
Semigroup Forum
https://doi.org/10.1007/s00233-024-10431-z

RESEARCH ART ICLE

The Todd–Coxeter algorithm for semigroups andmonoids

T. D. H. Coleman1 · J. D. Mitchell1 · F. L. Smith1 ·M. Tsalakou1

Received: 9 May 2023 / Accepted: 4 April 2024
© The Author(s) 2024

Abstract
In this paper we provide an account of the Todd–Coxeter algorithm for computing con-
gruences on semigroups and monoids. We also give a novel description of an analogue
for semigroups of the so-called Felsch strategy from the Todd–Coxeter algorithm for
groups.

Keywords Semigroup · Monoid · Finite presentations · Congruences · Algorithms ·
Computer algebra

Contents

1 Introduction .
2 Prerequisites .
3 Congruence enumeration .

3.1 Word graphs .
3.2 The definition .

4 Validity .
4.1 Completeness, determinism, and compatibility .
4.2 The proofs of Theorem 4.1 and Corollary 4.2 .

5 Monoids not defined by a presentation .
6 The HLT strategy .
7 The Felsch strategy .

7.1 First version .
7.2 Second version .

8 Implementation issues .
9 Further variants .

Communicated by Markus Lohrey.

B J. D. Mitchell
jdm3@st-andrews.ac.uk

T. D. H. Coleman
tdhc@standrews.ac.uk

F. L. Smith
fls3@st-andrews.ac.uk

M. Tsalakou
mt200@st-andrews.ac.uk

1 School of Mathematics and Statistics, University of St Andrews, St Andrews, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00233-024-10431-z&domain=pdf
http://orcid.org/0000-0003-2012-4919
http://orcid.org/0000-0002-5489-1617
http://orcid.org/0000-0003-1871-8910
http://orcid.org/0000-0002-5628-2532

T. D. H. Coleman et al.

9.1 Monoids with zero .

9.2 Rees congruences .

9.3 Stephen’s procedure .

A Extended examples .

B Performance comparison .

B.1 Monoids of transformations .

B.2 Monoids of partitions .

B.3 Further finitely presented semigroups and monoids .

B.4 Finitely presented groups .

References .

1 Introduction

In this article we describe the Todd–Coxeter algorithm for congruence enumeration
in semigroups and monoids. The essential purpose of this algorithm is to compute the
action of a finitely presented semigroup or monoid on the equivalence classes of a
left, right, or two-sided congruence. Most existing implementations (see, for example,
ACE [14], GAP [12], and MAF [38]) and expository accounts (see, for example, [29,
p. 351], [31, Sections 4.5, 4.6 and Chapter 5], and [15, Chapter 5]) of the Todd–
Coxeter algorithm relate to the enumeration of the cosets of a subgroup of a finitely
presented group; or, more precisely, to the production of a permutation representation
of the action of the group on the cosets. This was extended to linear representations
by Linton [19, 20]. The purpose of this article is to provide an expository, but more or
less complete, account of the Todd–Coxeter algorithm for semigroups and monoids.

The Todd–Coxeter algorithm is not a single procedure, but rather an infinite collec-
tion of different but related procedures. In the literature for finitely presented groups,
examples of procedures in this collection are referred to as coset enumerations; see,
for example, [31, Sections 4.5, 4.6 and Chapter 5]. Coset enumerations are also not
algorithms, at least by some definitions, in that they might consist of infinitely many
steps, and they do not always terminate. In fact, a coset enumeration terminates if and
only if the subgroup whose cosets are being enumerated has finite index; for further
details see Sect. 4. This is not to say, however, that the number of steps, or the run
time, of a coset enumeration can be predicted in advance; it is relatively straightfor-
ward to find examples of finite presentations for the trivial group where the number of
steps in a coset enumeration is arbitrarily high. For instance, the group presentation
〈a, b | abn, anbn+1, bnab−1a−1〉 defines the trivial group, and is likely that at least n
steps are required in any coset enumeration for this presentation; see [17]. Although
this might seem rather negative, nothing more can really be expected. For example,
if a coset enumeration for the trivial subgroup of a finitely presented group G does
successfully terminate, then the output can be used to solve the word problem in G. It
is well-known by the theorem of Novikov [27] and Boone [3] that the word problem
for finitely presented groups is undecidable and so no procedure that solves the word
problem, including any coset enumeration, can be expected to terminate in every case.
Analogous statements about the undecidability of the word problem hold for finitely
presented semigroups and monoids; see [29, Chapter 12].

123

The Todd–Coxeter algorithm for semigroups and monoids

Congruences are to semigroups and monoids what cosets are to groups, and so we
will refer to congruence enumeration for finitely presented semigroups and monoids
as the analogue of coset enumeration for groups. We will not consider the special case
of enumerating the cosets of a subgroup of a group separately from the more general
case of enumerating classes of a congruence of a semigroup.

The first computer implementation of the Todd–Coxeter algorithm is attributed to
Haselgrove in 1953 by Leech [18]. Several authors (for example, Neubüser in [25]
andWalker in [36]) comment that this may be the first computer implementation of an
algorithm for groups, possibly representing the starting point of the field of computa-
tional group theory. Neumann [26] adapted the algorithm in [35] to semigroups, and
Jura [17] proved that Neumann’s adaptation was valid. One congruence enumeration
strategy is described in Ruškuc [30, Chapter 12] as well as variants for computing
Rees congruences and minimal ideals. Stephen [32, Chapter 4] also describes a vari-
ant of Todd–Coxeter, which can be used to solve the word problem by constructing
only part of the action of a finitely presented semigroup or monoid on itself by right
multiplication. Stephen’s procedure [32, Section 4.1] is similar to one of the two main
strategies for congruence enumeration described in Sect. 6; see also Sect. 9.

Versions of the Todd–Coxeter algorithm for semigroupswere implemented in FOR-
TRAN by Robertson and Ünlü [28]; in C by Walker [36, 37]; and in GAP by Pfeiffer
[12]. The C++ library libsemigroups [24] (by three of the present authors) contains
a flexible optimized implementation of the different versions of the Todd–Coxeter
algorithm described in this document for semigroups and monoids.

The paper is organised as follows: somemathematical prerequisites from the theory
ofmonoids are given in Sect. 2; in Sect. 3we define the infinite family of procedures for
enumerating a right congruence on a monoid; the validity of congruence enumeration
is shown in Sect. 4; in Sect. 5 we discuss how congruence enumeration can be used to
compute congruences of a monoid that is not given a priori by a finite presentation;
in Sects. 6 and 7 we describe the two main strategies for congruence enumeration; in
Sect. 8 we discuss some issues related to the implementation of congruence enumera-
tion; and, finally, in Sect. 9 we present some variants: for enumerating congruences of
monoids with zero elements, Rees congruences, and Stephen’s procedure [32, Section
4.1].

In Appendix A we give a number of extended examples, and in Appendix B there
is a comparison of the performance of the implementations in libsemigroups [24] of
various strategies when applied to a number of group, monoid, or semigroup presen-
tations. The authors have also implemented basic versions of the algorithms described
in this paper in python3 as a concrete alternative to the description given here; see
[23].

2 Prerequisites

In this section, we provide some required mathematical prerequisites. The contents
of this section are well-known in the theory of semigroups; for further background
information we refer the reader to [16].

123

T. D. H. Coleman et al.

If μ is an equivalence relation on a set X , then we denote by x/μ the equivalence
class of x in μ and by X/μ the set { x/μ : x ∈ X } of equivalence classes. The least
equivalence relation on X with respect to containment is �X = { (x, x) ∈ X × X :
x ∈ X }; we refer to this as the trivial equivalence on X .

If S is a semigroup and R ⊆ S×S, then there is an (two-sided) elementary sequence
with respect to R between x, y ∈ S if x = y or x = s1, s2, . . . , sm = y, for some
m ≥ 2, where si = piuiqi , si+1 = pivi qi , with pi , qi ∈ S1 and (ui , vi) ∈ R for all i .
If pi = ε for all i in an elementary sequence, then we refer to the sequence as a right
elementary sequence; left elementary sequences are defined analogously. We define
R# ⊆ S× S so that (x, y) ∈ R# if and only if there is an elementary sequence between
x and y with respect to R. Note that R# is the least congruence on the semigroup S
containing R; see [16, Section 1.5]. The least right congruence containing a subset of
S × S is defined analogously, using right elementary sequences rather than two-sided
elementary sequences; we will not reserve any special notation for such least right
congruences. Least left congruences are defined dually.

Throughout this article we write functions to the right of their arguments, and
compose from left to right. Let S be a semigroup and let X be a set. A function
� : X × S −→ X is a right action of S on X if ((x, s)�, t)� = (x, st)� for all
x ∈ X and for all s, t ∈ S. If in addition S has an identity element e, we require
(x, e)� = x for all x ∈ X also.

If S is a semigroup, then we may adjoin an identity to S (if necessary) so that S
is a monoid. We denote S with an adjoined identity 1S by S1. If � : X × S −→ X
is a right action of a semigroup S on a set X , then �1 : X × S1 −→ X defined by
(x, s)�1 = (x, s)� for all x ∈ X and s ∈ S, and (x, 1S)�1 = x for all x ∈ X , is a
right action of S1 on X also.

For the sake of brevity, we will write x · s instead of (x, s)�, and we will say that
S acts on X on the right. The kernel of a function f : X −→ Y , where X and Y are
any sets, is the equivalence relation

ker(f) = { (x, y) ∈ X × X : (x) f = (y) f }.
If X is any set, then XX denotes the set of all functions from X to X . Endowed with
the operation of function composition, XX is a monoid, called the full transformation
monoid on X . A right action � of a semigroup S on a set X induces a homomorphism
� ′ : S −→ XX defined by (s)� ′ : x 	→ x · s for all s ∈ S and all x ∈ X .

The kernel of a right action � of a semigroup S on a set X is the kernel of the
function � ′ : S −→ XX ,

ker(�) = { (s, t) : (s)� ′ = (t)� ′ }
= { (s, t) ∈ S × S : (x, s)� = (x, t)�, for all x ∈ X }.

1It is straightforward to verify that the kernel of a homomorphism, and the kernel of
a right action of a semigroup S, is a congruence on S.

1 This is an abuse of notation since ker(�) might mean its kernel as an action or as a function. However,
the reader may be reassured to know that if � is an action, we will never use ker(�) to mean its kernel as
a function.

123

The Todd–Coxeter algorithm for semigroups and monoids

X × S Y × S

X Yλ

Fig. 1 A commutative diagram illustrating a homomorphism of actions where X × S −→ Y × S is the
function defined by (x, s) 	→ ((x)λ, s)

If S acts on the sets X and Y on the right, then we say that λ : X −→ Y is a
homomorphism of right actions if (x · s)λ = (x)λ · s for all x ∈ X and s ∈ S1 (see
Fig. 1 for a diagram). An isomorphism of right actions is a bijective homomorphism
of right actions.

If A is a set, then aword over A is a finite sequence (a1, . . . , an)where a1, . . . , an ∈
A and n ≥ 0; say that the length of the word is n. We will write a1 · · · an rather than
(a1, . . . , an), and will refer to A as an alphabet and a ∈ A as a letter. If A is any set,
then the free semigroup on A is the set A+ consisting of all words over A of length
at least 1 with operation given by the juxtaposition of words. The free monoid on A
is the set A+ ∪ {ε} with the operation again the juxtaposition of words and where ε

denotes the unique word of length 0, the so-called empty word; the free monoid on A
is denoted A∗.

The next proposition might be viewed as an analogue of the Third Isomorphism
Theorem for semigroups ([16, Theorem 1.5.4]) in the context of actions. More pre-
cisely, Proposition 2.1 will allow us to replace the action of a free monoid on a quotient
of a quotient by an action on a single quotient. We require the following definition.
Let S be a semigroup, let ρ be a congruence of S, and let σ be a right congruence of
S such that ρ ⊆ σ . The set σ/ρ defined as

σ/ρ = { (x/ρ, y/ρ) ∈ S/ρ × S/ρ : (x, y) ∈ σ }

is a right congruence on S/ρ.

Proposition 2.1 Let S be a semigroup, let ρ be a congruence of S, and let σ be a right
congruence of S such that ρ ⊆ σ . The right actions of S on (S/ρ)/(σ/ρ) and S/σ

defined by

(u/ρ)/(σ/ρ) · v = (uv/ρ)/(σ/ρ) and u/σ · v = uv/σ for all u, v ∈ S

are isomorphic.

The proof of Proposition 2.1 is similar to the proof of [16, Theorem 1.5.4]. An
analogue of Proposition 2.1 can be formulated for left congruences, but we do not
require this explicitly; see Proposition 3.1, and the surrounding text, for further details.

We also require the following result, the proof of which is routine, and hence
omitted.

Proposition 2.2 Let S be a semigroup, let X be a set, and let � : X × S −→ X be a
right action. If μ ⊆ ker(�) is a congruence on S, then � : X × S/μ −→ X defined

123

T. D. H. Coleman et al.

by

(x, s/μ)� = (x, s)�

for all x ∈ X and s ∈ S, is a right action that is isomorphic to �.

3 Congruence enumeration

In this sectionwedefinewhatwemeanby a congruence enumeration for a semigroupor
monoid, and establish some further notational conventions. Congruence enumeration,
as described in this section, will provide the general context for the more explicit
algorithms discussed in Sects. 6 and 7; this section is based, at least in spirit, on [31,
Section 5.1] and is also influenced by [32, 33].

The purpose of a congruence enumeration is to determine, in some sense, the
structure of a finitely presented monoid; or more generally, a congruence on such a
monoid. For the sake of simplicity, we will assume throughout that P = 〈A | R 〉 is
a monoid presentation defining a monoid M , where A is some totally ordered finite
alphabet, and R is a (possibly empty) finite subset of A∗×A∗. Additionally,we suppose
that S is a finite subset of A∗ × A∗. We write R# to be the least two-sided congruence
on A∗ containing R, and denote by ρ the least right congruence on A∗ containing
R# and S. In this notation, the monoid M defined by the presentation P is A∗/R#.
If the number of congruence classes of ρ is finite, then the output of a congruence
enumeration is a description of the natural right action of A∗ on the congruence
classes of ρ. In particular, the output yields the number of such classes, can be used
to determine whether or not two words in A∗ belong to the same class, and provides a
homomorphism from A∗ to the full transformation monoid (A∗/ρ)(A

∗/ρ) on the set of
congruence classes of ρ. Since it is undecidable whether a finitely presented monoid
is finite or not [22] (see also [4, Remark 4]), an upper bound for the number of steps
required for a congruence enumeration for 〈A | R 〉 to terminate cannot be computed as
a function of |A| and |R|. If the number of congruence classes of ρ is infinite, then the
enumeration will not terminate. If the set S is empty, then a congruence enumeration,
if it terminates, gives us a description of the monoid A∗/R# together with the natural
right action of A∗ on A∗/R#.

Perhaps it is more natural to want to determine a right congruence of the monoid
M defined by the presentation P rather than on the free monoid A∗. However, by
Proposition 2.1, to determine the right congruence on M = A∗/R# generated by

{ (s/R#, t/R#) : (s, t) ∈ S }

it suffices to determine the right congruence ρ on A∗ containing R# and the set S.
It is only for the sake of convenience that we have chosen to consider finitely

presented monoids, rather than finitely presented semigroups. To apply the algorithms
described in this article to a semigroup that is not a monoid, simply adjoin an identity,
perform the algorithm, and disregard the adjoined identity in the output.

123

The Todd–Coxeter algorithm for semigroups and monoids

The choice of “right” rather than “left” in the previous paragraphs was arbitrary.
If w = a1a2 · · · an ∈ A∗, then we denote the reversed word an · · · a2a1 by w†. If
W ⊆ A∗ × A∗, then we denote by W † the set { (u†, v†) : (u, v) ∈ W }.
Proposition 3.1 Let A be an alphabet, let R, S ⊆ A∗ × A∗, let R# be the least con-
gruence on A∗ containing R, and let ρ be the least left congruence on A∗ containing

R# and S. Then ρ† is the least right congruence on A∗ containing R#† and S†.

It follows from Proposition 3.1 that any algorithm for computing right congruences
can be used for left congruences, by simply reversing every word.

The inputs of a congruence enumeration are the finite alphabet A, the finite set of
relations R ⊆ A∗ × A∗, the finite set S ⊆ A∗ × A∗, and a certain type of digraph that
is defined in the next section.

3.1 Word graphs

One of the central components of the proofs presented in Sect. 4 is that of a word graph,
which is used in a natural representation of equivalence relations on a free monoid.
Let A be any alphabet and let � = (N , E) be a digraph with non-empty finite set of
nodes N ⊆ N with 0 ∈ N and edges E ⊆ N × A × N . Then, following [32, 33], we
refer to � as a word graph. The word graph � = ({0}, ∅) is the trivial word graph.

If (α, a, β) ∈ E is an edge in a word graph �, then α is the source, a is the label,
and β is the target of (α, a, β). An edge (α, a, β) is said to be incident to its source α

and target β.
A word graph � is deterministic if for every node α and every letter a ∈ A there is

at most one edge of the form (α, a, β) in �. A word graph � is complete if for every
node α and every letter a ∈ A there is at least one edge incident to α labelled by a
in �.

If α, β ∈ N , then an (α, β)-path is a sequence of edges (α1, a1, α2), . . . , (αn, an,
αn+1) ∈ E where α1 = α and αn+1 = β and a1, . . . , an ∈ A; α is the source of the
path; the word a1 · · · an ∈ A∗ labels the path; β is the target of the path; and the length
of the path is n. If α, β ∈ N and there is an (α, β)-path in �, then we say that β is
reachable from α. If � = (N , E) is a word graph andP(A∗ × A∗) denotes the power
set of A∗ × A∗, then the path relation of � is the function π� : N −→ P(A∗ × A∗)
defined by (u, v) ∈ (α)π� if there exists a node β such that u and v both label
(α, β)-paths in �. If � is a word graph and α is a node in �, then (α)π� is reflexive
and symmetric, and (α)π� is transitive for all α if and only if � is deterministic. In
particular, (α)π� is an equivalence relation for all α if and only if � is deterministic.
If R ⊆ A∗ × A∗, � is a word graph, and π� is the path relation of �, then we say that
� is compatible with R if R ⊆ (α)π� for every node α in �.

Suppose that� = (N , E) is a word graph with nodes N and edges E ⊆ N×A×N ,
and κ ⊆ N × N is an equivalence relation. The quotient �/κ of � by κ is the word
graph with nodes { min α/κ : α ∈ N }, and edges (min α/κ, a,min β/κ) whenever
(α, a, β) ∈ E . It is routine to verify that if � = (N , E) is a word graph, κ is any
equivalence relation on N , and κ ′ is any equivalence relation on the set of nodes
of �/κ , then (�/κ)/κ ′ = �/κ ′′ where κ ′′ is the least equivalence on N containing

123

T. D. H. Coleman et al.

κ and every (α, β) ∈ N × N where (min α/κ,min β/κ) ∈ κ ′. If �1 = (N1, E1)

and �2 = (N2, E2) are word graphs over the same alphabet A, then φ : N1 −→
N2 is a homomorphism if (α, a, β) ∈ E1 implies ((α)φ, a, (β)φ) ∈ E2; and we
write φ : �1 −→ �2. An isomorphism of word graphs �1 and �2 is a bijection
φ : �1 −→ �2 such that both φ and φ−1 are homomorphisms. If κ is any equivalence
relation on a word graph � = (N , E), then the function φ : � −→ �/κ defined by
(α)φ = α/κ is a homomorphism. Conversely, if φ : �1 −→ �2 is a homomorphism,
then (�1)φ := { (α)φ ∈ N2 : α ∈ N1 } is isomorphic to the quotient �1/ ker(φ).
If (α1, a1, α2), . . . , (αn, an, αn+1) ∈ E1 is a path in �1 and φ : �1 −→ �2 is a
homomorphism, then, by definition, ((α1)φ, a1, (α2)φ), . . . , ((αn)φ, an, (αn+1)φ) ∈
E2 is a path in �2 with the same label a1 · · · an ∈ A∗. In this way, we say that
homomorphisms of word graphs preserve paths and labels of paths. This leads to the
following straightforward lemma.

