
NeuroFlux: Memory-Efficient CNN Training Using
Adaptive Local Learning
Dhananjay Saikumar and Blesson Varghese

University of St Andrews, UK

Abstract
Efficient on-device deep neural network (CNN) training in
resource-constrained mobile and edge environments is an
open challenge. Backpropagation is the standard approach
adopted, but it is GPU memory intensive due to its strong
inter-layer dependencies that demand intermediate activa-
tions across the entire CNN model to be retained in GPU
memory. This necessitates smaller batch sizes to make train-
ing possible within the available GPUmemory budget, but in
turn, results in a substantially high and impractical training
time. We introduce NeuroFlux, a novel CNN training sys-
tem tailored for memory-constrained scenarios. We develop
two novel opportunities: firstly, adaptive auxiliary networks
that employ a variable number of filters to reduce GPU mem-
ory usage, and secondly, block-specific adaptive batch sizes,
which not only cater to the GPU memory constraints but
also accelerate the training process. NeuroFlux segments
the CNNs into blocks based on GPU memory usage and fur-
ther attaches an auxiliary network to each layer in these
blocks. This disrupts the typical layer dependencies under a
new training paradigm - ‘adaptive local learning’. Moreover,
NeuroFlux adeptly caches intermediate activations, elim-
inating redundant forward passes over previously trained
blocks, further accelerating the training process. The results
are twofold when compared to Backpropagation: on vari-
ous hardware platforms, NeuroFlux demonstrates training
speed-ups of 2.3× to 6.1× under stringent GPU memory
budgets, and NeuroFlux generates streamlined models that
have 10.9× to 29.4× fewer parameters without sacrificing
accuracy.

Keywords: CNN training, Memory efficient training, Local
learning, Edge computing
ACM Reference Format:
Dhananjay Saikumar and Blesson Varghese. 2024. NeuroFlux:
Memory-Efficient CNN Training Using Adaptive Local Learning.
In Proceedings of The European Conference on Computer Systems
(EuroSys ’24). ACM, New York, NY, USA, 18 pages. https://doi.org/
XXXXXXX.XXXXXXX

1 Introduction
Convolutional neural networks (CNNs) underpin a wide
range of applications that run on resource-constrained en-
vironments, such as mobile and edge computing systems.
These applications may be functionality-related or mission-
critical and are required to operate within fixed resource
constraints. Examples of the former type of applications

include facial authentication [33, 48], speech recognition [1–
3, 54], and gesture detection [17, 59] on home gadgets, and of
the latter include advanced perception [25, 71] and decision-
making [38, 40] for autonomous vehicles or robots.

High-throughput and budget-friendly inference of CNNs
comprising millions of parameters has become feasible on
mobile and edge due to two recent advances [42, 68]. Firstly,
the availability of embedded hardware accelerators, such as
Graphics Processing Units (GPUs) and Neural Processing
Units (NPUs). Secondly, the development of techniques that
reduce the complexity of CNNs via pruning [15, 23, 64],
quantization [73], knowledge distillation [60], and neural
architecture search [58, 76].
However, CNN training is still computationally and

memory intensive, necessitating the reliance on servers
found in high-performance computing sites or cloud data
centers. The typical approach involves either training the
CNN entirely on an external server and then deploying it
onto the device solely for inference [40], or collaboratively
training across both the device and the server by leveraging
computational offloading [20, 22, 66, 70, 72].

Nonetheless, on-device training remains a challenge.
This challenge arises from the memory-intensive nature of
the widely used Backpropagation (BP) paradigm in CNN
training. Within this paradigm, it is imperative that the in-
termediate outputs, from the layers of the CNN, referred to
as activations, are retained in memory for calculating gra-
dients (more in Section 2.2). The activations of deep and
complex models require substantial amounts of GPU mem-
ory. For instance, a production-quality CNN model, such as
ResNet-18, when used in real-world scenarios [28, 35, 49]
may require up to 15 GB of GPUmemory. While limited com-
puting resources may allow for on-device training, albeit at
the expense of training time, the lack of memory on mo-
bile and edge resources is simply prohibitive for on-device
CNN training. Consequently, on-device training is limited
to smaller batch sizes, which in turn increases training time,
or mandates the use of simpler models and datasets.

Ourwork is therefore positioned to achieve a breakthrough
in on-device CNN training in resource-constrained environ-
ments by developing theNeuroFlux system.We depart from
Backpropagation and develop an adaptive layer-wise local
learning approach. The key advantage of the system is mem-
ory efficiency by: (a) segmenting the CNN into blocks for
reducing the activation memory requirements as we elimi-
nate inter-layer dependencies, and (b) implementing variable

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

EuroSys ’24, April 22–25, 2024, Athens, Greece Saikumar et al.

batch sizes for different blocks to maximize memory utiliza-
tion. Our research contributions are:

1)NeuroFlux, a systemdesigned for efficient on-device
CNN training under memory constraints. When com-
pared to Backpropagation, NeuroFlux showcases speedups
in training ranging from 2.3× to 6.1× and 3.3× to 10.3×when
compared to Backpropagation and classic local learning [5],
respectively, given a memory budget.
2) Two novel adaptive strategies for local learning:

firstly, adaptive auxiliary networks with variable filters per
CNN layer, and secondly, adaptive batch sizes that tailors
batch size per layer. These strategies allow NeuroFlux to
process larger training batches, consequently reducing the
number of gradient descent steps. This reduction directly
improves the training latency of NeuroFlux and enables it
to achieve higher accuracy than BP and classic local learning
in a given time frame.
3) Block-based learning that groups CNN layers by

memory needs. Only the actively trained block occupies
device memory, while the other blocks are located in stor-
age. This combined with the adaptive strategies, allows for
training to be carried out on a fixed memory budget.
4) Streamlined early exit model: The local learning

strategy of NeuroFlux selects the optimal early exit model.
CNNs generated by NeuroFlux are 10.9× to 29.4× more
compact than those from BP and classic local learning. This
naturally impacts inference speed, with NeuroFlux models
showing throughput improvements of 1.61× to 3.95× across
different hardware platforms.
The remainder of this paper is organized as follows. Sec-

tion 2 presents the background and motivation for the re-
search. Section 3 presents a case for adaptive local learning
that underpins our work. Section 4 provides an overview
of NeuroFlux, the system developed to leverage adaptive
local learning. Section 5 considers the components of Neu-
roFlux and the underlying techniques. Section 6 evaluates
NeuroFlux and highlights the results obtained. Section 7
considers related work. Section 8 concludes this paper.

2 Background and Motivation
This section further considers the memory-intensive nature
of the Backpropagation paradigm and considers viable alter-
nate training paradigms.

2.1 On-device Training
The need for on-device training is rising to enable person-
alized models and ensure data privacy. On-device training
underpins recent training paradigms, such as federated learn-
ing [51] and continual learning [55] that make use of compu-
tational resources on edge devices while safeguarding user
privacy. Furthermore, on-device training reduces the reliance
on extensive backend infrastructure, which enables services
to become more digitally sovereign and scale rapidly while

also being less impacted by network variability [16]. This
ensures user data, including sensitive information like voice
recordings and facial images, remains on the device [31, 56].
On-device training is in contrast to traditional and resource-
intensive model development methods, such as Neural Ar-
chitecture Search (NAS) and structured pruning that require
substantial computational resources - from several GPU
days [9, 14] for NAS to GPU hours to days [52, 74] for struc-
tured pruning when utilizing server-grade hardware. These
require significant energy and computational expenditure
but also lead to further on-device fine-tuning costs to tai-
lor the derived models for specific tasks. On-device training
emerges as a more streamlined and cost-efficient alterna-
tive that can reduce the computational and carbon footprint
associated with deep learning model training [57, 61].

2.2 Backpropagation is Memory Intensive
Backpropagation (BP)-based training operates in two phases:
the forward pass and the backward pass. In the forward pass,
the input data sequentially traverses through the layers of
the CNN model, producing intermediate activations that are
stored in the memory of the accelerator, such as that of the
GPU. The output of the forward pass is fed into a function,
such as Cross Entropy or Mean Squared Error, in order to
evaluate a global loss. Conversely, in the backward pass,
parameter gradients for the final layer are computed using
both the loss and the activations from the preceding layer.
The gradients are then propagated backwards, repeating
this through the model. The gradient of each layer depends
on the activations of its preceding layer, which makes it
necessary to retain all activations in memory throughout
the forward pass of the model. The necessity for retaining
these activations is presented in Appendix A.

The two phases have computational similarities, with the
backward pass requiring up to 3x the FLOPs (floating-point
operations) as the forward pass. The forward pass during
inference and training is computationally identical, differing
only in GPU memory requirements, as the latter requires
all intermediate activations for subsequent gradient calcula-
tions in the backward pass. Mobile and edge-based hardware
accelerators can meet the compute demands of the forward
and backward passes, but satisfying memory requirements
is a challenge.
In Figure 1, we examine the GPU memory consumption

and training time of two widely used CNN architectures
on the Tiny ImageNet dataset: ResNet-18 and VGG-19. This
analysis employs BP-based training across varying batch
sizes. The memory footprint comprises three components:
the inherent size of the model, the memory overhead of the
optimizer, and the memory required for activations. It is
immediately evident that the GPU memory usage during
training arises from the memory required for retaining the
intermediate activations. This poses challenges for training
on memory-restricted devices. A similar trend is observed

NeuroFlux: Memory-Efficient CNN Training Using Adaptive Local Learning EuroSys ’24, April 22–25, 2024, Athens, Greece

0

2

4

6 x37.6

x2.1x1.6

G
PU

m
em

or
y
(G
B)

ResNet-18

Activations

Model

Optimizer

0

1

2

3

4
x22.9

x2.4x2.1

VGG-19

4 8 256
0

2

4

6

x1
x2.4

x5

Batch size

Re
la
tiv

e
tim

e

4 8 256
0

5

10

x1

x4.8

x9

Batch size

Figure 1. Comparison of GPU memory usage and relative
training time for different architectures and batch sizes on
the Tiny ImageNet dataset. The top row shows memory used
by activations, the model, and the optimizer, with multipliers
indicatingmemory required relative to inference. The bottom
row highlights training time relative to batch size of 256.

for smaller models specifically designed for mobile environ-
ments, such as MobileNet [27], trained on the Tiny ImageNet
dataset. For a batch size of 256, MobileNet requires 830MB of
GPU memory to retain activations during BP-based training,
while inference can be performed under 35MB. Therefore,
even using smaller models tailored for mobile devices, the
activations still dominate the GPU memory requirement for
BP-based training.
While opting for smaller batch sizes can reduce memory

demands, it increases the number of Stochastic Gradient
Descent (SGD) steps, leading to larger training durations.
For instance, VGG-19 trained on the Tiny ImageNet with
a batch size of 4 takes over nine times longer than with a
batch size of 256.

2.3 Training Paradigms Beyond Backpropagation
Several paradigms have been developed to address the limi-
tations of BP-based training. Among them, Feedback Align-
ment, Signal Propagation, and Local Learning are notewor-
thy. Local Learning is considered further as it will be lever-
aged in our work given the opportunities it presents (see
Section 3). The other paradigms are considered in Section 7.
1) Feedback Alignment (FA): FA provides a solution to

the ‘weight transport problem’ in CNN training [44, 45].
While FA is shown to be effective for certain CNN models, it
is not ideal for convolutional neural networks [37].

