expands, cloud providers continue to diversify their offerings, presenting a range of cloud
instance types and various pricing models for customers to choose from.

The complexity and fragmentation of the market often necessitate the introduction of third-
party solutions. Similar to other types of brokers, a cloud broker facilitates cloud adoption for
customers by providing services such as automatic selection of cloud instances and platforms for
utilizing multiple clouds. Typically, cloud brokers charge an additional fee for these services.
Some brokers capitalize on the price disparities across different providers’ pricing schemes.
By purchasing reserved instances at lower prices and reselling them to customers, brokers can
generate profits. However, they must secure enough customers to cover the lengthy contract
periods associated with reserved instances. Therefore, effective demand prediction methods are
crucial to solve this challenge and potentially increase the broker’s profitability.

In cloud brokerage systems, pricing schemes for cloud instances are typically based on usage
time, requiring the broker’s system to process individual customer cloud queries as time series
data. This time series data is crucial as it also includes temporal elements like the expiration
times of reserved instances. Consequently, our brokerage system primarily utilizes time series
data.

Time series data is characterized by its vertical movements or changes in value at different time
steps. These fluctuations, which can often appear random, present significant challenges for

13

14 CHAPTER 2. LITERATURE REVIEW

analysis. The unpredictability in value changes—whether an increase or decrease—makes time
series data complex to handle. Tools developed to analyze such data will be discussed, focusing
on their application in a cloud brokerage context.

Furthermore, the task of selecting a suitable model and its parameters is a substantial challenge in
brokerage systems and is often guided by the system administrator’s experience, historical data,
or a trial-and-error approach. The data generated by cloud brokerage systems, such as inventory
composition, is a direct result of decision-making processes within the broker. Assuming
these decisions yield optimal inventory composition, the resulting profit should also be optimal.
However, establishing a clear link between customer demand data and broker profit is complex.
One effective technique for exploring these relationships is causal discovery.

Causal discovery methods aim to identify causal relationships between variables without the
need for re-experimentation. Among these methods, the additive noise model is particularly
notable. This model introduces independent noise to determine if there is a cause-and-effect
relationship between two variables with high precision. At its core, this model relies on function
approximation, which is instrumental in developing the broker’s profit model.

This chapter provides an overview of the foundational theories applied in this study, ranging
from general cloud computing principles to specific methodologies like the additive noise model.

2.1 Cloud Computing

The computer generally referred to a machine that process operations automatically. Accessing
the machine is done through input devices, which carry out the signal to the machine. The concept
of accessing machines “remotely” was introduced as early as 1977 when the “internetting” was
demonstrated (SATNET) (59). Remote access can arguably be the starting point of the “cloud”,
a symbol for networking since the input and output were off-site and was not at the same premise
as the computer. Another concept of cloud computing might started from a time-sharing scheme
on a mainframe computer (120). Scientific calculations are large scale workloads that usually
are not possible on a personal computer. The workloads have to be moved to a better capable
machine, such as a parallel mainframe. While highly utilised, it locked out other users when
there are not enough computing capacity. Thus, it is necessary to arrange a time-sharing scheme
or queuing system. Similar to the SATNET, users connect to computing resources remotely. Fast
forward to the present day, cloud computing as we know it was popularised around the year 2000
when Amazon launched its Elastic Compute Cloud (EC2) platform (1). The service offers many
computer services such as virtual machines, off-site data storage, machine learning models, etc.
Many providers joined later, saturating and offering a competitive market for cloud users. Cloud

2.1. CLOUD COMPUTING 15

computing becomes one of the fastest-growing sectors in the digital market.

2.1.1 Definition of Cloud Computing

What is cloud computing? The National Institute of Standards and Technology’s definition of
cloud computing — National Institute of Standards and Technology (86) identifies “five essential
characteristics”:

• On-demand self-service: A consumer can unilaterally provision computing capabilities,
such as server time and network storage, as needed automatically without requiring human
interaction with each service provider.

• Broad network access: Capabilities are available over the network and accessed through
standard mechanisms that promote use by heterogeneous thin or thick client platforms (e.g.,
mobile phones, tablets, laptops, and workstations).

• Resource pooling: The provider’s computing resources are pooled to serve multiple con-
sumers using a multi-tenant model, with different physical and virtual resources dynamically
assigned and reassigned according to consumer demand.

• Rapid elasticity: Capabilities can be elastically provisioned and released, in some cases
automatically, to scale rapidly outward and inward commensurate with demand. To the
consumer, the capabilities available for provisioning often appear unlimited and can be
appropriated in any quantity at any time.

• Measured service: Cloud systems automatically control and optimise resource use by
leveraging a metering capability at some level of abstraction appropriate to the type of
service (e.g., storage, processing, bandwidth, and active user accounts). Resource usage can
be monitored, controlled, and reported, providing transparency for both the provider and
consumer of the utilised service.

Although the definition can be varied from source to source, in general, cloud computing is
viewed as a remote computing resource that customers have access to but cannot manipulate the
infrastructure itself, which is similar to the actual cloud.

2.1.2 Cloud Computing Services

As remotely accessed computers, cloud services offer similar computing services as locally
accessed computers if allowed by the latency and bandwidth. While limited, cloud computing

16 CHAPTER 2. LITERATURE REVIEW

Application

Platform

Hardware

Infrastructure

Software as a service
(SaaS)

Platform as a service
(PaaS)

Infrastructure as a
service (IaaS)

Business application,
Web services, search

engine, etc

Software
framework(JAVA,

Python), Database
(DB)

Computation (VM),
Storage (block)

Data centres

Figure 2.1: Cloud computing as a platform can be categorised into layers of operation. From the hardware
level, such as the infrastructure, to the software level, such as the application layer, cloud computing offers
customers solutions that suit all users.

also offers flexibility and a hassle-free experience of maintaining physical computers. The broker
services can be categorised into three main groups.

• Infrastructure as a service (IaaS) is a cloud computing service that the cloud provider
manages the stack of basic computing structures such as server, storage, network and physical
infrastructure.

• Platform as a service (PaaS) has, in addition to the IaaS, management of middleware such as
operating system.

• Software as a service (SaaS) is the most similar to running on-premise computing. The
provider takes care of the whole computing service, including application and data.

Other services such as mobile as a service are debatable whether it can be a group of its own.
However, if we are talking about the data centre cloud services, they mainly consist of the above
three services. The services stack is shown in Figure 2.1.

The infrastructure as a service is the backbone of cloud computing services. IaaS is the physical
aspects such as the building, data centre, mainframe, server and storage units. IaaS also covers
the security and networking infrastructure necessary to operate a cloud. Essentially, this is where
cloud services live.

The IaaS offers services such as:

2.1. CLOUD COMPUTING 17

Test and Development: Customers can efficiently manage the testing and development
environments, with the ability to quickly power systems up or down. Infrastructure as a Service
(IaaS) can significantly accelerate the application development and testing cycle, making it more
cost-effective from a development standpoint.

Website Hosting: Customers can host their websites on IaaS platforms, which is generally less
expensive than traditional web hosting services or operating their own servers.

Storage, Backup, and Recovery: IaaS provides scalable storage solutions that accommodate
unpredictable demand. It also supports robust system backup and recovery processes in the event
of system failures.

Web Apps: IaaS offers a comprehensive solution for web applications, encompassing storage,
networking, and computing resources. Applications can be rapidly deployed and scaled according
to demand.

High-Performance Computing: Supercomputers, essential for analysing vast datasets and
solving complex problems, require significant resources and infrastructure. By running these
workloads in the cloud, organisations can avoid the high costs associated with building and
maintaining high-powered computing infrastructure.

Platform as a Service (PaaS) builds on top of Infrastructure as a Service (IaaS). It extends beyond
hardware to include operating systems and database systems.

Development Framework: PaaS provides a development framework that developers can
use to build or customize cloud-based applications. Much like using Excel macros, PaaS
allows developers to create applications using built-in software components. Features such as
scalability, high availability, and multi-tenancy are inherent, which minimizes the amount of
coding developers need to do.

Analytics, Business Intelligence, and Big Data: PaaS supports analytics and data mining tools
that can significantly enhance business decision-making processes.

Additional Services: PaaS enhances customer applications with additional services such as
workflow management, directory services, security, and scheduling.

Lastly, Software as a Service (SaaS) represents the application layer hosted and run in the cloud.
Examples include Google Apps, Salesforce, Dropbox, and Slack. SaaS offers the most complete
cloud service model, albeit with less opportunity for customisation.

18 CHAPTER 2. LITERATURE REVIEW

2.2 Cloud Market Space Complications

Cloud computing as a concept is a computing power renting scheme. The main idea is to
have computers as a service, offload the computing workloads, or distribute the workloads to
multiple computer units. However, choosing the right cloud instance is not easy, especially for
inexperienced cloud customers. Several reasons contribute to the complexity of the cloud as
follows.

Cloud instances and their problem of selecting the best cloud

The initial challenge for cloud customers is selecting the appropriate cloud instance specifications
for their various applications. Customers have diverse requirements; for example, those needing
high-performance CPUs require cloud providers to offer a range of options. These include
different pricing schemes, performance levels, storage capacities, specialised hardware, and
more. For traditional computers, the specification sheet typically serves as the primary indicator
of performance. However, for cloud instances, the specifications listed may not always reflect
the actual performance experienced by the user.

The performance level of computers is normally displayed through specification configuration.
Normally, it is displayed using the main component of a computer. For example

• Central processing unit (CPU) type, model, speed, number of core.

• Random access memory (RAM) type, model, speed, protocol, size.

• Storage type, size, speed, vendor.

• Graphic processing unit (GPU) vendor, model, core counts, special hardware (CUDA).

• Network type, speed.

For example, Amazon EC2 T4g.nano has two vCPU (Custom built AWS Graviton2 Processor
with 64-bit Arm cores), 0.5 GiB (No details), No GPU, network performance (up to 5 Gbps),
Storage EBS (up to 2085 Mbps). This type of instance is not comparable to the m5.large with two
vCPU (vCPU is a thread of either an Intel Xeon core or an AMD EPYC core), 8 GiB, network
performance (Up to 10 Gbps), Storage EBS (Up to 4,750). Let us take the CPU as an example
of the cloud specification display. It is used to be that the faster clock speed the processor has
means higher performance. However, this is not always the case, given current cloud workloads.
Additionally, there are differences in the instruction set, architecture type, cache size, number of
cores etc. These specification labels are hard to quantify. Furthermore, there are instance types
with multiple CPU models that are randomly given to customers which increasingly complicate

2.2. CLOUD MARKET SPACE COMPLICATIONS 19

the situation (43; 122). Therefore, comparing computers’ performance is performed using some
form of numerical performance values, i.e. benchmarks (58).

Benchmarking in cloud computing merits a dedicated chapter due to its complexity and the
detailed analysis it requires. Benchmark numbers, typically aggregating scores from various
tasks performed by a computer or cloud instance, are vital for comparing one machine to another.
Effective benchmarking requires controlling for pre-conditions such as the specific instance in
use and the timing of the benchmark. Brokers with pre-purchased instances can thus perform
thorough benchmarking and create a database for fair comparisons.

Cloud computing encompasses various elements, including the platform, software, and security
features. Each provider attempts to distinguish its offerings to attract customers. This document,
however, primarily focuses on general compute units, which allow customers to run any type of
workload. These units are particularly suited to seasoned cloud users who require specialized
cloud instances.

Additionally, the process of selecting cloud instances is complicated by Performance Variation,
as documented by several studies (73; 5; 70). Performance variability can arise from many
factors, including the time of day, the type of instance, and the current load, among others.
Such variations, often uncontrollable by cloud customers despite guarantees from service level
agreements, make even ostensibly identical instances perform differently.

Customer

Provider a Provider b Provider c

Information request

Customer

Provider a Provider b Provider c

try try try

Middle man

a is the best

Figure 2.2: The figure shows the difference between the scenario with and without the middle man.
Cloud instances are more complicated than typical computers. The instances are units of a computer that
are segmented from a larger mainframe in a data centre. The specification page is a basic description of
computer specifications that are not comparable across multi-cloud.

Choosing the correct cloud instance is not an easy task for customers. Therefore, a middle man
“brokerage service” can help to streamline the selection process.

Cloud computing performance

20 CHAPTER 2. LITERATURE REVIEW

The complexities of computer performance are extensive and beyond the scope of this discussion;
however, we can distill performance in cloud computing and brokerage systems down to a few
key parameters. Typically, the performance of cloud compute units is defined primarily by the
number of virtual CPU cores and the amount of RAM available. Customers can later augment
their configurations with additional storage and network speed enhancements.

In this work, we will concentrate on CPU and RAM, as these are central to cloud instance
performance. It’s important to note that CPU performance varies depending on the type of
workload; some CPUs may perform excellently under certain conditions but poorly under others.
This variability is common and a key reason why cloud providers often present their instance
performance using generic CPU benchmarks, even though not all CPUs are created equal.

Nevertheless, it is widely accepted that CPUs can be effectively compared using aggregated
benchmark scores. One critical component that is often lacking is a continuously updated
database of cloud instance performance.

Cloud brokers, which manage multiple types and configurations of cloud instances, are well-
positioned to maintain such a database. This resource allows them to directly compare the
performance of different configurations. While this solves the problem for CPU performance
comparability, RAM, storage, and network speed can be evaluated in a similar manner, ensuring
comprehensive performance assessments.

2.3 Cloud Brokerage System

Cloud computing services have significantly evolved over the past few years, transitioning
from simple off-site backups to comprehensive virtual computing systems (7; 112). With
improvements in network speeds, customers can now offload entire computing workloads to
the cloud. This growth has intensified competition among providers, driving innovation and
diversification of offerings from general compute instances to specialized artificial intelligence-
focused instances with pre-installed models. In such a competitive market, price is a primary
motivator for customers, prompting providers to keep prices competitive. When price reductions
reach their limits, providers often introduce a greater variety of options, such as different pricing
schemes and value-added services. However, these choices can overwhelm, especially less
experienced users, suggesting the potential benefit of a unified marketplace to simplify cloud
adoption.

The role of a cloud broker, as defined by NIST, is to act as an intermediary, managing interactions
between cloud users and providers (90). There are three main types of services a cloud broker

2.3. CLOUD BROKERAGE SYSTEM 21

might offer:

1. Aggregation: Combines services from multiple providers into a single offering for users,
handling all related complexities.

2. Arbitrage: Offers more flexible services tailored to specific user needs by selecting
appropriate services from various providers based on usage analysis.

3. Intermediation: Adds valuable services to cloud offerings, including monitoring, anomaly
detection, and enhanced security.

Cloud brokerage solutions are prevalent in both commercial and academic settings, each with
distinct focuses. Commercial solutions aim to add value and facilitate the transition from local
systems to the cloud, whereas academic solutions tend to emphasize technical frameworks and
financial benefits for users without imposing additional charges.

Despite the availability of tools from providers to manage cloud instances effectively (57), recent
surveys indicate persistent challenges in cloud computing that brokers can address (33). The
overwhelming number of choices and the resulting complexity are key drivers for the emergence
of cloud brokerage systems. These systems often cater to specific problems while also charging
additional fees to simplify processes. For small customers, the flexibility of renting cloud
instances from multiple providers involves extra work with limited benefits, unless they need to
expand capabilities beyond what their current provider offers. Here, cloud brokers can provide a
seamless service that connects multiple providers without being confined to just one.

Brokers also have the potential to facilitate special cloud services such as VM migration and
data transfer, further enhancing their value to customers.

2.3.1 Broker’s Challenges

The concept of a cloud broker can be as complex as the functionalities it is designed to offer. As a
service, a broker must provide valuable functions to justify its existence. However, adding more
functionalities can complicate the system and undermine its simplicity and optimization. This
delicate balance between functionality and simplicity is crucial, especially given the inherent
complexities of cloud computing (41). The focus, therefore, should be on simplifying existing
cloud functionalities.

Cloud computing complexity stems from its components, which primarily include:

1. Cloud Users: These are the customers who utilize the broker services and are often the most

22 CHAPTER 2. LITERATURE REVIEW

unpredictable and challenging component to manage.

2. Cloud Providers: These are the sources of the cloud instances for the broker and the
originators of the cloud broker concept. Providers compete to attract more customers by
offering better value for money (121). However, when costs begin to surpass revenue,
providers may shift to a segmentation marketing strategy (31; 104), offering more tailored
choices to meet specific needs. This can lead to premium pricing for specialised instances
and possible penalties or inconsistent performance for lower-tier options (73).

3. Cloud Brokerage System: This refers to the mechanisms of the broker system itself.

Cloud providers were initially driven by competition, striving to attract more users by enhancing
value. However, as strategies pivot towards market segmentation, providers not only offer more
diversity in their services but also introduce complexity into the market. This complexity can
dilute one of the key advantages of cloud computing—its simplicity and flexibility—forcing
users to spend additional time optimizing their workflows and adapting to a constantly evolving
cloud environment.

2.3.2 Commercial Cloud Brokers

The market currently features a wide array of cloud service brokerages. These commercial
solutions typically charge an additional fee for their services, with pricing often based on a
subscription model. This model allows for lower initial costs, but requires customers to continue
paying for as long as they utilize the service. While most vendors do not publicly disclose their
pricing, customers and businesses interested in these services can contact them directly to request
a quote.

Typical features of cloud brokerage solutions on the market include:

• Marketplace services

• Cloud engine services or a multi-cloud solution

• Integration services

• Security services

A marketplace service is a middle man that provides an exchange of cloud services between
customers and providers. The service is similar to a stock market where the transaction is done
through a middle man (market) rather than directly with companies. This type of broker allows
for the convenience of exchanging cloud instances for a fee.

2.3. CLOUD BROKERAGE SYSTEM 23

If the customers want to distribute their application through multiple providers, an engine that
manages cloud virtual machines across multiple providers or a multi-cloud solution is the type
of broker that provides such a service. The multi-cloud allows customers to connect and utilise
multiple providers or even multiple geo-locations. The customers can use the unique strength
of each provider in their applications. Typically, a multi-cloud solution is possible without the
broker intervention. However, as with most broker services, the usage of a broker can provide the
customer with a better experience. Similarly, multi-instance types of service also help customers
enhance their application performance.

Next, one of the major concerns when using the cloud is security. Cloud users are sharing server
space with multiple users in the same data centre. Thus, the security of and safety of the users’
data is critical. Thus, there is a broker service that guarantees users’ data safety with an additional
security layer.

2.3.3 Cloud Brokerage System Research

The commercial space is not the only active solution. In the academic space, several ongoing
pieces of research are conducted on all aspects of the cloud broker. According to (9), there are
four following aspects of cloud computing research.

1. Cloud service broker for performance

2. Cloud service broker for application migration

3. Cloud broker model

4. Data for cloud broker

Cloud service broker for performance. There are cloud brokers specifically focused on
optimizing cloud instance performance. These services encompass a range of tools including
benchmarks, resource matching, performance indicators, comparison, and prediction. Notable
frameworks such as STRATOS and OPTIMIS are designed to capture performance and match
critical performance indicators (CPIs) effectively (92; 39). The CPIs encompass seven categories:
accountability, agility, assurance, financial, performance, security, privacy, and usability. These
frameworks aim to address the common challenge of aligning customer requirements with the
appropriate cloud instances efficiently.

CloudBench is another benchmarking framework that allows users to specify the importance of
memory, processor, computation, and storage for their applications through a set of four weights
(101). These weights create a profile of the customer’s application needs, which, combined with

24 CHAPTER 2. LITERATURE REVIEW

cloud benchmark data, helps generate a ranking of virtual machines (VMs) that could optimize
application performance.

Moreover, traditional computer benchmarking tools such as SpecInt and PassMark are also
applicable to cloud environments (52; 56). These benchmarks provide a foundational metric for
comparing different cloud instances.

Cloud service broker for application migration. Application migration, if done efficiently, is
a great strength of cloud computing. Since cloud computing can be viewed as elastic, migrating
an application from one instance to another can help the application achieve higher performance
when moving to suitable cloud instances. CloudProphet and RightScale is working on a similar
model of application migration to a more suitable cloud instance (74; 12). CloudProphet uses
prediction from a local running workload to identify the best cloud instance for application
migration. This saves time on the real cloud and offloads that to the local machine. The
RightScale, on the other hand, use pre-set criteria which trigger an action when the application
needs a better cloud instance.

Overall, cloud migration is still a costly process that needs a workaround to bypass a time-
consuming data transfer process.

Cloud broker model The cloud broker model is a crucial area of focus in cloud computing
research, serving as a pivotal point where performance and migration concerns intersect. This
model is central to discussions in the cloud broker domain.

As previously discussed, frameworks such as STRATOS and OPTIMIS exemplify broker models
aimed at performance matching. These systems require comprehensive benchmarking and
performance profiling to function effectively. The data gathered through these processes inform
the model’s decisions, helping it to identify the optimal configuration for achieving its objectives.

Similarly, SMICloud adopts an approach that prioritizes the Quality of Service (QoS) of cloud
instances as a key decision-making indicator (44). It ranks instances based on QoS parameters like
response time, sustainability, data center performance per energy (including carbon emissions),
and other factors such as suitability, accuracy, and interoperability, among others. SMICloud
introduces an Analytical Hierarchical Process (AHP)-based ranking mechanism to align user-
defined QoS requirements with cloud provider offerings, presenting a multi-criteria methodology
that focuses on selecting instances for optimal performance (110).

There are also cloud broker models specifically designed to maximize profit. Research such
as that by the authors of (84) investigates the feasibility and profitability of a reselling broker
model. In this model, a broker rents reserved instances and resells them to customers, prioritizing

2.3. CLOUD BROKERAGE SYSTEM 25

Table 2.1: An example of the specification page on the Amazon EC2 cloud provider.

Instance size vCPU Memory
(GiB)

Instance stor-
age (GiB)

Network
bandwidth
(Gbps)

EBS
bandwidth
(Mbps)

c6gd.medium 1 2 1 x 59 NVMe
SSD

Up to 10 Up to 4,750

c6gd.large 2 4 1 x 118
NVMe SSD

Up to 10 Up to 4,750

Each vCPU is a thread of either an Intel Xeon core or an AMD EPYC core, except for C6g, C6gn, T2 and
m3.medium.
Each vCPU on C6g and C6gn instances is an AWS Graviton2 core processor.

higher-demand queries to maximize the utilization of reserved instances and increase profitability.
This approach highlights a strategic method to enhance profit margins within the cloud brokerage
industry.

Data for cloud broker. Cloud broker, as with other platforms, works with data. Let us assume
that the broker algorithm uses the running frequency of the CPU as the performance indicator.
Then, this data will become the deciding factor of the outcome of the algorithm. Thus, obtaining
accurate data is one of the focuses of cloud brokerage research.

Data for cloud brokers can be obtained through two options; providers listed data and third-party
extracted data. The providers’ data are publicly available. Cloud instance specification data can
be obtained directly from the providers’ websites. However, Cloud providers list performance
metrics are not standardised between different providers. Table 2.1 shows an example of the
cloud instance specification page from Amazon EC2 cloud (27). The example shows one of
the potential problems with the cloud specification page. For example, the CPU units are not
consistently displayed. Therefore, the performance value is also not uniform across all instances.

Public data is also a place where the broker can obtain other data types that are not associated with
the performance. The data include geo-location of the infrastructure, service level agreements,
pricing scheme etc. Most of this data is straightforward and can be taken as a reference.

Third-party extracted data represents another critical type of cloud data, primarily utilized due
to inconsistencies in cloud specifications. To enable fair comparisons, cloud customers often
need to meticulously examine cloud specifications and consult reliable benchmark databases. To
facilitate this, services like the Yahoo Cloud Serving Benchmark and CloudScore offer databases
filled with benchmark scores, allowing customers to directly compare cloud instances using
consistent metrics (26; 32). Similarly, cloud brokerage systems can employ these methods to
conduct value assessments of cloud instances, ensuring comparisons are made on an equitable

26 CHAPTER 2. LITERATURE REVIEW

basis.

Cloud brokerage remains a dynamic field of research, ripe with opportunities ranging from
performance enhancement to system optimization. The field continues to evolve, incorporating
sophisticated techniques to better serve user needs and improve cloud service delivery.

Next, we will delve into time series data, a fundamental data type extensively used across
various scientific and technical fields including finance, machine learning, and beyond. Time
series data is crucial for analyzing trends over time, forecasting future patterns, and making
data-driven decisions in real-time environments. This data type is particularly important in
cloud computing for monitoring system performance, predicting load and usage, and optimizing
resource allocation dynamically.

2.4 Time Series

As previously mentioned, the cloud brokerage system operates on a time scale. Hence, individual
data points in the system can be transformed into time series data for better management and
maintainability.

A time series data is a sequence of indexed data points (117). The data has two components
(domains), the frequency domain and the time domain. Time series data is usually used for
displaying one-way indexing data, hence the usage of time. Numerous applications use time
series data, such as stock market price movements, daily temperature levels, compute resource
usage during the day, etc.

Time series data is characterized by the frequency of its measurements, typically categorized into
discrete or continuous forms. Discrete time series consist of data points collected at consistent
intervals, representing sequential measurements in equal time spaces. This type of time series is
commonly found in practical data collection, where measurements are taken at fixed and regular
intervals, such as daily temperature readings, monthly sales data, or yearly financial reports.

In contrast, continuous time series are more theoretical and often used in model representations
rather than as direct data measurements. They assume data points can be observed at any
instant within a given range, making them a useful conceptual tool in mathematical modeling
and simulations. Continuous time series are used to create models that predict or simulate
smoother processes, where data points might be interpolated to infer values at times not explicitly
measured.

Both types of time series have critical applications in various fields, leveraging their unique

2.4. TIME SERIES 27

properties to analyze and predict trends and patterns over time effectively.

Next, the Notation of time series in this work and in general is accepted as shown below.

A common notation for a discrete time series can be represented as

X = {x1,x2, ...}

or
X = {xt : t 2 T},

where T is the time index set. Either notation is accepted and widely used.

X or X(t) denotes a time series and xi denotes individual value of each time step i. i can be seen
as the “time” of measurement or observation. It can be indexed as both real-time or just the
ordered time step.

The time series by itself is a display of data. An additional analytical works need to be performed
get the following information:

• Obtain an understanding of the underlying structure that produced the observed data.

• Fit a model and proceed to forecasting, monitoring or even feedback and feed-forward control.

For example, the stock market index Dow Jones Industrial Average (DJIA) is shown in Figure
2.3. DJIA can be observed as a time series and then plot as values against the time graph. We
can see an accumulative index (value) movement from one time step to another (day) from the
graph. The green line on the graph is an example of a time series analysis result. The green line
is predicted using long-term-short-term memory artificial neural network prediction of the index,
then plot over the original data. The green line can be used as a prediction such that traders can
buy and sell the DJIA according to the value predicted.

A time series has a property to measure “randomness”. This is in the form of stationary or
non-stationary. It is defined such that the non-stationary is unpredictable and cannot be a forecast
or model after. This means that each movement in a non-stationary time series is random. On
the other hand, being stationary is a property of time series that does not depend on time. The
time of observation should not matter in a stationary time series. The time series should look
similar at all observation points. In other words, time series with the trend and seasonal variation
are not stationary.

The type of data that gives problems to the predictors and users are, of course, unpredictable.
One of the models that try to capture the non-stationary property is the random walk model.

28 CHAPTER 2. LITERATURE REVIEW

Figure 2.3: The blue line is Dow Jones Industrial Average (DJIA) movements. The index movement
behaviour follows a random walk pattern. The green line shows a rolling prediction of the DJIA using
long-term-short-term memory artificial neural network. The relatively simple up and down movement of
the index proved to be difficult to predict.

Random walk is vital in trading in a stock market or prediction of human behaviour. Since most
of the theories and assumptions about random walk theory are about how unpredictable random
walk is, it is productive to transform the random walk model, in this case, a non-stationary model,
into a usable one.

