
Groups defined by language theoretic classes

Raad Sameer Al Sheikh Al Kohli

A thesis submitted for the degree of PhD
at the

University of St Andrews

2024

Full metadata for this thesis is available in
 St Andrews Research Repository

at:
https://research-repository.st-andrews.ac.uk/

Identifier to use to cite or link to this thesis:

DOI: https://doi.org/10.17630/sta/870

This item is protected by original copyright

This item is licensed under a
Creative Commons Licence

https://creativecommons.org/licenses/by-nc-nd/4.0/

https://research-repository.st-andrews.ac.uk/
https://doi.org/10.17630/sta/870
https://creativecommons.org/licenses/by-nc-nd/4.0/

Candidate's declaration
I, Raad Sameer Al Sheikh Al Kohli, do hereby certify that this thesis, submitted for the degree of
PhD, which is approximately 23,000 words in length, has been written by me, and that it is the
record of work carried out by me, or principally by myself in collaboration with others as
acknowledged, and that it has not been submitted in any previous application for any degree. I
confirm that any appendices included in my thesis contain only material permitted by the
'Assessment of Postgraduate Research Students' policy.
I was admitted as a research student at the University of St Andrews in January 2018.
I received funding from an organisation or institution and have acknowledged the funder(s) in
the full text of my thesis.

Date Signature of candidate

Supervisor's declaration
I hereby certify that the candidate has fulfilled the conditions of the Resolution and Regulations
appropriate for the degree of PhD in the University of St Andrews and that the candidate is
qualified to submit this thesis in application for that degree. I confirm that any appendices
included in the thesis contain only material permitted by the 'Assessment of Postgraduate
Research Students' policy.

Date Signature of supervisor

Permission for publication
In submitting this thesis to the University of St Andrews we understand that we are giving
permission for it to be made available for use in accordance with the regulations of the
University Library for the time being in force, subject to any copyright vested in the work not
being affected thereby. We also understand, unless exempt by an award of an embargo as
requested below, that the title and the abstract will be published, and that a copy of the work
may be made and supplied to any bona fide library or research worker, that this thesis will be
electronically accessible for personal or research use and that the library has the right to
migrate this thesis into new electronic forms as required to ensure continued access to the
thesis.
I, Raad Sameer Al Sheikh Al Kohli, confirm that my thesis does not contain any third-party
material that requires copyright clearance.
The following is an agreed request by candidate and supervisor regarding the publication of this
thesis:

Printed copy
No embargo on print copy.

Electronic copy
No embargo on electronic copy.

Date Signature of candidate

or 042024

051042024

5th April 2024

oon-202

Date Signature of supervisor

Underpinning Research Data or Digital Outputs
Candidate's declaration
I, Raad Sameer Al Sheikh Al Kohli, hereby certify that no requirements to deposit original
research data or digital outputs apply to this thesis and that, where appropriate, secondary data
used have been referenced in the full text of my thesis.

Date Signature of candidate

05 0412024

5th April 2024

oran

-

To Mum and Dad,

Abstract

In this thesis we shall study classes of groups defined by formal languages. Our
first main topic is the class of groups defined by having an ET0L co-word problem;
i.e., the class of co-ET0L groups. We show this class is closed under taking direct
products and standard restricted wreath products with virtually free top groups.
We also show the class is closed under passing to finite index overgroups and
finitely generated subgroups. Further, we show that this class contains the free
product Zn ⇤ Zm as well as Zn ⇤G for any virtually free group G.

The second topic that we consider is a new class of groups that we introduce
called epiregular groups. We show that this class contains all automatic groups and
the Baumslag-Solitar group BS(1, 2). Further we show that the class of epireg-
ular groups is closed under taking graph products, and passing to finite index
overgroups.

Acknowledgements

I would like to thank my supervisors Collin Bleak and Martyn Quick for their
support and advice over the years.

A special thanks goes to Collin Bleak and James Mitchell, thank you very much
for your friendship.

I would also like to thank my aunt, Aishah Murtada, for her invaluable support
throughout the years.

I would also like to thank Pilar Duque for all her support and encouragement.
A thank you must also go to Niki Stalker and all the occupants of O�ce 226 for
all of the chats. I would also like to thank Matthew McDevitt for many long
and enjoyable discussions about various topics of mathematics and life, as well as
teaching me about drawing automata in TikZ.

This work was supported by the University of St Andrews (School of Mathe-
matics and Statistics, and the St Leonard’s Scholarship).

Notation

This merely serves as quick guide on where to find some definitions for functions
that are used throughout this thesis.

• The function ⇢ is defined in Definition 2.3.9.

• The functions � and � are defined in Definition 2.3.13.

• The function ' is defined in Definition 4.2.3.

Contents

1 Introduction 3

2 Background 9
2.1 Preliminaries . 9
2.2 Formal Language Theory . 14

2.2.1 Regular Languages and Finite State Automata 16
2.2.2 Context-free Languages and Pushdown Automata 22
2.2.3 Indexed Languages and Nested Stack Automata 31
2.2.4 ET0L Languages and Check-stack Pushdown Automata . . . 47

2.3 Classes of groups defined by languages 65
2.3.1 Regular Groups . 67
2.3.2 Context-free Groups . 69
2.3.3 coCF Groups . 85
2.3.4 co-indexed Groups . 96

3 Stack Groups 98
3.1 Introduction . 98
3.2 Technical Lemma due to Holt–Röver 100

3.2.1 Definitions . 100
3.2.2 Lemma . 102

3.3 Free Products . 107
3.3.1 Outline . 107

4 co-ET0L Groups 111
4.1 Introduction . 111
4.2 Direct Products . 112

4.2.1 Definition of Automaton . 113
4.2.2 Proof of Theorem 4.2.1 . 116

4.3 Finite Index Overgroups . 122
4.3.1 Definition of Automaton . 122
4.3.2 Proof of Theorem 4.3.1 . 126

1

4.4 Finitely Generated Subgroups . 135
4.4.1 Definition of Automaton . 135
4.4.2 Proof of Theorem 4.4.1 . 138

4.5 Wreath Products With Virtually Free Top Groups 143
4.5.1 Definition of Automaton . 144
4.5.2 Proof of Theorem 4.5.1 . 153

4.6 The free product Zn ⇤ Zm . 173
4.6.1 Definition of Automaton . 174
4.6.2 Proof of Theorem 4.6.1 . 183
4.6.3 Examples . 187

4.7 The free product Zn ⇤G for a virtually free G 194
4.7.1 Definition of Automaton . 195
4.7.2 Proof of Theorem 4.7.1 . 209

5 Epiregular Groups 214
5.1 Introduction . 214
5.2 Well-definedness of epiregularity . 215
5.3 Examples . 216

5.3.1 Automatic groups . 218
5.3.2 Baumslag-Solitar group BS(1, 2) 220

5.4 Closure Properties . 222
5.4.1 Graph Products . 223

6 Conclusion 227

Bibliography 233

2

Chapter 1

Introduction

The mathematics in this thesis lies in the intersection of formal language theory
and group theory. There is a long history of study of the interaction between
these two topics. It traces its origin back to 1911 when Dehn introduced several
questions in [19]. One of those questions is the word problem which is as follows.

Let G be a finitely generated group and let X be finite generating set
for G. Does there exist an algorithm for determining, in finite time,
whether or not a product w in the generators X of G is equal to the
identity of G?

It is now known that no such algorithm exists in general. In particular, in [36],
Novikov showed that there exists a finitely presented group G for which the word
problem is undecidable. The word problem has been related to group structure
through a number of results, the most prominent of which is perhaps the Boone-
Higman theorem [12] stating that a finitely generated group G has solvable word
problem if and only if there exists a simple group H and finitely presented group
K such that G embeds into H and H embeds into K. It is now believed that a
finitely generated group G has solvable word problem if and only if G embeds into
some finitely presented simple group. This is referred to as the Boone-Higman
conjecture [11, 12]. For further information regarding the Boone-Higman conjec-
ture the reader may wish to consult [6]. The word problem of a group naturally
gives rise to a set (which we describe below), and it is this set that forms the basis
of what we study in this thesis.

Let A be a finite set. A subset L of the set A⇤ of finite strings of letters in A

is referred to as a formal language over A. If G is a group with finite generating
set X, then when studying the word problem in G, one is naturally led to consider
an associated formal language over the alphabet X±. (We write X± for the union
of X with the set of inverses of elements of X.) This language will be denoted
by WP (G,X) and will consist of all finite strings over X

± that are equal to the

3

identity when evaluated in G. Thus the word problem asks whether there exists
an algorithm that can determine in finite time whether or not a string over the
alphabet X

± is in WP (G,X). It has become customary to call WP (G,X) the
word problem of G with respect to X as well. Further we call the language that is
the complement in (X±)⇤ of WP (G,X) the co-word problem of G with respect to
X, and we denote it by coWP (G,X).

Various classes of formal languages can be defined by di↵erent types of theoret-
ical machines called automata. The least complicated class of automata studied
is the class of finite state automata. We may think of a finite state automaton as
a directed graph with edge and vertex labels, where we specify initial and final
vertices. The edge labels correspond to letters in the alphabet that are read as
one traverses a path from an initial vertex to a final vertex. We say a string ! is
accepted if ! labels such a path; i.e., there is a path in the graph from an initial
vertex to a final vertex where the concatenation of consecutive edge labels is !. A
language is said to be accepted by the automaton if every string in the language
is accepted. The class of languages accepted by finite state automata is called the
class of regular languages. More complicated language types are defined by more
complicated machine types. These more complicated machine types are typically
generalisations of finite state automata, and they are obtained by adjoining various
memory structures to a finite state automaton. The classes of languages that we
will be particularly concerned with are the context-free languages and the ET0L
languages. We shall not define these at this point in the introduction, but will
define them in Chapter 2 below (see Definition 2.2.15 and Definition 2.2.42).

The main objective in relating groups and their word problems and co-word
problems from a language theoretic perspective is the following task.

Let C be a class of languages. Classify the groups with word
problem belonging to C and similarly classify groups with co-
word problem belonging to C.

This started with a theorem of Anisimov [3] in 1971 (see Proposition 2.3.6
below). He proved that a finitely generated group G has regular word problem if
and only if G is finite. More progress was made in the 1980s by Muller and Schupp
[34, 35] (see Theorem 2.3.8 below). Muller and Schupp proved that a finitely
generated group H has context-free word problem if and only if H is virtually
free. In fact, a finitely generated group is virtually free if and only if the word
problem is deterministic context-free. In 2005 Holt, Rees, Röver, and Thomas
introduced coCF groups in [27]; i.e., groups whose co-word problem is context-
free. Since virtually free groups have deterministic word problem, it follows that
they have context free co-word problem. To date, there is still no classification
of coCF groups. However, there is a conjecture known as Lehnert’s Conjecture.
Lehnert originally conjectured in [31] that every coCF group embeds into the

4

group of quasi-automorphisms of the infinite binary 2-coloured tree QAut(T2,c).
This conjecture has been reinterpreted to the question of whether every coCF
group embeds in Thompson’s group V. This is due to the Bleak, Matucci, and
Neunhö↵er in [9] who embedded QAut(T2,c) into Thompson’s group V as well as
embedded Thompson’s group V into QAut(T2,c).

In their paper, Holt, Rees, Rover, and Thomas conjectured that the class of
coCF groups is not closed under free products. In particular they conjectured that
Z2 ⇤ Z is not coCF . This is now related to Lehnert’s Conjecture due to the work
of Bleak and Salazar-Diaz in [10] as they proved that there is no embedding from
Z2⇤Z into Thompson’s group V . In [28], Holt and Röver proved that Z2⇤Z (among
other free products) is co-indexed. In the same paper, Holt and Rover also proved
that bounded automata groups (a class of groups that contains Grigorchuk’s group)
are co-indexed.

The class of ET0L languages is strictly contained between indexed and context-
free languages. In recent years, a number of papers have been published that take
specific groups that have been proven to be co-indexed in [28] and show that they
are in fact co-ET0L. An example of this is [17] where Ciobanu et al. prove that
Grigorchuk’s group is co-ET0L. This was then extended to proving that bounded
automata groups are co-ET0L by Elder and Bishop in [8].

The work in this thesis is concerned with related questions. We shall study
the class of co-ET0L groups in more depth, and introduce a new class of groups
named epiregular groups. Epiregular groups are groups where there is finite state
automaton accepting a string representing every non-trivial element in the group
(while not accepting any string representing the identity of the group).

In Chapter 2, we give a detailed account of every type of automaton that we
discuss. For each automaton type, we start by giving an intuitive description of
the automaton. We then follow this with the formal definition. Then we link
di↵erent parts of the formal definition with the intuitive descriptions of the au-
tomata. We also provide examples for some of the types of automata. Then we
give an overview of the known results linking automata and groups as well as some
proofs. For example, we give a proof of Anisimov’s theorem as well as provide a
pushdown automaton accepting the word problem for virtually free groups. This
automaton is later used in di↵erent theorems in Chapter 3 (such as Theorem 4.5.1
and Theorem 4.7.1).

In Chapter 3, we give an intuitive description of the automaton accepting
the co-word problem of free products of stack groups, as in [28]. The automata
we construct for proving Theorem 4.6.1 and Theorem 4.7.1 are inspired by the
construction in [28]. The automata used in Theorem 4.6.1 and Theorem 4.7.1
behave in a similar way to that used in [28] to prove that stack groups are closed
under free products, and we include it for completeness.

5

In Chapter 4 we explore closure properties of the class of co-ET0L groups, and
we obtain the following results. Our first result proves that the class of co-ET0L
groups is closed under direct products.

Theorem 4.2.1 If G and H are co-ET0L groups, then G⇥H is co-ET0L.

We also prove that the class of co-ET0L groups is closed under passing to under
finite index overgroups.

Theorem 4.3.1 Let G be a group and let H be a finite indexed subgroup of G. If
H is a co-ET0L group, then G is a co-ET0L group.

The proof of the above theorem uses a technique where we simulate reading a string
in H upon reading generators of G. This technique is also used in the following
theorem showing that the class of co-ET0L groups are closed under passing to
finitely generated subgroups.

Theorem 4.4.1 Let G be a finitely generated group and H be a finitely generated
subgroup of G. If G is co-ET0L, then H is co-ET0L.

We also prove that the class of co-ET0L groups is closed under taking a stan-
dard restricted wreath product with a virtually free top group.

Theorem 4.5.1 Let B be a co-ET0L group and let T be a finitely generated virtually
free group. Then the standard restricted wreath product W = B o T is co-ET0L.

We note that closure results of this type are in [27] and [28] with respect to
the appropriate machine types explored in those papers. That is, [27] and [28]
show that the classes of groups considered are closed under the operations which
we consider in the above theorems.

We also sharpen results about groups that were proven to be co-indexed in [28].
We do this by proving that they are in fact co-ET0L. This follows the example
of [17] and [8], where they prove that Grigorchuk’s group and bounded automata
groups are in fact co-ET0L respectively. We do this by proving that some free
products are in the class of co-ET0L groups.

Theorem 4.6.1 The free product Zn ⇤ Zm is co-ET0L.

Using similar methods we also prove the following result.

Theorem 4.7.1 Let G be a virtually free group. Then the free product Zn ⇤ G is
co-ET0L.

6

We note that by Theorem 4.6.1, we know that Z2 ⇤ Z is co-ET0L. This is a
refinement on what was previously known about Z2⇤Z, as it was known that Z2⇤Z
is co-indexed. It is yet unknown whether the conjecture in [27] regarding Z2 ⇤ Z
being not coCF is true or not. However we believe our result moves us a step
closer to the answer as we have reduced the complexity of the machine involved in
accepting the co-word problem.

It would be interesting to investigate whether the restrictions posed in [28] to
obtain a class that is closed under free products can be used to obtain an analo-
gous subclass of co-ET0L groups. We believe this proposed subclass to be closed
under free products as well as the operations in Theorem 4.2.1, Theorem 4.3.1,
Theorem 4.4.1, and Theorem 4.5.1. We further believe that the constructions used
to prove the aforementioned theorems may be used to prove analogous results for
this proposed subclass, but perhaps with some modifications. However, we have
not checked this.

In the final chapter this thesis, we introduce a new class of groups defined
by machines. This class is called epiregular groups. These groups are defined by
weakening the definition of groups whose co-word problem is regular. That is, we
require that a finite state automaton accepts a string representing a non-trivial
element, for every non-trivial element of the group. We also require that no string
representing the identity of the group is accepted.

Definition 5.1.1 Let G be a finitely generated group. Let X be a finite (symmet-
rically closed) generating set for G. We say that G is epiregular with respect to X

if there exists a finite state automaton A such that

• L(A) \WP (G,X) = ?

• for every non-identity element, h, there exists wh 2 coWP (G,X) such that
wh 2 L(A) and wh =G h.

The class of epiregular groups arose first in an analysis by Jim Belk of a con-
struction of Ville Salo. Salo’s construction uses a regular language R, where every
element of R represents a nontrivial element of a right angled Artin group H (and
every non-trivial element of H is represented by a string in R) to embed it into
the Brin-Thompson group 2V [40]. This construction sharpened the main result
of Belk, Bleak and Matucci in [5], where for each right angled Artin group H they
find a natural k (which grows at most quadratically in the number of generators
of H) and an embedding of H into kV . Given the utility of Salo’s construction it
is of interest to explore the class of epiregular groups for their own sake, and also
to try to discern the feasibility of generalising Salo’s construction so as to embed
epiregular groups in general into some plausible class of finitely presented simple

7

groups (e.g., the Brin—Thompson groups nV); possibly achieving some progress
on the Boone—Higman conjecture.

We prove that epiregularity is independent of generating set.

Theorem 5.2.1 Let G be a finitely generated group, and let X and Y be finite
symmetrically closed generating sets for G. Then G is epiregular with respect to
X if and only if G is epiregular with respect to Y .

We also prove that epiregular groups are closed under passing to finite index
overgroups.

Theorem 5.4.1 Let H be an epiregular group. Let G be a finite index overgroup
of H. Then G is epiregular.

Further we also show that epiregular groups are closed under taking graph
product of groups (see Definition 5.4.2).

Theorem 5.4.10 Let � be a finite graph as above. For every vI 2 V (�), let GI be
an epiregular group with finite generating set XI . Let G� be the graph product of
groups {GI | vI 2 V (�)} over the graph �. Then G is epiregular.

We also prove that the class of epiregular groups contains some well-studied
classes of groups.

Theorem 5.3.6 Every automatic group is epiregular.

It is well known that Baumslag Solitar groups in general are not automatic. In
particular BS(1, 2) is not automatic. However, we prove the following result.

Theorem 5.3.8 The Baumslag-Solitar group BS(1, 2) = ha, b | b�1
ab = a

2i is
epiregular.

We note the two above theorems prove that the class of epiregular groups
intersects with the class of coCF groups. We know this since context-free groups
form a subclass of coCF groups, and context-free groups are virtually free and thus
automatic, but the classes are not equal since BS(1, 2) is not coCF as is shown
in [27]. Further since BS(1, 2) is not automatic, it follows from the previous two
theorems that the class of epiregular groups contains the class of automatic groups,
but the classes are not equal. We state these as corollaries (Corollary 5.3.10 and
Corollary 5.3.11).

8

Chapter 2

Background

This chapter serves to set the foundation for the rest of the thesis. We start with
a short preliminaries section where we develop the basic terminology that will
be used throughout the thesis. The other two sections concern formal language
theory and group theory. In 2.2, we describe what is meant by a language and
the various classes of languages that concern us, all defined using particular types
of theoretical machines. In 2.3, we are primarily concerned with the classes of
groups that we define in terms of these formal languages.

