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Abstract
We introduce in this paper substantial enhancements to a previously proposed hybrid
multiscale cancer invasion modelling framework to better reflect the biological reality
and dynamics of cancer. These model updates contribute to a more accurate represen-
tation of cancer dynamics, they provide deeper insights and enhance our predictive
capabilities. Key updates include the integration of porous medium-like diffusion
for the evolution of Epithelial-like Cancer Cells and other essential cellular con-
stituents of the system,more realisticmodellingofEpithelial–MesenchymalTransition
and Mesenchymal–Epithelial Transition models with the inclusion of Transforming
Growth Factor beta within the tumour microenvironment, and the introduction of
Compound Poisson Process in the Stochastic Differential Equations that describe
the migration behaviour of the Mesenchymal-like Cancer Cells. Another innovative
feature of the model is its extension into a multi-organ metastatic framework. This
framework connects various organs through a circulatory network, enabling the study
of how cancer cells spread to secondary sites.
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1 Introduction

Mathematical modelling has been a powerful tool in cancer research, aiding in the
understanding of the intricate biological processes, in predicting cancer growth and
metastasis, and in the treatment of the disease. However, the very dynamic nature
of cancer, characterized by tumour heterogeneity, complex intercellular interactions,
and evolutionary dynamics, presents challenges for traditional mathematical models.
A particularly challenging aspect of cancer growth lies in the understanding of the
intricate interplay between epithelial andmesenchymal phenotypes, which can greatly
influence tumour progression and response to therapy.

In this context, it was previously proposed in Sfakianakis et al. (2020), Franssen
et al. (2021), a hybrid mathematical modelling framework capable of capturing the
dynamic transitions between these phenotypes and shedding light on their underly-
ing mechanisms. By combining deterministic and stochastic mathematical modelling
frameworks, this hybrid approach is able to account for the heterogeneous nature of
cancer cells, the complex macroscopic dynamics, and the stochasticity inherent in
cellular migration. This integrated approach enables more comprehensive modelling
of the Epithelial–Mesenchymal Transition (EMT), that enables the individual cell
invasion, and of the reverse procedure of Mesenchymal–Epithelial Transition (MET)
dynamics in cancer cells, cf. Roche (2018), offering insights into critical processes
such as local tissue invasion, tumour island formation, and cancer metastasis. This
previously proposed model and work have provided with valuable insights into the
understanding of the relevant biological processes and the capabilities of the employed
mathematics.

There are relatively few studies in the literature that share a similar modelling phi-
losophy. Notable examples include Colombi et al. (2015a), Colombi et al. (2015b),
where a measure theoretic approach was aplpied to explore cell differentiation and
aggregation; Colombi et al. (2017), where a biological and mathematical “switch"
between concentrated cell-particle descriptions and distributed mass approaches was
invesitgated; and Capasso and Morale (2010), where a “doubly stochastic" system
of interacting cell-particles was analyzed, demonstrating that in the limit of a large
number of cell-particles, deterministic Partial Differential Equations (PDEs) emerge.
Moreover, Te Boekhorst et al. (2016) discusses how cell migration, influenced by
mechanical and chemical interactions with the extracellular environment, is modu-
lated by cellular and tissue determinants, affecting decision-making and migration
outcomes in processes like morphogenesis, repair, immune surveillance, and cancer
metastasis. Further contributions include Hiremath and Surulescu (2016), Hiremath
et al. (2018) , Colombi and Scianna (2017), who examined coupled systems of PDEs
and stochastic differential equations (SDEs) to describe biological processes across
population, cellular, and sub-cellular levels. Additionally, Cañizo et al. (2015); Carrillo
et al. (2018) focused on continuum models for interacting cell-particles, establishing
the existence of global minimizers for these systems.
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In the current paper, we propose several model updates that better align with the
accumulated understanding, incorporate new methodologies, and address the limita-
tions of the original modelling framework, ultimately paving the way for even deeper
insights, improved cancer predictions, and broader applicability in cancer modelling.
The model extensions that we propose, incorporate among others porous medium-like
diffusion for the time evolution of the Epithelial-like Cancer Cells (ECCs) and the
various other living cell components of the system. Further model extensions account
for more biologically realistic EMT and MET modelling by accounting for the role
of Cancer-Associated Fibroblast (CAF) cells and Transforming Growth Factor beta
(TGF-β) in the tumour microenvironment.

CAFs are key players in the tumor microenvironment, affecting cancer progres-
sion, metastasis, and even therapy response. Their diverse roles, from the remodelling
of the ECM to the modulation of growth factor signaling, facilitate tumor growth
and metastasis, emphasizing the complexity of their interactions with cancer cells
Weinberg 2014; Erdogan and Webb 2017. CAFs drive EMT in cancer cells through
paracrine TGF-β signaling, a process crucial for metastasis, Yu et al. (2014), Xing
(2010), Darby et al. (2014) further illustrate CAFs’ contributions to the supportive
tumor environment and parallel their functions in wound healing, highlighting the
pathological activation of fibroblasts, i.e. of CAFS, in cancer. This highlights the sig-
nificance of CAFs in the Biology of cancer and the potential of targeting their signaling
pathways for therapeutic intervention.

TGF-β plays a dual role in cancer progression, acting initially as a tumor suppressor
by inhibiting cell proliferation and inducing apoptosis, and subsequently promoting
metastasis through EMT. This transition, crucial for both embryonic development and
cancer metastasis, involves epithelial cells acquiring mesenchymal traits, enhancing
their invasiveness and resistance to apoptosis, see e.g. Bierie andMoses (2006), Kalluri
and Weinberg (June 2009). In Oft et al. (1998), TGF-β’s essential role in tumor cell
invasiveness was established, with further studies, Xu et al. (2009), Katsuno et al.
(2013), detailing its mechanisms. Later, in Lee and Massagué (2022), further high-
lighted TGF-β’s involvement in tissue remodeling and fibrosis, extending its impact
beyond cancer to the tumor microenvironment. This body of work underscores TGF-
β’s complex role in caner progression and EMT in particular.

In addition, themodel features updatedStochasticDifferential Equations (SDEs) for
the migration of Mesenchymal-like Cancer Cells (MCCs). Most importantly though,
we present here for the first time in our modelling approach, the progress we have
made using our hybrid model on a multiple organ metastatic framework.

Mathematicalmodellingof cancer invasiongoes back almost thirty years to thework
ofGatenby andGawlinski (1996) andPerumpanani and colleagues (1996). Thesemod-
els were systems of nonlinear reaction-diffusion-taxis equations and studied travelling
wave solutions modelling the invasive cancer cells cf. Marchant et al. (2000), Gatenby
et al. (2006). Subsequent models considered hybrid discrete-continuum approaches
(Anderson et al. 2000), various discrete or individual-based approaches (Turner and
Sherratt 2002; Smallbone et al. 2005), nonlocal modelling focussing on cell-cell and
cell-matrix adhesion (Domschke et al. 2014) and different multiscale approaches
(Chaplain and Lolas 2005; Shuttleworth and Trucu 2019a, b, c; Franssen et al. 2019).
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For a more comprehensive overview of the previous cancer modelling literature, the
reader is referred to the recent review article of Sfakianakis and Chaplain (2021).

In identifying metastases, the integration of mathematical models is of significant
importance as it can potentially offer a predictive approach that can complement exist-
ing technologies. Mathematical models could enhance the precision and efficiency of
detecting micrometastatic sites (Banyard and Bielenberg 2015; Zavyalova et al. 2019;
Chiang et al. 2016; Fares et al. 2020). It is also expected that these advanced predic-
tive capabilities will be crucial for tailoring surgical and therapeutic strategies (Smith
et al. 2019), potentially transforming the landscape of preoperative and intraoperative
intervention.

The rest of the paper is structured as follows: in Sect. 2 we briefly describe the
previous mathematical model, in Sect. 3 we present one after the other the proposed
model extensions, Sect. 4 includes the complete updated model, and Sect. 5 accounts
for a number of numerical simulations exhibiting aspects and properties of the overall
updated model.

2 Previous Hybrid Model

The hybridmodel that we present in this paper is an extension of a previously proposed
hybrid model detailed in Sfakianakis et al. (2020), Franssen et al. (2021). Here, we
provide a brief overview of the model.

The aforementioned hybrid model is comprised of two subsystems: the first incor-
porates the model components represented by their corresponding physical densities,
including ECCs, the etracellular matrix (ECM), and the matrix-degrading enzymes
(MMPs). The second subsystem focuses on themesenchymal-like cancer cells describ-
ing them as individual/solitary migrating cells.

2.1 Density Subsystem

We consider a Lipschitz set � ⊂ R
2 or R3 and denote the (scalar) densities of

the ECCs, ECM, and the matrix-degrading Metalloproteinases (MMPs) by cE (x, t),
v(x, t), m(x, t) where x ∈ � respectively.

ECC Density

TheECCs do notmigrate actively. It is rather assumed, in this version of themodel, that
the colony of the ECCs disperses in the surrounding environment due to mechanical
forces, e.g. internal pressure due to proliferation. This phenomenon ismacroscopically
captured through a (small in magnitude) diffusion term.