Non-stationary time series data often lack drift or deterministic trends, which can complicate
statistical analysis due to violations of stationarity assumptions. One common technique to
address this issue is differencing, which helps to stabilize the mean of the time series by removing
changes in the level of a time series, thus potentially eliminating trend and seasonality.

The differenced series is calculated as the change between consecutive observations in the
original series. This can be mathematically represented as:

ŷt = yt � yt�1

where ŷt is the value of the differenced series at time t, yt is the value of the original series at
time t, and yt�1 is the value of the original series at time t �1.

This transformation results in a differenced series having only T �1 values if the original series
contained T observations. This reduction in the number of data points occurs because the first

2.4. TIME SERIES 29

observation in the original series does not have a preceding value from which to subtract and
thus is not included in the differenced series.

When the differenced series is white noise, the model for the original series can be written as

yt � yt�1 = et

where et denotes white noise. Note that, this equation is the same as the random walk model.

yt = yt�1 + et

Random walk models are characterised by long periods of trending upwards or downwards,
punctuated by sharp changes in direction. In forecasting, the random walk model is often used to
create naive forecasts, where the forecast for the next period is simply the last observed value.
This approach is based on the premise that future movements are unpredictable and equally likely
to increase or decrease, as follows:

yt = yt�1 + et

where et represents the random error at time t.

However, if a random walk model incorporates a drift component, the model is modified to
include a constant term, c, representing the mean change between observations:

yt � yt�1 = c+ et

This can be rearranged to show that:

yt = yt�1 + c+ et

In this model, c signifies the average incremental change. If c is positive, the series tends to
drift upwards over time, indicating a general increase in yt . Conversely, a negative c indicates a
downward trend.

The concept of drift is essential, especially when considering longer observation periods, T . This
introduces an element of non-stationarity to the series, which can be addressed using differencing
techniques. Differencing helps in stabilizing the mean by removing changes in the level of the
series, making the time series stationary:

Dyt = yt � yt�1

30 CHAPTER 2. LITERATURE REVIEW

Time series analysis, including techniques such as differencing, is a vast area of study. This
chapter introduces only a fraction of the broader field, focusing primarily on methods to manage
and analyse non-stationary data.

2.4.1 Time Series Analysis

Time series analysis for all intended purposes is about understanding the nature of the time series
data. Since the time series often associate with financial values, a good understanding of the
data is always welcoming for profitability. The methods of achieving the said task, however, are
varied depending on the purpose.

Curve Fitting is a statistical method used to find the function that best fits a set of data points by
minimizing the difference between the observed values and the values predicted by the model.
This process, described in (51), is essential for understanding the relationship between two
variables, which can be visualized through a scatter plot.

Depending on the distribution of data, this relationship may appear linear, exponential, quadratic,
or follow another mathematical form. The relationship is considered strong if the actual data
points closely adhere to the predicted curve.

In a linear relationship, a change in one variable results in a proportional change in another,
represented by the equation:

y = mx+b

where y is the dependent variable, x is the independent variable, m represents the slope, and b the
y-intercept. Here, the influence of the independent variable x on y remains constant across the
data.

Conversely, in a non-linear relationship, the impact of the independent variable on the
dependent variable varies across the data set. For example, a quadratic relationship might
be expressed as:

y = ax2 +bx+ c

where a, b, and c are coefficients that define the curvature of the graph, indicating that the effect
of x on y changes with different values of x.

Function approximation is a technique for estimating an unknown underlying function using
historical or available observations data (109; 60). The term mainly associates with machine
learning techniques such as an artificial neural network. A mathematical function governs the
mapping of input and output data, called the mapping function, and it is this function that an

2.4. TIME SERIES 31

artificial neural network tries to estimate.

Prediction and forecasting is a method of using the curve fitting or function model to estimate
future values (119). A forecast refers to a calculation or an estimation that uses historical data
combined with recent trends to estimate a future outcome. On the other hand, a prediction
is an actual act of indicating that something will happen in the future with or without prior
information.

In a time series, future values estimation is usually referred to as forecast values.

2.4.2 Time Series Model

Models for time series data can have many forms and represent different stochastic processes. It
is essentially a model fit to a given value of data. The main idea of using a time series model is to
identify the behaviour of the data in a time domain. The most popular model is the autoregressive
integrated moving average (ARIMA), and its extensions (54).

Although, there are numerous variations of the ARIMA model, all of which improve upon the
original on certain aspects. This section will focus on the original model since most of the core
ideas are similar.

A time series model can be simply divided into three classes. First, is the autoregressive (AR)
which is the variable of interest determined using a linear combination of past values of the
variable. It is essentially a regression of the variable against itself.

xt = c+
p

Â
i=1

kixt�i + et

where c is a constant, kis are parameters of the model and et is white noise.

The next class is the integrated (I) indicates that the data values have been replaced with the
difference between their values and the previous values.

Lastly, the moving average (MA) specifies that the output variable depends linearly on the current
and past values of a stochastic term.

xt = µ + et + k1et�1 + . . .+ kqet�q

where µ is the mean of the time series, k1, ...,kq are the parameters of the model, and es are the
white noise.

Together, they form a time series model call autoregressive integrated moving average (ARIMA)

32 CHAPTER 2. LITERATURE REVIEW

models.

The ARIMA model is widely used and accepted by the community to have all of the necessary
components to predict future time series values. However, it too has a problem finding the optimal
parameters, which means that each prediction result can be varied depending on the parameters
configuration. Auto-ARIMA is a method of build in an ARIMA model by searching for the best
combination of parameters p,q,d. Thus, it should yield the best performing prediction.

2.4.3 Feature Engineering

The processing of time series data, similar to other data types, requires careful preparation.
Although defined variously by different experts, the commonly accepted steps for machine
learning data processing include:

1. Gathering Data: Collecting relevant data from various sources, which may involve pulling
from databases, APIs, or sensors.

2. Cleaning Data: Removing inaccuracies and inconsistencies such as outliers, missing values,
and duplicate entries to improve data quality.

3. Feature Engineering: Transforming raw data into features that better represent the
underlying problem to the predictive models, enhancing model accuracy and performance.

4. Defining a Model: Choosing a suitable model based on the nature of the problem and the
data. This step involves selecting the algorithm that best fits the needs of the prediction task.

5. Training, Testing, and Prediction: Training the model on a designated training set,
evaluating it on a testing set to gauge its performance, and using the model to make predictions
or decisions based on new data.

Feature engineering is the process of obtaining information from raw data. Typically, feature
engineering involves human inputs and trial and error until the best-fit features are found.
Constructing a feature set is very time-consuming, particularly when the information is complex,
i.e. multiple tables. There are two main categories of feature engineering: transformations and
aggregations. Time series as present in the cloud broker can be considered as raw data with
indexed value features (50). Features of the data are measurable properties of the observed
data. The feature extraction in a time series is a “characteristics” capturing of the data. Basic
characteristics are used to train a model of interest. Feature extraction is similar to feature
engineering. It involves the concept of reducing data characteristics to describe the data. A
complex data can be difficult to describe and illustrate; thus, feature extraction is used to compute,

2.5. GAUSSIAN PROCESS 33

identify, and select a suitable set of features. The feature’s extraction process is tedious and time-
consuming. Therefore, an automated time series feature extraction is useful in helping training
ML algorithms and testing a scale-up hypothesis in the form of a curated package, TSFRESH
(24). The meaningful features are extracted from a raw time series using a combination of
features generating functions. These features are ready to be used in any ML algorithms.

Data features do not only reduce the computation time of the system. In many cases, using the
right features set can also lead to a better result of the system (64).

2.5 Gaussian Process

A random process is also known as a stochastic process. It is an infinite collection of random
variables {X(t) : t 2 T}, where T is the probability space. Usually, the index t is time. However,
the index could be any spatial dimension. Some might consider the random process to be a
time-varying function.

There are two possible interpretations for a random process. For a random process X(t,w) of two
variables t 2 T and w 2 W. W is a sample probability space, and T is a discreet or continuous set.

• for fixed w: X(t,w) is a deterministic function of t.

• for fixed t: X(t,w) is a random variable.

For most cases, we are interested in the fixed t while X(t,w) is a random variable. This model is
also called a random walk model.

2.5.1 Gaussian Process for Time Series Modelling

We can assume that a time series can be format into a regression problem of the form y = f (x)+n,
in which f is an unknown function, and n is an additive noise process. There are two goals for
the problems: evaluating the function f and the probability distribution of y for some x.

The observable data pairs are also assumed to be present, i.e. (xt ,yt). Additionally, the
observations are accurate. To approximate the function f , there are mainly two approaches,
curve fitting and function mapping. Curve fitting assumes that y is ordered by x. In a time series,
the datum x is a time variable. With inference, the process fit a curve to the set of x,y points. The
relationship between x and y is not fixed but conditioned on observed data. Prediction results are
the extrapolation of the curve that models the observed past data. The function mapping approach
considers inference of a function f , which maps some observed x to an outcome variable y.

34 CHAPTER 2. LITERATURE REVIEW

The Gaussian process is an inference about functions.

A mean vector and covariance matrix define Gaussian distribution. The covariance K must be
positive definite, i.e. for any vector x, xT Kx � 0. Therefore, K is symmetric with a positive
diagonal, and all eigenvalues of K is greater than 0.

The (i, j) element of the covariance expresses how variable i is dependent upon variable j.

A Gaussian process is the generalisation of a multivariate Gaussian distribution to a potentially
infinite number of variables.

Predictant y⇤ = y(x⇤)

Data yd = y(xd)

p(y⇤,yd) = N

y⇤

yd

!
;

µ(x⇤)

µ(xd)

!
,

K(x⇤,x⇤) K(x⇤,xd)

K(xd,x⇤) K(xd,xd)

!!

Mean m(y⇤|yd) = µ(x⇤)+K(x⇤,xd)K(xd,xd)
�1(yd � µ(xd))

Covariance C(y⇤|yd) = K(x⇤|x⇤)+K(x⇤|xd)K(xd|xd)
�1K(xd|x⇤)

The covariance matrix ensures that close together values in the input space produce output values
close together. This covariance matrix, along with a mean function to output the expected value
of function f , defines a Gaussian Process.

2.6 Causal Analysis and Additive Noise Model

Finding a correlation between variables is standard practice in scientific experiments. It is a
process of finding a connection between groups of observable data to understand the behaviour
of the system. The relations are helpful for building a model that would support the assumption
of the experiment. However, the correlation relation does not imply causal relation. The causal
relation is essential in performing good science. An unintentional correlation might punish a
critical operation; thus, relationship finding is of importance.

Causal analysis is the study of establishing cause and effect. It usually involves collecting data
(observable data) or run multiple experiments then perform the analysis. The causal inference
requires different techniques than just function mapping or data fitting. It requires additional
assumptions to produce a good causal result. The most important question that the causal
inference has to answer is that the correlation is not causation.

2.6. CAUSAL ANALYSIS AND ADDITIVE NOISE MODEL 35

The causal discovery was studied to find causal relations by analysing the observable data. The
data are produced by underlying causal and sampling data. Practically, all science experiment
is about confirming hypotheses which are finding the causes and effects. The causes are
experimentally identified by adjusting parameters and repeatedly executing the experiment until
the conclusion is drawn. However, these methods are expensive, time-consuming and in some
cases impossible to redo. Thus, inferring causal relation from the existing data can are interested
in many scientists and researchers (45).

Causality in a time series is a difficult task to achieve due to multiple reasons. Time series data
are generated dynamically. The generation process might be non-linear, the observation rate
might be slower than the generation rate. Thus, the accuracy of causality on a time series are
sensitive to many factors mentioned above.

Several methods deal with time series data: We can partition the data into “windows” of
corresponding disjointed data. Then we can use each window as a data unit. We can estimate
a lagged unit to be the data analysis unit. This is similar to a popular time series analysis
autoregression. The causality of the time series using the autoregression is called “Granger
causality”. We can omit the time component of the time series and treat the data as time-
independent. Between all causality approaches, they possess both strengths and weaknesses
depending on the usage.

Causal inference methods with the Additive Noise Model

The basic idea of causal inference starts from two observable data vectors. Thus, given two
vectors containing observed data points, namely X and Y, a causal discovery method can find if
one of the vectors is a cause of another. In this work, we use a causal discovery method called
the additive noise model (55).

The additive noise model (ANM) is one of the most popular methods used in causal inference.
The basic premise of a causal relationship between two variables, X and Y , is that changes in X
predict changes in Y or vice versa. The association between the parameters is defined through
generative functions, f and g, such that:

Y = f (X)+ny, f

X = g(Y)+nx,g

where ny, f and nx,g are the residuals or noise components. Fitting Y as a function of f (X) gives the
residual ny, f = Y � f (X), and fitting X as a function of g(Y) gives the residual nx,g = X �g(Y).

36 CHAPTER 2. LITERATURE REVIEW

The direction of causality is determined by the independence of the residuals:

• If ny, f is independent of X and nx,g is dependent on Y , then X �! Y .

• If nx,g is independent of Y and ny, f is dependent on X , then Y �! X .

• Otherwise, the causal relationship remains inconclusive.

It has been asserted that the method of fitting functions and the criteria for independence should
not compromise the results of causal inference. However, studies such as those found in (69)
show that the performance of ANM is influenced by factors such as the tails of the additive noise
and the sophistication of the regression algorithms used. These factors do not alter the causal
relationships but do affect the rate at which causal relations can be correctly identified.

Moreover, ANM involves complex regression tasks and computationally intensive tests for
independence, making scaling to systems with a large number of variables problematic. A novel
framework, KIKO, has been developed to address these challenges by using a simpler, one-way
regression and a rapid independence test based on the Hilbert-Schmidt Independence Criterion
(HSIC), as detailed in (8). This approach significantly reduces the computational demands of
ANM, facilitating faster and more efficient causal analysis.

Additionally, the indirect additive noise model between X1,X2,X3 is investigated by the authors of
(15). The model of X1 �! X3 is first established. The additive noise model has been demonstrated
to be effective, but the model is incomplete—indirect causal inferences that might influence the
model causes by intermediate variables. A cascade model estimates the model, including the
unmeasured intermediate variables. A causal model, X1 �! X2 �! X3, can be inferred even when
the X2 is unmeasured. This is similar to our system of a broker, which has intermediate variables
of inventory composition.

There are other causal discovery techniques such as bi-variate fit, which gives the state of the
model whether or not it is the causal model (80). Conditional Distribution Similarity Statistic re-
scale the values of effect in respect to the cause (42). For this method, if the standard deviation is
low, then there is a likely chance that the parameters might be causal pairs. There are many more
studies on the causal discovery, all of which aim at identifying or confirming the relationship
between interested parameters. The relations can help researchers understand the mechanism
behind the system and ultimately can regulate the system optimally.

Since, the causal discovery methods rely on the correlatable independency (55; 42; 46). In this
work, we use the Hilbert Schmidt independence Criterion (HSIC) as the independence test (47).
HSIC is calculated as follow: let x and y be two sample data of length n. Gram matrices K and L

2.6. CAUSAL ANALYSIS AND ADDITIVE NOISE MODEL 37

are defined as:
Ki, j = exp((xi � x j)

2/sig2)

Li, j = exp((yi � y j)
2/sig2)

and matrix H is defined by

Hi, j = di, j �
1
n

Let A = HKH and B = HLH then

HSIC(x,y) = Tr(AB)/n2

where sig is the Gaussian kernel width (normally 1).

After the test, three possible conclusions can be drawn from vectors of xi and yi data:

• Independent: in this case, the causal relation is not conclusive, as there is no casual conclusion
that can be drawn from the data.

• Mutually dependent: x and y correlate, but it is insufficient to conclude any causal relation.
In this case, the causal relation from both directions of x and y will be considered as correct.

• Conclusive: The causal direction from x to y can be concluded.

Only conclusive is accepted as a causal pair.

With the additive noise model, we can build a causal model based on identified causal pairs.
Once the relations are established, they can be represented with a Directed Acyclic Graph (DAG).
The cause parameter is partially responsible for the change in effect parameter (14).

Profit

Sales

Cash
back

Customers

f4

f2

f3f1

Figure 2.4: A Directed Acyclic Graph (DAG) showing the causal relations between the variables:
Customers, Sales, Cashback, Pro f it. The behaviour between variables follows the function fi. From the
example, the Pro f it adhere both the Sales and Cashback with f3 and f4 respectively. In other words, the
Customers and Cashback cause Sales; and Sales and Cashback cause Pro f it.

38 CHAPTER 2. LITERATURE REVIEW

Figure 2.4 shows a DAG of sales-related parameters in an arbitrary shop. A DAG has two
components: vertices and edges. The vertices are the data identity (name). In this case, a set
of already identified causal pairs. The edges are the causal links between the paired variables.
Typically, the vertices do not carry any numerical values. On the other hand, the edge can be
assigned correlation functions, fi. The �! indicates cause and effect parameters. Parameters
are nested in a parent function. For example, if Pro f it depends on Sales and Cashback, which
annotates as

Pro f it|Sales,Cashback

then
xPro f it

PA = Sales,Cashback

Thus, if the aim is the Pro f it then

Pro f it = F(xPro f it
PA)

where function F is a result of functions f3 and f4. The DAG is typically used to illustrate and
analyse the system behaviour. A system admin should pay close attention to the relationship
between all the identified variables in this case.

2.6.1 Discussion

From our review, it is evident that a cloud broker’s inventory might include multiple types of
instances, ranging from long-term instances valued for their cost-effectiveness to short-term
instances prized for their flexibility. Balancing these varying instance types can be addressed
through a combination of prediction, regression, and optimisation techniques. Individually, these
methods are effective at resolving specific challenges; however, integrating them into a cohesive
strategy is more complex.

For instance, predictive algorithms can forecast future demand for cloud instances. Yet, such
predictions alone are insufficient for structuring a broker’s inventory. Consider a scenario where
customer demand for a specific type of instance is the prediction target. Relying solely on this
data, without additional context, would restrict inventory management to a simplistic one-to-one
model—where each customer order directly corresponds to a single reserved instance. Moreover,
while customer demand may fluctuate both upwards and downwards, the number of cloud
instances (especially reserved ones) is often less flexible.

Moreover, causal discovery techniques are instrumental in identifying cause-and-effect rela-
tionships within the data. However, knowing these relationships alone does not suffice for

2.7. SUMMARY 39

constructing a profitable broker model. The crucial element here is a suitable profit model that
the broker can adopt to decide the optimal inventory composition. Here, the Gaussian process
utilised in additive noise models becomes valuable as it helps estimate the functions connecting
data points. With these functions and optimal data, we can develop an effective profit model
based on actual observations.

It becomes clear that no single solution exists for solving the complexities of cloud inventory
optimisation. There is a technological gap that this work aims to bridge by applying these
theories and methods to the specific challenges of cloud brokerage inventory management.

2.7 Summary

Cloud brokerage system research requires theoretical background materials from many areas.
It is a very diverse topic that requires a wide variety of expertise. In this chapter, we have
introduced some of the high-level concepts involved in a cloud brokerage system. We start from
cloud computing to the time series data analysis used in the brokerage system. In the next section,
we will detail the theories and technologies in our brokerage system.

3CHAPTER THREE

BACKGROUND

In this section, the detailed background of theories and technologies used in this work are
presented. First, a profitable cloud brokerage model from reselling the reserved instances
inventory is explained. It shows the feasibility of the broker model. Next, the time series
forecasting model and the Gaussian process are explained as part of the main components of
the auto profit model generator in this work. Lastly, the causal inference with the additive noise
model is also explained in detail.

3.1 Profit Maximising Cloud Brokerage Systems

In this section, a mathematical analysis of the profit maximising cloud broker is presented
according to (84). Profit maximising brokerage leverages the price difference between two
pricing schemes of on-demand and reserved to earn a profit. The brokerage method attracts
customers by leveraging the lower cost of the reserved instances and adjusting the selling price
of instances to the cloud customers.

For a given user distribution data, it is possible to find the optimal cloud inventory configuration.
In this example, the M/M/n/n queuing model is used as the requests intake for the broker (103).
The M/M/n/n queuing model assumes all arrival user queries to be Poisson with an arrival rate
of l (number of queries per time unit). The l is affected by two factors, total demand (lmax)
and the resource reselling price.

For a broker with only reserved instances in its inventory, the linear price demand is calculated
as:

p = pn +(pod � pre)
b �bre

bod �bre
(3.1)

41

42 CHAPTER 3. BACKGROUND

where b is the price and p is the market share ratio. In general, the lower sell price b from the
on-demand price bon attracts more customers. This relation is crucial as the profit of the broker
comes from the differential of price between b and bon.

Next, the queue length for the multi-server system is defined to be n. Then, the average service
rate is denoted as µ . Lastly, the server utilisation is r = l/nµ . In the queuing system, pk is the
probability of k, k < n service requests in the queuing system. In this system, the queue length
and the maximum number of requests is the same number n.

We have

pk = p0
1
k!

✓
l
µ

◆k
,k = 1,2, ...,n

where

p0 =

2

4

n

Â
k=0

l
µ

!k
3

5
�1

Since the broker only employs the reserved instance, there also has to be some customer requests
that do not get processed.

PL = pn =

2

4

n

Â
k=0

l
µ

!k
3

5
�1

1
n!

✓
l
µ

◆k
,

number of loss customers in unit time is

lL = lPL = l

2

4

n

Â
k=0

l
µ

!k
3

5
�1

1
n!

✓
l
µ

◆k

This brokerage system can denied services to some of the requests in order to maximise the
profit.

The profit of a broker comes from the revenue and cost. The cost per unit of time for the cloud
broker is

C = nbre

Essentially, this is the size of the broker inventory, i.e. number of the reserved instance being
deployed.

The revenue of the broker is calculated directly from the customer demand distribution together
with the price demand from equation 3.1.

3.2. TIME SERIES FORECASTING MODELS 43

Assuming that the U is the unit of time, b is the sell price and average execution time is t then E
is the expected charge for a service request.

E = Ub 1
1� eU/t

Now we can assemble the profit

Pro = R�C (3.2)

= l (1�PL)E �nb re (3.3)

From equation 3.2, we can see that two parameters can be used to optimise the profit, the sale
price b and the size of cloud inventory n.

Optimal price for maximised profit, maxPro(b)

∂Pro
∂b

= 0

∂Pro
∂b

= l (1�PL)T +bT
∂l
∂b

[(1�PL)�PLn(1�r)]

Optimal size for maximised profit, maxPro(n)

∂Pro
∂n

= 0

∂Pro
∂n

= lbT PL

✓
1+

1
2n

� ln(er)

◆
�bre.

With the analysis above, we can, in theory, find the optimal size and price of the cloud inventory
for a given customer data as shown in Figure 3.1. The limitations are the unplaced requests
and the variety of cloud instances. The unplaced requests are either discarded or re-queue.
Additionally, the deployment model is restricted to a one to one deployment. Nevertheless,
theoretically, finding the optimal parameters of a reserved instance inventory broker system is
possible.

3.2 Time Series Forecasting Models

In this work, the time series model is used widely for data analysis purposes. One of the most
used models is the Auto-Regressive Integrated Moving Average (ARIMA) model. Therefore, it

44 CHAPTER 3. BACKGROUND

User
requests

Time

Size

Re1
Re2

Re4

Re3
Re5 Re6

u1

u2

u3

Inventory
capacity

Time

Size

Figure 3.1: (Left) The graph shows the structure of a broker inventory with number reserved instances.
(Right) The graph shows the user request slots.

is worth mentioning the details of the model in this section.

Assume that a time series observation data is represent in a series of y1,y2,y3, ...,yn. A forecast
yt+h is based on the prior data points up to time step t.

ARIMA models

Although, an ARIMA model is one of the most well-known time series forecasting methods. It
also suffers from the common problem of the order selection process. Nevertheless, first, we
need to define the ARIMA model. The standard and basic theory were provided in Chapter 2. In
this chapter, we will go into more detail about the model.

A non-seasonal ARIMA model, denoted as ARIMA(p,d,q), is represented by the equation:

f(B)(1�Bd)yt = c+q(B)et (3.4)

where {et} is a noise process with mean zero and variance s2, and c is a constant. The backshift
(or lag) operator B is defined such that:

Byt = yt�1

In this context, f(B) and q(B) are polynomials of the backshift operator B, representing the
autoregressive and moving average components of the model, respectively:

f(B) = 1�f1B�f2B2 � . . .�fpBp

q(B) = 1+q1B+q2B2 + . . .+qqBq

3.2. TIME SERIES FORECASTING MODELS 45

Here, f(B) is a polynomial of order p and q(B) is a polynomial of order q. These polynomials
modify the series yt by incorporating terms that account for past values (lags) up to p for f and
q for q , influencing the current value of yt based on the specified autoregressive and moving
average parameters.

A seasonal ARIMA(p,d,q)(P,D,Q)m model is defined as

F(Bm)f(B)(1�Bm)D(1�B)dyt = c+Q(Bm)q(B)et

Selecting the best model of ARIMA (automatic ARIMA) is simply choosing the value of
p,q,P,Q,d,D. If the values of d,D is known then Akaike’s Information Criterion (AIC) is used
to as the selector.

AIC = �2logL+2(p+q+P+Q)

L is the maximum likelyhood of the differenced data (1�Bm)D(1�B)dyt

Maximum likely hood estimation:
T

Â
t=1

e2
t

The automatic ARIMA (Auto-ARIMA) utilised the information gain criteria to find the best fit
model for the given data.

Assuming that a seasonal time series ARIMA model is considered. Let ARIMA(p,d,q)(P,D,Q)
be the model where p and q can have value from 0 to 3, and P and Q can take the value from 0
to 1. There are a total of 480 models. If the range of p,d,q,P,D and Q is wider, the number of
possible models increases. The Auto-ARIMA uses a step-wise algorithm to choose the model
with the lowest AIC without performing the model fitting on all possibilities.

Step 1: A small fixed number of models i.e.

• ARIMA(2,d, 2) if m = 1 and ARIMA(2,d, 2)(1, D, 1) if m > 1

• ARIMA(0,d, 0) if m = 1 and ARIMA(0,d, 0)(0, D, 0) if m > 1

• ARIMA(1,d, 0) if m = 1 and ARIMA(1,d, 0)(1, D, 0) if m > 1

• ARIMA(0,d, 1) if m = 1 and ARIMA(0,d, 1)(0, D, 1) if m > 1

Out of all these models, the auto-ARIMA choose the model with the lowest AIC.

Step 2: Consideration of branch models

46 CHAPTER 3. BACKGROUND

• p,q,P and Q is allowed to change by ±1;

• p and q both change by ±1;

• P and Q both change by ±1;

Whenever the lowest AIC is found, then the auto-ARIMA choose that model as the current
best. The algorithm is bound by the maximum specified values of each parameter and thus
convergence.

3.3 Gaussian Process

The Gaussian distribution is defined by the mean and variance of the data. Similarly, the Gaussian
process is defined by a mean function and a covariance function (m(x),K(x,x0)).

f (x) ⇠ GP(m(x),K(x,x0))

Properties of K

1. Ki j = E((Yi � µi)(Yj � µ j))

2. K is positive semi-definite

3. Kii � 0

4. if Yi and Yj are independent then Ki j = Kji = 0

5. otherwise Ki j = Kji > 0

The covariance function used is the Radial basis function (RBF) kernel, as shown below.

Ki j = te
�||xi�x j ||2

s2

The evaluation of f can be done by estimating the m(x) and K(x,x0). In theory, the best result
comes from an infinite number of the evaluation of the two functions. In reality, however, this is
not practical. We can sample the function at a finite arbitrary set of points X : y = f (X)

y ⇠ N (µ,S) with µ = m(X) and S = k(X ,X).

We can use the Gaussian process to build regression models.