Lemma 3.2 Let �1 = (N1, E1) and �2 = (N2, E2) be word graphs, and let π�1 :
N1 −→ P(A∗ × A∗) and π�2 : N2 −→ P(A∗ × A∗) be the path relations of �1 and
�2, respectively. If φ : �1 −→ �2 is a homomorphism and α ∈ N1 is arbitrary, then
(α)π�1 ⊆ ((α)φ)π�2 .

Before giving the definition of a congruence enumeration, we highlight that many
accounts of the Todd–Coxeter algorithm (see, for instance, [15, 25, 31]) are not formu-
lated in terms of digraphs, but rather as a table whose rows are labelled by a set C of
non-negative integers, and columns are labelled by the generating set A. If� = (N , E)

is a deterministic word graph and f : C −→ N is a bijection such that (0) f = 0, then
the value in the row labelled c and column labelled a is f −1 of the target of the unique
edge in � with source (c) f and label a. According to Neubüser [25], until the 1950s,
congruence enumeration was often performed by hand, and, in this context, using
tables is more straightforward than using graphs. On the other hand, the language of
word graphs provide a more accessible means of discussing congruence enumeration
in theory.

3.2 The definition

Recall that we suppose throughout that 〈A|R〉 for some R ⊆ A∗ × A∗ is a finite
monoid presentation. Additionally, we will suppose throughout that A is a totally
ordered alphabet. A congruence enumeration is a sequence of the following steps
TC1, TC2, and TC3 where the input to the i-th step (where i ∈ N) is (�i , κi) for
some word graph �i with a totally ordered set of nodes Ni and set of edges Ei , and
some equivalence relation κi ⊆ Ni × Ni .

TC1 (define a new node). If α is a node in �i and there is no edge in �i labelled by
a ∈ A with source α, then we define �i+1 to be the word graph obtained from
�i by adding the new node β := 1+max

⋃
j≤i N j and the edge (α, a, β). We

define κi+1 := κi ∪ {(β, β)}.
TC2 (follow the paths defined by a relation). Suppose that α ∈ Ni and (u, v) ∈ R

where u = u1a and v = v1b for some u1, v1 ∈ A∗ and a, b ∈ A.

123

The Todd–Coxeter algorithm for semigroups and monoids

α β

u

v1

b

γ

Fig. 2 A diagram representing TC2(a), solid lines correspond to paths in �i and the dashed edge is the one
defined in TC2(a)

(a) If u and v1 label paths from α to some nodes β, γ ∈ Ni in �i , respectively, but
γ is not the source of any edge labelled by b, then we set �i+1 to be the word
graph obtained from �i by adding the edge (γ, b, β) and we define κi+1 := κi
(Fig. 2).

(b) The dual of (a) where there are paths labelled by u1 and v to nodes β and γ ,
respectively, but β is not the source of any edge labelled by a.

(c) If u and v label paths from w to some nodes β and γ , respectively, and β
= γ ,
then we define �i+1 := �i and κi+1 to be the least equivalence containing κi
and (β, γ).

Note that conditions (a), (b), and (c) are mutually exclusive, and it may be the
case that none of them hold.

TC3 (process coincidences or a determination). We define �i+1 to be the quotient
of �i by κi and define κi+1 to be the least equivalence on Ni+1 containing
every (β, γ), β
= γ , for which there exist α ∈ Ni+1 and a ∈ A such that
(α, a, β), (α, a, γ) ∈ Ei+1. Recall that the quotient �i/κi of �i by κi is the
word graph with nodes {min α/κi : α ∈ Ni } and hence after an application of
TC3 each node in �i+1 is set to be equal to the minimum of the set of nodes in
its equivalence class in κi .

There are only finitely many possible quotients of any word graph. Hence if TC3 is
applied repeatedly, then after finitely many iterations the output κi+1 will equal �Ni ,
and �i+1 and �i will be equal.

If w labels an (α, β)-path P in some �i , then neither TC1 nor TC2 changes any of
the edges belonging to P . Hence if�i+1 is obtained from�i by applyingTC1 or TC2,
then w labels an (α, β)-path in �i+1 also. If �i+1 is obtained from �i by applying
TC3, then �i+1 is a homomorphic image of �i . As already noted, homomorphisms
preserve paths, and so w labels a path in �i+1 also.

We can now formally define a congruence enumeration.

123

T. D. H. Coleman et al.

Definition 3.3 (Congruence enumeration.) Suppose that A is a finite alphabet, that
R, S ⊆ A∗ × A∗ are finite, that ρ is the least right congruence on A∗ containing both
R# and S, and that �1 = (N1, E1) is a word graph with path relation π�1 : N1 −→
P(A∗ × A∗) such that (0)π�1 ⊆ ρ and κ1 = �N1 . Then a congruence enumeration
for ρ with input (�1, κ1) consists of:

(a) For every (u, v) ∈ S, by repeatedly applying TC1 (if necessary), add edges to �1
so that it contains paths labelled by u and v both with source 0.

(b) Apply TC2 to 0 and every (u, v) ∈ S.

If (�m, κm) is the output of steps (a) and (b), then the enumeration is concluded
by performing any sequence of applications of TC1, TC2, and TC3 such that the
following conditions hold for �i = (Ni , Ei) for every i ∈ N, i ≥ m:

(c) If α ∈ Ni and there is no edge incident to α with label a ∈ A, then there exists
j ≥ i such that either: α is no longer a node in � j ; or there is an edge incident to
α with label a in � j .

(d) If α ∈ Ni and (u, v) ∈ R, then there exists j ≥ i such that either: α is no longer a
node in � j or (u, v) ∈ (α)π� j .

(e) If κi
= �Ni for some i , then there exists j ≥ i such that κ j = �N j .

The initial value of the word graph �1 that forms the input to a congruence enumer-
ation is usually either the trivial word graph or, if M is finite, the right Cayley graph
of the monoid M defined by the presentation 〈A|R〉; see Sect. 5 for more details.

A congruence enumeration terminates if the output (�i , κi) has the property that
applying any of TC1, TC2, or TC3 to (�i , κi) results in no changes to the output,
i.e. (�i+1, κi+1) = (�i , κi). It is straightforward to verify that a congruence enumer-
ation terminates at step i if and only if �i is complete, compatible with R ∪ S, and
deterministic.

For any given finite monoid presentation, there is a wide range of choices for
the order in which steps TC1, TC2, and TC3 are performed, and to which nodes,
generators, and relations they are applied. We will examine two specific strategies for
enumerating congruences for an arbitrary finite monoid presentation in more detail in
Sects. 6 and 7.

4 Validity

In this section we address the validity of congruence enumeration as defined in Sect. 3;
we will continue to use the notation established therein.

The main results in this section are the following.

Theorem 4.1 Let A be a finite alphabet, let R ⊆ A∗ × A∗ be a finite set, and let R#

be the least two-sided congruence on A∗ containing R. If S ⊆ A∗ × A∗ is any finite
set, and ρ is the least right congruence on A∗ containing R# and S, then the following
hold:

(a) If a congruence enumeration forρ terminateswith output word graph� = (N , E),
then A∗/ρ is finite and the function φ : N × A∗ −→ N, defined by (α,w)φ = β

123

The Todd–Coxeter algorithm for semigroups and monoids

whenever w labels an (α, β)-path in �, is a right action that is isomorphic to the
natural action of A∗ on A∗/ρ by right multiplication.

(b) If A∗/ρ is finite, then any congruence enumeration for ρ terminates.

Corollary 4.2 Let A be a finite alphabet, let R ⊆ A∗ × A∗ be a finite set, and let R#

be the least two-sided congruence on A∗ containing R. Then the following hold:

(a) If a congruence enumeration for R# terminates with output word graph � =
(N , E), then A∗/R# is finite and the function φ : N × A∗ −→ N defined by
(α,w)φ = β whenever w labels an (α, β)-path in � is a right action that is iso-
morphic to the (faithful) natural action of A∗/R# on itself by right multiplication.

(b) If A∗/R# is finite, then any congruence enumeration for R# terminates.

Wewill prove Theorem 4.1 and Corollary 4.2 in Sect. 4.2. We start by showing that
the stepsTC1,TC2, andTC3 preserve certain properties ofword graphs in Proposition
4.4. In Sect. 4.1, we show that every congruence enumeration eventually stabilises and
is eventually compatible with R; and in Sect. 4.2 we give the proofs of Theorem 4.1
and Corollary 4.2.

We will make repeated use, without reference, to the following straightforward
lemma.

Lemma 4.3 If any of TC1, TC2, or TC3 is applied to (�i , κi) where every node in �i

is reachable from 0, then every node in the output �i+1 is reachable from 0 also.

The next proposition also plays a crucial role in the proof of Theorem 4.1 and
Corollary 4.2.

Proposition 4.4 If TC1, TC2, or TC3 is applied to (�i , κi) where �i = (Ni , Ei) is a
word graph such that (0)π�i ⊆ ρ, and (0)π�i /κi ⊆ ρ, then the output (�i+1, κi+1)

satisfies (0)π�i ⊆ (0)π�i+1 ⊆ ρ, and (0)π�i /κi ⊆ (0)π�i+1/κi+1 ⊆ ρ.

The proof of Proposition 4.4 is split into two parts due to commonalities in the
proofs rather than the statements. The two cases are: TC1, TC2(a), TC2(b); and
TC2(c), TC3.

Lemma 4.5 Proposition 4.4 holds when TC1, TC2(a), or TC2(b) is applied.

Proof Since (a) and (b) of TC2 are symmetric, it suffices to prove the proposition
when TC1 or TC2(a) is applied. In TC1, α is a node in �i and there is no edge
incident to α labelled by a. In this case, �i+1 is obtained from �i by adding the single
node β := 1+min

⋃
j≤i N j and the single edge (α, a, β), and κi+1 := κi ∪ {(β, β)}.

In TC2(a), there exists (u, v) ∈ R, b ∈ A, and v1 ∈ A∗ such that v = v1b, and there
exist nodes α, β, and γ in �i such that u and v1 label (α, β)- and (α, γ)-paths in �i ,
respectively. In this case, �i+1 is obtained from �i by adding the single edge (γ, b, β)

and κi+1 := κi .
Hence if either TC1 or TC2(a) is applied, then the identity map Ni −→ Ni+1 is a

homomorphism from �i to �i+1 and so the identity map Ni/κi −→ Ni+1/κi is also a
homomorphism from �i/κi to �i+1/κi+1. Hence, by Lemma 3.2, (0)π�i ⊆ (0)π�i+1

and (0)π�i /κi ⊆ (0)π�i+1/κi+1 .

123

T. D. H. Coleman et al.

To show that (0)φ�i+1 ⊆ ρ we consider the caseswhenTC1 andTC2(a) are applied
separately.
TC1: Suppose that (u, v) ∈ (0)π�i+1\(0)π�i is arbitrary. Then there are paths in �i+1
from 0 to some node γ labelled by u and v but there are no such paths in �i . Since β is
not a node in �i , β is not the target of any path in �i . It follows that the edge (α, a, β)

must occur at least once in both paths. But β is the source of no edges in �i+1, and
so (α, a, β) occurs once, and it must be the last edge, in both paths. Hence u = u1a
and v = v1a where u1, v1 ∈ A∗ label (0, α)-paths in �i . Therefore (u1, v1) ∈ ρ by
assumption and since ρ is a right congruence, (u, v) = (u1a, v1a) ∈ ρ as well. Hence
(0)π�i+1 ⊆ ρ.
TC2(a): We proceed by induction on the total number k of occurrences of the edge
(γ, b, β) (defined at the start of the proof) in any pair of paths in �i+1 with source
0 and the same target node. The inductive hypothesis is: if (x, y) ∈ (0)π�i+1 , X and
Y are paths with source 0 labelled by x and y, respectively, and the total number of
occurrences of the edge (γ, b, β) in X and Y is strictly less than k, then (x, y) ∈ ρ.
The base case is when k = 0 and, in this case, (x, y) ∈ (0)π�i ⊆ ρ, as required.

Suppose that k ≥ 1, that x, y ∈ A∗ are any words labelling (0, δ)-paths X and Y ,
respectively, for some node δ, and that (γ, b, β) occurs k times in X and Y . Without
loss of generality we can assume that (γ, b, β) occurs at least once in X . If X consists
of the edges e1, . . . , er ∈ Ei+1, and j ∈ {1, . . . , r} is the largest value such that e j =
(γ, b, β), then wemaywrite x = x1bx2 where x1 labels the (0, γ)-path (e1, . . . , e j−1)

and x2 labels the (β, δ)-path (e j+1, . . . , er). Ifw′ labels any path from0 toα in�i , then
w′v1 labels an (0, γ)-path in �i . It follows that (x1, w′v1) ∈ (0)π�i+1 . The number of
occurrences of (γ, b, β) in (e1, . . . , e j−1) is strictly less than k, and the number in the
path (in �i) labelled by w′v1 is 0. Hence, by the inductive hypothesis, (x1, w′v1) ∈ ρ

and so (x, w′vx2) = (x1bx2, wv1bx2) ∈ ρ.
The word w′ labels a (0, α)-path, u labels a (α, β)-path, and x2 labels a (β, δ)-

path. The first two of these paths belong to �i by assumption, and the third does
also, by the maximality of j . Hence w′ux2 labels a (0, δ)-path in �i , which therefore
contains no occurrences of the edge (γ, b, β). The word y also labels the (0, δ)-path
Y in �i+1 and this path contains at most k − 1 occurrences of (γ, b, β), since X
and Y together contained k occurrences, and X contained at least 1 occurrence of
(γ, b, β). Therefore, by induction, (w′ux2, y) ∈ ρ. Finally, since (u, v) ∈ R ⊆ ρ,
(w′ux2, w′vx2) ∈ R# ⊆ ρ also. Hence (x, w′vx2), (w′vx2, w′ux2), (w′ux2, y) ∈ ρ

and so by transitivity, (x, y) ∈ ρ.

We conclude the proof by showing that (0)π�i+1/κi+1 ⊆ ρ when either TC1 or
TC2(a) is applied. Suppose that (u, v) ∈ (0)π�i+1/κi+1 . If (u, v) ∈ (0)π�i+1 , then
(u, v) ∈ ρ, as required. If (u, v) /∈ (0)π�i+1 , then u and v label (0, ζ)- and (0, η)-
paths in �i+1, respectively, for some nodes ζ
= η. Recall that κi+1 = κi ∪ {(β, β)}
if TC1 is applied, and κi+1 = κi if TC2(a) is applied. In either case, (ζ, η) ∈ κi+1
and ζ
= η implies that (ζ, η) ∈ κi . But ζ and η are nodes in �i and hence they are
reachable from 0 in �i by Lemma 4.3. In other words, there exist u′, v′ ∈ A∗ labelling
(0, ζ)- and (0, η)-paths in �i , respectively. Hence (u, u′), (v′, v) ∈ (0)π�i+1 ⊆ ρ

and, by construction, (u′, v′) ∈ (0)π�i /κi ⊆ ρ. Thus, by transitivity, (u, v) ∈ ρ, as
required. ��

123

The Todd–Coxeter algorithm for semigroups and monoids

Lemma 4.6 Proposition 4.4 holds when TC2(c) or TC3 is applied.

Proof If TC2(c) is applied, then there exist a node α in �i and (u, v) ∈ R such that
u and v label (α, β)- and (α, γ)-paths in �i for some distinct nodes β and γ in �i .
In this case, �i+1 = �i and κi+1 is the least equivalence relation containing κi and
(β, γ). If TC3 is applied, then �i+1 = �i/κi and κi+1 is the least equivalence on
Ni+1 containing every (δ, ζ), δ
= ζ , for which there exist η ∈ Ni+1 and a ∈ A such
that (η, a, δ), (η, a, ζ) ∈ Ei+1.

In either case, there is a homomorphism from �i+1 to �i+1/κi+1 and so Lemma
3.2 implies that (0)π�i+1 ⊆ (0)π�i+1/κi+1 . If TC2(c) is applied, then the identity map
is a homomorphism from �i to �i+1. If TC3 is applied, then �i+1 = �i/κi is a
homomorphic image of �i also. Hence, in either case, (0)π�i ⊆ (0)π�i+1 by Lemma
3.2.

Hence, in both cases, it suffices to show that (0)π�i /κi ⊆ (0)π�i+1/κi+1 ⊆ ρ. We
consider the cases when TC2(c) and TC3 are applied separately.
TC2(c): If β and γ are the nodes defined above, and σ is the least equivalence relation
on the set of nodes in �i/κi containing β/κi and γ /κi , then (�i/κi)/σ = �i/κi+1 =
�i+1/κi+1. Hence �i+1/κi+1 is a homomorphic image of �i/κi and so (0)π�i /κi ⊆
(0)π�i+1/κi+1 .

Suppose that (x, y) ∈ (0)π�i+1/κi+1 . Then x and y both label (0, δ)-paths in
�i+1/κi+1 for some node δ in �i+1/κi+1. It follows that there are nodes ζ and η

in �i+1 such that (δ, ζ), (δ, η) ∈ κi+1 and x and y label (0, ζ)- and (0, η)-paths in
�i+1 = �i , respectively.

If (ζ, η) ∈ κi , then (u, v) ∈ (0)π�i /κi and so (u, v) ∈ ρ by assumption. If (ζ, η) /∈
κi , then without loss of generality we may assume that (ζ, η) = (β, γ). In this case,
if w ∈ A∗ labels a (0, α) path in �i , then wu and x both label (0, β) = (0, ζ)-paths
in �i , and so (wu, x) ∈ (0)π�i ⊆ ρ. Similarly, wv and y both label (0, γ)-paths in
�i , and so (wv, y) ∈ ρ, also. Finally, (u, v) ∈ R and so (wu, wv) ∈ R# ⊆ ρ, and so
(x, y) ∈ ρ also.
TC3: Clearly, �i+1/κi+1 is a homomorphic image of �i+1 and �i+1 is defined to be
�i/κi in TC3. Hence (0)π�i /κi ⊆ (0)π�i+1/κi+1 by Lemma 3.2. It remains to show
that (0)π�i+1/κi+1 ⊆ ρ.

Suppose that (x, y) ∈ (0)π�i+1/κi+1 . Then there exist nodes ζ and η in �i+1 such
that (ζ, η) ∈ κi+1 where x labels a (0, ζ)-path and y labels a (0, η)-paths in �i+1. In
TC3, κi+1 is defined to be the least equivalence containing (β, γ) ∈ Ni+1×Ni+1 such
that there are edges (α, a, β) and (α, a, γ) in �i+1. Hence (η, ζ) ∈ κ j+1 implies that
there exist α1, . . . , αn−1, β1 := ζ, β1, . . . , βn := η ∈ N j+1 and a1, . . . , an−1 ∈ A
where (α j , a j , β j), (α j , a j , β j+1) ∈ E j+1 and β j
= β j+1 for every j . Suppose that
w j ∈ A∗ is any word labelling a (0, α j)-path for j = 1, . . . , n − 1, that x1 = x , that
x j labels a (0, β j)-path for j = 2, . . . , n − 1, and that xn = y.

Thenw j a j and x j both label (0, β j)-paths in �i+1 for every j . Similarly,w j a j and
x j+1 both label (0, β j+1)-paths in�i+1 for every j . Hence (w j a j , x j), (wi a j , x j+1) ∈
(0)π�i+1 ⊆ ρ for every j . Therefore (x j , x j+1) ∈ ρ for every j , and so by transitivity
(x1, xn) = (x, y) ∈ ρ, as required. ��

123

T. D. H. Coleman et al.

4.1 Completeness, determinism, and compatibility

In this section,wewill prove that if at some step i in a congruence enumeration theword
graph �i is complete, then that enumeration terminates, and that every congruence
enumeration is eventually compatible with ρ.