Furthermore, ECCs can be transformed into Mesenchymal-like Cancer Cells
(MCCs) and vice versa by the EMT and MET, respectively. In this version of the
model, it is assumed that EMT and MET are random and take place at a fixed rate. It
is furthermore assumed that the ECCs proliferate in a logistic fashion, which accounts
for the competition for free space among the ECCs, the MCCs and the ECM macro-
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molecules. These assumptions lead to the formulation of the following equation

∂

∂t
cE (x, t) = DE�cE (x, t)

︸ ︷︷ ︸

diffusion

−μEMT
E (x, t)cE (x, t)

︸ ︷︷ ︸

EMT

+μMET
M (x, t)cM (x, t)

︸ ︷︷ ︸

MET

+ ρE
c c

E (x, t)
(

1 − cE (x, t) − cM (x, t) − v(x, t)
)

︸ ︷︷ ︸

proliferation

,
(1)

where cM ≡ cM (x, t) represents the density of theMCCs,μEMT
E (x, t) = μEXE(t)(x),

μMET
M (x, t) = μMXM(t)(x), and where DE , μE , μM , ρE

c ≥ 0 are constants. XS(x)
is the indicator function of the set S defined as:

XS(x) =
{

1, for x ∈ S

0 for x /∈ S
. (2)

Here EMT occurs in a randomly chosen subset of the whole domain, E(t) ⊂ �,
with a fixed rate μE . In a similar fashion, it is assumed that every (solitary) MCC
might undergo MET independently from the others. The MCCs that undergo MET
give rise to the subset M(t) ⊂ �; MET is assumed to occur with a fixed rate μM .
Refer to Sect. 2.4 for a full discussion of the EMT and MET operators.

MMPs Density

The MMPs are assumed to be produced by both types of cancer cells and to diffuse in
the cancer microenvironment. It is also assumed that the MMPs decay at a constant
rate. The time evolution of their density is given by the PDE:

∂

∂t
m(x, t) = DE�m(x, t)

︸ ︷︷ ︸

diffusion

+ ρE
m c

E (x, t) + ρM
m cM (x, t)

︸ ︷︷ ︸

production

− λmm(x, t)
︸ ︷︷ ︸

decay

, (3)

with constants ρE
m , ρ

M
m , λm ≥ 0.

ECM Density

The ECM is represented by the density of collagenmacro-molecules and it is modelled
as a nonuniform and immovable component of the system that neither diffuses nor
otherwise translocates. Additionally, it is assumed that the ECM is degraded by the
action of the cancer-cell/MMP complex (both epithelial and mesenchymal). Finally,
for the sake of model simplicity, it is assumed that the ECM is not reconstructed. The
evolutionary equation of the ECM density is the following

∂

∂t
v(x, t) = − (

λE
v c

E (x, t) + λM
v cM (x, t)

)

m(x, t)v(x, t)
︸ ︷︷ ︸

degradation

, (4)
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with constants λE
v , λ

M
v ≥ 0. The assumption that the ECM is degraded by the cancer

cell-MMP complex, rather than simply by the action of MMPs alone, is motivated
by the fact that cancer cells require MT1-MMP, a specific type of membrane-bound
MMPs, for invasion to take place (Farideh et al. 2009).

2.2 Solitary Cell Subsystem

The MCCs are represented by a system of solitary cells indexed by p ∈ P =
{1, 2, . . . , N }, N ∈ N. Due to EMT and MET, the number N of solitary cells varies in
time and, therefore, N = N (t). TheMCCs are represented as pointmasses;xp(t) ∈ R

3

(orR2) represents their position andmp(t) ≥ 0 their masses. Overall the set of solitary
cells is described by

P(t) = {(xp(t),mp(t), p ∈ P}. (5)

The migration of MCCs follows a biased random motion comprised of two assumed
to be independent processes: a directed migration part that represents the haptotaxis
response of MCCs to gradients in the density of the ECM (drift term), and a stochastic
component that represents the undirected kinesis of MCCs as they sense their envi-
ronment, which is understood as Brownian motion (diffusion term).

TheBrownianmotion assumption is clearly a simplification justified by the random
walk-like migration that the cells exhibit, see also Stokes et al. (1991). Based on these
assumptions, the migration of the solitary MCCs obeys the following SDE where
Xp(t) = Xp

t denotes the position of MCCs

dXp
t = μ(Xp

t , t)dt
︸ ︷︷ ︸

drift

+ σ(Xp
t , t)dWp

t
︸ ︷︷ ︸

diffusion

for p ∈ P, (6)

whereWp
t is a Wiener process with independent components. The drift and diffusion

coefficients encode the modelling assumptions made about the nature of the directed
and random components of the motion. We refer to Sfakianakis et al. (2020) for more
details regarding (6).WithXp

t we denote the stochastic process describing the position
of MCCs, satisfying SDEs of the form (6) and with xp we denote the physical position
of the solitary cancer cells represented by the set P(t) in (5).

Modelling Reactions of MCCs

It is clear that (6) describes only the migration of the MCCs. Still, these cells par-
ticipate in a number of reaction processes such as MET, EMT, production of MMPs,
degradation of the ECM, and more.

These reaction terms are accounted for as follows: the MCCs undergo MET ran-
domly, after which they are removed from the set P in (5) and transformed to a density,
via the solitary-cell-to-density operator (introduced in Sect. 2.3), that is then added to
the existing density of ECCs. Conversely, parts of the ECC density undergo EMT in
a random fashion; this is initially transformed into MCC density, and subsequently,
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Fig. 1 Schematic representation
of the relation between density
profiles and solitary as used by
the operators (8) and (11).
Showing on the x − y plane the
centre of mass xp of the
individual cells along with the
rectangular domain Kp that
represents the space that the cell
occupies. The density of the
cells is shown as the piecewise
constant over Kp and their
masses mp as the point in the
third dimension above xp (Color
figure online)

through a density-to-solitary-cell transition (introduced in Sect. 2.3), to solitary MCC
cells. The newly formed solitary MCCs are then added to the existing set of solitary
MCCs.

Besides EMT and MET, the full set of solitary MCCs is translated into den-
sity, denoted by cM in (1), through the solitary-cell-to-density operator described in
Sect. 2.3 below, and subsequently employed in the evolution of the other components
of the system that are described as densities. This is because the density of MCCs
participates in the proliferation of ECCs (1), the production of MMPs (3) and the
degradation of the ECM (4), which are all described via the density submodel.

2.3 Phase Transitions Between Densities and Solitary Cells

The phase transition between the density description of the macroscopic ECCs and the
solitary MCCs is conducted by the solitary-cell-to-density and density-to-solitary-cell
operators. To proceed, it is assumed that the domain � is regular (e.g. a rectangle in
two dimensions) and is sufficiently large to be split into equivalent partition cells Mi

� =
⋃

i∈I
Mi . (7)

Density-to-Solitary-Cell Transition

For a given density function c(x, t), the density-to-solitary-cell operator B is given by

c(x, t)
B−→ {(xp,mp), p ∈ P}, (8)
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where at every partition cell Mi we assign a cell with mass

mi (t) =
∫

Mi

c(x, t)dx, (9)

and position

xi (t) = (bary)centre of Mi . (10)

Although the partition cellsMi cover the whole domain, they should not be understood
as the computational cells of the numerical discretisation. In a typical application of
this method, they are set to have the size of the biological cell under investigation.

Solitary-Cell-to-Density

The solitary-cell-to-density operator F is defined as

{

(xp,mp), p ∈ P
} F−→ c(x, t). (11)

Every solitary cell is assigned to a rectangular domain Kp of size K > 0 (typically
chosen to be the size of the biological cells), centred at the centre of mass of the cells
xp. It is assumed that themass of the cell is evenly distributed over Kp. As Kp overlaps
with (possibly) several of the partition cells Mi , we assign the corresponding portion
of the cell mass given by

mp
∣

∣

∣

∣

Mi

= mp

K
|Kp ∩ Mi |. (12)

Themeanvalue of c(x, t)over the partition cellMi is denotedby ci (t). The contribution
of all solitary cells (p ∈ P) to the density of partition cell Mi as

ci (t) =
∑

p∈P

1

K
mp

∣

∣

∣

∣

Mi

=
∑

p∈P

m p

K 2 |Kp ∩ Mi |. (13)

The density function across the full domain is then given by summing ci (t) over
i ∈ I

c(x, t) =
∑

i∈I
ci (t)XMi (x), (14)

where XMi (x) is the indicator function defined by equation (2).
Note that the transitionbetween the twophases ismass conservative in all the various

stages. Note furthermore, that there is a high level of versatility built into the two
operators and, in effect, in the hybrid description of the cancer system. For example, the
operators B andF allow the materialisation of individual cells of various masses or of
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multiple cells at a specific location, or even of the complete conversion of cell-density
profiles into collections of individual cells and vice-versa. In the current paper though,
we use these operators primarily for the EMT/MET processes and to materialize
individual solitary cells with mass and volume values corresponding to those of the
HeLa (Henrietta Lacks) cell line. Refer to Fig. 1 for a graphical representation of these
operators in 2D.

2.4 The EMT andMET Operators

In this section,wepresent themathematical descriptionof theEMTandMETprocesses
which, along with the density-to-solitary cell and solitary-cell-to-density operators,
allow for coupling between the two cancer cell phenotypes.