2.1 Preliminaries

We start by introducing some basic objects which will be used throughout the
thesis. One of the most fundamental concepts we will need is that of an alphabet
and strings over that alphabet. These are tied to elements of the free monoid. We
shall elaborate further on this below.

Let ⌃ be a finite set, which we shall refer to as an alphabet. A string over the
alphabet ⌃ is a finite sequence of symbols where every symbol belongs to ⌃. The
set of all strings over an alphabet ⌃ is denoted by ⌃⇤

. We shall write a string !

over an alphabet ⌃ as ! = �1�2 · · · �n where each �i 2 ⌃. We say that the length of
this ! is n and we write |!| for the length of !. Further, we call the unique string
of length 0 the empty string and denote it by ". Observe that equipped with the
concatenation operation, ⌃⇤ is the free monoid over ⌃ with " being the identity of
⌃⇤ as a monoid. Sometimes we will stress that strings ought to be considered as
belonging to a free monoid by decorating the equals symbol with the free monoid
as a subscript, e.g. =⌃⇤ .

We do this formally here. LetM be a monoid withX ✓ M . Then there exists a
monoid homomorphism from X

⇤ to M induced by x 7! x. If w1, w2 2 X
⇤, we write

w1 =M w2 when they have the same image. We think of this as an evaluation in

9

M . A special case of this is the following. Let ⌃ be an alphabet and M = ⌃⇤ with
identity " (the empty string). Consider strings in ⌃[{"}, these are in (⌃[{"})⇤.
For such w1, w2, w1 =⌃⇤ w2 means w1 and w2 evaluate to the same string in ⌃⇤.

In what follows we introduce some graph theoretic notions which will help us
in understanding finite state automata (Intuitive Description 2.2.1.1). As we shall
discuss in 2.2.1.1, we read a sequence of letters by concatenating along a path
in an edge-labelled directed graph. The definitions below make these concepts
precise. We start by defining directed graphs.

Definition 2.1.1 (Directed Graph). A directed graph � is a pair (V,E) where V

is called the vertex set of � and E ✓ V ⇥ V is called the edge set of �. We will
sometimes refer to the vertex set of � by V (�). Similarly, we will refer to the edge
set of � by E(�). We call elements of the vertex and edge sets vertices and edges
respectively. If (v, w) 2 E then we say that there’s an edge (or arrow) from v to
w. Finally, we say a directed graph is finite is the vertex set is finite.

We will draw finite directed graphs as figures where the vertices are repre-
sented by circles with the label of the vertex in the circle. An edge (v, w) 2 E is
represented by an arrow from the circle representing v to the one representing w.

|

Example 2.1.2.

q0 q1 q2 q3 q4

Wemodify the definition above to obtain the following definition of edge-labelled
directed graph.

Definition 2.1.3 (Edge-labelled Directed Graph). An edge-labelled directed graph
� is a triple (V,⌃, E) where V is called the vertex set, ⌃ is called the labelling set
and E ✓ V ⇥⌃⇥V is called the edge set. We will sometimes refer to the vertex set
of � by V (�). Similarly, we will refer to the edge set of � by E(�). We call elements
of the vertex and edge sets vertices and edges respectively. If (v, �, w) 2 E then
there is an edge from v to w with label � we say that there is a � edge (or arrow)
from v to w. Finally, we say an edge-labelled directed graph is finite if both the
vertex set and the labelling set are finite.

We will draw finite edge-labelled directed graphs as figures where the vertices
are represented by circles with the label of the vertex in the circle. An edge
(v, �, w) 2 E is represented by an arrow from the circle representing v to the one
representing w with � on top of the arrow labelling it. |

10

We give an example of a diagram representing a finite edge-labelled directed
graph below.

Example 2.1.4.

q0 q1 q2 q3 q4

a

b

" a b

"

"

b

We are now ready to define a path in an edge-labelled directed graph.

Definition 2.1.5 (Path in an edge-labelled directed graph). Let � = (V,⌃, E) be
an edge-labelled directed graph. Let v, w 2 V. A path from v to w is a sequence
of edges e1, e2, . . . , en 2 E such that ei = (vi�1, �i, vi). We denote such a path by
v0

�1�! v1
�2�! · · · �n�! vn. |

As stated earlier we will concatenate along a path, we make this precise below.

Definition 2.1.6 (Concatenation along a path). Let � = (V,⌃, E) be an edge-
labelled directed graph. Let p = v0

�1�! v1
�2�! · · · �n�! vn be a path. Then the

concatenation along the path p is the string �1�2 · · · �n. |

Definition 2.1.7 (Concatenation along a path with removal of "). Let � = (V,⌃[
{"}, E) be an edge-labelled directed graph. Let p = v0

�1�! v1
�2�! · · · �n�! vn be a

path. Then we say a string ! is the concatenation along the path p with removal
of "s if �1�2 · · · �n =⌃⇤ !, i.e., the string ! is obtained from �1�2 · · · �n by deleting
all occurrences of " from �1�2 · · · �n. |

The distinction between the two definitions above is by removing occurrences
of the symbol " from a string, we are emphasising that the string should be viewed
in the free monoid with " being the identity of the monoid. As such, whenever we
use the Definition 2.1.7 we are reminding the reader to view the string in the free
monoid.

The following section explores formal language theory. Most definitions in the
following section rely heavily on relations and properties such as reflexivity and
transitivity of relations. We define these below together with the definition of
reflexive transitive closure which we make use of when defining acceptance for var-
ious kinds of automata (as in Definition 2.2.6,Definition 2.2.19, Definition 2.2.32,
and Definition 2.2.46).

11

Definition 2.1.8 (Relation, Reflexive and Transitive). Let X be a set. A relation
⇠ on X is a subset of X ⇥X. We write x ⇠ y to denote (x, y) 2⇠ .

We say ⇠ is reflexive if x ⇠ x for all x 2 X.

We say ⇠ is transitive if it satisfies the following condition: if x ⇠ y and y ⇠ z

then x ⇠ z, for all x, y, z 2 X. |

We now define the reflexive transitive closure.

Definition 2.1.9 (Reflexive Transitive Closure). Let X be a set with ⇠ being a
relation on X. The reflexive transitive closure of ⇠ is a relation ⇠⇤ on X with the
following two properties:

• ⇠⇤ is reflexive and transitive, and

• ⇠⇤ is the smallest reflexive transitive relation (with respect to containment)
such that ⇠✓⇠⇤

.

|

Throughout this thesis, we will make use of the notion of prefixes.

Definition 2.1.10 (Prefixes). Let X be a finite set. Let w1, w2 2 X
⇤ we say that

w1 is a prefix of w2, denoted w1  w2, if and only if there exists a finite string
(possibly the empty string) v 2 X

⇤ such that w2 = w1v. |

We will now recall some definitions from basic group theory as well as introduce
some language that will be useful to us later.

All groups we discuss in this thesis shall be finitely generated and all gener-
ating sets shall be finite. Further, unless we specify otherwise all generating sets
are symmetrically closed, i.e., have the following property: if the generating set
contains an element g then it must also contain g

�1
. Further we shall denote the

identity element of a group G by 1G throughout.
Let G be a group with a subgroup H with H having finite index in G. We say

G is a finite index overgroup of H.

In Chapter 4, we make use of free products and standard restricted wreath
products to draw conclusions about closure results for a class of formal languages.
Below we give the group theoretic background necessary for those arguments. We
start with free products below.

Definition 2.1.11 (Free products). The free product of G and H is a group F

together with injective homomorphisms G ! F and H ! F such that any pair of
homomorphisms from G and from H to a common group L can be extended to a
homomorphism from F to L. |

12

We note that given groups G and H, the free product of G and H exists and
is unique. We denote the free product by G ⇤H. Further, the following theorem
gives a presentation for the free product.

Theorem 2.1.12. Let G := hXG|RGi and H := hXH |RHi be two presented groups.
Set F to be the group presented by hXG[XH |RG[RHi. Then F is the free product
of G and H.

Let G,H and F be as in the above theorem. Recall a word w in the generators
of F is a product of the generators of F and can be expressed as

u1v1u2v2 · · · unvn

where ui 2 XG

⇤ and vi 2 XH

⇤
, for i 2 {1, · · · , n} and some n 2 N. (Recall that

we have taken our generating sets to be symmetrically closed.)
We will introduce some terminology regarding the ui and vi above. However

we need the following foundational definition.

Definition 2.1.13 (Contiguous subword). Let G be a group with generating set
X. Let w = x1x2 · · · xn 2 X

⇤
. We say u 2 X

⇤ is a contiguous subword of w if
w = u1uu2 for some u1, u2 2 X

⇤
. |

We are now ready to introduce the terminology we need regarding words in a
free product.

Definition 2.1.14 (Syllables and Parts). Let F = G ⇤ H and a word w in the
generators of F be

u1v1u2v2 · · · unvn

where ui 2 XG

⇤ and vi 2 XH

⇤
, for i 2 {1, · · · , n} and some n 2 N. We say that ui

and vi are syllables for all i 2 {1, · · · , n}.
Let x, y and z be syllables of a word w

0 in the generators of F such that xyz is
a contiguous subword of w0

. We say x and z are in the same part if y =F 1. |

We now define standard restricted wreath products. We note that the definition
relies on the definition of a semidirect product, but we shall not define that here
as it can be found in most texts on group theory such as [37]. For the definition
below, we use right actions.

Definition 2.1.15. [Standard restricted wreath product] Let C and T be groups
where T acts on itself by right multiplication. Set B :=

L
t2T Ct where Ct

⇠= C for
all t 2 T. The group B is the direct product of the groups Ct, and all sequences
in the direct product have the property that at most finitely many values are not

13

the identity. We define an action of T on B by right multiplication on the indices
of (ct)t2T as follows:

[(ct)t2T] · t1 = (ctt1�1)t2T .

We set the standard restricted wreath product to be the group W defined by the
semidirect product of B and T (with respect to the action defined above) and we
write W = C o T. We call T the top group, C the bottom group and B the base
group. |

We note that any element of the wreath product has a unique representation
as a product xt, where x is in the base group and t is in the top group. We may
view elements of the base group as sequences where every entry is in C, and only
finitely many entries are allowed to be non-trivial elements of C.

We also make use of Cayley graphs in 2.3.1. We give the definition below.

Definition 2.1.16 (Cayley Graph). Let G be a group with a generating set X.

The Cayley graph of G with respect to X is the edge-labelled directed graph, and
is denoted by �(G,X), and is defined as follows. The vertex set of �(G,X) is G,

the labelling set is X and the edges are defined as follows:

(g1, x, g2) is an edge if and only if g2 = g1x.

|

2.2 Formal Language Theory

This section will be structured in the following way.

• We will first introduce what formal languages are.

• In each subsection, we introduce a formal language type, as well as a ma-
chine type (e.g. finite state automaton, pushdown automaton, nested stack
automaton, etc.) which recognises languages of that type.

• For each machine type, we will do the following.

1. First we will give an informal discussion of how that machine works,
typically using an example.

2. Then we will give a formal definition of the machine. This will be
followed with

3. a discussion as to how the intuition and formal definition are linked.

4. Finally we will end each subsection with definitions that will be useful
in helping with visualisation of the machines and their processes.

14

As mentioned above, we start by defining a language.

Definition 2.2.1 (Language). A language L over an alphabet ⌃ is a subset of ⌃⇤
.

|

In various places throughout this document we will use the reverse of a string
and/or language.

Definition 2.2.2 (Reverse of a string and language). Let L ✓ ⌃⇤ be a language
and let ! = �1�2 · · · �n be a string inX

⇤
. The reverse of ! is the string �n�n�1 · · · �1

and we denote the reverse of ! by !R
. The reverse of L is the language {!R | ! 2 L}

and we denote the reverse of L by L
R
. |

Before exploring languages further, we shall set up some notation that will
become useful later (e.g. Definition 2.2.15, Definition 2.2.26 and Definition 2.2.42).
Let X be a finite set, then X

⇤ = {x1x2 · · · xn | xi 2 X and n � 0}. If A,B ✓ X
⇤

then we set
AB := {!1!2 | !1 2 A and !2 2 B}.

If A ✓ X
⇤ and s is a symbol then we set

sA := {s! | ! 2 A},
As := {!s | ! 2 A},

and other obvious analogous extensions.
We are now ready to give some examples of languages below.

Example 2.2.3. 1. The set of all strings over an alphabet ⌃ is a language.
The empty set is a language over any alphabet.

2. Let ⌃ = {0, 1}. The set of all strings over ⌃ that contain 10 as a substring
is a language.

3. Let ⌃ = {0, 1}. A palindrome over ⌃ is a string over ⌃ that is equal to its
reverse, e.g. 11011 is a palindrome as reading it in reverse we get the same
string. The set of all palindromes over ⌃ is a language.

4. Let ⌃ = {0, 1, 2}. The sets {0n1n | n 2 N} and {0n1n2n | n 2 N} are
languages.

One of the first classifications of formal languages is due Chomsky [16], and is
usually referred to as the Chomsky hierarchy. This is a collection of four classes
of languages contained in one another as follows:

Regular ⇢ Context-free ⇢ Context-Sensitive ⇢ Recursively Enumerable

15

We shall define the first two classes in this chapter, as well as two other subclasses
of context-sensitive languages.

There are various ways to define di↵erent classes of languages. We will fo-
cus throughout on using “theoretical machines” called automata to define various
classes of languages.

Informally, an automaton is a “theoretical machine” that reads a string, does
some computation and either accepts or rejects the string. It is standard for
various classes of languages to be defined by the kind of automata that accept those
languages (we shall define what this means later). Di↵erent classes of automata
provide di↵erent computational powers, enabling calculations that other classes
do not. These computational powers are primarily determined by the presence (or
lack thereof) of various types of memory structures, producing language classes
with varying complexity.

2.2.1 Regular Languages and Finite State Automata

In this section, we will introduce regular languages. There are many (equivalent)
ways of defining regular languages. We do this by defining finite state automata
and defining the class of regular languages as the class of languages that are ac-
cepted by the class of finite state automata. Finite state automata are one of the
best understood examples of automata. For a more comprehensive discussion of
finite state automata, we redirect the reader to the monograph of Hopcroft and
Ullman [29]. First we give an intuitive description of how finite state automata
work.

2.2.1.1 Intuitive Description

We may think of a finite state automaton as a finite edge-labelled directed graph
with specified subsets of vertices called initial and final sets. These initial and
final sets are denoted by I and F respectively. We note that when we think of
graphs we refer to the vertices as vertices but when we wish to emphasise that the
graph is carrying the structure of an automaton we may refer to the vertices as
states. The edge labels come from a finite set ⌃ [{"} (where " /2 ⌃). We think
of reading a string ! 2 ⌃⇤ (from some vertex q 2 I) as traversing a path in the
graph where ! is the concatenation along that path with the removal of "’s (as
defined in Definition 2.1.7). Suppose upon reading ! we traversed along the path
v0

x1�! v1
x2�! · · · xm�! vm such that x1x2 · · · xm =⌃⇤ ! where v0 2 I. We refer to

vi as being the active state of the automaton or the state of the automaton (or
by similar language) having read x1x2 · · · xi with xi+1xi+2 · · · xm yet to be read.
For more complicated machine types, the analogous concept would be that of an
active configuration. (We will define configurations to be pairs (q,S) where q is a

16

state and S is the memory structure available for that machine type.) For more
complicated machine types, when we use the phrase state of the automaton (or a
similar one) we mean the state q in the active configuration (q,S). We note that q
will be the active state of the underlying finite state automaton. (We shall discuss
this again in later sections.)

A string ! = �1�2 · · · �n 2 ⌃⇤ is said to be accepted if there is a path in the
graph starting at some q 2 I and ending at some q

0 2 F where ! is the concate-
nation along that path with the removal of "’s. Finally, the language accepted by
the automaton is the set of all accepted strings.

We provide an example below to explain the concepts we discussed above. For
the purposes of demonstration, we will denote each vertex in I with a diamond
instead of the usual circle. Similarly, we will denote each vertex in F with a double
circle instead of a single circle.

Example 2.2.4.

q0 q1 q2 q3 q4

a

b

" a b

"

"

b

Observe that q0 is the only initial vertex and q4 is the only final vertex. Thus to
determine the language accepted by the above finite state automaton, we need to
understand the paths from q0 to q4. Let p be a path from q0 to q4. Then we see
that p can be broken down into three parts which are connected by an edge with "

as a label. The first is at q0, where the edges q0
a�! q0 and q0

b�! q0 may have been

used. The second is going through q1
a�! q2

b�! q3 a non-zero number of times by

using q3
"�! q1. Finally the last part is at q4, where q4

b�! q4 could have been used.
Therefore all strings of the form xyz where x 2 {a, b}⇤, y = (ab)n+1 for some

n 2 N and z 2 {b}⇤ are accepted.

It is important to note that finite state automata do not have a lot of memory
structure built into them; we only have the structure of the graph itself available.
Thus any information that we may need to store to help with computation has
to be stored in the structure of the graph. This has an impact on the kinds of
languages that can be accepted by finite state automata. We will expand more
on this point when discussing various other kinds of automata. An example of a
language that cannot be accepted by a finite state automaton is {0n1n | n 2 N}.
Note that for every string in this language, the number of occurrences of the letter

17

1 is the same as the number of occurrences as the letter 0. Using a finite state
automaton, there is no way of storing the number of occurrences of the letter 0 in
a string upon reading it. However we need to be able to do that in order to be
able to accept a string with the correct number of occurrences of the letter 1.

We are now ready to give the formal definition of a finite state automaton.

2.2.1.2 Formal Definition

Definition 2.2.5 (Non-Deterministic Finite State Automata). A non-deterministic
finite state automaton (or NFSA) A is a 5-tuple (Q,⌃, �, I, F) such that:

• Q is a finite set, which is called the set of states of A;

• ⌃ is a finite set, which is called the alphabet of A;

• � ✓ (Q ⇥ (⌃ [{"})) ⇥ Q is called the transition relation of A and we refer
to an element of � as a transition;

• I ✓ Q is called the set of initial states of A; and

• F ✓ Q is called the set of final (or accept) states.

|

We note that transitions will become more complex in later definitions of other
types of automata. This is to allow for more intricate processing needed with more
complicated memory structures for various languages types.

We will use � to define a set of relations on Q defined as follows. For each
x 2 ⌃ [{"}, we define a relation ⇠x on Q by

q ⇠x q
0 if and only if ((q, x), q0) 2 �

for q, q0 2 Q. We may say q ⇠x q
0 by ((q, x), q0), or by similar language.

Let⇠⇤
"
be the reflexive transitive closure of⇠" .We shall now use these relations

to define acceptance in a finite state automaton.

Definition 2.2.6 (Acceptance and Language accepted by a finite state automa-
ton). Let A = (Q,⌃, �, I, F) be a non-deterministic finite state automaton and let
! = �1�2 · · · �n 2 ⌃⇤

. We say ! is accepted by A if there exist q0, q1, . . . q2n+1 2 Q

such that
q0 ⇠⇤

"
q1 ⇠�1 q2 ⇠⇤

"
q3 ⇠�2 q4 ⇠⇤

"
· · · ⇠�n q2n ⇠⇤

"
q2n+1,

where q0 2 I and q2n+1 2 F.