We say that a congruence enumeration stabilises if for every i ∈ N and every node
α of �i there exists K ∈ N such that for all j ≥ K either α is not a node in � j or if
(α, a, β) ∈ E j , then (α, a, β) ∈ E j+1 for any a ∈ A.

Lemma 4.7 Every congruence enumeration stabilises.

Proof We will prove a slightly stronger statement, that any sequence of TC1, TC2,
and TC3 stabilises.

Suppose that i ∈ N, α is an arbitrary node in �i , and a ∈ A is arbitrary. Either there
exists K > i such that α is no longer a node in �K , or α is a node in � j for all j ≥ i .
If α is no longer a node in �K , then, from the definitions of TC1, TC2, and TC3, α
is not a node in �k for any k ≥ K .

Suppose that α is a node in � j for all j ≥ i and that (α, a, β1) ∈ E j for some
β1 ∈ A∗. If β1 ∈ N j is replaced by β2 ∈ Nk at some step k ≥ j , then step k is an
application of TC3. In particular, 0 ≤ β2 ≤ β1. This process can be repeated only
finitely many times because there are only finitely many natural numbers less than β1.

��
If �i is complete for some i , then TC1 cannot be applied again at any step after

i . In this case, TC2 and TC3 make κ coarser and hence reduce the number of nodes
in �i . Since the number of nodes in �i is finite, it follows that the enumeration must
terminate at some point. We record this in the following corollary.

Corollary 4.8 If �i is complete at some step i of a congruence enumeration, then the
enumeration terminates at some step j ≥ i .

The next lemma shows that, roughly speaking, if the word graph at some step of a
congruence enumeration is non-deterministic, then at some later step it is deterministic.

Lemma 4.9 If w ∈ A∗ labels a path in �i starting at 0 for some i ∈ N, then there
exists j ≥ i such that w labels a unique path in � j starting at 0.

Proof We proceed by induction on the length of the word w. If w = ε, then w labels
a unique path in every �i starting (and ending) at 0.

Suppose that every word of length at most n − 1 labelling a path starting at 0 in �i

labels a unique path, and let w ∈ A∗ be any word of length n ≥ 1, labelling a path in
�i starting at 0. If w = w1a for some w1 ∈ A∗ and a ∈ A, then w1 labels a unique
path in �i starting at 0 by induction. Suppose that α is the target of the unique path
labelledw1. By Lemma 4.7, we may assume without loss of generality that α is a node
in � j for every j ≥ i . If there exist edges (α, a, β1), . . . , (α, a, βr) in �i , then at most
one of these edges was created by an application of TC1 or TC2. So, if r > 1, then
(β1, β2), . . . , (βr−1, βr) ∈ κi .

By part (e) of the definition of a congruence enumeration (Definition 3.3), there
exists j > i such that κ j = �N j and so at step j , there is only one edge incident to α

labelled a. ��

123

The Todd–Coxeter algorithm for semigroups and monoids

Next we show that every congruence enumeration is eventually compatible with ρ.

Lemma 4.10 If (u, v) ∈ R#, then there exists K ∈ N such that (u, v) ∈ (0)π�i for all
i ≥ K.

Proof If (u, v) ∈ R#, then there exists an elementary sequence u = w1, w2, . . . , wk =
v in A∗ with respect to R. If (w j , w j+1) ∈ (0)π�i for every j ∈ {1, . . . , k − 1}, by
transitivity (w1, wk) = (u, v) ∈ (0)π�i for a large enough i . Hence it suffices to show
that (w j , w j+1) ∈ (0)π�i for all j and for sufficiently large i .

Suppose that j ∈ {1, . . . , k − 1} is arbitrary, and that w j = pxq and w j+1 = pyq
where p, q ∈ A∗ and (x, y) ∈ R. From part (c) of the definition of a congruence
enumeration (Definition 3.3), p labels a path with source 0 in � j for all j ≥ i for
some sufficiently large i . We may choose i large enough so that the target node α of
this path is a node in every � j for j ≥ i . By Definition 3.3(d), for sufficiently large
i , (x, y) ∈ (α)π�i and so (px, py) ∈ (0)π�i . Again if i is large enough, there is
a path labelled q from the target of the path from 0 labelled by px (or py) and so
(w j , w j+1) = (pxq, pyq) ∈ (0)π�i . ��
Corollary 4.11 If (u, v) ∈ ρ, then there exists K ∈ N such that (u, v) ∈ (0)π�i for all
i ≥ K.

Proof Recall that ρ is the least right congruence containing R# and S (as defined
in Theorem 4.1). If (u, v) ∈ ρ, then there exists a right elementary sequence u =
w1, w2, . . . , wk = v such that w j = xq and w j+1 = yq for some (x, y) ∈ R# ∪ S
and some q ∈ A∗. Hence it suffices to show that if (x, y) ∈ R# ∪ S and q ∈ A∗, then,
for sufficiently large i , (xq, yq) ∈ (0)π�i .

If (�m, κm) is the output of applying steps (a) and (b) of the congruence enumeration
(Definition 3.3), then S ⊆ π�m/κm (0). Proposition 4.4 implies that π�m/κm (0) ⊆
π�i /κi (0) for all i ≥ m. ByDefinition 3.3(e),TC3 is eventually applied to (�i−1, κi−1)

for some i > m. Hence S ⊆ (0)π�i−1/κi−1 = (0)π�i since �i = �i−1/κi−1, for large
enough i .

Suppose that q ∈ A∗ and (x, y) ∈ R# ∪ S are arbitrary. If (x, y) ∈ R# then (x, y) ∈
(0)π�i for large enough i by Lemma 4.10. If (x, y) ∈ S, then it follows from the
previous paragraph that (x, y) ∈ (0)π�i for large enough i . As in the proof of Lemma
4.10, for sufficiently large i , xq and yq label paths in �i , and so (xq, yq) ∈ (0)π�i . ��
Corollary 4.12 Suppose that u, v ∈ A∗ are arbitrary. Then (u, v) ∈ ρ if and only if
there exists K ∈ N such that (u, v) ∈ (0)π�i for all i ≥ K.

Proof (⇒) Assume that (u, v) ∈ ρ. By Lemma 4.10, (u, v) ∈ (0)π�K for large enough
K . But (0)π�i ⊆ (0)π�i+1 for all i , and so (u, v) ∈ (0)π�i for all i ≥ K .

(⇐) By assumption, �1 is a word graph with (0)π�1 ⊆ ρ. By Proposition 4.4,
(0)π�i ⊆ ρ for all i ∈ N. Hence if (u, v) ∈ (0)π�i for some i , then (u, v) ∈ ρ. ��

We also obtain the following stronger result for an enumeration of a two-sided
congruence.

Corollary 4.13 Suppose that u, v ∈ A∗ are arbitrary. Then the following are equiva-
lent:

123

T. D. H. Coleman et al.

(i) (u, v) ∈ R#;
(ii) there exists K ∈ N such that (u, v) ∈ (α)π�i for all nodes α in �i and for all

i ≥ K;
(iii) there exists K ∈ N such that (u, v) ∈ (0)π�i for all i ≥ K.

Proof (i) ⇒ (ii). If (u, v) ∈ R# and w ∈ A∗ is arbitrary, then (wu, wv) ∈ R# and
so, by Lemma 4.10, (wu, wv) ∈ (0)π�i for sufficiently large i . In particular, for large
enough i , wu and wv both label (0, β)-paths for some node β. If α is the target of the
path starting at 0 labelled by w, then u and v both label a (α, β)-paths in �i and so
(u, v) ∈ (α)π�i for i large enough.
(ii) ⇒ (iii) This follows immediately since 0 is a node in every word graph.
(iii) ⇒ (i) Follows by applying Corollary 4.12 to ρ = R#. ��

4.2 The proofs of Theorem 4.1 and Corollary 4.2

In this section, we prove Theorem 4.1 and Corollary 4.2.
Theorem 4.1. Let A be a finite alphabet, let R ⊆ A∗ × A∗ be a finite set, and let R#

be the least two-sided congruence on A∗ containing R. If S ⊆ A∗ × A∗ is any finite
set, and ρ is the least right congruence on A∗ containing R# and S, then the following
hold:

(a) If a congruence enumeration forρ terminateswith output word graph� = (N , E),
then A∗/ρ is finite and the function φ : N × A∗ −→ N , defined by (α,w)φ = β

whenever w labels an (α, β)-path in �, is a right action that is isomorphic to the
natural action of A∗ on A∗/ρ by right multiplication.

(b) If A∗/ρ is finite, then any congruence enumeration for ρ terminates.

Proof We start the proof by showing that there is always a bijection between a certain
set of nodes in the word graphs �i (defined in a moment) and the classes of ρ. Let M
be the subset of

⋃
i∈N Ni so that α ∈ M if α ∈ Ni for all large enough i . By Lemma

4.7, for every α ∈ M there exists wα ∈ A∗ such that wα labels a path from 0 to α in
every �i for sufficiently large i . We define f : M −→ A∗/ρ by

(α) f = wα/ρ. (4.1)

We will show that f is a bijection.
If α, β ∈ M are such that (α) f = (β) f , then (wα,wβ) ∈ ρ and so (wα,wβ) ∈

(0)π�i for large enough i by Corollary 4.12. In particular, wα and wβ both label paths
from 0 to the same node in every �i for large enough i . By Lemma 4.7, we can also
choose i large enough so that the target γ of these paths is a node in � j for all j ≥ i .
But wα and wβ also label (0, α)- and (0, β)-paths in every �i for sufficiently large i .
By Lemma 4.9, there exists j ≥ i such that wα labels a unique path starting at 0, and
so α = γ . Similarly, there exists k ≥ j such that wβ labels a unique path from 0, and
so β = γ also. In particular, α = β and so f is injective.

For surjectivity, let u ∈ A∗ be arbitrary. Then u labels a path in �i for large enough
i . Since every congruence enumeration stabilises, we can choose i large enough so
that every edge in the path labelled by u belongs to every � j for j ≥ i . In particular, u

123

The Todd–Coxeter algorithm for semigroups and monoids

Fig. 3 The commutative
diagram in the proof of Theorem
4.1(a)

N × A∗ A∗/ρ × A∗

N A∗/ρ

φ

g

Φ

f

labels a (0, α)-path in �i for some α ∈ M . But wα also labels a (0, α)-path in �i , and
so (u, wα) ∈ (0)π�i . Hence, again by Corollary 4.12, for large enough i , (u, wα) ∈ ρ

and so (α) f = wα/ρ = u/ρ, and f is surjective.
(a). Suppose that (�, κ) is the output of the enumerationwhere� = (N , E) and that

π : N −→ P(A∗ × A∗) is the path relation of �. Since the congruence enumeration
process has terminated, � is finite and its set of nodes N coincides with the set M
defined at the start of the proof. Hence A∗/ρ is finite, since f : N −→ A∗/ρ defined
in (4.1) is a bijection.

Since any application of TC3 results in no changes to �, it follows that κ = �N .
Hence � is deterministic, and so every w ∈ A∗ labels exactly one path starting at
every u ∈ N . In particular, φ (as defined in the statement) is a well-defined function.
If w1, w2 ∈ A∗ label (α1, α2)- and (α2, α3)-paths in �, respectively, then certainly
w1w2 labels a (α1, α3)-path, and so φ is an action.

Wewill show that f : N −→ A∗/ρ defined in (4.1) is an isomorphismof the actions
φ and the natural action � : A∗/ρ × A∗ −→ A∗/ρ defined by (u/ρ, v)� = uv/ρ.
We define g : N × A∗ −→ (A∗/ρ) × A∗ by (α, v)g = ((α) f , v) = (wα/ρ, v) for
all (α, v) ∈ N × A∗. To show that f is a homomorphism of actions, we must prove
that the diagram in Fig. 3 commutes. Suppose that (α, v) ∈ N × A∗. Then

((α, v)g)� = (wα/ρ, v)� = wαv/ρ

and if v labels a (α, β)-path in �, then

((α, v)φ) f = (β) f = wβ/ρ.

But wβ and wαv both label (0, β)-paths in � and so (wαv,wβ) ∈ (0)π . By Corollary
4.12, (0)π ⊆ ρ and so (wαv,wβ) ∈ ρ. Hence ((α, v)g)� = ((α, v)φ) f and so f is
homomorphism of the actions φ and �.

(b). If A∗/ρ is finite, then the set M of nodes defined at the start of the proof is also
finite. Since every congruence enumeration stabilises, it follows that for every α ∈ M ,
there exists K ∈ N such that (α, a, β) ∈ Ei for all i ≥ K . It follows that β ∈ M .
Since A and M are finite, there exists K ∈ N such that (α, a, β) ∈ Ei for all α ∈ M ,
all a ∈ A, and all i ≥ K . It follows that none of TC1, TC2, nor TC3 results in any
changes to �i or κi , i ≥ K , and so the enumeration terminates. ��

We conclude this section by proving Corollary 4.2.
Corollary 4.2. Let A be a finite alphabet, let R ⊆ A∗ × A∗ be a finite set, and let R#

be the least two-sided congruence on A∗ containing R. Then the following hold:

(a) If a congruence enumeration for R# terminates with output word graph � =
(N , E), then A∗/R# is finite and the function φ : N × A∗ −→ N defined by

123

T. D. H. Coleman et al.

Table 1 A word labelling a path
from 0 to each node in the right
Cayley graph on the monoid M
from Example 5.1; see Fig. 4

0 1 2 3 4 5 6 7 8

ε a b c a2 ab ba bc bab

(α,w)φ = β whenever w labels an (α, β)-path in � is a right action that is iso-
morphic to the (faithful) natural action of A∗/R# on itself by right multiplication.

(b) If A∗/R# is finite, then any congruence enumeration for R# terminates.

Proof If S = ∅ in Theorem 4.1, then the least right congruence ρ containing S and
R# is just R#. By Theorem 4.1, the action φ : N × A∗ −→ N is isomorphic to the
natural action of A∗ on A∗/R# by right multiplication. By Corollary 4.13, the kernel
of φ is R#, and it is routine to verify that the kernel of the action of A∗ on A∗/R#

by right multiplication is also R#. Hence, by Proposition 2.2, the action φ of A∗ on
N and the induced action of A∗/R# on N are isomorphic. Similarly, the action of A∗
on A∗/R# is isomorphic to the action of A∗/R# on A∗/R# by right multiplication.
Thus the actions of A∗/R# on N and A∗/R# on A∗/R# are isomorphic also. The latter
action is faithful since A∗/R# is a monoid. Hence the action of A∗/R# on N is faithful
also, and there is nothing further to prove. ��

5 Monoids not defined by a presentation

Suppose that the monoid M defined by the presentation 〈A | R〉 is finite and that
φ : A∗ −→ M is the unique surjective homomorphism extending the inclusion of A
in M . Then ker(φ) = R# and (a)φ = a for every a ∈ A. If M = {m1,m2, . . . ,m|M|},
then the right Cayley graph of M with respect to A is the word graph � with nodes
N = {0, . . . , |M | − 1} and edges (α, a, β) for all α, β ∈ N and every a ∈ A such
that mαa = mβ . The right Cayley graph � is complete and deterministic, and so if
π : N −→ P(A∗ × A∗) is the path relation on �, then (α)π = R# for all α ∈ N .

Example 5.1 Suppose that M is the monoid generated by the matrices

a =
⎛

⎝
1 1 0
0 1 1
1 0 1

⎞

⎠ , b =
⎛

⎝
1 1 0
0 1 0
0 0 1

⎞

⎠ , c =
⎛

⎝
1 0 1
1 1 0
0 1 1

⎞

⎠

over the boolean semiring B = {0, 1} with addition defined by

0 + 1 = 1 + 0 = 1 + 1 = 1, 0 + 0 = 0

and multiplication defined as usual for the real numbers 0 and 1. The right Cayley
graph of M with respect to its generating set {a, b, c} is shown in Fig. 4; see also
Table1.

Suppose that we want to determine a right congruence on a finite monoid M
generated by a non-abstract set of generators A—such as transformations, partial per-
mutations, or matrices over a semiring. Of course, every finite monoid M is finitely

123

The Todd–Coxeter algorithm for semigroups and monoids

Fig. 4 The right Cayley graph of
the monoid M from Example5.1
with respect to the generating set
{a, b, c}; see Table1 for a
representative word for each
node. Purple arrows correspond
to edges labelled a, gray labelled
b, and pink labelled c

0

1

2

3

4

5

6

7

8

presented, and so congruence enumeration can be applied to any presentation for
M . It is possible that a presentation for M is already known, or we can compute a
presentation for M ; for example, by using the Froidure–Pin Algorithm (see [11]).

It is also possible, insteadof startingwith the trivialwordgraph, to start a congruence
enumeration with the right Cayley graph �1 = (N1, E1) of M with respect to A as the
input to the process. As mentioned above, (0)π�1 = R# and so (�1,�N1) is a valid
input to a congruence enumeration. The right Cayley graph �1 is already complete,
deterministic, and compatible with R# by definition. It follows that TC2 and TC3
are the only steps actually applied in a congruence enumeration with input �1. More
precisely, TC2(c) is applied to 0 and every (u, v) ∈ S, and then TC3 is repeatedly
applied until κi = �Ni . The right Cayley graph of a monoid M = 〈 A 〉 of one of
the types mentioned above, can also be computed using the Froidure-Pin Algorithm,
which has complexity O(|A||M |). Given that the right Cayley graph has |M | nodes
and |A||M | edges, it is unlikely that, in general, there is a better method for finding
the Cayley graph of a monoid from a generating set.

Experiments indicate that if the congruence being enumerated has a relatively large
number of classes in comparison to |M |, then this second approach is faster than
starting from the trivial word graph. On the other hand, if the number of congruence
classes is relatively small compared with |M |, then starting from the trivial word
graph is often faster. Since the number of congruence classes is usually not known
in advance, the implementation in libsemigroups [24] runs both these approaches in
parallel, accepting whichever provides an answer first.

We end this section with an example of performing a congruence enumeration with
a right Cayley graph as an input.

Example 5.2 Suppose that M is the monoid from Example 5.1. To compute the least
right congruence ρ on M containing S = {(a, b)} we perform the following steps.

123

T. D. H. Coleman et al.

Set �1 to be the right Cayley graph of M with respect to the generating set {a, b, c};
see Fig. 4 and Table 1. Suppose that a < b < c.

Step 1 ApplyTC2 to the only pair (a, b) in S, and the output of this is (�2, κ2)where
κ2 is the least equivalence on the nodes of �2 containing (1, 2); see Fig. 5a.

Step 2 Apply TC3 to obtain the quotient of �2 by κ2, the output is (�3, κ3) where
�3 = �2/κ2 and κ3 is the least equivalence containing (1, 5), (4, 6), and
(4, 7); see Fig. 5b.

Step 3 Apply TC3 with input (�3, κ3) and output (�4, κ4) where �4 = �3/κ3 and
κ4 is the least equivalence containing (4, 8); see Fig. 5c.

Step 4 Apply TC3 with input (�4, κ4) and output (�5, κ5) where �5 = �4/κ4 and
κ5 = �N5 . Since �5 is complete and compatible with ρ and κ5 is trivial, the
enumeration terminates with �5; see Fig. 5d.

We conclude that ρ has 4 equivalence classes whose representatives ε, a, c, and a2

correspond to the nodes {0, 1, 3, 4} in the graph �5. By following the paths in �5
starting at 0 labelled by each of the words in Table 1 we determine that the congruence
classes of ρ are: {ε}, {a, b, ab}, {c}, {a2, ba, bc, bab}.

6 The HLT strategy

In this section, we describe the so-called HLT strategy for congruence enumeration.
The acronymHLT stands for Haselgrove, Leech, and Trotter; for further details see [5]
or [31, Section 5.2]. For the record, this is Walker’s Strategy 1 in [36], and is referred
to as R-style in ACE [14] (“R” for “relators”).

The HLT strategy, like every congruence enumeration, starts by applying steps (a)
and (b) in the definition (Definition 3.3). We then repeatedly apply TC3 until the
resulting κ is trivial, after which we repeatedly perform the following steps:

HLT1. If α is the minimum node in �i such that there exists (u, v) ∈ R where either:
u or v does not label a path starting at α, or u and v label paths ending in
different nodes. In the former case, we apply TC1 repeatedly until u and v1
label paths starting at α where v = v1b for some b ∈ A, and then apply
TC2 where part (a) applies. In the latter case, we simply apply TC2 to α and
(u, v) ∈ R where part (c) applies.