2) Signal Propagation (SP): By employing forward passes
only, SP offers a unique layer-wise training methodology,
akin to LL, butwithoutmaking use of auxiliary networks [37].

L1 L2 L3

LossBackpropagation

Local Learning

Input Y

L1 L2 L3Input Y

Loss

Aux

Y Y

Aux

Loss Loss

Feedback gradient
Forward pass

Figure 2. Comparison of BP and LL. BP relies on global loss,
with each layer update dependent on subsequent layers. LL
pairs each layer (excluding the last) with an auxiliary net-
work for independent updates using local losses, eliminating
backward dependencies.

While SP showcases a memory efficiency over BP, its accu-
racy is lower than BP and LL. Thus, it is not widely adopted
for training.
3) Local Learning (LL) assigns an auxiliary network to

each CNN layer to facilitate local prediction, rather than
relying on a global loss derived from the final output of the
CNN as in BP [5] (refer Figure 2). When a training batch is
provided to the first CNN layer, it is processed to produce
output activations. The activations are fed into the auxiliary
network for prediction. Based on the prediction and the true
labels, a local loss is computed. The loss is subsequently
used to optimize the parameters in both the first layer and
its auxiliary network. The activations of the first layer are
then passed on to the next layer. This is sequential and con-
tinues for every layer, ensuring that each layer processes
the data and undergoes optimization until the entire batch
has traversed all layers [6]. Any feedback dependencies on
subsequent layers are eliminated.
Recent empirical studies demonstrate that LL achieves

similar performance as BP-based training for a range of
datasets [5]. LL does not require the intermediate activations
to be retained in memory for parameter adjustments [5],
thereby offering the potential for memory-efficient training
as the parameters are updated on a layer—by—layer basis
(layer-wise training). However, in the existing work on clas-
sic LL, this memory gain is offset by the memory require-
ments of the auxiliary network to make predictions. The
opportunities we will leverage within this training paradigm
are considered in the next section.
Comparing GPU memory vs accuracy: Figure 3 cap-

tures the GPU memory required and accuracy of the training
paradigms. An ideal paradigm will achieve high accuracy
without significant memory use. Although LL achieves com-
parable accuracy to BP it has substantial memory require-
ments. Currently there are no training paradigms that can

EuroSys ’24, April 22–25, 2024, Athens, Greece Saikumar et al.

Low High

Low

High

GPU memory required

A
cc
ur
ac
y

BP LL FA SP

Figure 3. GPU memory required and accuracy achieved
by different training paradigms. The blue-shaded quadrant
represents the ideal zone for a training paradigm (low GPU
memory utilization and high accuracy).

achieve high accuracy with a low GPU memory utilization.
Therefore, we explore the potential to lower the memory
utilization of LL into the blue-shaded area of Figure 3.

3 The Case for Adaptive Local Learning
We have identified two opportunities for reducing the GPU
memory requirements while achieving comparable accuracy
to BP. Here we introduce the notion of ‘adaptivity’ for the
first time within local learning that is considered below.

Opportunity 1: Adaptive Auxiliary Networks in Local
Learning. In LL, each CNN layer (except the final layer) is
accompanied by an auxiliary network, as shown in Figure 2.
Classic LL employs a CNN classifier as the auxiliary network,
which comprises a convolution layer, average pooling, and a
fully-connected layer for prediction [5].

In the classic LL approach, auxiliary networks use a fixed
number of convolutional filters (256 filters) [5]. However,
the GPU memory used during classic LL training is noted to
be surprisingly higher than BP, although in LL activations
of only one given layer is retained in GPU memory. This is
due to the number of convolutional filters in the auxiliary
networks of the initial layers of the CNN, resulting in large
activations that are not sufficiently downsampled. A uniform
decrease in the number of convolutional filters for all aux-
iliary networks of the CNN leads to reduced GPU memory
usage. However, the accuracy obtained is lower than BP.
Instead, we develop a new strategy referred to as ‘Adap-

tiveAuxiliaryNetworks based LL (AAN-LL)’ - employing
a variable number of convolutional filters for the auxiliary
networks for achieving both lower GPU memory consump-
tion and comparable accuracy to BP. For the initial layers
of the CNN, which in this context are defined as the lay-
ers before the first downsampling operation, the number
of convolutional filters in the auxiliary network is halved
with respect to the CNN layer with the smallest number of
convolutional filters. For example, the smallest number of

10 30 50 70 90
0

2,000

4,000

6,000

Batch size

G
PU

m
em

or
y
(M

B) BP Inference
Classic LL AAN-LL

Figure 4.GPUmemory usage of VGG-19 for inference, Back-
propagation (BP), classic Local Learning (LL) with a constant
number of 256 convolutional filters [5] and the proposed
Adaptive Auxiliary Networks-based LL (AAN-LL) for differ-
ent batch sizes.

1 3 5 7 9 11 13 15
0

200

400

600

Layer index
G
PU

m
em

or
y
(M

B)
Used GPU memory Unused memory

Figure 5. GPU memory usage for training VGG-19 with a
batch size of 30 images using AAN-LL. ‘Unused Memory’
area refers to GPU memory not utilized by each layer.

convolutional filters for a VGG model is 64; the number of
convolutional filters of the auxiliary network for the initial
layers will therefore be 32. For the subsequent CNN layers,
we reduce the number of convolutional filters again by half
with respect to the CNN layer with the largest number of
convolutional filters. For example, the largest number of
convolutional filters for a VGG model is 512; therefore, the
number of convolutional filters of the auxiliary network for
the later layers is 256.
The GPU memory trends for inference, BP, classic LL

with 256 convolutional filters and our strategy AAN-LL are
shown in Figure 4 for VGG19; similar trends are observed for
ResNet18. The success of the AAN-LL strategy is in reducing
the size of the activations for the initial layers to reduce GPU
memory consumption, while maintaining a sufficiently large
number of convolutional filters in the later layers to ensure
effective learning.

Opportunity 2: Adaptive Batch Sizes in Local Learning.
Consider an example - the GPU memory using AAN-LL is
approximately 630MB for training VGG19 using a batch size
of 30; refer to Figure 4. The GPU memory use of AAN-LL
arises from the initial layers of the CNN. The activations
are gradually downsampled as they progress through the
model, resulting in larger activations for the initial layers

NeuroFlux: Memory-Efficient CNN Training Using Adaptive Local Learning EuroSys ’24, April 22–25, 2024, Athens, Greece

1 3 5 7 9 11 13 15
0

500

1,000

Layer index

M
ax
im

um
ba
tc
h
si
ze

Figure 6.Maximumpossible batch sizes per layerwhen train-
ing VGG-19 using AAN-LL while staying below a 630MB
GPU memory limit.

compared to subsequent ones. Figure 5 highlights this obser-
vation; the second layer of the CNN dominates GPUmemory.
Thus, training the initial layers of a CNN is a GPU memory
bottleneck. They also mandate a small batch size to be used
for training the entire CNN under GPU memory constraints.

Due to the inherent design of BP and classic LL, they use
a fixed batch size for training the entire CNN. However, we
make two key observations. Firstly, the later layers of the
CNN do not reach the GPU memory use of the initial layers,
as shown in Figure 5. Secondly, the maximum possible batch
size for a given GPU memory budget (630 MB in the case of
VGG19 as it is the GPU memory use) is higher for later CNN
layers than the initial layers as shown in Figure 6.
We leverage these observations to develop ‘Adaptive

Batch-based LL (AB—LL)’. Contrary to conventional meth-
ods that use a static batch size, AB—LL employs dynamic
batch sizes for training different layers. While the underly-
ing algorithm for (LL) uses a fixed batch size for training
the entire CNN, AB—LL dynamically adjusts the number of
activations in a training batch in real-time. This adjustment
effectively changes the number of batches consumed by each
layer or groups of layers with similar GPU memory require-
ments. By capitalizing the unused GPU memory of the later
CNN layers (shown as ‘UnusedMemory’ in Figure 5), AB—LL
enables the use of larger batch sizes specifically for these
layers, thereby optimizing GPU memory use and acceler-
ating training. Beyond mere efficiency enhancements, this
approach offers a strategic shift in training by accommodat-
ing the fine-grained GPUmemory requirements of individual
CNN layers or their groups to maximize the utilization of
available GPU memory resources.

4 NeuroFlux Overview
WedevelopNeuroFlux, a CNN training system that leverages
adaptive local learning by incorporating adaptive auxiliary
networks and adaptive batch sizes within LL to facilitate GPU
memory-efficient on-device training in resource-constrained
edge environments. NeuroFlux can be used to train large
production quality CNNs on smaller devices with memory
budgets that cannot be achieved using conventional BP.

The architecture of NeuroFlux is shown in Figure 7 and
the individual modules are considered further in the next sec-
tion. NeuroFlux takes four inputs (§0): an untrained CNN,
a training set, a GPU memory budget, and a batch size limit.
The high-level workflow of NeuroFlux is considered next.

Profiler: The Profiler first assigns auxiliary networks to
the layers of an input CNN by utilizing the AAN-LL strat-
egy presented in the previous section. Following this allo-
cation, the GPU memory utilization required for training
each layer is benchmarked for different batch sizes. These
measurements subsequently facilitate the construction of
layer-specific linear models for predicting GPU memory con-
sumption based on the batch size (§1).

Partitioner: After obtaining the layer-specific linear mod-
els, the Partitioner systematically segments the layers of the
given CNN into ‘blocks’ based on their projected GPU mem-
ory consumption patterns. Each block consists of contiguous
layers with similar GPU memory footprints. Concurrently,
the Partitioner determines the optimal training batch size
for each block, ensuring the overall training remains within
the stipulated GPU memory budget set by the user (§2).
Controller andWorker: After receiving the blocks and

their respective training batch sizes, the Controller activates
CNN training by deploying the Worker (§3). The Worker
loads the current block into GPU memory (§3.1). Subse-
quently, it trains the layers within this block via sequen-
tial LL using the pre-determined batch size for the given
block (§3.2). Once the block is trained, the activations of its
final layer are saved to a storage device (§3.3; they are not
stored in GPU memory). After training, the current block is
moved to storage, and the subsequent block is loaded into
GPU memory (§3.1). The saved activations are inputs for the
subsequent block, ensuring continuity in learning, and elim-
inating the need for forward passes over the trained block(s).
This subsequently reduces the compute requirements, which
accelerates the overall CNN training.
Additionally, NeuroFlux uses a prefetching mechanism

to adjust the number of activations per batch on the fly, such
that it has the same batch size recommended by the Parti-
tioner (§3.2). This facilitates the training of different blocks
with varied batch sizes via the AB-LL technique, eliminating
the need for an entire CNN to be trained using small batch
sizes due to the GPU memory demands arising from the
initial layers. This process of blockwise training is repeated
until all blocks have been trained.
Compact Trained CNN: The concept of early exits in

CNNs allows for inferences to be made before reaching the
final layer of a model by adding exit points selectively before
the final layers [29, 34, 40, 43, 65]. These are known to offer
higher inference efficiency with low latencies. In the context
of NeuroFlux, the AAN-LL technique ensures that each
CNN layer is paired with its corresponding auxiliary net-
work, which effectively introduces a distinct prediction point

EuroSys ’24, April 22–25, 2024, Athens, Greece Saikumar et al.