EMT Operator

It is assumed that a randomly chosen portion of the ECC density, cEEMT , undergoes
EMT to give rise to a density of MCCs

cEEMT
EMT−−−→ cMEMT . (15)

This newly createdMCCdensity (cMEMT ) is then immediately transformed into solitary
MCCs via the density-to-solitary-cell operator, described in Sect. 2.3

cMEMT
B−→

{

(xM,p,mM,p), p ∈ PEMT
}

, (16)

where xM,p,mM,p are the position and mass of the newly created solitary cells and
PEMT is the corresponding set of indices. Following this, the collection of existing
solitary MCCs is updated with the addition of the newly created solitary MCCs. This
is given by the disjoint union

{

(xM,p,mM,p), p ∈ P
}

�
{

(xM,p,mM,p), p ∈ PEMT
}

=
{

(xM,p,mM,p), p ∈ Pnew
}

,

(17)

where Pnew is the re-enumeration of the set P � PEMT . Overall, the EMT operator
reads as

REMT
(

cE ,
{

(xM,p,mM,p), p ∈ P
})

=
(

cE − cEEMT ,
{

(xM,p,mM,p), p ∈ Pnew
})

(18)
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MET Operator

It is assumed that each of the solitary MCCs undergoes MET randomly, to produce a
set of solitary ECCs

{

(xM,p,mM,p), p ∈ P
}

MET−−−→
{

(xE,p,mE,p), p ∈ PMET
}

︸ ︷︷ ︸

newly created ECCs

. (19)

Subsequently, the solitary ECCs are transformed into a density via the solitary-cell-
to-density operator

{

(xE,p,mE,p), p ∈ PMET
} F−→ cEMET . (20)

Overall, this can be written in operator form as

FMET
(

cE ,
{

(xM,p,mM,p), p ∈ P
})

=
(

cE + cEMET ,
{

(xM,p,mM,p), p ∈ P̃new
})

.

(21)

3 Updates and Extensions to the Previous Model

The model updates that we propose in this paper encompass several key modifications
including the incorporation of nonlinear diffusion—porous medium type—in the time
evolution equations of the various cell types. Additionally, we address the role of CAF
cells and of TGF-β in the tumour microenvironment. Furthermore, we refine the mod-
elling of the EMT andMET operators and of the SDEs describing the migration of the
MCCs. Lastly, we broaden the scope of our hybrid model by extending it to a multiple-
organmetastasis framework, thereby facilitating amore comprehensive understanding
of the progression and dissemination of cancer across the whole organism.

3.1 Nonlinear Diffusion

The equation for the ECC evolution in the previous version of themodel, (1), employed
linear diffusion which (conditionally) leads to infinite propagation speed that the solu-
tions exhibit. This implies that ECCs could spread instantaneously across the tissue,
contradicting the actual biological nature of cancer cell migration, especially consid-
ering the timescale of cell migration and tumour growth. To address this discrepancy,
our revised model introduces a simple nonlinear diffusion term, effectively resolving
this issue.

In general terms, the diffusion functions D(u) in the nonlinear diffusion equation
du
dt = (D(u)∇u) can be categorised into degenerate and non-degenerate. Degenerate
diffusion functions are characterised by their degeneracy at zero, i.e., D(0) = 0. The
degeneracy ensures that, for any compactly supported initial condition, there is no
diffusion at the interface where u = 0. As a result, the compactness of the initial
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conditions is maintained at all times. On the other hand, non-degenerate diffusion
functions, such as linear diffusion, do not possess the property D(0) = 0. As a result,
they do not create a sharp interface, and under certain conditions, can lead to infinite
propagation speed. For a detailed discussion and comparison between degenerate and
non-degenerate diffusion functions, we refer to Vazquez (2007).

This model extension, incorporating nonlinear degenerate diffusion functions, was
first explored inWilliams (2020), where various such functions were examined. Build-
ing on the remarks therein, we propose here the use of a PorousMedium type Equation
(PME). The PME represents a natural extension of the classical heat/diffusion equation
and is given in general form as

∂u

∂t
= D̃∇2(un), (22)

where n > 1. Assuming no-negative initial conditions, u remains non-negative for all
times. Such would be the case in biological settings where u represents cell density,
the PME (22) can be written as

∂u

∂t
= D∇ · (un−1∇u). (23)

Clearly, the PME is degenerate as D(0) = 0 and admits solutions with a clear
interface, compact support, and finite propagation speed. To demonstrate this key
difference in behaviour we have plotted in Fig. 2, typical solutions for both the Heat
Equation and the PME. The solution in the Heat Equation spreads asymptotically in
space, observing, hence, infinite propagation speed. In the contrary, the PME develops
a distinct interface, with steep sides that propagate with finite speed. The PME, as its
name suggests, was originally used to describe the flows through a porous medium,
but has since been used in many other contexts (Vazquez 2007). In particular, porous-
medium diffusion has been found to fit well with experimental data of biological cell
migration (Sengers et al. 2007; Jin et al. 2016). That is, it removes the problem of
infinite propagation speed while introducing minimal additional complexity to the
existing model.

ECCs Density with Porous-MediumDiffusion

We introduce the nonlinear degenerate porous-medium type diffusion into the equation
for ECC density. To this end, we consider the nonlinear porous-medium type diffusion
function to be given by

D(cE , cM ,m, w) = DEc
E . (24)
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Fig. 2 Numerical solutions of the a 1D Heat Equation (HE) and b Porous Medium Equations (PME) over
time. In c and d are shown the 10−5, 10−10, 10−15 isosurfaces (outward order) of the HE and PME in 3D
and at the same final time. A relative examination indicates the compactness of the solution’s support the
PME, justifying thereby the finite propagation observed by it’s solution. This becomes more evident by the
3D isosurfaces, with the smallest one, 10−15 (close to double precision floating-point number accuracy)
being distinctively broader than the 10−10 and 10−5 ones in the HE but not in the PME solution. Figure
source for (a) and (b) (Williams 2020; Harbour 2022) (Color figure online)

This is the simplest type of porous diffusion function and corresponds to n = 2
in (23). Using a diffusion function of this form, we implicitly assume that diffusion
increases linearly with density. This is desirable as we have already stated that we
assume ECCs primarily diffuse due to mechanical forces (e.g. pressure) caused by
proliferation.

We retain all the original assumptions from (1).However,we replace linear diffusion
with the porous-medium type diffusion function given in (24).Additionally,we assume
that the ECCs compete with the CAFs which are included in the updated model and
are introduced in Sect. 3.2. We have also included a haptotaxis term that accounts
for the biased motion of ECCs, which is known to be in the direction of increasing
ECM density (Sfakianakis et al. 2017; Anderson et al. 2000). Therefore, the updated
equation for ECC density is given by
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∂

∂t
cE (x, t) = ∇ · (DEc

E (x, t)∇cE (x, t)
)

︸ ︷︷ ︸

diffusion

−χE∇ · (cE (x, t)∇v(x, t)
)

︸ ︷︷ ︸

haptotaxis

− μEMT
E T EMT(b)X{cE≥Cref}(x, t)

︸ ︷︷ ︸

EMT

+μMET
M T METX{cM>0}(x, t)

︸ ︷︷ ︸

MET

+ ρE
c c

E (x, t)
(

1 − cE (x, t) − cM (x, t) − cF (x, t) − v(x, t)
)

︸ ︷︷ ︸

proliferation

,

(25)

with constants DE , χE , ρE
c > 0. The EMT and MET operations are modelled in this

current version as randomprocesses through the variablesT EMT andT EMT.Moreover,
in contrast to the original modelling in Sfakianakis et al. (2020), EMT depends here
on the concentration of TGF-β. These updates of the model are discussed in detail in
Sect. 3.4.

3.2 The Role of CAFs

An additional biological component to the invasion-metastasis cascade are the Cancer-
Associated Fibroblasts (CAFs). CAFs are known to reconstruct/re-model the ECM,
secrete MMPs to the extracellular environment (Weinberg 2014; Xing 2010; Erdogan
and Webb 2017), and are one of the main producers of TGF-β, which is responsible
for the EMT procedure and will be discussed in extent in Sect. 3.3. We assume that
the CAFs perform biased random motion, modelled via a nonlinear diffusion and
haptotaxis equation, towards areas of lower ECM density. It is furthermore assumed
that CAFs proliferate in a logistic manner, that their proliferation is increased by the
presence of ECCs, and that they die at a constant rate. Therefore, the evolution equation
of the CAFs is given by

∂

∂t
cF (x, t) = ∇ · (DFc

F (x, t)∇cF (x, t)
)

︸ ︷︷ ︸

diffusion

+ χF∇ · (cF (x, t)∇v(x, t)
)

︸ ︷︷ ︸

haptotaxis

+ ρF
c c

F (x, t)
(

1 + cE (x, t)
)
(

1 − cE (x, t) − cM (x, t) − cF (x, t) − v(x, t)
)

︸ ︷︷ ︸

proliferation

− λFc
F (x, t)

︸ ︷︷ ︸

decay

.

(26)

The following argument justifies the proliferation term: in the absence of ECCs, the
CAFs self-proliferate in a logistic volume-filling manner, in which they compete for
resources and space with themselves, ECCs, MCCs and ECM. However, we also
assume that more CAFs are produced in the presence of ECCs. This accounts for
the transdifferentiation of ECCs into CAFs, as well as the recruitment by ECCs of
healthy fibroblast cells and their subsequent transformation into CAFs. Therefore, in
areas of high ECC density, we would also expect high CAF density. Other models
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have explicitly included transdifferentiation (Sfakianakis et al. 2017), or healthy (non-
activated) fibroblasts which then become activated to produce CAFs (Smellie 2022).
However, for simplicity, it is assumed that these effects are captured by themodification
to the proliferation term. In the case of wound healing, fibroblast cells are directed
towards areas of low ECM density as they are capable of remodelling the ECM and
thus helping to repair the wounded site (Darby et al. 2014). We have assumed that this
will remain the case for CAFs and have modelled this behaviour with a haptotaxis
term promoting migration in the direction of lower ECM density.

