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Abstract

Population size (‘abundance’) is a key parameter for wildlife conservation. As technol-

ogy advances, new sampling techniques become available for which established estima-

tion methods are extended and new methods developed. We explore, extend, and test

new methods for estimating abundance of large marine megafauna that utilise novel

sampling techniques: passive acoustic monitoring (PAM), modern genetic analyses,

and baited video systems.

The PAM study is motivated by acoustic recordings of bowhead whales (Balaena mys-

ticetus) from multiple sensors in the Beaufort Sea. A high proportion of detections

on only one sensor (‘singletons’) are false positives, resulting from the automated de-

tection algorithm. We extend acoustic spatial capture recapture methods to enable

singletons to be discarded without biasing the abundance estimate. In our model,

detection probability is dependent on received sound level, but we also propose an

extension where detection probability is a function of signal-to-noise ratio, enabling

the use of detections at lower received levels.

In the genetic study, we test the recently-developed close-kin mark-recapture (CKMR)

method in the situation where the ages of sampled animals are estimated with error.

Our work is motivated by a case study of grey reef sharks (Carcharhinus amblyrhyn-

chos) at Palmyra Atoll, Pacific Ocean. CKMR relies on knowing animal age, and for

many species this is inferred from measured length. We use simulation to test the

effects of misspecifying the age-length relationship (‘growth curve’) and the amount

of length measurement error on abundance estimates. A misspecified growth curve

produces substantial bias while misspecifying measurement error does not.

Lastly, we explore the potential of extending random encounter modelling (REM),

which is used to estimate population size from remote wildlife cameras, for the situation

where baited cameras are used as is common in shark studies. We believe that potential

exists for REM with baited cameras if bait plume intensity is considered.
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Chapter 1

Introduction

1.1 Abundance estimation

Sometimes, the easiest questions are the hardest to answer. A good example of this is

the question: ‘how many animals are there?’. We cannot feasibly count all animals and

thus we would first have to restrict the question. By narrowing the question it becomes

clearer what a correct answer could be. For example, ‘how many roe deer (Capreolus

capreolus) live in the Hoge Veluwe in the Netherlands on January 1st 2023?’ would

be more narrowly-defined and easier to answer question. It is species-specific and

concerns a relatively small area. Still, counting all roe deer constitutes a major task,

even in a restricted area of 55km2. Such challenges arise in many instances where the

abundance of an animal species is of interest, e.g., the area is too large to cover (e.g.,

bluefin tuna in the Atlantic Ocean; Thunnus thynnus), animals are rarely seen (e.g.,

deep-diving, elusive beaked whales; Ziphiidae), or habitats are hard to access (e.g.,

the snow leopards in the Himalayas; Panthera uncia). The point is that counting

all animals, which is called a ‘census’, is rarely feasible, and that we instead have

to estimate the abundance. But how do we estimate population size, and why is it

important that we do it at all?

The size of an animal population at a certain time point is a key metric to determine

the conservation status of a species (IUCN, 2012; Nichols and Williams, 2006). This

can apply to, among other examples, species that are essential to proper functioning

of ecosystems, such as bees and whales (Buchmann and Ascher, 2005; Roman et al.,
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2 Introduction

2014), and species that we harvest and thus livelihoods depend on, such as commercial

fish species (Jacinto et al., 2015). When trying to count animals, there are often two

main problems: i) we cannot feasibly cover the entire area of interest, and ii) we cannot

properly observe the animals. The first problem can be resolved by (systematically)

randomly sampling a part of the study area, and then extrapolating over the entire

area (Buckland et al., 2015, Chapter 2). The second problem, which is that animals are

often hard to see or ‘detect’, can be resolved by estimating a detection probability and

correcting the estimated abundance accordingly (Buckland et al., 2015, Chapter 1).

This is the probability that an animal is observed when it is available to be observed at

a certain time and place. An example of these concepts is the use of aerial surveys to

detect humpback whales (Megaptera novaeangliae). Even when the whales are present,

one could easily imagine that one will be unable to spot a humpback whale when there

is a substantial distance between the observer and the whale. Weather might also

play a role, and so does the skill of the observer. Furthermore, whales are not always

available for detection, i.e., they only spend some of the time in the detectable water

column; when they are too deep underwater once could never see them, even when

flying right over them. It is therefore necessary to adjust the total number of whales

estimated from a survey for the ones that were there but that were not available to

be detected. The main lesson from this example is that estimating this detection

probability can be challenging. Several methods have been developed to estimate this

detection probability, and technological advances have allowed for improved or new

ways of estimating the abundance of animals (Buckland et al., 2023). In this thesis

we test, develop, and discuss such novel methods and extensions. First, however, we

will present some background on some of the most common abundance estimation

methods, some of which are essential to the ones we further cover in Chapter 2–5.

1.2 Capture-recapture methods

1.2.1 Closed populations

Using capture-recapture (CR) to estimate the abundance of closed animal populations

dates to the first half of the 20th century (Otis et al., 1978). Closed populations

are populations without any births and deaths, and no migration, during some time

period. Conventional CR relies on perfect identification of individuals, either through
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natural markings or human markings such as tags (Otis et al., 1978). The basic

concept of closed-population CR is as follows (Seber, 1982). At the first sampling

occasion, a large enough number of animals out of a population are sampled. The total

number of individuals sampled at the first occasion is defined as n1. If they are not

individually identifiable, for example, through natural markings such as fur patterns,

these individuals are marked or tagged; if the animals were physically captured, they

are released again. At a second occasion, animals are sampled again. The total number

of animals sampled on the second occasion is denoted n2, and the number of animals

sighted at the second occasion that were seen before (which we know due to their

markings) are denoted m2. In this simple, two-occasion study, where we assume all

animals to have the same constant detection probability, our estimate for the total

number of animals in this population N is

N̂ =
n1n2
m2

. (1.1)

In other words, the ratio of the number of initial captures to the total abundance is the

same as the ratio of recaptures to the number of captures on the second occasion. This

estimator is known as the Lincoln-Petersen estimator (Seber, 1982). Besides the closed

population and equal detectability assumptions mentioned before, this estimator relies

only on the assumption that animals are never misidentified, for example, through lost

tags or through mistakes by the observer (Otis et al., 1978). Studies can also involve

more than two sampling occasions. In such situations a simple, closed-form estimator

such as Equation (1.1) rarely exists (Otis et al., 1978). Otis et al. (1978) provided

an unified overview of closed-population CR for more than two trapping occasions up

to that point in time, and extended it to estimate density from grid trapping studies.

They identified four main models: a base model M0 using the same assumptions as

the Lincoln-Petersen estimator, ; modelMt, where capture probability varies with time

or occasion, for example due to weather; model Mb, where capture probability varies

due to behavioural responses, for example when an animal becomes trap-shy after

getting trapped for the first time; and model Mh, where capture probability varies

between individuals (i.e., there is capture heterogeneity among animals), for example

when bigger individuals are more likely to be seen, or when a certain sex is more easily

observed. Moreover, Otis et al. (1978) summarised all combinations of these models,

which results in the additional four models Mtb, Mth, Mbh, and Mtbh.
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1.2.2 Open populations

Jolly (1965), Seber (1965), and Cormack (1964) all developed some of the first versions

of open-population capture-recapture. The version by Cormack only allowed for appar-

ent survival (the complement of deaths and emigration) but not for recruitment (births

and immigration), and thus those models are generally referred to as the Cormack-

Jolly-Seber (CJS) models (Schwarz, 2001); models that allow for both survival and

recruitment are generally referred to as Jolly-Seber (JS) models (Schwarz, 2001). Un-

like CJS models, the JS models also estimate abundance by assuming that all animals

have equal capture and survival probabilities at each sampling occasion (Pledger et al.,

2010). Schwarz and Arnason (1996) achieved this by adding two parameters to the

model, namely the size of the super population from which animals could be recruited

to the main population, and the probability of recruitment. Pollock (1982) developed

a version of the JS model that was robust to variable capture probabilities by having

sets of closely-spaced sampling occasions (‘secondary periods’) during which the pop-

ulation was assumed closed, separated by longer intervals during which the population

was assumed open (‘primary periods’). Closed-population models could be used for

the secondary periods, whereas open populations models could be used for the primary

periods (Pollock, 1982).

1.2.3 Spatial capture-recapture

Spatial capture-recapture was simultaneously developed by Borchers and Efford (2008)

and Royle and Young (2008), works that both built on previous work by Efford (2004).

They took a big step by associating abundance with a particular spatial location and

area, thereby estimating a density (surface); total abundance can subsequently be

derived by integrating the density over the entire study area. This solved a gap in

capture-recapture, where often it was hard or impossible to estimate density from

the abundance estimate, as the area that the studied population was associated with

was often undefined (Borchers and Efford, 2008). Spatial capture-recapture (SCR; or

spatially explicate capture-recapture) resolves this by combining two models: a state

model, which generally involved a two-dimensional density surface, through which

density was explicitly modelled as a function of spatial covariates, and an observation

model, which modelled the detection process for detectors/sensors placed in the study
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area (Borchers and Efford, 2008). SCR has gained in popularity since its introduction,

resulting in at least 364 published studies by the 3rd of March 2020 that used SCR to

answer ecological questions (Tourani, 2022). The main idea behind SCR is that every

animal has an activity centre with a (circular) home range or activity area, where the

animal spends most of its time at the centre and gradually less as the distance from the

centre is increased (Borchers and Efford, 2008). The shorter the distance between an

activity centre and a sensor, the higher the probability that an individual is detected

within a sampling interval. The detection probability is therefore a combination of two

probabilities: the probability that the animal is close enough to the sensor for it to be

detected in the first place, and the probability that the sensor detects the animal given

that it is within its detectable range. These two probabilities are often not explicitly

separated in SCR studies, but it is worth noting that the detection probability is

actually a combination of the two processes.

Let n denote the number of unique animals that were detected at least once. The

recorded information for each of these n animals generally consists of a 1 if detected

at a sensor and a 0 if not, for every sensor in the study area, and for every sampling

occasion or interval. The true location of the activity centre is unknown, and thus the

method integrates out all possible locations. Variations exists, for example, when a

trap can only capture one animal every interval, and thus can no longer ‘observe’ other

animals once it has captured, i.e., observed, the first one (Borchers and Efford, 2008).

These variations are mainly determined by the sampling technique used, as SCR can

be applied to a variety of sampling methods. Among these sampling methods exist

direct sampling methods like camera traps or continuous video (e.g., Karanth and

Nichols, 1998; Jiménez et al., 2023), or (multi-catch) live traps (e.g., Flowerdew et al.,

2004); or indirect sampling, by sampling hairs left behind or collecting faeces (Mowat

and Paetkau, 2002; Poutanen et al., 2019). Although these sampling techniques have

worked well in terrestrial contexts, marine-based contexts are not always as suited.

1.3 Challenges of the marine environment

Studying marine wildlife poses additional challenges relative to terrestrial wildlife.

This means that several common and well-tested surveying methods are no longer

feasible when studying aquatic life. This is mostly due to reduced visibility associated
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with the marine environment. To illustrate, imagine that a researcher is planning

to observe a relatively rare, large terrestrial species such as a giraffe (Giraffa). One

excellent option would be a line transect survey from an aeroplane. This way, a large

area can be covered relatively quickly, and giraffes are easily observed even from great

distance, especially using high-resolution cameras. Imagine using a similar reasoning

for the marine environment: someone is planning to study whale sharks (Rhincodon

typus). These large animals should be distinguishable from great distance, except that,

whenever someone flies over a whale shark, they would not see them unless they are

close to the surface. This is a challenge when visually assessing the ocean in general:

an ocean crowded with animals and one absent of them can seem very similar from an

aeroplane or the shore. One must generally go underwater to properly assess what is

going on beneath the surface, and this introduces difficulties (Marques et al., 2013).

For example, visibility underwater is greatly reduced compared to air, which makes

visual observations infeasible for most of the ocean volume. Even in the shallow waters,

it is hard to see anything farther than maybe a few dozen meters away when waters are

clear, and only a few meters (or even less) when waters are murky. Moreover, animal

densities can be very low for marine species, especially when considering megafauna.

1.4 Other abundance estimation methods

Besides the methods covered so far and in the other chapters of this thesis, there are

several that we believe should be mentioned here for completeness. First, a census

involves a count of all the animals in an area. This method is generally only feasible in

small areas when all animals can be counted with certainty. Whenever an area is too

large to completely cover given the available resources, one could alternatively use a

method called plot sampling (Borchers et al., 2002). In plot sampling, the researchers

(randomly) select a number of plots in the study area and count all the animals present

in that plot. The total abundance is then estimated by extrapolating the abundance

in the sampled plots across the entire study area. Similar to a census, one of the main

assumptions is still that animals are detected with certainty. In many contexts animals

are not detected with certainty even when they are in observable range of a researchers.

In such scenarios it is required to estimate a detection probability. In many contexts,

the detection probability of an animal decreases as the distance between the animal

and an observer increases. This intuitive concept was formalised in distance sampling
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(e.g., Buckland et al., 2015). In distance sampling, researchers sample (a part of)

the study area using either point or line transects. Whenever an animal is sighted,

researchers recorded the distance from the point to the animal (for point transects) or

the perpendicular distance from the transect line (for line transects). This collection of

observed distances is then used to fit a detection function, which here is a function that

models detectability as a function of distance (Buckland et al., 2015). The detection

probability at zero distance is assumed to be perfect, i.e., equal to one, and decreases

gradually as distance increases; eventually, it should level at approximately zero. When

this assumption fails, the detection probability at zero distance can be estimated using

mark-recapture distance sampling, for example by having two observers performing

the survey simultaneously (Burt et al., 2014). The most commonly-used detection

function in DS is called the half-normal detection function, but others exist such as

the hazard-rate and uniform detection functions. With the fitted detection function

one then estimates the effective sampled area, which is the sampled area corrected for

the probability of detecting the animal. From this, together with the number of animals

actually sighted, one can then finally estimate total absolute abundance. Finally, the

N-mixture model can be used to estimate animal abundance from count data (Royle,

2004). However, this method has been criticised as it is sensitive to deviations from

the assumed distribution of counts (Link et al., 2018).

1.5 Novel sampling techniques

The abundance estimation methods covered were all initially developed for human

observers. However, human observation is not always feasible, especially when visibility

is limited or continuous surveying is required (Marques et al., 2013). In such scenarios

other sampling techniques are preferable, which has resulted in adaptations of old

models and the development of new ones. For example, SCR was extended to work

with detection data from acoustic recorders (Efford et al., 2009; Dawson and Efford,

2009); genetic sampling led to the development of methods that utilised the information

on genetic relatedness (Skaug, 2001; Bravington et al., 2016b); and distance sampling

was extended to work with data from remote cameras (Howe et al., 2017). In the

following section we further elaborate on these sampling techniques.
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1.5.1 Acoustics

The field of acoustics covers the way sound is created and behaves in our world. Sounds

are pressure waves travelling through a medium. In general, sound travels quicker and

with less energy loss in media that are denser. Hence, a sound that would only be

detectable over several hundreds of meters when propagating through air is detectable

over dozens of kilometres underwater. (Zimmer, 2011). The dominant unit used in

underwater acoustics is the decibel unit (dB), which is the ratio of sound intensities

on the base-10 logarithmic scale (log10; Jensen et al., 2011). Expressing an absolute

intensity can be done by using a (common) reference intensity. The currently accepted

reference intensity is one micropascal (µPa), which means that intensities are often

expressed in dB re 1 µPa. For more details on sound intensities see Jensen et al. (2011,

Section 1.3.2)). When a sound is produced in a medium and spreads, the initial energy

in that sound is spread out over an increasing surface. The way a sound loses energy

as it travels through the medium is called propagation or transmission loss (Zimmer,

2011). Transmission loss (TL) is derived as the change in sound intensity relative to

the sound intensity at 1 meter from the source (dB re 1 m):

TL = SL− βr × log10(x) (dB re 1 m), (1.2)

where SL is the source level measured at one meter from the source, x is the distance

travelled by the sound wave from the source, and βr is the transmission loss parameter.

At small scales the spread is often approximately spherical, which is captured by

βr = 20, whereas at larger scales the spread is approximately cylindrical, which is

captured by βr = 10 (Zimmer, 2011, Section 3.3.2). One could imagine that the true

energy loss is often, if not always, somewhere between these two ‘perfect’ scenarios.

However, this is not the case. There are a variety of environmental conditions that

affect sound attenuation in various ways, which can lead to higher energy loss, i.e.,

βr > 20 (Jensen et al., 2011). Especially in air the transmission loss per meter travelled

is generally high, as air is a gas and thus absorbs much of the energy of the sound

wave. Water is more dense and absorbs much less energy (Jensen et al., 2011). Many

underwater animals therefore communicate and navigate using sounds, by producing

clicks, moans, songs, and other vocalisations. We can sample/detect these sounds

using underwater microphones, or ‘hydrophones’. These can, for example, be placed

on fixed arrays, towed behind boats, or be used manually by researchers. The use
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of hydrophones to passively record acoustics signals, so-called ‘passive acoustics’, has

become increasingly popular as it offers four main advantages over other sampling

techniques (Marques et al., 2013). Firstly, animals that produce loud and/or frequent

sounds can be detectable at much greater distances than for other sampling techniques.

Second, passive acoustics work under any light conditions. A third reason is that

passive acoustics are amenable to the use of automated data processing tools, allowing

for the processing of vast amounts of data in little time. Lastly, this automated data

collection means that data can be collected in places that are too hostile for human

observers.

1.5.2 Genetics

Genetics is a field that focuses on the study of genes and heredity, i.e., how certain

traits are passed on genetically from parent to offspring. The field has grown greatly

over the past 20 years due to technological advancements (Nature, 2010) and the

completion of the Human Genome Project (Durmaz et al., 2015). These advancements

have resulted in a cost reduction of more than 99.9% to sequence (‘read in’) a single

human genome (Wetterstrand, 2023), making the use of large-scale genetic data much

more feasible. Genetic information is generally stored in deoxyribonucleic acid (DNA;

Hartl, 2020). DNA is a double-stranded molecule that is composed of a long strain of

four bases/nucleotides/constituents which are abbreviated to A (for adenine), G (for

guanine), T (for thymine), and C (for cytosine). DNA is stored in chromosomes, of

which humans generally have 23 pairs stored in our cells. A specific subset of the DNA

that is transmitted from parent to offspring is called a gene, and the total DNA in a

cell is called the genome. The position of a gene along the chromosome is called the

‘locus’ of that gene. The set of genes present in an individual is called the genotype,

and the physical expression of this genotype is called the phenotype (Hartl, 2020).

Genes exist in different variants or forms called ‘alleles’. Diploid organisms (such as hu-

mans) carry two alleles at every locus, one inherited from the mother and one from the

father (Hartl, 2020). Polymorphisms are genetic differences that are common among

individuals of the same species; genetic divergence constitutes the genetic diversity

that accumulates between species. A single-nucleotide polymorphism (SNP) is one in

which individuals within a population can differ in which nucleotide pair is present

at a locus. An SNP thus defines two alleles, and the analysis of these SNPs can be
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used to make inferences about the relationship/kinship among individuals within a

population.

Until recently, genetics has mainly been used as a way to uniquely identify individuals

for capture-recapture studies (e.g., Woods et al., 1999; Mills et al., 2000; Lukacs and

Burnham, 2005; Burgar et al., 2018), for example as an alternative to visual or acous-

tic surveys. However, the genetic profile of an individual holds more information than

simply a mark—it also holds information about the genetic relatedness to others in the

population (see above). In 2001, Skaug published the first version of a method that

could use the frequency of allele occurrence to estimate the abundance of animals in a

capture-recapture framework. This method generally relied on the sequencing of many

genetic samples, which was too costly at the time. In the decade that followed, how-

ever, the reduction in sequencing costs stimulated further development of the method,

which was formalised in 2016 as close-kin mark-recapture (CKMR; Bravington et al.,

2016b). The main idea behind this method is that probability of certain types of

relatedness/kinship among individuals (e.g., parent-offspring, half-sibling) can be ex-

pressed as a function of the expected relative reproductive output (ERRO) of an adult,

which is strongly related to the total adult population size (Bravington et al., 2016b).

CKMR therefore, can only be used to estimate the size of the reproductive population;

other methods and/or assumptions are required to estimate the total abundance. More

details on this method are presented in Chapter 4.

1.5.3 Photo and video

Over the past several decades, researchers have increasingly used remote photo and

video to study wildlife (Rowcliffe and Carbone, 2008; Gilbert et al., 2021). One type

of use involves camera trapping, which means that cameras take at least one photo or

a short video whenever they are triggered by a motion sensor. Camera trapping has

been used to study various elements of wildlife ecology, such as behaviour, abundance,

distribution and community structure (Rovero et al., 2013). Most of the studies that

estimate absolute abundance from camera traps did so only for marked species (Burton

et al., 2015; Gilbert et al., 2021). Nearly all studies on unmarked populations only

estimated relative abundance or focused on occupancy modelling (MacKenzie et al.,

2002). Another method that estimates abundance without the need for (natural)

marks is random encounter modelling (REM; Rowcliffe et al., 2008). REM estimates
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density from encounter rates on camera systems by assuming that animals’ movement

can be approximated by the way gas molecules move around in space. In Chapter 5

we present more detail on REM. Moreover, we present a study that explores potential

to using REM to estimate density from baited camera traps, which is challenging as

REM relies on the assumption that animals move independently with respect to the

cameras.

1.6 Statistical notation

Throughout this work, we do not distinguish between probability mass functions (pmfs)

or probability density functions (pdfs)—both are denoted f(x), where x denotes the

random variable. We try to keep notation as clear and consistent as possible, whilst also

respecting the existing literature on the various topics. This inevitably leads to some

contradicting (re-)use of variables between chapters. These changes are always made

explicit; in fact, variables are clearly defined when first introduced in each chapter, even

if they have been declared previously in this work. In general, we do not distinguish

between random variables and observed values. This distinction should be clear from

context, or is made explicitly where the context does not make it clear.

1.7 Summary of thesis

This thesis is structured following three case studies: acoustic recordings of a migrating

population of bowhead whales north of Alaska and Canada (Chapters 2 and 3), genetic

samples of a grey reef shark population from the tropical Palmyra Atoll (Chapter 4),

and baited video recordings of sharks that live around Chagos Archipelago (Chapter

5). Chapter 6 consists of a closing discussion and remarks on future research. Below

we present summaries of the three case studies.

1.7.1 Acoustic spatial-capture recapture for migrating bowhead whales

in the Beaufort Sea

Passive acoustic monitoring is a promising method for surveying wildlife populations

that are easier to detect acoustically than visually. When animal vocalisations can be
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uniquely identified on an array of sensors, the potential exists to estimate population

density through acoustic spatial capture-recapture (ASCR). However, sound classifi-

cation is imperfect, and in some situations a high proportion of sounds detected on

just a single sensor (‘singletons’) are not from the target species. We present a case

study of bowhead whale calls (Balaena mysticetus) collected in the Beaufort Sea in

2010 containing such false positives. In Chapter 2, we propose a novel extension of

ASCR that is robust to false positives by truncating singletons and conditioning on

calls being detected by at least two sensors. We allow for individual-level detection

heterogeneity through modelling a variable sound source level, model inhomogeneous

call spatial density, and include bearings with varying measurement error. We show

via simulation that the method produces near-unbiased estimates when correctly spec-

ified. In Chapter 3, we propose a further extension of the model that involves a more

sophisticated detection function using the signal-to-noise ratio. This involves more

methodological complexity and additional information on (ocean) noise.

1.7.2 Close-kin mark-recapture for grey reef sharks on Palmyra Atoll

Close-kin mark-recapture (CKMR) relies on the observed frequency and type of kinship

among individuals sampled from the population to estimate population size. Knowl-

edge of the age of the individuals, or a surrogate thereof, is essential for inference with

acceptable precision. One common approach, particularly in fish studies, is to mea-

sure animal length and infer age using an assumed age-length relationship (a ‘growth

curve’).

In Chapter 4, we present a simulation study to test the effect of misspecifying the length

measurement error and the growth curve on population size estimation. Simulated

populations represented two fictional shark species, one with a relatively simple life

history and the other with a more complex life history based on the grey reef shark

(Carcharhinus amblyrhynchos). We estimated sex-specific adult abundance, which we

assumed to be constant in time. We observed small median biases in these estimates

ranging from 1.35% to 2.79% when specifying the correct measurement error standard

deviation and growth curve. CI coverage was adequate whenever the growth curve

was correctly specified. Introducing error via misspecified growth curves resulted in

changes in the magnitude of the estimated adult population, where underestimating age

negatively biased the abundance estimates. Over- and underestimating the standard
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deviation of length measurement error did not introduce a bias and had negligible

effect on the variance in the estimates.

1.7.3 bREM: adapting random encounter modelling for data from

baited remote underwater video systems

Abundance estimation from camera footage has mostly been undertaken using capture-

recapture methods for marked populations. Random encounter modelling (REM) can

estimate density and absolute abundance for unmarked populations from the encounter

rate on camera traps. One of the main assumptions is that animals move around

randomly with respect to the cameras. In Chapter 5, we explore the potential of using

REM for baited cameras. The bait is placed in front of the camera to lure animals in,

resulting in an inflated encounter rate relative to unbaited cameras. When unaccounted

for, this leads to positively biased estimates of density and absolute abundance. This

study was motivated by footage from baited remote underwater video (BRUV) systems

of several shark species on and around the Chagos Archipelago, a remote island system

in the Indian Ocean.

One challenge introduced by the bait is that the bait plume (i.e., the area over which

scent from the bait can be detected) covers a much larger area than the field-of-view

(FOV) of the cameras. Accurately estimating the bait plume area therefore is essential

to properly estimate the sampled area, which in turn is required to estimate density.

It also means that the encounter moment is no longer the moment the shark enters

the FOV of the camera, but rather the moment it encounters the plume. We estimate

this moment, we find an analytical solution to the expected distance from the camera

for a given bait plume. Moreover, we perform a simulation study to evaluate how a

bait plume spreads under various current conditions.

1.8 Data and code availability

The code and data used for model fitting and simulation in Chapter 2 are publicly

available at https://www.doi.org/10.5281/zenodo.10848178.

https://www.doi.org/10.5281/zenodo.10848178
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The code used for simulation in Chapter 4 is publicly available at https://www.doi.

org/10.5281/zenodo.10727210.

https://www.doi.org/10.5281/zenodo.10727210
https://www.doi.org/10.5281/zenodo.10727210


Chapter 2

Accommodating false positives

within acoustic spatial

capture-recapture, with variable

source levels, noisy bearings and

an inhomogeneous spatial density

2.1 Introduction

In recent decades, passive acoustic monitoring (PAM) has increasingly been used to

study both terrestrial (Sugai et al., 2019) and marine animals, particularly cetaceans

(Zimmer, 2011). Compared with more traditional visual survey methods, acoustic

monitoring works day and night, is robust to variation in environmental conditions

such as weather, and in some habitats has the potential to detect animals at greater

distances, hence increasing the area surveyed (Marques et al., 2011). It has enabled

studies of rare and elusive species such as the vaquita (Thomas et al., 2017) and several

species of beaked whale (Hildebrand et al., 2015; Yack et al., 2013) which, despite being

visually cryptic, produce frequent sounds that can be detected by PAM systems.