Inputs

CNN

L1 L2 L3 L4 L5 L6

Training
set

Memory
budget

Batch size
limit

L1 L2 L3 Aux

Trained CNN

Output

NeuroFlux modules

Note on flow of data

§1

§2

Profiler

Partitioner

Controller

Assign auxiliary
networks and

profile memory
usage

Split CNN
into Blocks

§3

Start
training

NeuroFlux

Worker

Storage

L1 L2 L3 L4 L5 L6

Skip Forward
Pass

Memory

§3.1 §3.1 §3.1

§3.2

§3.3
Save outputs of the current

block (activation) after training

Prefetch
training

batch and
train current

block

Load current block
to memory; move
others to storage

Untrained layer

Trained layer

Current layer

Auxiliary network

Current block

§4
Best performing
early-exit model

§0

Figure 7. The NeuroFlux architecture.

for every layer. Following training, NeuroFlux systemati-
cally evaluates the performance of each layer by taking into
account both accuracy and the number of parameters in a
given early exit model. Finally, a model with an early exit
point that balances the need for achieving high accuracy and
has a small resource footprint is generated (§4).

5 Design
We first present the mathematical description of the LL par-
adigm. Then, we discuss the modules and the techniques
employed by NeuroFlux.

5.1 Representing Local Learning
We denote a CNN of 𝑁 layers as 𝐹 (𝜃), where 𝜃 represents
the set of parameters (𝜃1, 𝜃2,, 𝜃𝑁). 𝜃𝑛 represents the pa-
rameters of the 𝑛𝑡ℎ layer. The CNN architecture integrates
the rectified linear unit (ReLU) non-linearity and a down-
sampling operation, symbolised by 𝛼 and 𝑃𝑛 , respectively.
An input training batch 𝑥0 undergoes transformations across
the layers of the CNN, resulting in an output, 𝑥𝑛+1 at layer 𝑛.
Subsequently, 𝑥𝑛+1 is channelled into an auxiliary network,
denoted as 𝐴𝑛 , which generates an early prediction for the
given depth, 𝑧𝑛+1. The transformations can be represented
mathematically as: {

𝑥𝑛+1 = 𝛼𝑃𝑛𝜃𝑛𝑥𝑛

𝑧𝑛+1 = 𝐴𝑛𝑥𝑛+1
(1)

The auxiliary network, 𝐴𝑛 , is a CNN classifier, consisting
of a convolution layer characterized by 𝛽𝑛 , followed by a
downsampling mechanism, 𝐹𝑛 , such as max pooling or aver-
age pooling, followed by a linear layer 𝛾𝑛 for prediction. The
auxiliary network carries out the following early prediction:

𝐴𝑛𝑥𝑛+1 = 𝛾𝑛𝐹𝑛𝛽𝑛𝑥𝑛+1 (2)

The objective of training at depth 𝑛 is based on refining
parameters {𝜃𝑛, 𝛽𝑛, 𝛾𝑛} by solving an auxiliary optimization
problem. Given a dataset {𝑥𝑘 , 𝑦𝑘 }𝑘<𝐾 , and a loss function ℓ

(e.g., Mean Squared Error or Cross Entropy Error), the goal
is to minimize the loss:

L(𝑧𝑛+1;𝜃𝑛, 𝛽𝑛, 𝛾𝑛) =
1
𝐾

∑︁
𝑘

ℓ (𝑧 (𝑥𝑘 ;𝜃𝑛, 𝛽𝑛, 𝛾𝑛), 𝑦𝑘) (3)

After the parameters of a layer are updated through the
auxiliary optimization problem, the activations 𝑥𝑛+1 serve
as the input to the subsequent layer 𝑛 + 1. This process of
layerwise optimization continues sequentially until the input
training batch progresses through the final layer.

5.2 Modules
The integratedworking of the followingmodules, namely the
Profiler, Partitioner, Controller, andWorker enable adaptive
local learning in NeuroFlux.

Profiler: Given an input CNN, a training set, a GPU mem-
ory budget, and the batch size limit, the Profiler employs the
AAN-LL strategy to designate auxiliary networks to the lay-
ers of the input CNN. Subsequently, it benchmarks the GPU
memory required for training each layer for various batch
sizes. We observe that the GPU memory used by each layer
linearly correlates with the batch size as shown in Figure 81.
By leveraging this observation, the Profiler constructs layer-
wise linear models to predict the GPU memory requirements
for a given batch size (§1).
Partitioner: This module segments the input CNN into

distinct blocks by grouping layers based on their GPU mem-
ory consumption as shown in Algorithm 1 (§2). Initially, the
Partitioner computes the maximum possible batch size each
layer can accommodate while adhering to the GPU memory
budget constraints, leveraging the linear models produced
by the Profiler (refer to lines 2-3). Although the later CNN
layers may be capable of supporting batch sizes in the or-
der of thousands as illustrated in Figure 6, traditional CNN
training often adopts batch sizes between 32 and 512 [36].

1A similar trend is noted for larger VGG and ResNet variants but we only
provide results for VGG11 to clearly show the linear relationship.

NeuroFlux: Memory-Efficient CNN Training Using Adaptive Local Learning EuroSys ’24, April 22–25, 2024, Athens, Greece

10 20 30 40 50 60 70 80 90
0

500

1,000

1,500

2,000

Batch size

G
PU

m
em

or
y
(M

B)

𝐿1 𝐿2 𝐿3 𝐿4
𝐿5 𝐿6 𝐿7 𝐿8

Figure 8. GPU memory required by different layers during
training using AAN-LL for varying batch sizes on VGG-11.

Employing excessively large batch sizes during training
might inadvertently impair generalization [36, 50]. As a re-
medial strategy, the Partitioner caps the batch size at a pre-
defined limit if its calculated value surpasses this threshold,
as specified in line 4. Such a restriction on batch size not
only guarantees the feasibility of on-device training but also
preserves the ability of the model to generalize.

The Partitioner subsequently utilizes the calculated maxi-
mum batch size for each layer as a basis for grouping layers.
If the variation in feasible batch sizes between successive
layers remains below a 40% margin (defined as the group-
ing threshold 𝜌), then they are grouped into one block, as
indicated in line 12. The batch size designated to this block de-
faults to the smallest batch size calculated for its constituent
layers, as denoted in line 11. It was empirically found that the
40% threshold is the most effective in balancing training effi-
ciency and model convergence across thresholds spanning
10% to 70%. This choice of threshold is based on an exhaus-
tive analysis, which balances the equilibrium between layer
grouping and GPU memory optimization during training.
Importantly, blocks may consist of a single layer if the batch
sizes of its neighbouring layers are above the threshold.

Controller andWorker: Following the partitioning phase,
the Controller designates the training task of the primary
block to a specific worker (§3). Once allocated, the worker
imports the specified block into its working GPU memory
to start training. The other blocks are stored in the storage
device at this time (§3.1).
Considering a training set, denoted by 𝐷 ≜ {𝑥𝑘 , 𝑦𝑘 }𝑘<𝐾

and with a batch size ascertained by the Partitioner, the
worker fetches the training batches into its active GPU mem-
ory (§3.2). In tandem, layer-wise training for the layers encap-
sulated within the block is initiated, adhering to the protocol
described in Algorithm 2. The convergence analysis of adap-
tive local learning underpinning NeuroFlux is presented in
Appendix B.

During this training phase, the training batches are pro-
vided to the block as indicated in lines 1-2. The training batch
is processed by the initial layer and produces the activations
as specified in line 3. Subsequently, these activations are
relayed to the auxiliary network, resulting in the creation of

Algorithm 1 CNN Partitioning in NeuroFlux

Input: GPU memory budget𝑀
Input: Batch size limit 𝐵
Input: Layer-wise linear regression models 𝑅
Input: Grouping threshold 𝜌
Output: Partitioned CNN blocks and their respective batch

sizes
1: Initialize empty list of blocks 𝐵𝑙𝑜𝑐𝑘𝑠
2: for each layer 𝑙 in CNN do
3: 𝑡 ← max batch size from 𝑅 [𝑙] such that GPU memory ≤

𝑀

4: 𝑏𝑙 ← min(𝑡, 𝐵)
5: end for
6: for 𝑖 = 1 to number of layers in CNN do
7: Initialize current block 𝐵𝑙𝑜𝑐𝑘 ← {}
8: 𝐵𝑙𝑜𝑐𝑘.layers← [𝑖]
9: 𝐵𝑙𝑜𝑐𝑘.batch_size← 𝑏𝑖
10: while 𝑖+1 ≤ number of layers and |𝑏𝑖+1−𝑏𝑖 | ≤ 𝜌×𝑏𝑖

do
11: 𝐵𝑙𝑜𝑐𝑘.batch_size← min(𝐵𝑙𝑜𝑐𝑘.batch_size, 𝑏𝑖+1)
12: Append 𝑖 + 1 to 𝐵𝑙𝑜𝑐𝑘.layers
13: Increment 𝑖
14: end while
15: Append 𝐵𝑙𝑜𝑐𝑘 to 𝐵𝑙𝑜𝑐𝑘𝑠
16: end for
17: return 𝐵𝑙𝑜𝑐𝑘𝑠

local predictions as shown in line 4. These predictions are
used to compute the loss in line 5. The loss then determines
the parameter gradients shown in line 6, which subsequently
guide the required parameter updates shown in line 7. Fol-
lowing this update, the generated activations progress from
the initial layer to the subsequent layer. This layer-specific
procedure ensures that each layer not only processes the
data but also refines its parameters. This iterative sequence
is continued until the entire batch passes through every layer.

5.3 Efficient Forward Propagation via Prefetching
and Adaptive Batching

In LL, forward propagation determines the data flow within
the CNN architecture. Each individual block within this ar-
chitecture inherently depends on the outputs generated by
its immediate predecessor. Thus, a computational challenge
arises: when a block is trained and requires inputs, the de-
fault mechanism is to execute forward propagation on the
preceding blocks, even if they have already been trained.
This process of generating inputs for an active training block
from its already-trained predecessors is not only redundant,
but also incurs significant computational overhead, resulting
in longer training durations.

NeuroFlux addresses this challenge via a caching mech-
anism. When the training of a block is completed, the acti-
vations from the final layer of the block are transferred to

EuroSys ’24, April 22–25, 2024, Athens, Greece Saikumar et al.