HLT2. Repeatedly apply TC3 until the resulting κi+1 is trivial.
HLT3. If α is the node from HLT1, then we apply TC1 to α and every a ∈ A, if any,

such that there is no edge incident to α labelled by a.

We note that if for every a ∈ A there exists (u, v) ∈ R such that either u or v starts
with a, then HLT3 does not have to be performed.

Next we will show that the HLT strategy fulfils the definition of a congruence
enumeration.

Proposition 6.1 If 〈A|R〉 is a finite monoid presentation, S is a finite subset of A∗×A∗,
R# is the least two-sided congruence on A∗ containing R, and ρ is the least right
congruence on A∗ containing S and R#, then the HLT strategy applied to (�1, κ1)

123

The Todd–Coxeter algorithm for semigroups and monoids

0

1

2

3

4

5

6

7

8

(a) Step 1.

0

1

3

4

5

6

7

8

(b) Step 2.

0

1

3

4

8

(c) Step 3.

0

1

3

4

(d) Step 4.

Fig. 5 The output (�i , κi) of each step in Example 5.2. Purple arrows correspond to a, gray to b, pink to c,
shaded nodes of the same colour belong to κi , and unshaded nodes belong to singleton classes; see Table
1 for a representative word for each node. A dashed edge with a single arrowhead denotes an edge that is
obtained from TC2 or TC3, solid edges correspond to edges that existed at the previous step

where �1 = (N1, E1) is a word graph such that (0)π�1 ⊆ ρ and κ1 = �N1 is a
congruence enumeration.

Proof It suffices to check that the conditions in Definition 3.3 hold. Clearly parts (a)
and (b) are included in the HLT strategy and so there is nothing to check for these.
(c). Suppose that α is a node in �i = (Ni , Ei) such that there is no edge labelled by
some a ∈ A incident to α. If α ∈ N j for all j ≥ i , then there exists k ∈ N such that α
is the minimum node to which HLT1 is applied. If there exists (u, v) ∈ R such that
the first letter of u is a, then an edge labelled by a incident to α is defined in HLT1.
Otherwise, such an edge is defined in HLT3.
(d). Suppose that α is a node in �i and (u, v) ∈ R are such that u and v both label
paths starting at α. If α ∈ N j for all j ≥ i , then there exists k ∈ N such that α is the
minimum node to which HLT1 is applied, and so TC2 is applied to α and (u, v) at
some later step. Hence either the paths labelled by u and v starting at α end at the same
node, or they end at distinct nodes β and γ such that (β, γ) ∈ κi . But TC3 is applied at
some later step, and so β and γ are identified in the corresponding quotient. Eventually

123

T. D. H. Coleman et al.

Table 2 A word labelling a path
from 0 to each node in the right
Cayley graph on the monoid M
from Example 6.2; see Fig. 6

0 1 2 3 4

ε a b a2 c

the paths labelled by u and v starting at α end at the same node, i.e. (u, v) ∈ (α)π�i

for sufficiently large i .
(e). If (β, γ) ∈ κi for some i , then there exists j ≥ i such that TC3 is applied
by the definition of HLT2. If we choose the smallest such j , then κi ⊆ κ j and so
(β, γ) /∈ κ j+1. ��

Example 6.2 Let M be the monoid defined in Example 5.1. Then M is isomorphic to
the monoid defined by the presentation

〈a, b, c | ac = a2, b2 = b, ca = a2, cb = bc, c2 = a2, a3 = a2, aba = a2〉.

Wewill apply the HLT strategy to the presentation and the set S = {(a, b)}. In other
words, we enumerate the least right congruence on the monoid M containing (a, b).
This is the same right congruence that we enumerated in Example 5.1. The input word
graph �1 is the trivial graph and the input κ1 is �N1 . We suppose that a < b < c.

Step 1 We apply Definition 3.3(a). We add the nodes 1, 2 ∈ N1 and define the edges
(0, a, 1) and (0, b, 2). Since S = {(a, b)} this concludes Definition 3.3(a).
We continue by applying TC2 to 0 and (a, b). Since a and b label paths from
0 to the nodes 1 and 2, respectively, we define κ2 to be the least equivalence
containing κ1 = �N1 and (1, 2). The output is graph �2 in Fig. 6a.

Step 2 We continue with Definition 3.3(b). We apply TC3 and we get the graph �3
in Fig. 6b which is the quotient of �2 by κ2. The set κ3 is defined to be �N3 .

Step 3 Now we are ready to apply HLT1. Since 0 is the minimum node in �3 such
that (ac, a2) ∈ R and ac and a2 do not label paths in �3, we apply TC1 until
node 3 and a path labelled by a2 are defined and we continue by applying
TC2(b) for u = a2, v = ac and v1 = a. The output of this step is the graph
�4 in Fig. 6c.

Step 4–8 We apply HLT1 to the node 0 and each of the relations (b2, b), (ca, a2),
(cb, bc), (c2, a2), (a3, a2) ∈ R (in this order) and the output (�i , κi), i =
5, . . . , 9 are shown in Fig. 6d–h.

Step 9 In this step, we do not applyHLT1 to 0 and (aba, a2) since aba and a2 both
label paths that reach the same node in �9. We apply HLT1 to the node 1
and the relation (ac, a2) ∈ R and the output is graph �10 in Fig. 6i.

Step 10 We apply HLT1 to the node 1 and the relation (cb, bc) ∈ R and the output
is graph �11 in Fig. 6j.
After Step 10, �11 is complete, deterministic, and compatible with R. Hence
the enumeration terminates; see Example 5.1 for details of the enumerated
congruence.

123

The Todd–Coxeter algorithm for semigroups and monoids

0

1

2

(a) Step 1.

0

1

(b) Step 2.

0

1

3

(c) Step 3.

0

1

3

(d) Step 4.

0

1

4

3

(e) Step 5.

0

1

4

3

(f) Step 6.

0

1

4

3

(g) Step 7.

0

1

4

3

(h) Step 8.

0

1

4

3

(i) Step 9.

0

1

4

3

(j) Step 10.

Fig. 6 The output (�i , κi) of each step in the HLT strategy in Example 6.2. Purple arrows correspond to a,
gray to b, pink to c, shaded nodes of the same colour belong to κi , and unshaded nodes belong to singleton
classes; see Table 2 for a representative word for each node. A dashed edge with a double arrowhead
indicates the edge being defined in TC1, a dashed edge with a single arrowhead denotes an edge that is
obtained from TC2 or TC3, solid edges correspond to edges that existed at the previous step

7 The Felsch strategy

In this section,we describe two versions of the so-calledFelsch strategy for congruence
enumeration. For the record, this is Walker’s Strategy 2 in [36], and is referred to as
C-style in ACE [14] (“C” for “cosets”).

7.1 First version

The Felsch strategy starts with the trivial word graph �1 = (N1, E1) and with the
trivial equivalence κ1 = �N1 on the nodes N1 of �1. Just like the HLT strategy, the
Felsch strategy starts by applying steps (a) and (b) from the definition of a congruence

123

T. D. H. Coleman et al.

enumeration (Definition 3.3). We then repeatedly apply TC3 until the resulting κ is
trivial. The following steps are then repeatedly applied:

F1. If α ∈ Ni is the minimum node in �i such that there exists a ∈ A and there is
no edge with source α labelled by a, then apply TC1 to α and a. Apply TC2
to every node in �i and every relation in R.

F2. Apply TC3 repeatedly until κi+1 is trivial.

It follows immediately from the definition of the Felsch strategy that it satisfies the
definition of a congruence enumeration. To illustrate the Felsch strategy, we repeat
the calculation from Example 6.2.

Example 7.1 Let M be the monoid defined by defined in Example 5.1. Then M is
isomorphic to the monoid defined by the presentation

〈a, b, c | ac = a2, b2 = b, ca = a2, cb = bc, c2 = a2, a3 = a2, aba = a2〉.

We will apply the Felsch strategy to the presentation (with a < b < c) and the set
S = {(a, b)}. In other words, we enumerate the least right congruence on the monoid
M containing (a, b). This is the same right congruence that we enumerated in Example
5.1. The input word graph �1 is the trivial graph and the input κ1 is �N1 .

Step 1 We apply Definition 3.3(a). We add the nodes 1, 2 ∈ N1 and define the
edges (0, a, 1) and (0, b, 2). Since S = {(a, b)} this concludes Definition
3.3(a). We continue by applying TC2 to 0 and (a, b). Since a and b label
paths from 0 to the nodes 1 and 2, respectively, we define κ2 to be the
least equivalence containing κ1 = �N1 and (1, 2). The output is graph �2
in Fig. 7a.

Step 2 We continue with Definition 3.3(b). We apply TC3 and we get graph �3
in Fig. 7b which is the quotient of �2 by κ2. The set κ3 is defined to be
�N3

Step 3 We apply F1 and hence we applyTC1 to 0 and c. We add the node 3 ∈ N4
and define the edge (0, c, 3). The output is graph �4 in Fig. 7c.

Step 4 We continue with the application of the second part of F1 and hence we
apply TC2 to 1 and (b2, b). The output is graph �5 in Fig. 7d.

Step 5 We apply F1 and hence we applyTC1 to 1 and a. We add the node 4 ∈ N6
and define the edge (1, a, 4). The output is graph �6 in Fig. 7e.

Steps 6–12 We continue with the application of the second part of F1 and hence we
apply TC2 to 0 and (a3, a2), to 0 and (ac, a2), to 1 and (ac, a2), to 0 and
(ca, a2), to 0 and (c2, a2) and to 3 and (b2, b).
After Step 12, �13 in Fig. 7f is complete, deterministic, and compatible
with R. Hence the enumeration terminates; see Example 5.1 for details of
the enumerated congruence.

7.2 Second version

The purpose of F2 in the Felsch stategy is to squeeze as much information as possible
out of every definition of an edge (α, a, β) made in F1. The implementation of the

123

The Todd–Coxeter algorithm for semigroups and monoids

0

1

2

(a) Step 1.

0

1

(b) Step 2.

0

1

3

(c) Step 3.

0

1

3

(d) Step 4.

0

1

3

4

(e) Step 5.

0

1

3

4

(f) Steps 6-12.

Fig. 7 The output (�i , κi) of each step in the Felsch strategy in Example 7.1. Purple arrows correspond
to a, gray to b, pink to c, shaded nodes of the same colour belong to κi , and unshaded nodes belong
to singleton classes; see Table 3 for a representative word for each node. A dashed edge with a double
arrowhead indicates the edge being defined in TC1, a dashed edge with a single arrowhead denotes an edge
that is obtained from TC2 or TC3, solid edges correspond to edges that existed at the previous step

Table 3 A word labelling a path
from 0 to each node in the right
Cayley graph on the monoid M
from Example 7.1; see Fig. 7

0 1 2 3 4

ε a b c a2

Felsch strategy in [23] spends most of its time performing TC2. In this section, we
propose a means of reducing the number of times TC2 is applied in F2 of the Felsch
strategy. Roughly speaking, we do this by only applying TC2 to (u, v) ∈ R and a
node α in �i if the path in �i starting at α and labelled by u, or v, goes through a part
of �i that has recently changed.

To enable us to do this, we require a new set Di ⊆ Ni × A, in addition to the word
graph �i and equivalence relation κi , at every step of a congruence enumeration. An
element (α, a) of Di corresponds to a recently defined edge incident to α and labelled
by a. More precisely, we define D1 = ∅ and for i ≥ 1 we define

Di+1 := { (α, a) ∈ Ni × A : (α, a, β) ∈ Ei+1 \ Ei }.

In order to efficiently use the information recorded in Di , we require the following
definition.

Definition 7.2 If 〈A | R〉 is a finite monoid presentation, then we define the Felsch
tree F(A, R) of this presentation to be a pair (�, ι) where:

(a) � = (N , E) is a graph with nodes N consisting of every (contiguous) subword
w ∈ A∗ of a word in a relation in R and edges (u, a, au) ∈ E whenever u, au ∈ N
and a ∈ A; and

(b) a function ι from N to the power setP(R) of R such that (u, v) ∈ (w)ι whenever
w ∈ N is a prefix of u or v.

123

T. D. H. Coleman et al.

Fig. 8 The Felsch tree F(A, R)

from Example 7.3

ε

a b

a2 ba ab b2

a3 aba bab b3

a4 (ab)2

Example 7.3 If A = {a, b} and R = {(a4, a), (b3, b), ((ab)2, a2)}, then the nodes in
the word graph � in F(A, R) are

N = {ε, a, b, a2, ab, ba, b2, a3, aba, bab, b3, a4, (ab)2}.

A diagram of � can found in Fig. 8.
The function ι : N −→ P(R) is:

(ε)ι = R,

(a)ι = (a2)ι = {(a4, a), ((ab)2, a2)}
(a3)ι = (a4)ι = {(a4, a)}

(aba)ι = {((ab)2, a2)}
(b)ι = (b2)ι = (b3)ι = {(b3, b)}

(ab)ι = ((ab)2)ι = {((ab)2, a2)}
(ba)ι = (bab)ι = ∅.

Wemodify TC1, TC2, and TC3 so that the set Di is defined appropriately at every
step, and then, roughly speaking, we replace F2 in the Felsch strategy by a backtrack
search through � in F(A, R) for every pair in Di . We will refer to this as themodified
Felsch strategy.

If α is a node in �i and v ∈ A∗ is a node in �, then we perform a backtrack search
consisting of the following steps:

PD1. Apply TC2 to α and every relation in (v)ι.
PD2. For every edge (v, b, bv) in � that has not been traversed: for every node β

in �i such that (β, b, α) ∈ Ei , apply PD1 and PD2 to β and bv.
PD3. Repeatedly apply TC3 until κ is trivial.

123

The Todd–Coxeter algorithm for semigroups and monoids

We will refer to either removing a pair from Di or performing the backtrack search as
processing a deduction.

The backtrack search is initiated for every (α, a) ∈ Di . If a is not a node in �, then
a does not occur in any relation in R and so following the path in �i labelled by any
u such that (u, v) ∈ R from any node in w in �i cannot contain any edge labelled by
a. In particular, no such path contains the edge (α, a, β) ∈ �i ; the definition of which
caused (α, a) to belong to Di in the first place. Hence if (α, a) ∈ Di , then there is a
node a in �.

We repeatedly apply PD1, PD2, and PD3 starting from every pair in Di . This must
terminate eventually because � is finite and we only apply TC2 and TC3 in PD1,
PD2, and PD3.

To show that the modified Felsch strategy is a congruence enumeration, we require
the following lemma.

Lemma 7.4 Suppose that α is a node in � j for all j ≥ i , and that (u, v) ∈ R is such
that u and v label paths Pu and Pv in �i starting at α. If (β, a) ∈ Di for some i,
and there is an edge (β, a, γ) ∈ �i in either Pu or Pv , then (u, v) ∈ (α)π�k for some
k ≥ i .

Proof Suppose that Pu consists of the edges (μ1, b1, μ2), . . . , (μr , br , μr+1) where
μ1 = α and u = b1 · · · br . Similarly, suppose that Pv consists of the edges
(ν1, c1, ν2), . . . , (νs, cs, νs+1) where ν1 = α and v = c1 · · · cs . We may assume that
μr+1
= νs+1 and that there exists t ∈ {1, . . . , r} such that (μt , bt , μt+1) = (β, a, γ).

Since (β, a) ∈ Di , the backtrack search in PD1 and PD2 will be applied to (β, a)

at some step j ≥ i of the enumeration. This search begins with PD1, where TC2 is
applied to β and every relation in (a)ι. At step PD2 we apply PD1 and PD2 to every
ζ ∈ Ni and w such that there exists an edge of the form (a, b, w) in � and an edge
(ζ, b, β) ∈ Ei .

By definition, u = b1 · · · bt−1abt+1 · · · br . If m ∈ {1, . . . , t}, then, since
(u, v) ∈ R, bm · · · bt−1a and bm−1 · · · bt−1a are nodes of � and there exists an edge
(bm · · · bt−1a, bm−1, bm−1 · · · bt−1a) in �. Also by assumption (μm−1, bm−1, μm) ∈
Ei and so (μm−1, bm−1 · · · bt−1a) is one of the pairs in PD2 if it is applied to
(μm, bm · · · bt−1a). If m = t , then (μm, bm · · · bt−1a) = (μt , a) = (β, a) and hence
PD2 is applied to (μm, bm · · · bt−1a) for every m ∈ {1, . . . , t}. In particular, PD1 is
applied to (μ1, b1 · · · bt−1a) = (α, b1 · · · bt−1a) at some point. This means that TC2
is applied to α and every relation in (b1 · · · bt−1a)ι. Since b1 · · · bt−1a = b1 · · · bt is
a prefix of u, it follows that (u, v) ∈ (b1 · · · bt−1a)ι and so TC2 is applied to α and
(u, v) at some step j ≥ i . Because u and v were assumed to label paths originating
at α, neither TC2(a) nor (b) applies. Additionally, we assumed that μr+1
= νs+1 and
so TC2(c) is applied and (μr+1, νs+1) ∈ κi+1.

As noted above, � is finite, and PD1 and PD2 are only applied finitely many times
before there is an application of PD3. If the first application of TC3 (in PD3) after
step j occurs at step k, then �k+1 is the quotient of �k by κk and κi ⊆ κk . Therefore
(u, v) ∈ (α)π�k+1 as required. ��
Proposition 7.5 If 〈A|R〉 is a finite monoid presentation, S is a finite subset of A∗×A∗,
R# is the least two-sided congruence on A∗ containing R, and ρ is the least right

123

T. D. H. Coleman et al.

congruence on A∗ containing S and R#, then the modified Felsch strategy applied
to (�1, κ1), where �1 = (N1, E1) is the trivial word graph and κ1 = �N1 , is a
congruence enumeration.

Proof Theonly difference between themodifiedFelsch strategy and the original Felsch
strategy is that after F1, TC2 is only applied to particular nodes and relations. Hence,
it suffices to show that Definition 3.3(d) holds. Assume α ∈ Ni at some step i in
the congruence enumeration and let (u, v) ∈ R. In order for modified Felsch to be
a congruence enumeration we need to show that there exists j ≥ i such that either
α /∈ N j or (u, v) ∈ (α)π� j . If α /∈ N j for some j > i , then α /∈ Nk for all k ≥ j (since
new nodes introduced in TC1 are larger than all previous nodes). Hence it suffices to
prove that if α is a node for all j ≥ i , there exists some k such that (u, v) ∈ (α)π�k .
Since F1 is repeatedly applied there exists a step k + 1 when α is a node in �k+1 and
paths Pu and Pv leaving α labelled by u and v, respectively, exist in �k+1. Suppose
that k ∈ N is the least value such that this holds. Then, by Lemma 7.4, it suffices to
show that there exists an edge (β, a, γ) in either Pu or Pv that belongs to Ek+1 \ Ek

so that (β, a) ∈ Dk+1. If every edge in Pu and Pv belongs to Ek , then u and v both
label paths in �k starting at α, which contradicts the assumed minimality of k. ��

8 Implementation issues

In this section, we briefly address some issues relating to any implementation of the
Todd–Coxeter algorithm for semigroups and monoids as described herein.

In some examples, it can be observed that the HLT strategy defines many more
nodes than the Felsch strategy. One possible antidote to this is to, roughly speaking,
perform

“periods of definition à la HLT [that] alternate with periods of intensive scan à
la Felsch” [25, p. 14].

In both ACE [14] and libsemigroups [24] it is possible to specify the precise lengths
of the periods of applications of HLT and Felsch. As might be expected, some choices
work better than others in particular examples, and this is difficult (or impossible) to
predict in advance. It is routine to show that alternating between HLT and Felsch in
this way still meets the definition of a congruence enumeration given in Definition 3.3.
Although we presented the HLT and Felsch strategies separately, it seems that some
combination of the two sometimes offers better performance.