We write L(A) for the set of all strings in ⌃⇤ that are accepted by A. We say
that L(A) is the language accepted by A. |

18

If there exists a sequence of states q0, q1, . . . , q2n+1 2 Q such that

q0 ⇠⇤
"
q1 ⇠�1 q2 ⇠⇤

"
q3 ⇠�2 q4 ⇠⇤

"
· · · ⇠�n q2n ⇠⇤

"
q2n+1, (1̂)

where ! = �1, �2, . . . , �n 2 ⌃⇤ then we say ! can be read from q0 by the automaton
through the chain (1̂), or by similar language. Note that for a string to be accepted,
the automaton must be able to read the string from an initial state and the last
state in a chain of relations (such as (1̂)) is an accept state.

We conclude this section with a notational remark. We will make use of the
term "-transition (we will revisit this term again in the following section). A
transition ((s, x), t) is said to be an "-transition if x = ". Suppose in a chain such
as the one above in (1̂), there exists a state q appearing as q ⇠⇤

"
q in the chain.

Further suppose there do not exist states q01, q
0
2, . . . , q

0
r
and there does not exist a

sequence of "-transitions yielding

q ⇠" q
0
1 ⇠" q

0
2 ⇠" · · · ⇠" q

0
r
⇠" q.

Then q ⇠⇤
"
q appears in the chain due to the reflexive property of ⇠⇤

"
. In such a

situation, we will remove the appearance of ⇠⇤
"
q from the chain to shorten it.

2.2.1.3 Link between intuition and formality for NFSA

Let A = (Q,⌃, �, I, F) be a non-deterministic finite state automaton. Recall that
we intuitively think of A as finite edge-labelled directed graph � with specified
subsets of vertices called initial and final sets. We think of the set of states Q as
the labelled vertices of �. The edge labels of � come from ⌃ [{"}. A transition
⇢ = ((q, x), q0) 2 � corresponds to an edge from q to q

0 with label x in �. (This
edge is denoted by q

x�! q
0
.) Due to this graph theoretic interpretation, we will

refer to ⇢ 2 � as being a transition from q to q
0 by x, or by similar language.

When x = ", we call ⇢ an "-transition. Conversely when x 6= ", we refer to ⇢ as
a reading–transition. We note that we use similar language later when describing
transitions of more complicated machine types as well. Further, we will sometimes
refer to q1

"�! q2 as an "-arrow.
Let p, q 2 Q such that p ⇠⇤

"
q. This corresponds to there existing a path in �

p1
"�! p2

"�! · · · "�! pt

where p1 = p and pt = q, or p = q as we discussed at the end of the last subsection.

Example 2.2.7. Let A = (Q,⌃, �, I, F) be a finite state automaton such that:

• Q = {q0, q1, q2, q3, q4};

• ⌃ = {a, b};

19

• The transition relation � consists of the following transitions:

((q0, a), q0), ((q0, b), q0),

((q0, "), q1), ((q1, a), q2),

((q2, b), q3), ((q3, "), q1),

((q3, "), q4), ((q4, b), q4);

• I = {q0}; and

• F = {q4}.

This defines the finite state automaton corresponding to the graph in Example 2.2.4
(as we shall make precise below).

2.2.1.4 Visualisation, Equivalence with Graphs, Determinism and Reg-
ular Languages

We will now make our intuition more precise with the following formal definition.

Definition 2.2.8 (Transition Diagram/State Diagram). Let A = (Q,⌃, �, I, F) be
a non-deterministic finite state automaton. We will define the transition diagram
(or state diagram) to be an edge-labelled directed graph �(A) as follows:

• The vertex set is Q.

• The edges of �(A) are all triples (q, x, q0) such that ((q, x), q0) 2 �. We shall
denote the set of edges by E. We represent an edge (q, �, q0) by an arrow
from q to q

0 with � as its label.

We represent transition diagrams by figures of edge-labelled directed graphs. The
vertices of the graphs will be denoted by circles with the corresponding states
written in them. Each vertex representing a state in I will be denoted by a
diamond instead of the usual circle. Similarly each vertex representing a state in
F will be denoted by a double circle instead of a single one. |

An example of a transition diagram of a finite state automaton can be found in
Example 2.2.4 where we give the transition diagram for the finite state automaton
given in Example 2.2.7.

Note that given a finite edge-labelled directed graph with specified initial and
final sets, we can determine the transition relation for an automaton by reversing
the above process. Therefore, finite state automata do indeed correspond to graphs
of the aforementioned type.

20

The reader will observe that in Definition 2.2.5 for NFSA, one has to account
for "-transitions, i.e., a transition of the form ((q, "), q0). Note that a transition
((q, "), q0) represents changing state from q to q0 without reading any input. Indeed,
if one could remove the possibility of these transitions occurring, the automaton
(in theory) would be more straightforward to understand. Such an automaton
is sometimes referred to as a “non-deterministic finite state automaton without
"-transitions”.

The following is a classical result in the theory of finite state automata.

Proposition 2.2.9. [29, Theorem 2.2] Let A1 be the class of non-deterministic
finite state automata with "-transitions and A2 be the class non-deterministic fi-
nite state automata without "-transitions. Then a language L is accepted by an
automaton belonging to A1 if and only if it is accepted by an automaton belonging
to A2.

Definition 2.2.10 (Deterministic FSA and Acceptance for Deterministic FSA).
Let A = (Q,⌃, �, I, F) be a non-deterministic finite state automaton without "-
transitions. If for every q 2 Q and � 2 ⌃, there exits a unique q

0 2 Q such
((q, �), q0) 2 � then we say that the finite state automaton is deterministic.

If A = (Q,⌃, �, I, F) is a deterministic finite state automaton then a string
! = �1�2 · · · �2 is accepted if and only if there exist q0, q1, . . . , qn 2 Q such that

q0 ⇠�1 q1 ⇠�2 · · · ⇠�n qn

where q0 2 I and qn 2 F. |

Suppose A = (Q,⌃, �, I, F) is a deterministic finite state automaton. Since A
is deterministic , there are no "-transitions and for every q 2 Q and � 2 ⌃ there
exists a unique q

0 such that ((q, x), q0) is a transition. Thus every string can be
read in a unique way from an initial state q0. Suppose the string ! = �1�2 · · · �n

is read through the following chain

q0 ⇠�1 q1 ⇠�2 · · · ⇠�n qn. (2̂)

Observe there are no ⇠⇤
"
relations in the above chain. This is due there being no

"-transitions in A. Therefore we would only use the reflexive property of ⇠⇤
"
, and

the chain would have been

q0 ⇠⇤
"
q0 ⇠�1 q1 ⇠⇤

"
q1 ⇠�2 q2 ⇠⇤

"
· · · ⇠�n qn ⇠⇤

"
qn.

Thus we only write the chain (2̂) for short. Finally observe that ! is accepted if
the last state in the chain (2̂) is an accept state.

A non-deterministic finite state automaton is indeed equivalent to a deter-
ministic one. One can convert a non-deterministic finite state automaton to a
deterministic one via a standard construction known as the powerset construction.

21

Theorem 2.2.11. [29, Theorems 2.1 & 2.2] The class of languages accepted by
deterministic finite state automata is equal to the class that is accepted by non-
deterministic finite state automata.

Before continuing our discussion we remark that as a consequence of the pow-
erset construction, the initial set of states I of a finite state automaton A maybe
assumed to have size 1.

We are now ready to define regular languages. Due to Theorem 2.2.11 we will
not specify whether the finite state automaton in the definition below needs to be
deterministic or not.

Definition 2.2.12 (Regular Languages). A language L is said to be regular if
there is a finite state automaton A such that L = L(A). |

Note that we shall use “(N)FSA” to mean a (non-deterministic) finite state
automaton or the class of (non-deterministic) finite state automata and it will be
clear from context which is meant when it arises.

Due to Theorem 2.2.11, we may think of regular languages as the class of
languages accepted by deterministic finite state automata. Let R be a regular lan-
guage, thus there exists a deterministic finite state automaton A = (Q,⌃, �, I, F)
such that L(A) = R. In particular, due to the powerset construction, we may
assume |I| = 1. Further as A is deterministic, reading a string ! from any state
q uniquely determines the state q

0 at end of the path p in the transition diagram
�(A), where ! is the concatenation along p. We shall now construct a determin-
istic finite state automaton A0 such that L(A0) = ⌃⇤ \ R. Set F

0 := Q \ F. Let
A0 := (Q,⌃, �, I, F 0). Note that any string ! 2 ⌃⇤ such that ! 2 R, then upon
reading ! one follows a path that ends in F and hence cannot be accepted by A0

as F \ F
0 = ;. Conversely, every string !

0 2 ⌃⇤ \ R is accepted by A0 since the
path followed ends in F

0 and F \ F
0 = ;. Therefore a corollary of the powerset

construction is the following result.

Proposition 2.2.13. The class of regular languages is closed under complemen-
tation.

2.2.2 Context-free Languages and Pushdown Automata

In the Chomsky hierarchy, the class of regular languages is contained in the class of
context-free languages. We shall focus on these languages in this subsection. Sim-
ilar to regular languages, there are di↵erent (equivalent) ways of defining context-
free languages. We define this class of languages as the class that is accepted by
the class of pushdown automata. First we give an intuitive description of how
pushown automata work.

22

2.2.2.1 Intuitive Description

We can think of a pushdown automaton as a finite state automaton with an added
memory structure, which we call a stack. The stack operates on a last-in-first-
out basis. We may think of the stack as a list of letters from an alphabet set
positioned one above the other. We will use a string to encode the information on
a stack. The left end of the string will represent the top of the stack and is active.
Conversely, the right end of the string will represent the bottom of the stack. The
alphabet set used on the stack is finite and is referred to as the stack alphabet.
Note that the stack alphabet need not be equal to the input alphabet. We will
denote the stack alphabet by �. At any point in time, we can only view the top
of the stack. Initially, the stack only contains a unique symbol, which we call the
bottom-of-stack symbol and is denoted by ?. When the stack contains ? and no
other symbol, we say the stack is empty.

A transition in a pushdown automaton not only changes the active state the
machine is in but also rewrites the top of the stack. This is done by removing the
top letter o↵ the stack and replacing it with a string (which maybe empty). We
note that ? cannot be deleted nor can it be written in the middle of the stack.
This will be enforced by transition rules. Recall in a finite state automaton, a
transition ((p, x), q) can be interpreted as reading a letter x 2 ⌃[{"} from a state
p and moving to a state q. In a pushdown automaton, transitions also depend on
the letter at the top of the stack. Thus a transition in a pushdown automaton can
be interpreted as reading a letter x 2 ⌃[{"} from a state p with a letter y at the
top of the stack, and moving to a state q while writing a string ! on the stack after
deleting y. Note that in a pushdown automaton, we can interpret a transition as a
pair (X, Y), where X is a triple and Y is a pair, which we shall describe in greater
detail. The first component X has the form (p, x, y) while the second component
Y has the form (q,!) (as in Definition 2.2.15.) We note that we cannot have a
transition if the first component does not match the first component of elements
of � (in Definition 2.2.15.)

In a pushdown automaton, we interpret reading a string ! = �1�2 · · · �n as
traversing a path v0

x1�! v1
x2�! · · · xm�! vm in the graph of the underlying finite

state automaton such that x1x2 · · · xm =⌃⇤ ! where v0 is an initial state while
editing the stack. We refer to vi as being the active state of the automaton or
the state of the automaton (or by similar language) having read x1x2 · · · xi with
xi+1xi+2 · · · xm yet to be read. The stack will be edited by adding or removing
letters from the top of the stack as per the transitions. We call the stack associated
to the automaton having read x1x2 · · · xi with xi+1xi+2 · · · xm yet to be read the
active stack. The active configuration is a pair (q,S) where q and S are the active
state and the active stack respectively having read x1x2 · · · xi with xi+1xi+2 · · · xm

yet to be read.

23

A string !
0 2 ⌃⇤ is said to be accepted by a pushdown automaton if we can

get from an initial state to a final state via a sequence of transitions where the
concatenation of consecutive input letters is !.

0 Note that initially, the stack is
empty. Finally, the language accepted by the automaton is the set of all accepted
strings.

We provide an example below to explain the concepts we discussed above. Here
we shall use an underlying edge-labelled directed graph structure similar to how
we interpreted finite state automata. However, we add an extra decoration to
the edge labels, where we will write (x, y,!) to denote reading x from the input
alphabet, with y on the stack and writing a string ! on the stack after deleting
y. Further, similar to a finite state automaton, we shall draw each initial state
with a diamond instead of the usual circle, and we will draw each final state with
a double circle instead of a single one.

Example 2.2.14. In the example below the input alphabet is {a, b} while the
stack alphabet is {A}.

qA qB qa qb qf

(a,?, A?)

(a,A,AA)

(",?,?)

(", A,A)

(b, A, ")

(",?,?) (a,?,?) (b,?,?)

First observe that qA is the only initial state and qf is the only final state. Thus
to determine the language accepted by the above pushdown automaton, we need
to understand the paths from qA to qf . Let p be a path from qA to qf . We note
that p can be broken down into two main parts. The first is from qA to qa and the

second is from qa to qf . We note that the edge qB
(b,A,")���! qB deletes an occurrence

of A from the stack upon reading a b from the input. Thus qB will be used to read
as many occurrences of the letter b as there were of the letter a. Then the stack

will be empty and the transition qB
(",?,?)����! qa can be used. Therefore, at qa the

string that was read by the automaton was akbk for some k 2 N. The second part
of the path p is from qa to qf , this simply allows us to read the su�x ab, i.e., the
graph structure of the automaton is used to append ab at the end. Therefore the
language accepted by the automaton is {anbnab | n 2 N}.

While pushdown automata have more memory than finite state automata, they
are still limited by being able to view the top most letter of the stack and nothing
else. In later subsections, we shall weaken this constraint.

In the following subsection, we shall formalise the intuition provided above.

24

2.2.2.2 Formal Definition

Recall the notation set up after Definition 2.2.2. In particular, with regards to the
definition below

�
⇤? = {!? | ! 2 �

⇤} ✓ (� [{?})⇤.

Definition 2.2.15 (Pushdown Automata). A pushdown automaton (or PDA) A
is a 7-tuple (Q, I,⌃,�,?, �, F) such that:

• Q is a finite set, which is called the set of states of A;

• I ✓ Q is called the set of initial states of A;

• ⌃ is a finite set, which is called the tape (or input) alphabet of A;

• � is a finite set, which is called the stack alphabet of A;

• ? /2 � is the bottom of stack symbol ;

• � ✓ (Q⇥ (⌃[{"})⇥ (�[{?}))⇥ (Q⇥ (�⇤ [�
⇤?)) is a finite set called the

transition relation and we refer to an element of � as a transition. Further
let p, q 2 Q and x 2 ⌃[{"}. If ((p, x, y), (q,!)) 2 � then one of the following
two conditions holds:

1. y 2 � and ! 2 �
⇤,

2. y = ? and ! 2 �
⇤?; and

• F ✓ Q is called the set of final (or accept) states.

The stack is a string S = snsn�1 · · · s0 such that s0 = ? and si 2 � for i > 0. We
define the top (of the stack) to be the left end of the string and the bottom (of the
stack) to be the right end. |

We shall define configurations below. This is the first step in defining accep-
tance of strings by pushdown automata.

A configuration gives us the full information about the PDA at any given point.

Definition 2.2.16 (Configuration). A configuration is a pair (q, S) where q 2 Q

and S 2 X
⇤? (is the stack). |

We will now use � to define a set of relations on the set of configurations below.
For each x 2 ⌃ [{"}, we define a relation ⇠x on the set of configurations as

follows. Let C1 = (q1, S1) and C2 = (q2, S2) be two configurations. Then C1 ⇠x C2

if and only if the following condition holds:

25

• there exists an initial letter µ1 of S1 and strings µ2 and  such that
S1 = µ1, S2 = µ2 and ((q1, x, µ1), (q2, µ2)) 2 �.

We may say C1 ⇠x C2 by ((q1, x, µ1), (q2, µ2)), and/or the automaton uses the
transition ((q1, x, µ1), (q2, µ2)) (from C1 to C2), or by similar language. Let ⇠⇤

"
be

the reflexive transitive closure of ⇠" . To complete our discussions of configura-
tions, we will define initial and accepting configurations.

Definition 2.2.17 (Initial Configuration). Let C = (q, S) be a configuration. We
say C is an initial configuration if q 2 I and S = ?. |

Definition 2.2.18 (Accepting Configuration). Let C = (q, S) be a configuration.
We say C is an accepting configuration if q 2 F. |

We are now ready to define a version of acceptance.

Definition 2.2.19 (Acceptance and Language accepted by a PDA). Let A =
(Q, I,⌃,�,?, �, F) be a pushdown automaton and let ! = �1�2 · · · �n 2 ⌃⇤

. We
say ! is accepted by A if there exist configurations C0, C1, . . . , C2n+1 such that

C0 ⇠⇤
"
C1 ⇠�1 C2 ⇠⇤

"
C3 ⇠�2 C4 ⇠⇤

"
· · · ⇠�n C2n ⇠⇤

"
C2n+1,

where C0 is an initial configuration and C2n+1 is an accepting configuration.
Let L(A) be the set of all strings in ⌃⇤ that are accepted by A. We say L(A)

is the language is accepted by A. |

The above definition of acceptance is sometimes referred to as accepting via
final state. It is also possible to define acceptance as follows.

Definition 2.2.20 (Acceptance by emptying the stack). Let A be a pushdown
automaton such that A = (Q, I,⌃,�,?, �, F) where F = Q. Let ! = �1�2 · · · �n 2
⌃⇤

. We say ! is accepted by A via emptying the stack if there exist configurations
C0, C1, . . . , C2n+1 such that

C0 ⇠⇤
"
C1 ⇠�1 C2 ⇠⇤

"
· · · ⇠�n C2n ⇠⇤

"
C2n+1,

where C0 is an initial configuration and C2n+1 = (q,?) is an accepting configura-
tion.

Let L?(A) be the set of all strings in ⌃⇤ that are accepted byA via emptying the
stack. We say a language L is accepted by A via emptying the stack if L?(A) = L.

|

26

If there exists a sequence of configurations C0, C1, . . . , C2n+1 2 Q such that

C0 ⇠⇤
"
C1 ⇠�1 C2 ⇠⇤

"
· · · ⇠�n C2n ⇠⇤

"
C2n+1, (3̂)

where �1, �2, . . . , �n 2 ⌃ then we say ! = �1�2 · · · �n can be read from C0 by the
automaton through the chain (3̂), or by similar language. The chain of relations
(see e.g. (3̂)) used to read a string is called a run of the automaton, we sometimes
refer to it as a run and sometimes we simply just say chain or chain of relations.
Note that for a string to be accepted, the automaton must be able to read the
string from an initial initial configuration and the last configuration in a chain of
relations (such as (3̂)) is an accept configuration. If a string cannot be read from
an initial configuration then it can never be accepted. If a string cannot be read
in a particular run (or any runs), we may say the string is rejected. Usually if the
term rejected is used, it simply means that there is some underlying reason as to
whether the string cannot be accepted that is fundamentally opposed to how the
machine operates. One of the reasons can be that the string simply cannot be read
from an initial configuration (in a particular run). If there are other reasons, they
will be made clear in the contexts in which they arise. It will sometimes be useful
to designate a state qr as the reject state. This state will not be a final state of the
automaton, and the automaton will have transitions to move to qr when the input
string is to be rejected. A reject state qr will be a sink state. A sink is a state
from which no other state can be reached. We say a configuration C is a sink, if
no other configuration can be reached from C.