15
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One important application of PAM is to estimate population density or abundance

(Marques et al., 2013). In the situation where multiple acoustic sensors are deployed

simultaneously with a spatial separation such that some vocalisations can be detected

on multiple sensors then an appropriate statistical framework for estimating density

is spatial capture-recapture (SCR; also known as spatially explicit capture-recapture)

(e.g., Borchers et al., 2015; Stevenson et al., 2015). SCR is an extension of long-

established capture-recapture (otherwise known as mark-recapture or mark-resight)

methods where data on the detection (‘capture’) of individually-identified animals is

supplemented by data on the spatial location of the survey effort and the detections

(Borchers and Efford, 2008; Royle et al., 2009; Kidney et al., 2016). Recording not just

whether but also where each animal was detected increases the accuracy of abundance

and density estimates and potentially allows estimation of a spatially inhomogeneous

animal density surface.

Acoustic spatial capture-recapture (ASCR) is a special case of SCR where the detec-

tions are of individual animal vocalisations or ‘cues’. Standard SCR relies on animals

moving between detection locations and hence typically requires multiple capture oc-

casions, while in ASCR the sound travels almost instantaneously from its source and

hence can be detected on multiple sensors in a single occasion. Estimation is of cue

spatial density; to convert to animal density an estimate of average cue production

rate is required (Marques et al., 2013; Stevenson et al., 2021). As well as the location

of detection, additional information is often available about the location of the vocal-

isation, e.g., the bearing, received sound level or time of arrival on multiple sensors.

Borchers et al. (2015) showed that using this additional information further improved

estimation accuracy.

PAM data can also present challenges that need to be accounted for in order to avoid

bias in ASCR analysis. First, sound classification is imperfect, leading to false posi-

tive detections of sounds not originating from the target species. Second, vocalisation

source level can vary considerably, causing heterogeneity in detectability. Third, there

can be considerable measurement error in the additional information, particularly the

bearings. Fourth (in common with other SCR studies), spatial density of source loca-

tions can vary substantially.

The methods presented here are motivated by a case study that demonstrates all four
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Figure 2.1: Map of the DASAR deployment locations from 2008-2014, with a de-
tailed view of site 5. In 2010, detector F at site 5 malfunctioned and its data was
omitted from the analysis. This image was originally presented in Thode et al. (2020).

of the above issues: estimation of call density of bowhead whales (Balaena mystice-

tus) migrating through the Beaufort Sea. Multiple arrays of acoustic sensors were

deployed in the Beaufort Sea during the migration season and recorded millions of

bowhead whale calls (see Figure 2.1). Automated detection and classification methods

were therefore used to process the data, yielding call detections, received sound levels

and bearings, and linking calls across detectors. However, a high proportion of the

detections made on only one sensor (‘singletons’) were thought to be false positives.

Naively including these singletons in the analysis would lead to a positive bias in the

estimated abundance of unknown but likely substantial magnitude. To avoid this, we

excluded all singletons from the analysis and conditioned the ASCR likelihood to only

include calls detected on multiple sensors (‘multiply-detected calls’). Truncating the

data in this manner, rather than attempting to model the proportion of false positives,

is a good strategy when data are plentiful (see Discussion). Conn et al. (2011) pro-

posed a similar procedure in a mark-resight study as a way to differentiate between

resident and transient bottlenose dolphin populations, assuming that transients were

never detected more than once. To our knowledge, this is the first time this approach

has been used in SCR.

Our case study features some additional complications that may commonly appear

in real-world data but are not typically all dealt with. Call source level was thought

to vary substantially and so we include source level as a random effect in our model.

Exploratory analysis showed that, while most estimated bearings were accurate, some
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appeared to be very inaccurate. We therefore developed a two-part discrete mixture

model for bearing error, extending the bearing error methods of Borchers et al. (2015).

Finally, we allowed for an inhomogeneous density model to accommodate the spatial

preference of the migrating whales (and thus their calls).

In Section 2.2 we describe the case study in more detail. We then present the extended

ASCR model in Section 2.3. In Section 2.4 we evaluate the model performance via

simulation, and show how ignoring some of the real-world issues can result in substan-

tial bias. Section 2.5 gives results from a proof-of-concept application of the model

to a single day of data. Finally, in Section 2.6, we discuss results, limitations, and

alternatives.

2.2 Case study

Every year from August to October, the Bering–Chukchi–Beaufort population of bow-

head whales (Balaena mysticetus) migrates westwards through the Beaufort Sea to

their wintering areas in the Bering Sea (Blackwell et al., 2007). They travel mainly

over the continental shelf in waters less than 25 meters deep, approximately 10–75 km

offshore (Greene et al., 2004). During this migration, bowhead whales are known to

produce a wide variety of calls (Ljungblad et al., 1982). The purpose of these calls

remains largely unknown, although they may be used for long-range communication

(Thode et al., 2020) or to navigate through ice (George et al., 1989).

Between 2007 and 2014, up to 35 Directional Autonomous Seafloor Acoustic Recorders

(DASARs; Greene et al., 2004) were deployed at several sites off the north coast of

Alaska to monitor the calling behaviours of the migrating whales during seismic sur-

veys. An automated detection and classification procedure was developed to handle

the more than one million detected calls over the period 2007–2014 (Thode et al.,

2012, 2020). This procedure could identify discrete sounds as bowhead whale calls,

and subsequently link them with detections from other DASARs within the array if

they were the same call (Thode et al., 2012).

Even though it was not the original purpose of the monitoring, the detection and linking

of calls created detection histories for every detected call, making these data suitable

for ASCR. ASCR theory assumes capture histories without errors, i.e., calls can be
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Figure 2.2: Counts of detected calls by number of DASARs (sensors) involved per
call at site 5 on 31 August 2010. Detections were included if the received level was at
least 96 dB. The high proportion of singletons (detections on a single DASAR; 1417)
raised concerns about the validity of those calls. The dashed line shows the number
of singletons (570) that were estimated to be valid using the methods developed in

this paper.

missed but not incorrectly positively identified or matched. Several data cleaning

procedures were required to meet this assumption as far as possible. Sometimes, calls

would be wrongly identified as other discrete sounds. Distant airgun signals were

occasionally misidentified as bowhead whale calls; bearded seals (Erignathus barbatus)

and walruses (Odobensu rosmarus divergens) could appear similar as well, but these

were generally rare and much quieter (Thode et al., 2012). Moreover, if bowhead

whale calls overlapped in time, they could be incorrectly matched as being the same

call. Cheoo (2019) showed that the number of detection histories that involved just

one sensor (‘singletons’) in the automated data was not in line with expectations based

on sound propagation theory (see Figure 2.2). It was therefore hypothesised that these

singletons contain a high-degree of incorrectly classified calls (‘false positives’), mostly

consisting of random fluctuations in the noise field or reverberations of whale calls,

which were unlikely to be associated among multiple detectors. The solution we present

here is to exclude singleton detection histories all together and modify the ASCR

likelihood to be conditional on the capture histories involving at least two sensors. To

ensure that the multiply-detected calls would contain no false positives, we cleaned
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the remaining data using a procedure described in Appendix A in Supplementary

Materials.

In this study, we focus on the data from one specific day, 31 August 2010, from site 5,

the most eastward site. Calls accumulated somewhat evenly across the day, resulting in

a low expected rate of overlapping calls. The array consisted of six functioning sensors

spaced at 7 kilometres from each other (see Figure 2.1). For every call the following

data were recorded: a detection history with the recorded bearings and received sound

levels, as well as noise levels for every involved DASAR. The source level and origin of

the call are unobserved, and hence treated as latent variables. Throughout this chapter,

all sound measurements are denoted on the decibel scale (RMS; dB re 1 µPa). More

details on the background, availability, and pre-processing of the data are presented in

Appendix A in Supplementary Materials.

2.3 Model

In this section, we first introduce the full likelihood. Following that, we derive each

element of the likelihood individually. Consider an acoustic survey of an array of K

sensors operating within a survey region A ⊂ R2 over a period of time T . A total of n

unique animal calls are detected by at least two sensors. For any multiply-detected call

i ∈ 1, ..., n, let ωij be 1 if the call was detected at sensor j ∈ 1, ...,K, and 0 otherwise.

We define the matrix containing all detection histories as Ω = (ω1, ...,ωn)
⊤, where

the detection history for call i is denoted ωi = (ωi1, ..., ωiK)⊤ and ⊤ denotes the

transpose. For every call i that was detected at sensor j, we also observe the bearing

yij , measured in degrees clockwise relative to true north, and the received sound level

rij . These data are contained in Y = (y1, ...,yn)
⊤ and R = (r1, ..., rn)

⊤, respectively.

Latent variables are the spatial origins of calls, denoted by X = (x1, ...,xn)
⊤ where xi

is a location in the Cartesian plane, and the source levels, denoted by s = (s1, ..., sn)
⊤.

The support for s is denoted S. Throughout this chapter, we do not distinguish

explicitly in notation between random variables and specific observations/realisations

– this should be clear from the context.

The parameter vectors used in the model are (following previous literature as closely

as possible): ϕ for parameters associated with the spatial density of emitted calls, ν
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for those associated with the source levels of calls, η for those associated with source

sound propagation and received levels, θ for those associated with detectability of calls,

and γ for those associated with measurement error of the bearings. For notational

convenience we define the joint parameter vector ξ = (ϕ,ν,η,θ,γ). A list of model

assumptions is presented in Section 2.3.10.

Table 2.1: Summary of notation.

Symbol Description Type

General
n Number of multiply-detected calls Observed
p Detection probability of an emitted call Function
tr Detection threshold for calls Known
w Detection indicator Observed
r Received level Observed
y Bearing Observed
x Spatial origin Latent
s Source level Latent
S Support for source level Support
f Probability density/mass function Function
Lf ,Lc Full likelihood, conditional likelihood Function

Quantities related to the survey
K Total number of sensors Observed
A Study area Support
T Study period Observed

Estimable parameters
ϕ Spatial density of emitted calls Parameter vector
η Source sound propagation Parameter vector
ν Distribution of source levels Parameter vector
θ Detectability of calls Parameter vector
γ Measurement error of bearings Parameter vector
ξ All estimable parameters Parameter vector

Subscript and sets
i Call index
j Sensor index
R Set of all received levels Observed
Ω Set of all detection histories Observed
Y Set of all bearings Observed
X Set of all spatial origins Latent
s Vector of all source levels Latent
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2.3.1 Likelihood specification

The likelihood is formed from the joint distribution of all observed and latent variables

introduced above. We denote this likelihood Lf (ξ) where the subscript f stands for

‘full’ to distinguish it from the conditional likelihood Lc(ξ) which is conditional on the

observed number of detections. Denoting both probability mass and density functions

as f(.), we define the full likelihood as

Lf (ξ) = f(n,Ω,Y ,R,X, s; ξ)

= f(n;ϕ,θ,ν)× f(Ω,Y ,R,X, s|n; ξ)

= f(n;ϕ,θ,ν)× Lc(ξ).

(2.1)

As we do not observe the call locations and source levels, we marginalise over the

unobserved X and s to obtain

Lc(ξ) =

∫
S

∫
A
f(Ω,Y ,R,X, s|n; ξ)dXds. (2.2)

The double integral in Equation (2.2) is of dimension 3n, making this likelihood in-

tractable. We follow Stevenson et al. (2015) in assuming calls to be independent of

each other in all respects, allowing us to specify Equation (2.2) as the product of n

3-dimensional integrals:

Lc(ξ) ≡
∏

i∈{1:n}

∫
S

∫
A
f(ωi,yi, ri,xi, si|ω∗

i ≥ 2; ξ)dxidsi

=
∏

i∈{1:n}

∫
S

∫
A
f(ωi|xi, si, ω

∗
i ≥ 2;θ)

× f(yi|ωi,xi;γ)× f(ri|ωi,xi, si;η)

× f(xi|si, ω∗
i ≥ 2;ϕ,θ)

× f(si|ω∗
i ≥ 2;ϕ,θ,ν)dxidsi

(2.3)

where we assume independence between yi and ri given xi, and ω∗
i :=

∑
j∈1:k wij

denotes the total number of sensors involved in the detection of call i. The separation

of the joint distribution inside the integrals in Equation (2.3) follows from repeatedly

applying Bayes’ formula. Note that conditioning the joint distribution on n in Equation

(2.2) is equivalent to conditioning every marginal distribution on involving at least two
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sensors in Equation (2.3); for the second and third element this conditioning is implicit

in conditioning on detection history ωi. If we were to assume a constant spatial density

of calls, it would be sufficient to simply maximise Lc, as the parameter estimates from

the conditional MLE are identical to those obtained by maximising the full likelihood

– a Horvitz Thompson-like estimator could then be used to derive the mean density

(Borchers and Efford, 2008). In our case study, however, the spatial density of calls is

known to be inhomogeneous, so the full likelihood is required.

In the following sections, we specify in further detail f(n;ϕ,θ,ν) and the five com-

ponents in Equation (2.3). For readability we will hereforth omit the indexing of

parameters in the probability functions.

2.3.2 Detection probability, p(xi, si)

A fundamental part of ASCR is the concept of a detection probability, which is the

probability that an emitted call is detected by a sensor—this is the way ASCR accom-

modates for missed calls, i.e., false negatives. The function that relates this probability

to covariates is called the detection function, denoted p(.). For ASCR it was proposed

to be most appropriate to use a detection function based on the received (sound) level,

also known as signal strength, which is primarily a function of source level si and range

(i.e., distance to the origin of the sound, d(x)) (Efford et al., 2009; Stevenson et al.,

2015). We propose a detection function for sensor j where g0 ∈ (0, 1) denotes the

detection probability when the true received level of a call surpasses threshold tr, and

zero probability else, as follows

pj(xi, si) = g0 ×
(
1− Φ

(
tr − E[rij |xi, si])

σr

))
, (2.4)

where Φ denotes the standard normal cumulative distribution function (cdf) and σr

denotes the measurement and propagation error on received level (see Section 2.3.4).

The threshold tr should be set by the analyst, and in this study is roughly equal to the

maximum level of ocean background noise. As there is error on the received levels, calls

with an expected received level close to tr can have a detection probability between 0

and g0. For example, we get a detection probability of 0.5× g0 whenever the expected

received level equals the threshold.
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2.3.3 Detected calls, f(n)

To construct a probability function for the number of detected calls, we start with the

distribution of emitted calls, which are assumed to occur independently of one another

in space and time. Thus, let the number of emitted calls at point x in period T be

a realisation of a spatially-inhomogeneous Poisson point process with intensity D(x).

As we only observe multiply-detected calls, we take the product of this intensity and

the probability of a detection involving multiple sensors, denoted by

p.(xi, si) = P(ω∗ ≥ 2|xi, si)

= 1− P(ω∗ = 0|xi, si)− P(ω∗ = 1|xi, si),
(2.5)

where ω∗ :=
∑

j∈1:k ωj . Note that Equation (2.5) is the part of the method that

deviates from conventional ASCR and allows us to exclude all singletons. We rewrite

Equation (2.5) and marginalise over source level to get the filtered Poisson point process

with spatially varying rate parameter
∫
S D(x)p.(x, s)f(s)ds. Lastly, we marginalise

over x to get the distribution of the total number of multiply-detected calls over time

T :

n ∼ Poisson

(∫
A

∫
S
D(x)p.(x, s)f(s)dsdx

)
. (2.6)

The total number of (emitted) calls is then estimated by integrating the estimated

density over the study area, such that N̂ =
∫
A D̂(x)dx..

2.3.4 Received level, f(ri|ωi,xi, si;η)

Sound waves propagating through water lose strength through various mechanisms

(Jensen et al., 2011), a process known as ‘transmission loss’. We approximate this

process by allowing a single parameter βr to determine the acoustic transmission loss,

such that

E[rij |xi, si] = si − βr log10(dj(xi)), (2.7)

where dj(xi) returns the distance from sensor j to location xi. Here, βr = 20 would

reflect purely spherical spreading loss while βr = 10 would reflect cylindrical spreading

loss; in reality the dominant process will be range- and depth-dependent, with other

factors also playing a role (Jensen et al., 2011). To capture potential error in the

propagation model and the measurement of received level, we follow Stevenson et al.
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(2015) and assume Gaussian error on the received levels, giving

rij |xi, si ∼ N
(
E[rij |xi, si], σ

2
r

)
(2.8)

where N
(
µ, σ2

)
denotes a normal distribution with mean µ and variance σ2. Unlike

Stevenson et al. (2015), we do not assume all calls above threshold tr to be detected

with certainty. Instead, we allow for a single detection probability for calls with re-

ceived levels above the threshold, since the signal processing used in our case study

meant that other factors also determined detectability (see Section 2.3.2). As rij is

only recorded if sensor j detected the call, we condition the indexing on the jth DASAR

detecting the call and thus only evaluate cases where ωij = 1. Assuming independence

between the sensors, the third component of Equation (2.3) becomes

f(ri|ωi,xi, si;η) =
∏

j∈{1:k|ωij=1}

f(rij |ωij = 1,xi, si)

=
∏

j∈{1:K|ωij=1}

1

σr

ϕ ((rij − E[rij |xi, si])/σr)

1− Φ((tr − E[rij |xi, si])/σr)
,

(2.9)

where ϕ denotes the standard normal probability density function (pdf). This is in

effect a normal distribution truncated at tr. An alternative formulation would be

to take the product over all K sensors but set f(rij |ωij ,xi, si) equal to 1 whenever

wij = 0 (see Stevenson et al., 2015). The reason that no detection probability appears

in Equation (2.9) is that we condition on a positive detection.

2.3.5 Bearings, f(yi|ωi,xi;γ)

DASARs were designed to record the direction to discrete sounds; these recorded bear-

ings contain measurement errors. Following Stevenson et al. (2015) and Borchers et al.

(2015), we capture this error by assuming a Von Mises distribution with concentration

parameter κ on the bearings. Analogous to the received levels, we only record bearings

at DASARs that detected a call. Assuming that the sensors are independent of each

other, the second component of Equation (2.3) would therefore be

f(yi|ωi,xi;γ) =∑
j∈{1:K|wij=1}

exp{κ cos(yij − E[yij |xi])}
2πI0(κ)

,
(2.10)
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with I0 denoting the modified Bessel function of degree 0. Exploratory research found

that, while most bearings appeared relatively accurate, a small proportion seemed

highly inaccurate, which could have been the result of i) only a fraction of the call

getting captured by the measurement window of the sensor, or ii) a low signal-to-noise

ratio at the sensor (the latter should be rare as we truncated the data at a sound level

equal to the highest noise observed). Moreover, some of the mismatched calls could

still have been present in the data, thus leading to disagreement among the bearings.

To accommodate these inaccurate bearings we apply a 2-part discrete mixture model

on the bearings. In effect, we fit a Von Mises distribution with a lower accuracy

(dispersion is κ) for some proportion of the bearings, ψκ, and a Von Mises distribution

with higher accuracy (dispersion is κ+ δκ, where increment δκ is non-negative) to the

remaining proportion of the bearings, 1−ψκ. The second component of Equation (2.3)

thus becomes

f(yi|ωi,xi;γ) =∑
j∈{1:K|wij=1}

ψκ
exp{κ cos(yij − E[yij |xi])}

2πI0(κ)

× (1− ψκ)
exp{(κ+ δκ) cos(yij − E[yij |xi])}

2πI0(κ+ δκ)
.

(2.11)

2.3.6 Call location given s and at least two detections, f(xi|si, ω∗
i ≥

2;ϕ,θ)

To evaluate the pdf of call locations, we assume independence between call locations

and source levels, and use Bayes’ formula to obtain

f(xi|si, ω∗
i ≥ 2;ϕ,θ) =

f(ω∗
i ≥ 2|xi, si)f(xi|si)∫

A f(ω
∗
i ≥ 2|x, si)f(x|si)dx

=
p.(xi, si)f(xi)∫

A p.(x, si)f(x)dx
.

(2.12)

Although f(xi) is unknown, we do know that it is proportional to the emitted call

density, such that f(xi) = D(xi)/
∫
AD(x)dx. Thus we can simplify Equation (2.12)
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as

f(xi|si, ω∗
i ≥ 2;ϕ,θ) =

p.(xi, si)D(xi)/
∫
AD(x)dx∫

A p.(x, si)D(x)/
∫
AD(q)dqdx

=
p.(xi, si)D(xi)∫

A p.(x, si)D(x)dx
.

(2.13)

2.3.7 Source level given at least two detections, f(si|ω∗
i ≥ 2;ϕ,θ,ν)

Analogous to above, we assume independence between and among call locations and

source levels, to derive

f(si|ω∗
i ≥ 2;ϕ,θ,ν) =

f(ω∗
i ≥ 2|si)f(si)
f(ω∗

i ≥ 2)

=

∫
A p.(x, si)D(x)dx× f(si)∫
A
∫
S p.(x, s)f(s)D(x)dsdx

.

(2.14)

Note that a part of the numerator in Equation (2.14) cancels out against the denom-

inator in Equation (2.13), and that the denominator of Equation (2.14) denotes the

effective sampled area. Thode et al. (2020) estimated source levels using the estimated

origin of the call, the received level on the sensor nearest the origin, and a transmission

loss parameter βr of 15. Based on the observed distribution of these estimated source

levels, we assume a normal distribution on si truncated at 0, such that

s ∼ N∞
0 (µs, σ

2
s). (2.15)

2.3.8 Detection history, f(ωi|xi, si, ω
∗
i ≥ 2;θ)

If we assume sensors to be independent, we can view the detection history of a call as

a realisation of a binomial process with size K and non-constant probability pj with

j = 1, ..,K, where the order is relevant and hence the binomial coefficient is absent.

This gives

f(ωi|xi, si, ω
∗
i ≥ 2;θ) =

∏K
j=1 pj(xi, si)

ωij (1− pj(xi, si))
1−ωij

p.(xi, si)
, (2.16)

where p.(xi, si) appears in the denominator to account for the conditioning on at least

two sensors in every call detection history (see Equation (2.5)).
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2.3.9 Variance estimation

We do not use the Hessian matrix to extract standard errors, as these are only asymp-

totically normal. Instead, we estimate uncertainty using a non-parametric bootstrap,

where we re-sample the calls with replacement (Borchers et al., 2002) and fit the model

every time. Following that, we estimate the standard error by taking the standard de-

viation of all bootstrapped parameter estimates, and we take the 2.5% and 97.5%

percentiles to estimate their 95% confidence intervals.

2.3.10 Assumptions

The method presented in this chapter relies on several assumptions, as follows. Note

that these assumptions apply to all emitted calls irrespective of whether they were

detected and how many sensors were involved in a detection.

1. Call origins are a realisation of a Poisson point process, thus calls are

spatially and temporally independent. Because of this, we assume that the

number of calls is a Poisson random variable. The assumption is likely to be

violated due to the spatial dependence of a whale (when it calls several times),

the theorised communicative nature of the calls, and the possibility that bowhead

whales swim in groups (Shelden and Rugh, 1995). Violation likely mainly affects

uncertainty estimates, not point estimates. Thinning the data could ensure that

this assumption is closer to being met. Alternatively, one could bootstrap by

time blocks to ensure more robust variance estimates.

2. Calls are omnidirectional and equally detectable given only the re-

ceived level (i.e., no unmodelled heterogeneity). It is very likely that

other factors impact the detectability of these calls, such as the frequency and

duration. The direction and severity of a potential bias due to an incorrectly

specified detection function is not known.

3. Sensors are identical in performance and operate independently. This

means that we can model a single detection probability.

4. Calls are matched without error and identified correctly, but can be

missed (i.e., no false positives, but false negatives are allowed). This is



Acoustic spatial capture-recapture for bowhead whales with false positives 29

an essential assumption to the model, as we only allow for false negatives through

the concept of a detection probability, but not for false positives. Wrongly iden-

tified calls will lead to an overestimate of abundance. Incorrectly matched calls

will tend to lead to an underestimate of abundance.

5. The transmission loss model is correctly specified. Our propagation model

is relatively simple and assumes a single transmission loss parameter, and is surely

an oversimplification. A more complex (and realistic) propagation model could

be used, potentially calculating propagation loss in the target frequency band of

calls between all grid points and all sensors, and then using this as a look-up

table in a non-Euclidean SCR framework (Royle, 2018; Phillips, 2016). For the

current case study, we believe this would make relatively little difference to the

results since bathymetry is the main driver of variation in propagation loss in this

area and almost all calls are believed to have originated from the same shallow

shelf area as the sensors. However, this a topic worthy of further investigation.

6. Uncertainty on bearings and received levels are independent. One way

this assumption could be violated is if there are certain characteristics of the

water column that affect both the precision of the bearing measurements and

the received level measurements. This will likely not affect the point estimates.

7. Source level is independent of space and time. This assumption could be

violated for a variety of reasons. Firstly, if calls are communicative in nature,

then potentially this could make the loudness depend on space and time. Some

whales could also be louder than others, which means that the source level of

a call is dependent on space and time through the individuals who produced it.

Moreover, calls could be louder when ocean background noise is louder, an effect

that is also known as the ‘Lombard effect’ (Thode et al., 2020). When ocean

noise is then spatio-temporally independent, so is source level. We believe that

a violation of this assumption would mainly affect uncertainty estimates and not

point estimates.

8. Sounds that are incorrectly identified as bowhead whale calls (i.e.,

false positives) are never detected on more than sensor. This means

that by truncating the singletons we remove all potential false positives from the

data.
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2.3.11 Practical implementation

We fitted the model using maximum likelihood estimation (MLE) in R 4.1.0 (R Core

Team, 2023) with some components written in C++ and linked to R through the Rcpp

library (Eddelbuettel, 2013). We standardised the covariates in the density model to

improve the convergence. The estimates were found through optimisation with the

function nlminb() (R Core Team, 2023). We used a spatial mesh with non-uniform

grid spacing to reduce run-time, with increased grid spacing farther from the sensor

array (see Appendix B in Supplementary Materials for details).

2.4 Simulation study

We used simulations to evaluate the performance of the model under variable source

levels (scenario 1) and fixed source levels (scenario 2). Both scenarios featured measure-

ment error on bearings simulated from a two-part mixture model, and inhomogeneous

call density specified as follows:

log(D) = β0 + β1d+ β2d
2, (2.17)

where d denotes the (scaled) shortest distance to the coast. The parameter values used

were chosen to match those from the case study data analysis and are given in Table

2.2.

For each scenario, we simulated 100 data sets and analysed each data set with 5 models:

(a) the true model, i.e., that corresponding to the simulated scenario; (b) a model with

incorrect assumption about source level, i.e., for scenario 1 the model assumed fixed

source level and for scenario 2 the model assumed variable source level; (c) a simpler

bearing model assuming a von Mises distribution on bearing error but no two-part

mixture; (d) a model that omitted the bearing information altogether; and (e) a model

assuming a homogeneous spatial density. We did not include a simulation scenario

where we naively fit a model to false positives, as the effect on the estimates is already

known: it will induce a positive bias that will increase with increasing false positive

rate.
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Parameters Variable SL Constant SL

g0 0.6 0.6

βr 18.0 14.5
σr 2.7 4.5
µs 163.0 155.0
σs 5.0 -
κ 0.3 0.3
δκ 36.7 34.7
ψκ 0.1 0.1

β0 -12.0 -16.0
β1 45.0 57.0
β2 -53.0 -68.5

Table 2.2: The parameter values used for the simulation study. These were based
on initial fits to the real data, in order to keep the simulations as realistic as possible.