3.3 The Role of TGF-ˇ

The cellular (re-)programming processes EMT and MET are not random, they
are rather initiated through complex interactions involving extracellular signalling
molecules. Specifically, the involvement of TGF-β has been recognized as critical in
triggering EMT (Katsuno et al. 2013; Kalluri and Weinberg June 2009; Bierie and
Moses 2006). In this study, we focus solely on the role of TGF-β in EMT and do not
consider the impact of other signalling molecules. While this is a severe simplification
of the biological reality, it allows us to investigate the specific role of TGF-β in the
context of EMT and MET dynamics.

From a modelling point of view, we make the assumption that TGF-β is primarily
produced by CAFs, while neglecting the contribution of ECCs and MCCs. We further
posit that TGF-β diffuses freely in the environment, a condition that stands in contrast
to the nonlinear diffusion assumption applied to cancer cells. This choice is substanti-
ated by the differing diffusion time scales that molecular components-unlike cellular
ones-exhibit within the tumour microenvironment. Additionally, we assume that the
decay of TGF-β occurs at a constant rate.

Hence, the governing equation for the spatiotemporal evolution of TGF-β density
is given by

∂

∂t
b(x, t) = Db�b(x, t)

︸ ︷︷ ︸

diffusion

+ ρF
b c

F (x, t)
︸ ︷︷ ︸

production

− λbb(x, t)
︸ ︷︷ ︸

decay

, (27)

with constants Db, ρ
F
b , λb ≥ 0.

3.4 The Updated EMT andMET Operators

Another major extension in the model concerns the EMT and MET operators in (25),
which play a crucial role in capturing the transitions between epithelial andmesenchy-
mal phenotypes. In the previous iteration of the model, the corresponding operators
were significantly simplified. However, weit is understood that EMT and MET are
complex processes influenced by a multitude of factors, including cellular hetero-
geneity, stochasticity, and the presence of signalling molecules. Specifically, in the
current paper, we have incorporated the influence of TGF-β, which has been widely
implicated in regulating EMT and MET dynamics in cancer. The updated EMT and
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MET operators account for the stochasticity inherent in these transitions, allowing for
a more realistic representation of the phenotypic plasticity observed in cancer cells.

EMT

The biochemical mechanisms governing EMT remain unclear and, accordingly, sig-
nificant simplifications of the modelling assumptions need to be made. Nevertheless,
we assume in the current paper that EMT depends directly on the local concentration
of TGF-β and, in addition, that it takes place in a random fashion. Namely, we assume
that a minimum concentration of TGF-β is necessary for EMT to occur. Still, this
or even higher levels of TGF-β are not sufficient to trigger EMT. To account for this
uncertainty, we make the modelling assumption that EMT occurs in a random fashion.

Overall, we denote by T EMT the amount of ECCs transitioning to MCCs as a
Poisson random variable with parameter λ > 0

T EMT ∼ P (λ) , (28)

where the probability density function of P(λ) is given by

f (a; λ) = P(a events occur; λ) = λae−λ

a! , for a = 0, 1, 2, . . . (29)

In the case of EMT, we consider λ = ζ(b)τ , where ζ : R → R is the rate at which
EMT events occur that depends on the concentration b of TGF-β in the environment
and τ ∈ R is a small time interval. In other words, T EMT ∼ P(ζ(b)τ ) accounts for
the probability that a events will happen in the time interval τ with rate ζ . The rate ζ

is described as a shifted logistic function

ζ(b) = L

1 + e−k(b−bT )
, (30)

where L, k, bT ≥ 0 are constants and b is the density of TGF-β. We choose the shifted
logistic function as a switch mechanism that will ensure the necessary condition for
EMT to happen, meaning that whenever b > bT the rate ζ becomes strictly positive
and reaches its highest value L . The values of T EMT will fluctuate at different times
during the evolution of the system, since the rate ζ takes values in the interval [0, L],
giving us either zero when the threshold bT is not exceeded, or a proportion of ECCs
that undergo EMT when it does (Fig. 3).

We further consider that ECCs tend to undergo EMT only at times when the density
of the solid tumour cE is sufficiently large. Hence, we account for this restriction by
multiplying T EMT by a characteristic function of the form:

X{cE≥Cref}(x, t) =
{

1, for cE (x, t) ≥ Cref

0 for cE (x, t) < Cref
. (31)
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Fig. 3 Graph of the EMT
function μEMT (30) as a
function of TGF-β for L = 0.05,
k = 103, and bT = 0.01. Figure
inspired from Smellie (2022)
(Color figure online)

The constraint (31), although imposed on the density profile cE , it is translated in
a very natural fashion to a constraint over the mass through the underlying partition
cells Kp and Mi that account for the size/volume of the corresponding biological
cells, see (9) and (12). Practically, the partition cells Kp and Mi either coincide with
the computational cell of the corresponding numerical method, or, when coarser, the
computational grid is is coarsened to the appropriate size. This coarsening of the
computational grid is used to calculate the new density over the coarse grid and the
corresponding mass. Note that Mi and Kp have the size of the biological cells under
investigation and, as such, they are coarser than the numerical discretisation of the
domain, see Sect. (2.3).

MET

Along with EMT, its inverse cellular programming MET, is considered to be a driver
in the dissemination of carcinomas through the formation of metastases in the primary
and secondary locations of the organism. The occurrence of MET depends on the type
of cancer cells and tissues under investigation, and has become a target of various
clinical trials (Wood et al. 2021). Due to the lack, though, of a clear biochemical
triggering mechanism for MET, and for the sake of simplicity of presentation, we do
not include in the current work any dependence on extracellular cues such as TGF-
β. We will, though, assume that every solitary MCC undergoes MET randomly and
independently from the others. More specifically we will assume that MET occurs in
any given MCC according to the Poisson random process with a fixed rate r > 0 for
any time interval τ i.e.

T MET ∼ P (rτ) (32)

where r > 0 is constant.
For each one of the solitary MCCs in the subsystem (19), a decision is made, by

(32), whether it will undergo MET. Then, with the use of the solitary-cell-to-density
operator F , the system is updated as shown in (21). We account for this in a similar
way as we did for EMT, by multiplying T MET in (25) by a characteristic function as
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in (31).

X{cM>0}(x, t) =
{

1, for cM (x, t) > 0

0 for cM (x, t) ≤ 0
, (33)

where cM is the density formulation of MCCs.

3.5 Solitary-Cell Invasion SDEs

We reformulate the solitary-cell submodel so that the SDEs involve more of the bio-
logical properties describing the movement of MCCs in the tissue. The ECM plays
a crucial role in the migration of solitary MMCs since MCCs move towards regions
with a higher density of ECM. This implies that the velocity of MCCs is proportional
to the gradient of the density of the ECM. Taking into account the haptotaxis response
of the MCCs, and disregarding random effects for the moment, we write the following
Ordinary Differential Equation (ODE) for the position, X(t) = Xt , of each solitary
cancer cell such as:

dXt = μ (∇v(Xt )) dt (34)

where v denotes the density of the ECM. The drift force now directly depends on the
gradient of the ECM through the function μ. The form of this drift force needs to take
into account that there is an upper limit in the migration speed of the cells, regardless
of the density of the ECM. We denote this maximum cell speed by Vthr. This function
μ could take the following form:

μ(z) = A arctan
( z

A

)

, with A = 2Vthr
π

(35)

which attains values from [−Vthr, Vthr]. Furthermore, we reformulate the (determin-
istic) ODE (34) to an SDE in order to account for the random motion of the cells as
follows:

dXp
t = μ

(∇v(Xp
t )

)

dt + σ(Xp
t , t) dCp

t (36)

for p ∈ P , where σ(Xp
t , t) is the diffusion coefficient andCp

t is a Compound Poisson
Process (CPP). The CPP is defined as follows:

C(t) =
N (t)
∑

i=1

Yi , (37)

where N (t) is a homogeneous Poisson process with rate λ > 0 and {Yi }N (t)
i=1 are

Independent and Identically Distributed (i.i.d.) random variables. The Poisson process
is a counting process that represents the number of independent discrete events that
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have occurred up to a time t . It is furthermore stationary, i.e. the probability of a random
cell turning in a given time interval is the same for all equal-length intervals. Due to
these properties, we find that the CPP describes the random turning in the migration
of the cells better than the standard Wiener and hence employ it in (36).

Numerical Solution of the SDEs

For the numerical scheme of the new SDE (36), we will use an Euler-Maruyama type
scheme that takes the following form:

Xp
n+1 = Xp

n + μ
(∇v(Xp

n )
)

τ + σ(Xp
n )Zp

n , for p ∈ P, (38)

where μ is the drift coefficient given in (35) and σ the diffusion coefficient. For every
timestep τ > 0 it holds

Zn =
{

an independent copy of Y1, probability pn = 1 − e−λτ

0, probability 1 − pn
(39)

with λ > 0 the rate of the homogeneous Poisson processN (t) defined in (37) and Y1
a random variable. For more details on the derivation and convergence of the method
(38) we refer the reader to Grigoriu (Aug 2009). We note that in every timestep
of our numerical scheme, it is necessary to ensure that the cells do not exceed the
maximum velocity, denoted as Vthr. This situation may arise, for instance, when the
combined effects of the drift and diffusion terms in (36) exceed Vthr. In cases where
‖Vt+τ‖ > V thr, with Vt+τ representing the velocity of MCC at time t + τ , we adjust
the velocity to comply with the maximum limit. This adjustment is done by rescaling
the newly calculated velocity as follows:

Vnew
t+τ = Vthr

‖Vt+τ‖Vt+τ , (40)

Here,Vnew
t+τ is the new, rescaled velocity that replaces the original velocity as computed

by the scheme.