The next issue is: how to represent the equivalence relations κi?Amethod suggested
in [31, Section 4.6], which is now a standard approach for representing equivalence
relations, is to use the disjoint-sets data structure to represent the least equivalence
relation containing the pairs (u, v) added to κi in TC2(c) or TC3. The theoretical
time complexity of updating the data structure to merge two classes, or to find a
canonical representative of a class given another representative, is O(α(m)) time (in
both the worst and the average case) and requires O(m) space where m is the number
of elements in the underlying set and α is the inverse Ackermann function; see [34].

123

The Todd–Coxeter algorithm for semigroups and monoids

Another issue that arises in the implementation is how to represent the word graphs
�i . In order to efficiently obtain the word graph �i+1 from �i in TC3 it is necessary
to keep track of both the edges with given source node, and with given target. This
is more complex for semigroups and monoids than for groups, because a word graph
� = (N , E) ouput by a coset enumeration for a group has the property that for every
β ∈ N and every a ∈ A there is exactly one α ∈ N such that (α, a, β) is an edge.
As such if it ever arises that there are edges (α1, a, β) and (α2, a, β) in a word graph
during a coset enumeration, the pair (α1, α2) can immediately be added to κi . It is
therefore possible to represent every word graph arising during a coset enumeration
to have the property that |{ α ∈ N : (α, a, β) ∈ E }| = 1, which simplifies the data
structure required to represent such a graph.

In contrast, if � = (N , E) is a word graph arising in a congruence enumeration
for a monoid, then |{ α ∈ N : (α, a, β) ∈ E }| can be as large as |N |. In practice, in
TC3 pairs of nodes belonging to κi are merged successively. A balance must be struck
between repeatedly updating the data structure for the edges with given target in �i+1
or only retaining the edges with given source and rebuilding the data structure for the
target edges later in the process. The former works better if the number of nodes in
�i is comparable to the number in �i+1, i.e. only a relatively small number of nodes
are merged. On the other hand, if �i+1 is considerably smaller than �i , then it can be
significantly faster to do the latter.

Dependingon the sequenceof applications of TC1,TC2, andTC3 in two successful
congruence enumerations with the same input, the output word graphs may not be
equal.However, the outputword graphs are unique up to isomorphism.Standardization
is a process for transforming a word graph into a standard form. To discuss this we
require the following notion.

If A is any alphabet and � is a total order on A∗, then we say that � is a reduction
ordering if � has no infinite descending chains and if u � v for some u, v ∈ A∗, then
puq � pvq for all p, q ∈ A∗. It follows from this definition that ε is the �-minimum
word in A∗ for every reduction ordering on A∗.

If the set A is totally ordered by ≤, then we may extend ≤ to ≤lex over A∗, by
defining ε ≤lex w for all w ∈ A∗ and u ≤lex v whenever u = au1 and v = bv1
for some a, b ∈ A with a < b, or a = b and u1 ≤lex v1. This order is usually
referred to as the lexicographic order on A∗. Note that lexicographic order is not a
reduction ordering. The short-lex order ≤slex on A∗ is defined as follows: if u, v ∈ A∗,
then u ≤slex v if |u| < |v| or |u| = |v| and u ≤lex v. It is straightforward to verify
that the short-lex order on A∗ is a reduction ordering. Further examples of reduction
orderings on A∗ include recursive path descent, as well as the wreath product of any
finite collection of reduction orderings; see [31, Section 2.1] for further details.

Suppose that � is a reduction ordering on A∗. We will say that the word graph
� = (N , E) is standardized with respect to� if α < β if and only ifwα ≺ wβ for any
α, β ∈ N where wα,wβ ∈ A∗ are the �-minimum words labelling (0, α)- and (0, β)-
paths, respectively. Any process that transforms a word graph � into a standardized
word graph, is referred to as standardization; for example, see STANDARDIZE in [31,
p195].

A word graph �i can be replaced by any standardized word graph at any step of
a congruence enumeration, provided that the values in κi and Di are also updated

123

T. D. H. Coleman et al.

accordingly. In particular, it can be applied repeatedly during a congruence enumera-
tion, or only at the end. Standardization during a congruence enumeration can be very
costly in the context of semigroups and monoids. However, it can also be somewhat
beneficial in some examples.

The order of the definitions of new nodes in �i+1 in both HLT1 and F1 depends
on the numerical values of their source nodes. Hence replacing �i by a standardized
word graph can change the order of these definitions, which in turn can influence the
number of steps in the enumeration. In an actual implementation, standardising a word
graph is a rather complicated process that involves applying a permutation to the data
structure representing the graph.

9 Further variants

In this section, we present some variants of the Todd–Coxeter algorithm that appear in
the literature, which are used to compute special types of congruences (namely Rees
congruences) and for computing congruences on finitely presented inverse monoids.

9.1 Monoids with zero

The first such variant is for finitely presented monoids with a zero element 0. For
example, if M is the monoid defined by the presentation

〈a, b, 0 | ab = 0, a4 = a, b3 = b, (ab)2 = 0, a0 = 0a = 0 = b0 = 0b = 02〉,

then the relations a0 = 0a = 0 = b0 = 0b = 02 indicate that 0 is a zero element
of M . Of course, the algorithms described above can be applied to this finite monoid
presentation, as well as every other. On the other hand, the inclusion of the relations
a0 = 0a = 0 = b0 = 0b = 02 is rather cumbersome, and so we might rather write:

〈a, b | ab = 0, a4 = a, b3 = b, (ab)2 = 0〉

where the relations a0 = 0a = 0 = b0 = 0b = 02 are implicit. This is directly
analogous to the implicit relations for the identity in a monoid presentation, and in a
group presentation for inverses.We refer to such a presentation as a finite monoid-with-
0 presentation. Both the HLT and Felsch strategies can be adapted for monoid-with-0
presentations without much difficulty as follows.

Suppose that 〈A | R〉 is a finite monoid-with-0 presentation. We refer to a word
graph �i = (Ni , Ei) over A∪{0}with a distinguished node ω ∈ Ni such that the only
edges with source ω are loops of the form (ω, a, ω) ∈ Ei for all a ∈ A and edges
(α, 0, ω) for all α ∈ Ni as a word graph-with-0. We augment TC1 with the following
step:

Z: If β is the new node introduced in TC1, then we define the edge (β, 0, ω).

Given a monoid-with-0 presentation, it is routine to verify that if we perform any
congruence enumeration (where TC1 is augmented with Z) with input (�1, κ1)where

123

The Todd–Coxeter algorithm for semigroups and monoids

�1 = (N1, E1) is a word graph-with-0 and κ1 = �N1 , then the conclusions in Corol-
lary 4.2 still hold.

9.2 Rees congruences

Following [30, Chapter 12], we may extend the discussion of the previous section,
to obtain a procedure for enumerating a left, right, or two-sided Rees congruence on
a finitely presented monoid (with or without zero element). If I is a left, right, or
two-sided ideal of the monoid S, then the Rees congruence associated with I is the
congruence �S ∪ (I × I). Such a procedure applies to a finite monoid presentation
〈A | R〉 and set finite S ⊆ A∗ × {0} (rather than S ⊆ A∗ × A∗ as in Definition
3.3). The input to such an enumeration is a word graph-with-zero �1 = (N1, E1)

and κ1 = �N1 . The first steps are identical to those given in Definition 3.3(a) and
(b) except that TC1 and Z are applied in part (a). The subsequent steps are just any
sequence of applications of TC1+Z, TC2, and TC3 satisfying Definition 3.3(c), (d)
and (e). It follows immediately from Theorem 4.1, and the validity of the congruence
enumeration for monoid-with-0 presentations, that this process is valid.

9.3 Stephen’s procedure

Another variant of the Todd–Coxeter algorithm is that of Stephen [32, Chapter 4],
mentioned in the introduction of the current article. Note that a similar method for
constructing the Cayley graph of groups was described by Dehn [6]. Suppose that M
is the monoid defined by a finite monoid presentation 〈A | R〉 and that � = (N , E) is
the right Cayley graph of M with respect to A. If w ∈ A∗ is arbitrary and w labels a
(0, α)-path in � for some α ∈ N , then the aim of this variant is to output the subgraph
� of � induced by the set X of nodes in N from which α is reachable. Note that the
set of these nodes corresponds to the set of elements in M which are≥R w/R# (recall
that two monoid elements s, t ∈ M satisfy s ≥R t if tM ⊆ sM). IfA is the automata
with alphabet A, state set X , initial state 0, accept state α, and edges consisting of
those in �, then the language L(A) accepted by A is the set of words in v ∈ A∗ that
represent the same element of M as w (i.e. v/R# = w/R#). As such if the (as yet to
be described) procedure terminates, the output allows us to decide the word problem
for w in M .

Suppose that w = a1 · · · an ∈ A∗ for some a1, . . . , an ∈ A, that �1 = (N1, E1) is
the trivial word graph, and κ1 = �N1 . A special case of Stephen’s procedure consists
of the following steps described in terms of TC1, TC2, and TC3. The first step is
always:

S1: TC1 is applied to 0 and a1, then to i and ai+1 for every i such that 1 ≤ i ≤ n−1.
The resulting �n consists of the single path from 0 to the node n. (The graph �n

is referred to as the linear graph of w in [32].)

S1 is then followed by any sequence of the following steps:

S2: At step i , suppose that the word graph �i = (Ni , Ei) contains a path with source
α ∈ Ni labelled u for some (u, v) ∈ R. If v = v1b where v1 ∈ A∗ and b ∈ A,

123

T. D. H. Coleman et al.

thenTC1 is applied until there is a pathwith sourceα labelled by v1 and thenTC2
is applied to α and (u, v) ∈ R. (This is referred to as an elementary expansion
in [32].)

S3: ApplyTC3. (Quotienting�i by the least equivalence containing a single (α, β) ∈
Ni × Ni is referred to as a determination in [32]. In TC3 we quotient �i by the
entire equivalence κi ; this is the only point where the procedure described here
differs from the description in [32].)

It is shown in [32] that if any sequence of S2 and S3 has the property that after finitely
many steps any subsequent applications of S2 and S3 result in no changes to the output
(i.e. (�i+1, κi+1) = (�i , κi)), then�i is isomorphic to the induced subgraph� defined
at the start of this section. Note that S2 and S3 are similar toHLT1,HLT2, andHLT3
described in Sect. 6. While it is not possible to use congruence enumeration, at least
as described in this paper, to solve the word problem when the monoid M defined by
a presentation 〈A | R〉 is infinite, it is possible to decide whether or not two words
u, v ∈ A∗ represent the same element ofM using the procedure defined in this section,
whenever the induced subgraph � is finite. Since the set of nodes in � corresponds
to the set of elements in M which are ≥R u/R# (assuming that u is the input word
for Stephen’s procedure) the word graph � is finite when there are only finitely many
elements of M that are ≥R u/R#.

A Extended examples

This appendix contains a number of extended examples of congruence enumerations.

Example A.1 We will apply the Felsch strategy to the presentation

P = 〈a, b | a3 = a, b3 = b, (ab)2 = a2〉

with a < b. The input word graph �1 is the trivial graph and the input κ1 = �N1 .
Since S = ∅, we do not apply steps Definition 3.3(a) and (b).

For the sake of simplicity, the steps in this example correspond to either a single
application of F1 (a single application of TC1 and multiple applications of TC2) or a
single application of TC3. If a step produces no change to �i or κi , this step is skipped
and does not have a number; see Table 4 and Figs. 9, 10, 11, 12, and 13.

Step 1–2 The only node in �1 is 0. Since there is no edge incident to 0 labelled
by a, in Step 1 we apply F1 and add the node 1 and the edge (0, a, 1).
Similarly, in Step 2 we add the node 2 and the edge (0, b, 2). The output
is the word graph �3 in Fig. 9a.

Step 3 An application of TC1 which leads to the definition of the node 3 and
the edge (1, a, 3). At this point F1 leads to an application of TC2 to the
node 3 and the relation (a3, a) and hence we define the edge (3, a, 1). The
output of step 3 is �4; see Fig. 9b.

Step 4–5 We apply TC1 twice (since there are no applications of TC2 that yield
new information). In step 4 we define the node 4 and the edge (1, b, 4)
and in step 5 the node 5 and the edge (2, a, 5); see Fig. 9c.

123

The Todd–Coxeter algorithm for semigroups and monoids

Step 6 The node 6 and the edge (2, b, 6) are defined. Applying TC2 to the node
6 and the relation (b3, b) ∈ R leads to the definition of the edge (6, b, 2).
The output of step 6 is �7; see Fig. 9d.

Step 7 We apply TC1 and define the node 7 and the edges (3, b, 7); see Fig. 9e.
Step 8 The node 8 and edge (4, a, 8) are defined in TC1. Applying TC2 leads

to the definition of edges (7, b, 3), (8, b, 3), and (8, a, 4); see Fig. 9f.
Step 9 We apply TC1 and define the node 9 and the edge (4, b, 9). We apply

TC2 to 4 and the relation (b3, b) and define the edge (9, b, 4); see Fig. 9g.
Step 10 We apply TC1 and define the node 10 and the edge (5, a, 10). We apply

TC2 to the node 5 and the relation (a3, a) and define the edge (10, a, 5);
see Fig. 9h.

Step 11–12 We apply TC1 twice, since there are no applications of TC2 yielding
any new information. The nodes 11 and 12 and the edges (5, b, 11) and
(6, a, 12) are defined; see Fig. 9i.

Step 13 We apply TC1 and define the node 13 and the edge (7, a, 13). We apply
TC2 to the node 1 and the relation ((ab)2, a2) and define the edge
(13, b, 1). We also apply TC2 to node 7 and the relation ((ab)2, a2) and
define the edge (13, a, 7). Next, we apply TC2 to the node 1 and the
relation (b3, b) resulting in the pair (1, 9) begin added to κ14. Finally, we
applyTC2 to the node 13 and the relation ((ab)2, a2)which yields (4, 13)
being added to κ14; see Fig. 9j.

Step 14 In this step κ14 is the least equivalence relation containing {(1, 9), (4, 13)}.
Taking the quotient gives graph �15. In �15 there exist two edges (4, a, 7)
and (4, a, 8)with the same source and label, and so the pair (7, 8) is added
to κ15; see Fig. 10a.

Step 15 Taking the quotient of �15 in F2 by κ15 yields the graph in Fig. 10b.
Step 16 We apply TC1 and define the node 14 and edge (10, b, 14); see Fig. 10c.
Step 17 We apply TC1 and define the node 15 and the edge (11, a, 15). Applying

TC2 to 2 and the relation ((ab)2, a2) leads to the definition of the edge
(15, b, 10) and applying TC2 to 11 and the relation ((ab)2, a2) leads to
the definition of edge (15, a, 11). Finally, an application of TC2 to 15
and the relation (b3, b) leads to the definition of the node (14, b, 10); see
Fig. 10d.

Step 18 The node 16 and the edge (11, b, 16) are defined. After an application of
TC2 to 5 and (b3, b) leads to the definition of (16, b, 11); see Fig. 10e.

Step 19 The node 17 and the edge (12, a, 17) are defined. An application of TC2
to 6 and (b3, b) leads to the definition of (17, a, 12); see Fig. 10f.

Step 20 We apply TC1 and the node 18 and the edge (12, b, 18) are defined; see
Fig. 11a.

Step 21 We apply TC1 and the node 19 and the edge (14, a, 19) are defined.
Applying TC2 to 5 and the relation ((ab)2, a2) leads to the definition of
the edge (19, b, 5) and applying TC2 to 14 and the relation ((ab)2, a2)
leads to the definition of edge (19, a, 14). We applyTC2 to 19 and (b3, b)
and to node 19 and ((ab)2, a2) yielding the pairs (5, 16) and (11, 19) are
added to κ22; see Fig. 11b.

123

T. D. H. Coleman et al.

Table 4 A word labelling a path from 0 to each node in Example A.1; see Figs. 9, 10, 11, 12, and 13

0 1 2 3 4 5 6 7 8 9 10 11

ε a b a2 ab ba b2 a2b aba ab2 ba2 bab

12 13 14 15 16 17 18 19 20 21 22 23

b2a a2ba ba2b (ba)2 bab2 b2a2 b2ab ba2ba b2a2b b2aba b2ab2 b2a2ba

Step 22 Taking the quotient of �22 by κ22 gives the graph �23. In �23 there are the
edges (11, a, 14) and (11, a, 15)with source 11 and label a and hence the
pair (14, 15) is added to κ23; see Fig. 11c.

Step 23 Taking the quotient gives graph �24; see Fig. 11d.
Step 24 We apply TC1 so that the node 20 and the edge (17, b, 20) are defined;

see Fig. 12a.
Step 25 We apply TC1 and the node 21 and the edge (18, a, 21) are defined. We

apply TC2 to 6 and ((ab)2, a2) and define the edge (21, b, 17). We also
apply TC2 to 18 and ((ab)2, a2) and define (21, a, 18). Finally, we apply
TC2 to 6 and (b3, b) and we define (20, b, 17); see Fig. 12b.

Step 26 We apply TC1 and define 22 and (18, b, 22). Next, we apply TC2 to 12
and (b3, b). This leads to the definition of (22, b, 18); see Fig. 12c.

Step 27 We apply TC1 and define 23 and (20, a, 23). We apply TC2 to 12
and ((ab)2, a2) and define (23, b, 12). We also apply TC2 to 20 and
((ab)2, a2) and define (23, a, 20). Finally, we applyTC2 to 23 and (b3, b)
and to 23 and ((ab)2, a2) yielding the pairs (12, 22) and (18, 23) in κ28;
see Fig. 12d.

Step 28 Taking the quotient of �28 by κ28 gives �29. In �29 there exist two edges
(18, a, 20) and (18, a, 21) labelled a leaving b2ab and hence the pair
(20, 21) is added to κ29; see Fig. 13a.

Step 29 Taking the quotient of �29 by κ29 gives the graph �30; see Fig. 13b.
After Step 29, �30 is complete, deterministic, and compatible with R.
Hence the enumeration terminates.

Example A.2 In this example, we perform the HLT strategy to find the right Cayley
graph of the monoid defined by the presentation:

〈a, b, c | a2 = ac, b2 = b, a2 = ca, bc = cb, a2 = c2, a3 = a2, a2 = aba〉

with a < b < c. Each step of this enumeration corresponds to either: at least one
application of TC1 (inHLT1) followed by multiple applications of TC2 (in the same
HLT1 step as the application of TC1 or subsequent applications of HLT1where TC1
is not invoked); or a single application of TC3 (in HLT2); see Figs. 14 and 15 for the
word graphs �i and equivalence relation κi after every step i ; see also Table 5.

Step 1 At this stepweapplyHLT1 to the node0 and relation (a2, ac).TC1yields
the new nodes 1 and 2, and the edges (0, a, 1) and (1, a, 2); TC2(b) then
yields the edge (1, c, 2); see Fig. 14a.

123

The Todd–Coxeter algorithm for semigroups and monoids

0

1

2

(a) Steps 1 & 2.

0

1

2

3

(b) Step 3.

0

1

2

3 4

5

(c) Step 4 & 5.

0

1

2

3 4

5

6

(d) Step 6.

0

1

2

3 4

5

6

7

(e) Step 7.

0

1

2

3 4

5

6

7 8

(f) Step 8.

0

1

2

3 4

5

6

7 8

9

(g) Step 9.

0

1

2

3 4 9

5

6

7 8

10

(h) Step 10.

0

1

2

3 4

5

6

7 8

9

10 11

12

(i) Steps 11 & 12.

0

1

2

3 4

5

6

7 8

9

10 11

12

13

(j) Step 13.

Fig. 9 The output (�i , κi) for i = {3, 4, 6, 7, 8, 9, 10, 11, 13, 14} in the Felsch Strategy in Example 7.1.
Purple arrows correspond to a, gray to b, shaded nodes of the same colour belong to κi , and unshaded nodes
belong to singleton classes. A dashed edge with a double arrowhead indicates the edge being defined in
TC1, a dashed edge with a single arrowhead denotes a new edge obtained from TC2 or TC3, solid edges
correspond to edges that existed at the previous step

Step 2 We apply HLT1 to the node 0 and relation (b2, b). TC1 produces the
new node 3 and edge (0, b, 3); TC2(a) then yields the edge (3, b, 3); see
Fig. 14b.