For each scenario and model combination (1a-e and 2a-e) we evaluated performance by

calculating the coefficient of variation (CV), relative error and relative bias in estimated

total number of calls. Further details are given in Appendix A.

2.4.1 Results

Both correctly specified models (1a and 2a) gave near-unbiased results (Figure 2.3).

Fitting a single source level model in the variable source level scenario (1b) introduced

a strong negative bias with low variance; fitting a variable source level in the fixed

source level scenario (2b) introduced a positive bias with high variance. Using an in-

correct, simple bearing model (1c and 2c) did not induce bias but did increase variance.

Ignoring the bearing information induced a small positive bias and greater variance

in the variable source level scenario (1d) but had little effect on the fixed source level

scenario (2d). Lastly, using an incorrectly specified constant spatial density model (1e

and 2e) resulted in severe overestimation of abundance (> 300% and > 200% bias for

variable and fixed source level scenarios, respectively).
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Figure 2.3: Relative error, relative bias and coefficient of variation for N̂ from 100
simulations. The black dots correspond to the relative bias (RB; the mean relative
error) and the grey shading shows the spread of relative error per scenario. The RB
and coefficient of variation (CV) for every scenario and model combination are shown
just above the x-axis. Simulation scenario 1 is variable sound source level and 2 is
fixed sound source level. Analysis model (a) is the true model, (b) the incorrect source
level model, (c) an incorrect simple bearing model, (d) a model with bearing data,

and (e) an incorrect homogeneous spatial density model.

2.5 Bowhead whale analysis

We used the proposed method to estimate bowhead whale call density and abundance

at site 5 on 31 August 2010. We used data from a single day, and as we present

our estimate as call density per day, we did not need to adjust for our study time

(T = 1). We set tr at 96 dB, as the observed background noise never surpassed this

level. The true call density surface is unknown and therefore we fitted several candidate

models, which we compared using Akaike’s information criterion (AIC; Akaike (1998)).

As the bowhead whales are thought to exhibit a spatial preference based on their

distance from the coast and ocean depth during fall migration (Greene et al., 2004),

we fitted a candidate set of 35 models containing combinations of distance and depth

as linear, quadratic or smooth covariates—see Appendix A for full details. Measures

of uncertainty in abundance (standard error, CV, and quantile coefficient of dispersion

(QCD)) were derived by bootstrapping the calls 999 times, refitting the AIC-best model

each time. The QCD is a relative measure and insensitive to outliers, and is defined as
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(Q3 −Q1)/(Q3 +Q1), where Q1 and Q3 are the first and third quartile, respectively.

To further illustrate the potential benefits of modelling source level heterogeneity, we

included point estimates of the best model equivalent with a fixed source level.

2.5.1 Results

The lowest AIC model included density modelled as a smooth function of distance

to coast and a quadratic relation with depth. We observe an increase in density,

followed by a decrease, as we increase the distance from the coast (Figure 2.4, left

panel). Moreover, density is higher just east of the sensor array, potentially due to

some effect of ocean depth. Even though we observe increases in uncertainty in the

southern regions and slightly in the north, overall QCD estimates are low (Figure 2.4,

right panel). Total abundance of bowhead whale calls was estimated at 5741 in the

study area, and the CVs of the parameter estimates varied considerably, ranging from

0.95% for µ̂s to 58.22% for ̂βs(depth).3 (Table 2.3).

2.6 Discussion

We have developed and tested a novel extension of acoustic spatial capture-recapture

by conditioning on a minimum of two detections per individual call. Removing single

detections may be necessary when the validity of these calls is challenged, and our

simulation study shows that the method gives unbiased results in both variable and

single source level scenarios. Even though this model applies to (marine) acoustic data,

the extension proposed can be applied to all forms of SCR. Fitting a single source level

model to variable source level data, thus ignoring heterogeneity in the detectability of

the calls, resulted in severe underestimation of abundance. This represents a cautionary

tale for other applications of SCR, both terrestrial and aquatic, when it is hypothesised

that there is some random variable affecting individual detectability—it does not have

to be something as tangible as a source level. Moreover, we confirmed results from

Stevenson et al. (2015) on adding bearing information to a SCR model and found a

further increase in precision when allowing for a mixture of ‘good’ and ‘bad’ bearings.

Finally, we also confirm that incorrectly assuming a constant call density surface can

lead to severe overestimates of the abundance. The notion that density of bowhead
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Figure 2.4: A map of the study site 5 from 31 August 2010 with the estimated
density surface (left) and the associated empirical quartile coefficient of dispersion
(QCD; right). Locations of the 6 DASARs are indicated with the triangles. The
square grid cells within 10 km of the array each have an area of 6.25 km2, and and
area of 25 km2 elsewhere. The density map corresponds to the model with the lowest
AIC, which is model 33 in Appendix A. The QCD is derived from 999 Monte Carlo

simulations based on the same model, where the calls are re-sampled.

whale(s) (calls) is highest 10–75 km from the coast (Greene et al., 2004) seems to be

confirmed by the best model, which finds a density that is highest a bit away from the

coast, but not too far. The high call spatial density in the northeastern part of the

study area (Figure 2.4) was unexpected, but could have been a consequence of using

only data from one day. This likely strongly violated the Poisson assumption about call

spatial location, since whale location is spatially auto-correlated, especially on small

time scales (Wursig et al., 1985). Alternatively, it has been hypothesised that the higher

estimated density of calls in the east could be due to the directionality of the calls or

the effect of water depth on sound propagation (Blackwell et al., 2012). In this study,

the authors observed 2.1 times as many calls east of the array as west. Future research

could explore whether a more gradual increasing/decreasing density slope is found if

more days were included in the analysis, resulting in reduced autocorrelation among

the call origins. Another extension could be to use a longer time-series and consider a

two-dimensional spatial density surface, e.g., through splines on latitude and longitude.
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Quantity Estimate SE CV (%) Single SL

N 5741.39 576.01 10.55 1916.06

g0 0.55 0.02 2.73 0.67
βr 17.05 0.33 1.91 13.86
σr 2.75 0.11 4.06 4.64
µs 158.46 1.50 0.95 151.04
σs 5.47 0.26 4.90 -
κ 0.77 0.17 21.95 0.62
δκ 45.49 3.02 6.54 40.23
ψκ 0.12 0.01 10.75 0.09

βintercept -265.65 7.92 2.99 -146.81
βs(depth).1 42.43 18.07 45.55 80.65

βs(depth).2 302.26 6.72 2.23 8.25

βs(depth).3 41.14 22.32 58.22 88.65

βs(depth).4 -141.57 6.88 4.89 -8.78

βs(depth).5 154.60 6.19 4.01 24.23

βs(d2c).1 159.48 4.47 2.82 59.19

βs(d2c).2 -449.58 15.55 3.47 -185.40

βs(d2c).3 101.06 4.29 4.26 33.88

βs(d2c).4 -109.30 5.10 4.69 5.14

βs(d2c).5 -224.66 11.13 4.96 -142.24

Table 2.3: The point estimates and associated uncertainties. SE is standard er-
ror, CV stands for coefficient of variation, and Single SL are point estimates from
the equivalent model without source level heterogeneity. N is a derived quantity;
g0 through ψκ are the observation parameters presented on the real scale; and the

remainder are the density parameters presented on their log link scale.

Another extension could be to use a longer time-series and consider a two-dimensional

spatial density surface, e.g., through splines on latitude and longitude. However, the

biological pattern of migration along the coast combined with limited sensor spacing

in the east-west direction means this may not produce improved inferences.

The model-based expected number of singletons was 570 whereas there were 1417

observed singletons, which is 149% more than expected and confirmed our suspicions

regarding false positives (see Figure 2.2).

An alternative to truncating singletons would be to retain all data and try to model

the occurrence of false positive detections. For example, one could assume that an

unknown proportion of detections are false positives and include a parameter for this
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proportion in an analogous way to the Mt,α model presented by Yoshizaki (2007).

Detection at any detector j could have three outcomes: no detection with probability

1− pj , false detection with probability αpj , and correct detection with probability pj .

Moreover, we would have to implement some modification of theMb model (Otis et al.,

1978) to account for a change in α for the multiply-detected calls, which would likely

involve an additional parameter. A benefit of this Mb,α model would be that it could

allow for false positives in multiply-detected calls, however, it increases complexity

and introduces hard-to-test assumptions on the false positive rate. Conn et al. (2014)

estimated a false positives rate for automated detections of seals from aerial surveys

by using a double sampling procedure. The model performed reasonably, but they

also found that the increased model complexity could cause issues. Given that a large

amount of acoustic data are potentially available (we used data from just one day),

including poor-quality data seemed undesirable given the additional complexity and

run time. Hence we consider the truncation approach developed here to be best for

our application of ASCR.

The main model in our study conditions on at least two positive detections for every

detection history, but can readily be extended to condition on a minimum of three or

more involved sensors. This requires generalising Equation 2.5 to

p.(x, s) =P(ω∗ ≥ ω∗
min|x, s)

=1− P(ω∗ = 0|x, s)− P(ω∗ = 1|x, s)

− ...− P(ω∗ = ω∗
min − 1|x, s),

(2.18)

where ω∗
min denotes the minimum number of sensors involved. Preliminary simulations

showed no apparent bias, although depending on the situation, conditioning this way

can rapidly reduce the amount of data available and hence decrease estimator precision.

This is illustrated by the relative frequencies in Figure 2.2. Moreover, excluding calls

with fewer associated sensors results in the remaining calls generally being louder calls.

If there is heterogeneity in source level between the bowhead whales (which violates

assumption 7), this could increasingly eliminate quieter whales.

We estimated variance empirically by bootstrapping the calls. This assumes indepen-

dence between the calls, which we know is violated as the calls are produced by whales

and whales are spatially auto-correlated. Moreover, calls can potentially trigger re-

sponses from nearby whales, leading to temporal correlation between them (Thode
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et al., 2020). Some of the spatial and temporal dependence was eliminated by re-

moving all detections with a received level below 96 dB, as this thinned the data,

assuming independence between call characteristics and ocean noise. To create more

accurate variance estimates, one could stratify the data by time and bootstrap these

time chunks, thereby removing some of the autocorrelation. Even better, one could

sample short time frames from several days and combine those to obtain the desired

amount of data to analyse, in which case the analysed observations themselves could

be assumed independent and likelihood-based variance estimates are acceptable (given

a large enough data set). The length and frequency of these time chunks will be case

specific, as this will depend on the calling behaviour of the studied species.

We estimated model parameters using MLE as opposed to in a Bayesian inferential

framework, with MLE having coding simplicity and reduced run time as the main

benefits. We did find that convergence was sometimes slowed due to flat likelihood

surfaces as a consequence of the many sources of variation in our model. Evaluating the

likelihood for the best model took around 19 seconds on a single core. Consequently,

it took over two weeks to fit the 999 models for the bootstrap procedure, where model

fitting was performed in parallel on 32 threads of an Intel® Xeon® Gold 6152 CPU. A

benefit of using a Bayesian framework would be the possibility to include informative

prior distributions based on previous research, especially on the latent variable source

level, which would likely improve convergence and may improve precision of density

and abundance estimates.

Our method derives a call abundance, which can be converted into an animal abun-

dance by correcting this estimate for the call rate, similarly to Marques et al. (2013).

Ideally, this call rate is estimated for the same population and alongside the collection of

the data, but this is not always possible. Blackwell et al. (2021) estimated a call rate for

the Bering–Chukchi–Beaufort population over a longer period of time. Naively dividing

our estimate of total calls by their median call rate estimate of 31.2 calls/whale/day (in-

terquartile range of 12–129.6 calls/whale/day) gives us N̂whales = 5741.39/31.2 ≈ 184

individuals. We present this number for illustration alone; for correct inference, one

should properly account for the variance around call rate and call abundance estimates.

Alternatively, there are methods that directly estimate animal density based on cues

(for more information, see e.g., Fewster et al. (2016) and Stevenson et al. (2019)).
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When background noise is highly variable, selecting a truncation level that ensures

that noise (almost) never surpasses the received level might result in most data being

discarded. When data are scarce, it may then be beneficial to use a detection function

based on the signal-to-noise ratio (SNR). We develop such a method in Chapter 3.

A potential weakness of the model is the fact that we assume the same propagation loss

model for the entire study area. For most of the study site this assumption is reason-

able, as it concerns a shallow plateau with little variation in ocean depth. However, the

ocean floor drops in the northern part of the study site, resulting in altered propagation

conditions. It is assumed that the bowhead whales migrate mainly over the shallow

plateau and hence depth-induced inhomogeneous propagation is not a practical issue

in our case study. In general, however, it is something that should be considered when

modelling sound propagation in variable (ocean) landscapes. Phillips (2016) and Royle

(2018) presented ways in which it is possible explicitly to model variable sound atten-

uation. Such a model requires accurate and sometimes high resolution information on

environmental variables that affect sound attenuation, such as ocean depth.

The model presented here extends the scope of SCR to provide reliable inference on

spatial density and abundance from passive acoustic data. Removing single detections

will also be of use in other SCR applications where single detections are unreliable – for

example when association between detections is not perfect such that repeat detections

of the same individual are sometimes incorrectly classified as single detections of a new

individual. This can happen in situations where natural animal characteristics are used

for identification, such as photo- and genetic-ID



Chapter 3

A signal-to-noise ratio detection

function for acoustic spatial

capture-recapture

3.1 Introduction

In Chapter 2, we truncated the data at a sound level that would avoid any situation

in which the background noise would be louder than the received sound level of a

call. To achieve this, we set the truncation value equal to at least the maximum noise

level. In acoustic spatial capture-recapture (ASCR), it is common practice to set a

truncation value and assuming a single detection probability of calls that surpass this

value(Dawson and Efford, 2009; Efford et al., 2009; Stevenson et al., 2015). When

noise is (highly) variable, however, truncating the data using the highest noise level

can result in removing a substantial amount of data, which can be a problem when data

are scarce. A model that uses a detection function that relies on the signal-to-noise

ratio (SNR), which is the ratio of the loudness of the signal to the loudness of the noise,

would not require the truncation of data. Occasional periods of high background noise,

when calls are harder to detect, no longer affect the periods with low background noise,

when calls are better more easily detected. In this chapter, we provide details of such a

model. We first derive the full likelihood, for which we use several sources of recorded

information: the detection histories, the bearings, the received levels and the noise

39
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levels. We assume that calls are independent of one other in all their characteristics,

similar to the previous chapter. In Section 3.2, we first derive the likelihood for a single

call. From there, we expand it to include all calls (Section 3.3). Finally, in Section 3.4

we provide some concluding remarks on the method and suggestions for future steps.

In this chapter, we only develop the methodology; we do not apply it to any real or

simulated data. However, it is anchored on the same case study as Chapter 2 (see

Section 2.2).

3.2 Probability density for a single call

We start by presenting this method for a single call, and then later expand to n calls.

Consider an acoustic survey using an array of K sensors operating within a survey

region A ⊂ R2 over a period of time T . The detection history is denoted by the vector

ω, where element ωj = 1 if the call was detected at sensor j, and 0 otherwise. Whether

a call gets detected at a sensor is a Bernoulli trial with some detection probability. We

define ω∗ =
∑K

j=1 ωj , where K is the total number of sensors in the array. Bearings

are denoted by the vector y, where element yj is the bearing from sensor j to the call

in radians clockwise relative to north if the call was detected, and NA (denoting not

available) otherwise. The measured received levels are the root-mean-square (RMS)

pressure over the frequency band of the call in dB re 1 µPa. They are denoted by vector

r, where element rj is the received level of the call at sensor j if the call was detected,

and NA otherwise. Noise, which refers to all acoustics other than the signal of interest

that could interfere with the detection, is denoted by vector c, where element cj is

the RMS in dB re 1 µPa of the noise at sensor j, measured over the same frequency

band as the call. Putting all of this together, we denote the joint probability density

function (pdf) for a single call as

f(ω,y, r|ω∗ ≥ 2, c). (3.1)

There are some call characteristics that are relevant to this density distribution, namely

the source level s and spatial origin of the call x, which are latent but we still include

in the model. We deal with these latent variables by marginalising over these variables,

as described in Section 3.2.2.
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3.2.1 Detection probability for sensor j, gj(x, s, cj)

Before we derive the joint density for the random variables, we need to define probabil-

ity of detection. Unlike the detection function in Chapter 2, we do not propose a step

function with a single detection probability, but rather a gradual detection function

that is a function of SNR (Küsel et al., 2011; Thode et al., 2020). The simplicity of a

step function might be preferable when data are scarce and/or many parameters are to

be estimated, but a gradual function is likely to be closer to the truth, as empirically

derived SNR detection functions have been found to in general be gradually increasing

(Küsel et al., 2011; Thode et al., 2020). In line with previous literature, we denote the

detection function for sensor j as

gj(x, s, cj) =

∫
R
p(r, cj)f(r|x, s, cj)dr, (3.2)

where R ∈ [0,∞) denotes the support for the received level, p(r, cj) denotes the de-

tection characteristic function, and f(r|x, s, cj) is the pdf of r given x, s and cj (see

Equation (3.18)). The detection characteristic function defines the relationship be-

tween SNR and detectability of the call at a sensor and can be any sensible function.

As an example, we will suggest one for the bowhead whale case study in Chapter

2. Exploratory analysis showed that the detection probability of bowhead whale calls

could be well below 1 even for calls with high SNR. We therefore should allow for

an upper asymptote smaller than one, as we want to allow for non-perfect detection

even at (very) high values of SNR. For example, one could use the Janoschek function

(Janoschek, 1957), which is denoted as follows:

p(r, c) = θU − (θU − θL) exp
{
−θR(r − c)θI

}
, (3.3)

where θL and θU are the respective lower and upper asymptote, θR > 0 is the rate

of increase, θI > 1 controls the inflection point, and r − c is the SNR, which is a

subtraction as r and c are denoted on the decibel scale. We set the lower limit θL to

0 to avoid negative probabilities.
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3.2.2 Joint distribution of the detection histories, bearings and re-

ceived levels, given two or more detections and noise, f(ω,y, r|ω∗ ≥
2, c)

We start by specifying the joint distribution of the observed random variables. We

know this distribution does not only depend on detection, but also on spatial origin

and the source level of the detected call. Since these variables are latent, we integrate

them out, which gives the following formula for the joint distribution

f(ω,y, r|ω∗ ≥ 2, c) =

∫
S

∫
A
f(ω,y, r,x, s|ω∗ ≥ 2, c)dxds, (3.4)

where S is the support for s, which in theory is (0,∞) but in practice it suffices to use

a smaller support as long as it sufficiently covers the probability density of s. Using

standard conditional probability theory we can rewrite this distribution as∫
S

∫
A
f(ω,y, r,x, s|ω∗ ≥ 2, c)dxds =∫
S

∫
A
f(ω,y, r|x, s, ω∗ ≥ 2, c)f(x|s, ω∗ ≥ 2, c)f(s|ω∗ ≥ 2, c)dxds.

(3.5)

We will now focus on each component in Equation (3.5) separately, starting with

f(s|ω∗ ≥ 2, c).

3.2.3 Distribution of the source level of the call, given at least two

detections and noise, f(s|ω∗ ≥ 2, c)

Using Bayes’ formula and the addition of latent variables similar to before, we can

rewrite the density f(s|ω∗ ≥ 2, c) as

f(s|ω∗ ≥ 2, c) =
f(ω∗ ≥ 2|s, c)f(s)

f(ω∗ ≥ 2|c)

=

∫
A f(ω

∗ ≥ 2|x, s, c)f(x)dx× f(s)∫
S
∫
A f(ω

∗ ≥ 2|x, s, c)f(x)f(s)dxds
.

(3.6)

Note that some probability density distributions, such as the one for source level, are

not denoted as conditional on noise. This is because the variables s and x are assumed

independent of noise. Thode et al. (2020) showed that under some circumstances the
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source level of bowhead whale vocalisations can be related to noise and other discrete

sounds; here we assume the two variables to be independent.

3.2.4 Distribution of the spatial origin and source level of the call,

given at least two detections, noise, and source level, f(x|s, ω∗ ≥
2, c)

In this section, we will start by emphasising the distinction between an emitted and a

detected call; we need to define the former before defining the latter. The probability

density of the spatial origin of an emitted call x is proportional to the call density at

x, D(x), that is f(x) ∝ D(x). The normalising constant is therefore the integral over

the study area,
∫
AD(x)dx, and this gives

f(x) =
D(x)∫

AD(x)dx
. (3.7)

We have not defined a spatial density model D(x) for the calls yet. It is common

practice to try several density models and then choose to best one using some criterion

such as Akaike’s information criterion (AIC; Akaike, 1998). The density f(x|s, ω∗ ≥
2, c) is

f(x|s, ω∗ ≥ 2, c) =
f(ω∗ ≥ 2|x, s, c)f(x|s, c)

f(ω∗ ≥ 2|s, c)

=
f(ω∗ ≥ 2|x, s, c)f(x)∫

A f(ω
∗ ≥ 2|x, s, c)f(x)dx

.

(3.8)

In both definitions we assume the distribution of emitted calls to be unrelated to s and

c, thus f(x|s, c) ≡ f(x) (note that this is not true for the distribution of detected calls,

which changes when s and c changes). As with Chapter 2, we assume s ∼ N (µs, σ
2
s).

Finally, we take the product of Equations (3.6) and (3.8), which gives

f(x|s, ω∗ ≥ 2, c)f(s|ω∗ ≥ 2, c)

=
f(ω∗ ≥ 2|x, s, c)f(x)∫

A f(ω
∗ ≥ 2|x, s, c)f(x)dx

×
∫
A f(ω

∗ ≥ 2|x, s, c)f(x)dxf(s)∫
S
∫
A f(ω

∗ ≥ 2|x, s, c)f(x)f(s)dxds

=
f(ω∗ ≥ 2|x, s, c)f(s)∫

S
∫
A f(ω

∗ ≥ 2|x, s, c) D(x)∫
A D(x)dx

f(s)dxds
× D(x)∫

AD(x)dx

=
f(ω∗ ≥ 2|x, s, c)D(x)f(s)

a
,

(3.9)
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where in the last step the constants
∫
AD(x)dx cancel out and a =

∫
S
∫
A f(ω

∗ ≥
2|x, s, c)D(x)f(s)dxds.

Finally, the distribution of f(ω∗ ≥ 2|x, s, c) is a probability mass function (pmf), where

ω∗ ≥ 2 can either attain the value 0 when a call is detected at most once or 1 when

detected twice or more. This is represented by the following:

f(ω∗ ≥ 2|x, s, c) = 1− P(ω∗ = 0|x, s, c)− P(ω∗ = 1|x, s, c)

= 1−
K∏
j=1

(1− gj(x, s, cj))

−
K∑
j=1

gj(x, s, cj) ∏
k∈{1:K|k ̸=j}

(1− gk(x, s, ck))

 .

(3.10)

where detection function gj(x, s, cj) is specified in Equation (3.2). Equation (3.10)

can readily be extended to set the minimum number of detections per call at 3, 4,

etc. (although the formula and computational complexity significantly increases, as

was discussed in Chapter 2).

3.2.5 Joint distribution of the capture history, bearings and received

level for a call, given its spatial origin, source level, at least two

detections and noise, f(ω,y, r|x, s, ω∗ ≥ 2, c)

First, we observe that

f(ω,y, r|x, s, ω∗ ≥ 2, c) = f(ω|x, s, ω∗ ≥ 2, c)× f(y|ω,x, s, ω∗ ≥ 2, c)

× f(r|y,ω,x, s, ω∗ ≥ 2, c).
(3.11)

Since y and s are unrelated, and so are r and y, we can rewrite Equation (3.11) as

f(ω,y, r|x, s, ω∗ ≥ 2, c) = f(ω|x, s, ω∗ ≥ 2, c)× f(y|ω,x, ω∗ ≥ 2, c)

× f(r|ω,x, s, ω∗ ≥ 2, c).
(3.12)
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We now evaluate this joint density from left to right, starting with the density of

f(ω|x, s, ω∗ ≥ 2, c). First, we rewrite f(ω|x, s, ω∗ ≥ 2, c) as

f(ω|x, s, ω∗ ≥ 2, c) =
f(ω∗ ≥ 2|ω,x, s, c)f(ω|x, s, c)

f(ω∗ ≥ 2|x, s, c)

=
1× f(ω|x, s, c)
f(ω∗ ≥ 2|x, s, c)

=
f(ω|x, s, c)

f(ω∗ ≥ 2|x, s, c)
.

(3.13)

Conditioning on the detection history gives a probability of two or more detections,

since the probability of detection at least twice is implied by the existence of the

detection history.

We can view the detection history of a call as a set of Bernoulli trials of size K and

non-constant probability gj(x, s, c) with j = 1, ..,K. This gives

f(ω|x, s, ω∗ ≥ 2, c) =

∏K
j=1 gj(x, s, cj)

ωj (1− gj(x, s, cj))
1−ωj

f(ω∗ ≥ 2|x, s, c)
. (3.14)

The second term in Equation (3.11) is f(y|ω,x, ω∗ ≥ 2, c), which we can rewrite as

f(y|ω,x, ω∗ ≥ 2, c) =
f(ω∗ ≥ 2|y,ω,x, c)f(y|ω,x)

f(ω∗ ≥ 2|ω,x, c)

=
1× f(y|ω,x)

1
= f(y|ω,x),

(3.15)

where we assume independence between bearings and noise.

To keep this section as simple as possible, we assume that all bearings follow a Von

Mises distribution with a single concentration parameter κ (unlike Chapter 2, where

we assumed a 2-part mixture), which gives

f(y|ω,x) =
∏

j∈{1:K|ωj=1}

(
exp{κ cos(yj − E[yj |x])}

2πI0(κ)

)
, (3.16)

where I0 is the modified Bessel function of order 0 and E[yj |x] is the expected bearing

at sensor j for spatial call origin x.
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Finally, we rewrite the density f(r|ω,x, s, ω∗ ≥ 2, c) as

f(r|ω,x, s, ω∗ ≥ 2, c) =
f(ω∗ ≥ 2|r,ω,x, s, c)f(r|ω,x, s, c)

f(ω∗ ≥ 2|ω,x, s, c)

=
1× f(r|ω,x, s)

1
= f(r|ω,x, s, c).