We will now make a notational remark. We will make use of the term "-
transition (we will revisit this term again in the following section). A transition
((q, x, y), (q0, w)) is said to be an "-transition if x = ". Suppose in a chain such as
the one above in (3̂), there exists a configuration C appearing as C ⇠⇤

"
C in the

chain. Further suppose there do not exist configurations C 0
1, C

0
2, . . . , C

0
r
and there

does not exist a sequence of "-transitions yielding

C ⇠" C
0
1 ⇠" C

0
2 ⇠" · · · ⇠" C

0
r
⇠" C.

Then C ⇠⇤
"
C appears in the chain due to the reflexive property of ⇠⇤

"
. In such a

situation, we will remove the appearance of ⇠⇤
"
C from the chain to shorten it.

Note that one may define acceptance in pushdown automata using a slightly
di↵erent concept called instantaneous descriptions. However, here we have cho-
sen to use configurations for the purpose of consistency with other definitions of
acceptance in this section.

There is a well-known result in the theory of pushdown automata [29, Theorems
5.1 & 5.2] stating that the two methods of acceptance defined above are equivalent.
For our purposes, we will choose to define pushdown automata that accept by final
states, unless otherwise stated.

27

Definition 2.2.21 (Context free languages). A language L is said to be context-
free if there exists a pushdown automaton A such that L = L(A). |

Note that we shall use “PDA” to mean a pushdown automaton or the class
of pushdown automata and it will be clear from context which is meant when it
arises.

We shall link the formal definition to our intuitive description of pushdown
automata in the following subsection.

2.2.2.3 Link between intuition and formality for PDA

LetA = (Q, I,⌃,�,?, �, F) be a pushdown automaton. Like finite state automata,
A has a set of states Q, an input alphabet ⌃, a set of initial states I and a set
of final states F . However, as discussed in our intuitive description, the main
di↵erence is the existence of a stack. The stack alphabet is �.

A transition ↵ = (�, �) is an element of �. Recall that � = (p, x, y) 2 Q⇥ (⌃[
{"}) ⇥ (� [{?}). We interpret this as reading x 2 ⌃ [{"} with y 2 � [{?} at
the top of the stack from state p. Recall that if ? is at the top of the stack, then
we say the stack is empty. Further recall that � = (q,!) 2 Q ⇥ (�⇤ [�

⇤?). We
interpret this as moving to a state q and replacing y by ! 2 �

⇤ [�
⇤?. We refer to

↵ as a transition from p with y at the top of the stack to q by x writing !, or by
similar language. When x = ", we call ↵ an "-transition. Conversely when x 6= ",

we refer to ↵ as a reading–transition.
In our intuitive description, we stated that the bottom-of-stack symbol ? can-

not be deleted nor can it be written in the middle of the stack. We achieve these
properties formally via points number 1 and 2 respectively in Definition 2.2.15.

Recall that in a finite state automaton an "-transition changes the state of the
automaton without reading any input. In a pushdown automaton an "-transition
is one of the form ((p, ", y), (q,!)). This is interpreted as changing both the state
of the automaton as well as editing the stack, without reading any input. Formally
we denote a sequence of "-transitions through ⇠⇤

"
.

Example 2.2.22. Let A = (Q, I,⌃,�,?, �, F) be the pushdown automaton de-
termined by setting:

• Q = {qA, qB, qa, qb, qf};

• I = {qA};

• ⌃ = {a, b};

• � = {a, b,?};

28

• The transition relation � consists of the following transitions:

((qA, a,?), (qA, a?)), ((qA, a, a), (qA, aa)),

((qA, ",?), (qB,?)), ((qA, ", a), (qB, a)),

((qB, b, a), (qB, ")), ((qB, ",?), (qa,?)),

((qa, a,?), (qb,?)), ((qb, b,?), (qf ,?)); and

• F = {qf}.

The above automaton is represented by the graph in Example 2.2.14 as we will
explain below.

2.2.2.4 Visualisation and Determinisim

We can visualise pushdown automata in a similar way to how we visualised finite
state automata, i.e., through an edge-labelled directed graph, called a transition
diagram or state diagram.

Definition 2.2.23 (Transition Diagram/State Diagram). LetA = (Q, I,⌃,�,?, �, F)
be a pushdown automaton. We will define the transition diagram (or state dia-
gram) to be a directed graph �(A) as follows:

• The vertex set is Q.

• The edges of �(A) are all triples (q, (x, y,!), q0) for some q, q0 2 Q such that
((q, x, y), (q0,!)) 2 �. We shall denote the set of edges by E. We represent
an edge (q, (x, y,!), q0) by an arrow from q to q

0 with (x, y,!) as its label.

We represent transition diagrams by figures of edge-labelled directed graphs. The
vertices of the graphs will be denoted by circles with the corresponding states
written in them. Each vertex representing a state in I will be denoted by a
diamond instead of the usual circle. Similarly each vertex representing a state in
F will be denoted by a double circle instead of a single one. |

An example of a transition diagram of a pushdown automaton can be found in
Example 2.2.14 where we give the transition diagram for the pushdown automaton
given in Example 2.2.22.

Note that in Example 2.2.22, there are multiple transitions coming out of a
single state with the same input letter. This corresponds to there being multiple
arrows coming out of a vertex with the same input letter in the transition diagram.
Unlike the case for finite state automata, this does not necessarily mean that the
automaton is non-deterministic.

29

Definition 2.2.24 (Deterministic and Non-Deterministic).
Let A = (Q, I,⌃,�,?, �, F) be a pushdown automaton. We say A is deterministic
if both of the following conditions hold:

• for every p 2 Q and y 2 � [{?}, if there exists a pair (q,!) such that
((p, ", y), (q,!)) 2 � then for all x 2 ⌃[{"} there is no pair (q0,!0) such that
((p, x, y), (q0,!0)) 2 �,

• if p 2 Q, � 2 ⌃ and y 2 � [{?}, then there is at most one pair (q,!) such
that ((p, �, y), (q,!)) 2 �.

Otherwise, we say the automaton is non-deterministic. |

Observe that if A is a deterministic PDA, then there exists a PDA A0 that
accepts the complementary language. In particular it is also deterministic. This
is similar to how regular languages are closed under complementation, Proposi-
tion 2.2.13. However, there are languages accepted by (non-deterministic) push-
down automata whose complement is not context-free.

It is sometimes useful to be able to view more than the top most letter in the
stack. One can modify the definition of a pushdown automaton to allow for this.
We do this below.

Definition 2.2.25 (Pushdown Automata with viewing window of size n). A push-
down automaton with viewing window of size n is a 8-tupleA = (Q, I,⌃,�,?, �, F, n)
such that:

• Q is a finite set, which is called the set of states of A;

• I ✓ Q is called the set of initial states of A;

• ⌃ is a finite set, which is called the tape (or input) alphabet of A;

• � is a finite set, which is called the stack alphabet of A;

• ? /2 � is the bottom of stack symbol ;

• define A and B as follows

A := Q⇥ ⌃⇥ (�n [{?} [(
n�1[

j=1

�
j?))

and
B := Q⇥ (�⇤ [�

⇤?).

Then � ✓ A⇥ B is a finite set called the transition relation and we refer to
an element of � as a transition. Further let q, q

0 2 Q and x 2 ⌃ [{"}. If
((q, x,!), (q0,!0)) 2 � then one of the following conditions hold:

30

1. ! 2 �
n and !

0 2 �
⇤
,

2. ! = ? and !
0 2 �

⇤?,

3. ! 2
S

n�1
j=1 �

j? and !
0 2 �

⇤?;

• F ✓ Q is called the set of final (or accept) states ; and

• n 2 N where n � 1 and is called the size of the viewing window.

The stack is a string S = snsn�1 · · · s0 such that s0 = ? and si 2 � for i > 0. We
define the top (of the stack) to be the left end of the string and the bottom (of the
stack) to be the right end. |

Note that points 1, 2 and 3 in the definition above achieves the same as points
1 and 2 in Definition 2.2.15. These points restrict elements of � such that ? does
not get inserted in the middle of the stack nor is it deleted.

Further note, the class of machines defined by Definition 2.2.25 is equivalent
to the one defined by Definition 2.2.15, in that both classes accept the same class
of languages. This is a standard exercise in concatentation of paths.

2.2.3 Indexed Languages and Nested Stack Automata

In this subsection, we shall introduce a container class of context-free languages,
namely, indexed languages. These were introduced by Aho in [1]. This family of
languages is a subclass of context sensitive languages. Similar to other kinds of
languages, there are various ways of defining indexed languages. In this section
we shall use a variation on Aho’s machine-theoretic formulation in [2], with re-
strictions due to Holt and Röver as in [28]. This results in a restricted subclass
compared to that of Aho. However it is this restricted class of languages and cor-
responding machines that we are interested in (as the restrictions correspond to
being able to read a string in the generators of a group letter by letter, which is
our ultimate goal). Therefore, when we refer to indexed languages we are actually
referring to the subclass formed by the restrictions in [28]. Similarly, when dis-
cussing the machine used in defining indexed languages, we are actually referring
to the machine used to define the restricted subclass of indexed languages. We will
follow Holt–Röver’s example and give the machines the same name as Aho does.
These machines are known as nested stack automata. In the following subsection,
we give an intuitive description of how they work.

2.2.3.1 Intuitive Description

We can think of a nested stack automaton as a pushdown automaton with a
modified version of the stack. Firstly the top of this modified version of the stack

31

is decorated with a unique symbol t. Further we have a pointer attached to the
stack that can go up and down the stack. Unlike in a pushdown automaton where
the top of the stack was the viewable part, in a nested stack automaton we view
the letter on the stack that is being pointed to. Further, sometimes we are also
able to view a letter below the one being pointed to.

A transition in a pushdown automaton was interpreted as reading a letter
x 2 ⌃ [{"} from a state p 2 Q with y at the top of the stack and moving to a
state q 2 Q while writing a string ! to the stack after deleting y. In a nested stack
automaton, a transition is interpreted similarly. We read a letter x 2 ⌃ [{"}
from a state p 2 Q with y being pointed to by the pointer, and we move to a
state q 2 Q as well as modify the stack. Here, the modifications can occur in
four di↵erent ways depending on what the pointer was pointing to. These are
known as pushdown mode, stack reading mode, branch creation mode, and branch
destruction mode. Below we give a description of how these modes work. This
description is followed by some diagrams for illustrative purposes.

1.1 Pushdown mode: Suppose the pointer was pointing to t. In this case, the
automaton can also view the letter y under t in the stack. Then the au-
tomaton can simply act as a pushdown automaton, this is done by replacing
ty by a string t! (i.e., deleting ty and writing t!). At the end of writing
the pointer will be pointing to t again. Thereby, replacing the letter y by
the string ! in a very similar way to how pushdown automata work. Note
that if y 6= ? then no letter in ! can be ?. Conversely if y = ? then the
last letter of ! is ?. We may think of this in a similar way to a PDA with a
window of size 2, where t is at the top.

1.2 Stack Reading mode: Suppose the pointer was pointing to a letter y on
the stack. The automaton can move the pointer up or down by at most one
position (i.e., go up or down by one position or remain in its position).

(a) If y /2 {t,?} then the pointer can go up and down by at most one
position.

(b) If y = t then it can go down by at most one position.

(c) If y = ? then it can go up by at most one position.

We note that the stack has not been edited but it is now possible to view
di↵erent parts of the stack.

1.3 Branch Creation mode: Suppose the pointer was pointing to a letter y

that is not t. This means that the pointer is not at the top of the stack and
thus cannot be in pushdown mode. However a nested stack automaton can
still write on the stack. This is done through a process we call branching or

32

nesting. We visualise this by an o↵-shoot (which we refer to as a branch)
from the previous part of the stack. We also represent this in the stack by
using a unique symbol $. We call y the branching point. In this branch, the
automaton writes a string t!$ from y thereby signaling that this o↵-shoot
is to be treated like the top of the stack and the pointer is pointing to the
newly inserted t. (We note that $ was used here and thereby signaling that
a branch has been created). This is done without editing the previous part
of the stack. Note that if one visualised the stack as a finite sequence where
the top of the stack is at the left-most symbol and the ? is the right-most
symbol. Then t!$ will be inserted to the left of y. If a branch is created,
then the part of the stack above the branching point cannot be viewed via
the stack reading mode until the branch is destroyed. See the diagrams below
for an illustration of this.

1.4 Branch Destruction mode: Suppose the pointer is pointing to t with $
under it (so the pointer is pointing to t in a branch). Then we say that
the branch is empty. The automaton can destroy the branch by deleting
t$. Then the pointer will return to the branching point, i.e., at the position
below where $ was.

We see that if the automaton would only use pushdown mode then the same
information could be encoded with a pushdown automaton. That is languages
accepted by these machines include context-free languages. (Note that we will
define what it means for these machines to accept languages later.) Further note
that the part of the stack from which the first branch is created is referred to as
the trunk. Below we provide some diagrams to illustrate what modifications to
the stack would look like depending on the kind of mode which was used and the
structure of the stack.

We shall start with pushdown mode. The two diagrams below illustrate what
happens to the stack when the transition is a pushdown one. The first diagram
is one that is similar to the standard way we think of pushdown automata. The
second diagram shows that the behaviour is the same in pushdown mode when on
a branch. We shall use these diagrams to illustrate the rest of the modes.

33

?

t
y
z

?

z
µl

...

...

...
µ2
µ1
t

Figure 1: Pushdown mode on the trunk

t
y

z

t
µ1

µ2. . .
. . .

. . .

µl

z

Figure 2: Pushdown mode on a branch

We note that in stack reading mode, there is a di↵erence in what is viewable
between a stack that is nested and one that is not. We shall start with a non-
nested stack. Here the pointer can move at most one position up or down, with
the exceptions of not being able to move past t and ?. Therefore the automaton
can view the entirety of the stack, if there are transitions that would allow for
that.

?

t
y
z

j

?
continuous down moves continuous down moves

continuous up moves continuous up moves

Figure 3: Stack reading mode on the trunk

For a nested stack, the pointer can move up or down with a slightly di↵erent
behaviour at branching points. At a branching point, one position below moves
the pointer back to the previous branch and one position above moves it into the
new branch. That is to say portions above a branching point before nesting are
no longer viewable after a branch has been created.

34

t t t

continuous down moves continuous down moves

continuous up moves continuous up moves

Figure 4: Stack reading mode with a branch

For branch creation mode, the position of the pointer is important as the stack
can look di↵erent depending on where the branching occurs. This will in turn make
parts of the stack possibly not viewable. We shall give some diagrams illustrating
these below.

We start with a non-nested stack, with a pointer not at t. This introduces a
branch in the stack.

t

Figure 5: Branch creation mode from the trunk

For a nested stack, there are two options. Either the pointer is pointing to a
letter within the last created branch or it is not. We illustrate how the branching
occurs in certain cases with the diagrams below.

t

Figure 6: Branch creation mode from a branch

t

Figure 7: Branch creation mode from the trunk under a branch

35

For branch destruction mode we require the only letters on the branch to be t
and $. During the destruction the string t$ will be deleted (along with the branch)
and the pointer will return to the branching point. We give some diagrams below
to illustrate that.

t$

Figure 8: Branch destruction mode from a branch to the trunk

t$

Figure 9: Branch destruction mode from a branch o↵ a branch

We note that with branch creation mode above (see Figure 6 above) we created
a stack with a branch nested into another branch. Below we illustrate how stack
reading mode acts on that stack and thus what portions of it are viewable through
the stack reading mode.

36

t t

tt

continuous down moves

continuous up moves

continuous up moves

continuous down moves
co

n
ti
n
u
o
u
s
d
ow

n
m
ov

es

co
n
ti
n
u
o
u
s
u
p
m
ov

es

co
n
ti
n
u
o
u
s
d
ow

n
m
ov

es

co
n
ti
n
u
o
u
s
u
p
m
ov

es

Figure 10: Stack reading mode with nested branching

We note that initially, the automaton has t? on the stack, with the pointer at t.
In a nested stack automaton, we interpret reading a string ! = �1�2 · · · �n as

traversing a path v0
x1�! v1

x2�! · · · xm�! vm in the graph of the underlying finite
state automaton such that x1x2 · · · xm =⌃⇤ ! where v0 is an initial state while
editing the stack. We refer to vi as being the active state of the automaton or
the state of the automaton (or by similar language) having read x1x2 · · · xi with
xi+1xi+2 · · · xm yet to be read. The stack will be edited via the di↵erent modes
we have discussed as per the transitions. We call the stack associated to the
automaton having read x1x2 · · · xi with xi+1xi+2 · · · xm yet to be read the active
stack. The active configuration is a pair (q,S) where q and S are the active state
and the active stack respectively having read x1x2 · · · xi with xi+1xi+2 · · · xm yet
to be read.

A string !
0 2 ⌃⇤ is said to be accepted by a nested stack automaton if we can

get from an initial state to a final state via a sequence of transitions where the
concatenation of consecutive input letters is !.0 Finally, the language accepted by
the automaton is the set of all accepted strings.

In the following subsection, we shall formalise the above discussion. Note that
we have been paying close attention to the stack and how it gets modified, this is
reflected in the transition relation �.

37

2.2.3.2 Formal Definitions

We define a nested stack automata below. The transition relation � is defined
to be a union of four sets, J1,J2,J3, and J4, representing the di↵erent modes
discussed above. We allow for any choice of J1,J2,J3, and J4. This yields more
or less complicated machines.

Definition 2.2.26 (Nested Stack Automaton). A nested stack automaton (or
NSA) A is a 9-tuple (Q,⌃,�, I, F, $, t,?, �) such that:

• Q is a finite set, which is called the set of states of A;

• ⌃ is a finite set, which is called the tape (or input) alphabet of A;

• � is a finite set, which is called the stack alphabet of A;

• I ✓ Q is called the set of initial states of A;

• F ✓ Q is called the set of final (or accept) states ;

• $ /2 � is the bottom of embedded stack symbol ;

• t /2 � is the top of (active) stack symbol ;

• ? /2 � is the bottom of stack symbol ; and

• � is the transition relation which we describe in greater detail below.

We shall define 4 sets of pairs, J1,J2,J3, and J4, as follows.

2.1 Set A1 := Q⇥ (⌃[{"})⇥ t(�[{?}), B1 := Q⇥ t(�⇤ [�
⇤?) and J1 ✓

A1⇥B1. Further let p, q 2 Q and x 2 ⌃[{"}. If ((p, x, ty), (q, t!)) 2 J1

then one of the following conditions hold:

(a) y 2 � and ! 2 �
⇤
, and

(b) y = ? and ! 2 �
⇤?.

2.2 (a) Set A2,1 := Q ⇥ (⌃ [{"}) ⇥ (� [{$}), B2,1 := Q ⇥ {�1, 0, 1} and
D1 := A2,1 ⇥ B2,1.

(b) Set A2,2 := Q ⇥ (⌃ [{"}) ⇥ t�, B2,2 := Q ⇥ {0,�1} and D2 :=
A2,2 ⇥ B2,2.

(c) Set A2,3 := Q ⇥ (⌃ [{"}) ⇥ {?}, B2,3 = Q ⇥ {0, 1} and D3 :=
A2,3 ⇥ B2,3.

Set J2 ✓ D1 [D2 [D3.

38

2.3 Let �0 := � [{$,?}, A3 := Q⇥ (⌃ [{"})⇥ �
0 and B3 := Q⇥ t�⇤$�0

.

Then J3 ✓ A3 ⇥ B3. Let p, q 2 Q, x 2 ⌃ [{"} and a 2 �
0
. If

((p, x, a), (q, ⇠)) 2 J3 then there exists ! 2 �
⇤ such that ⇠ = t!$a.