3.6 Multiple OrganMetastatic Framework

In the final proposed extension of the mathematical model, we introduce a complex
multiple-organmetastatic framework. The integration ofmathematicalmodels in iden-
tifying metastases is of significant importance as it can provide a better understanding
of the metastatic cascade and potentially offer a predictive approach to complement
existing detection technologies.

Within this framework, we conceptualize in this paper an organism as a network
of organs, interconnected by a circulatory system that serves as a conduit for cancer
cells in their metastatic spread to secondary sites in the organism.
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The model encompasses several critical biological phenomena, beginning with the
formation of ECC-like tumour in the primary location within an organism. Following
the occurrence of EMT, MCC-like cancer cells emerge in the primary organ. These
MCCs migrate within the tissue and, with some probability, they infiltrate the circula-
tory system in a process known as intravasation. We model intravasation by a Poisson
process in a similar fashion as in the EMT and MET.

Once in the bloodstream, the cancer cells acquire the designation of Circulat-
ing Tumour Cells (CTCs). The hemodynamic environment of the circulatory system
imposes significant stresses upon these cells, leading to a substantial rate of destruc-
tion among the CTCs. The survival probability of the CTCs is estimated to be 0.1%
(Liotta et al. 1976, 1977). In mathematical terms, wemodel the death rate of the CTCs
through a uniform probability distribution.

CTCs that survive the circulatory network, extravasate into oneof the downstream—
with respect to the blood flow—organs. The anatomical arrangement and the
hemodynamics of the circulatory system play a significant role in determining the
sites where cancer cells may extravasate. Still, for the sake of modelling simplicity,
we do not account for the blood flow in this paper nor do we limit the extravasation
process to organs in the downstream direction of the blood flow. We rather model the
extravasation process as a Poisson event, with the choice of the extravasation location
following a uniform distribution with respect to the various organs that comprise the
virtual organism.

Upon arrest within the secondary location, CTCs typically undergo a phase of
dormancy (Phan andCroucher 2020). For the sake of simplicity of presentation though,
we do not account for cell dormancy in this paper. We instead opt to treat the newly
arrested cancer cells asMCC-like, having in effect the potential to migrate in the tissue
or undergo MET. This results in the formation of newly developed ECC-like densities
and the engenderment of new tumours; metastasis has occurred.

In addition to the aforementioned simplifications, the geometrical representation of
the various organs considered in this paper has been abstractly described as simple 3D
polyhedrons of variable density. However, our multiple organ modelling framework
could also account for more realistic organ geometries and structures, we refer for
instance to Kolbe et al. (2022), Misra et al. (2009), Zrimec and Busayarat (2004).

4 The UpdatedModel

In this section, we present the fully updated model by combining all the updates
introduced above in Sect. 3, and we also incorporate the final two components of the
model—the macroscopic equations of MMPs and ECM. These system components
have undergone minimal changes in the new model.
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4.1 Density Formulation

The density equations for the updated ECCs, CAFs and TGF-β have been derived in
detail above and are given by (25), (26) and (27) respectively. To complete the updated
density submodel, wemust also include the density equations for theMMPs and ECM.

MMPs Density

As before, we assume that the MMPs move through the environment via linear diffu-
sion (molecular diffusion) and decay at a constant rate. However, with the addition of
CAFs to the model, and because CAFs are known for one of the main producers of
MMPs in the TME (Weinberg 2014; Erdogan and Webb 2017), we now assume that
CAFs are producing MMPs alongside with ECCs. Thus, the evolution equation for
MMPs density is given by

∂

∂t
m(x, t) = Dm�m(x, t)

︸ ︷︷ ︸

diffusion

+ ρF
m c

F (x, t) + ρE
m c

E (x, t)
︸ ︷︷ ︸

production

− λmm(x, t)
︸ ︷︷ ︸

decay

, (41)

with constants DE , ρF
m , λm ≥ 0. Note that equation (41) describes the evolution of

soluble MMPs that are secreted in the local extracellular microenvironment and we
do not account in (41) for membrane-bound MMPs such as MT1-MMP (Franssen
et al. 2021; Sabeh et al. 2009; Egeblad and Werb 2002). Although, the presence of
MT1-MMP has been suggested in Sabeh et al. (2009), to be a necessary and sufficient
factor for the migration of MCCs. In order to separate the different types of MMPs we
will only account for the membrane-bound MT1-MMP, implicitly, through the new
degradation term of the ECM, shown in equation (42)

ECM Density

For the new density equation of the ECM, we have added a production term with
a constant rate that depends on the density of CAFs, since they are responsible for
the reconstruction of the ECM (Erdogan and Webb 2017; Sahai et al. 2020). The
degradation of the ECM is affected again by the ECC-MMP complex, instead of the
MMPs alone, and we have changed the contribution of MCCs due to the effect of
the membrane-bound MT1-MMPs. Hence, based on these assumptions, the evolution
equation for the ECM density is given by:

∂

∂t
v(x, t) = ρF

v cF (x, t)
︸ ︷︷ ︸

production

−
⎛

⎝λM
v

∑

p∈P
XKp(t)(x) + λE

v m(x, t)cE (x, t)

⎞

⎠

︸ ︷︷ ︸

degradation

v(x, t),

(42)

with constants λmv , λev, ρ
F
v ≥ 0. Here, Kp(t) represents the physical space occupied

by the mesenchymal-like cell with index p and XKp(t) is the characteristic function
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defined in (2). The degradation of the ECM is directly impacted by the MCCs of the
solitary cell subsystem rather than the density description of MCCs in (4).

Overall Density Submodel

Combining all the updated equations, the new overall density submodel can be written
as a system of PDEs given by

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

∂
∂t c

E (x, t) = ∇ · (DEcE (x, t)∇cE (x, t)
) − χE∇ · (cE (x, t)∇v(x, t)

)

−μEMT
E T EMT(b)X{cE≥Cref}(x, t) + μMET

M T METX{cM>0}(x, t)
+ρE

c c
E (x, t)

(

1 − cE (x, t) − cM (x, t) − cF (x, t) − v(x, t)
)

∂
∂t c

F (x, t) = ∇ · (DFcF (x, t)∇cF (x, t)) + χF∇ · (cF (x, t)∇v(x, t))

+ρF
c c

F (x, t)
(

1 + cE (x, t)
) (

1 − cE (x, t) − cM (x, t) − cF (x, t) − v(x, t)
)

−λFcF (x, t)
∂
∂t b(x, t) = Db�b(x, t) + ρF

b c
F (x, t) − λbb(x, t)

∂
∂t m(x, t) = Dm�m(x, t) + ρF

m c
F (x, t) + ρE

m c
E (x, t) − λmm(x, t)

∂
∂t v(x, t) = ρF

v cF (x, t) −
(

λM
v

∑

p∈P XKp(t)(x) + λE
v m(x, t)cE (x, t)

)

v(x, t)

(43)

4.2 Solitary-Cell Formulation

As in the original model, the MCCs are described via a system of N solitary cells,
indexed by p ∈ P = {1, 2, . . . , N }, where N can vary in time. Both the position
xp(t) and the mass mp(t) are accounted for and thus the set of solitary cells is again
described by (5). However, the evolution of MCCs is now described by the SDE (36),
which is introduced in detail in Sect. 3.5.

Modelling Reactions of MCCs

Similarly to the original model, the solitary MCCs participate in several reaction
processes. These are EMT, MET, proliferation of ECCs and proliferation of CAFs.
However, the new solitary-cell submodel still contains no reaction terms. We account
for them in the following ways. A certain proportion of ECCs, determined by the
local concentration of TGF-β, undergo EMT according to the updated EMT operator
introduced in Sect. 3.4. This proportion of ECCs is then removed from the ECC
density and added to the solitary MCC set via the density-to-solitary-cell operator
which remains the same as in Sect. 2.3. As stated in Sect. 3.4, the MET operator is
described by a Poisson process and so a random number of MCCs undergo MET.
These solitary cells are then turned into ECC density via the solitary-cell-to-density
operator given in Sect. 2.3. Furthermore, since the density of MCCs participates in the
proliferation term for the ECCs and CAFs, at every time step the entire collection of
MCCs must be transformed into a density distribution.

123



   64 Page 22 of 41 D. Katsaounis et al.

5 Numerical Experiments

In this section, we conduct numerical simulations to explore the qualitative properties
and solution dynamics of the updated model described in Sect. 4. The specifics of the
numerical method used for solving the system is not discussed here. For complete
details, we refer to Appendix A and B. All computer simulations and visualisations
were conducted in MATLAB 2023A [65] with a WINDOWS 11 PRO desktop com-
puter equippedwith an 8-core Intel i7-9700K processor clocked at 3.6 Ghz andwith 64
GB of RAM. Indicatively, the computational cost for the Experiment 2 discussed later
in this section is approximately 22 minutes of computer time per 1 day of biological
time. It should be noted that due to the inherent computational parallelisation capa-
bilities of MATLAB no significant additional computational burden was observed
when simulating multiple organ conformations such as in Experiment 4. Still, we
have observed significant speed-ups, by up to a factor of ×20, when implementing
our numerical methods for single organ conformations in compiled programming lan-
guages such as C++ (International Organization for Standardization 2024).