(3.17)

Following the model described in the previous chapter, we assume a Gaussian error on

received levels to capture measurement error and error in the propagation model, such

that

rj |x, s ∼ N (E[rj |x, s], σ2r ). (3.18)

Received level itself is a function of i) source level, denoted by s; ii) the Euclidean dis-

tance in meters, denoted by dj(x), between the spatial origin of the call x and sensor j;

and iii) the transmission loss per distance travelled by the sound, βr. We approximate

the transmission loss by using sound propagation characteristics of a lossless medium

(Jensen et al., 2011), which gives the following formula for the expectation for rj :

E[rj |s,x] = s− βr log10 (dj(x)) , (3.19)

where βr is a parameter indexing the rate at which received level decreases with dis-

tance. More complex propagation models can be used, as was shown by Phillips (2016)

and Royle (2018). As rj and cj are both denoted on the dB scale which is logarithmic,

the expected signal-to-noise ratio at sensor j is simply given by

E[SNRj |s,x, cj ] = E[rj |s,x]− cj = s− βr log10 (dj(x))− cj . (3.20)

Signal strength is only recorded if the call is detected, and thus the probability density

can only be derived when ωj = 1. Assuming independence between the detectors, we

can write

f(r|ω,x, s, c) =
∏

j∈{1:K|ωj=1}

f(rj |ωj = 1,x, s, cj), (3.21)

where Bayes’ formula gives

f(rj |ωj = 1,x, s, cj) =
f(ωj = 1|rj ,x, s, cj)× f(rj |x, s, cj)

f(ωj = 1|x, s, cj)
(3.22)

The denominator in Equation (3.22) denotes the probability of detection given spatial
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origin, source level, and noise, and is thus the same as the detection function (see

Equation (3.2). The first element in the numerator in Equation (3.22) denotes the

probability of detection given received level and noise, and is the same as the detection

characteristic function. This means that x and s are redundant, thus giving

f(ωj = 1|rj ,x, s, cj) = f(ωj = 1|rj , cj) = p(rj , cj) (3.23)

The second element of the numerator in Equation (3.22) is the probability density

function of received level given the spatial origin and the source level, which is specified

in Equation (3.18). As received level and noise are assumed independent, we get

f(rj |x, s, cj) = f(rj |x, s) =
1

σr
φ

(
rj − E(rj |x, s)

σr

)
, (3.24)

where φ denotes the standard normal probability density function. We combine the

three elements to rewrite Equation (3.21) as

f(r|ω,x, s, c) =
∏

j∈{1:K|ωj=1}

1

σr
×
p(rj , cj)× φ

(
rj−E(rj |x,s)

σr

)
gj(x, s, cj)

. (3.25)
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Putting all of this and Equation (3.9) together gives the following joint density function

f(ω,y, r,|ω∗ ≥ 2, c)

=

∫
S

∫
A

f(ω∗ ≥ 2|x, s, c)D(x)f(s)

a

×
∏K

j=1 gj(x, s, cj)
ωj (1− gj(x, s, cj))

1−ωj

f(ω∗ ≥ 2|x, s, c)

×
∏

j∈{1:K|ωj=1}

exp{κ cos(yj − E[yj |x])}
2πI0(κ)

×
∏

j∈{1:K|ωj=1}

p(rj , cj)× φ
(
rj−E(rj |x,s)

σr

)
∫
R p(r, cj)× φ

(
r−E(r|x,s)

σr

)
dr
dxds

=
1

a

∫
S

∫
A
D(x)f(s)

K∏
j=1

gj(x, s, cj)
ωj (1− gj(x, s, cj))

1−ωj

×
∏

j∈{1:K|ωj=1}

exp{κ cos(yj − E[yj |x])}
2πI0(κ)

×
p(rj , cj)× φ

(
rj−E(rj |x,s)

σr

)
∫
R p(r, cj)× φ

(
r−E(r|x,s)

σr

)
dr
dxds.

(3.26)

3.3 Generalising to n calls

We have so far derived the density of the detection history, bearing and received level

for a single call. We now generalise to n calls that were detected on at least two

sensors. We assume that all calls are independent of one another. We define the

(n× 2)-matrix of all spatial origins X = (x1, ...,xn)
⊤, the (n× 1)-vector of all source

levels s = (s1, ..., sn)
⊤, the (n×K)-matrix of all detection histories Ω = (ω1, ...,ωn)

⊤,

the (n×K)-matrix of all bearings Y = (y1, ...,yn)
⊤, the (n×K)-matrix of all received

levels as R = (r1, ..., rn)
⊤ and the (n×K)-matrix of all the noise as C = (c1, ..., cn)

⊤.

Using this notation, we can create the joint distribution f(n,Ω,Y ,R|C) as

f(n,Ω,Y ,R|C) = f(n|C)f(Ω,Y ,R|n,C)

= f(n)

∫
S

∫
A
f(Ω,Y ,R,X, s|n,C)dXds

(3.27)

We show below why f(n|C) is equivalent to f(n).
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3.3.1 Number of detected animals, n

In Chapter 2 we assumed that the emitted calls occur in space according to an inho-

mogeneous Poisson point process with intensity D(x). As not all calls are detected,

the detected calls occur in space according to a filtered inhomogeneous Poisson point

process with the rate parameter being a function of x, i.e., D(x), multiplied by the

probability that this call was detected at least twice,
∫
S f(ω

∗ ≥ 2|x, s)f(s)ds. The

total number of detected calls then follows a Poisson distribution with rate parameter

equal to the integral over A, giving λ =
∫
A
∫
S D(x)f(s)f(ω∗ ≥ 2|x, s)dsdx.

So far, our spatial process was space-inhomogeneous, but time-homogeneous. In fact,

this is one of the assumptions of a Poisson process; their intensity or rate parameter is

constant throughout time. The information on noise, however, varies over time, which

means that our rate parameter λ varies with it. When a Poisson count process is

time-inhomogeneous, the rate parameter of the Poisson process over the entire study

period can be derived by integrating over time. As our time-related variable is noise,

this means we have to integrate over noise. Instead of assuming a distribution on

noise and weighing by that, we propose using a (systematic) random sample of b noise

recordings for all K sensors. We denote the matrix of these noise recordings by C. The
rate parameter for the underlying Poisson point process thus is approximated by

λ ≈
∑

c∈C
∫
S D(x)f(s)f(ω∗ ≥ 2|x, s, c)ds

b
,

involving a Monte-Carlo integration over noise. The distribution of n follows as

f(n) ∼ Poisson

(∫
A
∑

c∈C
∫
S D(x)f(s)f(ω∗ ≥ 2|x, s, c)dsdx

b

)
. (3.28)

3.3.2 Joint distribution of all detection histories, bearings, received

levels, spatial origins and source levels, given the detected calls,

Ω,Y ,R,X, s|n,C

As we assume calls to be independent of one another, the part inside the integrals

becomes the product of the density for the individual calls. Moreover, conditioning on

n is equivalent to conditioning on every individual call being detected at least twice
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(Borchers and Efford, 2008). This gives:

f(Ω,Y ,R,X, s|n,C)

= f(Ω|n,C)f(Y ,R,X, s|Ω, n,C)

=

(
n

n1, ..., nU

) n∏
i=1

f(ωi|ω∗ ≥ 2i, ci)f(yi, ri,xi, si|ωi, ω
∗ ≥ 2i, ci)

=

(
n

n1, ..., nU

) n∏
i=1

f(ωi,yi, ri,xi, si|ω∗ ≥ 2i, ci).

(3.29)

with
(

n
n1,...,nU

)
being the multinomial coefficient where n1, ..., nU are the frequencies for

U unique detection histories. This coefficient appears as the order of the calls does not

matter. Integrating out the latent variables, and using the independence assumption

between calls, we derive the following

f(n)×
∫
S

∫
A
f(Ω,Y ,R,X, s|n,C)dXds

= f(n)

(
n

n1, ..., nU

)
×
∫
S
· · ·
∫
S

∫
A
· · ·
∫
A

n∏
i=1

f(ωi,yi, ri,xi, si|ω∗ ≥ 2i, ci)dx1 · · · dxnds1 · · · dsn

= f(n)

(
n

n1, ..., nU

)
×
∫
S

∫
A
· · ·
∫
S

∫
A

n∏
i=1

f(ωi,yi, ri,xi, si|ω∗ ≥ 2i, ci)dx1ds1 · · · dxndsn

= f(n)

(
n

n1, ..., nU

) n∏
i=1

∫
S

∫
A
f(ωi,yi, ri,xi, si|ω∗ ≥ 2i, ci)dxidsi,

(3.30)

where

f(n) =
λn exp{−λ}

n!
, λ =

∫
A
∑

c∈C
∫
S D(x)f(s)f(ω∗ ≥ 2|x, s, c)dsdx

b
. (3.31)
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3.3.3 Full likelihood

We now use the result from the previous section to obtain the density of the data

conditional on noise levels, f(n,Ω,Y ,R|C):

f(n,Ω,Y ,R|C)

=

∫
S

∫
A
f(n,Ω,Y ,R,X, s|C)dXds

= f(n)

∫
S

∫
A
f(Ω,Y ,R,X, s|n,C)dXds

=
λn exp{−λ}

n!

(
n

n1, ..., nU

)
×

n∏
i=1

1

ai

∫
S

∫
A
D(xi)f(si)

K∏
j=1

gj(xi, si, cij)
ωij (1− gj(xi, si, cij))

1−ωij

×
∏

j∈{1:K|ωj=1}

(
exp{κ cos(yij − E[yij |xi])}

2πI0(κ)

×
φ
(
rij−E[rij |xi,si,cij ]

σr

)
σr

(
1− Φ

(
cij−E[rij |xi,si,cij ]

σr

)))dxidsi,

(3.32)

where ai =
∫
S
∫
A f(ω

∗ ≥ 2|x, s, ci)D(x)f(s)dxds.

Given our data, we obtain from this the following full likelihood

Lf (ϕ,θ,η,ν, κ|n,Ω,Y ,R,C), (3.33)

where ϕ contains the parameters associated with the specified density model for xi, θ

contains the parameters associated with the Janoschek detection function, η contains

the parameters related to received level, ν contains the parameters associated with

the distribution of source levels, and κ is the concentration parameter associated with

the bearings. Note that n,Ω,Y and R now refer to the observed data and no longer

to the random variables. Parameter estimation could take place via maximising the

likelihood function, or rather minimising the negative log-likelihood.
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3.4 Concluding remarks

When acoustic detections are scarce and background noise is variable, the model pre-

sented in Chapter 2 can result in the removal of most of the available data, leaving too

little to properly fit a model to. In this chapter we presented a possible solution for

this problem, at the cost of complexity. We have not performed a simulation study to

test the model, as this was computationally not possible within the time constraints

of this PhD. If anyone considers applying this model, we believe a simulation study

should be an initial step before implementing the method, which almost surely would

involve improving the computational tractability of the method.

We assumed independence between several variables in this model. The consequences

of violations of these independence assumptions, and potential solutions, are discussed

in Chapter 2. The fitting of this model will likely involve long computation time due

to the nested integrals. This was already a major challenge for the model we used

in Chapter 2, where the model fitting for the simulation study took several weeks in

parallel on 30+ cores, and the model presented in this chapter included an additional

nested integral. To minimise the computation time, we would recommend looking

for other solutions than only parallel processing, for example working with a software

that uses automatic differentiation, such as TMB (Kristensen et al., 2016). Further,

the model could be made more simple by using a step detection function similar to

Chapter 2, instead of the Janoschek detection function presented here.



Chapter 4

Age is not just a number: how

incorrect ageing impacts

close-kin mark-recapture

estimates of adult population size

4.1 Introduction

Close-kin mark-recapture (CKMR) is a method for estimating population size and

other key parameters such as fecundity (and population growth and survival rates)

using data on the relatedness of individuals sampled from the population (Skaug,

2001; Bravington et al., 2016b). The key rationale is that small populations will tend

to contain a higher proportion of closely-related individuals than large populations.

One of the main advantages of CKMR over capture-recapture (Otis et al., 1978) and

its extensions such as spatial capture-recapture (Borchers and Efford, 2008), is that it

can be applied in cases when sampling is necessarily lethal, such as fisheries, and when

physical recaptures are rare or impossible, where alternative metrics are often relative

(e.g., catch-per-unit-effort) and potentially unreliable (Bravington et al., 2016a; Casas

and Saborido-Rey, 2023). This is because CKMR does not require the recapturing

of individuals, but rather their genetic markers. Offspring share genetic information

53
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with their parents (hence ‘kin’), thus they ‘mark’ their parents when born; through

modern genetics we can compare sampled individuals with one another to see if these

marks are ‘recaptured’. So far, CKMR has been developed for parent-offspring pairs

(POPs; e.g., Bravington et al., 2016a; Ruzzante et al., 2019; Trenkel et al., 2022), half-

sibling pairs (HSPs; e.g., Hillary et al., 2018; Bravington et al., 2019; Patterson et al.,

2022), and the combination of both (e.g., Bradford et al., 2018). The rise in popu-

larity of the method has become clear from an increase in published studies involving

CKMR, although the total number of applications is still small (Delaval et al., 2023).

Most of the applications up to this point involved marine or aquatic species. Several

salmonids have been studied (Wacker et al., 2021; Ruzzante et al., 2019; Prystupa

et al., 2021), as well as large pelagic species such as southern bluefin tuna (Thunnus

maccoyii ; Bravington et al., 2016a) and the pelagic bluefin tuna (Thunnus orientalis;

Tsukahara et al., 2023), and a variety of elasmobranchs such as white sharks (Carchar-

odon carcharias; Hillary et al., 2018), lemon sharks (Negaprion brevirostris; Swenson

et al., 2024), thornback rays (Raja clavata; Trenkel et al., 2022), blue skates (Dipturus

batis; Delaval et al., 2023), and grey nurse sharks (Carcharias taurus; Bradford et al.,

2018). The Christmas Island flying-fox (Pteropus natalis; Lloyd-Jones et al., 2023) and

the yellow fever mosquito (Aedes aegypti ; Sharma et al., 2022) were the only terrestrial

species that we could identify in published CKMR studies to date.

CKMR with POPs can estimate the size of the entire adult population, whereas with

HSPs only the breeding adult population is estimated, e.g., post-reproductive adults

are ‘invisible’ for the method (Bradford et al., 2018). Here, we focus only on POPs.

For any comparison between two individuals, the probability that a potential offspring

truly is the offspring of the parent is inversely related to the number of mature animals

alive in the birth year of the offspring. Probabilities of finding a kin pair are expressed

as a function of the expected relative reproductive output (ERRO) of the parent in

the year that the offspring was conceived. This approach is parent-centric, as it starts

from the point that the parent is sampled and then formulates a probability for a

PO relationship (an alternative, offspring-centric formulation was proposed by Skaug

(2017)).

In the simplest scenario, the probability of any adult being the parent of a juvenile

reduces to two over the number of potential parents, assuming a 50:50 sex ratio; in

reality, this probability is often more complicated, e.g., when reproductive output is
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related to age, or when there is stock structure or population trend. To use related-

ness to estimate adult population abundance with acceptable precision, it is therefore

essential to accurately age the studied animals because birth year is derived from their

age. Accurate ageing can be challenging: for example, epigenetic ageing requires cali-

bration using individuals of known age (Polanowski et al., 2014; De Paoli-Iseppi et al.,

2017), which is not always possible; ageing via otoliths, which are calcium carbonate

structures in the inner ear, can be relatively accurate (Campana, 2001) but requires

lethal sampling and is only possible for animals that have otoliths (and sharks are not

among those); and ageing by counting the dental or cementum growth layer groups in

teeth is not necessarily lethal and commonly used for (marine) mammals (Hohn, 2009,

Chapter 9), but cannot be applied to fish species. Sharks can be aged from their verte-

brae, but this is a lethal procedure and can be biased in various ways or even unusable

depending on the species (Burke et al., 2020). Alternatively, length can be used to infer

age through growth curves, which seems appealing as length is often recorded during

sampling. Accurate estimates for growth curves of the studied species are not always

available, however, and age as a function of length (age-at-length) can vary substan-

tially between populations of the same species (e.g., Bradley et al., 2017a). Moreover,

length measurements often involve measurement error. Swenson et al. (2024) studied

the effects of ageing error from incorrect length measurement through simulation and

found that incorrect ageing can induce substantial bias in CKMR parameter estimates.

Various degrees of error were added to the true lengths of individuals, after which these

were converted to ages using a von Bertalanffy growth curve. These ‘incorrect’ ages

were then used as inputs for the CKMR model without explicitly modelling the length

measurement error.

Simulation is an important tool to assess the robustness of statistical methods to

violations of model assumptions (DiRenzo et al., 2023) and their performance more

generally (Morris et al., 2019). Through simulation, Conn et al. (2020) studied the

effects of unmodelled spatial heterogeneity on CKMR estimation and found that this

can induce a negative bias in the abundance estimates; Sévêque et al. (2024) found

that fitting overly simplistic CKMR models (that do not account for complex life-

history traits or selective sampling) can cause biases in survival and estimates in non-

trivial directions; and Waples and Feutry (2022) showed, among other things, that

age-specific vital rates can bias abundance estimates from CKMR. We follow an agent-

based simulation approach similar to Swenson et al. (2024) to explore the effects of
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incorrect ageing on the CKMR adult abundance estimator. Unlike Swenson et al.

(2024), our model does not assume length (and thus age) to be perfectly known but

rather we explicitly account for the measurement error on lengths.

It is often important for demographic modelling to account for the uncertainty in the

age estimates, especially when sampling probabilities depend on the age of individuals

(i.e., when there is ‘selectivity’), which is fundamental to fishing (Vasilakopoulos et al.,

2020). Correctly accounting for ageing error is therefore still an active part of fisheries

research (e.g., Hulson and Williams, 2024). Fournier and Archibald (1982) showed

how ageing error in catch-at-age data can be accounted for as long as the ageing

error is known. Later, Richards et al. (1992) developed statistical methodology to

account for ageing error when the error is unknown, using multiple readings of fish.

We are unaware of any CKMR studies in which ageing error is directly modelled and

estimated. Bravington et al. (2019) accounted for the uncertainty in the ageing by first

fitting a known-age CKMR model to the data and then refitting the model ten times,

resampling ages from the age-at-length curve each time. In our simulation, ageing

error is introduced in two ways: i) through misspecified growth curves, and ii) through

incorrect length measurements, i.e., measurement error. In reality, error could also

be (and almost surely is) introduced within a population through natural variation in

length-at-age, e.g., as a function of genetic and environmental factors. We assume that

all individuals follow the growth curve perfectly; however, one could readily interpret

the length measurement error as the joint error of length measurement and length-at-

age variation, or even solely as length-at-age variation if that is more appropriate for a

particular case study. We assume ageing error from incorrect length measurements to

be known and explicitly account for it in our model (Bravington et al., 2016b, Section

3.1.4).

The research presented in this chapter is centred around two fictional shark species that

are based on a grey reef shark population (Carcharhinus amblyrhynchos) at Palmyra

Atoll, in the central Pacific Ocean (Bradley et al., 2017b,a; Papastamatiou et al.,

2018). This motivating case study consists of genetic samples that were collected from

this population in 2013 and 2014. One fictional species is a simplification of the real

species (hereafter referred to as the ‘simple species’), and was included to test the basic

performance of the model. The other fictional species has more realistic life history

traits (hereafter referred to as the ‘complex species’), and was included to more closely
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match a real empirical study. We also compare the results for both species. It is

paramount to first explore the feasibility of CKMR, for example through simulation,

before committing the resources and time required for the correct collection and genetic

analysis of the samples. Moreover, the findings will be be relevant to other CKMR

studies when age is uncertain.

4.2 Materials and Methods

We first present our setup of the simulations for the two fictional shark species. Sim-

ulated time series are 100 years long, with sampling occurring in the final two years

(mimicking the two years of sampling in the Palmyra Atoll case study). Following

that, we present the POP-based CKMR models for our two species using these two

years of data, followed by our estimation method and performance diagnostics. We

assume that kinship relationships are known with certainty; in real life situations, one

often needs to account for uncertainty in this process (Bravington et al., 2016b). All

variables and quantities used in this study are summarised in Table 4.1. Code for the

simulation and fitting of models was written in R 4.3.2 and C++14, where the latter

was linked to R through Rcpp 1.0.12 (R Core Team, 2023; Eddelbuettel, 2013).

4.2.1 Simulation

We used stochastic individual-based (‘agent-based’) simulation. Two different ‘species’

were simulated separately, one with simple life history characteristics, and one with

a more complex life history. For each simulation, sampling in the last two years

was random, and mating occurred at random as well, i.e., mothers and fathers were

matched at random, where all non-gestating mothers mated and mature males could

father multiple litters in the same mating cycle. Females of the simple species always

produced two offspring, whereas the litter size for the complex species ranged from

3 to 6, with equal probability. Females of the simple species reproduced every year

as gestation was negligible; females of the complex species gestated for a year and

therefore reproduced every other year. Newborns had age zero and sex was assigned

at random with an expected 50:50 sex ratio. The survival process was Bernoulli where

the annual survival probability ϕ was the same for all ages and sexes, but different
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Table 4.1: Summary of notation.

Symbol Description Type

General
n Number of sampled individuals (individuals can be

sampled more than once)
Observed

p Detection probability of an individual Function
f Probability density/mass function Function
K Kinship category Latent/observed
N Adult abundance Parameter

Quantities related to a captured individual
y Birth year Latent
c Capture/sampling year Observed
ℓ Length (when captured) Observed
σℓ Standard deviation of the length measurement error Parameter
a Age (when captured) Latent
s Sex Observed
z Vector of observed covariates at time of capture/sam-

pling
Observed

Population dynamics and demography
ϕ Survival probability from one year to the next Parameter
r Growth rate parameter from one year to the next Parameter
α Age of maturity Parameter

Subscript
i, j Individual i and j
♀,♂ Sex, either female or male
t Year
m Simulation index

between the two species and empirically set at a level that resulted in the yearly

population growth rate equaling approximately one, i.e., no growth. Natural mortality

was the only source of mortality we considered, and all individuals that reached the

maximum age perished at the next survival event, i.e., animals could go through at

most amax+1 yearly cycles. The maximum age for sharks of the simple species was 19

years and 63 years for the complex species, where the latter matches the results from

Bradley et al. (2017a). For a given species, all individuals of the same sex matured

at the same age: males and females in the simple species matured at 10 years old,

whereas in the complex species males matured at 17 years and females matured at 19
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Start

Initialise population

1. Birth/mate: mature fe-
males give birth (if pregnant)
or mate (if not pregnant)

4. Age: add one year
to age of all individuals

3. Survival: individuals survive
according to a survival probability

2. Sample: sample/capture
some individuals (if specified)

Figure 4.1: Flowchart representing the different stages of the life-cycle for the sim-
ulation. A population is initialised at the start of a simulation. Following that, it

loops through stage 1–4 every year the simulation runs.

years of age. The length of an animal was the same for all individuals of a certain age,

irrespective of sex and species. After the initialisation of a population in year zero, the

simulation looped through four distinct events: a birthing/mating event, a sampling

event (only in the final two years of the simulation), a survival event, and an ageing

event (Figure 4.1).

For both species, we ran the simulations for one hundred years, to ensure that all

animals of the initial populations would have died off. Every simulation started with

8500 individuals to stay close to the population size estimate of 8,433 by Bradley et al.

(2017b), with an expected 50:50 sex ratio. At each sampling event, 375 individuals

were randomly and non-lethally sampled, where re-captures were possible between

sampling events. This resulted in at most 750 unique sampled individuals across the

two years of sampling, which is of a similar scale as the number of genetic samples

available in the motivating case study. All 750 samples were retained for analysis as

there was no particular reason exclude recaptures, unlike, for example, Hillary et al.

(2018), where duplicate samples were excluded from the analysis to avoid them aliasing

as half-sibling pairs. For every sampled individual, the age, year of capture, and sex
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were recorded; true length was derived through a von Bertalanffy growth function

(VBGF; von Bertalanffy, 1938; Francis, 1988), that was specified as

l(a) = l∞ × (1− e−k(a−a0)), (4.1)

where ℓ∞ = 163 cm is the asymptotic length, a0 = −8.27 the theoretical age at length

zero, and k = 0.0554 denotes the growth coefficient. These values match the estimates

of the best model in Table 2 of Bradley et al. (2017a). Gaussian noise was added to

reflect (symmetric) length measurement error with variance σ2ℓ = 2.892, with over and

underestimates being equally likely, after which this ‘observed’ length was rounded to

the nearest integer. Based on these parameters, we generated 1000 different realisations

of a 100-year-long population history for each species, using functions based on those

from the fishSim-package (Baylis, 2022).

4.2.2 POP-based estimator

We developed estimators for both populations based only on POPs. Any other possible

genetic relationship (such as half-sibling or self-capture) was categorised as ‘not a

POP’. CKMR models are generally fitted through a likelihood (function), which is

constructed from the joint distribution of all pairwise comparisons between the samples,

i.e., the product of approximately n(n − 1)/2 Bernoulli trials for a POP, where n is

the number of samples. We only consider pairwise comparisons and treat these as

independent, whereas they clearly are not: an offspring can only have one parent

of each sex. Because we ignore these higher dependencies, our likelihood is not a

true likelihood but rather a pseudo-likelihood. Working with such a likelihood should

not affect the point estimates but could affect other properties of likelihood-based

estimation, such as variance estimation, although this effect is likely minor or even

negligible provided that a small proportion of the total population is sampled, i.e., n≪
N (Skaug, 2001; Bravington et al., 2016b). Because length is measured with error and

age is inferred from length, age is uncertain and hence we cannot assume directionality

in the comparison, i.e., who is the parent and who is the offspring. Therefore, for

any comparison for individual i and j, we test both directions (parent-offspring and

offspring-parent), denoted PO/OP. In practice, we tend to optimise the logarithm of

the pseudo-likelihood, the so-called ‘pseudo-log-likelihood’, as this is generally easier
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to work with and numerically more stable. Our pseudo-log-likelihood is given by

logLP (θ|x) =ℓP (θ|x) =∑
i

∑
j

log
{
Pr(Kij = PO/OP|zi, zj)

ωij (1− Pr(Kij = PO/OP|zi, zj))
1−ωij

}
,

(4.2)

where θ is the parameter vector, x denotes the observed data, Kij is the kinship

between i and j, Pr() is the probability function, ωij is an indicator that is 1 if the

kinship between i and j is observed to be PO/OP and 0 otherwise, and z denotes the

information recorded about a captured individual, such as length. Age is required to

calculate the probability of observing kinship, and therefore we sum over all potential

ages for i, j and multiply by the probability density of that age given the measured

length, f(a|l∗):

ℓP (θ|x) =
∑
i

∑
j

log
{∑

ai

∑
aj

Pr(Kij = PO/OP|zi, zj , ai, aj)
ωij×

(1− Pr(Kij = PO/OP|zi, zj , ai, aj))
1−ωij × f(ai|l∗i )f(aj |l∗j )

}
.

(4.3)

We will now specify the two main elements of Equation (4.3), namely the probability

of observing the PO/OP kinship, and the probability density of age given length.

4.2.2.1 Probability of kinship

We modelled the female and male adult abundance separately; thus, for every PO/OP

comparison between two individuals we had to consider, conditional on the sexes, both

combinations of which individual in older and thus the potential parent. We will first

present the formulae for the simple species, followed by those for the complex species.

The probability of any comparison between i and j being PO/OP is the same as the

sum of testing for PO and OP separately, thus we only present the PO probabilities.