3.4. CASUAL INFERENCE USING ADDITIVE NOISE MODELS 47

Let assume that we want to make a predictions y2 = f (X2) for n2 new samples from the observed
data points (X1,y1). Since the sample number are finite we have

"
y1

y2

#
⇠ N

 "
µ1

µ2

#
,

"
S11 S12

S21 S22

#!

where

µ1 =m(X1)

µ2 =m(X2)

S11 =k(X1,X1)

S22 =k(X2,X2)

S12 =k(X1,X2)

S21 =k(X2,X1)

From the conditional distribution

p(y2|y1,X1,X2) = N (µ2|1,S2|1)

µ2|1 = µ2 +S21S�1
11 (y1 � µ1)

S2|1 = S22 �S21S�1
11 S12

We can predict y2 from the input sample X2 by using µ2|1

3.4 Casual Inference using Additive Noise Models

Let V be finite index set, (Xi)i2V be random variables of a measured model of interest. (Ei)i2V be
noise. All random variables are real number and the noise have density with jointly independent.

p(eV) = ’
i2V

pEi(ei)

Xi = fi(Xpa(i))+Ei, i 2 V.

X = f(X) + E

For a given two random variables X and Y, X is assumed to cause Y if

1. Y can be obtained as a function of X plus a noise term independent of X, but

48 CHAPTER 3. BACKGROUND

2. X cannot be obtained as a function of Y plus independent noise; then, we infer that X causes
Y.

In this case, where both hold simultaneously, the causal model is termed identifiable. The
identifiability of the causal discovery depends on some conditions. For example, if all function
fi is linear, then the causal graph is entirely identifiable. For the non-linear case, if the noise
variable is Gaussian, then the function is also identifiable (55).

The additive noise model from observational data

The causal model is built from the finite data set {x(n)}N
n=1. The causal mechanism { fi}i2V can

be built from the observable data.

argmax
f̂

p(f̂)
N

’
n=1

 ���I�—f̂(x(n))
���’

i2V
pEi(x

(n)
i � f̂i(x(n)

pa(i)))

!
(3.5)

bivariate case:

p(f̂) is the prior distribution of the causal mechanism. The equation 3.5 is the minimiser of the
noise variables. If the estimated functions lead to noise estimate mutually independent, then the
model is accepted. The accepted model is the causal relation between parameters. The effect
parameter behaves according to the inferrence function and depending on the cause parameter.

The function f̂ is estimated using the function approximation method, in this case, the Gaussian
process.

The negative log-likelyhood L := � ln p(D | f̂X , f̂Y) with the observable data D := {(x(n),y(n))}N
n=1.

The negative log-likelyhood then becomes,

L = �ÂN
i=1 pEY (y(i) � f̂Y (x(i)))�ÂN

i=1 pEX (x(i) � f̂X(y(i)))�ÂN
i=1 log

���1� f̂
0
Y (x(i)) f̂

0
X(y(i))

���.

The EX ⇠ N (0,s2
X) and EY ⇠ N (0,s2

Y) is Gaussian noise and the Gaussian process for fX and
fY

x̂ := fX y ⇠ N (0,KX(y)) where KX is the Gram matrix with entries KX ;i j = kX(y(i),y(j)) and
similarly for fY .

3.5. SUMMARY 49

min
x̂,ŷ

L =N logsX +N logsY +
1
2

log |KX |+ 1
2

log |KY |+ x̂, ŷ
min

(
1

2s2
Y
||y� ŷ||2 +

1
2s2

X
||x� x̂||2

+
1
2

x̂T K�1
X x̂+

1
2

ŷT K�1
Y ŷ�

N

Â
i=1

log
����1� (

∂kY

∂x
(x(i),x)K�1

Y ŷ)(
∂kX

∂y
(y(i),y)K�1

X x̂)

����)

Gaussian covariance kernels

kX(y,y0) = l 2
X exp

✓
�(y� y0)2

2k2
X

◆
+rdy,y0

and similarly for kY

The optimisation problem is solved numerically using a conjugate gradient (95). Thus, the causal
model is established (accepted) between two parameters of the observed data.

3.5 Summary

This chapter presents the essential methods which are presented throughout the dissertation in
detail. We start with the profit maximising of the cloud broker with a limited deployment model
that is feasible for a given customer data. If the deployment model is allowed to be more flexible,
generating more profit is also a possibility. Lastly, the Gaussian process and the additive noise
model can work with many data types, including the time series, which is the primary data type
of our broker system. The problem formulation and the justification of the methods are explained
in detail in the next chapter.

4CHAPTER FOUR

CLOUD BROKERAGE
STRATEGY AND CLOUD

INVENTORY
OPTIMISATION

We have discussed cloud computing and cloud brokerage system background, e.g. the methods
and technologies in respective topics. In this chapter, we will analyse the setting of the bulk-
purchasing cloud brokerage strategy and its challenge. We will then provide an abstract model for
the key task of bulk-purchasing cloud brokerage, i.e. inventory management as an optimisation
process. We will also briefly introduced our two solutions for inventory optimisation at a high
level, i.e. a risk-based approach and a model-generator approach. The details of these solutions
will be presented in details in § and §, respectively.

4.1 Cloud Brokerage System

We have established that a brokerage service can use the information of cloud instances in its
command and compare them equally. Thus, it posses the knowledge of actual performance per
price of each cloud instance. This knowledge helps to build a good service cloud broker.

The entry price of cloud computing is gated by the higher price per time unit of the on-demand.
If the broker brought the price down, then there would undoubtedly be beneficial to both the
providers and customers.

51

52 CHAPTER 4. CLOUD BROKERAGE STRATEGY AND CLOUD INVENTORY OPTIMISATION

Cloud providers offer various pricing schemes for the same Virtual Machines (VM) instance
with different lease options and prices. The price differences between each scheme can be pretty
significant, e.g., a reserved instance can offer up to 75% discount compared to the on-demand
price (27). The numbers of options give users the flexibility to tailor VM instances to the
requirements of their applications. However, it also complicates the choice of VM, given that
there have already been large numbers of VM configurations offered in the market.

The type of cloud broker in this work is similar to how a stock market broker works. In
other words, there are multiple parties exchanging cloud instances through a broker where the
appropriate pricing is determined. However, cloud instances are not commodity goods, nor do
they have a variable value. They are fixed by the cloud providers, which are the main suppliers
of the cloud instances. Thus, a cloud broker job is to mass gathering the demand to buy the cloud
instances from providers. Mass buying is possible through the collective buying power of small
customers.

Cloud computing power as a market

Virtual merchandises are not standard trade merchandise in a market. The concept of virtual
merchandise is challenging to grasp. As the word trading usually applies to the exchange of
objects. Now a day, virtual merchandise is a lot more common, most notably virtual currencies
and, of course, cloud virtual machines. A virtual machine, or in other words, the right to use
computing power on the data centre, is considered a product that can be sold or let by the cloud
providers. As mention before, the lucrative cloud market opens many opportunities, one of which
is the pricing scheme exploitation.

As one of the fastest-growing sectors, cloud computing as a platform has developed enough into
a saturated market space. Thus, a cloud broker emerges as a tool to leverage the high complexity
of the market. We have discussed the type of cloud brokers that operate on reselling cloud
instances for a profit in the previous chapter. This business model is similar to crowd-sourcing,
which proved to be successful in a big market (2).

Mass buying strategy: Commonly associated with bulk buying, mass buying is a collective
buying power of multiple individuals through a middle man. Buying power is used to negotiate
with the merchant or, in our case, cloud provider. In a cloud market space, a more common
strategy is to do a time-shared machine. Time-sharing is also another type of mass buying,
i.e. getting lower prices by combining more buying power. Mass buying may mean renting
a longer but cheaper price instance of the same quality (cloud instance performance). With
collective orders from cloud customers, a broker can create enough demand to fill the space
while customers shared the time slots. Therefore, a broker inventory can consist of multiple long

4.2. CLOUD COMPUTING AS COMMODITY MODEL 53

term instances, which are significantly cheaper but offer the same performance as other pricing
schemes. Thus, the customers would enjoy lower cloud instance costs.

Reserved instances as the primary commodity

Cloud providers segment their pricing schemes based on the duration of renting. Shorter
renting time usually cost more per time than the longer one. This is to reduce the risk of the
unpredictability of the customers’ demand from the provider side. Therefore, the providers can
afford the lower letting price of their instances. The reserved instances are the type of long term
contract instances that offer low prices and stability of the service termination. Hence for a
brokerage system, it is the most suitable primary cloud instance in the inventory.

The problem with using the reserved instance is the contract time. Similar to the providers,
a broker needs to eliminate the uncertainty to operate efficiently. When a broker orders new
reserved instances, it creates a commitment that needs to be filled.

The long contract time of the reserved instance creates the following problem. The first is
commitment. By making a long commitment, a broker has to make sure that there are enough
customers to occupied the instance. The second is the cost; a broker must keep the reserved
instances thus must keep paying to the providers—the cost which needs existing funds (cash on
hand). The third is the update circle. Computer hardware is updated and improved rather quickly.
Hence, having a long commitment to one computer means that the performance per cost will be
lower in the next iteration of the update than in the new instance.

Suppose all the issues are solved or avoided. This type of cloud brokerage service, if successful,
can offer cloud customers both the benefit of cost-saving, flexibility, and ease of choosing the
highest performance cloud instance for the money.

4.2 Cloud Computing as Commodity Model

A broker as a market concept is standard in many commodities exchanging (23). In a cloud
market space, the concept is still relatively new as the cloud market itself.

Dating back to the time-sharing of a mainframe computer, users are competing for a time on the
computing resource. During peak usage, the computing resource is arguably more valuable than
during quiet time. Following a similar concept, a “better” cloud instance should cost more than
a “worst” one. However, in reality, describing a good cloud instance is complicate. There are
several aspects of the cloud that customers consider when choosing a cloud.

• Performance: As one of the most influences on the value of a cloud instance, performance is

54 CHAPTER 4. CLOUD BROKERAGE STRATEGY AND CLOUD INVENTORY OPTIMISATION

the first metric that customers usually use to decide when getting a cloud instance.

• Location: Technically, a location is not something customers see upfront. However, location
often plays a huge factor in latency value between customers and the data centre.

• Speciality: A special instance such as GPU accelerated for AI workload or specific operating
system.

• Security: Security is a big factor when choosing cloud instances, as customers trust providers
with their data.

There are other aspects: service type parameters, Quality of service (QoS), and service level
agreements (SLAs). These usually are promises that the providers must honour and compensate
when they fail to deliver. These are very important in a mission-critical cloud application. For
example, the uptime of a life support monitoring application cannot fail, and therefore a very
high level of SLA need to be upheld by the provider. Thus, choosing the right cloud is not easy.

In this work, we focus on the cloud instance as a market model, assuming that the performance
of cloud instances is quantifiable. A broker manages cloud instances and redistributes virtual
machines or instances to customers with similar user experiences as renting from original
providers. The goal is to gather many customers’ orders and assign them to a reserved instance
for a better price per performance value. The exceed profit will also be redistributed to the broker
customers making the cloud cheaper.

4.3 Cloud Broker Inventory Strategy and Problem
Formulation

Cloud broker inventory is the main cost of broker operation. Given customers queries data,
a cheaper inventory cost leads to a better profit. Accomplishing the minimum cost of cloud
inventory is a game of matching the right combination of cloud instances in the broker inventory.
As mentioned before, the reserved instance cannot be terminated before the expired date.
Therefore there are some restrictions that the broker system must overcome. There are also some
techniques that a broker can apply to increase the profit.

4.3.1 Problem Formulation

With the estimated user demand, the system can optimise the broker’s target, i.e. utilisation,
profit, etc. The effectiveness of the system depends entirely on the forecasting of the data.

4.3. CLOUD BROKER INVENTORY STRATEGY AND PROBLEM FORMULATION 55

Customers demand
time series

Cloud Provider

Cost

Revenue

Profit

Broker inventory

ReservedOn-demand

Cloud customers

Data

Cloud Broker

Query

Query

Query

Figure 4.1: Cloud brokerage problem in this work focuses mainly on the inventory adjustment system.
Individual queries from cloud customers create customer demand data. The demand data also contributes
directly to the revenue of the broker. On the other hand, a broker inventory data consisted of cloud
instances data, i.e. on-demand and reserved instances rent by the broker. This part of the data contributes
directly to the cost of the broker. Lastly, profit is the value of revenue over cost.

However, the prediction accuracy goes down if the prediction points are further away from the
supplied data. Together with the length of the reserved instance, a high-efficiency system is
challenging to achieve.

One of the approaches to relinquishing the optimisation process and not relying heavily on the
far end of the regression results is a just-in-time (JIT) decision-making system. On the other
hand, coming up with effective decision making is not trivial. One of the approaches is to find a
parameter (indicator) and a correspondence function when making a decision. The decision is
triggered by a specific value or threshold of the parameter; hence the decision is made. It can
be effective if the parameters and the decision functions mimic or relate to the behaviour of the
system. This method is, in fact, similar to the artificial neural network model. The difference is
that our decision model tries to figure out the connections between parameters while the ANN
try to map out all connections with a giant net.

Cloud brokers collect query data from cloud customers on the front end and then distribute
customers the computing instances. On the back end of the system, the individual query
collectively creates usable data for analysis as shown in Figure 4.1. The broker system consisted
of two data types, customers’ query data and inventory data. The inventory data is a collection of
cloud instances. The data is defined below.

Customer queries: USR = {ID,Start,Spec,TIME} | {ID,Terminate,TIME}

On-demand instances: OND = {ID,Start,Spec,TIME} | {ID,Terminate,TIME}

56 CHAPTER 4. CLOUD BROKERAGE STRATEGY AND CLOUD INVENTORY OPTIMISATION

Reserved instances: RESV = {ID,Start,Spec,Terminate,TIME}

where, Start is submission time of customer resource query, starting time of the On-demand
and Reserved instance. Terminate is submission time of the terminate query, termination time
of the On-demand and Reserved instance. Spec is performance tier of the cloud instance. TIME
is time unit of the internal clock of a broker.

The internal clock of a broker, as the name suggests, is keeping count of the time. The unit of
time is a discrete cutoff of the barrier of time series data in a broker. For example, if the broker
process data every second, then the unit of time of the second. All user queries between t and
t +1 second are accumulate to form a time series data and similarly for the inventory data.

Discrete time is often employed when empirical measurements are involved because, typically, it
is only possible to measure variables sequentially. For example, customer queries can happen
continuously, but the broker can only take the queries discretely. Therefore, all of the data in a
broker is discrete time series values that show sequences of the chosen time step. The variables
of time series are indexed, which specify the time that the measurement takes place. For example,
xt refer to the value of a time series at a specific time period t.

On the other hand, in other areas such as physics or biology, a model of exact description often
used continuous time. This is because the model itself can be derived mathematically. The values
of a variable x is denoted as x(t).

In a broker setting, the system measures customer queries in discrete time, developing a time
series, which will be processed in a later stage of the system.

4.3.2 Optimisation of Targets

The main objective of a broker is to satisfy customers. Therefore, we assume that the broker
can fulfil all the customers’ demands, i.e. all customer queries are allocated with computing
resources. We call this necessary condition.

After satisfying the necessary condition, it can aim to have the highest profit possible or optimal
profit. A high-level example of profit optimisation in a cloud broker is given as follows.

The definition of optimisation is that it is a process of finding the best value of an objective
function. It is a method of maximising or minimising a function by choosing the right set of
variables from a pre-defined boundary set.

4.3. CLOUD BROKER INVENTORY STRATEGY AND PROBLEM FORMULATION 57

y

x

y

x

Figure 4.2: (LEFT) Typical two parameters optimisation problem with three constraints. The domain (in
dotted pattern) is available throughout all of the evaluation points i.e. corners of the constraints. (RIGHT)
In future values optimisation, the domain is not fully available. Thus, the system has to fill these missing
data points by predictions.

A typical optimisation problem can be represented as a function f ,

f : D �! R

where D is the set of variables and R is a real number. The optimisation is to find x0 2 D for
minimising and the opposite for maximising.

8x 2 D, f (x0) f (x)

The profit of a broker is calculated from two sources Revenue and Cost. For simplicity, let us
assume that the revenue of a broker is not affected by outside parameters, i.e. the price of the
reselling instances. Therefore, the revenue of a broker is one parameter that the broker has no
control over. The only parameter that the broker can change is the cost of running a broker itself.
Let us assume that we can ignore the fixed cost such as salaries, advertisements etc. Then the
cost consists purely of the cloud inventory. Thus, the combination of cloud instances in the
inventory is the most critical parameter to consider. Additionally, the cost per performance goes
down when the performance level goes up. A higher-performance cloud instance offers better
value than the lower performance one.

The pre-defined boundaries of a broker problem are the restrictions from the inventory and the
customers’ queries. The combined performance level of queries cannot exceed the combined
performance of the inventory at any time. The time is crucial since the total performance level
(capacity) of the inventory changes over time, i.e. from the expiration of instances in the inventory
and similarly in the customer queries. A fitting constraint such that individual query performance
cannot split, i.e. high-level performance query, cannot be split and placed onto multiple low-level
instances.

58 CHAPTER 4. CLOUD BROKERAGE STRATEGY AND CLOUD INVENTORY OPTIMISATION

Cloud broker optimisation is also a special case. Typically, an optimisation process is done when
the information is readily available, as shown in Figure 4.2—for example, minimising the cost of
the lunch while having to fulfil the nutrient needs. The information about food and its nutrient is
known to the optimiser. Therefore, it can choose the optimal meals set with the lowest cost while
having all the necessary nutrients.

However, the Revenue part of the broker, while unaffected by the broker, the data is not fully
available throughout the reserved instances contract duration. To perform optimisation, the
broker has to estimate the demand, which also estimates the optimisation values. Nonetheless,
estimation is an essential part of many systems that deal with the uncertainty of the future.

4.3.3 Data Estimation and Inventory Adjustment

Time series data in a broker, like any time series, the main focus of time is to forecast the future
values. There are various approaches to dealing with the forecasting of a time series.

Data estimation target

From a broker system, it is easy to assume that if the demand can be estimated accurately, then
the inventory of a broker can be prepared accordingly.

Customers’ queries individually consisted of two main parts, specification (performance level)
and time. We are ignoring the timestamps since they are encoded while transforming individual
datum into a time series. The specification part can be quantified, assuming that the numerical
results of benchmarks can capture cloud instances’ performance. Time series data is partitioned
based on time of the numerical performance level. Together, they form a demand per the time of
cloud customers.

For example, we build a simple broker which takes one type of performance tier, i.e. customers
only have one choice. The demand curve is relatively simple, as shown in Figure 4.3. If a
customer starts a query, then the demand curve goes up by one unit. On the other hand, if a
customer terminates the query, then the demand curve goes down.

On the broker side, it has to match the demand with the supply of cloud instances. From Figure
4.4, the system rents reserved instances that are re-assigned to the customers.

The deployment model of this example is one-to-one, one query for one instance. The broker
needs to estimate the number of queries per time unit. The problem is relatively simple to
solve with a prediction algorithm. Higher accuracy prediction algorithm will lead to better
planning of the inventory.

4.3. CLOUD BROKER INVENTORY STRATEGY AND PROBLEM FORMULATION 59

Time

Number of
query

Demand curve

Figure 4.3: The graph shows an example of number of query over time. The vertical axis is the number
of query collectively can roughly estimate the demand of cloud customers. The horizontal axis is the time.

Time

Number of
query

Demand curve

Instance

Instance

Instance

Instance

Instance

Instance

Instance

Instance

Broker inventory instance

Figure 4.4: Cloud broker inventory consists of many cloud instances which are there to accommodate
customer queries. In this graph, we assume that the query demand is quantifiable, and therefore we can
assign them to each cloud instance in its inventory. The graph also shows that if the duration of the
instance is fixed, then there is a chance that some of the instances might not be utilised which is the main
problem of the profit loss.

60 CHAPTER 4. CLOUD BROKERAGE STRATEGY AND CLOUD INVENTORY OPTIMISATION

The result is in the form of predicted values of the required reserved instance. For example,
if the algorithm estimate that the broker needs k spot at time t, then the broker must prepare
a combination of a reserved and on-demand instances of size k at time t. However, demand
matching does not equal profit maximisation. For this, we need to talk about the cost.

Cost(t) =
nt

Â
i=0

ResvCi +
mt

Â
j=0

OndCj (4.1)

where nt and mt is the number of new instances being put in the broker inventory at time t. ResvC
and OndC is the average cost of reserved and on-demand instance at time t respectively.

Let assume that the cost function is

Cost(t) = A+B.

Let us assume that A and B are a list of all the values solution at each time step.

A = [a1,a2,a3, ...]

B = [b1,b2,b3, ...]

The optimisation aims to find the correct value of each ai and bi in A and B. Since the broker
uses an estimated data, the system might overestimate or underestimate some of the value. If
the system overestimates values of A and they become higher than optimal. Then it might cost
damage to the profit since Resv has a significant upfront cost. On the contrary, if the system
underestimates values of B and they become higher than the optimal values. The total cost per
hour goes up, and fewer Resv instances are being deployed. This is called an opportunity cost.
Balancing the two is an act of placing bias in the decision making in favour of one type of an
instance at a certain time. A proposed solution for this problem can be found in Chapter 5.

The previous example is an example of a one-to-one deployment model. If a broker becomes
complex, then an estimation of data also becomes more complex. For example, the broker
employs more than one performance tier. Since each of the cloud instance performances is
quantifiable, then, in theory, larger instances can accommodate multiple smaller queries. The
system is not a one-to-one deployment anymore. The estimation targets would have to be
modified. The broker cannot simply estimate the demand for one specific instance and then
prepare the said instances in the inventory and hope to achieve optimal profit.

4.4. PROPOSED SOLUTIONS 61

The broker can utilise a regression method. For example, f is the regressed function from the
optimal data,

x := f (y) (4.2)

where x and y is the targets (number of each instance type) and customers time series data
respectively. The regressed function essentially is a relation between two parameters. If the
broker can identify this relation, then it can make adjustments based on this connection to achieve
the desired effects.

However, the regression model also has many challenges in itself, such as data selections,
independence of the selected data etc. A proposed solution is presented in Chapter 6 which
aim to generate the profit model automatically. The system utilises a method similar to a causal
discovery method which infers the underlying relation of associate parameters.

Causality and cloud brokerage system

For the most part, if one wants to find straightforward relation between a variable and a target,
the correlation test or regression can effectively do the job. If one wants to find a relationship
between two variables, it can be found regardless of the data. Additionally, in a complex system
where multiple variables are entangled in a web of the relationship, it is rather challenging to
find a true relationship where one variable affects another if there is a change in the former.

One example in a broker system is the number of all instances in the inventory or size and the
profit. Both of the variables are going to correlate, i.e. the change in size will change the profit.
Nevertheless, the correlation might not have a real underlying effect on one another.

Therefore, a causal discovery technique can infer underlying relationships and their correspon-
dence variables to identify whether or not these parameters adjustment would work accordingly.
Hence, we are going to explore the cloud brokerage system with an additive noise model.

4.4 Proposed Solutions

Research motivation summary

The heart of the broker inventory optimisation problem is the long term planning with constraints.
The primary instance type in the inventory is the reserved instance which offers a balance
between price and stability. The conditions of reserved instances are long contract time and
non-reducible (cannot be cancelled before the expiration of contract). Therefore, for a broker
operation to generate profit while fulfilling a broker’s condition, it has to overcome these two
issues.

62 CHAPTER 4. CLOUD BROKERAGE STRATEGY AND CLOUD INVENTORY OPTIMISATION

The long contract duration means that the broker must forecast the customer demand into the
future. Moreover, the fixed expiration time means that the broker has to make a good decision
when deploying the instance to overcome the idling issue. The indication of making a good
decision in a broker setting is not always about the accuracy but rather the overall cost as
well. Thus, optimisation is a good starting method. Nevertheless, since the optimisation needs
complete data, other approaches of peak locator must be considered.

In a complex system, often time researchers observe data to understand the overall system
interaction. With the observed data, a model of the system is built and used as rules govern how
each entity behave and influence each other. Thus the two approaches are proposed to capture the
profit behaviour of the brokerage system with the inventory adjustment system as the following.

We propose two solutions that solve slightly different problem settings for the given cloud broker
inventory adjustment problem.

Risk-based solution Since we have established that parameters in a broker system can affect
profit, then there are some potential solutions to the system at finding the optimal broker inventory.
First, we propose a pre-defined set of parameters that influence the profit, and the decision-
making function is made around the risk factors. We called this approach a risk-based brokerage
system. The risk assessment was done based on what might cause the system to lose money, i.e.
empty reserved instances, excessive use of on-demand etc.

Automate profit model generator At some point, the broker system can become complex and
thus, pre-defined risk factors might not cover the case. We propose an automatic feature selection
and profit model generator. The generated model is used to decide the broker inventory, similar
to the risk-based model.

The selection of parameters to build a model is usually involves an experienced manual selection
process (63; 6). From Figure 4.5, we propose a system that utilised the additive noise model to
achieve both parameter selection and functional estimation. The left-hand side shows a set of
variables that potentially affect the profit. The right-hand side shows after testing the variables
set with the additive noise model reveal the underlying relation F between variable ek and profit.

4.5 Scope of the Work

Although this work mentions many issues of cloud brokerage systems and cloud computing in
general, the focus of this work is mainly on inventory optimisation using time series models. A
complete broker system consisted of multiple components.

4.5. SCOPE OF THE WORK 63

e1

e2

en

Variables

Profit ek Profit
F

Figure 4.5: The automatic model builder filter the parameters which associate with the profit and infer the
model F . With the model, we can form the relationship of ek and profit. Thus, we can make an effective
adjustment at ek to influence the profit.

• Performance capture: benchmark and the creation of the performance data database. This
stage is important for a fair comparison between multiple cloud instances.

• Broker optimisation: optimisation of a broker inventory after attaining the data from the first
part to make a good profit and in return give cashback as an incentive to customers.

• Resource allocation: the framework for allocating the customer queries with the real cloud
virtual machine inside the cloud instance.

• Other frameworks: handling of security and other services.

For our broker model, a complete system consisted of three parts, the performance capture
system, inventory optimiser, and query allocation. Although each part of them are equally
important, the main work in this work is focused on the data estimation and inventory optimiser
as shown in the dotted rectangle in Figure 4.6. The other parts are based on other existing
research.

Solutions comparison

In this work, we have proposed two solutions to the inventory optimisation problem. Both
solutions are based on a mathematical profit model. Although they work on the same problem,
there are differences in places, and each of them has strengths and weaknesses.

64 CHAPTER 4. CLOUD BROKERAGE STRATEGY AND CLOUD INVENTORY OPTIMISATION

Performance
capture

Inventory
optimiser Query allocator

Provider B

Customers

Provider A Provider K

Data estimation

Figure 4.6: There are many areas of cloud brokerage system research. In our broker model, there are
three main parts which contribute to the system, performance capture, inventory, and allocation. However,
only the dotted rectangle is the main focus of this work.

• Pre-defined risk factors: use human-defined risk factors to aid the decision making of the
broker.

• Automatic profit model generator: trying to discover underlying relationship from features of
data and the profit.

Differences

Deployment model: risk-based broker only investigate on a one-to-one deployment model. This
is to simplify the effect of risk factors. As for the additive noise model, the deployment is a
mixture of multiple performance levels, and the cloud instances can host multiple customer
orders.

General approach: risk-based use of pre-defined risk factors as an indicator for adjusting broker
inventory. On the other hand, the additive noise model selects associated features from the
feature set as a relationship pair to the profit. The broker inventory is modified using the model
inferred from the mentioned pair.