Step 3 HLT1 is applied to 0 and (a2, ca); TC1 generates the node 4 and edge
(0, c, 4); TC2(b) gives us the edge (4, a, 2); see Fig. 14c.

123

T. D. H. Coleman et al.

0

1

2

3 4

5

6

7 8

10 11

12

(a) Step 14.

0

1

2

3 4

5

6

7

10 11

12

(b) Step 15.

0

1

2

3 4

5

6

7

10 11

12

14

(c) Step 16.

0

1

2

3 4

5

6

7

10 11

12

14

15

(d) Step 17.

0

1

2

3 4

5

6

7

10 11

12

14

15

16

(e) Step 18.

0

1

2

3 4

5

6

7

10 11

12

14

15

16

17

(f) Step 19.

Fig. 10 The output (�i , κi) for i ∈ {15, . . . , 20} in the Felsch strategy in Example 7.1. Purple arrows
correspond to a, gray to b, shaded nodes of the same colour belong to κi , and unshaded nodes belong to
singleton classes. A dashed edge with a double arrowhead indicates the edge being defined in F1, a dashed
edge with a single arrowhead denotes an edge that is obtained from F2, solid edges correspond to edges
that existed at the previous step

Steps 4–6 Step 4 isHLT1 applied to 0 and (bc, cb); TC1 gives the new node 5 and
edge (3, c, 5);TC2(b) yields the edge (4, b, 5). Step 5 isHLT1 applied to
0 and (a2, c2). There is already a path from 0 labelled by a2 and another
by c, and so TC1 is not invoked, but TC2(b) yields the edge (4, c, 2).
Step 6: HLT1 applied to 0 and (a3, a2), TC1 is not invoked again, and
TC2(a) yields the edge (2, a, 2); see Fig. 14d.

Steps 7–9 Step 7:HLT1 applied to 0 and (a2, aba); TC1 adds the node 6 and edge
(1, b, 6);TC2(b) yields (6, a, 2). Step 8:HLT1 applied to 1 and (a2, ac);
TC1 does not apply; TC2(b) yields (2, c, 2). Step 9: HLT1 applied to 1
and (b2, b); TC1 does not apply; TC2(a) yields (6, b, 6). See Fig. 14e.

123

The Todd–Coxeter algorithm for semigroups and monoids

0

1

2

3 4

5

6

7

10 11

12

14

15

16

1718

(a) Step 20.

0

1

2

3 4

5

6

7

10 11

12

14

15

16

1718

19

(b) Step 21.

0

1

2

3 4

5

6

7

10 11

12

14

15 1718

(c) Step 22.

0

1

2

3 4

5

6

7

10 11

12

14

1718

(d) Step 23.

Fig. 11 The output (�i , κi) for i ∈ {21, 22, 23, 24} in the Felsch strategy in Example 7.1. Purple arrows
correspond to a, gray to b, shaded nodes of the same colour belong to κi , and unshaded nodes belong to
singleton classes. A dashed edge with a double arrowhead indicates the edge being defined inTC1, a dashed
edge with a single arrowhead denotes an edge that is obtained from TC2 or TC3, solid edges correspond
to edges that existed at the previous step

Steps 10–13 Step 10: HLT1 applied to 1 and (bc, cb); TC1 adds node 7 and edge
(6, c, 7). Step 11:HLT1 applied to 1 and (a2, aba);TC1 does not apply;
TC2(b) yields edge (7, a, 2). Step 12: HLT1 applied to 2 and (b2, b);
TC1 does not apply;TC2(a) yields edge (7, b, 7). Step 13:HLT1 applied
to 2 and (bc, cb); TC1 does not apply; TC2(a) yields edge (7, c, 7). See
Fig. 14f.

123

T. D. H. Coleman et al.

0

1

2

3 4

5

6

7

10 11

12

14

1718

20

(a) Step 24.

0

1

2

3 4

5

6

7

10 11

12

14

1718

2021

(b) Step 25.

0

1

2

3 4

5

6

7

10 11

12

14

1718

202122

(c) Step 26.

0

1

2

3 4

5

6

7

10 11

12

14

1718

202122 23

(d) Step 27.

Fig. 12 The output (�i , κi) for i ∈ {25, . . . , 28} in the Felsch strategy for Example 7.1. Purple arrows
correspond to a, gray to b, shaded nodes of the same colour belong to κi , and unshaded nodes belong to
singleton classes. A dashed edge with a double arrowhead indicates the edge being defined inTC1, a dashed
edge with a single arrowhead denotes an edge that is obtained from TC2 or TC3, solid edges correspond
to edges that existed at the previous step

Steps 14–18 Step 14: HLT1 applied to 3 and (a2, ac); TC1 yields nodes 8 and 9 and
edges (3, a, 8), (8, a, 9);TC2(b) yields edge (8, c, 9). Step 15:HLT1 for
3 and (a2, ca); TC1 not applied; TC2(b) yields edge (5, a, 9). Step 16:
HLT1 for b and (bc, cb); TC1 does not apply; TC2(b) yields (5, b, 5).
Step 17: HLT1 for b and (a2, c2); TC1 does not apply; TC2(b) yields
(5, c, 9). Step 18:HLT1 for 3 and (a3, a2); TC1 does not apply; TC2(a)
yields (9, a, 9). See Fig. 14g.

123

The Todd–Coxeter algorithm for semigroups and monoids

0

1

2

3 4

5

6

7

10 11

12

14

1718

2021

(a) Step 28.

0

1

2

3 4

5

6

7

10 11

12

14

1718

20

(b) Step 29.

Fig. 13 The output (�i , κi) for i = 29 and 30 in the Felsch strategy of Example 7.1. Purple arrows
correspond to a, gray to b, shaded nodes of the same colour belong to κi , and unshaded nodes belong to
singleton classes. A dashed edge with a double arrowhead indicates the edge being defined inTC1, a dashed
edge with a single arrowhead denotes an edge that is obtained from TC2 or TC3, solid edges correspond
to edges that existed at the previous step

Steps 19–20 Step 19: HLT1 for 3 and (a2, aba): TC1 adds node 10 and edge
(8, b, 10); TC2(b) yields (10, a, 9). Step 20: HLT1 for 4 and (bc, cb):
TC1 does not apply; TC2(c) indicates κ20 is the least equivalence con-
taining (7, 9). See Fig. 14h.

Step 21 This step is an application of TC3 to produce �21 := �20/κ20 result-
ing in the new edges (7, a, 7), (5, a, 7), (5, c, 7), (8, a, 7), (8, c, 7), and
(10, b, 7). The edge (7, a, 2) is also an edge in �21 meaning that κ21 is
the least equivalence containing (2, 7). See Fig. 15a.

Step 22 This step is also an application of TC3 to produce �22 := �21/κ21, the
new edges created are (2, b, 2), (10, a, 2), (8, a, 2), (8, c, 2), (5, a, 2),
and (5, c, 2). See Fig. 15b.

Steps 23–24 Step 23: HLT1 applied to (b2, b) from 8; TC1 does not apply; TC2(a)
yields (10, b, 10). Step 24: HLT1 applied to 8 and (bc, cb) yields
(10, c, 2). See Fig. 15c.

After Step 24 the graph �25 is complete and compatible with the relations in the pre-
sentation, and κ25 is trivial, the enumeration terminates, and we see that the semigroup
defined by the presentation is isomorphic to that defined in Example 5.1.

Example A.3 In this example, we perform the Felsch strategy to find the right Cayley
graph of the monoid defined by the presentation:

〈a, b, c | ac = a2, b2 = b, ca = a2, cb = bc, c2 = a2, a3 = a2, aba = a2〉.

123

T. D. H. Coleman et al.

Table 5 A word labelling a path
from 0 to each node in the right
Cayley graph on the monoid M
from Example A.2; see Figs. 14
and 15

0 1 2 3 4 5 6 7 8 9 10

ε a a2 b c bc ab abc ba ba2 bab

0

1

2

(a) Step 1.

0

1

2

3

(b) Step 2.

0

1

2

3

4

(c) Step 3.

0

1

2

3

4 5

(d) Steps 4 to 6.

0

1

2

3

4 5

6

(e) Steps 7 to 9.

0

1

2

3

4 5

6

7

(f) Steps 10 to 13.

0

1

2

3

4 5

6

7

8

9

(g) Steps 14 to 18.

0

1

2

3

4 5

6

7

8

9

10

(h) Steps 19 & 20.

Fig. 14 The output (�i , κi) for i = 1, . . . , 20 in Example A.2. Purple arrows correspond to a, gray to b,
pink to c, shaded nodes of the same colour belong to κi , and unshaded nodes belong to singleton classes. A
dashed edge with a double arrowhead indicates the edge being defined in TC1, a dashed edge with a single
arrowhead denotes an edge that is obtained from TC2 or TC3, solid edges correspond to edges that existed
at the previous step

123

The Todd–Coxeter algorithm for semigroups and monoids

0

1

2

3

4 5

6

7

8

10

(a) Step 21.

0

1

2

3

4 5

6

8

10

(b) Step 22.

0

1

2

3

4 5

6

8

10

(c) Steps 23 & 24.

Fig. 15 The output (�i , κi) for i = 21, . . . , 24 of each step in Example A.2. Purple arrows correspond to 1,
gray to 3, pink to 4, shaded nodes of the same colour belong to κi , and unshaded nodes belong to singleton
classes. A dashed edge with a double arrowhead indicates the edge being defined in TC1, a dashed edge
with a single arrowhead denotes an edge that is obtained from TC2 or TC3, solid edges correspond to
edges that existed at the previous step

Step 1 At this step we apply F1 to the node 0. The node 1 and the edge (0, a, 1)
are defined; see Fig. 16a.

Step 2 We apply F1 to the node 0. The node 2 and the edge (0, b, 2) are defined.
Applying F2 to 0 and the relation (b2, b) leads to the definition of the
edge (2, b, 2); see Fig. 16b.

Step 3 We apply F1 to 0. The node 3 and the edge (0, c, 3) are defined; see
Fig. 16c.

Step 4 F1 is applied to 1 and hence the node 4 and the edge (1, a, 4) are defined.
We apply F2 and the following applications of TC2 yield new informa-
tion; applying TC2(b) to 0 and (a2, ac) yields the edge (1, c, 4), applying
TC2(b) to 0 and (a2, ca) yields the edge (3, a, 4), the application of
TC2(b) to 0 and (a2, c2) yields the edge (3, c, 4), the application of

123

T. D. H. Coleman et al.

TC2(a) to 0 and (a3, a2) yields the edge (4, a, 4) and finally the applica-
tion of TC2(b) to 1 and (a2, ac) yields the edge (4, c, 4); see Fig. 16d.

Step 5 We apply F1 to 1 which leads to the definition of the node 5 and the edge
(1, b, 5). We apply F2 and the following applications of TC2 yield new
information; the application of TC2(b) to 0 and (a2, aba) yields the edge
(5, a, 4) and the application of TC2(a) to 1 and (b2, b) yields the edge
(5, b, 5); see Fig. 16e.

Step 6 We apply F1 to 2 which leads to the definition of the node 6 and the edge
(2, a, 6); see Fig. 16f.

Step 7 We apply F1 to 2 which leads to the definition of the node 7 and the edge
(2, c, 7). We apply F2 and the following applications of TC2 yield new
information; applying TC2(b) to 0 and (bc, cb) yields the edge (3, b, 7)
and applying TC2(b) to 3 and (bc, cb) yields the edge (7, b, 7); see
Fig. 17a.

Step 8 WeapplyF1 and the node 8 and the edge (4, b, 8) are defined.We applyF2
and the following applications of TC2 yield new information; applying
TC2(a) to 1 and (bc, cb) yields the edge (5, c, 8), applying TC2(b) to 1
and (a2, aba) yields the edge (8, a, 4), applying TC2(a) to 3 and (bc, cb)
yields the edge (7, c, 8), applying TC2(a) to 4 and (b2, b) yields the edge
(8, b, 8) and applying TC2(a) to 4 and (bc, cb) yields the edge (8, c, 8).
In addition, applying TC2(c) to 5 and (a2, c2) as well as applying TC2(c)
to 8 and (a2, c2) indicates κ9 is the least equivalence containing (8, 4) and
�N9 ; see Fig. 17b.

Step 9 This step is an application of TC3 to produce �10 := �9/κ9 resulting in
the new edges (5, c, 4), (4, b, 4); see Fig. 17c.

Step 10 We apply F1. The node 9 and the edge (6, a, 9) are defined and an appli-
cation of F2 follows. Applying TC2(b) to 2 and (a2, ac) yields the edge
(6, c, 9), applying TC2(b) to 2 and (a2, ca) yields the edge (7, a, 9),
applying TC2(a) to 2 and (a3, a2) yields the edge (9, a, 9) and applying
TC2(b) to 6 and (a2, ac) yields the edge (9, c, 9). In addition, applying
TC2(c) to 2 and (a2, c2) indicates κ11 is the least equivalence containing
(4, 9) and �N11 ; see Fig. 17d.

Step 11 This step is an application of TC3 to produce �12 := �11/κ11 resulting
in the new edges (7, a, 4), (6, a, 4), (6, c, 4); see fig.17e.

Step 12 We apply F1 and the node 10 and the edge (6, b, 10) are defined. We
apply F2 and the following applications of TC2 yield new information;
applying TC2(b) to 2 and (a2, aba) yields the edge (10, a, 4), applying
TC2(a) to 6 and (b2, b) yields the edge (10, b, 10) and applying TC2(a)
to 6 and (bc, cb) yields the edge (10, c, 4); see Fig. 17f.

After Step 12 the graph �13 is complete and compatible with the relations in the pre-
sentation, and κ13 is trivial, the enumeration terminates, and we see that the semigroup
defined by the presentation is isomorphic to that defined in Example 5.1.

123

The Todd–Coxeter algorithm for semigroups and monoids

0

1

(a) Step 1.

0

1

2

(b) Step 2.

0

1

2

3

(c) Step 3.

0

1

2

3

4

(d) Step 4.

0

1

2

3

4

5

(e) Step 5.

0

1

2

3

4

5

6

(f) Step 6.

Fig. 16 The output (�i , κi) of each step in Example A.3. Purple arrows correspond to a, grey to b, pink to
c, shaded nodes of the same colour belong to κi , and unshaded nodes belong to singleton classes

0

1

2

3

4

5

6

7

(a) Step 7.

0

1

2

3

4

5

6

7

8

(b) Step 8.

0

1

2

3

4

5

6

7

(c) Step 9.

0

1

2

3

4

5

6

7

9

(d) Step 10.

0

1

2

3

4

5

6

7

(e) Step 11.

0

1

2

3

4

5

6

7

10

(f) Step 12.

Fig. 17 The output (�i , κi) of each step in Example A.3. Purple arrows correspond to a, grey to b, pink to
c, shaded nodes of the same colour belong to κi , and unshaded nodes belong to singleton classes

123

T. D. H. Coleman et al.

B Performance comparison

In this appendix the performance of the libsemigroups [24] implementations of the
HLT and Felsch strategies (as described in this paper) is compared to the performance
of GAP [12] on a number of examples. Unless otherwise indicated the times for
libsemigroups [24] are the mean time of 100 runs and the indicated times for GAP
[12] are the mean of 10 runs. All computations were performed on a 2021 Mac M1
computer with 16GB of RAM.

B.1 Monoids of transformations

In this section we present some tables of timings for some presentations from the
literature of transformation monoids; see Tables 6 and 7.

B.2 Monoids of partitions

In this section we present some tables of timings for some presentations from the
literature of monoids of partitions; see Tables 8, 9, 10, 11, and 12.

B.3 Further finitely presented semigroups andmonoids

In this section we present some tables of timings for some presentations from the
literature of finitely presented semigroups and monoids; see Tables 13, 14, and 15.

The presentations referred to in Table 15 are:

S = 〈a, b, c | a14 = a, b14 = b, c14 = c, a4ba = b3, b4ab = a3,

a4ca = c3, c4ac = a3, b4cb = c3, c4bc = b3〉 (B.1)

S = 〈a, b | a32 = a, b3 = b, ababa = b, a16ba4ba16ba4〉 (B.2)

S = 〈a, b | a16 = a, b16 = b, ab2 = ba2〉 (B.3)

S = 〈a, b | a3 = a, b6 = b, (abab4)7ab2a = b2〉 (B.4)

S = 〈a, b | a3 = a, b6 = b, (abab4)7ab2ab5a2 = b2〉 (B.5)

S = 〈a, b | a3 = a, b9 = b, abab7abab7ab2ab8 = b2〉 (B.6)

S = 〈a, b, c, d, e | a3 = a, b3 = b, c3 = c, d3 = d,

e3 = 3, (ab)3 = a2, (bc)3 = b2, (cd)3 = c2, (de)3 = d2,

ac = ca, ad = da, ae = ea, bd = db, be = eb, ce = ec〉 (B.7)

S = 〈a, b | a3 = a, b23 = b, ab11ab2 = b2a〉. (B.8)