For the simple species this became

Pr(Kij = MO|zi, zj , ai, aj) =

I(yi + α♀ ≤ yj)×
(
N♀,yj

)−1 ×

1; if ci ≥ yj

ϕi(ci, yj); if ci < yj

 (4.4)
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for the females, and

Pr(Kij = FO|zi, zj , ai, aj) =

I(yi + α♂ ≤ yj)×
(
N♂,yj

)−1
×

1; if ci ≥ yj

ϕi(ci, yj); if ci < yj

 (4.5)

for the males. Here, I() is an indicator function that returns 1 if its argument is true and

0 otherwise, MO and FO refer to mother-offspring and father-offspring, respectively, y

denotes the birth year, α the age of maturity, Ns,t the total adult abundance of sex s in

year t, c the year of capture, and ϕi(t1, t2) the survival function for individual i from t1

to t2. As survival was assumed constant, ϕi(t1, t2) was defined as ϕt2−t1 . Even though

females could only have one litter whereas males could father multiple litters, their

ERROs were formulated similarly, i.e., the reciprocal of the total mature abundance

of their respective sexes. For the complex species, the probability of an MO pair thus

became

Pr(Kij = MO|zi, zj , ai, aj) =

I(yi + α♀ ≤ yj − 1)×
(
N♀,yj−1 × ϕ

)−1 ×

1; if ci ≥ yj

ϕi(ci, yj); if ci < yj

 (4.6)

and the probability of an FO pair became

Pr(Kij = FO|zi, zj , ai, aj) =

I(yi + α♂ ≤ yj − 1)×
(
N♂,yj−1

)−1
×

1; if ci ≥ yj − 1

ϕi(ci, yj − 1); if ci < yj − 1

 .
(4.7)

The two key differences between the complex species relative to the simple one were

that 1) a potential father only needed to have been alive the year before the birth of

the offspring, whereas a potential mother needed to have survived until birthing, and

2) the potential parents needed to have matured at least one year before the birth year.

To illustrate this, imagine that we are comparing two individuals from the complex

species, where the parent is female, and we know the individuals’ ages. The offspring

was caught in year 50 at age 3, and thus born in year 47. The potential parent was

female, and caught in year 45 and would have needed to survive for at least two years

in order to be a potential parent; she was 36 years old at the time of capture, and thus
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born in year 9. The ERRO for this parent in the year of mating, i.e., the year before

the birth year of j, is the reciprocal of the number of females alive in that year who

also survived one year of gestation, which is ϕ. Therefore, the probability that i is the

mother of j would be:

Pr(Kij = MO|zi, zj , ai, aj) = I(9 + 19 ≤ 47− 1)×
(
N♀,yj−1 × ϕ

)−1 × ϕ47−45

=1×
(
N♀,yj−1 × ϕ

)−1 × ϕ2

=ϕ
(
N♀,yj−1

)−1

(4.8)

Every comparison, given ai and aj , contains a signal about the adult population in

a specific year. We assumed a constant population size, and thus Ns,t = Ns. We

also developed and tested a model that included sex-specific growth parameters. This

model was internally inconsistent and therefore not included in the main body of this

thesis for any formal inference. However, we did include the derivations and some

results in Appendix B.3.

4.2.2.2 Probability density of age given length

We had an assumed true length-at-age curve l(a) (Equation (4.1)) and we knew that

there was measurement error on lengths. Denoting the measured length as l∗, we

derived the probability density f(a|l∗) using Bayes’ rule as follows:

f(a|l∗) =f(l∗|a)f(a)f(l∗)−1. (4.9)

Measured length given age l∗|a was assumed to follow a discretised Normal distribution,

as lengths were rounded to the nearest centimetre. We followed Roy (2003) in defining

this distribution as

f(l∗|a) = Φ

(
l∗ − µ− 0.5

σl

)
− Φ

(
l∗ − µ+ 0.5

σl

)
, (4.10)

where Φ denotes the standard normal cumulative distribution function, the expecta-

tion µ is given by Equation (4.1), and σl captures the standard deviation of length

measurement error. As the sampling probability in the simulation was unrelated to

age, the age distribution of sampled individuals was the same as the age distribution
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in the whole population, and we did not need to distinguish between the two. We as-

sumed that the population had a stable age distribution with no growth, which meant

that the distribution of ages, had we not imposed a maximum age, would have been

geometric with shape parameter being equal to the mortality rate, which is 1 − ϕ.

Acknowledging that there was a maximum age, amax, we needed to condition on the

age being at most this age, and thus

f(a) =


(ϕ)a(1−ϕ)

1−(ϕ)amax+1 ; if 0 ≤ a ≤ amax

0; otherwise
, (4.11)

where the numerator and denominator were the geometric probability mass and cu-

mulative distribution functions, respectively. Note here that we used the definition

of a geometrically distributed variable being the number of failures (survival) until a

success (death) occurs. Finally, the probability density function on measured length

became

f(l∗) =

amax∑
a=0

f(l∗|a)f(a). (4.12)

4.2.3 Fitting

The parameters in the CKMR model were estimated from the samples collected in

the last to years of the simulation by maximising the pseudo-log-likelihood, which can

involve prohibitively long computation time. To resolve this, we restricted the number

of pairwise comparisons. Many pairwise comparisons resulted in identical probabilistic

statements, and thus in practice only needed to be derived once. As we considered

adult abundance for both sexes separately, we estimated two parameters: N♀ and

N♂. All other parameters, such as ϕ, were assumed known and fixed. To each of the

2000 population realisations (1000 for each species) we fitted the appropriate POP-

model with varying degrees of length measurement error and growth curves, which

was achieved by altering some of the fixed parameters. Specifically, we assumed five

different standard deviations for length measurement error: the correct one, a 33%

and 67% underestimate, and a 33% and 67% overestimate. We also considered five

different growth curves: the correct one, two that were shifted upwards by 5% and

10%, and two that were shifted downwards by 5% and 10%. These growth curve shifts

were aimed to represent real variation in growth curves between populations of the
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Figure 4.2: The left panel shows the five growth curves that were used in the
scenarios tested in this study. The true growth curve is indicated in red; the black
dotted-lines show the incorrect ones, which were constructed by shifting the growth
curve up and down in steps of 5 percent. These shifts were aimed to represent real
variation in growth curves between populations of the same shark species (Bradley
et al., 2017a). The right panel shows five measurement errors used in this study. The
true simulated error was 2.89 cm, and the other measurements errors were chosen by

deviating from this error in both directions.

same shark species (Bradley et al., 2017a). This resulted in a total of 25 combina-

tions or ‘scenarios’. We labelled these scenarios using the format ‘ME±XX:GC±YY’,

where ME refers to the measurement error, XX denotes the percentage over- or un-

derestimate, GC stands for growth curve, and YY denotes the percentage of up- or

downwards shifting; for example, the scenario with a 33% overestimated standard de-

viation of length measurement error and a 5% downshifted growth curve had the label

ME+33:GC-5. These measurement errors and growth curves are visualised in more de-

tail in Figure 4.2. Considering 25 scenarios for every simulation resulted in the fitting

of 50,000 models in total. To keep computation time to a minimum, we implemented

most of the fitting process in C++.

4.2.4 Variance and performance

To evaluate the performance of the estimator, we present the following metrics: i)

mean error and mean relative error to evaluate a potential bias; ii) median error and

median relative error to evaluate the median bias, which uses the median instead of

the mean, as the median is often more appropriate when distributions are skewed.

In addition, the mean absolute error (MAE) and root mean square error (RMSE)
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are presented in supplemental tables. The definitions of the six metrics are given in

Appendix B.1.1. Furthermore, we derived the 95% log-normal confidence interval (CI)

coverage to evaluate the performance of these CIs in the correct growth curve scenarios.

Variance was estimated from the Hessian matrix produced by the maximum likelihood

estimation, and averaged over these 1000 estimated standard errors. We can treat

the pseudo-likelihood as a true likelihood as long as sampling was sparse (see Section

4.2.2). It is unclear if this criterion was met in our study, as we took 750 samples from

a population with roughly 8,500 individuals. If sampling is not sparse, the estimated

variance could be negatively biased as the pairwise comparisons are not approximately

independent. To explore the extent of this potential bias, we evaluated how well

the average estimated standard error estimated the empirical standard deviation of

population estimate errors across the 1000 simulations for each species. We include

definitions of these in Appendix B.2.1.

4.3 Results

The mean number of POPs for all sampling realisations was 48.6 (range: 25–76) for

the simple species and 55.6 (range: 31–90) for the complex species. Mean simulated

adult abundances in the final year of the simulation were 794 and 793 (range: 630–992

and 600–1019; ♀ and ♂) for the simple species and 514 and 650 (range: 400–683 and

516–824; ♀ and ♂) for the complex species. A small number of recaptures between

the two years of sampling, i.e., that some individuals were sampled at more than one

sampling event, occurred in every simulation. This ranged from 4 to 25 recaptured

individuals for the simple species, and 5 to 30 individuals for the complex species. The

simulated mean annual growth rate was 0.999 for both sexes of the simple species, and

1.001 and 0.998 for the males and females of the complex species, respectively; the

mean annual growth for any simulation was always within 0.3 percent point from the

mean across all simulations. The fitting algorithm did not always converge when the

measurement error standard deviation and/or the growth curve was (very) negatively

biased. Whenever this happened, it happened for most of the simulations in that

scenario. Therefore, we excluded the scenarios where this happened from the analysis,

which led to the exclusion of scenarios ME-67:GC-10, ME-67:GC-5, ME-67:GC+0,

ME-33:GC-10, ME-33:GC-5, and ME+0:GC-10. In the other scenarios, all models

converged successfully.
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For the simple species, median errors for N̂s when using correct measurement error

and growth curve specification (ME+0:GC+0) were 20.83 and 22.52 (relative: 2.57%

and 2.79%; ♀ and ♂) individuals (Figure 4.3; Tables B.1 and B.2). For the complex

species, median errors for N̂s when using correct measurement error and growth curve

specification were 6.48 and 10.28 (relative: 1.35% and 1.59%; ♀ and ♂) individuals

(Figure 4.4; Tables B.3 and B.4). For the simple species, median relative errors in

abundance estimates were positive but close to zero for all deviations from the true

standard deviation of length measurement error provided that the growth curve was

correctly specified, although they were slightly larger for the females (Figure 4.3, also

Tables B.1–4). For any given measurement error standard deviation, we observed a

trend from a positive median error to a negative median error as we shifted the growth

curve upwards (Figures 4.3 and 4.4). When growth curves were shifted down 5%, this

resulted in median relative errors of around 30% for the simple species, and between

30 and 60% for the complex species. Shifting growth curves up by 5% resulted in

median relative errors of -30% for the simple species, and between -30 and -40% for

the complex species.

When the growth curve was correctly specified, the 95% CI coverage (rounded to one

decimal place) for the simple species adult abundance estimates ranged from 96.1% to

96.4%, and ranged from 94.4% to 95.9% for the complex species estimates (Table B.7).

For a given growth curve, no relation between the measurement error standard devi-

ation and CI coverage became apparent. Incorrectly specified growth curves severely

lowered the CI coverage for all measurement errors for both species (Table B.7). When

the growth curve was correctly specified, the empirical standard errors ranged from

180.97 to 182.56 for the male simple species, and 190.85 to 192.56 for the female simple

species (Table B.5); for the complex species, these errors ranged from 145.77 to 148.42

for the males, and from 107.51 to 109.27 for the females (Table B.6). Given a growth

curve, increasing the measurement error standard deviation seemed slightly decrease

the empirical standard errors, for all species and sexes. Given an assumed standard

deviation of measurement error, the empirical standard errors decreased as the growth

curve was shifted upwards. When the growth curve was correctly specified, the average

estimated standard errors ranged from 181.04 to 183.04 for the male simple species,

and 183.54 to 185.51 for the female simple species (Table B.5); for the complex species,

these errors ranged from 139.79 to 142.41 for the males, and from 102.99 to 105.71 for
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the females (Table B.6). The changes in average estimated standard errors between

the scenarios follow a similar pattern to the empirical standard errors.

Whenever the growth curve was correctly specified, average model estimated standard

errors were always (slightly) lower than empirical standard errors all scenarios and both

species, except for the male simple species (Tables B.5 and B.6). The underestimation

of the empirical standard error by the average estimated standard error was always

< 5%. Deviations from the correct growth curve increased underestimation in all cases

(Tables B.5 and B.6).

4.4 Discussion

In this study, we explored the effects of incorrect age inference from length measure-

ments on CKMR estimates of adult abundance through misspecifying the length mea-

surement error and the growth curve in various ways. The number of POPs discovered

in our simulation was in the vicinity of the 50–100 kin pairs recommended for a CKMR

application (Bravington et al., 2016b), albeit on the lower end. Overall, an incorrect

assumed standard deviation of measurement error mostly impacted the convergence

likelihood of the fitting algorithm, whenever this standard deviation was assumed to

be smaller in the fitting than was true for the simulation. Whenever the measure-

ment error standard deviation was high enough to allow for convergence, it made little

difference whether it was the true value or if a much higher standard deviation was

assumed. This would suggest that, if researches are ever unsure about whether their

assumed degree of spread in length measurement error is correct, it is safer to overes-

timate it. A misspecified growth curve, on the other hand, had drastic effects on the

estimation of all parameters: a 5% shift away from the true growth curve resulted in

biases ranging from -60% to +40%; estimated and empirical standard errors seemed

to scale with the abundance estimates, and shifting away from the true growth curve

resulted in an increased underestimation of empirical standard errors.

The model performed well under correct specification (scenario ME+0:GC+0), al-

though the positive median relative error in adult abundance estimates suggests a

positive median bias. This error was more extreme for the simple than for the complex

species. A bias in the estimates is not uncommon for maximum likelihood methods
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Figure 4.3: Box plots for the error in estimated sex-specific adult abundance relative
to the true abundance for the simple species. We only present the results for scenarios
in which the optimiser consistently converged; this meant that some scenarios were
left blank. Box plots show the interquartile range (IQR) and the median; the mean is
indicated by the darker filled circle; the vertical lines cover five times the IQR; and all
values outside of that are indicated as outliers. The scenarios were labelled using the
format ‘ME±XX:GC±YY’, where ME refers to the measurement error, XX denotes
the percentage over- or underestimate, GC stands for growth curve, and YY denotes
the percentage of up- or downwards shifting; for example, the scenario with a 33%
overestimated standard deviation of length measurement error and a 5% downshifted

growth curve had label ME+33:GC-5.
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Figure 4.4: Box plots for the error in estimated sex-specific adult abundance relative
to the true abundance for the complex species. We only present the results for scenar-
ios in which the optimiser consistently converged; this meant that some scenarios were
left blank. Box plots show the interquartile range (IQR) and the median; the mean is
indicated by the darker filled circle; the vertical lines cover five times the IQR; and all
values outside of that are indicated as outliers. The scenarios were labelled using the
format ‘ME±XX:GC±YY’, where ME refers to the measurement error, XX denotes
the percentage over- or underestimate, GC stands for growth curve, and YY denotes
the percentage of up- or downwards shifting; for example, the scenario with a 33%
overestimated standard deviation of length measurement error and a 5% downshifted

growth curve had label ME+33:GC-5.
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when the sample size is small, which could be true in our study as the number of sam-

pled POPs never surpassed 76 for the simple species and 90 for the complex species.

However, it could also be that this shows a slight positive bias in the method itself,

especially as a previous CKMR simulation study by Conn et al. (2020) found small

positive biases in the abundance estimates, too. We can express the empirical stan-

dard errors for the correct scenarios as percentages of the associated mean simulated

abundances in the final year. This gives standard errors relative to the mean (also

known as coefficients of variation) of 23.0% and 24.3% for the male and female esti-

mates of the simple species, respectively, and 22.7% and 21.2% for the male and female

estimates of the complex species, respectively. These are high but not uncommon for

real-life population studies. The 95% log-normal confidence intervals (CIs) seemed to

accurately represent the uncertainty around the estimates whenever the correct growth

curve specification was used, as the coverage ranged from 94.4% to 96.4%. Nonethe-

less, the coverage always exceeded 95% when the entire model was correctly specified,

which could indicate that the 95% log-normal CIs were slightly conservative.

In this study, we assumed that all individual sharks followed the specified growth curve

perfectly, and any variation in lengths for a given age resulted from measurement

error. This is a simplification of reality, and future research could focus on ways to

accommodate natural variation in length at a given age, which could be a function of

age in itself. As an incorrect standard deviation of length measurement error seemed

to have little effect on point estimates, we believe that, when in doubt, it is preferable

to assume a higher standard deviation as this improves how likely it is that the fitting

algorithm converges.

The effects of deviating from the true growth curve on the adult abundance esti-

mates were substantial. When growth curves were shifted by 5% we often observed

median relative errors of over 30%. This strongly highlights the sensitivity of the

method to correct age estimation. Empirical standard errors were also increasingly

underestimated when growth curves were shifted away from the the truth. This effect

was stronger when the growth curve was shifted upwards, i.e., when ages were being

underestimated. An underestimation of uncertainty could be a consequence of the

comparisons not being truly independent, i.e., a violation of the sparse sampling as-

sumption. It is important here to note that we did not evaluate the standard deviation

of abundance estimates but rather of the error in abundance estimates (see Appendix
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B.2.1). The true abundance was different for every simulation, so we could not use the

standard deviation of the abundance estimates itself, since this would partly capture

the stochasticity of the simulation process. To overcome this, we used the standard

deviation of the error in abundance estimates, which should be a more robust measure

of the true standard error. This should not be a problem as long as estimation is

unbiased; however, our results indicate a slight positive bias, which could have im-

pacted the accurateness of the empirical standard error in being a measure of true

standard error. CI coverage was most severely impacted by incorrect growth curves;

however, this was likely mostly due to the bias in the estimates in those scenarios.

In real-world applications, researchers could potentially check the correctness of their

assumed growth curve by assessing the distribution of lengths/ages among the sam-

pled individuals. If many of the observed lengths are either associated with very low

ages or are close to asymptote, or in some other way exhibit an unexpected sampled

age distribution given the sampling scheme, then this could be an indication that the

assumed growth curve is incorrect (or that sampling assumptions are violated).

Even though recaptures should be rare (as long as sampling is sparse), they did oc-

cur in our simulations between sampling years. These recaptures did not pose any

problems within the analysis, e.g., getting mistaken for a different genetic relationship,

and thus we retained the recaptures in our data. Alternatively, duplicate samples can

be excluded from the analysis when there is reason to do so. We hypothesise that

excluding recaptures would likely increase estimates of uncertainty, as fewer observa-

tions are used for the analysis. We are unaware of any study that investigated the

extent to which including recaptures could potentially affect precision or even bias in

CKMR estimation, and we believe that this could be a great topic for future research.

Whenever it is known that multiple samples belong to a single individual, there exists

the potential for extending CKMR by incorporating some form of capture-recapture

into the method (Otis et al., 1978; Bravington et al., 2016b). Additionally, it could

also allow us to fit the growth curve jointly with the CKMR model, instead of as-

suming it to be known by extrapolating from other studies (Bravington et al., 2019).

This could create a situation where one collects new samples every year to update the

model, thereby continuously improving the estimates not only of the abundance and

trend, but also of the growth curve: in a Bayesian framework, one could use the initial

growth curve as prior information, and then update the posterior every year as more

information is collected.
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In our model, we did not allow for any growth or decline in the population size over

time. Our simulated populations exhibited no systematic growth, but the stochas-

tic nature of the process did lead to some random growth/decline. One could con-

sider estimating a growth rate, or assume a small range of growth rates (see Hillary

et al. (2018) for an example with white sharks (Carcharodon carcharias)). The main

challenge would be to understand how including a growth rate parameter affects the

assumed age distribution f(a). We can imagine three general population growth sce-

narios. If a population is stable but growing or in decline, the assumed age distribution

will be geometric and depend on a combination of survival and growth rate (Caswell,

2006, Section 4.5.2.1). The second scenario is when a population exhibits changing

growth or decline, in which case there is no stable age structure. We believe that this

scenario is intractable, and it would make a good subject for a robustness study to

see how much it affects estimation. The third scenario would be where there is no

expected population growth or decline but there is demographic stochasticity, which

in practice could result in deviations from the stable age structure. For this scenario,

an option could be to use the method described by Hillary et al. (2018), where the

measured lengths were binned and a multinomial distribution was fit to these binned

data to estimate the distribution of sampled ages. Still, this could be a topic for future

research to see what other methods exist to find the distribution of (sampled) ages.

CKMR involves many pairwise comparisons, which often involves many identical prob-

abilistic statements. To limit computation time, we evaluated unique probabilistic

statements only once. If further computational improvements are required, it is pos-

sible to reduce the number of pairwise comparisons that are evaluated by excluding

a subset of comparisons from the analysis. For example, the length-age relationships

are often much clearer for younger animals, and therefore one could choose to only

consider animals up to a certain size as potential offspring (Trenkel et al., 2022).

In our simulation and model, we assumed some life history traits to be fixed and

known, but this is not always required for CKMR. We estimated sex-specific adult

abundance only in our model and assumed quantities such as survival to be known

and fixed. In order to relax the assumption of a fixed and known survival parameter

ϕ, one could estimate it by including half-sibling pairs alongside parent-offspring pairs

(Bravington et al., 2016b). Parent-offspring pairs can be used to model fecundity as

long as the parameter appears explicitly in the model, which could be the case when
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fecundity varies with the size or age of animals (Bravington et al., 2016b, Section 3.1.4)

We are unaware of any attempts to estimate time-varying fecundity or survival, and

we believe this to be a potential direction for future research. Moreover, we assumed

maturity to be knife-edge as it slightly reduces complexity of the model. However, if

maturity occurs more gradually, then this can be accommodated by adding a fecundity

curve to the model (e.g., a logistic curve; Conn et al., 2020). We also imposed a fixed

and known maximum age in the simulation, mostly to reduce computation time. In

reality, animals do not always have a maximum age; in such cases, one could set

the maximum age equal to an age that the animal has practically zero probability of

reaching. Further, we made the assumption that sampling was random with respect

to age, i.e., that there is no selectivity, which does not necessarily need to be true in

reality. When accounting for ageing error when there is selectivity, it will be necessary

to include some function relating true age to observed age, which would depend on

the probability of being sampled at a given true age. Finally, we have not considered

fishing-induced mortality, as our case study concerned an area protected from fishing.

This and other anthropomorphic sources of mortality should be accounted for whenever

they are present, analogously to Bravington et al. (2016a).

When a promising method like CKMR is first presented, one can see the appeal to

start studying populations as quickly as possible. Benchmark comparisons could be

useful (e.g., Ruzzante et al., 2019) to compare a new method to some ‘truth’. However,

these comparisons can be ambiguous when it is unclear how accurate the benchmark

truly is. Simulation studies, such as this one (and see Conn et al. (2020) for the effects

of unmodelled spatial heterogeneity on CKMR), are a key part of understanding when

the CKMR method works well and when it does not. We believe the CKMR method

has great potential and, in some cases, is an improvement over other methods, but

our study confirms that care that needs to be taken when ageing is biased. In such

cases epigenetic ageing could be preferable, even though epigenetic ageing can still

involve substantial uncertainty (e.g., Larison et al., 2021; Prado et al., 2021) and relies

strongly on the quality of the training data (Mayne et al., 2023).



Chapter 5

Baited random encounter

modelling for sharks on the

Chagos Archipelago

5.1 Introduction

The methods presented in this thesis so far have relied on some unique identifier, that

can be captured and recaptured to estimate the abundance of individuals or cues. A

common way of introducing such a marker is by capturing animals and physically

marking them, either using tags or permanently marking some part of their bodies.

However, these methods have been criticised over the years due to their invasive na-

ture (e.g., White et al., 2012; Jepsen et al., 2005). Alternatively, when animals are

genetically unique, their marker can be of a genetic nature (Yoshizaki, 2007). This

only works for animals that are genetically unique, which is not always the case (e.g.,

certain armadillo species; Bravington et al., 2016b). Genetic markers can also be chal-

lenging to obtain without catching the animal, especially in a marine environment

where sources of genetic material such as faeces quickly dissipate (Creel et al., 2003).

Some animals can be uniquely identified by their physical markings. Examples of these

in a terrestrial context are snow leopards or tigers (Jackson et al., 2006; Karanth and

Nichols, 1998); examples of marine animals are whale sharks, sea turtles, and cetaceans

(McCoy et al., 2018; Schofield et al., 2008; Constantine et al., 2012). This allows for

75
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much less invasive sampling techniques as physical captures are no longer necessary.

Furthermore, it allows for the usage of camera traps or even continuous video, which

means that researchers no longer have to make observations in situ, but rather can

analyse the footage later. This is especially favourable for elusive animals, as you

need to sample over a large period and/or area to obtain enough detections for any

reliable inference, and for animals that live in places that are hostile for human ob-

servers, such as marine environments. However, using (remote) cameras is not suited

for all animals, as some do not have natural markings or do not have markings that

reliably allow for unique identification, such as certain species of rodents (Caravaggi

et al., 2016). The study presented in this chapter was motivated by a data set consist-

ing of shark footage from baited cameras placed on the Chagos Archipelago. Such a

camera system is generally referred to as a baited remote underwater video (BRUV)

system. These systems generally consist of a rig with one or two cameras (so-called

‘stereo-BRUV’) mounted in the centre and a container in front of the camera to put

the bait in (Mallet and Pelletier, 2014) This container has holes in it so that the water

interacts with the bait and the scent of the bait (the ‘bait plume’) can spread through

the water, attracting animals from beyond the field-of-view (FOV) of the camera(s)

(Langlois et al., 2020). BRUV systems can be placed on the sea bed (e.g., Harvey

et al., 2012; Brooks et al., 2011), or drift in mid-water (e.g., Bouchet and Meeuwig,

2015; Letessier et al., 2019). As sharks are generally elusive, using remote underwater

systems seems appealing; however, sharks can have little or no natural markings to

uniquely identify the individuals.

The lack of natural markings makes the application of capture-recapture methods

challenging in such scenarios. An alternative method that does not rely on individual

identification is random encounter modelling (REM; Rowcliffe et al., 2008). Another

possible framework would be camera trap distance sampling (e.g., Howe et al., 2017) if

distances from the animals to the camera could be obtained; here, we focus on REM.

REM utilises the ideal gas theory, i.e., the theory describing how gas molecules move

around in a volume. If one assumes that animals move around an area randomly, then

this method can be used to produce unbiased estimates of animal density by relating

the number of animals that enter the FOV of a camera to the total number of animals

in an area. Over a given time frame, the number of animals entering the FOV of

the video is proportional to the total number of animals. REM produces unbiased

estimates even when animal movement is non-random, as long as their non-random
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movement is unrelated to the presence of cameras (Rowcliffe et al., 2013). More detail

on REM is presented in Section 5.2.

REM overcomes the issue introduced by the lack of individual identification, but the

elusive nature of sharks still poses a challenge. Visual observation is inefficient under-

water (see Chapter 1) which reduces the area that is sampled by the cameras. The

solution to this by researchers is to add bait to lure animals towards the cameras from

beyond the FOV (Mallet and Pelletier, 2014). This greatly increases the area sampled

and hence the encounter rate. There are, however, at least five challenges when using

these data for absolute abundance estimation. First, the movement of animals is no

longer random with respect to the cameras, which violates one of the main assump-

tions of REM. Second, the sampled area is now much harder to estimate, as it is no

longer defined by FOV of the cameras, but by the area covered by the bait plume.