Before presenting the simulation results, we set appropriate values for all model
parameters and establish suitable initial and boundary conditions. We then per-
form four distinct computational experiments. Through a series of plots, we visually
track the system’s changes over successive time intervals. These experiments aim to
demonstrate how the updated model behaves under various scenarios. However, more
comprehensive studies are necessary to fully grasp the impact of the model’s new
features on the process of cancer invasion.

5.1 Parameterization

The parameter values used in our simulations are detailed in Table 1. Whenever possi-
ble, we have sourced these values from existing literature to align our simulations with
biological data. However, in several instances, it was not feasible to obtain specific
values from literature, necessitating our estimation of some parameters. All values are
presented in units of days, which aligns with the timescale over which our simulations
are conducted.

The computational domain, denoted as �, is defined as [−0.05, 0.05]3. This rep-
resents a cuboid with each side measuring 0.1cm and a total volume of 0.001cm3. All
components of the density model are confined within this domain. Consequently, we
apply homogeneous Neumann boundary conditions, which are specified below:

∂cE

∂n
= ∂cF

∂n
= ∂b

∂n
= ∂m

∂n
= ∂v

∂n
= 0, (44)

where n is the outward unit normal vector to the boundary of the domain �. In the
numerical simulations shown in Sect. 5 we have assumed that the diffusion coefficient
σ(Xp

n ) is the same for all cells and remains constant for all times. We have in addition
employed a reflective boundary condition, according to which MCCs that escape the
domain are returned to their last known position inside the domain.
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Experiment 1 Haptotaxis Flow: The first experiment we consider focuses solely on
the process of EMTand the subsequent haptotaxis of the solitaryMCCs. The parameter
values which relate to EMT as well as MCC migration can be seen in Table 1. Further
to these dynamics, we consider only the diffusion of ECCs, hence the advection and
diffusion coefficients of the othermodel components are set to zero.Moreover, noMET
takes place in this experiment, nor do any other reactions or interactions between the
model components occur. The remaining initial conditions and experimental setup are
described below.

First, we assume that there are no MCCs at the initial time. Second, we assume a
spherical tumour of radius 0.01cm, comprised only of ECCs, is located in the centre
of the domain. Within the initial tumour, we assign the density of ECCs to be 3 g cm−3

and outside this tumour the density of ECCs is set to zero. This can be written in terms
of a characteristic function, see also (2), as

cE (x, 0) = 3XS(x) (45)

where the set S is given by,

S =
{

(x, y, z) ∈ R
3 :

√

x2 + y2 + z2 < 0.01

}

. (46)

Third, CAFs are assumed to be present in a randomly selected 30% of the full domain.
Over this subdomain, Y , the density of CAFs is uniformly distributed over the interval
[0, 0.001].

cF (x, 0) =
{

U(0, 0.001) for x ∈ Y

0 otherwise
. (47)

Fourth, It is assumed that initially TGF-β is present only in the area surrounding the
tumour, i.e., where no ECCs are present. The density is then set according to a uniform
distribution over the range [0, 0.01].

b(x, 0) =
{

0 for x ∈ S

U(0, 0.01) otherwise
. (48)

Fifth, It is assumed that MMPs are present in the whole domain, and their density is
assigned a value based on a uniform distribution over the interval [0, 0.0001]

m(x, 0) = U (0, 0.0001) for x ∈ �. (49)

Finally, since the main aim of this experiment is to observe/verify the haptotaxis
migration of MCCs, we devise an ECM that is directional with a density gradient
increasing towards one of the corners of the domain. Namely, we set

v̄(x) = x + y + z. (50)
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Subsequently, the ECM density values are normalised

v̂(x) = v̄(x) − min{v̄}
max{v̄} − min{v̄} . (51)

and, lastly, are brought within a biologically realistic range [vmin, vmax]

v(x, 0) = vmin + (vmax − vmin)v̂(x). (52)

This experimental setup is largely based on an experiment carried out in Sfakianakis
et al. (2020), which we now extend to three dimensions and introduce the model
updates.

From Fig. 4 we observe two key properties of the model. The first is that, as EMT
takes place, an initial density of ECCs is transformed into a number of individual
solitaryMCCs. Secondly,MCCsundergo haptotaxis,which directs theirmigration into
areas of higher ECM density. The updated SDE, has preserved the haptotatic response
of MCCs, which is encoded into the model via the advection term in the SDE (36),
while the new random component maintains the desired qualitative behaviour of a
biased randommigration of MCCs. The more detailed modelling of EMT ensures that
the process predominantly occurs on the periphery of the tumour. This is because the
concentration of TGF-β is initially set to zero within the tumour, and EMT can only
occur where the TGF-β threshold is exceeded.

Experiment 2 Cancer Cell Islands
In this experiment, our aim is to reproduce the biologically observed phenomenon

of cancer islands forming away from the main body of the primary tumour. Therefore,
in this simulation, we consider the full dynamics of the model. All the parameters
used in this simulation can be retrieved from Table 1. In particular, unlike the previous
experiment, we now consider the process ofMET, which occurs with a fixed rate given
in Table 1.

The initial conditions for the ECCs, CAFs, TGF-β, and MMPs, remain the same as
in Experiment 1 (45)–(49). However, the initial ECM density is set to randomly vary
over the domain according to a procedure developed in Franssen et al. (2021), where
we refer the reader for full details.

In the current paper we only provide a brief description of this process and refer to
Fig. 5 for a graphical representation. To begin with, an 8 × 8 matrix is created with
entries taken from a standard normal distribution, N (0, 1). A number of refinement
steps are taken until the resolution of the matrix reaches the desired (computational)
resolution of the domain. At each stage, the size of the matrix is doubled to increase
the resolution of the ECM. The entries to the new larger matrix are obtained from
interpolating the values of the previous smaller matrix with the addition of a small
amount of Gaussian noise. Therefore, as the ECM is refined it preserves the initial
randomly chosen structure observed in the 8× 8 matrix, with areas of higher or lower
densities appearing in the same regions of the grid no matter what resolution is used.
This procedure is extended into three dimensions. However, due to the increased com-
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Fig. 4 Simulation results for Experiment 1—Haptotaxis Flow. Shown here is the time evolution of an
initial ECC density (yellow isosurface at density value 1) depleted by EMT and the resulting solitary MCCs
(red dots) migrating within the ECM (grey background). The ECM has a clear gradient towards the negative
x and y and positive z direction (50)–(52). a EMT takes place in an initially spherical ECC tumour giving
rise to a number of MCCs that escape from the main body of the tumour. b The newly formed MCCs
perform a persistent random motion and migrate within the tissue towards higher ECM densities, i.e. in the
direction of decreasing x and y and increasing z. c, d As EMT continues, more and more ECC density is
depleted until the initial tumour is completely transformed into solitary MCCs. e Colourbar for the ECM
density, common to all subplots (Color figure online)

putational time that three-dimensional simulations impose, a maximum refinement of
64 × 64 × 64 will be used for the ECM in this experiment.

The simulation results of this experiment are shown in Figs. 6 and 7: The initial
concentration of the ECCs is engulfed by the ECM, the CAFs, the TGF-β, and the
MMPs. As time progresses, EMT takes place and solitary MCCs are materialised.
These MCCs perform a biased random migration, they break free from the main body
of the tumour and invade the surrounding tissue. The formation of solitary MCCs via
EMT, their overall numbers, and their migration patterns are subject to the overall
state of the model and the corresponding parameters. As the phenomenon progresses,
the solitary MCCs undergo MET, according to the procedure previously described,
acquire epithelial character, and the resulting ECCs start to proliferate. These newly
formed ECCs are described in our model through their corresponding cell densities
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Fig. 5 Construction of the (initial condition) ECM density employed in Experiments 2, and 4. The process
starts with random values over an 8× 8 grid; these introduce the basic structure of the ECM. In every stage
of the construction process, the grid is bisected with the new values attained by averaging the neighbouring
values of the previous coarser grid with the addition of some additive noise. The process stops when the
required grid size is reached. At this stage, the values are scaled to the proper biological range. Figure
source and reference (Franssen et al. 2021)

and give rise to ECC islands outside the main body of the tumour where they continue
to grow.

Experiment 3 Growing & Merging Microtumours
In this experiment, we investigate the complex phenomenon of (micro-)tumour

merging within a specified environment. The merging process is a multifaceted event
that may involve a combination of mechanical interactions, signalling pathways, and
modifications in cellular behaviours. It represents a critical phase in tumour develop-
ment, that potentially leads to more aggressive tumour growth and poses additional
challenges for therapeutic intervention (Minchinton and Tannock 2006).

The initial conditions for this experiment are similar to the previous ones. The
main difference is that we consider two spheroids tumours rather than one as initial
concentrations for the ECCs, namely,

cE (x, 0) = XS1(x) + XS2(x) (53)

where S1 and S2 are the following translations of the set S given in (46):

S1 = S + 0.01 (1,−1,−1), S2 = S + 0.01 (−1, 1, 1). (54)
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Fig. 6 Simulation results for Experiment 2—Cancer Cell Islands. Time evolution of the ECC density
(yellow level 0.99 isosurface), the solitary MCCs (red points), and three slices of the ECM (grey in the
background). a An initial spherical tumour consists solely of ECCs. b The ECCs undergo EMT to produce
MCCs, these invade the local tissue and begin undergoing MET forming the first tumour islands. c, d The
number of tumour islands increases as more MCCs undergo MET. The size of these tumour islands also
increases, primarily due to the proliferation of ECCs. e Colourbar for the ECM density, shared by all plots
(Color figure online)

No EMT takes place in this experiment, and as no MCCs are present initially,
neither does MET. Consequently, the experiment focuses solely on the behavior of
ECCs, without the transformation or introduction of new cell states through these
biological processes.