Algorithm 2 Block-wise Local Learning in NeuroFlux

Input: Current 𝐵𝑙𝑜𝑐𝑘 with 𝑁 layers and batch size 𝐵 (as-
signed by the partitioner)

Input: Training batches𝐷 ≜ {𝑥𝑘 , 𝑦𝑘 }𝑘≤𝐾 , where each batch
contains 𝐵 samples / activations

Input: Loss function ℓ
1: for batch (𝑥𝑘 , 𝑦𝑘) in 𝐷 do
2: for 𝑛 = 1 to 𝑁 do
3: 𝑥𝑛+1 ← 𝛼𝑃𝑛𝜃𝑛𝑥𝑛 {Using Equation 1}
4: Compute local prediction 𝑧𝑛+1 ← 𝐴𝑛𝑥𝑛+1 {Using

Equation 2}
5: Compute loss L𝑛 ≜ ℓ (𝑧𝑛+1, 𝑦𝑘)
6: Compute ∇(𝜃𝑛,𝛽𝑛,𝛾𝑛)L𝑛
7: 𝜃𝑛, 𝛽𝑛, 𝛾𝑛 ← Update based on ∇(𝜃𝑛,𝛽𝑛,𝛾𝑛)L𝑛
8: end for
9: end for

Untrained layer

Trained layer

Current layer

Storage

L1 L2 L3 L4 L5 L6

Skip Forward
Pass

Current
Block

L3 L4

Memory

L5 L6L1 L2

Current
Block

Memory
Storage

L1 L2 L4L3 L3 L4

Current
Block

Storage
Memory

Training
Block 2

Training
Block 3Skip Forward Pass

Training
Block 1

Figure 9. Example of skipping forward pass and managing
GPU memory in the NeuroFlux training system for three
time steps given a CNN with six layers. Red layers indicate
the current block of layers being trained, green represents
trained layers, and grey denotes untrained layers.

a storage device (§3.3). Subsequently, the trained block is
moved to storage and the next block is loaded into GPUmem-
ory (§3.1). The cached activations then become the input for
the succeeding block. This design eliminates the need for
redundant forward passes through already-trained blocks,
thereby optimizing the training speed. Figure 9 shows GPU
memory management during the training of blocks, illustrat-
ing where each block is stored and how the forward pass is
skipped as training advances to deeper blocks.
Furthermore, NeuroFlux integrates the AB-LL strategy,

enhancing training performance. In this strategy (§3.2), as
the activations are retrieved from storage in order to train
a block, the number of activations in a given training batch
is adjusted on-the-fly, making sure each block is trained
with its designated batch size, allowing the current block to
immediately use the training batch as input.
A key benefit of adaptive batch sizes is leveraging the

unique GPU memory consumption patterns of each block.
Initial blocks in a CNN tend to have higher GPU memory
requirements, and thus, in edge computing environments
with inherently limited working GPU memory, the batch
sizes must be modest. However, as the training advances
to subsequent blocks, which generally demand less GPU

1 3 5 7 9 11 13
0.2
0.4
0.6
0.8
1

Optimal Exit Point

Layer index

Va
lid

at
io
n
ac
cu
ra
cy

Figure 10. Layer-wise validation accuracy of VGG-16 on
CIFAR-100 in NeuroFlux. Layer 5, the optimal exit point,
achieves the highest validation accuracy with minimal pa-
rameters, making it the ideal early exit point.

memory, the AB-LL strategy permits these blocks to handle
larger batch sizes.
AB-LL improves the computational efficiency by reduc-

ing the number of iterations required to process the entire
dataset. By doing so, NeuroFlux strikes a crucial balance: it
significantly accelerates training while preserving the accuracy
of the resultant model.

5.4 Trained Output CNN
BP and classic LL produce a full-sized CNN after training
that can be deployed for end-to-end inference. In contrast,
NeuroFlux evaluates the performance of each layer within
all possible combinations of early exit models by considering
validation accuracy and the number of parameters employed
in a given early exit model. The outcome is a model that
has an early exit point and achieves the highest validation
accuracy while maintaining the smallest parameter count.

The output CNN model from NeuroFlux is spatially effi-
cient, as it contains only a fraction of the parameters com-
pared to the original model. This is a consequence arising
from the observation that the validation accuracy approaches
a saturation point at a specific layer. Beyond this point, ac-
curacy either remains consistent or decreases only trivially,
as illustrated in Figure 10. Such behavior resonates with
findings from existing literature, captured under the term
Overthinking [34]. The concept highlights the diminishing
returns of additional computational complexity in CNNs.

Conventionally, two approaches exist for early exit train-
ing. Each involves defining a few specific early exit points
within a CNN. The first approach entails the simultaneous
optimization of the entire CNN from its initialization, re-
sulting in the computation of a weighted loss across all exit
points [34]. In contrast, the second approach trains the base
model until it converges. Then the early exit classifiers (aux-
iliary networks) undergo fine-tuning, while the parameters
in the base CNN are frozen [40]. Both approaches require at
least the same amount of GPU memory as end-to-end BP.

NeuroFlux detects overthinking at the layer level gran-
ularity, thereby mitigating the need for subsequent fine-
tuning. In NeuroFlux, every CNN layer is a prospective
exit point, but the most suitable exit tailored to the distinct

NeuroFlux: Memory-Efficient CNN Training Using Adaptive Local Learning EuroSys ’24, April 22–25, 2024, Athens, Greece

100 200 300 400 500
0
2
4
6
8

Ti
m
e
(h
rs
)

VGG-16

100 200 300 400 500
0
2
4
6

VGG-19

100 200 300 400 500
0

5

10

ResNet-18

100 200 300 400 500
0
2
4
6
8

Ti
m
e
(h
rs
)

100 200 300 400 500
0
2
4
6

100 200 300 400 500
0

5

10

100 200 300 400 500
0
5
10
15
20

Memory budget (MB)

Ti
m
e
(h
rs
)

100 200 300 400 500
0

10

20

Memory budget (MB)

Backpropagation Classic LL NeuroFlux

100 200 300 400 500
0
5
10
15
20

Memory budget (MB)

CI
FA

R-
10

CI
FA

R-
10
0

Ti
ny

Im
gN

et

Figure 11. Training time for different memory budgets using different training methods for VGG-16, VGG-19, and ResNet-18
models trained on the CIFAR-10, CIFAR-100, and the Tiny ImageNet datasets trained on the Nvidia AGX Orin.

0 2 4
0.2
0.4
0.6
0.8
1

Te
st
ac
cu
ra
cy

VGG-16

0 2 4 6
0.2
0.4
0.6
0.8
1

VGG-19

0 2 4 6 8
0.2
0.4
0.6
0.8
1

ResNet-18

0 2 4
0

0.2
0.4
0.6
0.8

Te
st
ac
cu
ra
cy

0 2 4 6
0

0.2
0.4
0.6
0.8

0 2 4 6 8
0

0.2
0.4
0.6
0.8

0 5 10
0

0.2
0.4
0.6

Time (hrs)

Te
st
ac
cu
ra
cy

0 5 10 15
0

0.2
0.4
0.6

Time (hrs)

Backpropagation Classic LL NeuroFlux

0 5 10 15
0

0.2
0.4
0.6

Time (hrs)

CI
FA

R-
10

CI
FA

R-
10
0

Ti
ny

Im
gN

et

Figure 12. Comparison of test accuracy as training proceeds for different training methods for VGG-16, VGG-19, and ResNet-18
models, trained on the CIFAR-10, CIFAR-100, and Tiny ImageNet datasets. Results are shown for a 300MB memory budget
trained on the Nvidia AGX Orin.

requirements of a given task is identified. Thus, the output
CNN for on-device efficiency is optimized.

6 Evaluation
In this section, we evaluate the training performance of Neu-
roFlux against BP and classic LL for varying GPU memory
budgets and the inference performance across a range of

edge devices. BP refers to vanilla Backpropagation, which
includes no activation/gradient checkpointing [11].

6.1 Experimental Setup
In our experimental setup, we specifically target three plat-
forms, each characterized by distinct resource specifications,
as presented in Table 1: the Nvidia Jetson Nano, Nvidia Jetson
Xavier NX, and Nvidia Jetson AGX ORIN. Additionally, we

EuroSys ’24, April 22–25, 2024, Athens, Greece Saikumar et al.

Table 1. Target hardware platforms

Platform CPU # CPU Cores Memory GPU # GPU Cores Peak TFLOPs TDP
Raspberry Pi 4B (Pi4B) ARM Cortex-A72 4 4GB LPDDR4 N/A N/A 0.00969 8W
Nvidia Nano ARM Cortex-A57 4 4GB LPDDR4 Maxwell 128 0.472 5W
Nvidia Xavier NX ARM Carmel 6 8GB LPDDR4x Volta 384 1.33 15W
Nvidia AGX ORIN ARM Carmel 12 64GB LPDDR5 Ampere 1,536 4.76 50W

employed the Raspberry Pi 4B to demonstrate the inference
performance of the output model. To implementNeuroFlux,
we utilize PyTorch version 2.0.0 and torchvision version 0.2.0,
with Python 3.11.

Benchmarks: To assess the generalizability of our system,
we conduct benchmark tests using a diverse set of CNNs that
vary in depth and computational load. We include promi-
nent VGG variants [63], namely, VGG-16, and VGG-19, which
are large and computationally intensive networks with con-
ventional single-layer connectivity. We also employ ResNet-
18 [26], from the residual network family, to demonstrate
the feasibility of NeuroFlux. We have selected large models
to demonstrate the efficiency of our system under extreme
memory and compute constraints.

Datasets: The effectiveness of NeuroFlux is evaluated on
three widely used image classification datasets: (1) CIFAR-10,
(2) CIFAR-100 datasets [39], and (3) Tiny ImageNet dataset [41].
The datasets are used for image classification and offer a col-
lection of images with varying degrees of complexity for
evaluating the performance and accuracy of NeuroFlux.
The images of Tiny ImageNet were resized from 64×64 pix-
els to 32×32 pixels to match the input size of CIFAR datasets
in order to consistently benchmark across the same CNNs.
All measurements are averages of three independent experi-
mental runs.

6.2 End-to-End Training Performance
In this section, we will present results to highlight the effi-
ciency of NeuroFlux in training a diverse range of CNNs
under various GPU memory constraints. We consider both
training time and the accuracy of NeuroFlux relative to
GPU memory budgets. Figure 11 shows the training time
of BP, classic LL and NeuroFlux for VGG-16, VGG-19 and
ResNet-18 on the Nvidia Jetson AGX ORIN for GPU memory
budgets ranging from 100MB to 500MB2.

Observation 1: NeuroFlux outperforms BP and
classic LL in training time for all GPU memory bud-
gets.

It is immediately noted from Figure 11 that NeuroFlux
achieves a reduction in training time - the speed-up ranges

2Similar results are obtained on other hardware platforms but only show
the results on one platform due to the limitation of space.

from 2.3× to 6.1× compared to BP and 3.3× to 10.3× com-
pared to classic LL for the same GPU memory budgets. Addi-
tionally,NeuroFlux can successfully train CNNs under tight
GPU memory constraints where BP and classic LL fail to do
so. Therefore, there are no data points for BP and classic LL
when the GPU memory budget is below 250MB for VGG-16
and ResNet-18 and below 300MB for VGG-19. There is a per-
formance gain when using NeuroFlux for more generous
GPU memory budgets, such as a 500MB limit.