The bait plume spreads after the bait is placed, and so the sampled area becomes a

function of time. REM estimates density rather than abundance alone, so knowledge

of the sampled area is required. Third, as a shark is only visible once it enters the

FOV of the camera, it is challenging to determine exactly when it encountered the bait

plume. The distance travelled could be informative about the density of the sharks,

but strong assumptions have to be made in order to create such an estimator (Priede

et al., 1990, 1994; Priede and Merrett, 1996; Priede and Bagley, 2000). Fourth, in-

dividuals might not always respond to the bait plume. The bait plume dilutes as it

spreads, which means that the effective sampled area is potentially much smaller than

the absolute sampled area, and one needs to account for this to avoid underestimating

density. There could also be other reasons for a shark not to respond to the bait, for

example because it is satiated. Last, as sharks might circle the bait and the camera

for some time after the initial encounter, it could be challenging to distinguish what

really is a novel encounter and what is not.

In this chapter, we will first present a summary of previous work on using BRUV data

for absolute abundance estimation. Next, we provide a summary of REM and some

extensions of the method since its introduction. Third, we discuss the ways in which

REM can be extended to work with data from baited cameras, for which we derived

an analytical solution for the expected distance from the animal to the camera and

used simulation to better understand the area covered by the bait plume. Finally, we

present our findings and make recommendations for future directions.
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5.1.1 Previous work

The challenges presented in the previous section have resulted in data from BRUV sys-

tems generally having been used for relative abundance measures, often MaxN (Sher-

man et al., 2018; Schobernd et al., 2014). MaxN is the maximum number of individuals

in one frame over all recorded video frames, and hence produces an absolute underesti-

mate of abundance, assuming that no individuals are counted twice. The link between

MaxN and absolute abundance has been studied (e.g., Dunlop et al., 2015), but the

link remains highly context-dependent due to differences in animal behaviour. MaxN

is an order statistic, which limits its usability for population size inference. Another

limitation is that MaxN does not have a linear relationship with abundance or density,

as activity at the detector might attract some animals and repel others. Animals might

also leave the bait after varying amounts of time. Another metric that is commonly

extracted from BRUV systems is time-to-first-arrival (TFA; Priede et al., 1990). The

time it takes until the first individual of the focal species arrives at the bait should be

inversely related to the area covered by the bait plume, the species’ density, and the

movement speed of the animals. Priede and Merrett (1996) attempted to quantify this

relationship for several abyssal demersal fish species. They viewed the ocean floor as

a two-dimensional area and made the following assumptions: first, all fish are evenly

distributed along the sea floor and occupy a regular hexagon with common sides length

r and thus area 3
√
3r2/2; second, all fish are static until they encounter the bait plume;

third, when a fish encounters the bait plume, it always responds by swimming to the

bait in a straight line; fourth, the odour of the bait will spread down-current with the

same speed as the water velocity; and finally, the odour can never pass between the

two nearest fish that are down-current. Using these five assumptions, they derived the

following relationship between the hexagonal-shaped area occupied by an individual,

Aindiv and TFA:

Aindiv =
3
√
3r2

2
, (5.1)

where r = tarr/(V
−1
f + V −1

w ), tarr denotes the TFA in seconds, Vf the approach speed

of fish and Vw the water velocity, both in meters per second. Total abundance N is

then estimated by dividing the total study area by Aindiv.

The assumptions introduce a challenge, as they strongly restrict the set of animals that

this method could be applied to. If animals are evenly distributed and if they move
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only when they detect the bait, then this method might work; this could be the case

for the type of abyssal species that motivated the development of this method (Priede

et al., 1990). However, sharks (see Section 5.1.2) are not static and some species are

known to congregate (e.g., Speed et al., 2011), which would mean that the assumptions

underpinning this method are violated. Moreover, this method assumed a process in

two-dimensional space. Even though this might work for species that tend to live at

the bottom such as rays, the modelling of movement for more pelagic (shark) species

could require a model that uses three-dimensional space.

5.1.2 Chagos Archipelago

The Chagos Archipelago is positioned in the centre of the British Indian Ocean Terri-

tory (BIOT; Figure 5.1). The BIOT consists of seven atolls and contains a joint coral

reef surface of roughly 15,000 km2 (Ferretti et al., 2018). The shark communities living

around the Chagos Archipelago were still considered pristine only 50 years ago, but

the number of sharks sighted decreased drastically from 4.2 per scientific dive in the

1970s to 0.4 in 2006 (Graham et al., 2010). This decline is most likely due to poaching

by large distant fishing fleets, indicating that even these remote marine areas are vul-

nerable (Graham et al., 2010). In 2010, the BIOT became a no-take zone of 640,000

km2 and thereby one of the largest marine protected areas in the world (Wilhelm et al.,

2014). The decline of shark populations on Chagos was confirmed by Ferretti et al.

(2018). They estimated 571,130 (standard deviation: 124,915) grey reef sharks (Car-

charhinus amblyrhynchos) and 31,693 (standard deviation: 18,513) silvertip sharks

(Carcharhinus albimarginatus) inhabited the archipelago in 2012, about 79 and 7% of

their respective baselines. These estimates were derived through state-space Bayesian

surplus production models using historical catch data from illegal fishing and moni-

tored industrial fishing, historical abundance indices from scuba and longline surveys,

and ecological theory.

Our attempt to estimate absolute abundance from BRUV data was motivated by a case

study on these same species. The data available consisted of footage from mid-water

and seafloor BRUV systems from 2012–2016, and additional information extracted

from that footage such as TFA and MaxN. Even though the main species of interest

were grey reef sharks and silvertip sharks as these were most often encountered, data
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were also available for other species such as silky sharks (Carcharhinus falciformis)

and whitetip reef sharks (Triaenodon obesus).

Figure 5.1: Map of the British Indian Ocean Territory (BIOT) and the Chagos
Archipelago. The dots indicate the locations where illegal fishing was intercepted by

a BIOT patrolling vessel. Image extracted from Ferretti et al. (2018).

5.2 Random encounter modelling

We seek to overcome the challenges introduced in Section 5.1 by extending REM to al-

low for baited cameras, which we henceforth refer to as baited random encounter mod-

elling (bREM). REM was developed at the same time as spatial capture-recapture and

there have recently been several new developments, namely generalised REM (gREM;

Lucas et al., 2015), the addition of staying time (the so-called REST model; Nakashima

et al., 2018) and research into the sources of variance in REM (Jourdain et al., 2020).

The core assumption of REM is that cameras are placed independently of the move-

ment of the animals; the animals do not need to move independently with respect to
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each other. This is the main challenge when using bait to lure animals to the camera:

not only does REM have the same challenge as SCR––namely that the estimation of

the sampled area is more complex—-but also that the animals no longer move inde-

pendently with respect to the cameras.

5.2.1 Summary of REM

In this section we summarise REM as presented by Rowcliffe et al. (2008). REM

was initially developed for data from camera traps but is increasingly being used for

video. Camera trapping uses fixed cameras that are triggered by infra-red sensors. The

number of photographs taken per unit of time contains information about the density

of animal population. Using this as an index of abundance has been controversial,

primarily because it does not estimate the probability of detection (Rowcliffe et al.,

2008) (however, recent work by Howe et al. (2017) showed that this is possible with

camera trap data). Rowcliffe et al. (2008) modelled the underlying observation process,

thereby developing a way to derive density estimates from camera trapping rates.

This observation process was based on mechanistic models to describe the interaction

between gas molecules, i.e., the ideal gas theory. This model assumes a circular zone

around objects at which contact occurs. A circular particle moving through two-

dimensional space covers an area that is the product of its width, 2r, and the total

distance moved in a time frame, vt, which gives

a = 2rvt (5.2)

where a denotes covered area, v denotes velocity, t denotes time, and r the radius.

The total area covered by n particles is simply Equation (5.2) multiplied by n, which

is equal to the product of density D and total area A. Therefore, the total covered

area at by n particles of width 2r is given by

at = 2rvtDA. (5.3)

If we place a single sensor in area A with negligible radius, then the expected total

number of encounters between the sensor and the particles is equal to the total covered



82 Baited random encounter modelling for sharks

Figure 5.2: Area covered by particle moving through two-dimensional space with
detection range r.

area divided by the area A, such that

E[y] =
at
A

= 2rvtD, (5.4)

where an encounter y is defined as the moment a the edge of the particle interacts with

the sensor. Equation (5.4) still holds if we treat the particles as points with negligible

radius and the sensor as having a circular area or detection zone with radius r. If these

particles now represent animals, then we can rewrite (5.4) to get an estimate of animal

density:

D̂ =
y

2rvt
, (5.5)

where y is the number of encounters, where an encounter is now defined as the moment

an animal enters the detection zone of the sensor. For cameras the detection area

is often not circular, but rather a sector with radius r an angle ψ. The width of

an animal’s covered path, p, is therefore no longer 2r, but depends on the angle of

approach relative to the direction of the camera. We describe the six limiting cases

for π possible approach angles, north to south (counterclockwise), in Figure 5.3. As

the angle of approach is generally not known, we integrate over all possible angles

γ ∈ [0, 2π] to get the expected profile width. This involves integrating over [0, π],

dividing it by π to get the average over a half circle, and then multiplying by two to

account for the full circle. Instead of the average profile width being equal to 2r, it
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Figure 5.3: Six limiting cases for π approach angles (north to south, counterclock-
wise; red arrows). The numbers 1–5 refer to the 5 transitions between the cases as
the approach angle changes. The width of the profile (p; dashed red) changes as the
approach angle γ changes, which is the angle opposite the profile when drawing a
right-angled triangle. The subscripts in γ refer to which transition phase the angle is
related to. The profile width is 2r sin (θ/2) sin (γ) for (π− θ)/2 ≤ γ ≤ π/2 (transition
1 and 5); the profile width is r sin (γ) for θ ≤ γ ≤ ϕ/2 (transitions 2 and 4); and the
profile width is r for approach angle θ (transition 3). This figure is redrawn from Fig.

1 from Rowcliffe et al. (2008).

becomes

p̄ =
2

2π

(
2

∫ 2
π

(π−θ)
2

2r sin
(π
2

)
sin(γ)dγ + 2

∫ π
2

θ
r sin(γ)dγ + rθ

)

=
r

π

(
4 sin

(
θ

2

)
cos

(
π − θ

2

)
+ 2 cos (θ) + θ

)
=
r

π

(
4× 1

2

(
sin

(
θ + π − θ

2

)
+ sin

(
θ − π + θ

2

))
+ 2 cos(θ) + θ

)
=
r

π

(
2
(
sin
(π
2

)
− sin

(π
2
− θ
))

+ 2 cos(θ) + θ
)

=
r

π
(2 (1− cos(θ)) + 2 cos(θ) + θ)

=
r(2 + θ)

π

(5.6)

Incorporating the above in Equation (5.4) gives an updated expected number of con-

tacts

E[y] =
2 + θ

π
rvtD. (5.7)
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Rearranging this gives an estimator for density as a function of trapping rate y/t,

animal movement v, and the camera dimensions θ and r:

D̂ =
y

t

π

vr(2 + θ)
(5.8)

When animals move in groups and y denotes the number of encounters of groups, then

Equation (5.8) must be multiplied by an unbiased estimate of group size g to get an

estimate of animal density.

Variance is estimated using a non-parametric bootstrap, whereby the camera locations

are re-sampled with replacement and the model is refitted to the bootstrapped data

(Rowcliffe et al., 2008). The variance of D̂ is then estimated by the empirical variance

of a large number of these bootstrapped density estimates. Variance of the other,

independently estimated parameters (which are v, g, r, and θ), can be incorporated

using the delta method (Seber, 1982).

5.2.2 Extensions and critiques

Some critiques of the method came from Foster and Harmsen (2012), who claimed that

the assumption of random movement was certainly violated, and also that random

placement of cameras was not feasible. Rowcliffe et al. (2013) responded to this by

stating that REM is insensitive to non-random and non-independent movement of

animals, as long as they do move randomly with respect to the cameras. Moreover, they

stated that cameras can be placed at non-random locations, as long as the parts of the

landscape that either attract or repel the animals are sampled proportionally to their

coverage of the total sample area. We note that we believe that this is correct regarding

the unbiasedness of the point estimator; however, when sampling is proportional to

coverage of preferential environments in the study area, then variance estimated from

a non-parametric bootstrap is no longer unbiased (Borchers et al., 2002, Chapter 4).

A challenge with REM is the inflation of estimated density when animals’ movement

speed is underestimated (Rowcliffe et al., 2012). Rowcliffe et al. (2016) propose a

possible solution by estimating animal movement from camera footage, however, this

requires video and could be challenging to adapt to conventional camera trapping.

Two additional challenges of REM as presented by Rowcliffe et al. (2008) were that
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i) it allowed only for sensor widths of up to π/2 (thereby excluding the use of the

popular wide-angle cameras), and ii) the method was developed for camera-trap data

and assumed that signals were omnidirectional, which excluded applying the method

to acoustic data when acoustic signals were directional (Lucas et al., 2015). These

challenges were resolved with a generalised version of REM (gREM) that was presented

by Lucas et al. (2015). In this study, the authors developed several models and limiting

scenarios by extending the range of sensor width θ from [0, π/2] to [0, 2π] and allowing

for the signal to be directional by modelling a signal width α ∈ [0, 2π]. In total,

8 models were developed to derive the expected profile width p̄, depending on the

values of α and θ. Similar to Rowcliffe et al. (2008), an encounter was defined as the

moment the signal of an animal entered the detection zone. A simulation study was

carried out to test the performance of gREM. Here, the accuracy was tested comparing

the true and estimated densities from the correct model for various combinations of

α, θ, total number of captures, and for range of animal movement patterns. All the

gREM submodels showed low bias, but precision varied strongly with sensor width and

signal width. The authors also tested for model sensitivity to error in the parameter

estimates, which they found to be reasonable as percentage error in the density estimate

was never more than 5% larger than the error in the parameter estimate (Appendix S6;

Lucas et al., 2015). For future field studies, the authors concluded that i) sensor width

should be maximised, ii) the number of captures has a strong effect on precision, and

thus researchers should focus on collecting a sufficient amount of data, and iii) capture-

recapture studies should be included alongside gREM to test performance under field

conditions.

Finally, REM is a deterministic model and relies on parameters estimated from other

studies. Jourdain et al. (2020) derived the REM estimator as a maximum likelihood

estimator by assuming that the number of encounters between animals and sensors

follows a Poisson distribution. This allowed for the incorporation of covariates, such

as habitat type. They further proposed an extension of this maximum likelihood REM

estimator called the integrated random encounter model (iREM). This extension jointly

models the encounters of animals and sensors and the movement speed of the animals,

instead of assuming a fixed movement speed. They show that REM and iREM can both

be used for density in heterogeneous habitats, but that iREM is preferred whenever

one wants to incorporate camera random effects or account for variability in animal
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speed. However, it is noted that the fitting of iREM can be substantially more complex

and computationally intensive.

5.2.3 REM for sharks on Chagos

The main challenge for using REM to estimate shark abundance for our case study

is that the cameras were baited, which violates the standard assumption of indepen-

dence between the movement of the sharks and the cameras. In addition, the effective

sampled area is primarily determined by the area and intensity of the bait plume, and

the response behaviour of sharks to the bait, and less so by the FOV of the camera.

We believe that the sampled area can be estimated using an extension of the method

proposed by Dunlop et al. (2015). In this study, the bait plume was modelled using

the current speed, diffusional velocity, and elapsed time. However, the conditions

affecting the bait plume spread will need to be estimated or recorded separately for

every BRUV and in situ, as these conditions can vary locally (Heagney et al., 2007).

For example, when estimating the density of stone crabs (Lithodidae) using BRUV,

the camera systems carried a current meter to estimate individual bait plume spread

(Collins et al., 2002). A primary challenge is how to model the process of the shark

responding to the bait. Sharks respond to bait differently depending on species, and

the type and amount of bait used (Kilfoil et al., 2021). In a previous study researchers

assumed a response probability of 1 and that the animal would swim to the bait in a

straight line upon detection (Dunlop et al., 2015), but we are unaware of any studies

that support the validity of such an assumption. Moreover, we should consider that

the presence of a shark at or near the bait might affect the behaviour of other sharks

and hence the arrival of these sharks into the FOV. Another challenge is to account

for disruption in movement caused by sensing the bait. REM assumes movement to

be random and unaffected by the detector; however, here it is likely that animals will

spend some time near the camera exploring the bait. This disruption in movement can

generally be categorised in two ways:

• the disruption in the movement is temporary, which means that the shark is

attracted, swims to the camera, remains close to the camera for some time, and

then continues the initial movement pattern, albeit from a different location, or
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• the shark interacts with the bait and camera in a similar way, but now changes

its swimming behaviour after encountering the bait.

The second category of disruption would be more challenging to model as one would

have to know how encountering the bait affects the general movement of the shark,

whereas the former could potentially be modelled more easily.

A further question that requires attention is the metric that will be used to quantify

an encounter. In Rowcliffe et al. (2008), the moment an animal enters the FOV of

a sensor was used to calculate encounter rate. If an animal leaves the area and re-

enters, then this is counted as a new encounter. This does not bias the estimates,

as long as the movement of the animals in independent of the sensor. As this is

no longer so when using baited cameras, a new definition of an encounter could be

required. Others have suggested using association, which is defined as the number of

ongoing encounters within an area in a give time frame (Hutchinson and Waser, 2007;

Campos-Candela et al., 2018). The absolute animal density can then be estimated by

the averaged counts across a number of independent frames divided by the sampled

area (Hutchinson and Waser, 2007). This estimator was later extended for data from

animals displaying home range behaviour (Campos-Candela et al., 2018). Potentially,

it is also possible to incorporate time-to-first-arrival (TFA) as additional information in

a REM framework, similarly to the way Nakashima et al. (2018) incorporated staying

time to develop the random encounter and staying time model. There could even be

information in the distribution of all arrival times. Of course, it will often be impossible

to say for sure whether a new appearance of a shark is actually a new shark, or just

an old one that re-entered the FOV. Even though we assumed the sharks are not

uniquely identifiable, it might occasionally be possible to tell some apart, for example

when one shark is clearly of a different size than the other or a (nearly) unique marker

is found, such as a scar. With this one would be able to create a lower bound number

of unique individuals encountered on a BRUV system. Moreover, there could exist

the potential to model these arrival patterns and obtain some signal about density.

This information could then be incorporated through an additional element in the

likelihood if the likelihood-based method is used. Some examples of adaptations to

partially identifiable populations are Chandler and Royle (2013) and McClintock et al.

(2009). We do not explore using only TFA to estimate abundance, as this would
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reduce every BRUV deployment to a single data point, greatly reducing the available

information.

5.3 Baited random encounter modelling: exploratory stud-

ies

We performed two studies to test and explore the potential of resolving some of the

questions and challenges presented in the previous section. We explored whether REM

could be extended to baited cameras (bREM) under some strong assumptions. One of

the metrics that is important here is the Euclidean distance travelled by the shark after

it encounters the bait plume. We first derive an analytical solution to the expected

distance the shark must swim when the point of contact with the plume is unknown.

Second, we explored through deterministic numerical simulation the ways in which

bait plumes spread under various current scenarios, with constant and variable plume

intensity.

5.3.1 Distance from camera to plume edge

It is not generally known how a shark approaches bait upon encountering a bait plume.

Even though sharks might not approach bait in a straight-line after encountering the

scent, modelling it this way can still work if the general direction of the shark is

towards the bait. The distance from the edge of the bait plume to the camera/bait

thus remains an important quantity for determining the time that the shark takes to

get to the bait and hence be detected and time-stamped. In this section, we find an

analytical solution to this expected distance, E(d).

We assumed that the water was moving in one direction with a constant velocity, and

that the bait plume spread at angle θ. We approximated the shape of the bait plume

by a circular sector with angle θ and radius r, similarly to Dunlop et al. (2015). The

approach angle γ of the shark was set at 0 when it approaches directly against the

current. As we did not know the angle at which the shark approaches the bait plume,

we considered all possible angles from 0 to π and averaged over them, similarly to

Rowcliffe et al. (2008). We only needed to consider half of the full circle as π to 2π



Baited random encounter modelling for sharks 89

is identical. The radius of the plume is denoted by r. This resulted in three limiting

cases for distance d: d = r, if 0 ≤ γ ≤ θ
2 ; d = r

(
1− 1
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)
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Figure 5.4 shows the expected distance plotted against θ ∈ (0, π) for a range of values

for r. What was promising is that there seemed to be little variation in the expected

distance as θ increases.

This is useful for a scenario with the following assumptions:

1. odour intensity is constant throughout the bait plume;

2. the camera detection angle is equal or less to the bait plume angle;

3. sharks swim in a straight line towards the bait upon encountering the bait plume;

and

4. the circle sector representation of the bait plume sufficiently holds.

The second assumption is mostly important when the FOV is substantial relative to

the area covered by the bait plume; when it is negligible, this assumption can be

relaxed. Even if the shark does not approach in a straight line, one could still work

with the straight line distance but use a corrected swimming speed. These are strong

assumptions, still, and should be tested before our derivations can be used, especially

assumption 1 and 4. For this reason, we further explore the way the plume spreads

when currents are less predictable than we assumed.
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Figure 5.4: Expected distance from the edge of the bait plume to the bait/camera,
as a function of plume spread angle, θ. We considered four different values for plume

length, r.

5.3.2 Bait plume spread

In our second study, we considered bait plume spread under various current conditions,

and the ways in which they affect the total (effective) sampled area. Many different

plume spread models exist, but many are complex and require much calibration de-

pending on specific bait type and water conditions (Westerberg and Westerberg, 2011).

Therefore, we started with a simplified model proposed by Dunlop et al. (2015). The

spread of the bait plume was modelled using the following three equations:

Lpl = VwT, (5.10)

where Lpl denotes the bait plume length, Vw the mean current speed, and T the time

in seconds;

θpl = 2 tan−1

(
By

Vw

)
, (5.11)
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where θpl denotes the plume spread angle in radians, and By the diffusional velocity;

and

Ba =

(
θpl
2

)
L2
pl, (5.12)

where Ba denotes the area covered. As currents can vary substantially locally (Heagney

et al., 2007) we now consider the following questions: 1) is Ba affected by changes in

the direction of the current speed, and 2) what role does the distribution of current

speeds play (i.e., can we rely solely on an average current speed or is it important to

account for variation in current speeds)?

5.3.3 Methods

The goal was to predict the total sampled area. Here we made the distinction between

absolute and effective area. The absolute area is the total area that is covered by the

bait plume, irrespective of the intensity of the plume. On the other hand, the effective

area is the total area corrected for the intensity of the plume. When a bait plume

spreads, the plume dilutes and thus the intensity decreases. We included this because

we believed the intensity could affect the probability that a shark responds the plume

when it interacts with it. For our simulation we discretised the two-dimensional space

into equally-sized squares, where every square had an area of size 1. We assumed that

the current could only move in four directions: west, north, east, and south. The bait

was placed at the point (0,0). We also discretised time: at every turn, each cell that

was already covered by the bait plume ‘baited’ the next cell down-current and the cells

left and right of it, relative to the current—the original cell was no longer covered by

the plume, as long as it was not baited again by one of the neighbouring cells. The

one cell that was always covered by the plume was the bait itself, the ‘source’. This

approximated a spread model with plume angle π/2 radians.

We considered five scenarios of bait plume spread, where we varied the current direction

and the number of steps between changes in direction. The first scenario consisted of

a stable westward current; the second scenario consisted of a predominantly westward

current, that occasionally moved north- or southwards and rarely eastwards; the third

scenario consisted of unstable current that was randomly moving either westwards or

eastwards; the fourth and fifth scenario consisted of currents that were stable for some

time going one direction and then flip to the opposite direction—this would happen
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once or several times, depending on the scenario. The five scenarios are described in

more detail in Table 5.1. Every simulation consisted of 100 time steps. At every time

step, the cell directly down-current from a cell covered by the plume were baited with

50% of its plume intensity, and 25% of its intensity baited the cells left and right of

the cell directly down-current. To illustrate: a cell with a bait plume intensity of 0.8

would bait the cells directly down-current with intensity 0.5× 0.8 = 0.4 and the cells

left and right of it with intensity 0.25 × 0.8 = 0.2. The source of the bait plume, the

bait itself, always had plume intensity 1. The plume intensity at all cells was capped

at 1 to reflect the concept that at some point an increase in plume intensity no longer

affects the responsive behaviour of the shark. The total plume area is denoted AT and

is total number of cells covered by the plume; the effective plume area is denoted AE

and equals the sum of the plume intensities over the whole area.

5.3.4 Results

The results are presented in Table 5.1 and visualised in Figure 5.5. Whenever currents

were stable, i.e., rarely changed direction, then the effective plume area was very

similar (AE is 101 in scenario 1 and 96 in scenario 4). As current changes became

more frequent, and thus the same cells got repeatedly infected, the effective plume area

dropped (AE is 82 in scenario 2 and 87 in scenario 5). When the current constantly

moved back and forth, the effective plume area was smaller still (AE is 56 in scenario

3). Overall, the largest effective plume area (101; scenario 1) was almost twice as large

as the smallest effective plume area (56; scenario 3). There was also a gap between

total plume area and effective plume area, with the total plume area always being

much larger. Moreover, the total plume area was more sensitive to changes in the

current scenario (AT is 10201 in scenario 1 and 1741 in scenario 3).

5.4 Concluding remarks

In this chapter we explored the potential of deriving absolute abundance estimates from

BRUV data using an extension of the random encounter model. The main challenges

that were evaluated were i) that shark behaviour would no longer be independent of the
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Figure 5.5: Plots of bait plumes for five scenarios. In every scenario, the current was
simulated for 100 time steps. At every time step, the direction of the current either
followed a fixed pattern or was randomly drawn from four options: west (W), east
(E), north (N), and south (S). The five scenarios are (top-to-bottom): 1) constant
west current; 2) mostly west current (direction probabilities W: 55%, E: 9%, N: 18%,
S: 18%); 3) rocking water (direction probabilities are W: 5%, E: 50%, N: 10%, S: 0%);
4) rarely changing current (50 times W, then 50 times E); and 5) regularly changing

current (25 times W, the 25 times E, and then repeat).
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Scenario Description AT AE

1 The simulation was run for 100 time steps with current
going westwards at every step.

10201 101

2 The simulation was run for 100 time steps where the
direction of the current at every step was sampled with
probabilities north (18%), west (55%), south (18%),
and east (9%), i.e., predominantly westwards.

10008 82

3 The simulation was run for 100 time steps where the
direction of the current at every step was sampled
with probabilities north (0%), west (50%), south (0%),
and east (50%), trying to mimic a body of water that
moves back and forth without a true dominant cur-
rent.

1741 56

4 The simulation was run for 100 time steps where the
direction of the current was exclusively westwards for
the first 50 steps, followed by 50 steps eastwards,
trying to imitate a current that flips direction infre-
quently, or potentially a rising and falling tide.