The simulation results are shown in Fig. 8,where, as in the previous experiments,we
model the primary locationof the tumours as a box-like organ.Within this environment,
two initially separate tumours are allowed to grow by the processes prescribed by the
model (43). The growth of these tumours is driven by cellular proliferation.

As these tumors expand, they actively respond to the varying conditions present in
the local ECM. This interaction with the ECM’s non-uniformities plays a significant
role in their development and growth patterns. Over time, as these microtumors con-
tinue to grow and adapt to their immediate surroundings, they eventually reach a point
where they come into contact with each other. Upon contact, the two initially separate
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Fig. 7 Additional simulation results for Experiment 2—Cancer Cell Islands. Shown here are the final
time, t = 0.500 d, concentrations of the continuum components of the system (43). All panels include
the ECC concentration (yellow level 0.99 isosurface) seen previously in Fig. 6. a MMPs: as it is their
complex with the ECCs that degrades the ECM, we visualise them here in the vicinity of the ECCs. b,
c CAFs&TGF-β: visualised over the half x-domain. In both panels, the isosurface reveals that, according to
the ICs (45)–(49), the CAFS appear randomly in 1/3 of the whole domain. The same holds for the TGF-β
although the dynamics that govern their evolution are more complex (Color figure online)

Fig. 8 Simulation results for Experiment 3—Growing & Merging Microtumours. Time evolution of
two ECC densities (yellow level 0.99 isosurface) growing and merging in the absence of EMT and hence
MCCs and MET (Color figure online)

tumors merge. This merging is a critical phase of their development, representing a
new stage in the progression of the cancerous growths within the given environment.
Following the merging of the two microtumors, they form a single, larger tumor. This
unified tumor exhibits grows primarily along its outer surface. This is noteworthy as
an indication that a tumour comprised of separate tumour islands grows faster than a
single tumour of the same overall size.

This observation implies a key aspect of tumor biology—a tumor that originated
from themergingofmultiple smaller islands displays amore aggressive growthpattern,
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particularly at the periphery. This finding indicates that the internal structure and
history of a tumor can have a profound impact on its growth trajectory. Understanding
these dynamics is crucial for comprehending tumor development and for devising
effective strategies for cancer treatment, as it provides insights into how tumors evolve
and adapt over time.

Experiment 4 Multiple Organ Metastasis:
In this experiment, we take a further step and expand our mathematical model

to account for several interconnected organs within a single virtual organism. This
approach allows us to better understand how cancer progresses in the metastatic cas-
cade.

In line with the previous experiments presented in this work, we represent the var-
ious organs as cubes of equal size. The ECM is constructed for each organ separately
by the process described in Fig. 5 and later employed in Experiments 2 and 3. The
various organs are linked though a simplified circulatory network that facilitates the
migration of cancer cells between different parts of the organism.While distinguishing
between the venous, arterial, and lymphatic systems is crucial in real-world cancer
progression, our model simplifies these into a single circulatory network with bidi-
rectional connectivity, implying that cancer cells can move in any direction between
interconnected organs.

In their travel through the circulatory system, the cancer cells, now termed Cir-
culatory Tumour Cells (CTCs), are highly likely to be eradicated, with an estimated
survival probability of 0.1% in our simulations.

Regarding the initial conditions and boundary conditions, the ECCs and the ECM
in the organ where the tumour initially appeared are the same as in Experiment 2, with
no initial ECC concentration in the remaining organs.

The simulation results, presented in Fig. 9 clear exhibit the metastatic cascade as
is perceived by the this modelling framework. Namely, a tumour grows in a primary
location of the organism. EMT takes place leading tot he invasion of MCCs in the
local tissue (first row). Gradually the MCCs enter the blood stream and spread to sec-
ondary locations in the organism. Both in the primary and secondary sites, the MCCs
undergo (potentially) MET giving rise to ECCs (second row). The new formed ECC
islands grow due to proliferation and give rise to a number of micrometastases (third
row). These micrometastases serve as precursors to larger and and more dangerous
metastases which with time merge and form larger tumours (forth row).

As noted in the previous experiment, the simulations presented here reveal again that
when cancer cells initially form separate, disjoint islands, their overall volume tends to
increasemore quickly compared to a scenariowhere they start as a single, unifiedmass.
This difference in growth rate is not just marginal, indicating a fundamental aspect
of tumor biology. Understanding these dynamics is crucial for developing effective
therapeutic strategies, as it highlights the importance of considering not just the size
but also the distribution and structure of cancerous growths.
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Fig. 9 Simulation results for Experiment 4—Multiple Organ Metastasis. this figure illustrates the pro-
gression (across rows) of metastatic growth in four different organs (columns). The various organs are
represented cubes whose size and colour schemes are the same as in Fig. 6. At t = 0.002 d: An initial ECC
tumour has already developed to a notable size in the first organ (column 1), at which point EMT leads to the
formation of MCCs. At t = 0.38 d: These MCCs migrate within the first organ and have beagun spreading,
via the circulatory network, to secondary organs (columns 2 to 4). At t = 0.72 d: micro-metastases are
observed forming in the secondary organs concurently with the growth of the primary tumour. At t = 1 d:
there is a continued expansion of both the initial tumor and the developing micro-metastases, indicating
progressive metastatic spread (Color figure online)
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6 Discussion

In this paper, we introduce an updated version of the previously proposed genuinely
hybrid multiscale tissue cancer invasion model (Sfakianakis et al. 2020; Franssen et al.
2021). This enhancedmodel replicatesmore naturally the transition from the epithelial
proliferation strategy original of the ECCs to the individual invasion strategy of the
MCCs. The model is comprised of a system of PDEs and SDEs that describe the
progression of the ECCs and MCCs, respectively, while incorporating the phenotypic
transitions of EMT and MET.

A significant upgrade in our model is the integration of nonlinear degenerate
diffusion—similar to a porousmedium—in the evolution equation of the ECCs and the
other living cell components. This model enhancement contributes to a more realistic
representation of the tumour growth in the tissue microenvironment, addressing the
issue of infinite propagation speed that is commonly encountered in linear diffusion
models.

Another significant extension is the updated modelling of EMT and MET. We
have considered the role of TGF-β as an EMT trigger and detailed the modelling
process including the inherent randomness associated with MET. Moreover, we have
introducedCAFcells into ourmodel to reflect their role in shaping the tumourmicroen-
vironment through the reconstruction of the ECM.

We have furthermore, updated the structure of the SDEs that drive the migration
of MCCs. Namely, we have accounted for a Compound Poisson Process as the core
modelling framework of the stochasticity in the change of direction in the migration
of the cells. This approach is in contrast to the typically employed Wiener processes
in problems of a similar nature and we have opted for the Compound Poisson Process
for its greater biological relevance.

Another substantial extension of the hybrid model introduced in this paper is a
multiple-organ metastatic framework. Namely, we have developed a basic circulatory
network that links various organs, each being modelled by a “local” version of the
hybrid model. This modelling framework allows MCCs to enter the bloodstream and,
if they survive the stresses of the circulatory network, be transferred to secondary
locations in the organism.Once there, theMCCsmayundergoMET, start to proliferate,
and give rise to metastatic tumours.

We have validated these model extensions through several numerical experiments
presented in Sect. 5. These simulations demonstrate the updated model’s capabilities
to reproduce phenomena that are biologically relevant and generate predictions con-
sistent with experimental observations. They highlight the model’s potential utility in
exploring specific facets of cancer biology and treatment response.

At this stage of cancer progression, detecting these micrometastases is crucial
in both understanding cancer and in enhancing the efficacy of cancer treatment.
Because of their very small size micrometastases (also known as occult metastases)
usually cannot be detected by current imaging modalities such as X-ray, CT scan,
PET scan, and MRI (Pantel et al. 1999, 2009). However, as noted in Mao (2022),
applying AI (artificial intelligence) techniques such as deep learning to data from
combined imaging modalities may prove to be much more effective in detecting
micrometastases—a so-called AI-based radiomics approach (Afshar et al. 2019; Chen
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et al. 2021). Such advanced technologies are essential for their identification both pre-
and intra-operatively. The early detection can significantly influence adjuvant therapy
decisions and potentially improving patient outcomes, see e.g. Pantel et al. (1999),
Smith et al. (2019). Given the difficulty in detecting micrometastases using currently
available imaging modalities, researchers are investigating other potential markers
which may prove fruitful such as circulating tumour cells (CTC), circulating tumour
DNA (ctDNA) and exosomes (Mao 2022). One other emerging area of research which
may prove effective is the phenomenon of vascular co-option which has been shown
to be important in the survival of metastatic colonies (García-Gómez and Valiente
2020). Research has demonstrated that extravasated metastatic cells in the brain do not
immediately migrate away from the capillaries (whence they have emerged) but rather
remain in physical contact. This cell-cell connection and interaction has been termed
vascular co-option and is believed to take place for micrometastases in other organs as
well as the brain. Current research suggests that vascular co-option is very important
for the viability of dormant metastatic cells and their transition to macrometastases,
so much so that the phenomenon has been proposed as a hallmark for metastasis
initiation (Kienast et al. 2010; Er et al. 2018; García-Gómez and Valiente 2020). Vas-
cular co-option is also being considered as a potential source of biomarkers and new
targets for micrometastases (Bentolila et al. 2016). It may also be used as a target
for therapeutic strategies which aim to block the transition from micrometastases to
macrometastases, thereby halting themetastatic spread. Given this information and the
fact that the locations of the micrometastases vary greatly over time in the simulation
results, a natural extension and development of the work would be to incorporate the
vascular structure of the secondary tissue into the model.