123

The Todd–Coxeter algorithm for semigroups and monoids

Ta
bl
e
6

C
om

pa
ri
so
n
of

lib
se
m
ig
ro
up

s
[2
4]

an
d
th
e
im

pl
em

en
ta
tio

n
in

th
e
G
A
P
[1
2]

lib
ra
ry

(C
o
s
e
t
T
a
b
l
e
O
f
F
p
S
e
m
i
g
r
o
u
p
)
fo
r
th
e
pr
es
en
ta
tio

ns
of

th
e
m
on

oi
ds

O
P n

of
or
ie
nt
at
io
n
pr
es
er
vi
ng

tr
an
sf
or
m
at
io
ns

of
a
ch
ai
n
fr
om

[2
]

n
|O

P n
|

|A
|

|R
|

∑
|uv

|
H
LT

Fe
ls
ch

G
A
P

M
ea
n

S.
D

M
ea
n

S.
D

M
ea
n

S.
D

3
24

2
5

43
8.
4

×
10

−6
8

×
10

−7
1.
84

×
10

−5
1.
8

×
10

−6
5.
3

×
10

−4
7

×
10

−5

4
12

8
2

6
86

4.
0

×
10

−5
2

×
10

−6
2.
77

×
10

−4
5

×
10

−6
1.
92

×
10

−3
7

×
10

−5

5
61

0
2

7
14

5
4.
51

×
10

−4
4

×
10

−6
4.
56

5
×

10
−3

1.
5

×
10

−5
1.
49

2
×

10
−2

1.
3

×
10

−4

6
27

42
2

8
22

0
4.
64

×
10

−3
7

×
10

−5
4.
15

3
×

10
−2

1.
2

×
10

−4
1.
17

4
×

10
−1

3
×

10
−4

7
11

,9
70

2
9

31
1

4.
97

×
10

−2
4

×
10

−4
4.
0

×
10

−1
5

×
10

−2
8.
08

1
×

10
−1

1.
1

×
10

−3

8
51

,4
24

2
10

41
8

7.
11

×
10

−1
5

×
10

−3
3.
07

×
10

0
4

×
10

−2
4.
48

8
×

10
0

2
×

10
−3

9
21

8,
71

8
2

11
54

1
5.
40

×
10

0
3

×
10

−2
2.
98

×
10

1
2

×
10

−1
–

–

10
92

3,
69

0
2

12
68

0
2.
50

3
×

10
1

–
–

–
–

–

11
3,
87

9,
76

6
2

13
83

5
2.
68

0
×

10
2

–
–

–
–

–

12
16

,2
24

,8
04

2
14

10
06

2.
35

1
×

10
3

–
–

–
–

–

13
67

,6
03

,7
44

2
15

11
93

3.
16

0
×

10
4

–
–

–
–

–

V
al
ue
s
w
ith

no
st
an
da
rd

de
vi
at
io
n
in
di
ca
te
d
w
er
e
on
ly

ru
n
on
ce
.A

ll
tim

es
ar
e
in

se
co
nd
s

123

T. D. H. Coleman et al.

Ta
bl
e
7

C
om

pa
ri
so
n
of

lib
se
m
ig
ro
up

s
[2
4]

an
d
th
e
im

pl
em

en
ta
tio

n
in

th
e
G
A
P
[1
2]

lib
ra
ry

(C
o
s
e
t
T
a
b
l
e
O
f
F
p
S
e
m
i
g
r
o
u
p
)
fo
r
th
e
pr
es
en
ta
tio

ns
of

th
e
m
on

oi
ds

O
R
n

of
or
ie
nt
at
io
n
pr
es
er
vi
ng

an
d
re
ve
rs
in
g
tr
an
sf
or
m
at
io
ns

of
a
ch
ai
n
fr
om

[2
]

n
|O

R
n
|

|A
|

|R
|

∑
|uv

|
H
LT

Fe
ls
ch

G
A
P

M
ea
n

S.
D

M
ea
n

S.
D

M
ea
n

S.
D

3
27

3
9

65
1.
38

8
×

10
−5

9
×

10
−8

3.
75

×
10

−5
3

×
10

−7
6.
78

×
10

−4
1.
2

×
10

−5

4
18

0
3

10
12

2
8.
45

×
10

−5
6

×
10

−7
5.
78

4
×

10
−4

1.
7

×
10

−6
4.
18

×
10

−3
1.
5

×
10

−4

5
10

15
3

11
19

9
1.
12

0
×

10
−3

1.
0

×
10

−5
1.
03

4
×

10
−2

5
×

10
−5

3.
14

0
×

10
−2

8
×

10
−5

6
50

28
3

12
29

6
1.
25

7
×

10
−2

6
×

10
−5

1.
45

9
×

10
−1

3
×

10
−4

2.
46

6
×

10
−1

2
×

10
−4

7
23

,0
51

3
13

41
3

2.
40

4
×

10
−1

1.
2

×
10

−3
1.
36

9
×

10
0

5
×

10
−3

1.
85

65
×

10
0

1.
1

×
10

−3

8
10

1,
27

2
3

14
55

0
4.
94

×
10

0
3

×
10

−2
1.
43

7
×

10
1

4
×

10
−2

1.
30

2
×

10
1

4
×

10
−2

9
43

4,
83

5
3

15
70

7
7.
03

5
×

10
0

–
–

–
–

–

10
1,
84

3,
32

0
3

16
88

4
8.
50

9
×

10
1

–
–

–
–

–

11
7,
75

3,
47

1
3

17
10

81
8.
46

0
×

10
2

–
–

–
–

–

12
32

,4
40

,8
84

3
18

12
98

6.
17

8
×

10
3

–
–

–
–

–

V
al
ue
s
w
ith

no
st
an
da
rd

de
vi
at
io
n
in
di
ca
te
d
w
er
e
on
ly

ru
n
on
ce
.A

ll
tim

es
ar
e
se
co
nd
s

123

The Todd–Coxeter algorithm for semigroups and monoids

Ta
bl
e
8

C
om

pa
ri
so
n
of

lib
se
m
ig
ro
up

s
[2
4]

an
d
th
e
im

pl
em

en
ta
tio

n
in
th
e
G
A
P
[1
2]

lib
ra
ry

(C
o
s
e
t
T
a
b
l
e
O
f
F
p
S
e
m
i
g
r
o
u
p
)f
or

th
e
pr
es
en
ta
tio

ns
of

th
e
pa
rt
iti
on

m
on

oi
ds

P n
fr
om

[8
,T

he
or
em

41
]

n
|P n

|
|A

|
|R

|
∑

|uv
|

H
LT

Fe
ls
ch

G
A
P

M
ea
n

S.
D

M
ea
n

S.
D

M
ea
n

S.
D

4
41

40
4

19
14

4
7.
43

×
10

−3
1.
2

×
10

−4
1.
91

8
×

10
−2

5
×

10
−5

1.
29

19
×

10
−1

1.
1

×
10

−4

5
11

5,
97

5
4

19
16

3
5.
69

×
10

−1
2

×
10

−3
1.
08

2
×

10
0

7
×

10
−3

5.
37

7
×

10
0

6
×

10
−3

6
4,
21

3,
59

7
4

20
19

8
3.
24

×
10

1
3

×
10

−1
1.
46

0
×

10
2

5
×

10
−1

–
–

7
19

0,
89

9,
32

2
4

20
21

9
2.
24

0
×

10
3

–
–

–
–

–

V
al
ue
s
w
ith

no
st
an
da
rd

de
vi
at
io
n
in
di
ca
te
d
w
er
e
on
ly

ru
n
on
ce
.A

ll
tim

es
ar
e
in

se
co
nd
s

123

T. D. H. Coleman et al.

Ta
bl
e
9

C
om

pa
ri
so
n
of

lib
se
m
ig
ro
up

s
[2
4]

an
d
th
e
im

pl
em

en
ta
tio

n
in

th
e
G
A
P
[1
2]

lib
ra
ry

(C
o
s
e
t
T
a
b
l
e
O
f
F
p
S
e
m
i
g
r
o
u
p
)
on

th
e
pr
es
en
ta
tio

ns
fo
rt
he

si
ng

ul
ar

B
ra
ue
r

m
on

oi
ds

B
n

\S
n
fr
om

[2
1]

n
|B

n
\S

n
|

|A
|

|R
|

∑
|uv

|
H
LT

Fe
ls
ch

G
A
P

M
ea
n

S.
D

M
ea
n

S.
D

M
ea
n

S.
D

3
9

6
21

78
1.
72

×
10

−5
2

×
10

−7
2.
4

×
10

−5
4

×
10

−6
4.
6

×
10

−4
4

×
10

−5

4
81

12
12

6
60

0
1.
95

5
×

10
−4

8
×

10
−7

6.
27

×
10

−4
1.
8

×
10

−5
5.
50

×
10

−3
1.
2

×
10

−4

5
82

5
20

45
0

23
00

5.
33

×
10

−3
5

×
10

−5
1.
96

8
×

10
−2

1.
8

×
10

−4
1.
60

×
10

−1
2

×
10

−3

6
96

75
30

11
85

62
40

1.
35

9
×

10
−1

2
×

10
−4

6.
59

×
10

−1
6

×
10

−3
4.
81

×
10

0
4

×
10

−2

7
13

0,
09

5
42

25
83

13
,8
18

3.
89

×
10

0
2

×
10

−2
2.
19

0
×

10
1

1.
2

×
10

−1
–

–

8
1,
98

6,
70

5
56

49
56

26
,7
68

3.
35

7
×

10
2

–
–

–
–

–

V
al
ue
s
w
ith

no
st
an
da
rd

de
vi
at
io
n
in
di
ca
te
d
w
er
e
on
ly

ru
n
on
ce
.A

ll
tim

es
ar
e
in

se
co
nd
s

123

The Todd–Coxeter algorithm for semigroups and monoids

Ta
bl
e
10

C
om

pa
ri
so
n
of

lib
se
m
ig
ro
up

s
[2
4]

an
d
th
e
im

pl
em

en
ta
tio

n
in

th
e
G
A
P
[1
2]

lib
ra
ry

(C
o
s
e
t
T
a
b
l
e
O
f
F
p
S
e
m
i
g
r
o
u
p
)
th
e
pr
es
en
ta
tio

ns
fo
r
th
e
du

al
sy
m
m
et
ri
c

in
ve
rs
e
m
on

oi
ds

I∗ n
fr
om

[7
]

n
|I∗ n

|
|A

|
|R

|
∑

|uv
|

H
LT

Fe
ls
ch

R
c

G
A
P

M
ea
n

S.
D

M
ea
n

S.
D

M
ea
n

S.
D

M
ea
n

S.
D

3
25

3
11

54
1.
5

×
10

−5
5

×
10

−6
1.
92

×
10

−5
5

×
10

−7
1.
85

0
×

10
−5

8
×

10
−8

4.
94

×
10

−4
1.
0

×
10

−5

4
33

9
4

19
11

6
4.
17

×
10

−4
4

×
10

−6
6.
05

×
10

−4
4

×
10

−6
1.
10

4
×

10
−3

9
×

10
−6

8.
74

×
10

−3
2

×
10

−5

5
67

21
5

28
17

7
3.
15

×
10

−2
3

×
10

−4
2.
78

0
×

10
−2

7
×

10
−5

2.
92

6
×

10
−2

6
×

10
−5

3.
21

3
×

10
−1

5
×

10
−4

6
17

9,
64

3
6

39
27

6
3.
63

9
×

10
0

9
×

10
−3

1.
39

9
×

10
0

1.
2

×
10

−2
4.
04

4
×

10
0

1.
3

×
10

−2
3.
85

8
×

10
1

4
×

10
−2

7
6,
16

6,
10

5
7

52
42

2
–

–
1.
11

5
×

10
2

–
–

–
–

–

T
hi
s
m
on
oi
d
is
so
m
et
im

es
ca
lle
d
th
e
un

if
or
m
bl
oc
k
bi
je
ct
io
n
m
on

oi
d.
V
al
ue
s
w
ith

no
st
an
da
rd

de
vi
at
io
n
in
di
ca
te
d
w
er
e
on
ly

ru
n
on
ce
.A

ll
tim

es
ar
e
in

se
co
nd
s

123

T. D. H. Coleman et al.

Ta
bl
e
11

C
om

pa
ri
so
n
of

lib
se
m
ig
ro
up

s
[2
4]

an
d
th
e
im

pl
em

en
ta
tio

n
in

th
e
G
A
P
[1
2]

lib
ra
ry

(C
o
s
e
t
T
a
b
l
e
O
f
F
p
S
e
m
i
g
r
o
u
p
)
th
e
pr
es
en
ta
tio

ns
fo
r
th
e
fa
ct
or
is
ab
le
du

al
sy
m
m
et
ri
c
in
ve
rs
e
m
on
oi
ds

F
I∗ n

fr
om

[1
0]

n
|F

I∗ n
|

|A
|

|R
|

∑
|uv

|
H
LT

Fe
ls
ch

R
c

G
A
P

M
ea
n

S.
D

M
ea
n

S.
D

M
ea
n

S.
D

M
ea
n

S.
D

3
16

3
8

47
1.
1

×
10

−5
4

×
10

−6
2.
6

×
10

−5
4

×
10

−6
1.
57

×
10

−5
1.
4

×
10

−6
4.
48

×
10

−4
1.
7

×
10

−5

4
13

1
4

13
67

8.
8

×
10

−5
4

×
10

−6
1.
54

×
10

−4
1.
1

×
10

−5
1.
02

×
10

−4
4

×
10

−6
2.
30

2
×

10
−3

1.
3

×
10

−5

5
14

96
5

20
95

2.
64

×
10

−3
5

×
10

−5
2.
24

3
×

10
−3

2.
0

×
10

−5
3.
35

×
10

−3
1.
0

×
10

−4
3.
61

2
×

10
−2

5
×

10
−5

6
22

,4
82

6
29

13
1

7.
98

×
10

−2
4

×
10

−4
5.
39

×
10

−2
4

×
10

−4
5.
67

×
10

−2
2

×
10

−4
8.
18

6
×

10
−1

1.
3

×
10

−3

7
42

6,
83

3
7

40
17

5
4.
78

×
10

0
4

×
10

−2
1.
60

8
×

10
0

1.
3

×
10

−2
4.
16

2
×

10
0

1.
1

×
10

−2
1.
46

6
×

10
2

1.
0

×
10

0

8
9,
93

4,
56

3
8

53
22

7
8.
03

0
×

10
1

–
5.
57

2
×

10
1

–
8.
19

3
×

10
1

–
–

–

T
hi
s
m
on
oi
d
is
so
m
et
im

es
ca
lle
d
th
e
un

if
or
m
bl
oc
k
bi
je
ct
io
n
m
on

oi
d.
V
al
ue
s
w
ith

no
st
an
da
rd

de
vi
at
io
n
in
di
ca
te
d
w
er
e
on
ly

ru
n
on
ce
.A

ll
tim

es
ar
e
in

se
co
nd
s

123

The Todd–Coxeter algorithm for semigroups and monoids

Ta
bl
e
12

C
om

pa
ri
so
n
of

lib
se
m
ig
ro
up

s
[2
4]

an
d
th
e
im

pl
em

en
ta
tio

n
in
th
e
G
A
P
[1
2]

lib
ra
ry

(C
o
s
e
t
T
a
b
l
e
O
f
F
p
S
e
m
i
g
r
o
u
p
)o

n
th
e
pr
es
en
ta
tio

ns
fo
rt
he

Te
m
pe
rl
ey
-L
ie
b

m
on

oi
ds

J n
fr
om

[9
,T

he
or
em

2.
2]
;t
he

Te
m
pe
rl
ey
-L
ie
b
m
on

oi
d
is
al
so

so
m
et
im

es
re
fe
rr
ed

to
as

th
e
Jo
ne
s
m
on

oi
d
in

th
e
lit
er
at
ur
e

n
|J n

|
|A

|
|R

|
∑

|uv
|

H
LT

Fe
ls
ch

G
A
P

M
ea
n

S.
D

M
ea
n

S.
D

M
ea
n

S.
D

3
5

2
4

14
4.
87

×
10

−6
6

×
10

−8
5.
9

×
10

−6
4

×
10

−7
2.
69

×
10

−4
1.
2

×
10

−5

4
14

3
8

29
8.
34

×
10

−6
8

×
10

−8
1.
13

2
×

10
−5

1.
0

×
10

−7
3.
26

×
10

−4
6

×
10

−6

5
42

4
13

48
1.
7

×
10

−5
2

×
10

−6
2.
68

6
×

10
−5

1.
5

×
10

−7
5.
39

×
10

−4
1.
1

×
10

−5

6
13

2
5

19
71

4.
18

×
10

−5
6

×
10

−7
9.
51

×
10

−5
1.
0

×
10

−6
1.
46

4
×

10
−3

1.
1

×
10

−5

7
42

9
6

26
98

1.
46

3
×

10
−4

1.
4

×
10

−6
4.
50

×
10

−4
4

×
10

−6
5.
35

×
10

−3
6

×
10

−5

8
14

30
7

34
12

9
5.
93

×
10

−4
4

×
10

−6
2.
24

8
×

10
−3

1.
0

×
10

−5
2.
27

4
×

10
−2

5
×

10
−5

9
48

62
8

43
16

4
2.
45

6
×

10
−3

9
×

10
−6

1.
03

4
×

10
−2

5
×

10
−5

9.
75

3
×

10
−2

1.
4

×
10

−4

10
16

,7
96

9
53

20
3

1.
05

2
×

10
−2

4
×

10
−5

4.
57

×
10

−2
4

×
10

−4
4.
15

×
10

−1
3

×
10

−3

11
58

,7
86

10
64

24
6

4.
23

8
×

10
−2

1.
4

×
10

−4
1.
96

6
×

10
−1

1.
4

×
10

−3
1.
78

9
×

10
0

9
×

10
−3

12
20

8,
01

2
11

76
29

3
1.
80

5
×

10
−1

1.
6

×
10

−3
8.
52

×
10

−1
8

×
10

−3
8.
73

×
10

0
6

×
10

−2

13
74

2,
90

0
12

89
34

4
7.
79

1
×

10
−1

7
×

10
−4

3.
63

×
10

0
3

×
10

−2
4.
40

×
10

1
4

×
10

−1

14
2,
67

4,
44

0
13

10
3

39
9

3.
23

5
×

10
0

9
×

10
−3

1.
51

7
×

10
1

1.
1

×
10

−1
–

–

15
9,
69

4,
84

5
14

11
8

45
8

1.
42

4
×

10
1

–
–

–
–

–

16
35

,3
57

,6
70

15
13

4
52

1
6.
41

9
×

10
1

–
–

–
–

–

V
al
ue
s
w
ith

no
st
an
da
rd

de
vi
at
io
n
in
di
ca
te
d
w
er
e
on
ly

ru
n
on
ce
.A

ll
tim

es
ar
e
in

se
co
nd
s

123

T. D. H. Coleman et al.

Ta
bl
e
13

C
om

pa
ri
so
n
of

lib
se
m
ig
ro
up

s
[2
4]

an
d
th
e
im

pl
em

en
ta
tio

n
in
th
e
G
A
P
[1
2]

lib
ra
ry

(C
o
s
e
t
T
a
b
l
e
O
f
F
p
S
e
m
i
g
r
o
u
p
)f
or

th
e
pr
es
en
ta
tio

ns
of

th
e
st
el
la
rm

on
oi
ds

fr
om

[1
3]

n
|S

te
lla
r(
n)

|
|A

|
|R

|
∑

|uv
|

H
LT

Fe
ls
ch

G
A
P

M
ea
n

S.
D

M
ea
n

S.
D

M
ea
n

S.
D

3
16

3
9

45
9.
9

×
10

−6
1.
2

×
10

−6
1.
43

×
10

−5
3

×
10

−7
4.
10

×
10

−4
1.
2

×
10

−5

4
65

4
14

71
2.
23

9
×

10
−5

1.
8

×
10

−7
5.
35

×
10

−5
4

×
10

−7
9.
69

×
10

−4
1.
4

×
10

−5

5
32

6
5

20
10

3
1.
01

7
×

10
−4

8
×

10
−7

4.
30

×
10

−4
5

×
10

−6
4.
80

×
10

−3
2

×
10

−5

6
1,
95

7
6

27
14

1
8.
29

×
10

−4
4

×
10

−6
4.
10

×
10

−3
3

×
10

−5
3.
66

0
×

10
−2

5
×

10
−5

7
13

,7
00

7
35

18
5

9.
27

×
10

−3
5

×
10

−5
4.
19

2
×

10
−2

1.
2

×
10

−4
3.
31

0
×

10
−1

3
×

10
−4

8
10

9,
60

1
8

44
23

5
1.
55

4
×

10
−1

6
×

10
−4

4.
60

3
×

10
−1

1.
6

×
10

−3
3.
47

3
×

10
0

3
×

10
−3

9
98

6,
41

0
9

54
29

1
9.
67

×
10

0
1.
4

×
10

−1
5.
62

×
10

0
5

×
10

−2
–

–

10
9,
86

4,
10

1
10

65
35

3
–

–
7.
33

7
×

10
1

–
–

–

11
10

8,
50

5,
11

2
11

77
42

1
–

–
1.
01

8
×

10
3

–
–

–

V
al
ue
s
w
ith

no
st
an
da
rd

de
vi
at
io
n
in
di
ca
te
d
w
er
e
on
ly

ru
n
on
ce
.A

ll
tim

es
ar
e
in

se
co
nd
s

123

The Todd–Coxeter algorithm for semigroups and monoids

Ta
bl
e
14

C
om

pa
ri
so
n
of

lib
se
m
ig
ro
up

s
[2
4]

an
d
th
e
im

pl
em

en
ta
tio

n
in

th
e
G
A
P
[1
2]

lib
ra
ry

(C
o
s
e
t
T
a
b
l
e
O
f
F
p
S
e
m
i
g
r
o
u
p
)
fo
rt
he

pr
es
en
ta
tio

ns
of

th
e
st
yl
ic
m
on

oi
ds

fr
om

[1
]

n
|S

ty
lic

(n
)|

|A
|

|R
|

∑
|uv

|
H
LT

Fe
ls
ch

G
A
P

M
ea
n

S.
D

M
ea
n

S.
D

M
ea
n

S.
D

3
15

3
11

57
1.
07

×
10

−5
1.
1

×
10

−6
1.
76

7
×

10
−5

9
×

10
−8

4.
7

×
10

−4
8

×
10

−5

4
52

4
24

13
2

2.
97

×
10

−5
2

×
10

−7
8.
64

×
10

−5
7

×
10

−7
1.
07

×
10

−3
7

×
10

−5

5
20

3
5

45
25

5
1.
30

9
×

10
−4

8
×

10
−7

6.
69

×
10

−4
5

×
10

−6
4.
39

×
10

−3
7

×
10

−5

6
87

7
6

76
43

8
7.
98

×
10

−4
4

×
10

−6
4.
92

6
×

10
−3

1.
2

×
10

−5
2.
72

2
×

10
−2

4
×

10
−5

7
41

40
7

11
9

69
3

5.
52

×
10

−3
3

×
10

−5
3.
59

4
×

10
−2

1.
8

×
10

−4
1.
89

9
×

10
−1

3
×

10
−4

8
21

,1
47

8
17

6
10

32
4.
03

3
×

10
−2

8
×

10
−5

2.
67

3
×

10
−1

8
×

10
−4

1.
40

19
×

10
0

1.
9

×
10

−3

9
11

5,
97

5
9

24
9

14
67

3.
04

8
×

10
−1

4
×

10
−4

2.
04

1
×

10
0

8
×

10
−3

1.
08

03
×

10
1

1.
5

×
10

−2

10
67

8,
57

0
10

34
0

20
10

2.
53

58
×

10
0

1.
4

×
10

−3
1.
62

5
×

10
1

9
×

10
−2

–
–

11
4,
21

3,
59

7
11

45
1

26
73

2.
15

5
×

10
1

–
–

–
–

–

12
27

,6
44

,4
37

12
58

4
34

68
2.
50

3
×

10
2

–
–

–
–

–

V
al
ue
s
w
ith

no
st
an
da
rd

de
vi
at
io
n
in
di
ca
te
d
w
er
e
on
ly

ru
n
on
ce
.A

ll
tim

es
ar
e
in

se
co
nd
s

123

T. D. H. Coleman et al.

Ta
bl
e
15

C
om

pa
ri
so
n
of

lib
se
m
ig
ro
up

s
[2
4]

an
d
th
e
im

pl
em

en
ta
tio

n
in

th
e
G
A
P
[1
2]

lib
ra
ry

(C
o
s
e
t
T
a
b
l
e
O
f
F
p
S
e
m
i
g
r
o
u
p
)
on

ex
am

pl
es

fr
om

W
al
ke
r
[3
6]
.A

ll
tim

es
ar
e
in

se
co
nd

s

n
|S|

|A
|

|R
|

∑
|uv

|
H
LT

Fe
ls
ch

G
A
P

M
ea
n

S.
D

M
ea
n

S.
D

M
ea
n

S.
D

(B
.1
)