7701 96

5 The simulation was run for 100 time steps where the
direction of the current was exclusively westwards for
the first 25 steps, followed by 25 steps eastwards, 25
steps westwards, and finally 25 steps eastwards, trying
to imitate a current that flips more frequently.

4576 87

Table 5.1: Overview of the plume spread simulation scenarios and simulated bait
plume areas. AT denotes the simulated total plume area, i.e., the total number of
cells that were covered by the bait plume, and AE denotes the simulated effective
plume area, i.e., the sum of all bait plume intensities. The areas correspond to the

plots presented in Figure 5.5.

presence of the camera systems and ii) that the effective sampled area would depend

on the dynamics of the water column.

We observed large reductions in effective plume area when currents changed, whereby

a constantly changing back-and-forth current resulted in the lowest area. This was a

result of the plume intensity being capped at 1, i.e., which was the intensity at the

source; would the plume intensity have not been capped, then the effective plume area

would have been the same for every scenario. This cap was introduced to reflect the

fact that at some point more intensity does not necessarily result in a stronger response

from a shark. However, this was a simplifying assumption, and other plume intensity

structures could be tried. Moreover, we only tried a simplistic, deterministic model
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of bait plume spread, and the benefits of using more sophisticated (e.g., stochastic)

models, such as Gaussian plume models, should be tested (Westerberg and Westerberg,

2011). Finally, the substantial gap between total plume area and effective plume

area highlights that one should consider adding bait concentration as a part of the

simulation.

Previous studies concluded that methods using baited cameras work in theory, but that

observations from BRUV data remain sensitive to effects that will be hard to model

or accurately estimate, such as local current conditions or shark behaviour (Harvey

et al., 2007; Kilfoil et al., 2021). The explorations undertaken here were based on strong

assumptions, too, and these require further testing. The most important assumption

one would be the behavioural effect of encountering the bait on the movement of the

shark. One could get an approximation of when the shark encountered the plume by

assuming a straight-line approach with an altered swimming speed, but we are not

aware of information about the staying time and changes to movement once the shark

leaves the bait. Furthermore, the fact that a shark could be circling the bait for some

point before leaving, during which time it could enter the FOV of the camera many

times, is something that will require attention. A potential way to handle this is to

omit data from the camera from the start of the encounter as long as there is good

reason to be believe that a shark is still present at the bait, and only continue using

that data once the shark has left. This would mean that potential new encounters are

not counted, but the issue of a repelling effect of a shark at the bait on other sharks

is potentially reduced and that the data is of higher quality. However, this would

require some level of individual identification, which can be challenging for some shark

species. Moreover, if individual identification is possible, then one should probably

consider using a capture-recapture method.

Nonetheless, there still appears to be potential in using BRUV data for estimating

absolute abundance of sharks through a random encounter framework. There are sev-

eral field considerations that will enhance this potential. First, we believe that it is

important to record as much information in situ about the environmental conditions,

such as current direction and speed. Second, one should consider whether the place-

ment of the BRUV systems allows for well-estimated bait plume spread. For example,

mid-water placement of BRUV systems might allow for more predictable and consis-

tent currents directions and speed but would require modelling in three-dimensional
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space as opposed to two-dimensional. On the other hand, bottom placed BRUV sys-

tems could allow for a two-dimensional model, but current speeds and directions at sea

floors could be less predictable, especially if the environment is more turbulent (e.g.,

due to coral reef or other structures).

Last, we note that the use of baited traps or sensors is not limited to the marine

context. Adding a scent to traps to increase the probability of observing an animal

has been used for small mammals (Parmenter et al., 2003), large predatory mammals

(Braczkowski et al., 2016), for insects such as beetles and moths (Dahlsten et al., 2004;

McNeil, 1991), and for birds (Reid et al., 1999; Klavitter et al., 2003). This means

that the insights from this study could be relevant also to researchers seeking to apply

REM with baited traps in a terrestrial context.

5.4.1 Future research

We believe that one of the most important future steps is to further explore the be-

havioural response of sharks to varying intensities and types of bait. Novel techniques

such as drones could allow for aerial observations of shark behaviour when sharks are

clearly visible from such footage, for example when present in shallow, coastal waters.

The bait could be dyed (as long as this does not affect the behaviour of the sharks), so

that the spread of the plume is easily observable from a drone. A potential challenge

is that it remains unknown to what degree such results could be extrapolated to other

species and environmental contexts.

Moreover, a clear next step would be to develop an actual estimator for density. Once

such an estimator is derived, one should perform further simulation studies to explore

robustness and bias under different scenarios. This is because such an estimator will

likely rely on strong and hard-to-verify assumptions about the bait plume and the

behaviour of the shark. We believe that agent-based simulations studies would be vital

to understanding where the sensitivities to applying REM in these scenarios lie, similar

to Kilfoil et al. (2021) (see also Chapter 4), as these allow for the incorporation of

individual movement of animals. For example, it could be that effects on the swimming

behaviour of sharks after interaction with the bait are not a problem given that the

expected behaviour remains the same. Finally, another area of future work would be

to test out continuous time and space differential equations of bait intensity (Garvey
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and Fowler, 2023), as these could be used to infer on how the bait intensity spreads

through time, how long it takes to reach a steady state, and what that steady state

is.





Chapter 6

Discussion

6.1 Summary

As technology advances, new sampling techniques become available to wildlife re-

searchers. We increasingly appreciate the importance of wildlife conservation, and

thus continue to extend existing abundance estimation methods and develop new ones.

In this thesis we studied various methods that use novel sampling techniques to esti-

mate animal abundance. All research was motivated by case studies involving marine

megafauna from the Arctic to the tropics.

In Chapter 2 and 3 we developed an extension of acoustic spatial capture-recapture

(ASCR) motivated by recordings of bowhead whale calls. This extension allowed us

to remove all calls that were detected on only one sensor, which were assumed to

contain a high proportion of false positives. This extension is readily applicable to

any ASCR study that faces a similar issue. It can also be applied to regular spatial

capture-recapture (SCR), for scenarios in which there is reason to believe that animals

only recorded once are not part of the population for which inference is desired (e.g.,

when a transient population mixes with the population of interest; Conn et al., 2011),

or when repeat captures are mistakenly thought to be captures of new individuals

(e.g., for snow leopard (Panthera uncia) detections from camera traps; Kodi et al.,

2024). We showed that the method is nearly unbiased with a received level step

detection function. Using the step detection function meant that we had to discard

all calls below a certain truncation level, which was set so that noise never surpassed

99
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the received levels; calls with a received level above this truncation level were assumed

to have the same detection probability. As this can lead to discarding a sizeable

proportion of the data, which can be undesirable, we also presented mathematical

derivations of a model with a detection function based on the signal-to-noise ratio.

This method requires additional information on noise, which is often readily obtained

from acoustic sensors.

In Chapter 4, we assessed the extent to which incorrect ageing affects close-kin mark-

recapture (CKMR) estimates. This research was motivated by a case study of genetic

samples from grey reef sharks. The exact age is often unknown and thus often estimated

by inferring the age from the length of the animal. In previous studies, researchers

found that growth curves can vary between different populations of the same species.

We undertook a simulation study using a range of length measurement errors and

where the length-age relationships were misspecified. These simulations involved two

fictional species to see whether the complexity of the population dynamics played any

key role. We found that the assumed length measurement error had negligible effect

on the estimated parameters, but that a bias in the growth curve induced strong bias

in the estimates.

In Chapter 5, we explored the potential to use an adapted form of random encounter

modelling (REM) to estimate abundance from baited sensors. Using bait violated a

key assumption of REM, which is that animals move independently of the sensors.

Moreover, the sampled area was no longer equal to the field-of-view of the camera,

but rather the area of the bait plume. Conventional REM estimates density from the

encounter rate, which is the number of encounters of animals with the edge of the area

sampled by a sensor over some defined time period. We derived an analytical solution

for the expected distance from the camera to the edge of the bait plume, which can be

used to estimate the time the animal first encountered the bait plume based on when

the animal reached the camera. Further, we ran a simulation study to explore how the

area covered by the bait plume changed under various current conditions. We showed

that this can vary substantially and that it is important to properly understand the

current conditions when modelling the bait plume. Also, we believe that one should

account for the intensity of the plume within the covered area, as the intensity of the

plume can have an effect on the behavioural response of the animal.
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6.2 Future directions

One of the main conclusions we drew from working with these novel abundance esti-

mation techniques is that they contain inherent trade-offs. Established and rigorously

validated approaches such as distance sampling and spatial capture-recapture work well

when the context is suited for their application; however, not all scenarios are. The

methodologies elaborated upon in this thesis were devised for such scenarios through

the incorporation of novel sources of information. The signal-to-noise ratio detection

function gives us the opportunity to include additional information relative to a con-

ventional ASCR analysis but is more complex than the step detection formulation from

Chapter 2. CKMR uses the richness of genetic information, but to do so this method

requires expertise in 1) the biology of the animals to define the population dynam-

ics model correctly; 2) the genetics to accurately determine kinship and incorporate

any uncertainty associated with this relationship; and 3) statistics to implement the

method in a computationally feasible way and correctly interpret the results. Combin-

ing these three fields allowed for improved abundance estimation of populations such as

the northern Atlantic bluefin tuna (Thunnus thynnus) stock (Bravington et al., 2016a);

however, it means that CKMR studies require extensive collaboration. Finally, using

data from baited sensors for unmarked populations means that we either must make

strong and hard-to-verify assumptions about the behaviour of the animals, or that we

need to perform separate studies on this behaviour and include them in our model.

For all these methods, we believe that a priority should be to understand the sensi-

tivity of the models to violations of the assumptions and error in the various sources

of information; in the absence of such knowledge, it will be hard to judge whether an

application of the method is suited for studying a particular species.

A potential future step for the ASCR method is the actual implementation in code

of the signal-to-noise extension. As part of that process, it would be essential to

implement a simulation study to explore the overall performance of this method, i.e.,

to discover any bias and optimise it until the computation time is acceptable, but also

to make sure that the implementation is correct. Another avenue to explore would be

finding a way to incorporate the directionality of the calls, i.e., calls that are louder in

front of the whale than behind it. These extensions already exist in the current ASCR

literature, and we believe that incorporating such extensions for this case study could

offer a significant improvement in the estimated call density surface.
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To our knowledge, we performed the first simulation-based study of the effects of incor-

rect ageing through misspecified growth curves on CKMR estimates. We found that

even a slightly shifted (i.e., biased) growth curve induced severe bias in the estimates.

Moreover, we noted a difference in these effects between the two fictional species that

we studied. We believe that this difference induced by changes in population life

history traits would be an excellent direction for future research. For example, one

could explore how incorrect ageing affects species of various life spans and various ages

of maturity. Furthermore, it would be valuable to improve our understanding of how

these violations affect parameter estimates when we allow for growth in the population.

We included some mathematical derivations of such a model in Appendix B; however,

we did not fully succeed in this as the distribution of age given sampled lengths was

inconsistent with a population that exhibited either growth or decline. Nonetheless,

there were clear indications that a misspecified growth curve could not only affect

abundance estimates on average, but also the direction of the trend (e.g., growth or

decline). As the trend is one of the key metrics for wildlife conservation, understanding

the relationship between estimated trend and incorrect ageing in a CKMR framework

would be a natural step for future research. In addition to this, one could also further

explore the effects of individual variation in the length-at-age relationship, potentially

in combination with measurement error. Finally, we believe that a future direction

for research with great potential is the joint fitting of a CKMR and capture-recapture

model whenever recaptures occur.

We provided some groundwork for baited random encounter modelling; however, no

actual estimator was developed. For this reason, we believe that this could be an

excellent step for future research. To do this, we believe that the most feasible part

to tackle is the sampled area. If the current conditions allow for proper modelling of

the bait plume, one could estimate an effective sampled area by making some assump-

tions about the behavioural response of a shark. For example, one could assume that

sharks respond with certainty whenever the plume intensity surpasses some threshold

value, and not whenever the intensity is below the threshold. This is a simplification,

and further behavioural studies are required to determine whether such a modelling

assumption is acceptable, and perhaps a sensitivity study to variation in bait plume

response. The more challenging part would be how to handle the disruption in the

shark’s movement pattern. One way to handle this is to ‘pause’ the data from the

camera whilst the shark is still exploring the bait and only continue using it for new
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encounters once the shark has moved on. If one then assumes that the shark resumes its

behaviour from before the bait plume encounter, then this could work within the REM

framework. Simple assumptions could be made regarding the attracting or repelling

effect of one shark at the bait on other sharks when developing the initial estimator,

which can then later be extended as more behavioural data become available.

As we continue to push the boundaries of wildlife research, there is an increasing need

to integrate various scientific disciplines, including biology, ecology, physics, genetics,

computer science, and statistics. Exploring novel approaches for studying wildlife

brings forth new challenges in data analysis, with statistics playing a crucial role in

ensuring precise inference from these data. Advancements in computing power have

enabled the development and assessment of methods that were previously infeasible.

We developed novel methodology to utilise the potential of acoustic data and overcome

some of its challenges. Additionally, we validated a recently developed method for

genetic data by evaluating its strengths and weaknesses through simulation. While

standalone validation research remains essential, we advocate for a proactive approach.

Researchers should not delay the adoption of new methods for estimating abundance.

Instead, we propose incorporating simulation into the application of novel methods,

preferably prior to allocating significant resources to the primary study.

—————————————————–





Appendix A

Supplementary materials for

Chapter 2

A.1 Data background, availability & cleaning

A.1.1 Data availability

To handle the vast number of calls detected by the DASARs, Thode et al. (2012)

developed a method to detect and match calls using a neural network trained using

manually processed data from 2008 and 2009. From these data a collection of detection

histories could be derived, where for every call and every DASAR it contains a 1 if

detected, and a 0 otherwise. Sometimes, calls would be wrongly identified and/or

matched, as other discrete sounds produced by, among others, airguns, bearded seals

(Erignathus barbatus) and walruses (Odobensu rosmarus divergens) can appear similar

to bowhead whale calls (Thode et al., 2012). It was thought that single detection calls

(‘singletons’) contain a high proportion of falsely identified calls (false positives), thus

we removed these detections altogether.

In this study, we focus on the data from one specific day, 31 August 2010, from site

5, the most eastwards site, as this was of one the more intensely studied subsets of

the data. Moreover, calls accumulated somewhat evenly across the day, resulting in a

low expected rate of overlapping calls. For this day, the following observations were

extracted:
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• A matrix containing detection histories for all calls and all sensors, with 1 indi-

cating detections and 0 indicating no detection.

• A matrix containing received levels for the positive detections, and NA values

otherwise.

• A matrix containing noise measurements for all sensors and all calls. Noise at

DASARs that detected a call was derived using a 6 second window, consisting

of 3 seconds before and 3 seconds after the call, using the same frequency band

as the call. Noise recordings for DASARs that did not detect a call were derived

using the widest observed frequency window for the DASARs that were involved

in the detection of the call, using a similar time window.

• A matrix containing noise measurements derived over 6-second windows, taken

at a random time points and frequency bands within the study period. These

were subsequently checked to not contain any calls, as that would not qualify as

‘noise’ - other discrete sounds, such as walrus calls or airguns, do qualify as noise,

as they potentially interfere with the identification of bowhead whale calls.

The last two matrices containing noise information are only used for the detection

function based on SNR (see Chapter 3).

Two variables in our likelihood are latent: the origin of the call and the source level

of the call. To limit the run time, we only integrate over the smallest subset of the

domain that includes at least 99.9% of the associated probability density/surface, at

the lowest resolution that ensures good estimates. Thus, the remainder of our data

includes:

• A matrix of at least 300 evenly spaced spatial points covering an area such that

calls that originated at the bounds have a probability of being detected on at

least two sensors of < 0.1. For every grid point, the ocean depth and distance

to coast was also known; these were used as potential covariates in the density

model.

• A vector of source levels, ranging from 100 to 220 dB, with increments of 3 dB,

which were the largest increments that still resulted in good parameter estimates.
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A.1.2 Data cleaning

ASCR theory requires perfect identification, and to meet this assumption as closely

as possible, several cleaning procedures were required. The false positives among calls

that involved two or more detections did not pose a problem for the original studies

(Thode et al., 2012). Here, the main goal was to triangulate the bearings of detected

calls to estimate the spatial origin of the call. Every involved DASAR would record

a bearing, and a localisation procedure would add varying weights to these bearings

until it resulted in a successful localisation, or not (Thode et al., 2012). For example,

if the bearings of a call with two detections would never meet, e.g., because one of

them belonged to a wrongly identified sound, a localisation would fail. If, however,

a call that involved three detections had two bearings that matched and one that

did not (the ‘outlier’), it would give the latter a weight close to 0, and the others a

weight closer to 1, thus resulting in a successful localisation. As we only wanted the

‘valid’ detections in our detection histories, we used these weights to remove wrongly

identified and matched calls. This was done using the following procedure:

1. We start by only including call events that led to a successful localisation. This

first step got rid of misidentified airgun signals, as those originated too far from

to array to be localisable.

2. If the call event contained at least one bearing with a weight < 0.02, we removed

the detection with the lowest weight.

3. The call was localised again (now excluding the previously removed bearing),

and the newly assigned weights were evaluated.

4. If the call was successfully localised and still contained at least one weight < 0.02,

we removed that detection and went back to step 2. Otherwise, the call was now

considered valid.

The weight of 0.02 was found to most accurately remove wrongly identified and matched

calls; through visual checks we found that lower values still allowed for some incorrect

bearings to be included, and that increase the weight did not make a difference in how

many incorrect bearings were removed. Finally, one call had a failed noise recording

and was thus excluded from the analysis.
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Figure A.1: Five call events with strongly misaligned bearings from the data from
Site 5 on 31 August 2020. The red dots are the sensors in the array, and the black
arrows indicate the bearings for sensors that were involved in the call event. Generally,
bearings were fairly accurate, but these five plots show that occasionally bearings

could be far off.

This left us with a total of 5793 ‘correct’ calls detected on at least two sensors at site 5

on 31 August 2010. The next stage was to truncate the data to include only detections

that exceed the highest sampled background noise level of 96dB. This left 443 calls

after truncation that were used in the analysis reported in the main paper.

A.1.3 (In)accurate bearings

When visually exploring our data, we noticed that not all bearings were equally precise.

Plotting a subset of the bearings suggested a split in bearings of mostly accurate and

some inaccurate ones. It was there hypothesised to best allow for a two-part mixture

model on bearing accuracy, as presented in the main paper. An example of inaccurate

versus accurate bearings is presented in Figure A.1.

A.2 Spatial mesh

In spatial capture-recapture, and therefore also in acoustic spatial capture-recapture,

we estimate a density surface. Total abundance is derived by integrating over space,

giving a total abundance for the area. In practice, we approximate the integral by

summing the function over a discrete mesh. We cannot compute the approximation

over infinite 2-dimensional space, so we only approximate the integral over our study
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area A ⊂ R2. The condition on this study area is that the probability of a call

originating at the bounds or farther out has a probability of being detected on at least

two sensors is at most 1%. This makes the integration computationally feasible whilst

inducing negligible bias.

In our case study, loud calls could potentially be audible hundreds of kilometres from

the source. To keep computer run-time low, we had to limit the number of grid cells

in the order of 500, which limits the resolution of our mesh. As our study site did

not contain many steep gradients in the covariates, we did not need a high resolution

to capture this. However, we did need a finer resolution closer to the sensor array

to accommodate the bearings. Recall that we included bearing data with errors in

our model. If we used a low resolution grid close to our array, we would have greatly

reduced the probability that one of the midpoints of our grid cells was close to what

the recorded bearings point towards, and thus it would have been hard for the model

to estimate the bearing accuracy. Our solution was to use a mesh with increasing grid

spacing the farther the cells are from the sensor array.

This mesh had a two-stage grid spacing: the ‘high resolution’ cells within a 10,000

meter radius from the outer sensors of the array had an area of 6.25 km2 each; the

‘low resolution’ cells between 10,000 and 50,000 meters from the outer sensors had

an area of 25 km2. This way we created higher resolution near the sensors whilst

keeping the number of grid cells in the mesh to 438. Every grid cell was rectangular on

the Albers projection, and the associated covariate information (i.e., ocean depth and

distance to the coast) was derived for the midpoint of the cell. Plots of the mesh with

detection probabilities associated with the simulation parameters (which were based

on parameter estimates from the real data) are presented in Appendix D. These plots

that the detection probabilities are well below 1% at the bounds.

A.3 Simulation study

Simulation studies were performed to assess the general performance of the imple-

mented method. Data were simulated in the following way:
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1. Derive the expected density for every grid point and simulate the number of

emitted calls for every mesh cell m ∈ 1, ...,M from Poisson(λ = amDm), where

am and Dm are area and density per unit area for cell m, respectively.

2. Ensemble a dataset of all emitted calls with all their characteristic information.

3. Calculate the distances for the calls to all sensors.

4. For all calls, derive the bearings from the sensors to their locations, and add

error from VonMises(0, κ).

5. For every call, simulate a source level from a zero-truncated Normal distribution

N∞
0 (µs, σ

2
s).

6. Using the distances and the transmission loss parameter βr, derive the received

levels for all calls at all sensors, and add measurement error from N (0, σ2r ).

7. Assign detection probability g0 to every call at a sensor when rij is at least

truncation value tr, and 0 otherwise.

8. Simulate from U(0, 1) and accept as a positive detection if the value simulated

is less than or equal to the detection probability. Then, remove all calls and

associated data if the total number detections for that call is less than two.

9. Return the detection histories, received levels, and bearings for the remaining

calls.

Alternatively, if a mixture on the bearing precision is desired, step (4) is replaced by:

4a) For all calls, derive the bearings from the sensors to the call.

4b) Simulate from U(0, 1) and label the detection of a call on a sensor as ‘bad/low-

precision’ if the value simulated is less than or equal to ψκ. To the bearings for

these sensor-call interactions, add error from VonMises(0, κ).

4c) For the remaining bearings (the ‘good/high-precision’ bearings) add an error

from VonMises(0, κ + δκ). We link the two distributions through their disper-

sion parameters to ensure identifiability by making it explicit that the second

distribution always has a larger dispersion parameter, and thus lower variance.
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Table A.1: Parameter estimates for the variable source level model with a homoge-
neous or inhomogeneous density model, and the simulation parameters.

Parameter Homogeneous density Inhomogeneous density Simulation

g0 0.53164 0.55022 0.6
βr 19.14684 17.65528 18.0
σr 2.62344 2.70003 2.7
µs 166.62167 162.46326 163.0
σs 5.13998 4.98272 5.0
κ 0.30208 0.23774 0.3
δκ 36.94962 37.45905 36.7
ψκ 0.10337 0.09690 0.1
β0 1.20156 -12.08586 -12.0
βd - 45.48018 45.0
βd2 - -53.83861 -53.0

A.3.1 Simulation studies for functionality

We first performed several simulation studies to evaluate the bias and variance of the

estimates. The code used to simulate data can be found in simulate data Rcpp.R.

The parameters values used for the simulations were based on exploratory fits on the

real data. Using a truncation value of 96 dB for the detection function, we fit a

homogeneous and non-homogeneous density model. Both models included a mixture

on bearing precision and source level as a latent variable.

We did not centre the covariates because this makes the spatial density covariates

harder to interpret, and an exploratory analysis with centred covariates yielded almost

identical results (Table A.1).

Our second simulation scenario involved simulating from a model with a fixed source

level. Fitting a fixed source level model to the data, we got the following parameter

estimates (Table A.2).

A.3.2 Checking the buffer width

Figures A.2–A.5 are associated with the parameters from Table A.1, corresponding

to the model with a variable source level. Figures A.6–A.9 are associated with the

parameters from Table A.2, corresponding to the model with a fixed source level.
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Table A.2: Parameter estimates for the fixed source level model with a homogeneous
or inhomogeneous density model, and the simulation parameters.

Parameter Homogeneous density Inhomogeneous density Simulation

g0 0.61287 0.65202 0.6
βr 17.00578 14.54507 14.5
σr 4.20759 4.51637 4.5
µs 163.73203 153.98830 155.0
κ 0.40459 0.31278 0.3
δκ 33.16735 35.88457 34.7
ψκ 0.11720 0.10118 0.1
β0 0.01268 -16.09090 -16.0
βd - 56.95405 57.0
βd2 - -68.37234 -68.5

Figure A.2: Plot of midpoints of the grid cells. Blue indicates that the expected
probability of detecting a call produced at that point at least twice is at least the
threshold, and pink indicates otherwise. Detection probabilities were derived from
the homogeneous density parameters for the variable source level model. The sensor

array is indicated in red.

They show the midpoints of the grid cells, and whether a call produced at that point

is expected to surpass the multiply-detection threshold (blue) or not (pink), which is

either 1% or 0.1%. We used a threshold of 0.1% for our study, but these figures show

how we could have reduced the size or our mesh by increasing this threshold to 1%.

The red dots represent the sensor array.
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Figure A.3: Plot of midpoints of the grid cells. Blue indicates that the expected
probability of detecting a call produced at that point at least twice is at least the
threshold, and pink indicates otherwise. Detection probabilities were derived from
the homogeneous density parameters for the variable source level model. The sensor

array is indicated in red.

Figure A.4: Plot of midpoints of the grid cells. Blue indicates that the expected
probability of detecting a call produced at that point at least twice is at least the
threshold, and pink indicates otherwise. Detection probabilities were derived from
the inhomogeneous density parameters for the variable source level model. The sensor

array is indicated in red.
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Figure A.5: Plot of midpoints of the grid cells. Blue indicates that the expected
probability of detecting a call produced at that point at least twice is at least the
threshold, and pink indicates otherwise. Detection probabilities were derived from
the inhomogeneous density parameters for the variable source level model. The sensor

array is indicated in red.

Figure A.6: Plot of midpoints of the grid cells. Blue indicates that the expected
probability of detecting a call produced at that point at least twice is at least the
threshold, and pink indicates otherwise. Detection probabilities were derived from
the homogeneous density parameters for the fixed source level model. The sensor

array is indicated in red.
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Figure A.7: Plot of midpoints of the grid cells. Blue indicates that the expected
probability of detecting a call produced at that point at least twice is at least the
threshold, and pink indicates otherwise. Detection probabilities were derived from
the homogeneous density parameters for the fixed source level model. The sensor

array is indicated in red.

Figure A.8: Plot of midpoints of the grid cells. Blue indicates that the expected
probability of detecting a call produced at that point at least twice is at least the
threshold, and pink indicates otherwise. Detection probabilities were derived from
the inhomogeneous density parameters for the fixed source level model. The sensor

array is indicated in red.
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Figure A.9: Plot of midpoints of the grid cells. Blue indicates that the expected
probability of detecting a call produced at that point at least twice is at least the
threshold, and pink indicates otherwise. Detection probabilities were derived from
the inhomogeneous density parameters for the fixed source level model. The sensor

array is indicated in red.

A.4 Candidate density models

We fitted a wide range of models to the data from our case study. In total, 35 models

were tried (including a naive constant density model, for completeness). Earlier studies

found that the bowhead whales tend to migrate between 10 and 75 kilometres from the

coast, over a plateau that is only between 10 and 35 meters deep (Greene et al., 2004).