Observation 2: The performance of NeuroFlux on
lower GPU memory budgets is better than BP and
classic LL on generous GPU memory budgets. It also
successfully trains CNNs under GPU memory con-
straints that are unattainable by BP and classic LL.

NeuroFlux on a 100MB budget is 1.3× to 1.9× faster than
BP and 2.1× to 2.5× faster than classic LL on a 500MB bud-
get, hence reducing memory usage by 5×. These results vali-
date the efficiency of NeuroFlux for CNN training in GPU
memory-constrained environments. Figure 12 compares the
test accuracy achieved in relation to the time taken for train-
ing using BP, classic LL, and NeuroFlux. NeuroFlux accel-
erates CNN training while maintaining the accuracy of the
final model at the same level achieved by both BP and classic
LL.

Observation 3: For a given timeframe, NeuroFlux
achieves higher accuracy than BP and classic LL.

The inherent GPU memory efficiency of NeuroFlux en-
ables it to employ larger training batches compared to BP and
classic LL, requiring fewer SGD steps across the entire train-
ing dataset. Thus, NeuroFlux can reach its peak accuracy
faster than the other methods. NeuroFlux demonstrates
better performance for VGG-19 over ResNet-18. VGG-19
frequently downsamples its activations, leading to smaller
activation tensors, as shown in Figure 13 (left). The computa-
tional requirements are influenced by the size of activations
as they are processed by the auxiliary network during LL.
This is highlighted in Figure 13 (right) as the auxiliary net-
works of VGG-19 require fewer cumulative FLOPS compared
to those of ResNet-18.

NeuroFlux: Memory-Efficient CNN Training Using Adaptive Local Learning EuroSys ’24, April 22–25, 2024, Athens, Greece

1 3 5 7 9 11 13 15 17103

104

105

106

Layer index

A
ct
iv
at
io
n
si
ze

VGG-19
ResNet-18

1 3 5 7 9 11 13 15 17
0

0.5

1

Layer index

N
or
m
al
iz
ed

FL
O
Ps

Figure 13. Comparison of the activation size (total number
of elements in the activation tensor) for different layers of
VGG-19 and ResNet-18 (left). Normalized Cumulative FLOPs
of the auxiliary networks for VGG-19 and ResNet-18 (right).

6.3 Efficiency of Trained Output CNN
Table 2 compares the size of the outputmodel fromBP, classic
LL and NeuroFlux when trained for different datasets. BP
and classic LL produce CNNs of identical sizes. NeuroFlux
consistently yields highly efficient early exit CNNs that have
10.9× to 29.4× fewer parameters relative to the full-sized
models generated by both BP and classic LL. Anecdotally,
the compression levels attained by NeuroFlux are similar
to those achieved by structured pruning methods although
the two are inherently different approaches [4, 14, 75].

Observation 4: NeuroFlux generates efficient
CNNs that are spatially compressed and thus smaller
in size than those obtained from BP and classic LL.

Table 2. Parameter count of trained output CNNs.

Dataset Model # Parameters (106) Compression
BP/LL NeuroFlux Factor

CIFAR-10
VGG-16 14.7 0.5 29.4×
VGG-19 20.0 1.7 11.8×
ResNet-18 11.0 0.8 13.8×

CIFAR-100
VGG-16 14.7 1.19 12.3×
VGG-19 20.0 1.7 11.8×
ResNet-18 11.0 0.96 11.5×

Tiny VGG-16 14.7 1.19 12.3×
ImageNet VGG-19 20.0 1.19 16.8×

ResNet-18 11.0 1.01 10.9×

This offers dual benefits: firstly, the parameter count of
the model is smaller than BP and classic LL, and secondly, it
provides an inference throughput gain. Thus, trained models
from NeuroFlux are suited for edge deployments, where
computational and GPU memory resources are often limited.
In Figure 14, we illustrate that there is a significant inference
throughput gain achieved by the early exit model produced
by NeuroFlux when compared to the trained CNNs of BP
and classic LL. The complete throughput data (images per
second) is provided in Appendix C. It is immediately evident
that the early exit model crafted by NeuroFlux outperforms

the conventional ones, delivering an increased throughput
ranging from 1.61× to 3.95× on different target platforms.

6.4 System Overheads
The system overheads in NeuroFlux arise from:

Profiler andPartitionermodules construct layer-specific
linear models to predict GPUmemory consumption based on
batch size. Subsequently, the CNN is partitioned into blocks.
This processing overhead constitutes less than 1.5% of the
total CNN training time across all our experiments.
Caching and Prefetching techniques that utilize stor-

age space to retain intermediate activations of trained blocks.
These serve as inputs for training subsequent blocks, thereby
eliminating the need for a forward pass over trained blocks.
Datasets, such as CIFAR-10/100 and Tiny ImageNet, require
approximately 0.2GB and 0.5GB of storage, respectively. Our
caching strategy increases the storage need for activations to
about 1.5× to 5.3× the size of the original dataset. Nonethe-
less, these storage demands are generally manageable in
contemporary edge computing hardware, given their ample
storage relative to working memory. Moreover, affordable
storage mediums, such as high-speed SD cards, further ease
any potential storage constraints.

Observation 5: The performance gain from using
NeuroFlux substantially outweighs the overheads
incurred by using its modules and underlying tech-
niques.

7 Related work
Optimizing GPU memory usage during CNN training:
Three strategies considered below are used for optimizing
GPU memory usage in BP-based training:
Sparsity - Sparse tensors are used in this method for rep-

resenting model parameters to reduce GPU memory require-
ments, thereby compressing the model without significantly
impacting accuracy [10, 19, 23]. These methods either grad-
ually train with sparsity [46, 53] or start with inherently
sparse networks [14, 15, 64]. However, sparse tensor opera-
tions can be slow due to the irregular distribution of non-zero
elements, leading to inefficient data transfers between global
GPU memory and computational registers [62].

Microbatching - Smaller batch sizes are used in this method
to reduce the GPU memory required for activations [30, 32].
This method is GPU memory efficient but requires precise
hyperparameter tuning and increases the overall training
time. This method may negatively impact the final accuracy
of a model.
Gradient Checkpointing - GPU memory is conserved in

this method by saving only certain model activations. The
trade-off is the recalculation of activations that are not saved,
which results in longer training times [11] than BP.

EuroSys ’24, April 22–25, 2024, Athens, Greece Saikumar et al.

VGG-16 VGG-19 ResNet-18
0

1

2

3

4

Th
ro
ug

hp
ut

ga
in

w
.r.
t

BP
an
d
cl
as
si
c
LL

Pi4B

CIFAR-10 CIFAR-100
Tiny ImageNet

VGG-16 VGG-19 ResNet-18
0

1

2

3

4

Jetson Nano

VGG-16 VGG-19 ResNet-18
0

1

2

3

4

Xavier NX

VGG-16 VGG-19 ResNet-18
0

1

2

3

4

AGX Orin

Figure 14. Inference throughput gain achieved by NeuroFlux over BP and classic LL for VGG-16, VGG-19 and ResNet-18
models on different hardware platforms using CIFAR-10, CIFAR-100 and Tiny ImageNet datasets.

Accelerating BP-based CNN Training: Two key ap-
proaches for enhancing the training speed and efficiency of
CNNs are considered next.
Parameter Freezing - The concept of freezing parameters

of the earlier layers of a CNN is known to improve train-
ing speed. For instance, SpotTune [18] employs pre-trained
weights for CNN fine-tuning, and it determines which layers
need to be trained on a per-sample basis. If a given sam-
ple does not require fine-tuning of the earlier CNN layers,
then the parameter updates over those layers can be skipped,
resulting in improved computational efficiency. However,
the approach is limited to fine-tuning scenarios. In contrast,
FreezeOut [8] accelerates CNN training by systematically
freezing layers and does not require backward passes over
the frozen layers. This results in a 1.2× training speedup for
ResNets, but shows no improvement for VGG models.

Caching Activations - Egeria [69] combines layer-freezing
and the caching of intermediate results, thereby eliminat-
ing forward passes through the frozen layers. It improves
the runtime by 1.19×-1.43×. However, Egeria is designed
for HPC settings. To illustrate this, for facilitating training
on GPUs Egeria requires a CPU-bound quantized reference
model that identifies the layers to be frozen — a configura-
tion unsuited for resource-constrained edge or mobile en-
vironments. Also, Egeria requires unfreezing layers when
the learning rate reduces, as it relies on end-to-end BP. In
contrast, NeuroFlux underpinned by adaptive local learn-
ing ensures that the frozen layers are unaffected by learning
rate changes of the subsequent layers. Lastly, PipeTrans-
former [24] is designed exclusively for Transformer models
that utilize freezing progressive layers and caching inter-
mediate results. The training pipeline is further optimized
by omitting frozen layers, efficiently allocating active layers
across fewer GPUs. This approach is suitable in HPC settings
and is unattainable on edge or mobile devices due to inherent
resource constraints, often limited to a single and small GPU.
Building on the concept of optimizing computational ef-

ficiency, Skip-Convolutions [21] re-engineer standard con-
volutions that are directly applied to residual frames. Using
binary gates, the relevance of each layer to model prediction

is evaluated — foreground elements are processed, while
background elements may be bypassed to reduce compu-
tational overheads. Egeria [69] explores the application of
Skip-Convolutions as a heuristic during training to deter-
mine which layers to freeze, thereby reducing training time
over Backpropagation by approximately 1.28×. On the other
hand, NeuroFlux reduces training time by 2.3× to 6.1× un-
der stringent GPU memory budgets.

Comparing with Neural Architecture Search: Neural
Architecture Search (NAS) is aimed at automating the design
of neural network architectures. Leading NAS methods such
as DARTS [47] and PreNAS [67] require extensive compu-
tational resources, typically between 2 to 10 GPU days on
server-grade hardware for CIFAR-10 [14], which is a rela-
tively small dataset, and produces models with an average
parameter count ranging from 3.3M to 77M [14]. In com-
parison, NeuroFlux produces a trained model in under two
hours on Nvidia Orin, an edge computing resource, with
an average of 1M parameters on larger datasets, such as
CIFAR-100 and Tiny ImageNet.

Alternate Training Paradigms: We focus on the below
two paradigms that are developed as alternatives to BP-based
training, which were introduced in Section 2.

Feedback Alignment (FA): FA tackles the ‘weight transport
problem’ of CNN training [44, 45]. Traditional BP-based
training presumes a weight symmetry, where the backward
pass employs the transposed weights from the forward pass.
FA disrupts this symmetry: during the backward pass, it
employs fixed random weights distinct from the forward
pass. Although FA and its variants match BP in performance
for smaller, fully connected networks, they do not work as
well with CNNs [37].

Signal Propagation (SP): SP employs a forward-pass train-
ing mechanism similar to the independent layer-wise ap-
proach used in LL, without the need for layer-specific aux-
iliary networks [37]. SP utilizes a target generator that re-
casts target labels into input dimensions, thus generating the
‘context’. Each layer handles this context and the initial in-
put, resulting in two discrete sets of activations. Predictions
within layers are subsequently derived from the dot product

NeuroFlux: Memory-Efficient CNN Training Using Adaptive Local Learning EuroSys ’24, April 22–25, 2024, Athens, Greece

of these activations, and the layer parameters are adjusted
accordingly. While SP is over three times more GPU mem-
ory efficient than BP, it has lower training accuracy on small
datasets, such as CIFAR-10. The inability to scale effectively
to larger datasets, such as CIFAR-100 and Tiny ImageNet,
limits its widespread adoption for training.