Strengths and weaknesses

The risk-based broker uses pre-defined risk factors; therefore, the system is considered data

4.6. SUMMARY 65

independent. If there is a change in the data distribution, the system behaviour does not change.
Thus, it is resistant to changes in data distribution and operates independently of the input. This
makes the system more stable. On the other hand, the system is limited to pre-defined risk. If the
system is expanded, then a new set of risk factors have to be developed.

On the other hand, the auto-model generator can automatically identify the associate parameter
from the given data. Thus, it requires less know-how for parameters configuration. Since it
builds a profit model from the data generated directly from the broker system, it is adapted to the
change in the broker system configuration. Nevertheless, the auto-model still need input data to
build or form a model. So it inherits a similar problem to the other supervised algorithms.

4.6 Summary

In this section, we have explored cloud broker research from cloud computing challenges and
problems to the cloud broker, particularly inventory optimisation of the cloud broker using
various techniques.

Since the causal discovery is a recent technique that has not been applied to many studies yet,
we have investigated using the additive noise model in a simple broker example. We found that
it is as effective as the method promise to achieve.

We also introduce two approaches to solve the issue of using reserved instances as the primary
resource in cloud broker inventory. Firstly, the risk-based broker utilises the concept of risk to
aid the decision-making process in a broker. Secondly, the additive noise model broker selects
and build a model from a feature set. Both techniques utilised different techniques to achieve a
similar goal in two independent broker models.

5CHAPTER FIVE

RISK-BASED CLOUD
BROKERAGE

The concept of risk is mainly a subjective assessment used by human operators (40). For any
operation, risks are something that might cause damage to the system. Thus for many, they
need to be eliminated. On the other hand, in a financial sense, risks can be thought of as an
opportunity. If the risks are managed well, then it could result in a big reward. The downside is
that an expert must quantify them; otherwise, the big reward might turn into a significant loss.
Broker operations can also run with some risks in mind from the uncertainty of the demand.
Hence in this work, we utilise the risk concept to help with the inventory adjustment of our
brokerage system.

5.1 Risk Concept Usage in a Cloud Brokerage System

In a broker buy-low-sell-high setting, the system has to stock enough cloud instances to
accommodate customer demand. It can offload some non-crucial queries to more expensive but
less risky instances such as on-demand or shorter-term reserved instances. The concept of risk
has been associate with decision-making steps and more prominently in the financial sector. In
this part, we are exploring some of the risk concepts being used in a system together with the
algorithmic risks determinator.

The standard definition of risk in different applications is effect of uncertainty on objectives (79).
Below are a few examples of risk management using an algorithmic system in a time series
problem, i.e. stock market. The stock market is a volatile, fast-moving market that makes its data
behave unexpectedly. Time series data in a stock market is subject to many studies, especially
prediction and forecasting, to inform traders with better decision-making results. One of the

67

68 CHAPTER 5. RISK-BASED CLOUD BROKERAGE

Resource Pool

Broker

Stocking VMs from various
pricing schemes, e.g. on-
demand and reserved instances

Buy VM instances as if
the ones in higher pricing
schemes, e.g. on-demand

Offer cashback
as discount

Optimiser

Optimise VM stocking and
user requests placement
based on risk analysis

Revenue

Figure 5.1: A broker model to simplify the choice of VMs from various pricing schemes. Users can both
enjoy the flexibility as from on-demand instances and have discounts as from contract instance.

major trading systems is the technical trading rules. The authors of (36) and (3) uses a genetic
algorithm to generate technical trading rules which work best. Similarly, a hybrid stock trading
based on a genetic network with a value-at-risk system is also studied in (22). These trading rules
are indicators that try to predict the behaviour of the data to deal with the risk of trading. Broker
systems also associate heavily with risk while in operation. In this section, we are employing
risk concepts and apply them in a broker environment.

In this chapter, we propose a broker model to simplify the choice of VMs from different price
schemes, as shown in Figure 5.1. The key to the strategy is to stock VM instance types from
discounted contract pricing schemes in a broker inventory and then to resell them as VMs with a
pay-as-you-go scheme to potential cloud users.

Cloud users can purchase a VM instance as if the instance is from a higher pricing scheme
(reserved) to enjoy the flexibility of the instance whilst receiving cashback offered by the broker
to reduce the cost. For the ease of presentation, we will take reserved instances, which is a
discounted scheme that requiring commitments of a long contract length. On the other hand, an
on-demand is a flexible but more expensive pay-as-you-go scheme.

The challenge of the strategy is how to optimise the stock of VM instance types from different
pricing schemes according to the number of user requests. The problem that might occur when
the cloud inventory is not well optimised is shown in Figure 5.2. The figure illustrates the cases
of over-stocking and under-stocking cloud inventory. Both situations are not well suited for the
generation of high profitability.

One popular method at finding the right size inventory utilises the past data points to predict
(time series forecasting) the user requests values. Then the system plans the size and composition

5.2. INVENTORY OPTIMISATION AND USER REQUEST PLACEMENT USING RISK ANALYSIS 69

Prediction or
other means

Future
time steps

(a)

Historical
Data

Resource
pool

Remaining
contract

t1

t2

Figure 5.2: Solving a time series data problem involves predicting future values. For example, at t1 the
current user orders exceed the inventory size, some of the orders have to be offloaded to the on-demand
instances; t2 is a point where the inventory is underutilised. Accuracy predictions are the key to reduce the
cost and make the optimal decision on which scheme type of VMs the user order will be placed on.

of its inventory accordingly (84; 115; 116). The effectiveness of this method depends entirely
on the assumption that past data can predict newer data points accurately. However, the user
requests in real life are full of uncertainty, and it is non-trivial to justify whether a data set would
match well with the prepared inventory.

Inspired by the risk-oriented trading strategy in the stock market (35), we take an alternative
approach to drive the decision making with risk. We dynamically adjust the inventory by
evaluating the risks calculated from both the user requests data and the inventory data.

5.2 Inventory Optimisation and User Request Placement
using Risk Analysis

Our broker stocks reserves VMs instances in its inventory and resells them as on-demand
instances. The user experience is the same as buying on-demand instances directly from cloud
providers, i.e., users can terminate VM at any time. When terminated, users can then get cashback
as discounts. The cashback amount depends on the time usage and profit of the broker.

Internally, our broker places user requests in the VMs from the inventory. When there is no more
VM available, the broker needs to decide whether to stock reserved instances to fulfil the request
or use an on-demand instead. Such a decision-making process is the centre of our broker.

We formulate the decision-making problem as a binary classifying function that taking
quantitative risk factors as input. Figure 5.3 gives an overview of our risk-analysis based

70 CHAPTER 5. RISK-BASED CLOUD BROKERAGE

…

�
<latexit sha1_base64="/1dBJ/g5v4FlC4zkyRh6HFijANM=">AAAB63icbVC7SgNBFL3rM8ZX1NJmMAhWYTcRtAzaWEYwD0iWMDuZTYbMzC4zs0JY8gs2Fj6w9W+s7PwKsbVyNkmhiQcuHM65l3vvCWLOtHHdD2dpeWV1bT23kd/c2t7ZLeztN3SUKELrJOKRagVYU84krRtmOG3FimIRcNoMhpeZ37ylSrNI3phRTH2B+5KFjGCTSR2diG6h6JbcCdAi8WakWK18fz2dfr7VuoX3Ti8iiaDSEI61bntubPwUK8MIp+N8J9E0xmSI+7RtqcSCaj+d3DpGx1bpoTBStqRBE/X3RIqF1iMR2E6BzUDPe5n4n9dOTHjup0zGiaGSTBeFCUcmQtnjqMcUJYaPLMFEMXsrIgOsMDE2nrwNwZt/eZE0yiWvUipf2zQuYIocHMIRnIAHZ1CFK6hBHQgM4A4e4NERzr3z7LxMW5ec2cwB/IHz+gPHa5M5</latexit>

r1
<latexit sha1_base64="AQTFL8U326hbmB4JKComwCXLB2g=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuLLQMsbFM0DwgLmF2cpMMmZ1dZmaFsOQTbCwUsbX1L/wCOxu/xcmj0MQDFw7n3Mu99wSx4Nq47peTWVldW9/Ibua2tnd29/L7Bw0dJYphnUUiUq2AahRcYt1wI7AVK6RhILAZDK8mfvMeleaRvDWjGP2Q9iXvcUaNlW5Ux+vkC27RnYIsE29OCuWj2jd/r3xUO/nPu27EkhClYYJq3fbc2PgpVYYzgePcXaIxpmxI+9i2VNIQtZ9OTx2TU6t0SS9StqQhU/X3REpDrUdhYDtDagZ60ZuI/3ntxPQu/ZTLODEo2WxRLxHERGTyN+lyhcyIkSWUKW5vJWxAFWXGppOzIXiLLy+TRqnonRdLNZtGBWbIwjGcwBl4cAFluIYq1IFBHx7gCZ4d4Tw6L87rrDXjzGcO4Q+ctx/ic5E7</latexit>

r2
<latexit sha1_base64="DrU+qg45oo4+SbAJU0479jnewAk=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuLLQMsbFM0DwgLmF2cpMMmZ1dZmaFsOQTbCwUsbX1L/wCOxu/xcmj0MQDFw7n3Mu99wSx4Nq47peTWVldW9/Ibua2tnd29/L7Bw0dJYphnUUiUq2AahRcYt1wI7AVK6RhILAZDK8mfvMeleaRvDWjGP2Q9iXvcUaNlW5Up9TJF9yiOwVZJt6cFMpHtW/+XvmodvKfd92IJSFKwwTVuu25sfFTqgxnAse5u0RjTNmQ9rFtqaQhaj+dnjomp1bpkl6kbElDpurviZSGWo/CwHaG1Az0ojcR//Paield+imXcWJQstmiXiKIicjkb9LlCpkRI0soU9zeStiAKsqMTSdnQ/AWX14mjVLROy+WajaNCsyQhWM4gTPw4ALKcA1VqAODPjzAEzw7wnl0XpzXWWvGmc8cwh84bz/j95E8</latexit> r

<latexit sha1_base64="+pULTimn1Awm8OgcAHpmHzswTVo=">AAAB6HicbZC7SgNBFIbPxltcb1FLm8UgWIXdWGgjBm0sEzAXSJYwOzmbjJmdXWZmhbDkCWwsFLHVh7G3Ed/GyaXQ6A8DH/9/DnPOCRLOlHbdLyu3tLyyupZftzc2t7Z3Crt7DRWnkmKdxjyWrYAo5ExgXTPNsZVIJFHAsRkMryZ58w6lYrG40aME/Yj0BQsZJdpYNdktFN2SO5XzF7w5FC/e7fPk7dOudgsfnV5M0wiFppwo1fbcRPsZkZpRjmO7kypMCB2SPrYNChKh8rPpoGPnyDg9J4yleUI7U/dnR0YipUZRYCojogdqMZuY/2XtVIdnfsZEkmoUdPZRmHJHx85ka6fHJFLNRwYIlczM6tABkYRqcxvbHMFbXPkvNMol76RUrrnFyiXMlIcDOIRj8OAUKnANVagDBYR7eIQn69Z6sJ6tl1lpzpr37MMvWa/fPgWQNw==</latexit>

w1
<latexit sha1_base64="JVynAVB+VI2gN30+xTadRjgjJ3I=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuLLQMsbFM0DwgWcLsZDYZMjO7zMwqYckn2FgoYmvrX/gFdjZ+i5NHoYkHLhzOuZd77wlizrRx3S8ns7K6tr6R3cxtbe/s7uX3Dxo6ShShdRLxSLUCrClnktYNM5y2YkWxCDhtBsOrid+8o0qzSN6aUUx9gfuShYxgY6Wb+67XzRfcojsFWibenBTKR7Vv9l75qHbzn51eRBJBpSEca9323Nj4KVaGEU7HuU6iaYzJEPdp21KJBdV+Oj11jE6t0kNhpGxJg6bq74kUC61HIrCdApuBXvQm4n9eOzHhpZ8yGSeGSjJbFCYcmQhN/kY9pigxfGQJJorZWxEZYIWJsenkbAje4svLpFEqeufFUs2mUYEZsnAMJ3AGHlxAGa6hCnUg0IcHeIJnhzuPzovzOmvNOPOZQ/gD5+0H6hGRQA==</latexit>

w2
<latexit sha1_base64="lXL+R3UhUUfTKrZGy3nr94oSwcA=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuLLQMsbFM0DwgWcLsZDYZMjO7zMwqYckn2FgoYmvrX/gFdjZ+i5NHoYkHLhzOuZd77wlizrRx3S8ns7K6tr6R3cxtbe/s7uX3Dxo6ShShdRLxSLUCrClnktYNM5y2YkWxCDhtBsOrid+8o0qzSN6aUUx9gfuShYxgY6Wb+26pmy+4RXcKtEy8OSmUj2rf7L3yUe3mPzu9iCSCSkM41rrtubHxU6wMI5yOc51E0xiTIe7TtqUSC6r9dHrqGJ1apYfCSNmSBk3V3xMpFlqPRGA7BTYDvehNxP+8dmLCSz9lMk4MlWS2KEw4MhGa/I16TFFi+MgSTBSztyIywAoTY9PJ2RC8xZeXSaNU9M6LpZpNowIzZOEYTuAMPLiAMlxDFepAoA8P8ATPDncenRfnddaaceYzh/AHztsP65WRQQ==</latexit>

wn
<latexit sha1_base64="Qoy1jSU2vMCIvZalavnTcv95754=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuLLQMsbFM0DwgWcLsZDYZMjO7zMwqYckn2FgoYmvrX/gFdjZ+i5NHoYkHLhzOuZd77wlizrRx3S8ns7K6tr6R3cxtbe/s7uX3Dxo6ShShdRLxSLUCrClnktYNM5y2YkWxCDhtBsOrid+8o0qzSN6aUUx9gfuShYxgY6Wb+67s5gtu0Z0CLRNvTgrlo9o3e698VLv5z04vIomg0hCOtW57bmz8FCvDCKfjXCfRNMZkiPu0banEgmo/nZ46RqdW6aEwUrakQVP190SKhdYjEdhOgc1AL3oT8T+vnZjw0k+ZjBNDJZktChOOTIQmf6MeU5QYPrIEE8XsrYgMsMLE2HRyNgRv8eVl0igVvfNiqWbTqMAMWTiGEzgDDy6gDNdQhToQ6MMDPMGzw51H58V5nbVmnPnMIfyB8/YDRpSRfQ==</latexit>

rn
<latexit sha1_base64="0T0r04OpDef4hh0j+fRBrUIbomY=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuLLQMsbFM0DwgLmF2cpMMmZ1dZmaFsOQTbCwUsbX1L/wCOxu/xcmj0MQDFw7n3Mu99wSx4Nq47peTWVldW9/Ibua2tnd29/L7Bw0dJYphnUUiUq2AahRcYt1wI7AVK6RhILAZDK8mfvMeleaRvDWjGP2Q9iXvcUaNlW5UR3byBbfoTkGWiTcnhfJR7Zu/Vz6qnfznXTdiSYjSMEG1bntubPyUKsOZwHHuLtEYUzakfWxbKmmI2k+np47JqVW6pBcpW9KQqfp7IqWh1qMwsJ0hNQO96E3E/7x2YnqXfsplnBiUbLaolwhiIjL5m3S5QmbEyBLKFLe3EjagijJj08nZELzFl5dJo1T0zoulmk2jAjNk4RhO4Aw8uIAyXEMV6sCgDw/wBM+OcB6dF+d11ppx5jOH8AfO2w8+9pF4</latexit>

risk_analyser

risk_factors

decision_func

decision

Input:

// A set of quantitative risk factors

risk_factors: (T -> R) set

risk_analyser: R set -> R
decision_func: R -> bool

Output:

// Define Optimisation with function composition

reinforce_dec =

decision_func � risk_analyser � map risk_factors

Figure 5.3: Risk-analysis based decision making process.

decision-making process, together with an abstract type definition of each part.

There are three parts in the process: quantitative risk factors, a risk analyser and a decision
function.

• Each risk factor turns the status of brokers into a quantitative risk measure. The broker
status covers the perspectives from the view of user requests and reserved instances. In the
abstract definition, a generic data type (T) is used to allows a function in risk_factor to
accept parameters to produce a quantitative result for a risk factor.

• Risk analyser normalises and assigns weights to each risk before aggregating them. There is
also an additional risk-taking adjustment based on the current revenue level. The output r is
between [0,1].

• Decision function takes the aggregated risk to decide whether to buy a reserved instance or
an on-demand one to fulfil a user request.

In the rest of this section, we will give more details of each part of the process shown in Figure
5.3.

5.2. INVENTORY OPTIMISATION AND USER REQUEST PLACEMENT USING RISK ANALYSIS 71

5.2.1 Quantitative Risk Factors

We analyse the risks of stocking more reserved instances from the following aspects.

Anomaly user requests: We should consider stocking more reserved instances if and only if
the number of requests indicates an increasing trend in VM usage. In this case, we use a mean
and standard deviation (mean-sd) anomaly detection. Recall that our decision-making process
is triggered by a periodic function that checks the pending queue so that we will use the same
period as a time unit for our analysis. For the ease of presentation, we name the time of unit as
T and define the user request rate as the number of the user requests over T .

We quantify this factor by comparing the most recent user request rate to the mean of user request
rate over the most recent 10% length of a typical contract length of the reserved instance. For
example, if the contract length is ten months, the mean is calculated from the most recent one
month. The method is also known as z-score anomaly detection (66).

The main point of this process is to reduce the number of outliers in the series data. The
extreme values of outliers would artificially inflate the broker’s demand, resulting in an unwanted
escalation in cost.

The risk threshold is twice the corresponding standard deviation, i.e., the range of anomaly
requests is:[mean,mean+2⇤ sd]. The threshold is configurable.

The quantitative risk factor of the anomaly requests is defined as:
8
>>><

>>>:

0 r(t) < mean
r(t)�mean

2⇤sd mean r(t) mean+2⇤ sd

1 r(t) > mean+2⇤ sd

(5.1)

where r(t) is the time series function at time t. To further improve the accuracy of risk analysis,
on can introduce more anomaly detection to eliminate other types of outliers. We will discuss
possible directions in future work.

Total numbers of reserved instances: The current number of reserved instances (the size of
the broker inventory) is also a risk factor. This risk factor is similar to anomaly detection but
from the inventory data rather than the customers’ data. If the current number is significantly
higher than the average number, we should rate it as a substantially high risk. Similar to the
anomaly request, we also take the mean of reserved instance size of the most recent 10% of the
typical contract length of the reserved instance for comparison. The function of calculating this
risk factor is the same as (5.1).

72 CHAPTER 5. RISK-BASED CLOUD BROKERAGE

t

Reserved instance 2

Reserved instance 1

V1

V2

Figure 5.4: Using volume of the inventory as a risk factor: V1 +V2

Volumes of reserved instances: Another dimension of the risk of the current reserved instance
stock is the volume, which is the remaining length of the contract. To illustrate, in the example
shown in Figure 5.4, the volume is V1 +V2.

The function to calculate the risk factor of volume is:

ÂN
i=1 voli

N ⇤ len

Where voli is the current volumes of a reserved instance, N is the total number of the instances,
and len is the length of the contract. We can easily see that the size of free future volume
corresponds to risk.

5.2.2 Normalised Linear Risk Analyser

To combine the risk factors listed, we use a linear risk model to normalise our risk values. The
impact of each risk factor on profitability cannot be quantified without pre-existing data. Hence,
throughout the experiment, we consider all risk factors to be of equal importance—the range of
the sum of all risk factors within [0,1]. So, we assign a weight vector to normalise the range of
each factor accordingly, i.e., ~w| ⇤~r, where ~w is the weight vector, and r is a vector of the risk
factors. The output value is the sum of normalised risk factors.

Risk-taking risk adjustment: We would also like to take the current revenue level as a ‘positive’
risk factor to adjust the sum of all the risk factors. The intuition behind this is to allow higher risk
to get more profit. This is a trading strategy in the traditional marketplace, called a risk-taking
strategy. Here, we adopt a trading strategy in our inventory adjustment. We compare the current
revenue in the most recent period of T with the one in the period before. If the revenue rate is
higher, we allow the broker to take more risks by reducing the risk factor by a fixed amount of

5.2. INVENTORY OPTIMISATION AND USER REQUEST PLACEMENT USING RISK ANALYSIS 73

0.05 (5 %). Similarly, it increases 0.05 when the revenue rate is lower. The number is arbitrary
chosen to be 5% of the maximum risk value. The main reason for allowing risk adjustment based
on the money on hand is to identify the effect of opportunity cost and profitability of a broker.
Balancing the amount of cash on hand is also one of the financial trade practices. In other words,
cash is one of our soft risk factors. Note that the range of the risk factor after adjustment remain
[0,1].

5.2.3 Decision-Making Function

Decision making is essentially a predicate that takes some quantitative risk factors to produce
a boolean value for a decision. In our case, we would like the decision function to satisfy the
following requirements:

(i) Being able to take any value in the range of a sum of the risk factors, i.e. [0,1]

(ii) The likelihood of creating a reserved instance changes continuously with the value of the sum of risk
factors.

A non-deterministic function is used to satisfy the requirements, i.e.,

S(r) =

8
<

:
1 r = 0

1� e� rng(0,1)
r 0 < r 1

(5.2)

where rng(0,1) picks a uniformly distributed random number between 0 and 1. When the output
value is less and equal than 0.5, the broker will create a reserved instance to accommodate
pending user requests, otherwise, an on-domain instance is created. With this function, the
higher the risk is, the lower the chance of creating a reserved instance becomes. Also, the broker
is strategically more inclined to allocate a reserved instance because the overall likelihood of
getting a value below 0.5 is higher than the value above 0.5. Figure 5.5 shows three cases when
risk is low (0.1), medium (0.5) and high (0.9). The randomness introduced into the system is
inspired by the mutation algorithm.

To decide for each pending user request, the broker will first compute the sum of the normalised
risk factors, generate the likelihood of each decision with a curve function, and finally ‘rolls a
dice’ to get a decision.

We have presented all the parts for our risk-analysis-based approach to optimise the broker’s
inventory and user request placement. A summarised pseudocode for our approach is shown in
Figure 5.6.

74 CHAPTER 5. RISK-BASED CLOUD BROKERAGE

Figure 5.5: Plots showing the decision curve when risk is low (0.1), medium (0.5) and high (0.9). x-axis
is a random number generated between [0,1] with equal probability. When y 0.5, the broker will create
a reserved instance. The length of the arc curve represents the corresponding likelihood. A guideline of
y = 0.5 is provided for reference.

In the next section, we will give a detailed design and implementation of our broker.

5.3 Detailed Specification & Implementation

To adopt the pricing strategy, we develop a broker system which consists of 7 main components:
a user request scheduler, a request database, a pending serving queue, a broker inventory an
optimiser, and a provisioner. Figure 5.7 shows different workflows of accommodating a user
request. For the ease of clarification, we provide the following high-level abstract type definition
of the broker and its component to walk through the functionality of the system:

where v: T denotes a variable v with type T; t_1 * ... * t_n denotes the type of a n-dimensional
tuple; and X -> Y denotes a function type.

A broker is defined as a tuple of the 6 main components: a request database (rqst_db) stores
user requests as time series data; a broker inventory (inv_pool) maintains a collections of VM
instances with different pricing schemes, as well as the occupying relationship between the VM
instance and the user requests; a pending serving queue (rqst_srv_queue) keeps track of the user
requests that are yet to be fulfilled due to lacks of reserved instances in the pool; a user request
scheduler (rqst_schdlr) is a function to coordinate other components for request fulfilment
depending on the availability of reserved instances; an optimiser (optimiser) is an adjustment
function of the stock of VMs in the inventory in order to fulfil the requests in the pending queue;
and a provisioner (provisioner) is an agent to communicate with the cloud providers to create
and terminate VM instances.

Upon the arrival of each user request, the scheduler responds to the request by assigning/releasing
the binding between the user request and the VMs in the pool. If there is a query to create a VM
and then it cannot be fulfilled by the inventory, the scheduler will put the request in the pending

5.3. DETAILED SPECIFICATION & IMPLEMENTATION 75

Input:

// Functions to compute current risk factors

risk_factors = {Fanomaly_rqst ,Fvm_num,
Fvm_vol ,Fpro f it}

// A linear risk model

risk_model = l~w, ~risks : ~w| ⇤ ~risks
// A non-determined predicate to make decision

decision_func = l r : 1� e� rng(0,1)
r

// Weights to balance and normalise risk factors

~wrisks
/* Data from the broker: request db, inventory broekrand pending request queue

*/

rqst_db, inv_pool, rqst_srv_queue

Output:

/* Decision for whether to create a new reserved instance or an on-demand

instance for each pending request */

decisions: bool list

Procedure:

decisions = []

~risks = [Fanomaly_rqst(rqst_db),Fvm_num(inv_pool),
Fvm_vol(inv_pool),Fpro f it(current)]

for 8 rqst 2 rqst_srv_queue do

x = decision_func(~risks, ~wrisks)

decisions.append(x)

end

Figure 5.6: Detailed specification of the decision making process with risk analysis

queue. The optimiser periodically checks if there are pending requests. If so, the optimiser will
then review the current stocking level in the inventory and a period of most recent user requests
to evaluate the risk level. The pending requests must be fulfilled; thus, the optimiser can choose
to either stock more reserved instances if the risk is low or buy on-domain instances in the case
of high risk. The details of the process of risk analysis will be presented in the next section.

Another critical aspect to keep the broker sustainable is the cashback model. Cashback is
generated directly from the price difference between running costs and the income from reselling
VMs. For example, if a user rents a VM for a tu unit duration and a broker made P% profit
during the said duration. Then, the user is entitled to earn at most P% cashback of what was
initially spent.

The revenue of a broker is calculated from three main components, the user demands, broker
running cost, and the cashback value. Each of the components affects the profitability of the
broker system differently and is certainly not trivial. If the broker aims to maximise the profit,
it must be able to identify the correlation functions of each sub-component. The task is both

76 CHAPTER 5. RISK-BASED CLOUD BROKERAGE

*. Periodically check
 ,
always empty
 in this scenario

Resource
Pool

User
Request
database

Provisioner

Resource
Optimiser

VM scheduler

0. new user
request

0.1. save
Requests

2. offer a VM
instance

Pending User Request Queue

Q �= �
<latexit sha1_base64="49bxy2Dm7WK7L7Mm4EpmRiv+shM=">AAAB+nicbVBNT8JAEN3iF+JX0aOXjcTEE2nRRI9ELx4hkY8EGrJdBtiw3dbdqaZBfooXDxrj1V/izX9jgR4UfMkkL+/NZGaeH0lh0HG+rdza+sbmVn67sLO7t39gFw+bJow1hwYPZajbPjMghYIGCpTQjjSwwJfQ8sc3M7/1ANqIUN1hEoEXsKESA8EZplLPLtZpV8E97UIQYWIACz275JSdOegqcTNSIhlqPfur2w95HIBCLpkxHdeJ0JswjYJLmBa6sYGI8TEbQieligVgvMn89Ck9TZU+HYQ6LYV0rv6emLDAmCTw086A4cgsezPxP68T4+DKmwgVxQiKLxYNYkkxpLMcaF9o4CiTlDCuRXor5SOmGcc0rVkI7vLLq6RZKbvn5Ur9olS9zuLIk2NyQs6ISy5JldySGmkQTh7JM3klb9aT9WK9Wx+L1pyVzRyRP7A+fwBb6ZNr</latexit>

Q
<latexit sha1_base64="TIwmk8u21VOUoY7U7p41qYBa1Ac=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlZrNfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8frGuM2Q==</latexit>

1. request and
allocate a VM
instance

(A) The broker will allocate a reserved instance directly from the inventory to accommodate a user request when a
reserved instance is available.