2.4 Let A4 := Q⇥ (⌃[{"})⇥{t$} and B4 := Q⇥{"}. Then J4 ✓ A4⇥B4.

Then � = J1 [J2 [J3 [J4 is a finite set called the transition relation and
we refer to an element of � as a transition.

The stack S is formally a sequence (sn, sn�1, . . . , s1, s0) where si 2 � [{$, t,?}
such that s0 = ?, sn = t and there is no i 2 {1, 2, . . . , n� 1} such that si = ?. |

We note that transitions coming from J3 introduce t!0$ substrings into the
stack (for some strings !0 2 �

⇤), we call this a nesting or a branching. Conversely,
transitions coming from J4 delete t$ substrings from the stack.

Definition 2.2.27 (Non-nested and nested stacks). LetA = (Q,⌃,�, I, F, $, t,?, �)
be a nested stack automaton. Let S = (sn, sn�1, . . . , s0) be a stack. We say S is
non-nested if there does not exist an i 2 {0, 1, . . . , n} such that si = $ and we say
it is nested otherwise. |

If a stack S is non-nested we may also refer to it as a trunk. Note that for any
stack of a nested stack automaton, there is a portion of the stack that is readable.

Definition 2.2.28. [Readable portion of the stack] LetA = (Q,⌃,�, I, F, $, t,?, �)
be a nested stack automaton. Let S = (sn, sn�1, . . . , s0) be a stack. Let r(S) be
the minimal natural number such that sr(S) = t. We refer to (sr(S), sr(S)�1, . . . , s0)
as the readable portion of the stack. |

Note that in the above definition, if S was non-nested then r(S) = n. We shall
define configurations below. This is the first step in defining acceptance of strings
by nested stack automata.

Definition 2.2.29 (Configuration). A configuration is a triple (q, S, ⇣) where q 2
Q, S = (sn, sn�1 . . . , s0) is the stack and ⇣ is the pointer. We realise the pointer
via a pair ⇣ 2 N ⇥ (� [{t, $,?}) such that ⇣ = (k, sk) where k 2 {0, 1, ..., r(S)}.

|

We will now use � to define a set of relations on the set of configurations below.
For each x 2 ⌃ [{"}, we define a relation ⇠x on the set of configurations as

follows. Let C1 = (q, S, ⇣) and C2 = (q0, S 0
, ⇣

0) be two configurations, where S =
(sn, sn�1, . . . , s0) and S

0 = (s0
m
, s

0
m�1, . . . , s0). Further the pointers are ⇣ = (i, si)

and ⇣
0 = (j, s0

j
) such that 0  i  r(S) and 0  j  r(S 0) as in Definition 2.2.29.

Then C1 ⇠x C2 if and only if one of the following conditions hold.

39

3.1 (Pushdown Mode) Suppose the pointers ⇣ and ⇣
0 have the forms (i, t) and

(j, t) respectively. The stack S is

(sn, . . . , si+1, si = t, si�1, si�2, . . . , s0).

If we are able to obtain S
0 by inserting a string ! = µ1µ2 · · ·µl replacing the

letter si�1 as follows

S
0 = (sn, . . . , si+1, si = t, µ1, µ2, . . . , µl, si�2, . . . , s0)

with j = i + |!| � 1 (i.e., si = t in S
0 is in coordinate j) and there exists a

transition ((q, x, tsi�1), (q0, t!)) 2 J1 ✓ �.

3.2 (Stack reading mode) If S1 = S2 and

(a) si /2 {t,?} with j � i 2 {0,�1, 1} and there exists a transition
((q, x, si), (q0, j � i)) 2 D1 ✓ J2 ✓ �;

(b) si = t with j � i 2 {0,�1} and there exists a transition
((q, x, t), (q0, j � i)) 2 D2 ✓ J2 ✓ �; and

(c) ⇣1 = (0,?) with j � i 2 {0, 1} and there exists a transition
((q, x,?), (q0, j � i)) 2 D3 ✓ J2 ✓ �.

3.3 (Branch Creation mode) Suppose ⇣ = (i, si) and ⇣
0 = (j, t) such that si 6= t.

The stack S is
(sn, . . . , si+1, si, si�1, . . . , s0).

If we are able to obtain the stack S
0 by inserting a substring t!$ (where

! = µ1µ2 · · ·µl) between si+1 and si as follows

S
0 = (sn, . . . , si+1, t, µ1, µ2, . . . , µl, $, si, si�1, . . . , s0)

with j = i+|!|+2 and there exists a transition ((q, x, si), (q0, t!$)) 2 J3 ✓ �.

3.4 (Branch Destruction mode) Suppose ⇣ = (i, t) and si�1 = $. Recall that the
stack S

0 is
(sn, . . . , si = t, si�1 = $, si�2, . . . , s0).

If we are able to obtain S
0 by removing si and si�1 from S as follows

S
0 = (sn, . . . , si+2, si+1, si�2, si�3, . . . , s0)

with j = i� 2 and there exists a transition ((q, x, t$), (q0, ")) 2 J4 ✓ �.

Before continue, we establish some language regarding ⇠x. Note in the above
definition of when configurations are related by ⇠x (for x 2 ⌃ [{"}), we had the
following general structure. Let C1 and C2 be configurations. Then C1 ⇠x C2 if
and only if two things held:

40

(A) some conditions on the configurations that corresponded to each mode in the
automaton, and

(B) there existing a transition ↵ 2 � compatible with (A).

We say C1 ⇠x C2 by ↵, and/or the automaton uses the transition ↵ (from C1 to
C2), or by similar language. Let ⇠⇤

"
be the reflexive transitive closure of ⇠" .

To continue our discussion of configurations, we will define initial and accepting
configurations.

Definition 2.2.30 (Initial Configuration). Let C = (q, S, ⇣) be a configuration.
We say C is an initial configuration if q 2 I, S = (t,?) and ⇣ = (1, t). |

Definition 2.2.31 (Accepting Configuration). Let C = (q, S, ⇣) be a configura-
tion. We say C is an accepting configuration if q 2 F. |

We are now ready to define acceptance.

Definition 2.2.32 (Acceptance and Language accepted by a NSA). Let A =
(Q,⌃,�, I, F, $, t,?, �) be a nested stack automaton. We say ! is accepted by A
if there exist configurations C0, C1, . . . , C2n+1 such that

C0 ⇠⇤
"
C1 ⇠�1 C2 ⇠⇤

"
C3 ⇠�2 C4 ⇠⇤

"
· · · ⇠�n C2n ⇠⇤

"
C2n+1,

where C0 is an initial configuration and C2n+1 is an accepting configuration.
Let L(A) be the set of all strings in ⌃⇤ that are accepted by A. We say the

language L is accepted by A if L(A) = L. |

If there exists a sequence of configurations C0, C1, . . . , C2n+1 2 Q such that

C0 ⇠⇤
"
C1 ⇠�1 C2 ⇠⇤

"
· · · ⇠�n C2n ⇠⇤

"
C2n+1, (4̂)

where �1, �2, . . . , �n 2 ⌃ then we say ! = �1�2 · · · �n can be read from C0 through
the chain (4̂), or by similar language. The chain of relations (see e.g. (4̂)) used
to read a string is called a run of the automaton, we sometimes refer to it as a
run and sometimes we simply just say chain or chain of relations. Note that for a
string to be accepted, the automaton must be able to read the string from an initial
initial configuration and the last configuration in a chain of relations (such as (4̂))
is an accept configuration. If a string cannot be read from an initial configuration
then it can never be accepted. If a string cannot be read in a particular run (or
any runs), we may say the string is rejected. Usually if the term rejected is used,
it simply means that there is some underlying reason as to whether the string
cannot be accepted that is fundamentally opposed to how the machine operates.
One of the reasons can be that the string simply cannot be read from an initial

41

configuration (in a particular run). If there are other reasons, they will be made
clear in the contexts in which they arise. It will sometimes be useful to designate
a state qr as the reject state. This state will not be a final state of the automaton,
and the automaton will have transitions to move to qr when the input string is to
be rejected. A reject state qr will be a sink state. A sink is a state from which
no other state can be reached. We say a configuration C is a sink, if no other
configuration can be reached from C.

We will now make a notational remark. We will make use of the term "-
transition (we will revisit this term again in the following section). A transition
((q, x, w), (q0, a)) is said to be an "-transition if x = ". Suppose in a chain such as
the one above in (4̂), there exists a configuration C appearing as C ⇠⇤

"
C in the

chain. Further suppose there do not exist configurations C 0
1, C

0
2, . . . , C

0
r
and there

does not exist a sequence of "-transitions yielding

C ⇠" C
0
1 ⇠" C

0
2 ⇠" · · · ⇠" C

0
r
⇠" C.

Then C ⇠⇤
"
C appears in the chain due to the reflexive property of ⇠⇤

"
. In such a

situation, we will remove the appearance of ⇠⇤
"
C from the chain to shorten it.

We are now ready to define an indexed language.

Definition 2.2.33 (Indexed languages). A language L is said to be indexed if
there exists a nested stack automaton A such that L = L(A). |

Note we that shall use “NSA” to mean a nested stack automaton or the class
of nested stack automata and it will be clear from context which is meant when it
arises.

We shall link the formal definition to our intuitive description of nested stack
automata in the following subsection.

2.2.3.3 Link between intuition and formality for NSA

Like PDA, the main complication in understanding how NSAs work comes from
understanding how the automaton can modify the stack.

Let A = (Q,⌃,�, I, F, $, t,?, �) be a nested stack automaton. Like previous
types of automata, A has a set of states Q, an input alphabet ⌃, a set of initial
states I and a set of final states F. The stack alphabet is �. Further we have
two unique symbols t and $ signaling the top of the active stack and branching
respectively.

Let ↵ 2 � be a transition. Recall from Definition 2.2.26 that ↵ = (X, Y) where
X is a triple where the first two components represent the state q from which a
letter x 2 ⌃ [{"} is read. This corresponds to the first two factors of each Ai

in Definition 2.2.26. Unlike PDA where the automaton can only view the top of

42

the stack, in a nested stack automaton the type of transitions depend on what
is pointed to. This is why we have various sets being the third factor of the Ais
in Definition 2.2.26. This influences the type of modification the automaton will
do to the stack. We discuss these below. When x = ", we call ↵ an "-transition.
Conversely when x 6= ", we refer to ↵ as a reading–transition.

4.1 Pushdown mode: Suppose ↵ 2 J1. Then the automaton can view the top
of the readable portion of the stack ty and will move to a state q

0 while
writing a string t! thus replacing y by ! = µ1µ2 · · ·µl. This is the pushdown
mode we discussed in 1.1 in Intuitive Description 2.2.3.1. At the end of the
processing the pointer is still at the top of the stack, this is reflected in the
configurations. Suppose the configuration before reading x 2 ⌃ [{"} is

(q, (sn, . . . , si, si�1, . . . ,?), (i, t)).

Then after reading x the configuration will be

(q0, (sn, . . . , si+1t, µl, µl�1, . . . , µ1.si�2, . . . ,?), (i+ l � 1, t)).

4.2 Stack Reading mode: Suppose ↵ 2 J2. This is the stack reading mode we
discussed in Intuitive Description 2.2.3.1.

(a) Suppose ↵ 2 D1. Then ↵ 2 A2,1⇥B2,1. We interpret this as the pointer
is pointing to the a stack letter that is neither t nor ? and is allowed
to move up or down by one position (or remain where it is). This is
reflected in the configurations as follows. Suppose the configuration
before reading x is

(q, (t, sn�1, . . . , si, . . . ,?), (i, si)).

Then after reading x, the configuration becomes

(q0, (t, sn�1, . . . , si, . . . ,?), (j, sj))

where |j � i| 2 {0, 1}. Note that if |j � i| = 0 then i = j this is
interpreted as the pointer remaining in its position. If j � i = 1 then
this is interpreted as the pointer moving up the stack by one position.
Conversely if j � i = �1 we interpret this as the pointer moving down
the stack by one position.

(b) Suppose ↵ 2 D2. Then ↵ 2 A2,2⇥B2,2. We interpret this as the pointer
pointing to t and is allowed to move down by one position or remain

43

where it it is. This is reflected in the configurations as follows. Suppose
the configuration before reading x is

(q, (t, sn�1, . . . , si, . . . ,?), (i, si))

where si = t. Then after reading x, the configuration becomes

(q0, (t, sn�1, . . . , si, . . . ,?), (j, sj))

where j� i 2 {0,�1}. If j� i = 0 then this is interpreted as the pointer
remaining in its position. If j � i = �1 then we interpret it as the
pointer moving down one position.

(c) Suppose ↵ 2 D3. Then ↵ 2 A2,3⇥B2,3. We interpret this as the pointer
pointing to ? and is allowed to move up by one position or remain in
its position. This is reflected in the configurations as follows. Suppose
the configuration before reading x is

(q, (t, sn�1, . . . ,?), (0,?)).

Then after reading x, the configuration becomes

(q0, (t, sn�1, . . . ,?), (i, si))

where i 2 {0, 1}. If i = 0 then we interpret this as the pointer remained
in its position and is still pointing to ?. If i = 1, then we interpret this
as the pointer has moved up by one position and is now pointing to s1.

4.3 Branch Creation mode: Suppose ↵ 2 J3. This is the branch creation
mode we discussed in Intuitive Description 2.2.3.1. Then ↵ 2 A3 ⇥ B3. We
interpret this as the pointer pointing to a letter y 6= t and creating a branch
from y with a string t!$ on it, where ! = µ1µ2 · · ·µl. After the branch is
created then the pointer is pointing to the top of the branch. This reflected
in the configurations as follows. Suppose the configuration before reading x

is
(q, (t, sn�1, . . . , si+1, si = y, . . .?), (i, y)).

Then the configuration after reading x is

(q0, (t, sn�1, . . . , si+1, t, µ1, µ2, . . . , µl, $, si = y, . . .?, (i+ l + 2, t)).

4.4 Branch Destruction mode: Suppose ↵ 2 J4. This is the branch destruc-
tion mode we discussed in Intuitive Description 2.2.3.1. Then ↵ 2 A4 ⇥ B4.

We interpret this as the pointer pointing t with $ under it (i.e., the branch

44

is empty), and deleting it. This is reflected in the configurations as follows.
Suppose the configuration before reading x is

(q, (t, . . . , si+1, si = t, $, si�2, . . . ,?), (i, t)).

Then the configuration after reading x is

(q0, (t, . . . , si+1, si�2, . . . ,?), (i� 2, si�2)).

In the following section, we shall discuss how to visualise nested stack automata
and introduce some formal language that will be helpful later.

2.2.3.4 Visualisation and Determinism

Similar to PDA, we can visualise nested stack automata via transition diagrams.
We note that the di↵erence between Definition 2.2.8 and Definition 2.2.23 is the
inclusion of more information on the edge labels representing modifying the stack
for pushdown automata. We do this in the following definition as well. However
the di↵erence is that we are allowed more flexibility since there are di↵erent ways
that a nested stack automaton may modify the stack as per � in Definition 2.2.26.

Recall the sets A1;A2,1;A2,2;A2,3;A3 and A4, and the sets B1;B2,1;B2,2;B2,3;B3

and B4 from Definition 2.2.26. Let Ax 2 {A1, A2,1, A2,2, A2,3, A3, A4}. Then we de-
fine Ap

x
to be the image of the projection of Ax onto its third factor. Similarly, let

Bx 2 {B1, B2,1, B2,2, B2,3, B3, B4}. Then we define B
p

x
to be the image of the pro-

jection of Bx onto its second factor. Further set Ap := {Ap

1, A
p

2,1, A
p

2,2, A
p

2,3, A
p

3, A
p

4}
and B

p := {Bp

1 , B
p

2,1, B
p

2,2, B
p

2,3, B
p

3 , B
p

4}.

Definition 2.2.34 (Transition Diagram for Nested Stack Automata). Let A =
(Q,⌃,�, I, F, $, t,?, �) be a nested stack automaton. We will define the transition
diagram (or state diagram) to be a directed graph �(A) as follows:

• the vertex set is Q.

• The edges of �(A) are all triples (q, (x, p, a), q0) for some q, q
0 2 Q with

p 2
S

A02Ap A
0 and a 2

S
B02Bp B

0 such that ((q, x, p), (q0, a)) 2 �. We shall
denote the set of edges by E. We represent as an edge (q, (x, p, a), q0) by an
arrow from q to q

0 with a label which we will describe below.

5.1 If ((q, x, p), (q0, a)) 2 J1 then we write the label as (x, p, a).

5.2 If ((q, x, p), (q0, a)) 2 J2 then a 2 {�1, 0, 1}.
(a) If a = �1 then we write the label as (x, p,Down).

(b) If a = 0 then we write the label as (x, p,�).

45

(c) If a = 1 then we write the label as (x, p,Up).

5.3 If ((q, x, p), (q0, a)) 2 J3 then a = t!$p for some ! 2 �
⇤
. We write the

label as (x, p,Add !).

5.4 If ((q, x, p), (q0, a)) 2 J4 then we write the label as (x, p,Del).

We represent transition diagrams by figures of edge-labelled directed graphs. The
vertices of the graphs will be denoted by circles with the corresponding states
written in them. Each vertex representing a state in I will be denoted by a
diamond instead of the usual circle. Similarly each vertex representing a state in
F will be denoted by a double circle instead of a single one. |

As for previous machine types, we shall define below what it means for a nested
stack automaton to be deterministic. In the following definition we make use of
the A

p defined at the beginning of this subsection.

Definition 2.2.35 (Deterministic and Non-Deterministic).
Let A = (Q,⌃,�, I, F, $, t,?, �) be a nested stack automaton. We say A is deter-
ministic if both of the following conditions hold:

• for every q 2 Q and p 2
S

A02Ap A
0
, if there exists a pair (q0,!0) such that

((q, ", p), (q0,!0)) 2 �, then for all � 2 ⌃ there is no pair (q00,!00) such that
((q, x, p), (q00,!00)) 2 �,

• if q 2 Q, � 2 ⌃ and p 2
S

A02Ap A
0
, then there exists at most one pair (q0,!0)

such that ((q, �, p), (q0,!0)) 2 �.

Otherwise, we say the automaton is non-deterministic. |

Further, we present below some definitions and ideas from [28] as we will use
them in later chapters.

We will make use of a convention stated in [28] (on page 5 of [28]) that for
every indexed language L, there exists a nested stack automaton A with a specific
property such that L(A) = L. This property is that the set of states Q of A can
be written as a disjoint union of two sets Q" and Q⌃ such that

• if a transition is from a state p 2 Q" then it is an "-transition, and

• if a transition is from a state q 2 Q⌃ then there are no "-transitions from q.

We refer to states in Q" and Q⌃ as "-and reading–states respectively. Further
let C = (q, S, ⇣) be a configuration of A. We say C is a reading configuration if
q 2 Q⌃. Conversely, we say C is an " configuration if q 2 Q". Further, we will also
make use of the following assumption (as in [28]):

46

• every sequence of consecutive "-transitions must terminate after finitely many
transitions.

For the remainder of this section we shall use the above convention (and assump-
tion).

In later chapters, it will be useful to have language to describe a concept of
determinism that occurs in a very specific way. Below we use definitions from
[28] to be able to define that. First we need to think of determinism as being a
property of states (and configurations) as in the following definition.

Definition 2.2.36 (Determinism of states and configurations). A state q 2 Q is
(state) deterministic if for every configuration (q, S, ⇣) and every x 2 ⌃[{"} there
exists at most one configuration C

0 such that (q, S, ⇣) ⇠x C
0
.