Both FA and SP have limitations, as mentioned in Section 2
and highlighted in Figure 3. This positions LL, despite its
GPU memory requirements, as the most viable alternative
to traditional BP. NeuroFlux builds upon this foundation
by developing adaptive local learning described in Section 3.
This approach not only addresses the GPU memory require-
ments inherent to LL but also significantly accelerates train-
ing compared to both classic LL and BP, while maintaining
accuracy across multiple datasets and CNN architectures, as
empirically validated in Section 6.

8 Future Directions and Conclusions
This paper demonstrates the feasibility of on-device CNN
training using NeuroFlux, both theoretically and experi-
mentally. Its efficacy is not limited to vision-based tasks;
NeuroFlux also exhibits significant potential in training
speech recognition models [1–3, 54]. Another area is extend-
ing NeuroFlux to support transformers, which are pivotal
to NLP tasks. The complexity of training transformers is
underscored by the GPU memory requirement (at least 8GB)
for training BERT-small [13].
Additionally, with the rise of federated learning for de-

centralized model training, NeuroFlux offers a compelling
advantage of improved training time. Efficient on-device
training is essential to making federated learning feasible
for edge and mobile devices. We envision that the training
and memory efficiency offered by NeuroFlux will enable
the convergence of the global model more rapidly. This di-
rection will extend the utility of NeuroFlux in the context
of distributed machine learning.
While NeuroFlux is designed for memory-constrained

edge and mobile environments, it also offers benefits for
desktop and server systems. These systems can also benefit
from the reduced memory usage of NeuroFlux and faster
training times in scenarios when training large models on
large datasets, such as ResNet-50 [26] on ImageNet [12].
However, the extreme memory constraints that NeuroFlux
can operate in may not be of concern in larger desktop and
server systems.
In summary, we introduced NeuroFlux, a system opti-

mized for on-device CNN training in memory-limited envi-
ronments. Unlike traditional Backpropagation, NeuroFlux
uses adaptive local learning, showing consistent advance-
ments across various CNNs and datasets. It reliably outper-
forms Backpropagation and classic local learning, with train-
ing speed improvements of 2.3× to 6.1× against Backpropa-
gation and 3.3× to 10.3× against classic local learning for the

same GPU memory budgets.NeuroFlux generates a trained
early exit model that reduces parameter counts by 10.9× to
29.4×, boosting inference throughput by 1.61× to 3.95× on
our experimental setup comprising diverse hardware plat-
forms. NeuroFlux provides a disruptive memory-efficient
training solution that will enable the vision of practical on-
device training in memory-constrained environments.

References
[1] Babak Joze Abbaschian, Daniel Sierra-Sosa, and Adel Said Elmaghraby.

2021. Deep Learning Techniques for Speech Emotion Recognition,
from Databases to Models. Sensors.

[2] Ahmed M. Abdelmoniem, Atal Narayan Sahu, Marco Canini, and
Suhaib A. Fahmy. 2023. REFL: Resource-Efficient Federated Learning.
In European Conference on Computer Systems.

[3] Samson Akinpelu, Serestina Viriri, and Adekanmi Adegun. 2023. Light-
weight Deep Learning Framework for Speech Emotion Recognition.
IEEE Access.

[4] Milad Alizadeh, Shyam A. Tailor, Luisa M Zintgraf, Joost van Amers-
foort, Sebastian Farquhar, Nicholas Donald Lane, and Yarin Gal. 2022.
Prospect Pruning: Finding Trainable Weights at Initialization using
Meta-Gradients. In International Conference on Machine Learning.

[5] Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. 2019.
Greedy Layerwise Learning Can Scale To ImageNet. In International
Conference on Machine Learning.

[6] Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. 2020.
Decoupled Greedy Learning of CNNs. In International Conference on
Machine Learning.

[7] Léon Bottou, Frank E. Curtis, and Jorge Nocedal. 2018. Optimization
Methods for Large-Scale Machine Learning. SIAM Rev.

[8] Andrew Brock, Theodore Lim, J. M. Ritchie, and Nick Weston. 2017.
FreezeOut: Accelerate Training by Progressively Freezing Layers.
arXiv:abs/1706.04983.

[9] Han Cai, Ligeng Zhu, and Song Han. 2019. ProxylessNAS: Direct Neu-
ral Architecture Search on Target Task and Hardware. In International
Conference on Learning Representations.

[10] Miguel A. Carreira-Perpinan and Yerlan Idelbayev. 2018. "Learning-
Compression" Algorithms for Neural Net Pruning. In IEEE Conference
on Computer Vision and Pattern Recognition.

[11] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin.
2016. Training Deep Nets with Sublinear Memory Cost.
arXiv:abs/1604.06174.

[12] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
2009. ImageNet: A Large-Scale Hierarchical Image Database. In IEEE
Conference on Computer Vision and Pattern Recognition.

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
2019. BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. In Proceedings of the Conference of the North
American Chapter of the Association for Computational Linguistics:
Human Language Technologies.

[14] Bailey J. Eccles, Philip Rodgers, Peter Kilpatrick, Ivor Spence, and Bles-
son Varghese. 2024. DNNShifter: An Efficient DNN Pruning System
for Edge Computing. Future Generation Computer Systems.

[15] Jonathan Frankle and Michael Carbin. 2019. The Lottery Ticket Hy-
pothesis: Finding Sparse, Trainable Neural Networks. In International
Conference on Learning Representations.

[16] In Gim and JeongGil Ko. 2022. Memory-efficient DNN training on mo-
bile devices. In International Conference on Mobile Systems, Applications
and Services (MobiSys ’22).

[17] Junyao Guo, Unmesh Kurup, and Mohak Shah. 2021. Efficacy of Model
Fine-Tuning for Personalized Dynamic Gesture Recognition. In Deep
Learning for Human Activity Recognition.

EuroSys ’24, April 22–25, 2024, Athens, Greece Saikumar et al.

[18] Yunhui Guo, Honghui Shi, Abhishek Kumar, Kristen Grauman, Tajana
Rosing, and Rogerio Feris. 2019. SpotTune: Transfer Learning Through
Adaptive Fine-Tuning. In IEEE Conference on Computer Vision and
Pattern Recognition.

[19] Yiwen Guo, Anbang Yao, and Yurong Chen. 2016. Dynamic Network
Surgery for Efficient DNNs. In International Conference on Neural
Information Processing Systems.

[20] Otkrist Gupta and Ramesh Raskar. 2018. Distributed Learning of
Deep Neural Network over Multiple Agents. Journal of Network and
Computer Applications.

[21] Amirhossein Habibian, Davide Abati, Taco Cohen, and Babak Ehte-
shami Bejnordi. 2021. Skip-Convolutions for Efficient Video Processing.
In IEEE Conference on Computer Vision and Pattern Recognition.

[22] Dong-Jun Han, Do-Yeon Kim, Minseok Choi, Christopher G. Brinton,
and Jaekyun Moon. 2022. SplitGP: Achieving Both Generalization and
Personalization in Federated Learning. IEEE Conference on Computer
Communications.

[23] Song Han, Huizi Mao, and William J. Dally. 2016. Deep Compression:
Compressing Deep Neural Network with Pruning, Trained Quanti-
zation and Huffman Coding. In International Conference on Learning
Representations.

[24] Chaoyang He, Shen Li, Mahdi Soltanolkotabi, and Salman Avestimehr.
2021. PipeTransformer: Automated Elastic Pipelining for Distributed
Training of Large-scale Models. In International Conference on Machine
Learning.

[25] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. 2020.
Mask R-CNN. IEEE Transactions on Pattern Analysis and Machine
Intelligence.

[26] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep
Residual Learning for Image Recognition. In IEEE Conference on Com-
puter Vision and Pattern Recognition.

[27] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.
2017. MobileNets: Efficient Convolutional Neural Networks for Mobile
Vision Applications. arXiv:abs/1704.04861.

[28] Baojin Huang, ZhongyuanWang, GuangchengWang, Kui Jiang, Zheng
He, Hua Zou, and Qin Zou. 2021. Masked Face Recognition Datasets
and Validation. In 2021 IEEE/CVF International Conference on Computer
Vision Workshops.

[29] Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens van der
Maaten, and Kilian Weinberger. 2018. Multi-Scale Dense Networks for
Resource Efficient Image Classification. In International Conference on
Learning Representations.

[30] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Mia Xu
Chen, Dehao Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V. Le,
Yonghui Wu, and Zhifeng Chen. 2019. GPipe: Efficient Training of
Giant Neural Networks Using Pipeline Parallelism. International Con-
ference on Neural Information Processing Systems.

[31] Sinh Huynh, Rajesh Balan, and Jeonggil Ko. 2021. iMon: Appearance-
based Gaze Tracking System on Mobile Devices. In Proceedings of the
ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies.

[32] Sergey Ioffe. 2017. Batch Renormalization: Towards Reducing Mini-
batch Dependence in Batch-Normalized Models. In Advances in Neural
Information Processing Systems.

[33] Joseph Bailey Luttrell Iv, Zhaoxian Zhou, Chaoyang Zhang, Ping Gong,
and Yuanyuan Zhang. 2017. Facial Recognition via Transfer Learning:
Fine-Tuning Keras_vggface. International Conference on Computational
Science and Computational Intelligence.

[34] Yigitcan Kaya, Sanghyun Hong, and Tudor Dumitras. 2018. Shallow-
Deep Networks: Understanding andMitigating Network Overthinking.
In International Conference on Machine Learning.

[35] Ira Kemelmacher-Shlizerman, Steven M Seitz, Daniel Miller, and Evan
Brossard. 2016. The MegaFace Benchmark: 1 Million Faces for Recog-
nition at Scale. In IEEE Conference on Computer Vision and Pattern

Recognition.
[36] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail

Smelyanskiy, and Ping Tak Peter Tang. 2017. On Large-Batch Train-
ing for Deep Learning: Generalization Gap and Sharp Minima. In
International Conference on Learning Representations.

[37] Adam Kohan, Edward A. Rietman, and Hava T. Siegelmann. 2023.
Signal Propagation: The Framework for Learning and Inference in a
Forward Pass. IEEE Transactions on Neural Networks and Learning
Systems.

[38] Alexandros Kouris and Christos-Savvas Bouganis. 2018. Learning
to Fly by MySelf: A Self-Supervised CNN-Based Approach for Au-
tonomous Navigation. In IEEE/RSJ International Conference on Intelli-
gent Robots and Systems.

[39] Alex Krizhevsky. 2009. Learning Multiple Layers of Features from Tiny
Images. Technical Report. https://www.cs.toronto.edu/ kriz/cifar.html.

[40] Stefanos Laskaridis, Stylianos I. Venieris, Hyeji Kim, and Nicholas D.
Lane. 2020. HAPI: Hardware-Aware Progressive Inference. In Interna-
tional Conference on Computer-Aided Design.