2. Periodically check

get a request to fullfill

Resource
Pool

User
Request
database

Provisioner

Resource
Optimiser

VM scheduler

0. new user
request

0.1. save
Requests

2.3. buy new instance

3. return a
VM instance

Pending User Request Queue

2.1. fetch data

2.1. fetch data

2.2 decision on pricing
schem

e

2.4. update with a
new instance

Q �= �
<latexit sha1_base64="49bxy2Dm7WK7L7Mm4EpmRiv+shM=">AAAB+nicbVBNT8JAEN3iF+JX0aOXjcTEE2nRRI9ELx4hkY8EGrJdBtiw3dbdqaZBfooXDxrj1V/izX9jgR4UfMkkL+/NZGaeH0lh0HG+rdza+sbmVn67sLO7t39gFw+bJow1hwYPZajbPjMghYIGCpTQjjSwwJfQ8sc3M7/1ANqIUN1hEoEXsKESA8EZplLPLtZpV8E97UIQYWIACz275JSdOegqcTNSIhlqPfur2w95HIBCLpkxHdeJ0JswjYJLmBa6sYGI8TEbQieligVgvMn89Ck9TZU+HYQ6LYV0rv6emLDAmCTw086A4cgsezPxP68T4+DKmwgVxQiKLxYNYkkxpLMcaF9o4CiTlDCuRXor5SOmGcc0rVkI7vLLq6RZKbvn5Ur9olS9zuLIk2NyQs6ISy5JldySGmkQTh7JM3klb9aT9WK9Wx+L1pyVzRyRP7A+fwBb6ZNr</latexit>

Q
<latexit sha1_base64="TIwmk8u21VOUoY7U7p41qYBa1Ac=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlZrNfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8frGuM2Q==</latexit>

2.5. fulfill a request
with a new instance

1. put request
in queue

(B) The broker will create either an on-demand or a reserved instance to accommodate a user request on when no
reserved instance is available.

Figure 5.7: Workflows illustrating the broker’s responses to a user request when a VM is available (A)
and when a no VM is available (B).

5.3. DETAILED SPECIFICATION & IMPLEMENTATION 77

broker = (

rqst_db: RqstDB_T,

rqst_srv_queue: RqstQ_T,

inv_pool: INV_T,

rqst_schdlr: Rqst_T * (RqstDB_T * RqstQ_T * INV_T) -> RqstDB_T * RqstQ_T *

INV_T,

optimiser: RqstQ_T * INV_T -> INV_T,

provisioner = (

create_vm: VM_T * PrcSchm_T -> Rsrc_T,

destroy_vm: Rsrc_T -> unit

)

)

// Type Price Scheme

type PrcSchm_T = Revered_T | OnDemand_T

// Type for User Requests

type Rqst_T = UID * VM_T * CREATION | TERMINATION

// Type for the User Request DB

type RqstDB_T = (Rqst_T * time) set

// Type for the Request Queue

type RqstQ_T = Rqst_T list

// Type for VM Resource

type Rsrc_T = RID * VM_T * PrcSchm_T

// Type for the Broker inventory

type INV_T = Rsrc_T -> Rqst_T

Figure 5.8: Abstract type definition and specification for the broker model

challenging and dynamic. Therefore, in this work, we are only interested in the gross profit from
the broker operation without diving too deep into the correlation functions.

The gross profit margin (Y) from the time step t1 to t2 is calculated using the equation 5.3.

Y(t1, t2) = 100⇤ r(t1, t2)�w(t1, t2)
r(t1, t2)

r(t1, t2) =
n(t1,t2)

r

Â
i=0

(cOndur)

w(t1, t2) =
n(t1,t2)

Re

Â
i=0

cRe +
n(t1,t2)

Ond

Â
i=0

(cOnduOndi)

(5.3)

where t1 and t2 is the beginning and the end of the measured duration. r(t1, t2) is the broker’s
revenue during the same period with cOnd as the on-demand cost per unit time; u as the time
usage per request; and nr as the total number of requests. The operational cost of the broker (w)
is comprised of the cost of the reserved instances and on-demand instances of the broker during

78 CHAPTER 5. RISK-BASED CLOUD BROKERAGE

the same period.

We have explained the details of our risk-based optimisation. In the next section, we will evaluate
the broker using simulated user requests and Alibaba public cloud trace (91).

5.4 Evaluation

To evaluate our broker model, we simulate a user request environment using the Alibaba cloud
datasets (91). The profit level is used as our performance metrics with given user request data. In
the rest of this section, we will present the details of the simulation environment setup and each
broker model for comparison, followed by result analysis.

5.4.1 Simulation Environment

In this experiment, we focus on evaluating the effectiveness of user requests placements for
the same VM instance type from different price schemes. Therefore, we simplify the scenario
settings by assuming that users only request for the same instance type. There are two pricing
schemes, reserve instances and on-demand instances.

According to a given user request time series data, as each time unit elapses, our simulation
environment feeds user requests to the experimental broker models.

We have prepared two sets of user requests data. The random walk user requests data and the
Alibaba server trace. The traces consisted of two versions: Alibaba 2017 and Alibaba 2018
which were released during the corresponding year.

• Alibaba 2017: Released in 2017, the trace lasted for 12 consecutive hours on 1300 machines.
The trace includes a collocation of online services and batch workloads.

• Alibaba 2018: Released in 2018, the trace lasted for eight consecutive days on 4000 machines.
The trace also contains the directed acyclic graph information of the batch workloads.

Both periods of the original datasets are not sufficiently long to evaluate the effect of user request
placement for 3-month reserved instances. Therefore, we resample the user requests to be a
3-years’ time series data according to the method proposed by Moniz et al. (87). Each request is
a tuple of the following format:

REQUEST_ID * START_TIME * TERMINATION_TIME

Each resampled user request time series becomes an independent scenario for simulation. For
ease of presentation, we call the user request from Alibaba 2017 as Dataset 1, and the one from

5.4. EVALUATION 79

Table 5.1: Summary of User requests times series data for simulation

Scenario Ref Source Data Original Length Resampled Length
Dataset 1 Alibaba 2017 12 hours 3 years
Dataset 2 Alibaba 2018 8 days 3 years

Table 5.2: Statistic description of both datasets

Description Dataset 1 Dataset 2
Data Points 1,298,775 7,324,831,146

µ/s 77.08/96.98 49.12/370.43
Min/Max 0/5,450 0/129,215

25 % 18 4
50 % 47 14
75 % 108 48

2018 as Dataset 2. A summary is given in Table 5.1.

Datasets 1 and 2 differ from each other in some key aspects. Table 5.2 shows statistical description
of the datasets. The size of Dataset 1 is smaller and observably less dispersing than dataset 2.
Dataset 2 overall has higher volatility, which should directly impact the profit of each system. We
expect the result from Dataset 2 to be worse for the pure reserved strategy and a good challenge
to the rest of the systems.

5.4.2 Broker Setting

We established two broker systems based on our models, namely No risk adjustment and Risk-
taking. Additionally, we compare these with three other systems: Pure reserved, Best case, and
Auto-ARIMA, which serve as baselines and a typical predictive approach, respectively. Below are
the details of each system:

• Risk-taking: This is the comprehensive version of our broker system as detailed in Section
5.2. It incorporates all risk factors along with adjustments for risk-taking behaviors.

• No risk adjustment: A simplified version of the Risk-taking system, this model does not
include adjustments for risk-taking, focusing instead on standard risk normalization.

• Auto-ARIMA: Utilizes the Auto-ARIMA time series prediction method (125) to estimate
future user requests. Any demand that exceeds predictions is automatically handled using
on-demand instances.

80 CHAPTER 5. RISK-BASED CLOUD BROKERAGE

• Pure reserved: A baseline system that only uses reserved instances to fulfill all user requests.
It stocks up on new reserved instances whenever there is a pending user request, representing
a lower boundary in our system comparison.

• Best case: An ideal broker system with foresight into future user requests, allowing optimal
planning of VM instance stocking. This system represents the upper boundary in our
comparison.

Table 5.3: Component usage in each broker strategies

Broker Inventory Optimisation
System Reserved On-demand Risk Adaptive Risk Prediction
Risk-taking X X X X
No risk adjustment X X X
Auto-ARIMA X X X
Pure reserved X
Best case* X X Exact

* The broker makes optimal decisions based on perfectly accurate prediction for the future user
requests.

Table 5.3 shows components in each system. All the brokers will have reserved instances as
their main resource. Apart from the pure reserved, the rest of the systems use on-demand
instances as a buffer when appropriate. The no-risk adjustment strategy employs a fixed risk
when deciding, whereas the risk-taking can alter the risk level according to the cash-on-hand
level. The Auto-ARIMA is an automatic variable adjustment time series prediction model which
places excessive demands from the prediction onto on-demand instances. Lastly, the best case is
the system that produces the highest profit for the given data.

5.4.3 Experimental Results

The results of the simulation show comparisons of accumulated quarterly profit. The profit
calculation uses the data taken from Alibaba compute type pricing where the reserved instance
gives a 60% static discount. Moreover, the profit is calculated from Equation 5.3. Lastly, the
simulation does not account for communication time between users, brokers, and providers.

Figure 5.9 shows the profit of each broker system from Dataset 1. Empirically, both of our
systems outperform the pure reserved strategy and Auto-ARIMA model for most parts. In some
quarters, our risk-based produce profit levels comparable to the best-case scenario. The statistical
breakdown of the result is shown in Table 5.4. Compared to the best case, the overall profit of

5.4. EVALUATION 81

Figure 5.9: The graph shows a comparison of profits between each broker system of the input Dataset 1.
The broker system components of each system are shown in Table 5.3. The input is divided into multiple
parts of 4 months to illustrate each period’s profit level better. Both risk-based systems outperform the
pure reserved and reach close to the theoretical maximised profit. The results are consistent throughout
the data.

Table 5.4: Comparative values from the base case

Systems Highest profit(%) Lowest profit (%)
Risk-taking 96.06 65.85
No risk adjustment 91.51 23.08
Auto-ARIMA 92.50 21.60
Pure reserved 89.85 -4.42

both risk systems has a higher high and higher low than competing systems. Strictly speaking,
higher high and low means that it is more likely to earn a higher profit while less likely to lose
money.

We have normalised the profit level in a min-max normalisation fashion and compare the results
from each system with the best case in Figure 5.11. All systems perform on a similar trend to
the best case, with our risk-based outperform the Auto-ARIMA in both Datasets. Without the
offloading capability, the reserved only system vastly underperforms the rest of the systems. This
is especially pronounced in Dataset 2, where data is volatile.

82 CHAPTER 5. RISK-BASED CLOUD BROKERAGE

Figure 5.10: The graph illustrates the normalised profit level of input dataset 2. In this dataset, the pure
reserved instance struggles to return a profit. On the other hand, the risk-based system manages to stay
close to the best case. With the inclusion of risk adjustment feedback, the profit level manages to edge
closer to the actual best case values.

Table 5.5: The correlation tests between profit difference of best case and pure reserved and average
usage time of users.

Test Correlation P-value
Pearson 0.11 0.34

Spearman 0.09 0.45
Kendall 0.06 0.46

Additionally, we also experiment with the risk level such that the broker is taking less risk to
allow high utilisation in its inventory. The assumption is that a system with high utilisation of
the inventory is likely to have a higher profit. A sample of the first quarter of the second year (q1
y2) period in the Dataset 1 shows that higher average utilisation does not equate to higher profit.
The broker employs fewer reserved instances in the inventory; thus, it has to rely more on the
on-demand instances, which drive the cost higher. The issue is also known as opportunity cost.
To make a good profit and avoid losing money, a broker has to strike a balance between risk and
reward, which is the theme of this work.

Apart from the direct relationship between utilization and profit, it might be intuitive to
hypothesize that a broker system with a high frequency of short-term usage would better
leverage on-demand instances. To examine this hypothesis, we analyze the relationship between
profit differences and average cloud usage, as depicted in Figure 5.13. While the correlation

5.4. EVALUATION 83

Figure 5.11: (TOP) A scatter plot of a normalised profit level of Dataset 1. The magnitude of the
difference between each system is relatively similar throughout the system. Generally, we can see a
pattern that the risk-taking outperform the no-risk adjustment system and Auto-ARIMA system for the
majority of the period. (BOT) A scatter plot of a normalised profit level of Dataset 2. In Dataset 2, we
can see that the Auto-ARIMA and no risk adjustment perform similarly while still trailing behind the
risk-taking. Overall, the difference is larger than that of the Dataset 1 result.

84 CHAPTER 5. RISK-BASED CLOUD BROKERAGE

Figure 5.12: The graph shows the profit of the broker in the q1 y2 period in Dataset 1. From the average
utilisation of both systems, the risk-based has a higher utilisation lower profit. A higher average reserved
instance usage does not always translate to a higher profit.

Figure 5.13: The graph of a profit difference between pure reserved and the best case and average usage
time of users. A typical assumption for highly frequent small requests data is that it should suit the broker
with more on-demand instances rather than the one that relies heavily on the reserved instances. However,
from the graph, it does not appear to be the case.

5.4. EVALUATION 85

Table 5.6: The correlation tests between profit difference of best case and pure reserved and risk factors.

Test Correlation P-value
Pearson 0.71 1.6e-12

Spearman 0.68 1.8e-11
Kendall 0.57 7.8e-13

Figure 5.14: The graph compares percentage of over or under estimate the future values of the Auto-
ARIMA (RED) and quarterly profit (BLUE). From the result, the profit of a broker seems to be negatively
effect by the over-estimation rather than the under-estimation.

appears strong at certain time steps, it is notably weaker at others. The results from correlation
tests, detailed in Table 5.5, further substantiate the finding of an exceptionally weak correlation
between short-term frequency usage and profit differences across all three tests (38). This
suggests that average usage duration may not significantly influence the profitability of a broker
with a bias towards on-demand instances.

Conversely, the level of risk factors exhibits a more pronounced correlation with profit, as
illustrated by the correlation values in Table 5.6. Although this correlation does not conclusively
establish risk factors as the definitive indicator of profit, it indicates that they are a significant
component of the system’s operational success.

The main concern in a cloud broker system that aims toward good profit is the low utilisation
of its inventory. The situation occurs when the system overestimates its users’ demand and
prepares a larger than necessary inventory size. Figure 5.14 shows the over-under estimation
of Auto-ARIMA prediction and its respective profit. The overestimation (positive red number)
causes the system to lose more money than the underestimation values.

86 CHAPTER 5. RISK-BASED CLOUD BROKERAGE

One potential solution to address prediction inaccuracies is to introduce a bias towards
underestimation. This bias is already subtly incorporated into the risk factors of our system. By
considering the remaining time and size of the inventory, our system is designed to mitigate the
effects of overestimation.

However, introducing additional conditions into the cloud broker system can increase its
complexity, necessitating a reevaluation of the risk analysis to accommodate these new
complexities. Although our current model uses only three risk factors, we have empirically
demonstrated that it remains effective, even with this limited number of factors. This effectiveness
is achieved without the need for running complex optimization algorithms, which require
considerable computational resources and precise regression of user data.

Additionally, while our system is robust in its current form, expanding the number of risk factors
could potentially enhance its adaptability and accuracy. This expansion would allow for a more
nuanced response to diverse brokerage scenarios that our current model may not fully encompass.
By incrementally integrating more risk factors, we can refine our system’s predictive capabilities
and improve its overall performance in dynamically changing market conditions.

5.5 Related Works

Research on profit maximisation within cloud computing has employed diverse methodologies.
Here, we explore several significant studies that align with and inform our own approach.

Resource scheduling in cloud computing has been extensively studied, often assuming that
schedulers are privy to both the start and end times of user requests (85; 19; 100). These requests
are modeled using probability distributions, with termination times linked directly to their start
times. This scheduling strategy is designed to optimise the utilisation of reserved instances, with
results verified through mathematical optimisation. However, such assumptions about request
timing may not hold in practical scenarios, potentially limiting the real-world applicability of
these models.

Amit et al. (28) have examined profit-oriented cloud brokerage with a focus on Quality of Service
(QoS) parameters. Their model utilises data communication patterns to enhance utilisation and
profitability, similar to our predictive approach. However, they treat resources as fixed costs,
whereas our model adapts to variable cost conditions, offering a more flexible cost management
approach.

Profit maximization has also been approached through job scheduling and queuing models.
Shalmali et al. (4) and others (17) have proposed models that use QoS parameters and service

5.6. FUTURE DIRECTIONS 87

request distributions to maximize profits, suggesting that effective scheduling can significantly
enhance financial outcomes.

Another notable direction in research involves the allocation of cloud resources on reserved
instances, with profits optimised based on contract lengths and projected user demand (85; 123).
These studies provide mathematical proofs of global optimisation, valuable for validating results
under controlled conditions.

5.6 Future Directions

Looking forward, the potential to enhance cloud broker profitability is substantial. Currently,
our risk factors are selected manually, which may not be ideal as system complexities increase.
Automating the selection of risk factors and considering more dynamic and realistic scenarios,
such as multiple tiers of service instances, could significantly improve system responsiveness
and accuracy. In this work, risk factors serve as crucial indicators of profit potential; however,
their manual selection introduces limitations.

In the forthcoming chapters, we will investigate the application of causal discovery methods,
similar to those used in scientific research to discern cause and effect relationships that are
impractical to test experimentally. Specifically, we will explore the feasibility of employing an
approach akin to the additive noise model within the brokerage context to develop a robust profit
model based on the causal relationships between operational parameters and financial outcomes.

5.7 Summary

We have introduced a broker model designed to simplify the selection of VM pricing schemes for
cloud users, offering a balance between cost-effectiveness and flexibility. Central to our model is a
risk-analysis based decision-making function, optimised through the analysis of a comprehensive
real-world dataset from Alibaba. Our findings indicate that the broker’s profitability closely
mirrors the theoretical optimum, where user demands are perfectly anticipated.

Despite its efficacy in simulations, our current model’s reliance on predefined risk factors may
not adequately cover all operational scenarios, nor does it fully eliminate the need for human
oversight in setting up and adjusting these factors. By leveraging causal relationships, we aim to
further refine our profit model, enhancing its predictive accuracy and operational efficiency.

In our next section, we will delve deeper into how causal discovery techniques can be adapted
to enhance decision-making in cloud brokerage, potentially revolutionising the way brokers

88 CHAPTER 5. RISK-BASED CLOUD BROKERAGE

manage inventory and respond to customer needs.

6CHAPTER SIX

AUTOMATIC PROFIT
MODEL GENERATOR
CLOUD BROKERAGE

From the previous chapter, we have discussed the solution of inventory optimisation using
the risk factors. While risk is an intuitive concept, the evaluation of the risk is still a labour-
intensive process (113; 68). When the broker system structure becomes convoluted, the risk
factor evaluation becomes more complicated and requires more expertise. Here, we would like to
design a broker that figure out these risk parameters automatically. One approach when dealing
with the relation between parameters is to find the correlation. In a sense, a correlation is a
connection or relation between multiple parameters with the assumption of their behaviours.
Knowing the behaviour is beneficial when the main focus is to understand how each parameter
interacts. Our broker system utilises these relations to identify the behaviour of the broker profit
under some changes in the associated parameter. Thus, the main focus of the work is to find
deeper relations between some parameters and the profit through a causal discovery-like process.

6.1 Automatic Profit Model Generating Approach

The investigation into the underlying relationships within observable data is critical across all
research disciplines. The connections discerned between collected data sets can elucidate the
behaviour of the system under study. These relationships can be deduced through a variety of
methodologies, including correlation and independence tests. In recent years, causal inference
has gained traction amongst researchers conducting high-cost experiments. This approach is
often employed in cases where repeating experiments to verify results is either prohibitively

89

90 CHAPTER 6. AUTOMATIC PROFIT MODEL GENERATOR CLOUD BROKERAGE

Customers
Providers

Data
Cloud instances

Cloud
Inventory

ANMTime-series
requests data

Decision
Optimiser

Cloud
Inventory Data

 Features
extraction

Cloud broker

Order

Figure 6.1: A cloud broker operation starts from taking customers orders, process them and then makes
adjustments accordingly. The additive noise model broker extracts important data features and selectively
builds a model from the associate features. The model is then used in the decision optimiser to make an
optimal broker inventory adjustment.

expensive or impossible, facilitating the identification of cause-and-effect relationships between
observable data sets (93; 106). A primary advantage of causal inference over other analytical
methods is its capacity to discern genuine causal relationships, thereby avoiding the pitfalls
of spurious correlations. For instance, although data may show that the average weight of the
world’s cats has been increasing annually alongside the price of lumber, correlating these trends
does not confirm a causal relationship. Identifying genuine causal links between variables is the
principal focus of causal discovery.

In this study, we tackle the challenge of optimising broker inventory with a broker model
derived from the Additive Noise Model (ANM), which serves as the model generator (55). Our
broker system employs an ANM-like approach to identify a function that establishes a robust
relationship between the generated features from the broker data and the broker’s profitability.
This relational function then acts as a decision-making tool for broker inventory management. To
ensure its accuracy when applied to new data, the validity of this function is confirmed through
a comprehensive health check procedure. An overview of this high-level system is depicted in
Figure 6.1.

Optimising a broker system with reserved instances at its core requires one of the following.
First, predicted data for the optimisation process—alternatively, a system model that estimates
an optimised system’s behaviour. Figure 6.2 a) illustrates a broker system that uses past data

6.1. AUTOMATIC PROFIT MODEL GENERATING APPROACH 91

Historical
data

New data

RegressionFeatures
selection Model Optimisation Inventory

composition

Optimised
historical data

Features
selection Regression Model

New data

Inventory
composition

Feature
extraction

a)

b)

Figure 6.2: Typical workflow of a system that involves future values needs a data estimation process.
a) A simple predict-optimised utilised time series prediction and use the predicted data to optimised the
broker system. b) A model-based behaviour capture uses a system model built from the data to optimised
the system.

to estimate the future values of the desire data and feed the data into an optimisation algorithm.
The strength is the simplicity but rely far too much on the estimation. Figure 6.2 b) shows an
example of a generated model from optimised past data. The model allows the broker to adjust
its inventory at the decision time.

To evaluate our solution, we developed a prototype broker and simulated it with the Alibaba cloud
trace dataset (91). The simulation result shows that our ANM-based broker system generates a
better result than the typical regression method.

A motivating example of cloud brokerage system with the additive noise model

The additive noise model in open benchmark data is confirmed to be effective on varieties of
datasets at finding the causal pair (69). To investigate the effectiveness of the ANM in a broker
system, we build a system of inventory composition adjustment function, which act as a decision
making process. In this setting, the broker takes only one tier of performance cloud queries.
Moreover, the broker employs two types of cloud instances, reserved instances and on-demand.

Let assume that the decision function is

(res,ond) := F(ts.mean, ts.value)

res := ts.mean

ond := ts.value� ts.mean

92 CHAPTER 6. AUTOMATIC PROFIT MODEL GENERATOR CLOUD BROKERAGE

where ts is a time series of customers query and ts.value and ts.mean is the value of the user
time series query and the mean of the sixty previous time steps.

With the simulation using this decision function, the outputs of broker inventory composition,
ond : res, depends entirely on the customers’ query data. Specifically, the ond values is generated
from two variables ts.value and ts.mean. While, the res values is generated from a single ts.mean
variable.

res := f1(ts.mean) (6.1)

ond := f2(ts.value, ts.mean) (6.2)

With randomly generated time series of customers’ queries.

tst = tst�1 + e

where e follow normal distribution, i.e. N(µ,s2) with µ = 0, sigma = 10, value of the ts never
falls below 0. The graphical example of the time series is display in Figure 6.3.

Each query of the customer are terminate after tter := N(3,4) time step after creation. With
the example, we test the causality between parameters using the Additive noise model. If two
parameters are cause and effect pairs, then the ANM should produce a causality relationship as
the arrow indicated.

Figure 6.3: The graph shows the customers’ demand in this example. The demand follows a random
walk model.

The tested pairs are:

6.1. AUTOMATIC PROFIT MODEL GENERATING APPROACH 93

• ts.mean and res

• ts.value and res

• ts.mean and ond

• ts.value and ond

From equation 6.1, we can safely assume that if there are relationship functions between
parameters of the broker system and the profit. Then, the parameters must include ts.mean and
ts.value.

Parameters Causal direction Parameters Causal score
ts.mean �! res 1.041
ts.value 9 res 0.256
ts.mean �! ond 0.932
ts.value �! ond 0.891

Table 6.1: The arrows indicate causal relationship of parameters.

From Table 6.1, three of the pairs show a solid causal score. The positive score indicates the
causal direction of the input parameters. If the score is negative, then the causal direction would
be reversed. A lower score of closer to zero means that the relationship is inconclusive. The
score can go over 1 (or lower than -1) because of the variation of the independent testing. The
one-way score could be extremely high, while another direction might be undecided and skew
slightly toward the opposite direction, causing the score’s overflow. The relationships between
variables are illustrated in Figure 6.4.

Next, we are going to add the variable Profit, which is calculated from the set of fixed equations
below.

Pro f it := revenue� cost

revenue := fre(ts.value)

cost := fco(ond,res)

substitute with equation 6.1, we have

cost := fco(f2(ts.value, ts.mean), f1(ts.mean))

Assuming that the broker has no control over the customers’ queries, we can ignore the revenue
parameter values as a relationship to the profit for now. With the ANM, we can see that even after

94 CHAPTER 6. AUTOMATIC PROFIT MODEL GENERATOR CLOUD BROKERAGE

Figure 6.4: The graph shows the overall causal structure of created by the causal discovery between
parameters. In this example, ts.mean affects both reserved instance and on-demand instance but only the
ts.value affect the on-demand.

compositing functions. We can still trace back the profit to the original time series of customer
queries.

From Causal Discovery with Cascade Nonlinear Additive Noise Models, we can assume that
it is possible to infer the intermediate causal variable x2 from the original model of x1 �! x3 to
become x1 �! x2 �! x3.

Thus, from
ts.mean �! Pro f it

ts.value �! Pro f it

We can safely assume that there exist functions which take specify inputs such that they associate
with the profit value.

f (ts.mean, ts.value) := ond

g(ts.mean, ts.value) := res

The system we have developed deduces functions and links input parameters, which dictate the
composition of the inventory, to data reflecting optimised profits. The aim is for the broker to
employ a decision function that aligns with historically optimised profits.

In our approach, we draw parallels to Auto-regressive causal discovery methods or Vector Auto-
Regressive (VAR) systems. However, rather than utilising the commonly employed Granger
causality within VAR frameworks, we incorporate the additive noise model as an alternative due
to its robust function estimation capabilities. Traditional Granger causality methods primarily

6.2. STACKED CLOUD BROKERAGE STRATEGY 95

focus on identifying relationships within time series data through lagged terms. This aspect,
however, does not constitute our main area of interest. Instead, our emphasis is on understanding
and modeling the functional relationships that directly influence the decision-making process in
broker inventory management.

6.2 Stacked Cloud Brokerage Strategy

A common strategy among cloud brokers is to purchase cloud instances in bulk at discounted rates
and resell them at a profit. Traditionally, brokers match fixed-type requests with corresponding
cloud instances to sidestep issues related to security and performance overhead.

Recent studies suggest that the performance overhead associated with running multiple virtual
machines on a single cloud instance is minimal enough not to significantly impair performance
(76). On the security front, brokers can implement various security frameworks to address and
monitor potential vulnerabilities, thereby maintaining customer trust (81). Consequently, we
propose that utilising a single cloud instance for multiple user requests could provide an efficient
solution for brokers aiming to enhance the flexibility of their inventory management.

However, a critical concern that a broker must address is ensuring that this shared operation
model does not compromise the expected performance levels. The field of performance capture
in cloud instances is a vigorously active area of research (111), offering insights that can be
leveraged to mitigate potential drawbacks.