Thus, we limited our models to combinations of those variables, with and without

interaction. The density models are presented using the common model specification

standard for R. Besides a constant model and polynomial models, we also tried more

flexible relationships between call density and the explanatory variables. This was

achieved with generalised additive models using the mgcv-package in R (Wood, 2017).

Through the smooth function mgcv::s() we manually set the number of knots k, used

thin plate regression splines as the basis function (which is the default), and did not

allow for any penalisation (fx = TRUE). We present the models that were considered

in Figure A.10.

An overview of the model fits is presented in Table A.3. We derived the AIC for all

models (Akaike, 1998). AIC assumes independence between the observations (as it is

a likelihood based statistic) and penalises for the number of parameters in the model.
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Table A.3: Overview of tested density models and results. ‘ID’ is a unique identifier,
‘Density Model’ is the R specification of the density model, ‘N hat’ is the estimated
abundance, ‘#par’ is the number of model parameters, and ‘AIC’ is the AIC score.

ID Density Model N hat #par AIC

33 D ˜ s(depth, k = 6, fx = TRUE) +
s(distance to coast, k = 6, fx = TRUE)

5741.39 19 5894.56

30 D ˜ s(distance to coast, k = 6, fx = TRUE) +
depth

5141.57 15 5907.64

31 D ˜ s(distance to coast, k = 6, fx = TRUE) +
depth + depth2

4029.96 16 5914.61

32 D ˜ s(depth, k = 4, fx = TRUE) +
s(distance to coast, k = 4, fx = TRUE)

5974.55 15 5920.34

8 D ˜ logdepth + distance to coast + dis-
tance to coast2 + distance to coast3

7270.06 13 5944.46

28 D ˜ s(distance to coast, k = 7, fx = TRUE) 6318.69 15 5948.72
29 D ˜ s(distance to coast, k = 8, fx = TRUE) 6274.61 16 5950.36
15 D ˜ depth + depth2 + distance to coast + dis-

tance to coast2 + distance to coast3
6263.86 14 5970.17

27 D ˜ s(distance to coast, k = 6, fx = TRUE) 4977.06 14 5976.51
26 D ˜ s(distance to coast, k = 5, fx = TRUE) 6112.98 13 5989.40
25 D ˜ s(distance to coast, k = 4, fx = TRUE) 6647.31 12 5991.38
3 D ˜ distance to coast + distance to coast2 +

distance to coast3
6012.47 12 6021.90

14 D ˜ depth + depth2 + distance to coast + dis-
tance to coast2

5053.38 13 6054.79

35 D ˜ distance to coast + distance to coast2 +
depth + depth2 + depth:distance to coast

5117.73 14 6056.06

23 D ˜ s(depth, k = 6, fx = TRUE) + dis-
tance to coast + distance to coast2

5286.00 16 6059.02

9 D ˜ logdepth + depth + distance to coast + dis-
tance to coast2

4959.21 13 6059.69

12 D ˜ depth + distance to coast + dis-
tance to coast2

5185.96 12 6061.16

24 D ˜ s(distance to coast, k = 3, fx = TRUE) 5912.88 11 6061.53
2 D ˜ distance to coast + distance to coast2 6050.36 11 6084.48
34 D ˜ distance to coast + depth +

depth:distance to coast
5024.66 12 6109.61

22 D ˜ s(depth, k = 6, fx = TRUE) + dis-
tance to coast

6015.53 15 6173.51

10 D ˜ logdepth + depth + depth2 + dis-
tance to coast

8430.18 13 6178.89

20 D ˜ s(depth, k = 7, fx = TRUE) 8826.32 15 6246.69
19 D ˜ s(depth, k = 6, fx = TRUE) 10760.82 14 6250.61
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21 D ˜ s(depth, k = 8, fx = TRUE) 9122.84 16 6252.56
13 D ˜ depth + depth2 + distance to coast 11339.95 12 6273.32
7 D ˜ logdepth + depth + depth2 9691.47 12 6277.54
18 D ˜ s(depth, k = 5, fx = TRUE) 23712.90 13 6305.30
5 D ˜ depth + depth2 113059.51 11 6326.00
17 D ˜ s(depth, k = 4, fx = TRUE) 25480.35 12 6349.51
16 D ˜ s(depth, k = 3, fx = TRUE) 30564.71 11 6362.47
6 D ˜ logdepth 37011.68 10 6381.44
1 D ˜ 1 26638.36 9 6398.78
11 D ˜ depth + distance to coast 27432.40 11 6400.66
4 D ˜ depth 27365.89 10 6400.74

A.4.1 Results from the 999 bootstraps

To find the uncertainty around our point estimates from our best model (33), we boot-

strapped (i.e., re-sampled with replacement) the original calls 999 times. This created

999 ‘equally likely’ data sets, assuming that calls are independent. The uncertainty

estimates from these bootstraps are presented in Table A.4.

A surprising result is the high CV of ̂log(ψκ) (1423%). This is caused by a negative

outlier (-234.24) and a mean close to 0. As these estimates are on the log scale and the

outlier is << 0, these effects are dampened when converting to the real scale, which is

why CV(κ̂) = 22% (see Table 2.3 in Chapter 2).
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Table A.4: Uncertainty estimates from 999 bootstraps. We present the parameter
name, the link function, the estimate, the lower and upper limits of the absolute (LCL
and UCL) and relative (LRCL and URCL) 95% confidence intervals, the standard
deviation (SD) and the variance, and the coefficient of variation (CV). Estimates are

rounded to two significant figures.

Parameter Link Est. LCL UCL LRCL URCL SD CV (%)

N iden. 5741 3877 5935 -0.32 0.034 576 11
g0 logit 0.20 0.072 0.36 -0.65 0.74 0.061 29
βr log 2.8 2.8 2.9 -0.017 0.017 0.019 0.67
σr log 1.0 0.92 1.1 -0.093 0.089 0.040 4.0
µs log 5.1 5.1 5.1 -0.0030 0.0054 0.0094 0.19
σs log 1.7 1.5 1.8 -0.096 0.040 0.051 3.0
κ log -0.27 -0.94 0.18 -2.5 1.7 7.4 1423
δκ log 3.8 3.7 4.0 -0.028 0.044 0.064 1.7
ψκ logit -2.2 -2.4 -1.9 -0.12 0.12 0.11 4.9
β(Intercept) log -266 -267 -241 -0.0062 0.092 7.9 3.0

βs(depth).1 log 42 20 44 -0.54 0.035 18 46

βs(depth).2 log 302 293 304 -0.032 0.0069 6.7 2.2

βs(depth).3 log 41 -24 50 -1.6 0.22 22 58

βs(depth).4 log -142 -145 -124 -0.026 0.12 6.9 4.9

βs(depth).5 log 155 136 158 -0.12 0.020 6.2 4.0

βs(distance to coast).1 log 159 145 162 -0.089 0.016 4.5 2.8

βs(distance to coast).2 log -450 -453 -407 -0.0083 0.095 16 3.5

βs(distance to coast).3 log 101 90 104 -0.11 0.029 4.3 4.3

βs(distance to coast).4 log -109 -110 -97 -0.011 0.12 5.1 4.7

βs(distance to coast).5 log -225 -231 -199 -0.029 0.12 11 5.0
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models <- list(

D ~ 1,

D ~ distance_to_coast + distance_to_coast2,

D ~ distance_to_coast + distance_to_coast2 + distance_to_coast3,

D ~ depth,

D ~ depth + depth2,

D ~ logdepth,

D ~ logdepth + depth + depth2,

D ~ logdepth + distance_to_coast + distance_to_coast2 +

distance_to_coast3,

D ~ logdepth + depth + distance_to_coast + distance_to_coast2,

D ~ logdepth + depth + depth2 + distance_to_coast,

D ~ depth + distance_to_coast,

D ~ depth + distance_to_coast + distance_to_coast2,

D ~ depth + depth2 + distance_to_coast,

D ~ depth + depth2 + distance_to_coast + distance_to_coast2,

D ~ depth + depth2 + distance_to_coast + distance_to_coast2 +

distance_to_coast3,

D ~ s(depth, k = 3, fx = TRUE),

D ~ s(depth, k = 4, fx = TRUE),

D ~ s(depth, k = 5, fx = TRUE),

D ~ s(depth, k = 6, fx = TRUE),

D ~ s(depth, k = 7, fx = TRUE),

D ~ s(depth, k = 8, fx = TRUE),

D ~ s(depth, k = 6, fx = TRUE) + distance_to_coast,

D ~ s(depth, k = 6, fx = TRUE) + distance_to_coast +

distance_to_coast2,

D ~ s(distance_to_coast, k = 3, fx = TRUE),

D ~ s(distance_to_coast, k = 4, fx = TRUE),

D ~ s(distance_to_coast, k = 5, fx = TRUE),

D ~ s(distance_to_coast, k = 6, fx = TRUE),

D ~ s(distance_to_coast, k = 7, fx = TRUE),

D ~ s(distance_to_coast, k = 8, fx = TRUE),

D ~ s(distance_to_coast, k = 6, fx = TRUE) + depth,

D ~ s(distance_to_coast, k = 6, fx = TRUE) + depth + depth2,

D ~ s(depth, k = 4, fx = TRUE) +

s(distance_to_coast, k = 4, fx = TRUE),

D ~ s(depth, k = 6, fx = TRUE) +

s(distance_to_coast, k = 6, fx = TRUE),

D ~ distance_to_coast + depth + depth:distance_to_coast,

D ~ distance_to_coast + distance_to_coast2 + depth + depth2 +

depth:distance_to_coast

)

Figure A.10: R code chunk with the 35 candidate spatial density models.
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B.1 Performance metrics

B.1.1 Definitions

Every simulation had a different realised sex-specific adult abundance, due to stochas-

ticity in the demographic processes such as fecundity. Therefore, the error in the

abundance estimate for a specific simulation was defined as the estimated abundance

minus the true abundance for said simulation, such that

εs,m = N̂ (m)
s −N

(m)
s,100, (B.1)

where m ∈ 1, ...,M denotes the simulation index and s ∈ {♀,♂} denotes the sex.

We define the relative error as relative to the true adult abundance in year 100 of the

simulation, i.e.,
εs,m

N
(m)
s,100

.

The mean error, median error, mean relative error, median relative error, and the mean

absolute error all easily follow from this, where ‘mean’ always refers to the arithmetic

121
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mean. Finally, the root mean square error (RMSE) is defined as

RMSE =

√√√√ 1

M

M∑
m=1

ε2s,m.

All of these definitions match the definitions common in other literature.
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B.1.2 Results

Table B.1: Performance metrics for the estimation of parameter N♀, extracted from
1000 simulations of the simple shark population. The columns are, from left to right:
scenario, median relative error, mean relative error, median error, mean error, mean
absolute error, and root mean square error. Scenarios ME-67:GC-10, ME-67:GC-
5, ME-67:GC+0, ME-33:GC-10, ME-33:GC-5, and ME+0:GC-10 were not included
as (most of) the simulations did not fit successfully. Scenario 3-3 uses the correct

measurement error (2.89) and growth curve specification.

Scenario Mdn. RE Mean RE Mdn. Err. Mean Err. MAE RMSE

ME-67:GC+5 -28.48 -25.66 -223.83 -203.94 220.61 245.14
ME-67:GC+10 -62.69 -61.36 -495.14 -487.72 487.72 495.50
ME-33:GC+0 2.88 7.32 22.72 58.23 142.91 201.11
ME-33:GC+5 -28.54 -25.71 -224.94 -204.40 220.93 245.38
ME-33:GC+10 -62.78 -61.34 -495.26 -487.58 487.58 495.28
ME+0:GC-5 31.80 37.56 252.60 298.59 304.39 390.33
ME+0:GC+0 2.57 7.14 20.83 56.78 142.47 200.48
ME+0:GC+5 -28.72 -25.85 -227.03 -205.50 221.78 246.05
ME+0:GC+10 -62.70 -61.23 -494.06 -486.74 486.74 494.33
ME+33:GC-10 43.85 50.21 343.32 399.15 400.98 488.70
ME+33:GC-5 30.59 36.34 243.51 288.88 295.53 381.69
ME+33:GC+0 2.23 6.76 18.13 53.74 141.65 199.10
ME+33:GC+5 -29.21 -26.29 -230.69 -209.01 224.53 248.47
ME+33:GC+10 -62.81 -61.25 -494.00 -486.85 486.85 494.26
ME+67:GC-10 41.04 47.21 320.66 375.24 377.73 466.13
ME+67:GC-5 29.16 34.90 232.41 277.39 285.22 371.65
ME+67:GC+0 1.79 6.12 13.53 48.64 140.45 196.86
ME+67:GC+5 -29.80 -26.97 -235.30 -214.35 228.79 252.27
ME+67:GC+10 -62.85 -61.37 -495.30 -487.84 487.84 495.04
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Table B.2: Performance metrics for the estimation of parameter N♂, extracted from
1000 simulations for the simple shark population. The columns are, from left to right:
scenario, median relative error, mean relative error, median error, mean error, mean
absolute error, and root mean square error. Scenarios ME-67:GC-10, ME-67:GC-
5, ME-67:GC+0, ME-33:GC-10, ME-33:GC-5, and ME+0:GC-10 were not included
as (most of) the simulations did not fit successfully. Scenario 3-3 used the correct

measurement error (2.89) and growth curve specification.

Scenario Mdn. RE Mean RE Mdn. Err. Mean Err. MAE RMSE

ME-67:GC+5 -28.40 -25.93 -223.56 -206.14 217.13 243.78
ME-67:GC+10 -62.28 -61.38 -488.98 -487.42 487.42 494.97
ME-33:GC+0 2.96 6.74 24.43 52.92 144.84 189.98
ME-33:GC+5 -28.53 -25.99 -224.78 -206.64 217.45 244.05
ME-33:GC+10 -62.41 -61.37 -489.77 -487.34 487.34 494.79
ME+0:GC-5 31.59 36.63 247.66 289.87 297.53 374.35
ME+0:GC+0 2.79 6.55 22.52 51.44 144.49 189.38
ME+0:GC+5 -28.72 -26.14 -226.29 -207.83 218.33 244.83
ME+0:GC+10 -62.30 -61.28 -489.39 -486.58 486.58 493.89
ME+33:GC-10 43.72 49.00 341.71 387.75 390.42 470.34
ME+33:GC-5 30.62 35.41 238.47 280.12 289.00 365.82
ME+33:GC+0 2.34 6.16 19.50 48.30 143.76 188.06
ME+33:GC+5 -29.16 -26.59 -228.60 -211.41 221.07 247.38
ME+33:GC+10 -62.32 -61.30 -489.56 -486.78 486.78 493.90
ME+67:GC-10 40.98 46.03 320.23 364.13 367.87 448.20
ME+67:GC-5 29.36 33.96 229.31 268.62 279.08 355.90
ME+67:GC+0 1.72 5.51 13.73 43.13 142.59 185.95
ME+67:GC+5 -29.89 -27.27 -233.68 -216.81 225.38 251.36
ME+67:GC+10 -62.58 -61.44 -490.18 -487.86 487.86 494.77

B.2 Variance estimates

B.2.1 Definitions

We used the standard deviation of the error term, i.e., standard error, as a measure

of uncertainty for estimated adult abundance. We did not use standard deviation

of the adult abundance estimates themselves, as these contain stochasticity from the

simulation process (every simulation had a slightly different true adult abundance in

the final year). We define the simulation-based or empirical standard error of the adult

abundance estimate as

σNs =

√√√√ 1

M

M∑
m=1

(εs,m − ε̄s,m)2, (B.2)
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Table B.3: Performance metrics for the estimation of parameter N♀, extracted from
1000 simulations of the complex shark population. The columns are, from left to right:
scenario, median relative error, mean relative error, median error, mean error, mean
absolute error, and root mean square error. Scenarios ME-67:GC-10, ME-67:GC-
5, ME-67:GC+0, ME-33:GC-10, ME-33:GC-5, and ME+0:GC-10 were not included
as (most of) the simulations did not fit successfully. Scenario 3-3 used the correct

measurement error (2.89) and growth curve specification.

Scenario Mdn. RE Mean RE Mdn. Err. Mean Err. MAE RMSE

ME-67:GC+5 -38.21 -35.96 -194.00 -185.43 187.72 199.33
ME-67:GC+10 -69.41 -68.34 -355.48 -352.09 352.09 356.40
ME-33:GC+0 1.89 5.30 9.12 26.84 82.06 112.47
ME-33:GC+5 -38.37 -36.07 -194.96 -185.99 188.23 199.71
ME-33:GC+10 -69.34 -68.26 -354.98 -351.70 351.70 355.94
ME+0:GC-5 55.54 61.97 282.61 318.31 318.38 365.22
ME+0:GC+0 1.35 4.64 6.48 23.44 81.55 111.32
ME+0:GC+5 -38.63 -36.31 -195.61 -187.25 189.38 200.68
ME+0:GC+10 -69.19 -68.16 -353.91 -351.15 351.15 355.29
ME+33:GC-10 109.97 119.20 556.22 612.37 612.37 666.21
ME+33:GC-5 53.20 59.79 270.34 307.08 307.24 354.45
ME+33:GC+0 0.57 3.70 2.63 18.60 80.97 109.82
ME+33:GC+5 -39.05 -36.72 -197.27 -189.35 191.32 202.37
ME+33:GC+10 -69.23 -68.08 -353.09 -350.72 350.72 354.71
ME+67:GC-10 105.31 114.40 534.45 587.65 587.65 641.11
ME+67:GC-5 50.39 57.13 258.11 293.33 293.59 341.34
ME+67:GC+0 -0.63 2.49 -3.03 12.36 80.40 108.17
ME+67:GC+5 -39.51 -37.25 -200.26 -192.09 193.91 204.65
ME+67:GC+10 -69.15 -68.02 -352.44 -350.42 350.42 354.27

where m ∈ 1, ...,M denotes the simulation index, s ∈ {♀,♂} denotes the sex, and ε̄s,m

is the arithmetic mean of εs,m (see Equation (B.1.1)).

We define the model-based or estimated standard error for a single simulation m as

σ̂Ns,m =

√
V̂ar(N̂

(m)
s ), (B.3)

where V̂ar(N̂
(m)
s ) is the estimated variance extracted from the Hessian matrix for sex

s and simulation m.

We also present the confidence interval (CI) coverage to evaluate whether variance

is correctly estimated by the model. The 95% CI coverage is derived as the ratio of
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Table B.4: Performance metrics for the estimation of parameter N♂, extracted
from 1000 simulations for the complex shark population. The columns are, from left
to right: scenario, median relative error, mean relative error, median error, mean
error, mean absolute error, and root mean square error. Scenarios ME-67:GC-10,
ME-67:GC-5, ME-67:GC+0, ME-33:GC-10, ME-33:GC-5, and ME+0:GC-10 were
not included as (most of) the simulations did not fit successfully. Scenario 3-3 used

the correct measurement error (2.89) and growth curve specification.

Scenario Mdn. RE Mean RE Mdn. Err. Mean Err. MAE RMSE

ME-67:GC+5 -31.74 -29.79 -203.73 -194.20 201.00 220.13
ME-67:GC+10 -61.34 -60.03 -393.89 -390.66 390.66 397.78
ME-33:GC+0 2.13 5.35 12.74 34.22 113.74 152.24
ME-33:GC+5 -31.95 -29.89 -204.63 -194.80 201.48 220.51
ME-33:GC+10 -61.30 -59.99 -393.09 -390.44 390.44 397.48
ME+0:GC-5 45.75 51.88 297.86 336.61 337.30 401.99
ME+0:GC+0 1.59 4.91 10.28 31.35 113.06 151.03
ME+0:GC+5 -32.33 -30.13 -206.50 -196.36 202.81 221.63
ME+0:GC+10 -61.23 -59.98 -392.55 -390.36 390.36 397.27
ME+33:GC-10 88.97 98.09 579.49 636.75 636.75 703.85
ME+33:GC-5 44.11 50.38 288.00 326.83 327.73 392.72
ME+33:GC+0 1.05 4.24 6.59 27.01 112.18 149.32
ME+33:GC+5 -32.61 -30.56 -208.75 -199.14 205.21 223.70
ME+33:GC+10 -61.30 -60.04 -392.71 -390.76 390.76 397.51
ME+67:GC-10 85.75 94.83 559.04 615.54 615.54 682.57
ME+67:GC-5 42.24 48.54 276.01 314.85 316.10 381.44
ME+67:GC+0 0.14 3.35 0.95 21.20 111.13 147.24
ME+67:GC+5 -33.16 -31.13 -211.30 -202.85 208.45 226.55
ME+67:GC+10 -61.38 -60.19 -394.36 -391.68 391.68 398.23

simulations in which the 95% log-normal CI (which is normal on the link scale) contains

the true adult abundance.
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B.2.2 Results
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B.3 Modelling population growth

In an alternative version of this model we included a growth parameter r, which allowed

for the estimation of exponential growth or decline in the population size. Including

growth in the model meant that the distribution of age given measured length f(a|ℓ∗)
is no longer defined exclusively by survival parameter ϕ but rather by a combination of

ϕ and r (Caswell, 2006, Section 4.5.2.1), given that the population reached a new stable

age distribution. Hillary et al. (2018) estimated f(a|ℓ∗) by grouping the data and fitting

a multinomial distribution, however this was beyond the scope of our research. We

could have assumed that the population had settled into a new equilibrium, in which

case the age distribution f(a) would be proportional to the dominant eigenvector from

the associated Leslie matrix. However, as our population growth/decline was stochastic

rather than systematic, this did not seem appropriate (see the Discussion for more

detail). We did run our simulation study with yearly growth parameters r♀ and r♂
assuming that the f(a|ℓ∗) as presented in the main text was approximately correct,

i.e., ignoring population growth in the age distribution formulation. We decided not

to include this part of the study in the main body of this thesis, as we did not believe

that the results could be used to accurately assess the effect of incorrect ageing on

parameter estimation. Nonetheless, we included these results here for completeness

as they could contain some valuable insight and form the basis for future research.

As we considered abundance for both sexes separately, we estimated the following

four parameters: N♀,t0 , N♂,t0
, r♀ and r♂, where t0 is some reference year.. The

kinship probabilities remained the same as presented in the Equations (4.4)–(4.7). As

population size was no longer assumed equal for all years, abundances in different years

are linked through a geometric population dynamics model:

Nt = Nt0r
t−t0 , (B.4)

where r ∈ (0,∞) denotes the yearly growth rate. We set t0 = 2014 to match Bradley

et al. (2017a) as closely as possible.
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Table B.7: The 95% confidence interval (CI) coverage for the sex-specific adult
abundance for the successfully converging scenarios, denoted in percentages (%). The
95% CIs were estimated for every simulation using the model-based standard error
assuming a normal distribution on the link scale, which results in a log-normal dis-

tribution on the real scale.

Simple species Complex species

Scenario N̂♂ N̂♀ N̂♂ N̂♀

ME-67:GC+5 58.5 60.0 49.0 30.5
ME-67:GC+10 1.6 2.7 2.7 0.8
ME-33:GC+0 96.3 96.4 95.9 95.8
ME-33:GC+5 58.0 59.9 48.6 30.3
ME-33:GC+10 1.5 2.6 2.7 0.8
ME+0:GC-5 73.2 74.4 49.7 28.4
ME+0:GC+0 96.1 96.4 95.9 95.4
ME+0:GC+5 57.7 59.7 48.3 29.9
ME+0:GC+10 1.7 2.5 2.6 0.7
ME+33:GC-10 56.4 56.8 4.2 0.7
ME+33:GC-5 74.7 76.4 51.6 31.0
ME+33:GC+0 96.1 96.2 95.7 94.8
ME+33:GC+5 56.3 58.4 47.5 29.0
ME+33:GC+10 1.7 2.6 2.4 0.6
ME+67:GC-10 60.7 62.1 5.3 1.1
ME+67:GC-5 77.1 78.2 54.6 35.4
ME+67:GC+0 96.3 96.2 95.5 94.4
ME+67:GC+5 54.4 55.9 46.4 27.8
ME+67:GC+10 1.5 2.6 2.4 0.4

B.3.1 Estimated abundance through time

We fit our 25 scenarios, consisting of all combinations of 5 different measurement

errors and 5 different growth curves, to both populations. We modelled the male and

female side of the population separately resulting in four figures, each containing 19

population history plots—six plots are blank since the models in these scenarios did

not (all) fit correctly. In Figures B.1–B.4 we notice a similar pattern of over- and

underestimation related to shifting the growth curves. However, as we also model

exponential growth or decline, we also notice effects of shifting the growth curves on

the direction and magnitude of this trend. Albeit potentially informative, due to the

inconsistency between modelling growth and the assumed age distribution we believe

that these results can not be directly used for inference.
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Figure B.1: Plots of the 1000 simple female adult population trends for the simple
species for the last twenty years of the simulation, for the 19 scenarios that resulted
in successful fits. The median of these 1000 trends is indicated in dark grey, and
the truth adult abundance is indicated in red. The scenarios were labelled using the
format ‘ME±XX:GC±YY’, where ME refers to the measurement error, XX denotes
the percentage over- or underestimate, GC stands for growth curve, and YY denotes
the percentage of up- or downwards shifting; for example, the scenario with a 33%
overestimated standard deviation of length measurement error and a 5% downshifted

growth curve had label ME+33:GC-5.
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Figure B.2: Plots of the 1000 estimated male adult population trends for the simple
species for the last twenty years of the simulation, for the 19 scenarios that resulted
in successful fits. The median of these 1000 trends is indicated in dark grey, and
the truth adult abundance is indicated in red. The scenarios were labelled using the
format ‘ME±XX:GC±YY’, where ME refers to the measurement error, XX denotes
the percentage over- or underestimate, GC stands for growth curve, and YY denotes
the percentage of up- or downwards shifting; for example, the scenario with a 33%
overestimated standard deviation of length measurement error and a 5% downshifted

growth curve had label ME+33:GC-5.
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Figure B.3: Plots of the 1000 estimated female adult population trends for the
complex species for the last twenty years of the simulation, for the 19 scenarios that
resulted in successful fits. The median of these 1000 trends is indicated in dark
grey, and the truth adult abundance is indicated in red. The scenarios were labelled
using the format ‘ME±XX:GC±YY’, where ME refers to the measurement error,
XX denotes the percentage over- or underestimate, GC stands for growth curve, and
YY denotes the percentage of up- or downwards shifting; for example, the scenario
with a 33% overestimated standard deviation of length measurement error and a 5%

downshifted growth curve had label ME+33:GC-5.



Supplementary materials for Chapter 4 135

Figure B.4: Plots of the 1000 estimated male adult population trends for the com-
plex species for the last twenty years of the simulation, for the 19 scenarios that
resulted in successful fits. The median of these 1000 trends is indicated in dark grey,
and the truth adult abundance is indicated in red. The scenarios were labelled us-
ing the format ‘ME±XX:GC±YY’, where ME refers to the measurement error, XX
denotes the percentage over- or underestimate, GC stands for growth curve, and YY
denotes the percentage of up- or downwards shifting; for example, the scenario with a
33% overestimated standard deviation of length measurement error and a 5% down-

shifted growth curve had label ME+33:GC-5.
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