A configuration (q0, S 0
, ⇣

0) is said to be deterministic if q is a deterministic state.
|

We note the above Definition 2.2.36 is compatible with Definition 2.2.35 due
to our convention above. We are now ready to make define what it means for an
automaton to be deterministic from a certain point onwards.

Definition 2.2.37 (Forwardly deterministic). Let q 2 Q. We say q is forwardly
deterministic if for every configuration C0 = (q, S, ⇣), every string w = �1 · · · �n 2
⌃⇤ and every collection of configurations C1, C2, . . . , C2n+1 such that

C0 ⇠⇤
"
C1 ⇠�⇠⇤

"
· · · ⇠⇤

"
C2n+1,

all the states in Ci(for i = 0, 1, . . . , 2n+ 1) are deterministic. |

Due to our convention, it is possible that an initial state q0 is not a reading
state. Thus we have the following definition.

Definition 2.2.38 (Start Configuration). Let C be a reading configuration. As-
sume that an initial state q0 is not a reading state. We say C is a start configuration
if (q0, (t,?), (1, t)) ⇠⇤

"
C. |

We are now ready to make the definition that we will use in later chapters.

Definition 2.2.39. A nested stack automaton A is said to be deterministic upon
input if every start configuration is forwardly deterministic. |

2.2.4 ET0L Languages and Check-stack Pushdown Automata

In this subsection we shall introduce a class of languages that is a subclass of in-
dexed languages that contains context-free languages. These languages are known

47

as ET0L languages and have their origins stemming from L-systems [32, 33, ?, 30].
Usually ET0L languages are defined by their grammar as in [4].In [8], Elder and
Bishop prove a theorem of van Leeuwen [42] stating that the class of languages
accepted by the machine we define below is equivalent to the one defined by gram-
mars in [4]. Therefore we shall focus on the machine theoretic formulation of ET0L
languages. The machine we discuss below is known as check-stack pushdown au-
tomaton.

2.2.4.1 Intuitive Description

We can think of a check-stack pushdown automaton as a pushdown automaton
with a modified version of the stack. We think of a check-stack pushdown au-
tomaton as having two stacks, the first stack is called the check-stack and the
second is called the pushdown stack. The check-stack has � as an alphabet, while
the pushdown stack has � as its alphabet. Both stacks have ? as the symbol
marking the bottom of stack. Further, there is a pointer with two heads that
moves up and down the stacks. One head of the pointer points to the letter y 2 �

at the top of the pushdown stack while the other head points to the letter z 2 �
in the check-stack in the same position as y. Further we require that the length of
the check-stack is greater than or equal to the length of the pushdown stack at any
point in the running of the automaton. (We shall refer to the later as the stack
length condition in our discussion.) We also associate a regular language R ✓ �⇤

to every check-stack pushdown automaton.
We think of processing in a check-stack pushdown machine to occur in two

stages. The first stage happens initially before reading the input occurs. At this
stage, a string µ = ⌧1⌧2 · · · ⌧k 2 R is loaded onto the check-stack in reverse. That
is to say the first letter loaded is ⌧k, then ⌧k�1 and so on. The last letter to be
loaded onto the top of the check-stack is ⌧1. Note that reading the contents of the
check-stack top-to-bottom we will read ⌧1⌧2 · · · ⌧k?. The check-stack will not be
edited from this point onward. Further note that at this stage the pushdown stack
is empty and the pointer is pointing to ? on both stacks.

The machine then enters its second stage of processing. It is in this stage that
the transitions of the automaton are used. Here the automaton acts in a very
similar way to a PDA, in that it reads a letter x 2 ⌃ [{"} from a state p 2 Q

with y at the top of the pushdown stack and z being the corresponding letter in
the check-stack. Then the automaton deletes y and writes a string ! to the top of
the pushdown stack while moving to a state q 2 Q. At the end of the transition,
one head of the pointer will be pointing to the top of the pushdown stack, i.e., the
initial letter a 2 � of !. The other head of the pointer will be pointing to the letter
b 2 � in the check-stack in the corresponding position to a. Further, similar to
pushdown automata and nested stack automata, ? cannot be deleted nor written

48

in the middle of the stack.
We note that while the transitions of a check-stack pushdown automaton are as

described above, they also need to be compatible with the stack length condition.
That is to say a transition ↵ is valid if the stacks before and after applying ↵ are
such that the stack length condition holds. We say a transition is invalid otherwise.

In a check-stack pushdown automaton, we interpret reading a string ! =
�1�2 · · · �n as traversing a path v0

x1�! v1
x2�! · · · xm�! vm in the graph of the

underlying finite state automaton such that x1x2 · · · xm =⌃⇤ ! where v0 is an ini-
tial state while editing the stack. We refer to vi as being the active state of the
automaton or the state of the automaton (or by similar language) having read
x1x2 · · · xi with xi+1xi+2 · · · xm yet to be read. The stack will be edited as we have
discussed as per the transitions. We call the stack associated to the automaton
having read x1x2 · · · xi with xi+1xi+2 · · · xm yet to be read the active stack. The ac-
tive configuration is a pair (q,S) where q and S are the active state and the active
stack respectively having read x1x2 · · · xi with xi+1xi+2 · · · xm yet to be read.

A string !
0 2 ⌃⇤ is said to be accepted by a check-stack pushdown automaton

if we can get from an initial state to a final state via a sequence of valid transitions
where the concatenation of the consecutive input letters is !0

. We note that at the
beginning of the second stage of processing, the pushdown stack is empty. Finally,
the language accepted by the automaton is the set of all accepted strings.

We note that if a run of the automaton reading a string !1 does not yield a
sequence of valid transitions, then that run is said to be an invalid run and the
string !1 is immediately rejected in that run. This does not however mean that
!1 is not accepted as it is possible that there exists a string µ1 in the associated
regular language such that with µ1 on the check stack, reading !1 will yield a
sequence of valid transitions.

Below we provide a diagram illustrating how the stack and the pointer work.

...

...

...

? ?

⌧1

⌧2

⌧3

check-stack

...

...

...

?

pushdown

pointer

...

...

...

? ?

⌧1

⌧2

⌧3

check-stack

...

...

...

a2

a1

?

pushdown

pointer

...

...

...

? ?

⌧1

⌧2

⌧3

check-stack

...

...

...

a2

?

pushdown

pointer

49

Note that in the first diagram, the pushdown stack is empty and thus one of the
heads of the pointer is pointing to ?. We see that the ? is the corresponding letter
on the check-stack and thus the other head of the pointer is also pointing at ?.

In the second diagram, a string a1a2 has been pushed onto the stack. Thus
at the end of that transition, the pointer moved up and one head of the pointer
is pointing to a1. The other head is pointing to corresponding symbol ⌧2 in the
check-stack.

In the third diagram, a1 has been deleted from the pushdown stack and thus
the pointer moved and one head is now pointing to a2. The other head is pointing
to the corresponding symbol on the check-stack ⌧1.

We provide an example below to explain the concepts we discussed above. Here
we shall use an underlying edge-labelled directed graph structure similar to how
we interpreted pushdown automata for the second stage of processing. However,
we add an extra decoration to the edge labels, where we will write (x, (z, y),!) to
denote reading x from the input alphabet, with one head of the pointer pointing to
y on the pushdown stack with z being the corresponding letter on the check-stack
and writing a string ! on the pushdown stack after deleting y. Further, similar to
a pushdown automaton, we shall draw each initial state with a diamond instead of
the usual circle. Further we will draw each final state with a double circle instead
of a single one. For the first stage, we shall simply state the regular language
associated with the check-stack pushdown automaton.

Example 2.2.40. We shall describe an automaton that accepts {anbncn | n 2 N}.
For the first stage of processing, the regular language associated with the check-

stack pushdown automaton is t{a}⇤.
For the second stage of processing, we give the edge-labelled directed graph

below. However as the graph is large, we shall break it up into sub-stages. The
first sub-stage is reading and writing the correct number of as. The second sub-
stage deletes an a letter for every b letter read. Finally, the third sub-stage reads
the same amount of c letters as a letters read in the first stage.

Below we give the graph for the first sub-stage.

q0 qa q1 qb

(", (?,?),?)

(a, (x, y), Xay)

(", (a,X), ")

(", (t, X), ")

Recall that when trying to understand the language accepted by a check-stack
pushdown automaton, we are only interested in sequences of valid transitions. We
note that if check-stack has t? on it, all transitions from qa onward will not be
valid as the pushdown stack will be longer than the check-stack. Further, the

50

regular language t{a}⇤ has infinitely many strings and for any n 2 N there exists
a string in the regular language of length n+1. Therefore we will assume that the
check-stack is long enough to allow for all transitions that we will require for the
remainder of this argument.

There is a string of the form Xa
m? on the pushdown stack for some m 2 N

at q1. The string on the check-stack is tam?. The states qa and q1 serve to check
for when the number of occurrences of a in the input is the same as the number
of as on the check-stack. To exit the circuit between qa and q1, the edge must

q1
(",(X,t),")�����! qb. This would ensure that top of pushdown stack and the top of the

check-stack are at the same height. Then using the edge would delete X at the
top of the pushdown stack, thus ensuring the pointer is at the top most a of the
pushdown stack. Therefore at the end of this stage the stack looks like the diagram
below.

...

a

t

? ?

a

a

a

check-stack

...

a

?

a

a

a

pushdown

pointer

At qb we enter the second sub-stage, where we read b letters. We give the graph
for the second sub-stage below.

qb qc

(b, (a, a), ")

(", (?,?),?)

The state qb checks that the number of occurrences of the letter b are the same
as those of a by deleting an a letter from the pushdown stack for every b letter in

51

the input. We can only exit the loop at qb by emptying the pushdown stack and

then using the edge qb
(",(?,?),?)������! qc. Therefore at the end of the second stage, the

number of b letters read are the same as a letters read and the pushdown stack is
empty. We give two diagrams below, one showing what reading a single b letter
does to the stack and pointer while the other shows what the stack and pointer
look like at the end of this stage.

...

a

t

? ?

a

a

a

check-stack

?

a

a

pushdown

pointer

...

a

t

? ?

a

a

a

check-stack

?

a

pushdown

pointer

b

...

a

t

? ?

a

a

a

check-stack

?

pushdown

pointer

At qc the automaton enters its third sub-stage of processing. In this stage we read
c letters. We give the graph for the third sub-stage below.

52

qc q2 qA

(c, (x, y), Xcy)

(", (a,X), ")

(", (t, X), ")

The states qc and q2 are analogues of qa and q1, in that they also serve to check
that the number of c letters in the input is the same as a letters on the check-stack.
The number of a letters on the check-stack is the number of a letters in the input,
as we have seen in the first sub-stage, and also the same as the number of b letters
in the input, as we have seen in the second sub-stage. Further, the automaton
reads a letters then b letters and finally it reads c letters. Moreover, both q0

and qA are accepting states. Therefore the language accepted by the machines is
{anbncn | n 2 N}.

Recall in the beginning of the section, we introduced ET0L as a specific subclass
of indexed languages [32, 38, 39]. However we cannot find a machine theoretic proof
of this in the literature and thus we shall give a sketch of the argument below.

Proposition 2.2.41. If L is an ET0L language then L is indexed.

Sketch of proof. We start with an ET0L language L and construct a nested stack
automaton A that we argue accepts L. We note that if we ignore the symbol t
then each branch that we shall construct has length 1.

Since L is an ET0L language, it is accepted by a check-stack pushdown au-
tomaton A0 with states Q0

, input alphabet ⌃0
, check-stack �0

, pushdown alphabet
�0
, an associated regular language R0 ✓ (�0)⇤, and transitions as described above.

Finally I
0 and F

0 denote the sets of initial and final states of A0 respectively.
Recall that a check-stack pushdown automaton works in two stages, the first

stage preloads a string µ from the regular language R onto the check-stack. Read-
ing the check-stack top-to-bottom, we see the string µ?. The second stage of a
check-stack pushdown automaton deals with the pushdown stack. In our con-
struction of the nested stack automaton A, we shall use the trunk for the regular
language (i.e., the first stage) and use branches to simulate the pushdown stack
(i.e., the second stage).

Below we shall construct a nested stack automaton A such that L(A) = L. We
aim for A to simulate the action of A0

.

We require nested stack automaton A to have a stack alphabet � = �0 [�0
.

Further for the states Q of A, we set Q := Q
0 t Q1 t QR, we describe the latter

three sets as follows:

53

• Q1 is a set of auxiliary states, that help with book-keeping which we shall
describe later. We use these states to create deterministic sub-automata that
enable us to simulate transitions of A0

.

• Recall that R0 ⇢ �0 is a regular language. Thus there exists a deter-
ministic finite state automaton AR0 that accepts R0

. Consider the transi-
tion diagram of AR0 . Reversing the direction of the arrows as well as in-
terchanging the initial and final sets defines a new finite state automaton
AR := (QR,�0

, �R, IR, FR) that accepts the reverse of R0
. Denote L(AR) by

R.

Note that we use the input alphabet ⌃ of A0 as the input alphabet of A. Further
the sets of initial and final states of A are IR and F

0 respectively.
Finally, for the transition set � of A we set � := �

0
R t �i t �1 t �f t �m, we

describe these as follows:

• �
0
R consists of transitions that are similar to the ones of �R but without
reading input. The aim here is to write a string from R onto the trunk of
the nested stack automaton.

• �i consists of the initial part of transitions in A0
,

• �1 consists of auxiliary transitions that help with book-keeping. These are the
transitions that create the deterministic sub-automata we mentioned above.

• �f consists of the final part of transitions in A0
.

• �m consists of transitions that move the automaton from simulating the first
stage of the CSPD to start simulating the second stage of the CSPD.

We describe the above sets as well as Q1 in further detail below.

• For every qR, q
0
R 2 QR, x 2 � where ((qR, x), q0R) 2 �R we define a transition

((qR, ", tx1), (q0R, txx1)) 2 J1 ✓ �
0
R. Note that reading the trunk top to

bottom, we see tµ? where µ 2 R.

Further note that at the end of these transitions, the automaton would have
simulated the first stage of the CSPD machine, i.e., the preloading of the
check-stack, but this was done upside down such that reading top to bottom
we see tµ? where µ 2 R0

. In a CSPD automaton however, reading the check-
stack bottom-to-top we see ?µ where µ 2 R0

. Finally at the end of the above
transitions the automaton is at a state fR 2 FR with the pointer pointing
at t.

54

• For each fR 2 FR, we define an "-transition to every initial state i 2 I
0

of the automaton A0 such that ((fR, ", t), (i, 0)) 2 J2 ✓ �m. Note that the
automaton is now ready to simulate the second stage of processing of the
CSPD automaton.

Recall that a transition ⇠ in the CSPD machine A0 is interpreted as reading a
letter x 2 ⌃ [{"} from a state p with y at the top of the pushdown stack and
z being the corresponding letter on the check-stack. The automaton then moves
to a state q as well as deletes y and writes a string ! such that at the end of the
transition the pointer points to the first letter of ! on the pushdown stack and the
corresponding letter on the check-stack. Here we shall break up such a transition
in three parts. The first part involves reading x and is how we define the relations
in �i. The second part is a sequence of auxiliary relations that enable us to be able
to simulate the writing of ! letter by letter and is how we define the relations in
�1. The third and final part involves any readjusting of the pointer we may require
to fully simulate the CSPD and is how we define the relations in �f . We describe
these in further detail below. There are three main cases:

• If the top of the pushdown (and thus the check-stack) is ?.

• If the top of the pushdown stack is not ? and ! 2 �+
.

• If the top of the pushdown stack is not ? and ! = ".

For each one of the above cases, we shall define the required states in Q1 as
well as the transitions we need in �i, �1 and �f below.

Suppose the top of the pushdown stack (and thus the check-stack) is ?. Thus
! = !1? for some ! 2 �⇤

.

• If !1 = " then the transition ⇠ simply changes the automaton from state
p 2 Q

0 to state q 2 Q
0
. We shall simulate this in A as follows:

– we define a new state q⇠ 2 Q1 and transitions as follows.

– We define a new transition ((p, x, t), (q⇠, 0)) 2 J2 ✓ �i.

– We define a new transition ((q⇠, x, t), (q, 0)) 2 J2 ✓ �f .

Observe that the above defines a deterministic subautomaton of A which
simulates the action of ⇠ in A0

.

• If !1 = µ1µ2 · · ·µk 2 �+
, then we simulate the transition ⇠ as follows:

55

– For each j 2 {k, k� 1, . . . , 1} we define states q(B,j,⇠), q(B0,j,⇠) 2 Q1 such
that we define the following new transitions:

((p, x, t), (q(B,k,⇠),�1)) 2 J2 ✓ �i

and
((qB,j,⇠, ", y), (q(B0,j,⇠), tµj$y)) 2 J3 ✓ �1

where y 2 �.

We note that the first transition moves the pointer from t down by a
single step on the trunk of the nested stack automaton. Where as the
set of transitions in J3 are branching transitions that create branches
o↵ the stack with letters of !1 in them.

– For each j 2 {k, k � 1, . . . , 2} we define states q(R1,j,⇠), q(R2,j,⇠), q(R3,j,⇠)

such that we define the following new transitions:

((q(B0,j,⇠), ", t), (q(R1,j,⇠),�1)) 2 J2 ✓ �1,

((q(R1,j,⇠), ", µi), (q(R2,j,⇠),�1)) 2 J2 ✓ �1,

((q(R2,j,⇠), ", $), (q(R3,j,⇠),�1)) 2 J2 ✓ �1,

((q(R3,j,⇠), ", y), (q(B,j�1,⇠),�1)) 2 J2 ✓ �1

where y 2 �.

Note that the above transitions move the pointer down the stack by one
step at a time from the end of a branch back into the trunk and then
moving down the trunk by a single step.

– Finally we define a new transition ((q(B0,1,⇠), ", t), (q,�1)) 2 J2 ✓ �f .

Observe that the above defines a deterministic subautomaton of A which
simulates the action of ⇠ in A0

. This is done by branching out by the letters
of !1 and then using the pointer to move down the stack into the trunk and
then down the trunk. This process is then repeated. Thus we ensure that the
letters of ! branch out from the trunk such that a letter of !, u branches out
from a branching point v if and only if u and v can be viewed by the pointer
in the CSPD automaton on the pushdown stack and check-stack respectively
at the same time.

Now suppose the top of the pushdown stack (and thus the check-stack) is not
?. Assume the top of the pushdown stack is y 2 �, with the corresponding check-
stack letter being z 2 �. The transition ⇠ can either delete y or replace y by a
string !. We define a reject state that is a sink, Z 2 Q1.

56

• Suppose ⇠ deletes y, we simulate ⇠ on the nested stack automaton as follows:

– We define states q(C1,⇠), q(C2,⇠), q(C3,⇠), q(C4,⇠) 2 Q1 such that we define
the following new transitions:

((p, x, y), (q(C1,⇠),�1)) 2 J2 ✓ �i,

((q(C1,⇠), ", $), (q(C2,⇠),�1)) 2 J2 ✓ �1,

((q(C2,⇠), ", z), (q(C3,⇠),+1)) 2 J2 ✓ �1,

((q(C2,⇠), ", z), (Z, 0)) 2 J2 ✓ �1 where z 6= z,

((q(C3,⇠), ", $), (q(C4,⇠),+1)) 2 J2 ✓ �1.

Observe that the above defines a deterministic subautomaton of A
which determines whether or not ⇠ can be simulated. If the branching
point is not z then ⇠ cannot be simulated and the automaton will use
move to the sink state Z. Otherwise, we can simulate ⇠ as the branching
point is z.