One viable approach is to classify virtual machine (VM) specifications into performance tiers.
By adopting a tiered system similar to that used by cloud providers, a broker can offer users
performance categories rather than specific specifications. This system ensures a minimum
performance standard while facilitating more efficient inventory management. Each performance
tier is designed as a linear combination of lesser tiers, allowing for various configurations of
cloud instance management. This flexible setup enables the broker to optimize configurations
to meet higher target indices such as utilization and profitability. Utilizing a comprehensive
benchmark database, brokers can accurately quantify the performance levels of cloud instances,
thereby ensuring a consistent cloud experience for customers.

Assuming that there are the following performance tiers:

[p1, p2, p3]

96 CHAPTER 6. AUTOMATIC PROFIT MODEL GENERATOR CLOUD BROKERAGE

where the performance level of each tier is equivalent to

p3 ⌘ p2 + p1

p2 ⌘ 2p1

where p2 is about two times as powerful as the p1. If the customers demand a lot of p1, the
broker can employ a higher performance tier and substitute two of the p1s with one p2. Since the
price per performance is cheaper at higher tiers. Therefore, in a certain scenario, a broker using
a higher performance tier can benefit the profit. On the other hand, if the demand of the p1 does
not continue, then the broker lose an opportunity on the already purchased p2 instance. This
creates a decision-making scenario on which is the best configuration of the cloud inventory.

Shared virtual machines business model

There is ample evidence to suggest that sharing hardware resources is a common practice in
cloud computing businesses. Time-sharing, for instance, has been proven to be an effective
strategy, even when considering the quality of service constraints (98). Thus, it is feasible to offer
a brokerage service where reserved cloud instances are subdivided and shared among multiple
customers.

While the use of shared instances can raise security concerns, these can be adequately addressed
through the application of established security frameworks (18). Additionally, the performance
issues associated with sharing cloud instances can be effectively managed to ensure compliance
with guaranteed performance levels or service level agreements (29).

Consequently, the practice of hosting multiple tenants on a single piece of hardware or a single
cloud instance does not inherently pose insurmountable challenges. This approach can offer both
economic and operational efficiencies, making it a viable option in the strategic toolkit of cloud
brokers.

Instance 1 Instance 2 Instance 3

VM 1 VM 2 VM 3 VM 4

Figure 6.5: Instance 1 of a cloud broker is a more powerful cloud instance. Therefore, it is able to
accommodate more virtual machine images than instance 2 or 3. If we assume that all virtual machine
is of the same performance level, then instance 1 can do the same amount work as instance 2 and 3 put
together.

6.2. STACKED CLOUD BROKERAGE STRATEGY 97

Stacked Hosting of Instances and Virtual Machines

As illustrated in Figure 6.5, a more potent cloud instance (Instance 1) can accommodate a
greater number of virtual machines with similar performance requirements, provided all service
requirements are met. Typically, higher-performance instances offer better value for money,
potentially increasing the broker’s profit margins. However, the initial higher costs associated
with these powerful instances must be recuperated, which may not always be guaranteed.

Offloading Customer Queries

Assuming that a single reserved instance can be divided and shared among multiple customers,
the subsequent challenge is to capitalize on this arrangement.

Financially, an idle reserved instance represents a misallocation of resources within the broker’s
inventory. Minimizing the number of these idle instances is crucial for enhancing profitability.
One effective strategy employed by brokers involves offloading some customer queries to more
expensive instances (84; 123). This approach has been demonstrated to be successful, optimizing
the utilization of available resources and improving overall financial outcomes.

Time

Number of
query

Demand curve

Reserved

Reserved

Reserved

On-demand

Broker inventory instance

Overflow
order

On-demand Overflow
order

Figure 6.6: Some queries that cannot be accommodate by the existing cloud instances in the inventory
can be offloaded to another type of cloud instance.

Figure 6.6 illustrates the query offload to on-demand instances. The overflow queries are
offloaded to the on-demand instance on some conditions, i.e. outliers.

A broker must choose the best combination (cloud instance performance level, pricing schemes)
of cloud instances for the given customer queries data from the two strategies. We start
formulating the problem by explaining the structure of cloud inventory and its definition.

98 CHAPTER 6. AUTOMATIC PROFIT MODEL GENERATOR CLOUD BROKERAGE

6.3 Brokerage System Profit Model

We simplify the inventory optimisation process within the broker system into a straightforward
equation involving profit and inventory variables for ease of discussion. Let P represent the profit
function of a broker system, defined as:

P : (R⇥R) �! R

Here, R⇥R represents the revenue and cost respectively, with the function returning a real
number that indicates the profit value.

To maximise profit, it is crucial to understand the specifics of each component involved. Assume
n and m represent the number of user requests and the number of cloud instances in the broker’s
inventory during a calculation period T = [t, tk], respectively. We analyze these within a specified
window of time to focus the calculations on a particular period of interest. The period T serves
as both a reference point and a boundary for comparing results.

The broker’s revenue can be calculated using the equation:

x =
n

Â
i=1

pi ·Ui

where Ui denotes a user request i and pi is the payment received from the respective user. The
cost is given by:

y =
nt

Â
i=1

ResvCi +
mt

Â
j=1

OndCj

Here, nt and mt represent the number of new instances added to the broker’s inventory at time t,
with ResvC and OndC being the average costs of reserved and on-demand instances at that time,
respectively. Alternatively, the cost can be generalised as:

y =
m

Â
i=1

(ci · INSTi)

where ci · INST is the cost of each instance in the inventory during the time T .

Optimising profit fundamentally boils down to the configuration of cloud instances in the
inventory. However, as previously noted, forecasting far into the future requires accurate
predictions of demand well beyond the current data points. Therefore, this work introduces a
broker model that infers profit relationships and makes just-in-time decisions based on dynamic
data.

6.3. BROKERAGE SYSTEM PROFIT MODEL 99

Constructing a broker profit model begins by structuring relevant data: customer order data,
inventory data, and profit are denoted as x, y, and z respectively. Assuming an optimised system,
a function G(x) = y exists such that the profit function P(x,y) = z yields maximum profit. Thus,
we can integrate the inventory generating function G into the profit equation:

P(x,G(x)) = z (6.3)

Assuming that G and its inputs are identifiable, the broker should then operate at an optimal
profit level, with z presumed optimal from the identification of G.

To validate this claim, we explore the broker system dynamics. At any given time tk where
tk 2 T := [1,K], y is computed from G as follows:

y(tk) = G(x(tk�a, . . . , tk�1))

The decision to adjust broker inventory is expressed as:

argmax
y

AGGkPt+k(yt+k,xt+k)

where argmaxy AGGk represents the values of y from t to t + k that maximise the broker’s profit,
given x as inputs.

Several challenges arise in this optimisation process. Firstly, the argmaxy operation demands
highly accurate regression data extending far into the forecast horizon. Secondly, the regression
process itself requires meticulous preprocessing of input data.

Even with a high degree of accuracy, the system might yield suboptimal profits since the
regression pairs between x and y assume the task of matching inventory parameters with demand.
Other, hidden parameters could also influence profits, indicating potential disconnects within the
system.

Alternatively, employing correlation tests to identify relationships between profit and system
data (x, y) may lead to redundant insights since z is derived directly from x and y. For instance:

start[t, tk] µ z

res[t, tk] µ z

Correlations such as the number of starting queries and reserved instances are likely to correlate

100 CHAPTER 6. AUTOMATIC PROFIT MODEL GENERATOR CLOUD BROKERAGE

with profit. Consequently, extracting features directly from the data may prove more effective
(21; 67). Thus, constructing a profit model of the brokerage system emerges as a viable solution.

Typically, model generation and selection are manually conducted, informed by prior knowledge
of the system. Chosen models are evaluated using a fitness metric to confirm their accuracy.

Furthermore, causal discovery aims to solve the identifiability issue, i.e., model selection, within
a brokerage context where multiple variables interact and influence profitability. Understanding
these relationships is crucial for comprehending broker behaviour and variable interactions.
Consequently, in the forthcoming section, we introduce a broker system that utilises causal
discovery and feature synthesis to pinpoint connections to the profitability of a cloud broker.

6.4 System Workflow & Architecture

This section elucidates the foundational concepts and methodologies underpinning our automatic
model generator brokerage system, centered around the Additive Noise Model (ANM). This
model plays a crucial role in identifying key data entities that influence the broker’s target
outcomes—primarily profit—while constructing broker inventory composition functions. We
begin with an overview of the broker system, outlining the high-level concept and the mechanisms
involved.

6.4.1 System Workflow & Components

The system initiates from the data perspective. Broadly, our system manages two types of data:
optimised (historical) data and actual (operational) data. Optimised data comprises past data
with precise measurements used to "figure out" solutions, whereas actual data pertains to the
information currently employed in system operations.

ANM serves as both a model selector and a parameters filter. This method enhances traditional
regression by incorporating independence noise and bi-directional hypothesis independence
testing, yielding directional causal pairs and their behavioral models. We deploy ANM to sift
through and filter out irrelevant features generated from raw operational data, subsequently
building models from the relevant feature pairs aligned with the broker’s target, i.e., profit. The
workflow of our broker system is depicted in Figure 6.7.

We will now describe the main components of the system:

• Feature extraction: As a preprocessing step before auto-model generation, feature extraction
calculates multiple data features to capture the data’s characteristics. These features, rather

6.4. SYSTEM WORKFLOW & ARCHITECTURE 101

Optimised
historical data FeaturesFeature

extraction ANM

Accepted
model

Fitting
Accepted
features

Calculate

New data

Good

Bad

Health
check

Inventory
composition

Figure 6.7: The automatic model system introduces an additional layer of hypothesis testing from the
generated features to automate feature selection and filtering processes.

than raw data, are used in the additive noise model’s regression method to prevent mere linear
combinations of data. Models trained with data features are generally more accurate than
those trained with raw data.

• Auto-model generator: This component employs the causal inference method (ANM),
starting with a model estimator, in this case, the Gaussian process. The Gaussian process,
augmented with added noise and hypothesis testing, forms the crux of the ANM. Additive
noise, independently generated and added to the data (i.e., feature entities), facilitates the
verification of bi-directional hypothesis testing for causal direction. Hypothesis testing
determines whether two datasets are independent of each other. The broker system’s model—a
generated function—mimics the system behavior based on validated relationships between
feature entities and profit targets. This model informs the broker’s inventory composition
decisions for incoming data and can be adjusted or replaced if health check criteria are not
met.

• Inventory composition: This component generates corresponding inventory data in accor-
dance with the model, dictating the broker’s procurement decisions regarding which cloud
instances to include in the inventory. Essentially, the inventory composition represents the
system’s output.

• Model health check: This critical step ensures the model’s continued accuracy following
inevitable shifts in the data distribution used for model construction. When data distributions
change, maintaining model accuracy becomes challenging. Thus, an additional step is
implemented to verify that the deployed model in the broker system remains correct.

102 CHAPTER 6. AUTOMATIC PROFIT MODEL GENERATOR CLOUD BROKERAGE

6.4.2 Feature Synthesis

Machine learning algorithms are a method of taking inputs and producing desirable output
results. Several improvements can be made to help train the algorithm, one of which is the
feature engineering process. We will not dive too deep into discussing the benefit of feature
engineering or how tedious the process can become. In this work, the feature engineering process
is assumed by the feature synthesis calculation of the data.

The feature synthesis is an essential step in providing the model generator with candidates.
Figure 6.8 shows the sliding time series corresponds to the change from raw time series to
aggregated features.

Raw Time-series Aggregated features

1

2

m

Feature-1 (1, m)

Features
calculator

Feature-2 (1, m)

Feature-3 (1, m)

Figure 6.8: Each moving window of a raw time series is calculated to a single data point in multiple
aggregated features.

We can split the real data into two, the customers’ data and broker data. Customer’s data are a
collection of order requests that are processed chronologically. The broker data is the inventory
data, i.e. number of reserved instances or performance level. The inventory data is the data that
directly calculate the running cost of the broker.

The broker defines the frequency of the process. For example, if the broker process customers
order every second. Then, the data are collected and process every second. Therefore, the
working time-step of a broker is one second. A shorter time-step leads to shorter responds time
to the customer, lower data to process per time, more missing data etc. On the other hand, a
longer time-step produces a larger chunk of data but a longer delay in customer response time
and decision making. There is no definite rule for the duration of time step. Nevertheless, we
can reference approaches that deals with the bin size setting, such as Rice’s rule and Sturge’s

6.4. SYSTEM WORKFLOW & ARCHITECTURE 103

rule (130).

Each customer data can be represented as below:

USR = {ID,Start,Spec,TIME} | {ID,Terminate,TIME}

Then, multiple time series data can be obtained for the system, e.g., the number of starting
requests, the number of each specification etc.

We can divide the customers time series into a tier of specifications:

T Sp1 = (tsi, tsi = Ânt
i=0 Starti)

T Sp1 = (tsi, tsi = Âmt
i=0 Terminatei)

. . .

T Spn = (tsi, tsi = Ânt
i=0 Starti)

T Spn = (tsi, tsi = Âmt
i=0 Terminatei)

Similarly, the inventory time series can be constructed from the snapshot of the inventory itself,
i.e. the composition, the availability etc. The time series of the broker inventory are:

IT Son
p1 = (itsi, itsi = Ânon

i=0 on)

IT Sresv
p1 = (itsi, itsi = Ânresv

i=0 resv)

. . .

IT Son
pn = (itsi, itsi = Ânon

i=0 on)

IT Sresv
pn = (itsi, itsi = Ânresv

i=0 resv)

Each of the time series is pass through feature extraction processes to create aggregated time
series features. The features used in this work are shown in Table 6.2. All of the features used in
the system are parameters independent, meaning that they do not require additional user inputs.
This is to eliminate the unnecessary parameter adjustment in the system. However, any custom
features can be used in the system as long as they can be aggregated to the same length as the
target. For example, time series

T Sp1(t) = (xi,xi = Ânt
i=0 Starti(i))

104 CHAPTER 6. AUTOMATIC PROFIT MODEL GENERATOR CLOUD BROKERAGE

Feature Description
absolute energy The absolute energy of the time series which is the sum over the

squared values
max Highest value of a time series
mean Mean value of a time series
min Lowest value of a time series

kurtosis the kurtosis of x (calculated with the adjusted Fisher-Pearson
standardised moment coefficient)

root mean square the root mean square (rms) of a time series
sample entropy sample entropy of a time series

standard deviation The standard deviation of a time series

Table 6.2: A set of extracted time series features

T Sp1(t +1) = (xi,xi = Ânt
i=0 Starti(i))

. . .

are converted into an aggregated feature time series

T Smean = (mean(T Sp1(t)),mean(T Sp1(t +1)), ...)

The calculated features set is the starting parameters for the auto-model generator.

6.4.3 Model Generation Based on the Additive Noise Model

In this work, we adjust the inventory based on the model generated from the Gaussian process
within the additive noise framework. As previously mentioned, directly matching regression
pairs can be arduous and may sometimes fail to meet the system’s objectives. Consequently, we
opt to use substitute parameters in the form of data features, selecting some associated features
via bi-directional hypothesis testing.

Rather than employing raw data, we utilise data features. Feature extraction is pivotal in any
machine learning algorithm as it reduces data redundancy and generally enhances both the
speed and accuracy of the algorithm (71). Furthermore, we employ feature extraction to prevent
the linear combination of regression data in our system, which is essential as the Gaussian
process cannot be performed with data that are mere combinations of other data. We utilise the
identification property of the additive noise model to refine the generated feature space, ensuring
only pertinent features are included in the model.

6.4. SYSTEM WORKFLOW & ARCHITECTURE 105

Consider a feature set E:
E = {e1, . . . ,en}

which comprises entities containing features of our broker data from the feature extraction
process. Each e represents an individual feature derived from x and y. For each e, there is a
corresponding feature function ki such that:

ki(ts) := ei (6.4)

where ts is the time series data of customers and broker (x,y).

We postulate the existence of a function Fi which associates features with profit:

z := Fi([em, . . . ,ek])+ni (6.5)

such that if a single directional confidentiality test from ei 2 E to z is accepted, then the target
(z) should behave in accordance with model Fi.

The feature filtering and model selection process is executed concurrently. The function Fi

is estimated using the Gaussian process, and the additive noise ni is independently generated
from the Gaussian distribution. The additive noise model approves the functional model Fi

if the independence test between z and {em, . . . ,ek} is unidirectional. Dependent models and
features are discarded. Once all feature entities are evaluated, the model described in equation
6.5 becomes the profit model for our broker system.

Although capturing the profit behaviour from all possible parameters might be challenging,
the profit value is calculated from a fixed function of two sources of variables, the customers’
variables (x) and broker inventory variables (y):

z = P(x,y)

Since P is a fixed function, y can be derived from the common target variables z following the
causal model of cascade causality (15). In our broker model, the cascade causal is linked with
the connected profit function P. Therefore, if z is optimised and behaves according to the feature
entities chosen with the additive noise model process, then for each y in y there exists a function
from the regression process such that:

fi([em, . . . ,ek]) = y

where y is the inventory composition component of the system, i.e., the number of reserved

106 CHAPTER 6. AUTOMATIC PROFIT MODEL GENERATOR CLOUD BROKERAGE

Figure 6.9: (Top) P(x) represents the profit data, with black dots illustrating the samples for the Gaussian
process. The Gaussian process function, depicted in red, is defined by mean and standard deviation.
(Bottom) This graph displays three sample functions derived from the distribution, serving as single-point
“prediction” models.

instances running in a broker. Thus:

z = P(x, fi([em, . . . ,ek]))

This equation is an extension of the profit model built from the additive noise model.

It is important to acknowledge that feature extraction functions are not inherently bijective, which
implies that the uniqueness of the optimal solution cannot always be guaranteed. Nonetheless,
given the existing initial and boundary conditions, the solutions are generally sufficient for
practical applications. These boundary conditions are essential for managing reserved instances.
For instance, the number of reserved instances in the inventory at any given step should not
decrease compared to the previous step unless they are due to expire.

6.4. SYSTEM WORKFLOW & ARCHITECTURE 107

Figure 6.10: (Top) P(x) represents the profit data, with black dots indicating the observation sample
with added noise. (Bottom) Similar to a normal Gaussian process, the sample functions are depicted as
single-point predictions.

From Figure 6.9, it is evident that prediction functions derived from the Gaussian process are not
unique. Various approaches exist for selecting the prediction value. A common method involves
averaging all sample values, which tends to converge towards the mean function. Alternatively,
the expected loss can be minimized, typically accomplished via a loss function L (ytrue,ypredict),
as shown below:

RL (ypredict|x⇤) =
Z

L (y⇤,ypredict)p(y⇤|x⇤,D)dy⇤

The optimal prediction value minimizes this expected loss:

ybest|x⇤ = argmin
ypredict

RL (ypredict|x⇤)

where y⇤ represents a single point prediction from the test input x⇤, and ypredict is the prediction
from the sample functions.

108 CHAPTER 6. AUTOMATIC PROFIT MODEL GENERATOR CLOUD BROKERAGE

Added noise in observations deviates the prediction functions, thus altering the inverse functions
(if they exist) from their normal counterparts. The introduction of noise is a key component
of the additive noise model for causal discovery. In this work, we apply similar principles to
uncover relationships between parameters and profit, avoiding accidental correlations that do not
genuinely influence profit outcomes.

It should be noted, as depicted in Figure 6.10, that the variance at observation points is non-
zero, indicating that the sample functions do not pass through the observation points. In
predictive scenarios, noisy observations, or inaccurate measurements, can significantly impair
accuracy. However, in our system, the noise variable is reintroduced only after Gaussian function
approximation during the relationship inference phase, thus preventing any loss in accuracy due
to noise.

6.4.4 Independence Criterion & Health Check

A generated broker profit model cannot always stay accurate or effective once newer data are
received. Thus, it is helpful to adapt or replace the outdated model during the broker operation.

If Fi is the current broker model from the model generator at time step t, in the next time step,
t +1, there is new data xnew which is also encoded into new feature entities.

The health of the model can be measured or evaluate using an accuracy metric. In the case of the
additive noise model, however, the model’s health can be measured with the same independence
criterion test.

With new data, there are new time series data set which then be encoded into feature entities. For
each ei in E from the original model, the values of E are updated.

ind(ei,z) = Independence score

The ind score ranges from 0 to 1. For simplicity, let x,y be the two parameters which we want
to measure the HSIC. If the model is from x �! y, then ypredict is the prediction value from the
Gaussian process model of x. The independent score is calculated from HSIC(ypredict � y,x).
And the bi-directional score are calculated as ind(y,x)� ind(x,y) (Value : 1 if x �! y and -1 if
y �! x)

If the bi-directional HSIC score concludes differently from the original model, i.e. anything but
acceptance in the direction from ei to z, then the model is no longer valid. Thus, the system
triggers the model generator to find a more suitable model and feature entities to replace the old
set.

6.5. EXPERIMENTAL RESULTS 109

Xi

Original
space: M

Feature mapping

k : M Hx

Feature space:
Hx

k(Xi) = g(., Xi)

g is Gaussian kernel

Figure 6.11: Hilbert-Schmidt independence criterion use a kernel method to transform data from its
original space to a feature space which is easier to identify the independence property.

The model checking has a relatively low computational complexity compared to the optimisation
or regression. Therefore, if the longevity of the model is high, then the system’s overall
complexity is also low, which is beneficial to the system.

We have now introduced all the main components of the system. The pseudo-code of the broker
system is provided in the Algorithm 1.

6.5 Experimental Results

Operating a cloud broker involves substantial financial implications, making direct experimenta-
tion costly. Consequently, simulating the broker system serves as the preferred method for testing
its effectiveness. This section details and discusses the experimental results of the automatic
profit model broker system using a broker simulation.

6.5.1 Time Steps & the Period of Calculation

The period considered for the calculation is the specific length of data utilised by the system,
often referred to as a working window. In the context of a broker system, this period is akin to a
training period, where calculations based on the data influence subsequent time steps.

Typical contracts for reserved instances last between one to three years, requiring considerably
lengthy training data. However, to mitigate the extensive data requirements, we can truncate
the data collection period by making certain assumptions. Customer behaviours often exhibit
monthly and weekly cyclical patterns, which some might term as seasonal periods. By leveraging

110 CHAPTER 6. AUTOMATIC PROFIT MODEL GENERATOR CLOUD BROKERAGE

Algorithm 1: Automatic model generator cloud brokerage
Data: Individual customer cloud request data
Result: Broker cloud inventory composition
x:= customers requests data;
y:= inventory composition;
acp: = Accepted level of the model from HSIC score
T Sx := time series(x);
T Sy := time series(y);
E := Fe_E(T Sx) [Fe_E(T Sy);
profit := P(x, y);
F ,{ei} = Auto-func(E, profit);
while x exists do

xnew
T Sx := time series(x + xnew);
T Sy := time series(y);
From Fe_E: ki([T Sx,T Sy]) := {ei}
FIND ynew from F([ei]) := profit
if F([ei]) accepted > acp then

KEEP F, {ei} ;
else

T Sx := time series(x);
T Sy := time series(y);
E := Fe_E(T Sx) [Fe_E(T Sy);
profit := P(x, y);
F ,{ei} = Auto-func(E, profit);

end
end

these cycles, we reduce calculation time and circumvent constraints on data availability. Given
that the only publicly reliable data sources are the cloud server traces from Google and Alibaba
(91; 99), and considering that Alibaba’s data trace is more recent, it forms the basis of our data
selection. For this experiment, the auto-model employs 28 days’ worth of backed data.

The time step represents the operational cycle of our broker system, spanning from data analysis
to decision-making regarding inventory. The duration of a time step is crucial yet subject to user
preference. Given that cloud instances are typically billed hourly and responses to customers
must be timely, it is recommended that time steps be shorter than one hour. In this system, time
steps are set at five-minute intervals.

We denote the current time step as t, the subsequent time step as t +1, and the preceding one as
t �1.

6.5. EXPERIMENTAL RESULTS 111

6.5.2 Data

To mimic the real cloud workloads, we are using a server trace from Alibaba cloud (91). The
trace consisted of multiple attributes. In this experiment, we are using the start and stop time
of the work and the number of CPU cores assigned to the work as a performance indicator.
Unfortunately, there is no available data that cover a multi-year duration. Hence, we over-sample
the original data to increase the number of data points with the same distribution.

Figure 6.12: Example of the data distribution of the users requests. (Left) The starting requests per time
step (Right) the termination requests per time step.

The simulator takes individual request orders chronologically and processes them at the same
simulated time, i.e. if the requests start at time t, then it is processed at t.

A raw data format of a simple broker are formatted as follow:

USR = {ID,Start,Spec,TIME} | {ID,Terminate,TIME}

OND = {ID,Start,Spec,TIME} | {ID,Terminate,TIME}

RESV = {ID,Start,Spec,Terminate,TIME}

where USR, OND, RESV are a user request, on-demand instance in a broker inventory and
reserved instance in an inventory respectively.

User requests and on-demand instances have an active and inactive state. The tuple after | is the
inactive part which will be activated after the TIME is reached.

6.5.3 Results

The verification of the auto-model system is to verify that the generated model is a causal model.
The identification of the causal model is done using the “intervene” method on the observed data.

112 CHAPTER 6. AUTOMATIC PROFIT MODEL GENERATOR CLOUD BROKERAGE

E EP P
I2

I1

F

f3

F

f4

f1

f2

Figure 6.13: (LEFT) The figure shows typical causal model on the left-hand side. The causal relation
function (F) is the behaviour of the effect parameter when the independent parameter change. (RIGHT)
This figure shows causal model with hidden parameters (Is) i.e. inventory composition. f3 and f4 are
fixed functions which contribute to the profit values while f1 and f2 are the regressed models from the
independent parameter to the inventory composition.

The intervention is the middle step in the total of four steps of causality, association, intervention
and counterfactual (93; 94). The association is about observing the change in parameters. The
intervention is to do something and observe the change in parameters. Lastly, the counterfactual
consider other causal relationship that might affect the observed parameters. All three of the
steps must be fulfilled to identify the true causal relationship. However, for most data, including
this work, the only intervention process is sufficient for the verification of the model (49).

Two sets of data points generated from two different models (functions) might have the same
distribution. Hence, it is impossible to distinguish the generated data alone to infer the
relationship. The behaviour of the function can behave differently.

Assuming that the causal diagram represents how the system behaves, we can verify that there
is no relation between parameters by applying counter assumption. With intervention on the
independent parameters, we can observe the change in dependent parameters and compare it to
the original causal diagram.

From Figure 6.13, the original causal model is to find the parameter which affects the profit.
Thus, intervention on the said parameter should change the profit distribution. Figure 6.14 shows
the change in profit distribution after the intervention. Thus, we can see that the additive noise
model effectively generates the causal structure from selected parameters.

Similarly, the right-hand side of Figure 6.13 shows the hidden parameters of the causal model,
i.e. inventory composition. By the causal diagram direction, intervention on the independence

6.5. EXPERIMENTAL RESULTS 113

Figure 6.14: The figure shows the changes in profit data distribution after intervention on the independent
parameter.

Data section Mean Variant
1 16.868 375.195
2 18.412 243.995
3 6.184 308.770
4 13.462 400.252
5 23.008 1459.765
6 7.444 254.965
7 13.72 760.497
...

...
...

Table 6.3: Mean and variant of each section of the data

parameter changes the distribution of the hidden parameters and then the profit distribution.

Volatility is widely accepted to be the main cause of profit management difficulty (62). We can
safely assume that by eliminating the volatility in the data, a broker system would have an easy
time managing its inventory. However, the elimination of the uncertainty is not easy or, in some
cases, impossible. Thus, we wanted to see if the additive noise model can pick up on the volatile
parameter in this case variant. We picked the data section in bold from Table 6.3, where the
variant is considerably higher than the neighbouring data sections. The DAG shows that the
standard deviation and mean of the data also influence the profit of the broker together with the
size of the inventory, as shown in Figure 6.15.