[41] Ya Le and Xuan S. Yang. 2015. Tiny ImageNet Visual Recognition
Challenge. http://vision.stanford.edu/teaching/cs231n/reports/2015/
pdfs/yle_project.pdf

[42] Juhyun Lee, Nikolay Chirkov, Ekaterina Ignasheva, Yury Pisarchyk,
Mogan Shieh, Fabio Riccardi, Raman Sarokin, Andrei Kulik, and
Matthias Grundmann. 2019. On-Device Neural Net Inference with
Mobile GPUs. arXiv:abs/1907.01989.

[43] H. Li, H. Zhang, X. Qi, Y. Ruigang, and G. Huang. 2019. Improved
Techniques for Training Adaptive Deep Networks. In IEEE/CVF Inter-
national Conference on Computer Vision.

[44] Qianli Liao, Joel Z. Leibo, and Tomaso Poggio. 2016. How Important
is Weight Symmetry in Backpropagation?. In AAAI Conference on
Artificial Intelligence.

[45] Timothy P. Lillicrap, Daniel Cownden, Douglas Blair Tweed, and
Colin J. Akerman. 2016. Random Synaptic Feedback Weights Support
Error Backpropagation for Deep Learning. Nature Communications.

[46] Tao Lin, Sebastian U. Stich, Luis Barba, Daniil Dmitriev, and Martin
Jaggi. 2020. Dynamic Model Pruning with Feedback. In International
Conference on Learning Representations.

[47] Hanxiao Liu, Karen Simonyan, and Yiming Yang. 2019. DARTS: Differ-
entiable Architecture Search. In International Conference on Learning
Representations.

[48] Joseph Luttrell, Zhaoxian Zhou, Yuanyuan Zhang, Chaoyang Zhang,
Ping Gong, Bei Yang, and Runzhi Li. 2018. A Deep Transfer Learning
Approach to Fine-Tuning Facial Recognition Models. In IEEE Confer-
ence on Industrial Electronics and Applications.

[49] Bishwas Mandal, Adaeze Okeukwu, and Yihong Theis. 2021. Masked
Face Recognition using ResNet-50. arXiv:abs/2104.08997.

[50] Dominic Masters and Carlo Luschi. 2018. Revisiting Small Batch
Training for Deep Neural Networks. arXiv:abs/1804.07612.

[51] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. 2017. Communication-Efficient Learning of
Deep Networks from Decentralized Data. In International Conference
on Artificial Intelligence and Statistics.

[52] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan
Kautz. 2017. Pruning Convolutional Neural Networks for Resource
Efficient Inference. In International Conference on Learning Representa-
tions.

[53] Hesham Mostafa and Xin Wang. 2019. Parameter Efficient Training of
Deep Convolutional Neural Networks by Dynamic Sparse Reparame-
terization. In International Conference on Machine Learning.

[54] Sarala Padi, Seyed Omid Sadjadi, Dinesh Manocha, and Ram D. Sriram.
2021. Improved Speech Emotion Recognition using Transfer Learn-
ing and Spectrogram Augmentation. Proceedings of the International
Conference on Multimodal Interaction.

http://vision.stanford.edu/teaching/cs231n/reports/2015/pdfs/yle_project.pdf
http://vision.stanford.edu/teaching/cs231n/reports/2015/pdfs/yle_project.pdf

NeuroFlux: Memory-Efficient CNN Training Using Adaptive Local Learning EuroSys ’24, April 22–25, 2024, Athens, Greece

[55] German I. Parisi, Ronald Kemker, Jose L. Part, Christopher Kanan,
and Stefan Wermter. 2019. Continual Lifelong Learning with Neural
Networks: A Review. Neural Networks 113 (2019), 54–71.

[56] HyeonJung Park, Youngki Lee, and JeongGil Ko. 2021. Enabling Real-
time Sign Language Translation on Mobile Platforms with On-board
Depth Cameras. In Proceedings of the ACM on Interactive, Mobile, Wear-
able and Ubiquitous Technologies.

[57] David Patterson, Joseph Gonzalez, Urs Hölzle, Quoc Le, Chen Liang,
Lluis-Miquel Munguia, Daniel Rothchild, David R. So, Maud Texier, and
Jeff Dean. 2022. The Carbon Footprint of Machine Learning Training
Will Plateau, Then Shrink. Computer (2022).

[58] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. 2018.
Efficient Neural Architecture Search via Parameters Sharing. In Inter-
national Conference on Machine Learning.

[59] Jaya Prakash Sahoo, Allam Jaya Prakash, Paweł Pławiak, and Saunak
Samantray. 2022. Real-Time Hand Gesture Recognition Using Fine-
Tuned Convolutional Neural Network. Sensors.

[60] F. Sarfraz, E. Arani, and B. Zonooz. 2021. Knowledge Distillation
Beyond Model Compression. In International Conference on Pattern
Recognition.

[61] Roy Schwartz, Jesse Dodge, Noah A. Smith, and Oren Etzioni. 2020.
Green AI. Commun. ACM (2020).

[62] Shaohuai Shi, Qiang Wang, and Xiaowen Chu. 2020. Efficient Sparse-
Dense Matrix-Matrix Multiplication on GPUs Using the Customized
Sparse Storage Format. In IEEE International Conference on Parallel
and Distributed Systems.

[63] Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolu-
tional Networks for Large-Scale Image Recognition. In International
Conference on Learning Representations.

[64] Hidenori Tanaka, Daniel Kunin, Daniel L Yamins, and Surya Ganguli.
2020. Pruning neural networks without any data by iteratively con-
serving synaptic flow. In Advances in Neural Information Processing
Systems.

[65] Surat Teerapittayanon, Bradley McDanel, and H.T. Kung. 2016.
BranchyNet: Fast inference via early exiting from deep neural net-
works. In International Conference on Pattern Recognition.

[66] Praneeth Vepakomma, Otkrist Gupta, Tristan Swedish, and Ramesh
Raskar. 2018. Split Learning for Health: Distributed Deep Learning
Without Sharing raw patient data. arXiv:abs/1812.00564.

[67] Haibin Wang, Ce Ge, Hesen Chen, and Xiuyu Sun. 2023. PreNAS:
Preferred One-Shot Learning Towards Efficient Neural Architecture
Search. In International Conference on Machine Learning.

[68] Siqi Wang, Anuj Pathania, and Tulika Mitra. 2020. Neural Network
Inference on Mobile SoCs. IEEE Design & Test.

[69] Yiding Wang, Decang Sun, Kai Chen, Fan Lai, and Mosharaf Chowd-
hury. 2022. Egeria: Efficient DNN Training with Knowledge-Guided
Layer Freezing. European Conference on Computer Systems.

[70] Zhiyuan Wang, Hongli Xu, Yang Xu, Zhida Jiang, and Jianchun Liu.
2023. CoopFL: Accelerating Federated Learning with DNN Partitioning
and Offloading in Heterogeneous Edge Computing. Comput. Netw.

[71] Bichen Wu, Forrest Iandola, Peter H. Jin, and Kurt Keutzer. 2017.
SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural
Networks for Real-Time Object Detection for Autonomous Driving.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops.

[72] Di Wu, Rehmat Ullah, Paul Harvey, Peter Kilpatrick, Ivor Spence, and
Blesson Varghese. 2022. FedAdapt: Adaptive Offloading for IoT Devices
in Federated Learning. IEEE Internet of Things Journal.

[73] Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu, and Jian Cheng.
2016. Quantized Convolutional Neural Networks for Mobile Devices.
In IEEE Conference on Computer Vision and Pattern Recognition.

[74] Fang Yu, Li Cui, Pengcheng Wang, Chuanqi Han, Ruoran Huang, and
Xi Huang. 2021. EasiEdge: A Novel Global Deep Neural Networks
Pruning Method for Efficient Edge Computing. IEEE Internet of Things

Journal (2021).
[75] Ruizhe Zhao and Wayne W. C. Luk. 2018. Efficient Structured Pruning

and Architecture Searching for Group Convolution. 2019 IEEE/CVF
International Conference on Computer Vision Workshop.

[76] Barret Zoph and Quoc Le. 2017. Neural Architecture Search with
Reinforcement Learning. In International Conference on Learning Rep-
resentations.

Appendix

A Backpropagation is Memory Intensive
Consider an𝑁 -layer CNN, denoted by 𝐹 (𝜃), where 𝜃 belongs
to the set {𝜃1, 𝜃2,, 𝜃𝑁 } and 𝜃𝑛 specifies the parameters in
the 𝑛𝑡ℎ layer. Backpropagation-based training operates in
two phases: the forward pass and the backward pass.
During the forward pass, the training input 𝑥 traverses

through the CNN 𝐹 (𝜃) with all intermediate activations
𝑎 ∈ {𝑎1, 𝑎2,, 𝑎𝑁 } being retained, thereby yielding the out-
put𝑦 = 𝐹 (𝜃 ;𝑥). This output𝑦, in conjunction with the target
output 𝑦, is fed into a global loss function 𝐿(𝑦,𝑦) that repre-
sents the quality of the predicted output.
Computation of the gradients ∇𝐿(𝜃𝑛) proceeds via the

chain rule, as illustrated below:

𝜕𝐿

𝜕𝜃𝑛
=
𝜕𝐿

𝜕𝑎𝑛
× 𝜕𝑎𝑛
𝜕𝑧𝑛
× 𝜕𝑧𝑛
𝜕𝜃𝑛

(4)

The output of a neuron before activation is computed as:

𝑧𝑛 = 𝑎𝑛−1 · 𝜃𝑛 (5)

Differentiating this w.r.t. 𝜃𝑛 gives:

𝜕𝑧𝑛

𝜕𝜃𝑛
= 𝑎𝑛−1 (6)

The output after the activation function, 𝜎 , is given by:

𝑎𝑛 = 𝜎 (𝑧𝑛) (7)

Considering the dependence on the activation function,
the gradient of the loss with respect to the pre-activation
output is:

𝜕𝑎𝑛

𝜕𝑧𝑛
= 𝜎 ′ (𝑧𝑛) (8)

Substituting into Equation 4 gives:

𝜕𝐿

𝜕𝜃𝑛
=
𝜕𝐿

𝜕𝑎𝑛
× 𝜎 ′ (𝑧𝑛) × 𝑎𝑛−1 (9)

After computing the gradients for the final layer, the back-
ward pass begins to systematically propagate gradients from
the last to the initial layer. The backward pass necessitates
the preservation of all activations during the forward pass.
This is because the gradient computation for layer 𝑛 in the
backward pass depends on the activations from the prior
layer (𝑛 − 1) as shown in Equation 9. These gradients guide
the parameter updates aimed at reducing the training loss.

EuroSys ’24, April 22–25, 2024, Athens, Greece Saikumar et al.

B Theoretical Analysis
The theoretical foundations of end-to-end CNN training us-
ing classic local learning have been presented in the litera-
ture [6]. The NeuroFlux approach advances local learning
by offering a strategy to segment the CNN into 𝑀 distinct
blocks and train each block sequentially with unique batch
sizes. Our analysis builds on existing work [6], but our ob-
jective is to explore adaptive local learning underpinning
NeuroFlux that has not been considered elsewhere. Con-
vergence is guaranteed under reasonable assumptions [7].
Our starting point is the convergence dynamics of the first
block. These are akin to patterns observed in smaller CNNs
when trained using local learning [6].