– We define states P⇠, D⇠, q(R1,⇠) 2 Q1 such that we define the following
new transitions:

((q(C4,⇠), ", y), (P⇠,+1)) 2 J2 ✓ �1,

((P⇠, ", ty), (D⇠, t)) 2 J1 ✓ �1,

((D⇠, ", t$), (q(R1,⇠), ")) 2 J4 ✓ �

Observe that the above transitions define a deterministic subautomaton
of A that deletes y and then destroys the branch. The pointer then is at
the branching point z. This is the first part of simulating ⇠. The second
part returns the pointer of A to the correct position on the stack that
corresponds to the top of the pushdown stack in A0

. We do this below.

– We define states q(R2,⇠), q(R3,⇠) 2 Q1 such that we define the following
new transitions:

((q(R1,⇠), ", z), (q(R2,⇠),+1)) 2 J2 ✓ �1,

((q(R2,⇠), ", t), (q, 0)) 2 J2 ✓ �f ,

((q(R2,⇠), ", z1), (q(R3,⇠),+1)) 2 J2 ✓ �1,

((q(R3,⇠), ", $), (q,+1)) 2 J2 ✓ �f .

Observe that the above defines a deterministic subautomaton of A that
moves the pointer to t if the branch that was deleted had the branch-
ing point z one step below t on the trunk. Otherwise, the pointer is

57

moved to a letter y0 2 �0 in the nearest branch to y. This simulates the
behaviour of the pointer in a CSPD as the pointer would be at the top
of the pushdown stack, this would either be ? (simulated here by t) or
would be the letter y0 2 �0

.

• Now suppose ⇠ replaces y by ! = µ1µ2 · · ·µl 2 �+
. We simulate this below

in a very similar way to how we simulated the case for when the top of the
pushdown stack is ? and a non-empty string ! is written onto the pushdown
stack.

– We define states q(C1,⇠), q(C2,⇠), q(C3,⇠), q(C4,⇠) 2 Q1 such that we define
the following new transitions:

((p, x, y), (q(C1,⇠),�1)) 2 J2 ✓ �i,

((q(C1,⇠), ", $), (q(C2,⇠),�1)) 2 J2 ✓ �1,

((q(C2,⇠), ", z), (q(C3,⇠),+1)) 2 J2 ✓ �1,

((q(C2,⇠), ", z), (Z, 0)) 2 J2 ✓ �1 where z 6= z,

((q(C3,⇠), ", $), (q(C4,⇠),+1)) 2 J2 ✓ �1.

Observe that the above defines a deterministic subautomaton of A
which determines whether or not ⇠ can be simulated. If the branching
point is not z then ⇠ cannot be simulated and the automaton will use
move to the sink state Z. Otherwise, we can simulate ⇠ as the branching
point is z.

– We define states q(P⇠), q(B0,l,⇠) 2 Q1 such that we define the following
new transitions:

((q(C4,⇠), ", y), (q(P⇠),+1)) 2 J2 ✓ �1,

((qP⇠
, ", ty), (q(B0,l,⇠), tµl)) 2 J1 ✓ �1.

Observe that the above defines a deterministic subautomaton of A
which replaces y by µl.

– For each j 2 {l � 1, l � 2, . . . , 1} we define states q(B,j,⇠), q(B0,j,⇠) 2 Q1

such that we define the following new transitions:

((qB,j,⇠, ", y
0), (q(B0,j,⇠), tµj$y

0)) 2 J3 ✓ �1

where y
0 2 �.

The above branching transitions create branches o↵ the trunk with the
letters of ! in them.

58

– For each j 2 {l, l � 1, . . . , 2} we define states q(R1,j,⇠), q(R2,j,⇠), q(R3,j,⇠)

such that we define the following new transitions:

((q(B0,j,⇠), ", t), (q(R1,j,⇠),�1)) 2 J2 ✓ �1,

((q(R1,j,⇠), ", µi), (q(R2,j,⇠),�1)) 2 J2 ✓ �1,

((q(R2,j,⇠), ", $), (q(R3,j,⇠),�1)) 2 J2 ✓ �1,

((q(R3,j,⇠), ", y
0), (q(B,j�1,⇠),�1)) 2 J2 ✓ �1

where y
0 2 �.

The above transitions move the pointer down the stack one step at a
time from the end of a branch back into the trunk and then moving
down the trunk by a single step.

– Finally we define a new transition ((q(B0,1,⇠), ", t), (q,�1)) 2 J2 ✓ �f .

Observe that the above defines a deterministic subautomaton of A which
simulates the action of ⇠ in A0

. This is done by branching out by the letters
of !1 and then using the pointer to move down the stack into the trunk and
then down the trunk. This process is then repeated. Thus we ensure that the
letters of ! branch out from the trunk such that a letter of !, u branches out
from a branching point v if and only if u and v can be viewed by the pointer
in the CSPD automaton on the pushdown stack and check-stack respectively
at the same time.

Observe that we have written strings backwards in our construction above,
this is done to allow the use of the pointer in order to simulate transitions of
a CSPD automaton. As we have discussed above the simulations are done via
deterministic sub-automata and thus once a transition has started its simulation
the only way to read another letter is by exiting the subautomaton and thus
finishing the simulation. Therefore the language accepted by the nested stack
automaton is equal to the one accepted by a CSPD automaton and thus we see
that ET0L languages are indeed indexed. ⌅

In the following subsection we formalise some of the ideas discussed above.

2.2.4.2 Formal Definition

We define a check-stack pushdown automaton as in [8] below.

Definition 2.2.42. A check-stack pushdown (or CSPD) automaton A is a 9�tuple
(Q,⌃,�,�, I, F,R,?, �) such that:

• Q is a finite set, which is called the set of states of A;

59

• ⌃ is a finite set, which is called the the tape (or input) alphabet of A;

• � is a finite set, which is called the check-stack alphabet of A;

• � is a finite set, which is called the pushdown stack alphabet of A;

• I ✓ Q is called the set of initial states of A;

• F ✓ Q is called the set of final (or accept) states ;

• R ✓ �⇤ is a regular language;

• ? /2 � [� is the bottom of stack symbol ; and

• � is the transition relation which we describe in greater detail below.

Set
A := Q⇥ (⌃ [{"})⇥ {(�⇥ �) [{(?,?)}}

and
B := Q⇥ (�⇤ [�⇤?).

Then � ✓ A ⇥ B is a finite set called the transition relation and we re-
fer to an element of � as a transition. Let p, q 2 Q and x 2 ⌃ [{"}. If
((p, x, (y, z)), (q,!)) 2 � then one of the following two conditions hold:

1. (y, z) 2 �⇥ � and ! 2 �⇤

2. y = z = ? and ! 2 �⇤?.

The stack S is formally a pair (S1, S2) where S1 = (sn, sn�1, . . . , s1, s0) and S2 =
(s0

m
, s

0
m�1, . . . , s

0
1, s

0
0) such that s0 = s

0
0 = ?, si 2 �, s

0
j
2 �, snsn�1 · · · s1 2 R and

n � m. |

We shall define configurations below. This is the first step in defining accep-
tance of strings by CSPD automata.

Definition 2.2.43 (Configuration). A configuration is a pair (q,S) where q 2 Q

and S is the stack. We may refer to the pair S as the stack of the configuration
(q,S) (or by similar language). |

We will now use � to define a set of relations on the set of configurations below.
For each x 2 ⌃ [{"}, we define a relation ⇠x on the set of configurations as

follows. Let C1 = (q1, (S, S1)) and C2 = (q2, (S, S2)) be two configurations, where
S = (sn, sn�1, . . . , s0) and snsn�1 · · · s1 2 R. Further, S1 = (s0

m1
, s

0
m1�1, . . . , s

0
0)

and S2 = (s00
m2

, s
00
m2�1, . . . , s

00
0). Then C1 ⇠x C2 if and only if both of the following

conditions hold:

60

• S2 = (s00
m2

, s
00
m2�1, . . . , s

00
m1

, s
0
m1�1, s

0
m1�2, . . . , s

0
0) and

• ((q1, x, (sm1 , s
0
m1

)), (q2, s00m2
s
00
m2�1 · · · s00m1

)) 2 �,

for q1, q2 2 Q. We say C1 ⇠x C2 by ((q1, x, (sm1 , s
0
m1

)), (q2, s00m2
s
00
m2�1 · · · s00m1

)),
and/or the automaton uses the transition ((q1, x, (sm1 , s

0
m1

)), (q2, s00m2
s
00
m2�1 · · · s00m1

))
(from C1 to C2), or by similar language. Let ⇠⇤

"
be the reflexive transitive clo-

sure of ⇠" . Before we are ready to define acceptance, we will define initial and
accepting configurations.

Definition 2.2.44 (Initial Configuration). Let C = (q,S) be a configuration
where S = (S1, S2). We say C is an initial configuration if q 2 I and S2 = (?). |

Definition 2.2.45 (Accepting Configuration). Let C = (q,S) be a configuration.
We say C is an accepting configuration if q 2 F. |

We are now ready to define acceptance.

Definition 2.2.46 (Acceptance and Language accepted by a CSPD automaton).
Let A = (Q,⌃,�,�, I, F,R,?, �) be a CSPD automaton and let ! = �1�2 · · · �n 2
⌃⇤

. We say ! is accepted by A if there exist a string r1r2 · · · rk 2 R and configura-
tions C0, C1, . . . , C2n+1 such that Ci = ((r1, r2, . . . , rk,?), Si) (for 0  i  2n + 1)
and

C0 ⇠⇤
"
C1 ⇠�1 C2 ⇠⇤

"
C3 ⇠�2 C4 ⇠⇤

"
· · · ⇠�n C2n ⇠⇤

"
C2n+1,

where C0 is an initial configuration and C2n+1 is an accepting configuration.
Let L(A) be the set of all strings in ⌃⇤ that are accepted by A. We say the

language L is accepted by A if L(A) = L. |

If there exists a sequence of configurations C0, C1, . . . , C2n+1 2 Q such that

C0 ⇠⇤
"
C1 ⇠�1 C2 ⇠⇤

"
· · · ⇠�n C2n ⇠⇤

"
C2n+1, (5̂)

where �1, �2, . . . , �n 2 ⌃ then we say ! = �1�2 · · · �n can be read from C0 through
the chain (5̂), or by similar language. The chain of relations (see e.g. (5̂)) used
to read a string is called a run of the automaton, we sometimes refer to it as a
run and sometimes we simply just say chain or chain of relations. Note that for a
string to be accepted, the automaton must be able to read the string from an initial
initial configuration and the last configuration in a chain of relations (such as (5̂))
is an accept configuration. If a string cannot be read from an initial configuration
then it can never be accepted. If a string cannot be read in a particular run (or
any runs), we may say the string is rejected. Usually if the term rejected is used,
it simply means that there is some underlying reason as to whether the string
cannot be accepted that is fundamentally opposed to how the machine operates.

61

One of the reasons can be that the string simply cannot be read from an initial
configuration (in a particular run). If there are other reasons, they will be made
clear in the contexts in which they arise. It will sometimes be useful to designate
a state qr as the reject state. This state will not be a final state of the automaton,
and the automaton will have transitions to move to qr when the input string is to
be rejected. A reject state qr will be a sink state. A sink is a state from which
no other state can be reached. We say a configuration C is a sink, if no other
configuration can be reached from C.

We will now make a notational remark. We will make use of the term "-
transition (we will revisit this term again in the following section). A transition
((q, x, (y, z)), (q0, w)) is said to be an "-transition if x = ". Suppose in a chain such
as the one above in (5̂), there exists a configuration C appearing as C ⇠⇤

"
C in the

chain. Further suppose there do not exist configurations C 0
1, C

0
2, . . . , C

0
r
and there

does not exist a sequence of "-transitions yielding

C ⇠" C
0
1 ⇠" C

0
2 ⇠" · · · ⇠" C

0
r
⇠" C.

Then C ⇠⇤
"
C appears in the chain due to the reflexive property of ⇠⇤

"
. In such a

situation, we will remove the appearance of ⇠⇤
"
C from the chain to shorten it.

We are now ready to define an ET0L language.

Definition 2.2.47 (ET0L languages). A language L is said to be ET0L if there
exists a CSPD automaton A such that L = L(A). |

We shall link the formal definition to our intuitive description of check-stack
pushdown automata in the following subsection.

2.2.4.3 Link between intuition and formality for CSPD automata

Like various other kinds of automata, the main complication in understanding how
CSPD automata work is understanding the transitions.

Let A = (Q,⌃,�,�, I, F,R,?, �) be a check-stack pushdown automaton. Sim-
ilar to other kinds of automata, A has a set of states Q, an input alphabet ⌃, a
set of initial states I and a set of final states F. In this type of automaton there
are two stacks, one called the check-stack and the other called the pushdown stack.
These have alphabet � and � respectively.

Recall that in our Intuitive Description 2.2.4.1, we discussed that processing
happens in two stages, the first is done by preloading a string from the regular
language R onto the check-stack. Formally, we do this via initial configurations as
the pushdown stack is empty and the check-stack has a string from R on it. The
second stage in processing involves transitions and we describe these below.

Let ↵ 2 � be a transition. Recall from Definition 2.2.42 that ↵ = (X, Y)
where X is a triple and Y is a pair. The components of X represent the state q

62

from which a letter x 2 ⌃ [{"} is read while the letter y 2 � [{?} is at the
top of the pushdown stack with z 2 � [{?} being the corresponding letter in
the check-stack. The components of Y represent the state q

0 that the automaton
moves to while replacing y with a string ! 2 �⇤ [�⇤?. When x = ", we call ↵ an
"-transition. Conversely when x 6= ", we refer to ↵ as a reading–transition.

In our intuitive description, we stated that the bottom-of-stack symbol ? can-
not be written in the middle of the stack nor can it be deleted. We achieve this
formally by the via points number 1 and 2 (respectively) in Definition 2.2.42.

We note that in our intuitive description, we say that the pointer is used to
view the top of the pushdown stack and the corresponding letter (i.e., the one at
the same height) on the check-stack. Recognising that letters on the check-stack
and pushdown stack are at the same height is done formally via having the stacks
be sequences. Letters at the same height intuitively are at the same position in
the sequences. For instance, the top of the pushdown stack is the letter s0

m
on the

left side of S2 in Definition 2.2.42, s0
m
is in position m as we see in Definition 2.2.42

when we count from the right. The corresponding letter on the check-stack is the
m

th coordinate in S1.

Example 2.2.48. Let A = (Q,⌃,�,�, I, F,R,?, �) be a CSPD automaton such
that:

• Q = {q0, q1, q2, qa, qb, qc, qA};

• ⌃ = {a, b, c};

• � = {a, t};

• � = {a, c,X};

• I = {q0};

• F = {q0, qA};

• R = t{a}⇤; and

• the transition relation � consists of the following transitions:

((q0, ", (?,?)), (qa,?)), ((qa, a, (?,?)), (q1, Xa?)),

((qa, a, (a, a)), (q1, Xaa)), ((q1, ", (a,X)), (qa, ")),

((q1, ", (t, X)), (qb, ")), ((qb, b, (a, a)), (qb, ")),

((qb, ", (?,?)), (qc,?)), ((qc, c, (?,?)), (q2, Xc?))

((qc, c, (a, c)), (q2, Xcc)), ((q2, ", (a,X)), (qc, ")) and

((q2, ", (t, X)), (qA, ")).

63

This defines the check-stack pushdown automaton corresponding to the graph in
Example 2.2.40.

2.2.4.4 Visualisation and Determinisim

We can visualise check-stack pushdown automata in a similar way to how we
visualised other kinds of automata, i.e., through an edge-labelled directed graph,
called a transition diagram or state diagram.

Definition 2.2.49 (Transition Diagram/State Diagram).
Let A = (Q,⌃,�,�, I, F,R,?, �) be a check-stack pushdown automaton. We will
define the transition diagram (or state diagram) to be a directed graph �(A) as
follows:

• The vertex set is Q.

• The edges of �(A) are all triples (q, (x, (z, y),!), q0) for some q, q
0 2 Q such

that ((q, x, (z, y), (q0,!)) 2 �. We shall denote the set of edges by E. We rep-
resent an edge (q, (x, (z, y),!), q0) by an arrow from q to q

0 with (x, (z, y),!)
as its label.

We represent transition diagrams by figures of edge-labelled directed graphs. The
vertices of the graphs will be denoted by circles with the corresponding states
written in them. Each vertex representing a state in I will be denoted by a
diamonds instead of the usual circle. Similarly each vertex representing a state in
F will be denoted by a double circle instead of a single one. |

An example of a transition diagram of a check-stack pushdown automaton can
be found in Example 2.2.40 where we give the transition diagram for the pushdown
automaton given in Example 2.2.48.

As with previous types of automata, we define determinism for check-stack
pushdown automata below.

Definition 2.2.50 (Deterministic and Non-deterministic).
Let A = (Q,⌃,�,�, I, F,R,?, �) be a check-stack pushdown automaton. We say
A is deterministic if both of the following conditions hold:

• for every p 2 Q and pair (y, z) 2 �⇥�[{(?,?)} if there exists a pair (q,!)
such that ((p, ", (y, z)), (q,!)) 2 �, then for all � 2 ⌃ there is no pair (q0,!0)
such that ((p, �, (y, z)), (q0,!0)) 2 �, and

• if p 2 Q, � 2 ⌃ and (y, z) 2 �⇥�[{(?,?)}, then there is at most one pair
(q00,!) such that ((p, �, (y, z)), (q00,!)) 2 �.

Otherwise, we say the automaton is non-deterministic. |

64

2.3 Classes of groups defined by languages

This thesis is about the interplay between group theory and formal languages.
There has been a history in trying to classify groups by certain language theoretic
constraints. We now introduce two sets that link groups and languages which we
use to create constraints later.

Definition 2.3.1 (Word problem and co-word problem). Let G be a finitely gen-
erated group and let X be a symmetrically closed finite generating set for G.
Then

WP (G,X) := {w 2 X
⇤ | w =G 1G}

is the word problem of G with respect to X. Similarly,

coWP (G,X) := {w 2 X
⇤ | w 6=G 1G}

is the co-word problem of G with respect to X. |

Observe that WP (G,X), coWP (G,X) ⇢ X
⇤ and thus are formal languages

with X as an alphabet. The task we are interested in is the following.

Let C be a class of languages. Classify the groups with word
problem belonging to C and similarly classify groups with co-
word problem belonging to C.

(?)

Before we continue we note that the word problem and the co-word problem by
definition are dependent on the choice of generating set of the group in question.
However, in certain cases, the language class of the word problem and co-word
problem is independent of the choice of generating set. Therefore our task is
well defined. We make this more precise below, but first we make the following
definition.

Definition 2.3.2 (Closure under inverse homomorphism). [27, 29] Let C be a
class of languages. We say C is closed under inverse homomorphisms if whenever
� : X⇤ ! Y

⇤ is a monoid homomorphism and L ✓ Y
⇤ is in C then �

�1(L) := {w 2
X

⇤ | �(w) 2 L} is in C. |

Lemma 2.3.3. ([27, Lemma 1]) Let C be a class of languages that are closed under
inverse homomorphisms. Let G be a finitely generated group with finite generating
sets X and Y. Then:

1. WP (G,X) 2 C if and only if WP (G, Y) 2 C, and

2. coWP (G,X) 2 C if and only if coWP (G, Y) 2 C.

65

Proof. Let X and Y be finite symmetric generating sets for G. Now suppose
WP (G,X) 2 C. The sets X and Y then determine natural surjective homomor-
phisms

⇡ : X⇤ ! G and ⇢ : Y ⇤ ! G.