To investigate the effectiveness of the auto-model building function, we force the decision
function of the broker to be fixed functions. We use only one performance tier, which means
the broker has to decide between two choices, an on-demand or a reserved instance, when the
broker adjusts the inventory composition. If we fixed the decision model and auto-model from
the additive noise model works properly. Then, we should be able to build a causal structure
from the data generated by the fixed decision-making function.

114 CHAPTER 6. AUTOMATIC PROFIT MODEL GENERATOR CLOUD BROKERAGE

Figure 6.15: The DAG of the broker system when the data is volatile. The hypothesis testing from
automatic model generation select a model with SD and MEAN parameter of the starting data that associate
with the profit.

For the first model, we fix the decision function such that at the start there is a 50% chance of
choosing either one of the choices. Then, if the profit is uptrend i.e. linear trend is positive the
chance of reserved instance is increased by 1% wise versa.

fon(x,a) = (1� ftrend((z,a))x

fresv(x,a) = (ftrend((z,a))x

ftrend(z,a) = a+(linear.trend.sign(z))

where a is a size ratio of reserved instances and ftrend is a linear trend function of a profit. Notice
that, the broker system is built in such a way that it does not use any parameter on our list that
relates to the profit. The model and feature sets that associate with the profit change often with
weak relation. Thus, it is not reliable or practical to follow any of the models.

Next, we added the mean of the data and its relation with the profit.

fon(x,a) = (1� fmean(x,z,a))x

fresv(x,a) = (fmean(x,z,a))x

fmean(x,z,a) = a+�z+mean(x)z0.5/5

The accepted model from the ANM does include the mean(x) of the data as one of the accepted
features as expected.

6.5. EXPERIMENTAL RESULTS 115

Figure 6.16: The figure shows the movements of profit over time.

On the other hand, if the feature entity mean(x) is added into a non-profit related function.

fon(x,a) = (1� ftrend((z,a))x+mean(x)

fresv(x,a) = (ftrend((z,a))x�mean(x)

ftrend(z,a) = a+(linear.trend.sign(z))

The auto-model cannot recognise the mean(x) as a related pair to the profit. The auto-model can
recognise the relation pair between a chosen parameter and the target from the example above.

Additionally, similar to many machine learning algorithms, the additive noise model effectiveness
can be varied due to the parameter setting. For example, the DAG of the system would have a
smaller number of nodes if the accepted threshold is too high. Unfortunately, there is still no set
rule on parameter fine-tuning. For this work, we set the threshold to be high on purpose, as the
main reason is to find a good indicator of the profit rather than a complete model.

A profit function with correspondent feature inferred from the Gaussian process serves as a
profit model. Notice, profit function in Figure 6.16 is a time series function. On the other hands,
profit model in Figure 6.17 (TOP) is a function with feature parameter (X) dependent. From the
function, we can infer that the profit behaves in relation to the feature X. Figure 6.17 (BOTTOM)
shows function realisations from the distribution function. These functions are used as a point
prediction. The point prediction is the single solution that is needed in the decision making

116 CHAPTER 6. AUTOMATIC PROFIT MODEL GENERATOR CLOUD BROKERAGE

Figure 6.17: (TOP) The graph shows profit function infer from the Gaussian process with a corre-
spondence parameters (feature extracted from the data). (BOTTOM) A function realisation for a point
prediction.

process.

The number of sampling points contributes to the accuracy of the model to the real data. Since
the real data is observed rather than a continuous function thus if the computing power allows
increasing the sample number should result in higher accuracy. However, that is not always
the case in Figure 6.18. Over-fitting is another issue that still needs further study. It does not
only use more computing power, but the generated function behaves badly enough to cause an
inaccurate area. Fortunately, over-fitting and parameter selection problems are the main strength
of the causal discovery (additive noise model) handled by the HSIC. The over-fitting would fail
the bi-directional independence test while parameter selection is handled using both independent
and Gaussian processes.

Finally, to compare the system with other prediction methods, we use the Auto-ARIMA, which
represents the regression type method (96). The Auto-ARIMA automatically choose the best
fit ARIMA model for the given data. Thus, the Auto-ARIMA gives the best representation of

6.5. EXPERIMENTAL RESULTS 117

Figure 6.18: (TOP) The graph shows profit function infer from the Gaussian process with a corre-
spondence parameters (feature extracted from the data). (BOTTOM) A function realisation for a point
prediction. In this figure, we can see the overfitting problem and high error function approximation.

a general ARIMA model. Another system in the comparison is the artificial neural network,
specifically, the short-term-long-term memory neural network. This network is suitable for the
prediction of time series data (82; 11). Thus, it is also a good benchmark for the neural network
prediction algorithm. We use these systems to verify that the model works as intended, i.e.
generate profit in the same direction.

1. The regression system: We use a time series prediction (Auto-ARIMA) to determine the
inventory composition. The Auto-ARIMA eliminate the parameter tuning, which makes it
a fair comparison. The Auto-ARIMA predicts the demand from the historical data of the
customers’ data. If the real value data exceed the predicted values, then the overflow orders
are placed onto on-demand instances instead of reserved instances.

2. Short-term-long-term memory neural network: the network was trained using the input from

118 CHAPTER 6. AUTOMATIC PROFIT MODEL GENERATOR CLOUD BROKERAGE

Figure 6.19: (TOP) The graph shows profit function infer from the Gaussian process with correspondence
parameters (feature extracted from the data). (BOTTOM) A function realisation for a point prediction.

customers time series queries and inventory data with the optimal profit value.

3. The auto-generated model system: The proposed system utilises the feature extraction and
the additive noise model like method. The feature set is used as an input to the model
generator as candidates that could influence the profit. The hypothesis testing and additive
noise filter out the unrelated features and build a relation model from the accepted ones.

Comparing the effectiveness of the three broker systems, we show the utilisation of the inventory
and profit. The utilisation is not the main target of the system. However, it does reflex the
effectiveness of the decision making somewhat. The number of reserved instances vs utilisation
is shown in Figure 6.20. Overall, the total number of reserved instances in the auto-model is
slightly lower than the Auto-ARIMA. However, utilisation is considerably higher. The ANN, on
the other hand, employ more reserved instances. Difference strategies create different inventory
compositions. However, generally, the behaviour of the profit is similar with minor differences

6.6. RELATED WORKS & FUTURE DIRECTIONS 119

in values.

Figure 6.21 shows the raw profit comparison of the Auto-ARIMA, the short-term-long-term
memory artificial neural network, and the model generator. The blue line (model generator) is in
multiple periods higher than the other two solutions. In the big picture, the profit of the three
systems behaving similarly. This indicates that all of them are effective at managing the broker
inventory.

6.6 Related Works & Future Directions

The concept of creating a detailed description of a system using mathematical equations has
been one of the most important topics in science and engineering. However, the discussion of
methodologies behind the building blocks of the system is still rarely mentioned or mostly avoid
due to the nature of conjuring something out of thin air (data) without doing a confirmation
experiment is not popular among scientists. Nevertheless, the concept of building relationships
plays a vital role in understanding the development of the system.

Building a system of equations that try to understand the mechanics from existing data can
be useful in many fields of science (34). The additive noise model is one such algorithm
from a family of causal discovery methods which can identify and infer the underlying system
interaction. There are systems such as bio-diversity and the relation between predator and prey
which utilised the hypothesis testing to understand the interaction between predators and preys
(10). The group uses the inferring method of causality to discover inter-species interaction with
good performance comparing with the well-studied model. Additionally, in a related field of
cloud computing, performance anomaly detection can be improved using feature selection based
on causality mining. The causal discovery method attempts to identify the root cause of the
anomaly, which can be taken care of by the system (97). Another usage of the causality is to
utilising it as a feature selection method (127). Several feature selection algorithms are utilising
the causality that shows a better performance compared to the traditional methods. Lastly, the
additive noise model used in this chapter also provides a strong performance of causal structure
learning from time series, which is the data structure used in our system (118).

As for a cloud broker system, an approach to optimise the system using the additive noise
model is a novel approach. The usage of causality application stops at the inference and the
identification of causal data pairs. In this work, we have expanded the usage of the additive noise
model further to build a profit model. The model helps with the adjustment of the inventory that
benefits the profit of our broker system.

120 CHAPTER 6. AUTOMATIC PROFIT MODEL GENERATOR CLOUD BROKERAGE

Figure 6.20: (TOP) The short-term-long-term memory artificial neural network time series prediction
brokerage system result is shown. The solid red line is the number of reserved instance while the solid blue
line is the average reserved instance usage. (MID) The figure shows the number of reserved instances in
the broker inventory and average utilisation of the reserved instances with the Auto-ARIMA. (BOTTOM)
The result from the auto-model system shows overall lower number of reserved instances but higher
utilisation.

6.7. SUMMARY 121

Figure 6.21: The graph shows profit comparisons between the auto-model, Auto-ARIMA and the artificial
neural network system. Generally, the profit trend is going in the same direction as expected from all the
working algorithms. However, there are some areas in which the auto-model generate a higher level of
profit. While there are some areas that the other two systems that perform better. However, overall, the
auto-model can generate a higher profit level than the other two competing systems.

However, the automatic model generator brokerage, while showing a promising result, can still
be improved. The algorithm suffers similar flaws as traditional hypothesis testing, i.e. curse
of dimensional. Additionally, the feature extractions can be improved to represent the insight
characteristic of the data better, i.e. the cross over feature generator (61). A complex set of
features could provide the system with a better understanding of its behaviour.

6.7 Summary

Matching the size and configuration of the broker inventory is the most important aspect of
having a high-profit broker. However, achieving the said goal is not trivial. Since there could be
multiple factors that influence profit, in this chapter, we have proposed a resource management
system for a cloud broker based on the feature extraction process and the model generator from
the additive noise model. The critical component in the ANM identifies variables from the
feature extracted time series data that affect the broker’s profit in real-time. By establishing
these variables, the broker can adjust its inventory of multiple cloud instance types to suits the
incoming data. From the simulation, our cloud broker system was able to infer the underlying
interaction model between variables and achieves higher profit than the standard time series
regression (Auto-ARIMA) and short-term-long-term memory artificial neural network broker.

7CHAPTER SEVEN

FUTURE WORKS &
CONCLUSION

The development of the cloud broker is relatively new as the cloud market itself. Thus, there are
still many problems that have yet to be solved. The existence of the cloud brokerage system alone
solved many of the inherited problems of the cloud, i.e. performance, cost, simplicity. In this
work, we focus mainly on the broker inventory system, which deals directly with the cost of the
cloud. The decision-making system for the broker inventory influences the profit of the broker
directly. Getting the correct configuration of the inventory comes with many challenges. Two
approaches are proposed and evaluated using both synthetic data and cloud trace data. However,
several aspects can be improved, which will be discussed in this chapter.

7.1 Contributions

We discuss our major contributions in this work by considering the four components of our
hypothesis (section 1.5) and how we addressed the related challenges during the research and
development.

7.1.1 Risks in Cloud Brokerage Operation

The operation of a cloud brokerage service that employs reserved instances poses some risks.

HYP 1 - A bulk buying cloud broker operates under some risks from the uncertainty
of the user requirements. These risks can be managed by identification of the risk
factors and functional risk management.

123

124 CHAPTER 7. FUTURE WORKS & CONCLUSION

We have addressed the bulk buying hypothesis with risk factors and accompany decision functions.
From the evaluation in chapter 5, the decision-making from the risk factors reduces the effect of
uncertainty and, therefore, can produce a good profit level. Additionally, the risk level is allowed
to change depending on the cash-on-hand of the broker. This is to reduce the opportunity cost
that might happen.

Furthermore, the broker system utilised two sources of data. The benefit of using two sources
of data is that we get feedback from both sources. By getting feedback from both sources, the
broker does not have to rely solely on the prediction of the customers’ data and includes the state
of the broker inventory.

Additionally, the inclusion of the broker data helps with the inventory adjustment, which will be
discussed in the solutions in this thesis.

7.1.2 Hidden Parameters in Random Process

We have mentioned a random process in previous chapters. Randomness is one of the main
issues that we are trying to solve. From the hypothesis,

HYP 2 - A random process in a structural system contains hidden causal parameters
and relationships that can be inferred.

Within an organized system, we hypothesize that it is possible to infer relationships among some
parameters from seemingly random data. To test this hypothesis, we establish a fixed decision
function system within a broker framework. The data input into the system is generated using a
random walk model, which provides a robust simulation of pseudo-random movements, thereby
approximating real-life data dynamics.

By configuring the fixed-function system to utilize specific parameter values extracted from the
random input data as thresholds for decision-making, we investigate the potential to infer the
relationships of these parameters to the outcomes. The inference process employs the additive
noise model to ascertain whether the derived parameter values influence the decision outcomes
in a predictable manner, thus validating or refuting the hypothesis.

7.1.3 Behaviour of Parameters in The Brokerage System

After the work on the risk factors, we have developed a parameter identification system based on
the additive noise model. The main idea is to find confirmation on some of the risk assumptions,
i.e. higher remaining volume in the inventory poses more risk. In this system, the assumption is

7.1. CONTRIBUTIONS 125

inferred by the relations from the additive noise model causal discovery. Therefore, this allows
for the automatic model generator.

HYP 3 - In an optimal system, parameters behave under certain underlying relations.

In chapter 6, we have tested that under optimal setting, the additive noise model can select
parameters that we generate using the feature extraction process from both customers and broker
data. With the pair, if we make a change on one parameter, then the distribution of another
parameter also change. This behaviour is verified through a process called intervention. The
intervention is one of the verification methods of causality. We are not going too deep into the
true causality. We focus on the effect of the parameter relations in our system, which will be
used in the decision-making process of our brokerage system.

7.1.4 Decision System For Cloud Broker Inventory

The decision system for our brokerage system is built upon the extracted parameters from both
sources of data. From the hypothesis,

HYP 4 - We can use the behaviour of the parameters to build a decision system for
the cloud broker inventory.

We developed decision systems for cloud broker inventory management based on models of
parameter behavior. These systems were devised from two distinct approaches: a risk-based
model and an auto-model generator. The risk-based model relies on a human-curated list of
risk factors, whereas the auto-model generator employs inferred relationships derived from the
additive noise model. Both systems are predicated on the assumption that changes in parameters
can significantly influence profit behavior.

In the risk-based approach, profit is influenced by adjustments to the inventory composition,
guided by identified risk factors. This adjustment directly impacts the profit levels. Conversely,
in the auto-model approach, the relationships between extracted parameters and profit are
determined through the additive noise model. The cascading effect of this model enables the
system to deduce relationships from selected parameters to inventory composition and from
inventory numbers to profit. Consequently, this model informs decisions about which cloud
instances should be added to the inventory, adhering to the parameter-to-profit relationships
initially inferred.

126 CHAPTER 7. FUTURE WORKS & CONCLUSION

Our evaluations, detailed in Chapters 5 and 6, confirm the effectiveness of both approaches.
The findings indicate that we have successfully validated our hypothesis, demonstrating that
parameter behavior can indeed be harnessed to construct a decision-making framework for cloud
broker inventory management.

7.2 Cloud Brokerage System Research & Future Work

The specific future direction of each proposed solution has already been discussed in chapter 5
and 6. This section is dedicated to the direction and future work of cloud brokerage systems in
general.

Up until here, the work has been focused on the broker inventory and the management of
cloud instances. This area relates closely to the performance aspect of the cloud. After all, a
performance indicator is one of the quantifying factors of a value of a computer. Thus, a good
starting point of future work can be found in a cloud performance-related topic.

7.2.1 Performance Related Cloud Brokerage System

It is easy to see that the performance is the best way to quantify the value of cloud instances or
any computers, i.e. faster and cheaper is most likely have a better value. However, quantifying
the performance of a cloud instance is complex. As of recently, general computing power
measurements are done through a general benchmark suite where it tests multiple aspects of
computer calculation power. The final score is calculated from the weighted performance of each
curated task. All of the tasks, weights, and scales are decided by the developer of the benchmark
suite. Therefore, there is always going to be an argument on the method. Furthermore, specialised
workloads and specialised cloud instances are seeing more traction as of late. Special hardware
for machine learning acceleration, for example, cannot be measured using traditional methods.
Thus, the benchmark suite has to keep up with the change and update the tests. The update
makes the old benchmark score obsolete and cannot be referenced. Additionally, benchmark
score is not the sole indicator of how well the application would run on a computer. To solve the
issue, cloud users could perform a cloud workload characteristic mapping (126; 107).

From Figure 7.1, many of the broker components are subject of an active ongoing research.
Starting with the cloud application itself, the characteristic of an application, if not specified by
the customer, is challenging to model after without a test run. At this stage, a broker can employ
a testing instance that test runs the application while capturing the characteristic in real-time
since monitoring and data collection is a routine procedure of system administrators to keep an

7.2. CLOUD BROKERAGE SYSTEM RESEARCH & FUTURE WORK 127

Testing instance Performance
capture

Cloud instances

Cloud inventory data

Cloud
inventory

DB

Performance
characteristic

Deploy

Cloud
application

Searching

Real deployment
instance

Cloud instances

Cloud
providers

Cloud queries

Inventory
optimisor

Figure 7.1: A map of cloud brokerage components

operation running smoothly. If the monitoring data and cloud characteristics can be matched up,
choosing the right cloud should be easier.

Another main component that we can use to improve the work in this thesis is the cloud inventory
database. The cloud inventory database collects and records the performance and crucially
characteristics of cloud instances. The database helps select the right cloud for the job and
interchange one cloud instance for another if necessary. For example, if cloud instance 1 is
occupied, but there is a performance equivalent slot on a bigger cloud instance available, then
it can be used as a substitution without altering the cloud experience on the customer’s end.
The swappable property gives flexibility to the decision-making process of the system. For
example, if the broker knows that cloud instance A1 from Amazon perform close to the instances
small from Microsoft Azure but cheaper, then these two are interchangeable. On the other hand,
with the possibility of instance sharing, i.e. one instance hosts more than one customer virtual
machine image, bigger quantified instances are equivalent to multiple smaller instances. Again,
this further gives the system more choice and opportunity to reduce cost and make more profit.

7.2.2 Matching Application Characteristics

After creating the cloud application testing instance and cloud inventory performance database,
the broker needs to match the application with the right cloud instance for the best performance.

From Figure 7.2, cloud applications perform differently depending on the specification
requirements. For example, some applications scale well with multi-core cloud instances,

128 CHAPTER 7. FUTURE WORKS & CONCLUSION

Cloud application
Application

characteristic
capture

Performance
characteristics

Chrt_1

Chrt_2
Cloud

inventory
DB

Cloud instance
A

Cloud instance
performance

capture

Search and match

Cloud instance

Cloud instance
B

Figure 7.2: The diagram shows a performance matching workflow and components. Cloud applications
and cloud instances go through a similar key feature capturing process. After that, the matching algorithm
between cloud application characteristics and cloud instance performance from the database takes over.
The result is the best cloud instance for the application.

but some perform well with high capacity memory. These characteristics need to be defined, and
measured (75).

The method of measurements is one of the active research areas. This includes monitoring, stress
testing etc. (37; 88). These characteristics data from the measurement should benefit choosing
the right cloud instance.

Cloud instance performance characteristics are more complex than the straightforward perfor-
mance specifications typically advertised for computers, such as CPU and memory capacities.
Unlike physical hardware, cloud providers often list these specifications in the form of virtual
specifications. This distinction means that direct comparisons between different providers or
even different instance types are not feasible, as the virtual specifications do not correspond
directly to physical hardware capabilities.

A standardized performance indicator becomes crucial in this context. Such an indicator would

7.2. CLOUD BROKERAGE SYSTEM RESEARCH & FUTURE WORK 129

greatly benefit cloud customers by providing a clear and consistent basis for comparing cloud
instances across different providers. This standardization would simplify the decision-making
process for customers shopping for cloud instances, enabling them to make more informed
choices based on comparable performance metrics.

7.2.3 Optimisation of Broker Inventory

The principal focus of this research is the optimisation of broker inventory, particularly within
the context of varying pricing schemes for cloud instances. This study proposes two distinct
methodologies for addressing inventory optimisation. The first method, a risk-based system,
employs predefined risk factors to facilitate decision-making. The second method involves an
additive noise model broker that utilises a causal discovery process to generate and select decision
models. Both approaches yield favourable outcomes; the risk-based system is independent of
data, whereas the auto-model generator depends on data. The latter has the capability to adjust
its model in response to new data. Theoretically, once the broker has processed sufficient
data, it may attain data independence. Valid models can be archived within a model bank and
subsequently retrieved for use under appropriate conditions.

The selection of previously applied models and their associated variables necessitates a model
storage and selection method, as illustrated in Figure 7.3. This additional layer can be integrated
into the system to enable the application of a previously stored model to a recurring pattern
of input data. Furthermore, both optimisation and Gaussian processes are known for their
computational demands. Enhancements in these areas would significantly expedite the selection
process, particularly in scenarios requiring frequent decision-making.

It is pertinent to note that the model bank bears resemblance to a deep learning model, where an
increased number of neurons facilitates the learning and storage of a greater variety of solutions.
However, the scalability of training in a model bank is limited. The auto-model generator is
trained using a predetermined number of data points to identify a single valid model, whereas
a deep learning network iteratively adjusts until it determines the optimal model capable of
classifying ’n’ patterns.

As the terminology suggests, the model selector is an algorithm specifically devised to choose
an appropriate model from the storage for use by the broker. The criteria for model selection
can vary; however, the core principle involves aligning the characteristics of the application data
with the intended outcome.

In summary, a critical component of cloud brokerage aimed at profit generation involves
amalgamating the aforementioned steps with an effective decision-making or optimisation

130 CHAPTER 7. FUTURE WORKS & CONCLUSION

Model generator

Model A

Model
bank

Model B

Analyse

Cloud time series
data

Model selector

ordering

Model _

Cloud instance

Figure 7.3: Causal discovery methods are used to infer relationships and causal parameters from a dataset.
Should the population (or its distribution) undergo changes, the inferred data may become outdated. To
address this, a causal model storage system is implemented. This system archives models so that they can
be retrieved and reused when similar data patterns are encountered in the future.

process to forge a comprehensive broker system.

Causality and System Modelling

Causality is a longstanding concept extensively explored and employed in scientific research.
A key utility of causality is in identifying the causes behind observed effects or outcomes
within experiments. In contemporary applications, causality techniques are deployed to decipher
complex systems. For instance, business-related data often leverages causal discovery methods
to enhance system efficiency, as highlighted in existing literature (20). In the context of a
well-structured system like a cloud broker, the application of causality can be extended to various
processes, such as the queuing of queries or in areas adversely impacting user experience, such

7.3. CONCLUSION 131

as the time taken to initialize a virtual machine. By accurately identifying the underlying causes,
cloud brokers or providers can significantly improve user experiences by mitigating delays.

7.2.4 Additional Research Domains in Cloud Brokerage Systems

There are several burgeoning areas within the realm of cloud brokerage systems that merit further
exploration:

Security is paramount, particularly in cloud computing where customers often store sensitive
information remotely. Physical security is a notable advantage of cloud computing, as data centers
maintain rigorous protection standards. Conversely, software security remains a significant
concern for cloud clients (102). Given that cloud computing environments typically accommodate
multiple tenants in shared physical spaces, ensuring secure isolation of tenant domains is
imperative.

Service Level Agreements (SLAs) are critical clauses that cloud providers are obligated to
honor with their customers. These agreements are designed to ensure satisfactory service across
all aspects of cloud operations. Brokers, assuming the role of cloud providers, are also required
to uphold these SLAs. This responsibility is challenging since brokers often do not control
the underlying cloud infrastructure. Although SLAs do not directly correlate with a broker’s
profitability, there is potential to optimize profits based on service quality within an e-commerce
framework (78). Strategies such as employing queuing theory and fixed-point optimization can
be advantageous for the cost model.

Furthermore, brokers can leverage SLA negotiation tools to transfer any discounts or compensa-
tion for disruptions from the providers to the customers (124). Numerous approaches exist that
address SLAs, potentially enhancing the service quality of the brokerage system.

User Interface and API: The interface is the initial point of interaction between cloud customers
and brokerage services. Currently, only commercial brokers offer user-friendly, web-based
interfaces. The focus has predominantly been on the backend functionalities of brokers. However,
enhancing user accessibility remains a critical area for development. Features such as a high-level
display of performance metrics and pricing are essential to improving user experience and should
be integrated into brokerage services.

7.3 Conclusion

Research into cloud brokerage systems is both multifaceted and intricate. This work has
extensively explored the potential of employing cloud brokers as comprehensive service providers

132 CHAPTER 7. FUTURE WORKS & CONCLUSION

for cloud customers. Through bulk purchasing, brokers offer customers the flexibility of on-
demand cloud services at reduced costs. Moreover, by managing multiple cloud instances,
brokers can ensure a certain level of performance, enhancing user experience as discussed in
Chapter 4 and supported by (105). This model not only helps familiarize customers with cloud
services but also contributes to the growth of the user base, ultimately benefiting the entire
industry.

Our approach utilizes an inventory-based broker model, primarily focusing on reserved instances
as the primary product. These instances, secured through long-term contracts of one to three
years, offer a more cost-effective solution compared to on-demand options due to their lower
price per unit of time. The broker system is tasked with accurately forecasting demand to
optimize the number of reserved instances purchased for profitability. Additionally, to minimize
the idle time of reserved instances, our broker strategically incorporates on-demand instances
into the inventory.

The decision-making process for selecting specific cloud instances employs various techniques
aimed at optimizing profitability. However, predictions are crucial as they inform the optimization
process. We observed that mere predictions are insufficient for profitability due to potential
overestimations and underestimations, particularly when predictions deviate significantly from
the training data.

To address these challenges, we proposed two innovative solutions. The first, a risk-based
solution, employs predefined risk factors and corresponding decision functions to manage the
cloud inventory. This model simulates one-to-one deployment—matching one customer query
to one inventory instance. It strategically adjusts risk exposure based on the broker’s financial
position, showing promising profitability in simulations using the Alibaba dataset. Despite its
effectiveness, this system has limitations, including the manual selection of risk factors and
constraints in broker model configuration.

The second solution, an automatic profit model generator, is inspired by causal inference. It
identifies relevant parameters that influence profitability and generates a corresponding model.
This system offers greater flexibility than the risk-based solution but still relies on the availability
of comprehensive customer data. For optimal performance, it requires extensive data to learn
various potential models, which may not always be readily available.

In conclusion, this study presents novel methods for making informed inventory decisions aimed
at profit optimization in cloud brokerage. By developing and testing two distinct models, we
have demonstrated that it is possible to effectively manage the uncertainties inherent in cloud
services, a challenge common to various sectors such as stock trading and airline ticket pricing.

7.3. CONCLUSION 133

Our mathematical models provide a deeper understanding of complex systems, and with further
research, they could be adapted to address a broader spectrum of challenges across different
industries.

REFERENCES

[1] Announcing amazon elastic compute cloud amazon ec2, 2006.

[2] A. Agrawal, C. Catalini, and A. Goldfarb, Some simple economics of crowdfunding,
Innovation policy and the economy, 14 (2014), pp. 63–97.

[3] F. Allen and R. Karjalainen, Using genetic algorithms to find technical trading rules,
Journal of financial Economics, 51 (1999), pp. 245–271.

[4] S. Ambike, D. Bhansali, J. Kshirsagar, and J. Bansiwal, An optimistic differentiated job
scheduling system for cloud computing, in International journal of engineering research
and application, Mar. 2012.

[5] A. Anwar, Y. Cheng, and A. R. Butt, Towards managing variability in the cloud, in 2016
IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW),
IEEE, 2016, pp. 1081–1084.