1
3

9
99

2.
14

×
10

−3
1

×
10

−4
5.
68

×
10

−2
3

×
10

−4
1.
62

×
10

−1
3

×
10

−3

(B
.2
)

14
,9
11

4
6

31
5.
32

×
10

−2
3

×
10

−4
3.
34

4
×

10
−2

1.
6

×
10

−4
6.
93

×
10

0
5

×
10

−2

(B
.3
)

20
,4
90

2
3

40
2.
45

4
×

10
−1

5
×

10
−4

2.
38

2
×

10
−2

1.
0

×
10

−4
5.
19

×
10

0
3

×
10

−2

(B
.4
)

36
,4
12

5
6

31
2.
90

3
×

10
−1

9
×

10
−4

8.
87

5
×

10
−1

7
×

10
−4

7.
53

0
×

10
0

1.
6

×
10

−2

(B
.5
)

72
,8
22

5
6

34
4.
70

8
×

10
−1

1.
9

×
10

−3
–

–
2.
40

1
×

10
1

9
×

10
−2

(B
.6
)

78
,7
22

6
7

32
1.
32

7
×

10
−1

5
×

10
−4

3.
29

7
×

10
0

1.
8

×
10

−2
6.
92

2
×

10
0

9
×

10
−3

(B
.7
)

15
3,
50

0
5

15
76

1.
79

9
×

10
−1

6
×

10
−4

1.
81

9
×

10
−1

1.
7

×
10

−3
2.
49

6
×

10
0

9
×

10
−3

(B
.8
)

27
0,
27

2
2

3
46

8.
00

2
×

10
−1

1.
9

×
10

−3
2.
67

×
10

0
3

×
10

−2
1.
23

4
×

10
1

2
×

10
−2

123

The Todd–Coxeter algorithm for semigroups and monoids

Ta
bl
e
16

C
om

pa
ri
so
n
of

lib
se
m
ig
ro
up

s
[2
4]
,A

C
E
[1
4]
,a
nd

th
e
im

pl
em

en
ta
tio

n
in

th
e
G
A
P
[1
2]

lib
ra
ry

(C
o
s
e
t
T
a
b
l
e
F
r
o
m
G
e
n
s
A
n
d
R
e
l
s
).
A
ll
tim

es
ar
e
in

se
co
nd
s

n
|G

:H
|

|A
|

|R
|

∑
|uv

|
lib

se
m
ig
ro
up
s

A
C
E

G
A
P

M
ea
n

S.
D

M
ea
n

S.
D

M
ea
n

S.
D

(B
.9
)

16
,3
84

6
9

34
2.
45

0
×

10
−1

1.
2

×
10

−3
3.
62

×
10

−2
1.
1

×
10

−3
1.
99

×
10

−1
2

×
10

−3

(B
.1
0)

8
6

9
34

2.
54

7
×

10
−1

5
×

10
−4

2.
14

×
10

−2
8

×
10

−4
1.
44

4
×

10
−1

4
×

10
−4

(B
.1
1)

13
1,
07

2
6

9
34

1.
39

2
×

10
0

6
×

10
−3

1.
88

×
10

−1
5

×
10

−3
1.
89

×
10

1
2

×
10

−1

(B
.1
2)

1
6

9
34

1.
03

7
×

10
−1

6
×

10
−4

1.
25

×
10

−2
8

×
10

−4
3.
08

×
10

−2
2

×
10

−4

(B
.1
3)

13
1,
07

2
6

9
34

1.
80

×
10

0
2

×
10

−2
2.
02

×
10

−1
2

×
10

−3
1.
88

0
×

10
1

1.
5

×
10

−1

(B
.1
4)

26
2,
14

4
7

14
50

3.
46

7
×

10
0

4
×

10
−3

6.
08

×
10

−1
3

×
10

−3
3.
97

×
10

1
3

×
10

−1

(B
.1
5)

29
14

21
49

7.
76

×
10

−2
2

×
10

−4
2.
44

×
10

−2
1.
6

×
10

−3
2.
14

5
×

10
−2

4
×

10
−5

(B
.1
6)

95
,0
40

7
14

60
2.
36

4
×

10
−1

1.
0

×
10

−3
5.
63

×
10

−2
8

×
10

−4
1.
00

25
×

10
−1

1.
8

×
10

−4

(B
.1
7)

18
0

4
7

83
4.
63

×
10

−1
3

×
10

−3
1.
95

3
×

10
−1

6
×

10
−4

7.
66

×
10

0
3

×
10

−2

(B
.1
8)

78
6,
43

2
9

21
73

1.
25

2
×

10
1

9
×

10
−2

2.
30

5
×

10
0

1.
5

×
10

−2
6.
75

2
×

10
1

1.
6

×
10

−1

123

T. D. H. Coleman et al.

B.4 Finitely presented groups

In this sectionwe provide some comparison of the performance of libsemigroups [24],
GAP [12], andACE [14]when applied to group presentations. It might beworth noting
that libsemigroups [24] contains no optimizationswhatsoever for group presentations,
and that when run in libsemigroups [24] each of the presentations given in this section
has: an explicit generator a−1 for the inverse of each generator a that is not of order 2;
the relations aa−1 = a−1a = e for every generator a. The version of Todd–Coxeter
in GAP [12] is largely written in C, and is specific to group presentations; similarly,
ACE [14] is written in C and is specific to groups also. As such it is not surprising
that the performance of libsemigroups [24] is generally worse that both ACE [14]
and GAP [12] when applied to a group presentation. There are still some cases where
libsemigroups [24] is faster than GAP [12]; see Table 16.

G = 〈a, b, c | ab−1c−1bac, ba−1c−1ba2ca−1, ac2a−1a−1b−1ab〉
H = 〈 bc 〉 (B.9)

G = 〈a, b, c | ab−1c−1bac, ba−1c−1ba2ca−1, ac2a−1a−1b−1ab〉
H = 〈 bc, a−1b−1(a−1)2bcabc−1 〉 (B.10)

G = 〈a, b, c | ab−1c−1bac, ba−1c−1ba2ca−1, ac2a−1a−1b−1ab〉
H = 〈 ab−1c−1bac, ba−1c−1baaca−1, acca−1a−1b−1ab 〉 (B.11)

G = 〈a, b, c | ab−1c−1bac, ba−1c−1ba2ca−1, ac2a−1a−1b−1ab〉
H = 〈 bc, a−1b−1a−1a−1bcabc−1, a−1c3acb−1ca−1 〉 (B.12)

G = 〈a, b, c | ab−1c−1bac, ba−1c−1ba2ca−1, ac2a−1a−1b−1ab〉
H = 〈 ε 〉 (B.13)

G = 〈a, b, c, x | ab−1c−1bac, ba−1c−1ba2ca−1,

ac2a−1a−1b−1ab, x2, a−1xax, b−1xbx, c−1xcx〉
H = 〈 ab−1c−1bac, ba−1c−1ba2ca−1, ac2a−1a−1b−1ab 〉 (B.14)

G = F2,7 = 〈a, b, c, d, x, y, z | abc−1, bcd−1, cdx−1, dxy−1, xyz−1, yza−1, zab−1〉
H = 〈 ε 〉 (B.15)

G = M12 = 〈a, b, c | a11, b2, c2, (ab)3, (ac)3, (bc)10, (cb)2abcbc(a−1)5〉
H = 〈 ε 〉 (B.16)

G = SL(2, 19) = 〈a, b | ab−1a−1b−1a−1b−1, b−1a−1a−1baa, ab4ab10ab4ab29a12〉
H = 〈 b 〉 (B.17)

G = 〈a, b, c, x, y | x2, y3, ab−1c−1bac, ba−1c−1baaca−1,

acca−1a−1b−1ab, a−1xax, b−1xbx, c−1xcx,

a−1y−1ay, b−1y−1by, c−1y−1cy, xy−1xy〉
H = 〈 ab−1c−1bac, ba−1c−1ba2ca−1, ac2a−2b−1ab 〉 (B.18)

Acknowledgements The authors would like to thank the referee for their careful reading of the paper, and
for their helpful suggestions. The third author was supported by the EPSRC doctoral training partnership

123

The Todd–Coxeter algorithm for semigroups and monoids

number EP/N509759/1 when working on this project. The fourth author would like to thank the School of
Mathematics and Statistics of the University of St Andrews and the Cyprus State Scholarship Foundation
for their financial support.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Abram, A., Reutenauer, C.: The stylic monoid. Semigroup Forum 105, 1–45 (2022). https://doi.org/
10.1007/s00233-022-10285-3

2. Arthur, R.E., Ruškuc, N.: Presentations for two extensions of themonoid of order-preservingmappings
on a finite chain. Southeast Asian Bull. Math. 24, 1–7 (2000). https://doi.org/10.1007/s10012-000-
0001-1

3. Boone, W.W.: The word problem. Proc. Natl. Acad. Sci. 44, 1061–1065 (1958). https://doi.org/10.
1073/pnas.44.10.1061

4. Cain, A.J., Maltcev, V.: Decision problems for finitely presented and one-relation semigroups and
monoids. Int. J. Algebra Comput. 19, 747–770 (2009). https://doi.org/10.1142/s0218196709005366

5. Cannon, J.J., Dimino, L.A., Havas, G.,Watson, J.M.: Implementation and analysis of the Todd–Coxeter
algorithm. Math. Comput. 27, 463–490 (1973). https://doi.org/10.2307/2005654

6. Dehn, M.: Über unendliche diskontinuierliche Gruppen. Math. Ann. 71, 116–144 (1911). https://doi.
org/10.1007/BF01456932

7. Easdown, D., East, J., Fitzgerald, D.G.: A presentation of the dual symmetric inverse monoid. Int. J.
Algebra Comput. 18, 357–374 (2008). https://doi.org/10.1142/s0218196708004470

8. East, J.: Generators and relations for partition monoids and algebras. J. Algebra 339, 1–26 (2011).
https://doi.org/10.1016/j.jalgebra.2011.04.008

9. East, J.: Presentations for Temperley–Lieb algebras. Q. J. Math. 72, 1253–1269 (2021). https://doi.
org/10.1093/qmath/haab001

10. FitzGerald, D.G.: A presentation for the monoid of uniform block permutations. Bull. Aust. Math.
Soc. 68, 317–324 (2003). https://doi.org/10.1017/S0004972700037692

11. Froidure, V., Pin, J.-E.: Algorithms for computing finite semigroups. In: Cucker, F., Shub, M. (eds.)
Foundations of Computational Mathematics, pp. 112–126. Springer, Berlin (1997). https://doi.org/10.
1007/978-3-642-60539-0_9

12. GAP-Groups: Algorithms, and Programming, Version 4.12.2. The GAP Group (2022). https://www.
gap-system.org

13. Gay, J., Hivert, F.: The 0-rook monoid and its representation theory (2019). arXiv:1910.11740
[math.CO]

14. Havas, G., Ramsay, C.: Coset enumeration: ACE version 5.2 (2009). http://staff.itee.uq.edu.au/havas
15. Holt, D.F., Eick, B., O’Brien, E.A.: Handbook of Computational Group Theory. CRC Press, Boca

Raton (2004)
16. Howie, J.M.: Fundamentals of Semigroup Theory. London Mathematical Society Monographs. New

Series, vol. 12. Oxford University Press, New York (1995)
17. Jura, A.: Coset enumeration in a finitely presented semigroup. Can. Math. Bull. 21, 37–46 (1978)
18. Leech, J.: Coset enumeration on digital computers.Math. Proc. Camb. Philos. Soc. 59, 257–267 (1963).

https://doi.org/10.1017/s0305004100036872
19. Linton, S.A.: Constructing matrix representations of finitely presented groups. J. Symb. Comput. 12,

427–438 (1991). https://doi.org/10.1016/S0747-7171(08)80095-8
20. Linton, S.A.: On vector enumeration. Linear Algebra Appl. 192, 235–248 (1993). https://doi.org/10.

1016/0024-3795(93)90245-J

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s00233-022-10285-3
https://doi.org/10.1007/s00233-022-10285-3
https://doi.org/10.1007/s10012-000-0001-1
https://doi.org/10.1007/s10012-000-0001-1
https://doi.org/10.1073/pnas.44.10.1061
https://doi.org/10.1073/pnas.44.10.1061
https://doi.org/10.1142/s0218196709005366
https://doi.org/10.2307/2005654
https://doi.org/10.1007/BF01456932
https://doi.org/10.1007/BF01456932
https://doi.org/10.1142/s0218196708004470
https://doi.org/10.1016/j.jalgebra.2011.04.008
https://doi.org/10.1093/qmath/haab001
https://doi.org/10.1093/qmath/haab001
https://doi.org/10.1017/S0004972700037692
https://doi.org/10.1007/978-3-642-60539-0_9
https://doi.org/10.1007/978-3-642-60539-0_9
https://www.gap-system.org
https://www.gap-system.org
http://arxiv.org/abs/1910.11740
http://staff.itee.uq.edu.au/havas
https://doi.org/10.1017/s0305004100036872
https://doi.org/10.1016/S0747-7171(08)80095-8
https://doi.org/10.1016/0024-3795(93)90245-J
https://doi.org/10.1016/0024-3795(93)90245-J

T. D. H. Coleman et al.

21. Maltcev, V., Mazorchuk, V.: Presentation of the singular part of the Brauer monoid. Math. Bohem.
132, 297–323 (2007). https://doi.org/10.21136/mb.2007.134125

22. Markov, A.A.: On the impossibility of certain algorithms in the theory of associative systems. Dokl.
Akad. Sci. USSR 55, 587–590 (1947)

23. Mitchell, J.D.: An implementation of the Todd–Coxeter algorithm for semigroups and monoids in
Python3 (2021). https://gist.github.com/james-d-mitchell/6b06bc78e2bcdb6dfef53a2654d9f953

24. Mitchell, J.D., et al.: libsemigroups—C++ library for semigroups and monoids, Version 2.7.3 (2024).
https://doi.org/10.5281/zenodo.1437752

25. Neubüser, J.: An elementary introduction to coset table methods in computational group theory. In:
Campbell, C.M., Robertson, E.F. (eds.) Groups–St Andrews 1981. London Mathematical Society
Lecture Notes Series, pp. 1–45. Cambridge University Press, Cambridge (1982). https://doi.org/10.
1017/CBO9780511661884.004

26. Neumann, B.H.: Some remarks on semigroup presentations. Can. J. Math. 19, 1018–1026 (1968)
27. Novikov, P.S.: On the algorithmic unsolvability of the word problem in group theory. Tr. Mat. Inst.

Steklova 44, 3–143 (1955)
28. Robertson, E.F., Ünlü, Y.: On semigroup presentations. Proc. Edinb. Math. Soc. 36, 55–68 (1992)
29. Rotman, J.J.: An Introduction to the Theory of Groups. Graduate Texts in Mathematics, vol. 148, 4th

edn. Springer, New York (1995). https://doi.org/10.1007/978-1-4612-4176-8
30. Ruškuc, N.: Semigroup Presentations. PhD thesis. University of St Andrews (1995)
31. Sims, C.C.: Computation with Finitely Presented Groups. Encyclopedia of Mathematics and its Appli-

cations, Cambridge University Press, Cambridge (1994)
32. Stephen, J.B.: Applications of Automata Theory to Presentations of Monoids and Inverse Monoids.

PhD thesis. University ofNebraska (1987). https://digitalcommons.unl.edu/dissertations/AAI8803771
33. Stephen, J.: Presentations of inverse monoids. J. Pure Appl. Algebra 63, 81–112 (1990). https://doi.

org/10.1016/0022-4049(90)90057-O
34. Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. J. ACM 22, 215–225 (1975).

https://doi.org/10.1145/321879.321884
35. Todd, J.A., Coxeter, H.S.M.: A practical method for enumerating cosets of a finite abstract group. Proc.

Edinb. Math. Soc. 5, 26–34 (1936). https://doi.org/10.1017/s0013091500008221
36. Walker, T.: Semigroup Enumeration—Computer Implementation and Applications. PhD thesis. Uni-

versity of St Andrews (1992)
37. Walker, T.: tcsemi (1992). https://github.com/james-d-mitchell/tcsemi
38. Williams, A.: Monoid automata factory (2016). http://maffsa.sourceforge.net/

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.21136/mb.2007.134125
https://gist.github.com/james-d-mitchell/6b06bc78e2bcdb6dfef53a2654d9f953
https://doi.org/10.5281/zenodo.1437752
https://doi.org/10.1017/CBO9780511661884.004
https://doi.org/10.1017/CBO9780511661884.004
https://doi.org/10.1007/978-1-4612-4176-8
https://digitalcommons.unl.edu/dissertations/AAI8803771
https://doi.org/10.1016/0022-4049(90)90057-O
https://doi.org/10.1016/0022-4049(90)90057-O
https://doi.org/10.1145/321879.321884
https://doi.org/10.1017/s0013091500008221
https://github.com/james-d-mitchell/tcsemi
http://maffsa.sourceforge.net/

	The Todd–Coxeter algorithm for semigroups and monoids
	Abstract
	1 Introduction
	2 Prerequisites
	3 Congruence enumeration
	3.1 Word graphs
	3.2 The definition

	4 Validity
	4.1 Completeness, determinism, and compatibility
	4.2 The proofs of Theorem 4.1 and Corollary 4.2

	5 Monoids not defined by a presentation
	6 The HLT strategy

	7 The Felsch strategy
	7.1 First version
	7.2 Second version

	8 Implementation issues
	9 Further variants
	9.1 Monoids with zero
	9.2 Rees congruences
	9.3 Stephen's procedure

	A Extended examples
	B Performance comparison
	B.1 Monoids of transformations
	B.2 Monoids of partitions
	B.3 Further finitely presented semigroups and monoids
	B.4 Finitely presented groups

	Acknowledgements
	References