B.1 Convergence of the First Block
Consider a block at iteration 𝑡 with 𝑁 layers. The parame-
ters of the 𝑛𝑡ℎ layer (including the auxiliary parameters) are
represented by Ψ𝑡𝑛 . While conventional end-to-end BP-based
training maintains a fixed input distribution to the model,
this is not the case with local learning. The input distribution
to subsequent layers in local learning is time-varying, except
for the first layer, which maintains a fixed input distribution.
This time-varying nature of the input distribution is attrib-
uted to the fact that each layer, (except the first), is trained
based on outputs generated from its preceding layer. As data
is propagated and the layers are updated, the distribution of
the outputs change over iterations.

The training batches can be represented as:

𝐷𝑡𝑗𝑛 ≜ {𝑥
𝑡
𝑗𝑛
, 𝑦 𝑗 } 𝑗≤ 𝐽 (10)

where 𝑥𝑡𝑗𝑛 denotes the 𝑗𝑡ℎ output batch of the 𝑛𝑡ℎ layer (input
batch to the (𝑛 + 1)𝑡ℎ layer) at iteration 𝑡 , and its correspond-
ing target batch 𝑦 𝑗 remains invariant over all iteration 𝑡 and
layers 𝑛. Meanwhile, 𝐽 represents the cumulative number
of training batches. Each training batch follows the density
𝜌𝑡𝑛 (𝑘). For layers with 𝑛 > 1, the convergence density of its
previous layer is 𝜌∗𝑛−1 (𝑘). The drift of the preceding layer is
described as:

𝑠𝑡𝑛−1 =

∫
|𝜌𝑡𝑛−1 (𝑘) − 𝜌∗𝑛−1 (𝑘) |𝑑𝑘 (11)

The drift for the initial layer (𝑛 = 1) is zero, since its input
distribution remains constant. The expected risk is:

L = E𝜌∗
𝑛−1
[ℓ (𝐷 𝑗𝑛−1 ;Ψ𝑛)] (12)

where ℓ represents an invariably non-negative loss function.
Consider the following assumptions. Assumption 1 to As-

sumption 3 are standard non-convex setting [7] and Assump-
tion 4 considers the time-varying input distribution [6]
• Assumption 1 (L-smoothness and Differentiability): The
gradient of L is L-Lipschitz continuous. The learning rate
of SGD is represented as 𝜂𝑡 and for 𝐷𝑡𝑗𝑛−1 ∼ 𝜌

𝑡
𝑛−1 (𝑘). Our

parameter sequence is:

Ψ𝑡+1𝑛 = Ψ𝑡𝑛 − 𝜂𝑡∇Ψ𝑛 ℓ (𝐷𝑡𝑗𝑛−1 ;Ψ
𝑡
𝑛) (13)

• Assumption 2 (Robbins-Monro Criterion):∑︁
𝑡

𝜂𝑡 = ∞ and
∑︁
𝑡

𝜂2𝑡 < ∞ (14)

• Assumption 3 (Bounded Variance): A boundary 𝐺 > 0
exists such that for every 𝑡 and Ψ𝑛 :

E𝜌𝑡
𝑛−1
[| |∇Ψ𝑛 ℓ (𝐷 𝑗𝑛−1 ;Ψ𝑛) | |2] ≤ 𝐺 (15)

• Assumption 4 (Stabilization of Prior Layer):∑︁
𝑡

𝑠𝑡𝑛−1 < ∞ (16)

Given Assumption 3 and Assumption 4 and as already
demonstrated in Lemma 4.1 presented in the literature [6]:

E𝜌∗
𝑛−1
[| |∇Ψ𝑛 ℓ (𝐷 𝑗𝑛−1 ;Ψ𝑛) | |2] ≤ 𝐺 (17)

Additionally, fromLemma 4.2 presented in the literature [6]
and given Assumption 1, Assumption 3 and Assumption 4:

E[L(Ψ𝑡+1𝑛)] ≤ E[L(Ψ𝑡𝑛)]

+ 𝐿𝐺
2
𝜂2𝑡 − 𝜂𝑡 (E[| |∇L(Ψ𝑡𝑛) | |2] −

√
2𝐺𝑠𝑡𝑛−1) (18)

Furthermore, based on the above four assumptions and
using Proposition 4.2 presented in the literature [6], each
term in the following equation converges.

𝑇∑︁
𝑡=0

𝜂𝑡E[| |∇L(Ψ𝑡𝑛) | |2]

≤ E[L(Ψ0
𝑛)] +𝐺

𝑇∑︁
𝑡=0

𝜂𝑡 (
√︃
2𝑠𝑡
𝑛−1 +

𝐿𝜂𝑡

2
) (19)

Hence, the first block exhibits convergence. This is in
alignment with the convergence criteria detailed in the liter-
ature [7] and resembles end-to-end local learning of a small
CNNs [6]. Upon completing the training of the first block,
which comprises 𝑁 layers, the trained output batches (acti-
vations) from the final layer, denoted as 𝐷∗𝑗𝑁 ≜ {𝑥

∗
𝑗𝑁
, 𝑦 𝑗 } 𝑗<𝐽 ,

are saved to storage.

B.2 Convergence analysis of the Subsequent Blocks
B.2.1 Setting for the Second Block: Consider the second
block at iteration 𝑡 , comprised of 𝑀 layers. While the first
layer of the second block can be perceived as the 𝑁 + 1 layer
from the perspective of the previous block, we will use the
index 𝑚 to clarify layers within the second block, where
𝑚 = 1, . . . , 𝑀 . The outputs (activations) from the final layer
of the initial block become the inputs for this block.
Notably, this block is trained using a distinct batch size,

leading to a different number of training batches, 𝑄 . These
training batches are represented as:

𝑍 𝑡𝑞𝑚 ≜ {𝑥
𝑡
𝑞𝑚
, 𝑦𝑞}𝑞<𝑄 (20)

The input distribution for the layer𝑚 = 1 is static, reflect-
ing the training dynamics of the first layer in the primary
block. This is because the inputs for this layer are obtained

NeuroFlux: Memory-Efficient CNN Training Using Adaptive Local Learning EuroSys ’24, April 22–25, 2024, Athens, Greece

from the outputs of the last layer of the preceding block,
fetched directly from storage.
Each training batch conforms to the density 𝛾𝑡𝑚 (𝑝). For

layers with𝑚 > 1, we define the convergence density of its
preceding layer as 𝛾∗𝑚−1 (𝑝). This gives rise to the drift of the
previous layer, defined as:

𝑠𝑡𝑚−1 =

∫
|𝛾𝑡𝑚−1 (𝑝) − 𝛾∗𝑚−1 (𝑝) |𝑑𝑝 (21)

The resultant expected risk is:
L = E𝛾∗

𝑚−1
[ℓ (𝑍𝑞𝑚−1 ;Ψ𝑚)] (22)

B.2.2 Analytical Similarity with the First Block: The
analytical approach to understand the convergence of the
second block shares resemblance with that of the first block.
The distinction arises from the unique training dataset and
batch size of the current block. The mathematical representa-
tions and assumptions applied to the first block can similarly
be applied to the second block, establishing convergence on
the second block. The analysis reinforces that the second

block can be conceptualized as an independent CNN with
its own dataset and batch size.

B.2.3 Extension to Subsequent Blocks: Drawing upon
the understanding of the first two blocks, it becomes clear
that the analytical framework can be applied to all subse-
quent blocks within the CNN when utilizing adaptive local
learning. The convergence of the entire CNN using Neu-
roFlux can be understood as training several smaller, dis-
crete, and independent CNNs via local learning [6], with
each having its own dataset and batch size.

C Inference Throughput
Table 3 shows the inference throughput measured as im-
ages per second (images/s) of BP, classic LL and NeuroFlux
on different hardware platforms for VGG-16, VGG-19 and
ResNet-18 on three different datasets. The speed-up Neu-
roFlux achieves is shown alongside. BP and classic LL have
the same throughput since the trained DNNs produced by
these methods have the same number of parameters.

EuroSys ’24, April 22–25, 2024, Athens, Greece Saikumar et al.

Table 3. Inference throughput (images per second; images/s) of the trained output DNN on different platforms, including the
Tiny ImageNet dataset.

Platform Dataset Model images/s SpeedupBP/classic LL NeuroFlux

Pi4B
CIFAR-10

VGG-16 6 19 3.17x
VGG-19 5 12 2.40x
ResNet-18 3 6 2.00x

CIFAR-100

VGG-16 6 15 2.50x
VGG-19 5 12 2.40x
ResNet-18 3 5 1.67x

Tiny ImageNet

VGG-16 6 15 2.50x
VGG-19 5 17 3.40x
ResNet-18 3 5 1.66x

Jetson Nano
CIFAR-10

VGG-16 213 706 3.31x
VGG-19 164 551 3.36x
ResNet-18 180 424 2.36x

CIFAR-100

VGG-16 212 638 3.01x
VGG-19 160 554 3.46x
ResNet-18 181 364 2.01x

Tiny ImageNet

VGG-16 213 632 2.96x
VGG-19 160 632 3.95x
ResNet-18 180 330 1.83x

Xavier NX
CIFAR-10

VGG-16 1278 3811 2.98x
VGG-19 1053 2590 2.46x
ResNet-18 870 1600 1.84x

CIFAR-100

VGG-16 1272 3015 2.37x
VGG-19 1034 2642 2.56x
ResNet-18 899 1481 1.65x

Tiny ImageNet

VGG-16 1270 2997 2.35x
VGG-19 842 2960 3.51x
ResNet-18 885 1430 1.61x

AGX Orin
CIFAR-10

VGG-16 3706 10995 2.97x
VGG-19 3512 8271 2.36x
ResNet-18 2761 5779 2.09x

CIFAR-100

VGG-16 3600 9746 2.71x
VGG-19 3442 8126 2.36x
ResNet-18 2578 4766 1.85x

Tiny ImageNet

VGG-16 3450 9688 2.8x
VGG-19 3320 9647 2.9x
ResNet-18 2392 4391 1.83x

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 On-device Training
	2.2 Backpropagation is Memory Intensive
	2.3 Training Paradigms Beyond Backpropagation

	3 The Case for Adaptive Local Learning
	4 NeuroFlux Overview
	5 Design
	5.1 Representing Local Learning
	5.2 Modules
	5.3 Efficient Forward Propagation via Prefetching and Adaptive Batching
	5.4 Trained Output CNN

	6 Evaluation
	6.1 Experimental Setup
	6.2 End-to-End Training Performance
	6.3 Efficiency of Trained Output CNN
	6.4 System Overheads

	7 Related work
	8 Future Directions and Conclusions
	References
	A Backpropagation is Memory Intensive
	B Theoretical Analysis
	B.1 Convergence of the First Block
	B.2 Convergence analysis of the Subsequent Blocks

	C Inference Throughput