[6] N. Arinaminpathy, S. Kapadia, and R. M. May, Size and complexity in model financial
systems, Proceedings of the National Academy of Sciences, 109 (2012), pp. 18338–18343.

[7] V. Arutyunov, Cloud computing: Its history of development, modern state, and future
considerations, Scientific and Technical Information Processing, 39 (2012), pp. 173–178.

[8] K. Assaad, E. Devijver, E. Gaussier, and A. Ait-Bachir, Scaling causal inference in
additive noise models, in The 2019 ACM SIGKDD Workshop on Causal Discovery,
PMLR, 2019, pp. 22–33.

[9] A. Barker, B. Varghese, J. S. Ward, and I. Sommerville, Academic cloud computing
research: Five pitfalls and five opportunities, in 6th {USENIX} HotCloud 14, 2014.

[10] F. Barraquand, C. Picoche, M. Detto, and F. Hartig, Inferring species interactions using
granger causality and convergent cross mapping, Theoretical Ecology, (2020), pp. 1–19.

135

136 REFERENCES

[11] F. Bellas and R. J. Duro, Introducing long term memory in an ann based multilevel
darwinist brain, in International Work-Conference on Artificial Neural Networks, Springer,
2003, pp. 590–597.

[12] D. Bernstein, Containers and cloud: From LXC to docker to kubernetes, IEEE Cloud
Computing, 1 (2014), pp. 81–84.

[13] J. Bley and M. Saad, An analysis of technical trading rules: The case of mena markets,
Finance Research Letters, 33 (2020), p. 101182.

[14] M. Bunge, Causality and modern science, Routledge, 2017.

[15] R. Cai, J. Qiao, K. Zhang, Z. Zhang, and Z. Hao, Causal discovery with cascade nonlinear
additive noise models, arXiv preprint arXiv:1905.09442, (2019).

[16] M. Campbell-Kelly and D. D. Garcia-Swartz, Economic perspectives on the history of the
computer time-sharing industry, 1965-1985, IEEE Annals of the History of Computing,
30 (2008), pp. 16–36.

[17] J. Cao, K. Hwang, K. Li, and A. Y. Zomaya, Optimal multiserver configuration for profit
maximization in cloud computing, ieee transactions on parallel and distributed systems,
24 (2012), pp. 1087–1096.

[18] M. Carroll, P. Kotzé, and A. Van Der Merwe, Securing virtual and cloud environments,
in International Conference on Cloud Computing and Services Science, Springer, 2011,
pp. 73–90.

[19] S. Chaisiri, B. sung Lee, and D. Niyato, Optimization of resource provisioning cost in
cloud computing, IEEE TSC, 5 (2012), pp. 164–177.

[20] S. Chalyi, I. Levykin, A. Petrychenko, and I. Bogatov, Causality-based model checking
in business process management tasks, in 2018 IEEE 9th International Conference on
Dependable Systems, Services and Technologies (DESSERT), IEEE, 2018, pp. 453–458.

[21] G. Chandrashekar and F. Sahin, A survey on feature selection methods, Computers &
Electrical Engineering, 40 (2014), pp. 16–28.

[22] Y. Chen and X. Wang, A hybrid stock trading system using genetic network programming
and mean conditional value-at-risk, European Journal of Operational Research, 240
(2015), pp. 861–871.

[23] I.-H. Cheng and W. Xiong, Financialization of commodity markets, Annu. Rev. Financ.
Econ., 6 (2014), pp. 419–441.

REFERENCES 137

[24] M. Christ, N. Braun, J. Neuffer, and A. W. Kempa-Liehr, Time series feature extraction
on basis of scalable hypothesis tests (tsfresh–a python package), Neurocomputing, 307
(2018), pp. 72–77.

[25] C. Y. Chung, S. Kang, and D. Ryu, Does institutional monitoring matter? Evidence
from insider trading by information risk level, Investment Analysts Journal, 47 (2018),
pp. 48–64.

[26] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears, Benchmarking
cloud serving systems with YCSB, in Proceedings of the 1st ACM symposium on Cloud
computing, 2010, pp. 143–154.

[27] D. J. Daly and D. J. Daly, Economics 2: Ec2.

[28] A. K. Das, T. A. M. A. Razzaque, E. J. Cho, and C. S. Hong, A QoS and profit aware cloud
confederation model for IaaS service providers, in Proceedings of the 8th international
conferences on ubiquitous information management and communication, Jan. 2014.

[29] Y. Deng, S. Shen, Z. Huang, A. Iosup, and R. Lau, Dynamic resource management in cloud-
based distributed virtual environments, in Proceedings of the 22nd ACM international
conference on Multimedia, 2014, pp. 1209–1212.

[30] C. L. Devasena et al., Impact study of cloud computing on business development,
Operations Research and Applications: An International Journal (ORAJ), 1 (2014),
pp. 1–7.

[31] P. R. Dickson and J. L. Ginter, Market segmentation, product differentiation, and marketing
strategy, Journal of marketing, 51 (1987), pp. 1–10.

[32] J. Du, R. Liu, and R. R. Issa, BIM cloud score: benchmarking BIM performance, Journal
of Construction Engineering and Management, 140 (2014), p. 04014054.

[33] A. Elhabbash, F. Samreen, J. Hadley, and Y. Elkhatib, Cloud brokerage: A systematic
survey, ACM Computing Surveys (CSUR), 51 (2019), pp. 1–28.

[34] J. Elinger, Information Theoretic Causality Measures For Parameter Estimation and
System Identification, PhD thesis, Georgia Institute of Technology, 2020.

[35] E. Erkko, Broker-dealer risk appetite and commodity returns, Journal of financial
econometrics, 11 (2013), pp. 486–521.

138 REFERENCES

[36] A. Esfahanipour and S. Mousavi, A genetic programming model to generate risk-adjusted
technical trading rules in stock markets, Expert Systems with Applications, 38 (2011),
pp. 8438–8445.

[37] K. Fatema, V. C. Emeakaroha, P. D. Healy, J. P. Morrison, and T. Lynn, A survey of
cloud monitoring tools: Taxonomy, capabilities and objectives, Journal of Parallel and
Distributed Computing, 74 (2014), pp. 2918–2933.

[38] F. Faul, E. Erdfelder, A. Buchner, and A.-G. Lang, Statistical power analyses using g*
power 3.1: Tests for correlation and regression analyses, Behavior research methods, 41
(2009), pp. 1149–1160.

[39] A. J. Ferrer, F. Hernández, J. Tordsson, E. Elmroth, A. Ali-Eldin, C. Zsigri, R. Sirvent,
J. Guitart, R. M. Badia, K. Djemame, et al., Optimis: A holistic approach to cloud service
provisioning, Future Generation Computer Systems, 28 (2012), pp. 66–77.

[40] N. Ferrier and C. E. Haque, Hazards risk assessment methodology for emergency
managers: A standardized framework for application, Natural hazards, 28 (2003), pp. 271–
290.

[41] N. Ferry, H. Song, A. Rossini, F. Chauvel, and A. Solberg, Cloudmf: applying MDE
to tame the complexity of managing multi-cloud applications, in 2014 IEEE/ACM 7th
International Conference on Utility and Cloud Computing, IEEE, 2014, pp. 269–277.

[42] J. A. Fonollosa, Conditional distribution variability measures for causality detection, in
Cause Effect Pairs in Machine Learning, Springer, 2019, pp. 339–347.

[43] D. Franceschelli, D. Ardagna, M. Ciavotta, and E. Di Nitto, Space4cloud: A tool for
system performance and costevaluation of cloud systems, in Proceedings of the 2013
international workshop on Multi-cloud applications and federated clouds, 2013, pp. 27–34.

[44] S. K. Garg, S. Versteeg, and R. Buyya, Smicloud: A framework for comparing and
ranking cloud services, in 2011 Fourth IEEE International Conference on Utility and
Cloud Computing, IEEE, 2011, pp. 210–218.

[45] C. Glymour, K. Zhang, and P. Spirtes, Review of causal discovery methods based on
graphical models, Frontiers in genetics, 10 (2019), p. 524.

[46] O. Goudet, D. Kalainathan, P. Caillou, I. Guyon, D. Lopez-Paz, and M. Sebag, Learning
functional causal models with generative neural networks, in Explainable and Interpretable
Models in Computer Vision and Machine Learning, Springer, 2018, pp. 39–80.

REFERENCES 139

[47] A. Gretton, K. Fukumizu, C. H. Teo, L. Song, B. Schölkopf, and A. J. Smola, A kernel
statistical test of independence, in Advances in neural information processing systems,
2008, pp. 585–592.

[48] P. Gupta, A. Seetharaman, and J. R. Raj, The usage and adoption of cloud computing
by small and medium businesses, International journal of information management, 33
(2013), pp. 861–874.

[49] Y. Hagmayer, S. A. Sloman, D. A. Lagnado, and M. R. Waldmann, Causal reasoning
through intervention, Causal learning: Psychology, philosophy, and computation, (2007),
pp. 86–100.

[50] J. D. Hamilton, Time series analysis, vol. 2, Princeton New Jersey, 1994.

[51] A. Harvey, Time series forecasting based on the logistic curve, Journal of the Operational
Research Society, 35 (1984), pp. 641–646.

[52] J. L. Henning, Spec cpu2006 benchmark descriptions, ACM SIGARCH Computer
Architecture News, 34 (2006), pp. 1–17.

[53] B. Hirchoua, B. Ouhbi, and B. Frikh, Deep reinforcement learning based trading agents:
Risk curiosity driven learning for financial rules-based policy, Expert Systems with
Applications, 170 (2021), p. 114553.

[54] S. L. Ho and M. Xie, The use of ARIMA models for reliability forecasting and analysis,
Computers & industrial engineering, 35 (1998), pp. 213–216.

[55] P. O. Hoyer, D. Janzing, J. M. Mooij, J. Peters, and B. Schölkopf, Nonlinear causal
discovery with additive noise models, in Advances in neural information processing
systems, 2009, pp. 689–696.

[56] N. Huber, M. von Quast, M. Hauck, and S. Kounev, Evaluating and modeling virtualiza-
tion performance overhead for cloud environments, CLOSER, 11 (2011), pp. 563–573.

[57] L. N. Hyseni and A. Ibrahimi, Comparison of the cloud computing platforms provided by
Amazon and Google, in 2017 Computing Conference, IEEE, 2017, pp. 236–243.

[58] A. Iosup, R. Prodan, and D. Epema, IaaS cloud benchmarking: approaches, challenges,
and experience, in Cloud Computing for Data-Intensive Applications, Springer, 2014,
pp. 83–104.

140 REFERENCES

[59] I. Jacobs, L.-N. Lee, A. Viterbi, R. Binder, R. Bressler, N.-T. Hsu, and R. Weissler,
CPODA-a demand assignment protocol for SATNET, in Proceedings of the fifth sympo-
sium on Data communications, 1977, pp. 2–5.

[60] R. D. Jones, Y.-C. Lee, C. Barnes, G. W. Flake, K. Lee, P. Lewis, and S. Qian,
Function approximation and time series prediction with neural networks, in 1990 IJCNN
International Joint Conference on Neural Networks, IEEE, 1990, pp. 649–665.

[61] J. M. Kanter and K. Veeramachaneni, Deep feature synthesis: Towards automating data
science endeavors, in 2015 IEEE International Conference on Data Science and Advanced
Analytics (DSAA), IEEE, 2015, pp. 1–10.

[62] T. Kayhan, T. Kayhan, and E. Yarbaşi, Profit management in the case of financial distress
and global volatile market behaviour: Evidence from borsa istanbul stock exchange,
Theoretical & Applied Economics, 26 (2019).

[63] I. M. Keseler, A. Mackie, M. Peralta-Gil, A. Santos-Zavaleta, S. Gama-Castro,
C. Bonavides-Martínez, C. Fulcher, A. M. Huerta, A. Kothari, M. Krummenacker, et al.,
Ecocyc: fusing model organism databases with systems biology, Nucleic acids research,
41 (2013), pp. D605–D612.

[64] S. Khalid, T. Khalil, and S. Nasreen, A survey of feature selection and feature extraction
techniques in machine learning, in 2014 science and information conference, IEEE, 2014,
pp. 372–378.

[65] A. Khayer, M. S. Talukder, Y. Bao, and M. N. Hossain, Cloud computing adoption and its
impact on SMEs’ performance for cloud supported operations: A dual-stage analytical
approach, Technology in Society, 60 (2020), p. 101225.

[66] K. S. Killourhy and R. A. Maxion, Comparing anomaly-detection algorithms for keystroke
dynamics, in 2009 IEEE/IFIP International Conference on Dependable Systems &
Networks, IEEE, 2009, pp. 125–134.

[67] K. Kira and L. A. Rendell, A practical approach to feature selection, in Machine learning
proceedings 1992, Elsevier, 1992, pp. 249–256.

[68] A. Klinke and O. Renn, A new approach to risk evaluation and management: Risk-based,
precaution-based, and discourse-based strategies 1, Risk Analysis: An International
Journal, 22 (2002), pp. 1071–1094.

REFERENCES 141

[69] S. Kpotufe, E. Sgouritsa, D. Janzing, and B. Schölkopf, Consistency of causal inference
under the additive noise model, in International Conference on Machine Learning, PMLR,
2014, pp. 478–486.

[70] C. Laaber, J. Scheuner, and P. Leitner, Software microbenchmarking in the cloud. How
bad is it really?, Empirical Software Engineering, 24 (2019), pp. 2469–2508.

[71] C. Lee and D. A. Landgrebe, Feature extraction based on decision boundaries, IEEE
Transactions on Pattern Analysis and Machine Intelligence, 15 (1993), pp. 388–400.

[72] A. Lee-Post and R. Pakath, Cloud computing: a comprehensive introduction, in Security,
Trust, and Regulatory Aspects of Cloud Computing in Business Environments, IGI Global,
2014, pp. 1–23.

[73] P. Leitner and J. Cito, Patterns in the chaos—a study of performance variation and
predictability in public IaaS clouds, ACM Transactions on Internet Technology (TOIT),
16 (2016), pp. 1–23.

[74] A. Li, X. Zong, S. Kandula, X. Yang, and M. Zhang, Cloudprophet: towards application
performance prediction in cloud, ACM SIGCOMM Computer Communication Review,
41 (2011), pp. 426–427.

[75] X. Li, X. Li, Y. Tan, H. Zhu, and S. Tan, Multi-resource workload mapping with minimum
cost in cloud environment, Concurrency and Computation: Practice and Experience, 31
(2019), p. e5167.

[76] Z. Li, M. Kihl, Q. Lu, and J. A. Andersson, Performance overhead comparison between
hypervisor and container based virtualization, in 2017 IEEE 31st International Conference
on Advanced Information Networking and Applications (AINA), IEEE, 2017, pp. 955–
962.

[77] D. Lin, A. C. Squicciarini, V. N. Dondapati, and S. Sundareswaran, A cloud brokerage ar-
chitecture for efficient cloud service selection, IEEE Transactions on Services Computing,
12 (2016), pp. 144–157.

[78] Z. Liu, M. S. Squillante, and J. L. Wolf, On maximizing service-level-agreement profits,
in Proceedings of the 3rd ACM conference on Electronic Commerce, 2001, pp. 213–223.

[79] S. N. Luko, Risk management terminology, Quality Engineering, 25 (2013), pp. 292–297.

142 REFERENCES

[80] M. Lungarella, K. Ishiguro, Y. Kuniyoshi, and N. Otsu, Methods for quantifying the causal
structure of bivariate time series, International journal of bifurcation and chaos, 17 (2007),
pp. 903–921.

[81] S. Luo, Z. Lin, X. Chen, Z. Yang, and J. Chen, Virtualization security for cloud computing
service, in 2011 International Conference on Cloud and Service Computing, IEEE, 2011,
pp. 174–179.

[82] X. Ma, Z. Tao, Y. Wang, H. Yu, and Y. Wang, Long short-term memory neural network
for traffic speed prediction using remote microwave sensor data, Transportation Research
Part C: Emerging Technologies, 54 (2015), pp. 187–197.

[83] A. Maydeu-Olivares, D. Shi, and A. J. Fairchild, Estimating causal effects in linear
regression models with observational data: The instrumental variables regression model,
Psychological methods, 25 (2020), p. 243.

[84] J. Mei, K. Li, A. Ouyang, and K. Li, A profit maximization scheme with guaranteed
quality of service in cloud computing, IEEE Transactions on Computers, 64 (2015),
pp. 3064–3078.

[85] J. Mei, K. Li, Z. Tong, Q. Li, and K. Li, Profit maximization for cloud brokers in cloud
computing, IEEE TPDS, (2018).

[86] P. Mell, T. Grance, et al., The NIST definition of cloud computing, (2011).

[87] N. Moniz, P. Branco, and L. Torgo, Resampling strategies for imbalanced time series
forecasting, International Journal of Data Science and Analytics, 3 (2017), pp. 161–181.

[88] J. Montes, A. Sánchez, B. Memishi, M. S. Pérez, and G. Antoniu, Gmone: A complete
approach to cloud monitoring, Future Generation Computer Systems, 29 (2013), pp. 2026–
2040.

[89] R. Nemani, The journey from computer time-sharing to cloud computing: A literature
review, International Journal of Computer Science Engineering & Technology, 1 (2011).

[90] NIST Cloud Computing Security Working Group, Nist cloud computing security reference
architecture, tech. rep., National Institute of Standards and Technology, 2013.

[91] Paper Resource Webpage, Alibaba cluster data, 2017.

[92] P. Pawluk, B. Simmons, M. Smit, M. Litoiu, and S. Mankovski, Introducing stratos: A
cloud broker service, in 2012 IEEE fifth international conference on cloud computing,
IEEE, 2012, pp. 891–898.

REFERENCES 143

[93] J. Pearl, Causality, Cambridge university press, 2009.

[94] J. Pearl and D. Mackenzie, The book of why: the new science of cause and effect, Basic
books, 2018.

[95] M. J. D. Powell, Restart procedures for the conjugate gradient method, Mathematical
programming, 12 (1977), pp. 241–254.

[96] S. Pravilovic, A. Appice, and D. Malerba, Integrating cluster analysis to the arima
model for forecasting geosensor data, in International Symposium on Methodologies for
Intelligent Systems, Springer, 2014, pp. 234–243.

[97] J. Qiu, Q. Du, K. Yin, S.-L. Zhang, and C. Qian, A causality mining and knowledge graph
based method of root cause diagnosis for performance anomaly in cloud applications,
Applied Sciences, 10 (2020), p. 2166.

[98] M. M. Rahman, R. Thulasiram, and P. Graham, Differential time-shared virtual machine
multiplexing for handling QoS variation in clouds, in Proceedings of the 1st ACM
multimedia international workshop on Cloud-based multimedia applications and services
for e-health, 2012, pp. 3–8.

[99] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch, Heterogeneity and
dynamicity of clouds at scale: Google trace analysis, in Proceedings of the third ACM
symposium on cloud computing, 2012, pp. 1–13.

[100] O. Roger and D. Cliff, A finance brokerage model for cloud computing, JoCCASA., 1
(2012).

[101] M. Silva, M. R. Hines, D. Gallo, Q. Liu, K. D. Ryu, and D. Da Silva, Cloudbench:
Experiment automation for cloud environments, in 2013 IEEE International Conference
on Cloud Engineering (IC2E), IEEE, 2013, pp. 302–311.

[102] A. Singh and K. Chatterjee, Cloud security issues and challenges: A survey, Journal of
Network and Computer Applications, 79 (2017), pp. 88–115.

[103] P. J. Smith, A. Firag, P. A. Dmochowski, and M. Shafi, Analysis of the M/M/N/N queue
with two types of arrival process: applications to future mobile radio systems, Journal of
Applied Mathematics, 2012 (2012).

[104] W. R. Smith, Product differentiation and market segmentation as alternative marketing
strategies, Journal of marketing, 21 (1956), pp. 3–8.

144 REFERENCES

[105] S. Son, G. Jung, and S. C. Jun, An sla-based cloud computing that facilitates resource allo-
cation in the distributed data centers of a cloud provider, The Journal of Supercomputing,
64 (2013), pp. 606–637.

[106] P. Spirtes and K. Zhang, Causal discovery and inference: concepts and recent method-
ological advances, in Applied informatics, vol. 3, Springer, 2016, p. 3.

[107] A. N. Tantawi, Solution biasing for optimized cloud workload placement, in 2016 IEEE
International Conference on Autonomic Computing (ICAC), IEEE, 2016, pp. 105–110.

[108] A. Thomann, Appendix to’is trading indicator performance robust? Evidence from
semi-parametric scenario building’, Evidence from Semi-Parametric Scenario Build-
ing’(January 2, 2019), (2019).

[109] J. N. Tsitsiklis and B. Van Roy, Analysis of temporal-diffference learning with function
approximation, in Advances in neural information processing systems, 1997, pp. 1075–
1081.

[110] Z. ur Rehman, F. K. Hussain, and O. K. Hussain, Towards multi-criteria cloud service
selection, in 2011 fifth international conference on innovative mobile and internet services
in ubiquitous computing, Ieee, 2011, pp. 44–48.

[111] B. Varghese, O. Akgun, I. Miguel, L. Thai, and A. Barker, Cloud benchmarking for
performance, in 2014 IEEE 6th International Conference on Cloud Computing Technology
and Science, IEEE, 2014, pp. 535–540.

[112] T. Velte, A. Velte, and R. Elsenpeter, Cloud computing, a practical approach, McGraw-
Hill, Inc., 2009.

[113] J. Vrijling, W. Van Hengel, and R. Houben, A framework for risk evaluation, Journal of
hazardous materials, 43 (1995), pp. 245–261.

[114] S. S. Wagle, M. Guzek, P. Bouvry, and R. Bisdorff, An evaluation model for selecting cloud
services from commercially available cloud providers, in 2015 IEEE 7th International
Conference on Cloud Computing Technology and Science (CloudCom), IEEE, 2015,
pp. 107–114.

[115] X. Wang, S. Wu, K. Wang, S. Di, H. Jin, K. Yang, and S. Ou, Maximizing the profit of
cloud broker with priority aware pricing, in 2017 IEEE 23rd International Conference on
Parallel and Distributed Systems (ICPADS), IEEE, 2017, pp. 511–518.

REFERENCES 145

[116] Wang W and Niu D and Li B and Liang B, Dynamic cloud resource reservation via cloud
brokerage, in 2013 IEEE 33rd ICDCS, 2013.

[117] W. W. Wei, Time series analysis, in The Oxford Handbook of Quantitative Methods in
Psychology: Vol. 2, 2006.

[118] S. Weichwald, M. E. Jakobsen, P. B. Mogensen, L. Petersen, N. Thams, and G. Varando,
Causal structure learning from time series: Large regression coefficients may predict
causal links better in practice than small p-values, in NeurIPS 2019 Competition and
Demonstration Track, PMLR, 2020, pp. 27–36.

[119] A. S. Weigend, Time series prediction: forecasting the future and understanding the past,
Routledge, 2018.

[120] J. E. White, Rfc0105: Network specifications for remote job entry and remote job output
retrieval at ucsb, 1971.

[121] P. J. Williamson, Cost innovation: preparing for a ‘value-for-money’revolution, Long
Range Planning, 43 (2010), pp. 343–353.

[122] S. Xi, C. Li, C. Lu, C. D. Gill, M. Xu, L. T. Phan, I. Lee, and O. Sokolsky, RT-Open stack:
CPU resource management for real-time cloud computing, in 2015 IEEE 8th International
Conference on Cloud Computing, IEEE, 2015, pp. 179–186.

[123] J. Xiao and Z. Want, A priority based scheduling strategy for virtual machine allocations
in cloud computing environment, 2012 CSC, (2012), pp. 50–55.

[124] J. Yan, R. Kowalczyk, J. Lin, M. B. Chhetri, S. K. Goh, and J. Zhang, Autonomous
service level agreement negotiation for service composition provision, Future Generation
Computer Systems, 23 (2007), pp. 748–759.

[125] L. Yermal and P. Balasubramanian, Application of auto ARIMA model for forecasting
returns on minute wise amalgamated data in nse, in 2017 IEEE International Conference
on Computational Intelligence and Computing Research (ICCIC), IEEE, 2017, pp. 1–5.

[126] S. Yousif and A. Al-Dulaimy, Clustering cloud workload traces to improve the perfor-
mance of cloud data centers, in Proceedings of the World Congress on Engineering, vol. 1,
2017, pp. 7–10.

[127] K. Yu, X. Guo, L. Liu, J. Li, H. Wang, Z. Ling, and X. Wu, Causality-based feature
selection: Methods and evaluations, ACM Computing Surveys (CSUR), 53 (2020), pp. 1–
36.

146 REFERENCES

[128] S. L. Zeger, A regression model for time series of counts, Biometrika, 75 (1988), pp. 621–
629.

[129] J. Zhang, N. Xie, X. Zhang, and W. Li, An online auction mechanism for cloud computing
resource allocation and pricing based on user evaluation and cost, Future Generation
Computer Systems, 89 (2018), pp. 286–299.

[130] I. Zlateva, N. Nikolov, M. Alexandrova, and V. Raykov, Constructing an algorithm
for selecting the number of histogram bins in statistical hypothesis testing for normal
distribution of sample data.

	Contents
	List of Figures
	List of Tables
	Introduction
	Cloud Computing
	Cloud Brokerage System
	Broker Inventory Optimisation Problem
	Our Approaches
	Risk Factors in a Brokerage System Inventory Management
	Decision model Generator Broker System

	Hypothesis & Contribution
	Organisation of Dissertation

	Literature Review
	Cloud Computing
	Definition of Cloud Computing
	Cloud Computing Services

	Cloud Market Space Complications
	Cloud Brokerage System
	Broker's Challenges
	Commercial Cloud Brokers
	Cloud Brokerage System Research

	Time Series
	Time Series Analysis
	Time Series Model
	Feature Engineering

	Gaussian Process
	Gaussian Process for Time Series Modelling

	Causal Analysis and Additive Noise Model
	Discussion

	Summary

	Background
	Profit Maximising Cloud Brokerage Systems
	Time Series Forecasting Models
	Gaussian Process
	Casual Inference using Additive Noise Models
	Summary

	Cloud brokerage strategy and cloud inventory optimisation
	Cloud Brokerage System
	Cloud Computing as Commodity Model
	Cloud Broker Inventory Strategy and Problem Formulation
	Problem Formulation
	Optimisation of Targets
	Data Estimation and Inventory Adjustment

	Proposed Solutions
	Scope of the Work
	Summary

	Risk-Based Cloud Brokerage
	Risk Concept Usage in a Cloud Brokerage System
	Inventory Optimisation and User Request Placement using Risk Analysis
	Quantitative Risk Factors
	Normalised Linear Risk Analyser
	Decision-Making Function

	Detailed Specification & Implementation
	Evaluation
	Simulation Environment
	Broker Setting
	Experimental Results

	Related Works
	Future Directions
	Summary

	Automatic Profit Model Generator Cloud Brokerage
	Automatic Profit Model Generating Approach
	Stacked Cloud Brokerage Strategy
	Brokerage System Profit Model
	System Workflow & Architecture
	System Workflow & Components
	Feature Synthesis
	Model Generation Based on the Additive Noise Model
	Independence Criterion & Health Check

	Experimental Results
	Time Steps & the Period of Calculation
	Data
	Results

	Related Works & Future Directions
	Summary

	Future Works & Conclusion
	Contributions
	Risks in Cloud Brokerage Operation
	Hidden Parameters in Random Process
	Behaviour of Parameters in The Brokerage System
	Decision System For Cloud Broker Inventory

	Cloud Brokerage System Research & Future Work
	Performance Related Cloud Brokerage System
	Matching Application Characteristics
	Optimisation of Broker Inventory
	Additional Research Domains in Cloud Brokerage Systems

	Conclusion

	References