Incorporatingmathematicalmodels into the detection strategies could provide a pre-
dictive framework to identify micrometastases more accurately and more efficiently,
thus offering a powerful tool to complement current technologies by guiding surgical
and therapeutic decisions towards more personalized cancer care.

We envision further enhancements, particularly the integration of immune system
interactions within the tumor microenvironment and the refinement of the circula-
tory system for enhanced physiological accuracy, hold great promise for advancing
theoretical research and potentially clinical applications in cancer treatment. These
developments will not just be incremental improvements but significant steps towards
transforming our model into a comprehensive tool that can navigate the complexities
of cancer biology. By more accurately simulating the interplay between tumors and
the body’s defenses, as well as the spread of cancer through vascular networks, it is
expected that the model will impact clinical decision-making and optimized treatment
strategies. These developments represent a promising direction in cancer research,
potentially leading to more nuanced insights and improved therapeutic strategies.

Appendix A. Time Evolution of the Two Coupled Cancer Cell Types

We provide here a brief account of the numerical method used to simulate the time
evolution of the overall model. For more details, the reader is referred to Sfakianakis
et al. (2020), Franssen et al. (2021).We denote the density and solitary-cell variables as
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w(x, t) and Pβ(t) respectively. The numerical approximation of the complete system
at the instantaneous time t = tn is therefore given by

Wn =
{

Wn
(i, j,k) = (cn(i, j,k),m

n
(i, j,k), v

n
(i, j,k)), (i, j, k) ∈ Mx × My × Mz

}

,

Pn =
{

(xnp,m
p), p ∈ Pn

}

.
(A.1)

Here we extend the two-dimensional notation used in Sfakianakis et al. (2020) to
include a third dimension, whereMx , My, Mz ∈ N denote the resolution of the numer-
ical grid in the x-, y- and z-directions respectively.

The evolution of the density and cell variables comprises two processes: time evolu-
tion and phase transitions (EMT andMET). In particular, a operator splitting approach
is used. That is the time period t ∈ [

tn, tn+1
]

, where tn+1 = tn + τ n , is split into two
half time steps, with phase transitions (EMT and MET) occurring in the middle. The
three steps of this operator-splitting approach are outlined below.

• During the first half-time step, t ∈ [

tn, tn + 1
2τ

n
]

, the system evolves without the
influence of EMT or MET. Using tuple notation this can be written as

(Wn,Pn) → (Wn+1/2,Pn+1/2) (A.2)

with

Wn+1/2 = N
[

tn, tn + 1

2
τ n

]

(Wn,Pn),

Pn+1/2 =
{

(xn+1/2
p ,mn+1/2

p ), p ∈ Pn+1/2
}

,

(A.3)

where N [t, t + τ ] is the numerical solution operator responsible for the spa-
tiotemporal evolution of the density variables. This uses an implicit-explicit
Runge-Kutta finite volumemethod (IMEX-RK), which is discussed in more detail
in Appendix B. The individual cells evolve according to the Euler-Maruyama type
scheme, which is discussed in Sect. 3.5, rewriting equation (38) for the half-time
step gives

Xp
n+1/2 = Xp

n + μ
(∇v(Xp

n )
) τ n

2
+ σ(Xp

n ) · Zp
n

√

τ n

2
. (A.4)

Since it is assumed that no EMT or MET takes place during this half-time step the
number of solitary cells, their indices, and their masses remain the same, hence
Pn+1/2 = Pn and mn+1/2

p = mn
p.

The combined spatiotemporal evolution of the density and solitary-cell variables
for this half-time step can be written compactly in operator notation as

M 1
2 τ n (W

n,Pn) = (Wn+1/2,Pn+1/2) (A.5)
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• At the midpoint of the time interval, t = tn + 1
2τ

n , EMT and MET takes place.
The phase transitions are assumed to be instantaneous and are represented by the
operatorsREMT andRMET , introduced in (18) and (21) respectively. Combining
both these processes into the single operator Rτ n , the overall system evolves as

Rτ n (Wn+1/2,Pn+1/2) = (W̃n+1/2, P̃n+1/2). (A.6)

• During the second half-time step, t ∈ [

tn + 1
2τ

n, tn+1
]

, the density and solitary
cells again evolve without EMT orMET taking place. This occurs in an essentially
identical fashion as in the first half-time step. Using the same operator notation as
for the first half-time step, the tuple of the overall system evolves as

M 1
2 τ n (W̃

n+1/2, P̃n+1/2) = (Wn+1,Pn+1). (A.7)

Overall combining (A.5), (A.6), and (A.7), the evolution operator for the system
over a single time step can be written as a splitting method of the form

(Wn+1,Pn+1) = M 1
2 τ nRτ nM 1

2 τ n (W
n,Pn). (A.8)

Appendix B. Numerical Solution of PDE Systems

The advection-reaction-diffusion system (43) is solved numerically using a spe-
cific second-order Implicit-Explicit Runge-Kutta Finite Differences, Finite Volumes
(IMEX-RK FD-FV) numerical method. This method constitutes an extension of a pre-
viousmethod developed and employed inKolbe et al. (2016), Sfakianakis et al. (2017),
Kolbe et al. (2022), Kolbe and Sfakianakis (2022), Kolbe et al. (2021), Sfakianakis
et al. (2020), Franssen et al. (2021) where we refer for most of the details. Here, we
only discuss some of its components.

We consider, at first, a generic advection-reaction diffusion system of the form

wt = A(w) + R(w) + D(w), (B.1)

wherew represents the analytical solution vector of the system, and A, R, and D are the
advection, reaction and diffusion operators respectively. After spatial discretisations
have taken place, we denote the corresponding semi-discrete approximation by wh ,
where the index h denotes the (maximal, if the space discretisation is non-uniform)
spatial grid diameter. The semi-discrete solution wh satisfies the following system of
ODEs

∂twh = A(wh) + R(wh) + D(wh), (B.2)

where the numerical operators A,R and D are (spatially) discrete approximations of
the advection-reaction, diffusion operators, A, R and D in equation (B.1). Moreover,
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Table 2 Butcher tableaux for the explicit (upper) and the implicit (lower) parts of the third order IMEX
scheme (B.4), see also Kennedy and Carpenter (2003)

0
1767732205903
2027836641118

1767732205903
2027836641118

3
5

5535828885825
10492691773637

788022342437
10882634858940

1 6485989280629
16251701735622 − 4246266847089

9704473918619
10755448449292
10357097424841

1471266399579
7840856788654 − 4482444167858

7529755066697
11266239266428
11593286722821

1767732205903
4055673282236

0 0
1767732205903
2027836641118

1767732205903
4055673282236

1767732205903
4055673282236

3
5

2746238789719
10658868560708 − 640167445237

6845629431997
1767732205903
4055673282236

1 1471266399579
7840856788654 − 4482444167858

7529755066697
11266239266428
11593286722821

1767732205903
4055673282236

1471266399579
7840856788654 − 4482444167858

7529755066697
11266239266428
11593286722821

1767732205903
4055673282236

as the numerical scheme we employ is (partially) FV, raising its accuracy to the sec-
ond order necessitates the use of flux limiters for the interface reconstruction of the
numerical fluxes. Out of a large number of flux limiter options, we have found that
the Minimized-Central (MC), see Van Leer (1977), constitutes a robust and efficient
choice.

Before solving (B.2), we re-organise its terms in implicit and explicit (IMEX split-
ting) and, accordingly, (B.2) takes the form

∂twh = I(wh) + E(wh). (B.3)

The actual IMEX splitting depends on the problem at hand, but in a typical case the
advection termsA are treated explicitly in time, the diffusion terms D implicitly, and
the reaction R terms either explicitly or implicitly, depending on their stiffness. In
the problems that we encounter in this paper, all reaction terms have been resolved
explicitly in time.

The semi-discrete problem (B.3) is now solved using a diagonally implicit RK
method for the implicit part I(wh), and an explicit RK for the explicit part E(wh).
Altogether, we solve (B.3) using the additive RK scheme

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

w∗
i = wn

h + τn
∑i−2

j=1 āi, jE j + τnāi,i−1Ei−1, i = 1 . . . s,

wi = w∗
i + τn

∑i−1
j=1 ai, j I j + τnāi,i Ii , i = 1 . . . s,

wn+1
h = wn

h + τn
∑s

i=1 b̄iEi + τn
∑s

i=1 bi Ii ,

(B.4)

where s = 4 are the stages of the IMEX-RK method, Ei = E(wi ), Ii = I(wi ),
i = 1 . . . s, and {b̂, Â}, {b,A} are the coefficients for the explicit and implicit part
of the scheme respectively. These coefficients can be found in the Butcher Tableau in
Table 2, cf. Kennedy and Carpenter (2003). As a final stage of this method, we solve
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the linear system in (B.4) using the Iterative Biconjugate Gradient Stabilised Krylov
subspace method, see Krylov (1931), van der Vorst (1992).
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