For each y 2 Y, fix wy 2 X
⇤ such that

⇡(wy) = ⇢(y);

that is, wy =G y. As Y ⇤ is a free monoid, there is a monoid homomorphism

� : Y ⇤ ! X
⇤

given by
y 7! wy for each y 2 Y.

Then ⇡�(y) = ⇡(wy) = ⇢(y) for each y 2 Y, so ⇡� = ⇢. Now let ! 2 Y
⇤. Then

! 2 �
�1(WP (G, x)) if and only if �(!) = 1G

if and only if ⇡�(!) = 1G
if and only if ⇢(!) = 1G
if and only if ! 2 WP (G, Y).

Therefore
WP (G, Y) = �

�1(WP (G,X))

and
coWP (G, Y) = �

�1(coWP (G,X)).

As C is closed under inverse homomorphisms and WP (G,X) 2 C, then WP (G, Y)
belongs to C as well. Similarly if coWP (G,X) 2 C then coWP (G, Y) 2 C. ⌅

With Lemma 2.3.3 in mind, it is permissible to say that a group G has word
problem, or co-word problem, in the class of languages C without referring to the
generating set, provided C is closed under inverse homomorphisms. Let G be a
group. If the word problem of G is in a class of languages C then we say G is a
C-group, or simply G is C. Similarly if the co-word problem of G in C then we say
G is a coC group, or simply G is coC. We shall return to this nomenclature various
times for various classes of languages . Finally we note that all classes of languages
we discuss in this thesis are known to be closed under inverse homomorphisms
[29, 1, 18]. In particular, it is shown in Theorems 3.5 and 6.3 of [29] that the
classes of regular languages and context-free languages are closed under inverse
homomorphisms. It is also shown in Lemma 3.2, Corollary 1 and Corollary 2(iv)
of [1] that the class of indexed languages are closed under inverse homomorphisms.

66

Finally in [18], it is shown that the class of ET0L languages are closed under inverse
homomorphisms.

Before we discuss classes of groups defined by their (co-)word problem belong-
ing to a specific language class, we will briefly state a property that will be useful
in various places throughout this thesis. This property is ignoring the word prob-
lem. Suppose G is a group whose co-word problem is accepted by a certain kind of
automaton M. We say M ignores the word problem of G if upon reading a string
v =G 1G, M returns to the configuration it was in before reading v. (This occurs
unless during the processing of v, M moves to a sink state.) This is formally de-
fined in Definition 2.3.27. However, we simply wish to highlight that this concept
not only applies to co-indexed groups, but can be generalised to other settings as
well.

2.3.1 Regular Groups

In what follows we shall explore what happens when we set C to be the class of
regular languages in ? on page 56.

Recall the class of regular languages is closed under complementation (see
Proposition 2.2.13). Therefore we have the following result.

Lemma 2.3.4. Let G be a finitely generated group, with a symmetrically closed
finite generating set X. Then WP (G,X) is regular if and only if coWP (G,X) is
regular.

Before we continue our discussion regarding classifying groups with regular
word problem, we shall state a lemma that we make use of later.

Lemma 2.3.5. Let G be finitely generated infinite group and let X be a finite
generating set for G. Then for all n 2 N there exists strings of length n in X

⇤

which do not contain substrings of positive length that are equal in G to 1G.

Proof. Assume there exists n 2 N such that for every string length n in X
⇤ there

exists a substring of positive length that is equal to 1G when evaluated in G.

We shall now show that every element g 2 G can be written as a product of
length less than n in X. Thus we conclude that G is finite which is a contradiction.

Assume there exists an element g 2 G that cannot be written as a product of
length less than n in X. Let ! 2 X

⇤ be a minimal string representing g;w =G g.

Note that by our assumption |!| � n. Write ! = !1!2 where |!1| = n where
!1,!2 2 X

⇤
. By our initial assumption, !1 = s!0t where |!0| � 1 and w0 =G 1G.

Then
g =G !1!2 = s!0t!2 =G st!2

67

and |st!2| = |!| � |!0| < |!|. This contradicts that ! is an expression for g of
minimal length.

Therefore every element g 2 G can be written as a product of length less than
n in X and G is finite. This is a contradiction to our original assumption and thus
the claim holds. ⌅

Due to Lemma 2.3.4, we shall only consider the word problem. The following
result due to Ansimov ([3]) classifies groups whose word problem (and thus whose
co-word problem) is regular.

Proposition 2.3.6. (Anisimov, [3]) Let G be a group and let X be a symmetrically
closed finite generating set for G. Then G is finite if and only if WP (G,X) is
regular.

Proof. Let G be a finite group and let X be a symmetrically closed generating
set. Let �(G,X) be the Cayley graph of G with respect to X. In our discussion
in 2.2.1.4 we discussed how to convert a finite edge-labelled directed graph into a
finite state automaton. We shall now convert �(G,X) into a finite state automaton
A = (G,X, �, I, F) following the process described in 2.2.1.4. The states of A are
the vertices of �(G,X), i.e., the state set is the underlying set of the group G; the
alphabet set is labelling set for �(G,X) and thus is X; the transition relation �

is defined by the edge set of �(G,X), i.e., if (g1, x, g2) is an edge in �(G,X) then
((g1, x), g2) is a transition, and finally I = F = {1G}. By definition of the Cayley
graph, there is a unique edge labelled by x (for every x 2 X) from every vertex g

to some vertex g
0 therefore A is deterministic and we write g ⇠x g

0 to represent
this transition as defined in 2.2.1.2 (and used in Definition 2.2.10). Therefore
the automaton A can read any input string ! (from 1G) and end at a uniquely
determined state q!. Further recall that since A is deterministic, there are no "-
transitions therefore when reading a string we do not have to consider sequences
of "-transitions.

Now, let ! = x1x2 · · · xn 2 X
⇤
. Since A is deterministic there exist uniquely

determined states q1, q2, . . . , qn such that

1G ⇠x1 q1 ⇠x2 q2 ⇠x3 · · · ⇠xn qn.

Observe that by construction of A (since A is induced by �(G,X)), x1x2 · · · xi =G

qi. Therefore qn = 1G if and only if x1x2 · · · xn =G 1G. So ! 2 L(A) if and only if
! =G 1G since F = {1G}. Therefore L(A) = WP (G,X).

Let G be a finitely generated infinite group with a symmetrically closed finite
generating set X such that WP (G,X) is regular. Let A be a deterministic finite
state automaton with initial state q0 such that L(A) = WP (G,X). Set k := |QA|.
Let t > k. By Lemma 2.3.5, there is a string ! of length t such that ! does not

68

contain any substring of positive length that evaluates to 1G in G. Since t > k,

when A reads !, it must visit a state ql multiple times in the reading process, i.e.,
there exists prefixes !1 = x1x2 · · · xl and !1!2 = x1x2 · · · xlxl+1 · · · xm of ! such
that

q0 ⇠x1 q1 ⇠x2 q2 ⇠x3 · · · ⇠xl
ql

and

q0 ⇠x1 q1 ⇠x2 q2 ⇠x3 · · · ⇠xl
ql ⇠xl+1

ql+1 ⇠xl+2
ql+2 ⇠xl+3

· · · ⇠xm qm

where ql = qm. Since A is deterministic and !1!
�1
1 2 WP (G,X) there are states

ql+1, ql+2, . . . , q2l such that

q0 ⇠x1 q1 ⇠x2 q2 ⇠x3 · · · ⇠xl
ql ⇠xl

�1 ql+1 ⇠xl�1
�1 ql+2 ⇠xl�2

�1 · · · ⇠x1
�1 q2l

where q2l 2 F. Note that when reading !
�1
1 one does not know a priori that the

states visited are the ones passed through when !1 was read but in reverse (as in
the case for the Cayley graph). We shall now show that !1!2!

�1
1 is also in L(A).

Note that the state of the automaton upon reading !1!2 is the same as the state
of the automaton upon reading !1 (as above). Therefore reading !

�1
1 after reading

!1 puts the automaton in the same state as reading !
�1
1 after reading !1!2. Thus

if !1!
�1
1 is accepted then so is !1!2!

�1
1 . Formally we see this since

q0 ⇠x1 q1 ⇠x2 q2 ⇠x3 · · · ⇠xl
ql ⇠xl+1

ql+1 ⇠xl+2
ql+2 ⇠xl+3

· · · ⇠xm qm = ql

and
ql ⇠xl

�1 ql+1 ⇠xl�1
�1 ql+2 ⇠xl�2

�1 · · · ⇠x1
�1 q2l.

However since !2 6= 1G (by choice of !), !1!2!
�1
1 6= 1G and therefore !1!2!

�1
1 /2

WP (G,X) contradicting L(A) = WP (G,X) as required. ⌅
With the above theorem, groups with regular word problem and co-word prob-

lem are classified. In the following section we turn our attention to a generalisation
of the above result.

2.3.2 Context-free Groups

Unlike the case of regular languages, context-free languages are not closed under
complementation. Therefore we do not know whether or not an analogous result
to Lemma 2.3.4 is true a priori. As such we shall in this section focus on the word
problem.

Definition 2.3.7 (Context-free group). Let G be a finitely generated group, G
is said to be context-free if there exists a pushdown automaton that accepts its
word problem with respect to some (and hence any) symmetrically closed finite
generating set. |

69

A generalisation of the result due to Anisimov (Proposition 2.3.6) is the fol-
lowing result by Muller and Schupp. The result first appears in [34] (where it is
Theorem III). There, accessibility is one of the conditions. However the version we
give below relies on the work of Dunwoody [20] and thus removes the accessibility
condition.

Theorem 2.3.8 (Muller–Schupp). Let G be a finitely generated group and let X
be a symmetrically closed set finite generating set. Then G is virtually free if and
only if WP (G,X) is context-free.

We will not prove the above theorem. However we will construct a pushdown
automaton below that will accept the word problem of a virtually free group. Fur-
ther we note that the automata we present below are non-deterministic. However
the complement of the languages they accept, i.e., the co-word problem of the
groups are also accepted by pushdown automata. (We prove this below as well.)
We give non-deterministic automata because we believe the automata to be more
natural and more easily understandable. However, it is shown in [34, 35] that vir-
tually free groups are precisely the class of groups whose word problem is accepted
by deterministic pushdown automata.

We shall start by defining a function ⇢ which we shall use in various places
throughout this thesis.

Definition 2.3.9. Let Fn be the free group of rank n � 2 and let Z ✓ Fn be
any finite symmetrically closed set. We now define a function ⇢Z : Z

⇤ ! Z
⇤

recursively as follows. First ⇢Z(") = " and ⇢Z(z) = z for all z 2 Z. Suppose that
! = z1z2 · · · zn is a string of length n in Z

⇤ and ⇢Z(z1z2 · · · zn�1) has already been
defined. Further suppose ⇢Z(z1z2 · · · zn�1) = y1y2 · · · yk where y1, y2, . . . , yk 2 Z.

Then define

⇢Z(z1z2 · · · zn�1zn) =

(
y2y3 · · · yk if zn = y1

�1

zny1y2 · · · yk if zn 6= y1
�1
.

|

Note that ⇢Z has the e↵ect of performing a recursive free reduction of a string
! followed by reversing the result. Equivalently, we may think of ⇢Z as reversing
! followed by a free reduction of !R

. Observe that ⇢(!) = " if and only if ! 2
WP (FZ , Z). Further, we will usually drop the subscript Z from ⇢Z as it will be
clear from context. We shall illustrate, by way of example, how ⇢ works. We do
this by calculating the image of the string abb

�1
a
�1
ba under ⇢. (Here the set Z is

assumed to be {a, b, a�1
, b

�1}.)

70

⇢(a) = a

⇢(ab) = ba

⇢(abb�1) = a

⇢(abb�1
a
�1) = "

⇢(abb�1
a
�1
b) = b" = b

⇢(abb�1
a
�1
ba) = ab.

We will now construct a pushdown automaton that accepts the word problem
of a virtually free group G. We shall start by constructing a pushdown automaton
to accept the word problem of the free group Fn on n generators. Let X

0 :=
{x1, x2, . . . , xn} be a free generating set for Fn and let X be the symmetric closure
of X 0

.

Definition of P (W,1)
Fn

: We define a pushdown automaton

P
(W,1)
Fn

:= (Q(W,1)
Fn

, I
(W,1)
Fn

,⌃(W,1)
Fn

,�
(W,1)
Fn

, �
(W,1)
Fn

,?, F
(W,1)
Fn

)

accepting WP (Fn, X) as follows.

• The state set is Q(W,1)
Fn

= {i0, i1, qA, };

• the set of initial states is I(W,1)
Fn

= {i0};

• the input alphabet is ⌃(W,1)
Fn

= X;

• the stack alphabet is �(W,1)
Fn

= X;

• the transition set is �(W,1)
Fn

consisting of the following transitions:

(T1) for every x 2 X there is a transition ((i0, x,?), (i0, x?)); that is, there
is an edge in the transition diagram from i0 to i0 labelled (x,?, x?),

(T2) for every x 2 X there is a transition ((i0, x, x�1), (i0, ")); that is, there
is an edge in the transition diagram from i0 to i0 labelled (x, x�1

, "),

(T3) for every x 2 X and every y 2 X \ {x�1} there is a transition
((i0, x, y), (i0, xy)); that is, there is an edge in the transition diagram
from i0 to i0 labelled (x, y, xy),

(T4) for every z 2 X [{?} there is a transition ((i0, ", z), (i1, z)); that is,
there is an edge in the transition diagram from i0 to i1 labelled (", z, z),

71

i0 i1

qA

(",?,?)

(", z, z)
for every z 2 X

(Note: z 6= ?)(x, y, xy)
for every x 2 X

and y 2 X \ {x�1}

(x,?, x?)
for every x 2 X

(x, x�1
, ")

for every x 2 X

(", z, z) for every z 2 X [{?}

Figure 2.1: Automaton for Fn

(T5) there is a transition ((i1, ",?), (qA,?); that is, there is an edge in the
transition diagram from i1 to qA labelled (",?,?),

(T6) for every z 2 X (and z 6= ?), there is a transition ((i1, ", z), (, z));
that is, there is an edge in the transition diagram from i1 to labelled
(", z, z); and

• the set of final states is F (W,1)
Fn

= {qA}.

We represent the above automaton in 2.1. The reader should note however that
for compactness we have used a single edge in the diagram to represent multiple
transitions.

Detailed discussion about the transitions of P
(W,1)
Fn

: We will elaborate on
the transitions listed above and make some observations that will be useful to us
when proving L(P (W,1)

Fn
) = WP (Fn, X).

Let ! = x1x2 · · · xm 2 X
⇤.

(⌧1) First we recall Definition 2.2.19; ! is accepted if there is a run whose last
configuration is an accept configuration. In particular, all input letters must
be read. Note that all transitions from i0 to i1, from i1 to qA, and from i1

to (i.e., the transitions in (T4), (T5) and (T6)) are "-transitions. Further,
there are no transitions from i1, qA or to i0. Therefore the automaton

72

cannot use the transitions in (T4), (T5) and (T6) until it has read the whole
string !. Thus we have our first observation below.

Observation 1: Any chain of relations reading ! must be of the following
form

C0 ⇠x1 C1 ⇠x2 C2 ⇠x3 · · · ⇠xm Cm ⇠⇤
"
Cm+1.

We also note that the only state with reading-transitions is i0.

(⌧2) If ! 6= " then the only way the automaton can read the first letter x1 of !
is by using a transition in (T1) (as initially the stack is always empty by
definition, i.e C0 is always (i0,?).) Thus after that transition the stack is
x1?, i.e C1 = (i0, x1?).

(⌧3) We shall show that at Ci, the stack is ⇢(x1x2 · · · xi)?. We do this by induc-
tion. Note that the base was established in (⌧2) as ⇢(x1) = x1.

Suppose the first i � 1 letters x1, x2, . . . , xi�1 of ! have been read by the
automaton and the stack is ⇢(x1x2 · · · xi�1)?. Upon reading xi, there are
three choices:

(a) if ⇢(x1x2 · · · xi�1) = " then the automaton uses a transition in (T1) and
the stack becomes xi? = ⇢(x1x2 · · · xi)?;

(b) if the first letter of ⇢(x1x2 · · · xi�1) is x
�1
i

then the automaton uses a
transition in (T2) and the letter at the top of the stack gets deleted,
i.e., the stack becomes ⇢(x1x2 · · · xi)?; and

(c) otherwise, the first letter of ⇢(x1x2 · · · xi�1) is not x
�1
i

then the automa-
ton uses a transition in (T3) and xi gets written onto the stack, i.e., the
stack becomes ⇢(x1x2 · · · xi)?.

Thus we have our second observation.

Observation 2: Ci = (i0, ⇢(x1x2 · · · xi)?) for 1  i  r.

(⌧4) Thus after reading the string !, the stack is ⇢(!)?.

(⌧5) Now, as there are no more letters left to be read in !, the automaton can
use a transition in (T4) to move from i0 to i1 without editing the stack.

(⌧6) At state i1, if the stack is ⇢(!)? with ⇢(!) = ", i.e., the stack is empty then
the automaton can use the transition in (T5) to move to qA. Otherwise, the
automaton can use the transitions in (T6).

Observation 3: qA is the only accept state. Thus any configuration with
the state being qA is an accept configuration. However, the only transition
that moves the state of the automaton to qA is ((i1, ",?), (qA,?)).

73

Proof of L(A) = WP (Fn, X): Let ! = x1x2 · · · xm 2 X
⇤
. By Observations 1

and 2 above, the automaton must read ! through the following chain

(i0,?) ⇠x1 (i0, ⇢(x1)?)

⇠x2 (i0, ⇢(x1x2)?)
...

⇠xn (i0, ⇢(x1x2 · · · xm)?). (1)

Denote the configuration (i0, ⇢(y1y2 · · · ym)?) by C!.

Observe that ⇢(y1y2 · · · ym)? = ? if and only if ⇢(y1y2 · · · ym) = " which occurs
precisely when ! 2 WP (Fn, X). Therefore we see that if ! 2 WP (Fn, X) then the
chain of relations in (1) continues as

C! = (i0,?) ⇠⇤
"
(qA,?).

By Observation 3, ! is accepted.
Conversely if ! 2 coWP (Fn, X) then ⇢(!) 6= ". The chain in (1) becomes

C! = (i0, ⇢(!)?) ⇠⇤
"
(i0, ⇢(!)?) (2.1)

or C! = (i0, ⇢(!)?) ⇠⇤
"
(i1, ⇢(!)?) (2.2)

or C! = (i0, ⇢(!)?) ⇠⇤
"
(, ⇢(!)?) (2.3)

due to transitions in (T4) and (T6). Recall the only reading-transitions are from
i0 to i0 as stated in Observation 1. Thus the automaton always reads ! through
the chain in (1). Therefore the chain of relations always continues as in (2.1) or
(2.2) or (2.3) and ! is not accepted.

Therefore the WP (Fn, X) is the language accepted by the above automaton.⌅
Wemake a notational remark before we continue. Recall the automaton defined

above was presented as

P
(W,1)
Fn

:= (Q(W,1)
Fn

, I
(W,1)
Fn

,⌃(W,1)
Fn

,�
(W,1)
Fn

, �
(W,1)
Fn

,?, F
(W,1)
Fn

).

We note that the superscript (W, 1) refers to this machine accepting the word
problem and that it has a viewing window of size 1. We include the aforementioned
details in the naming of the machine as they will be useful later. We will modify
various automata and it will be useful to refer to them while understanding what
they do without ambiguity.

Let G be a finite index overgroup of Fn. As above, we take X to be the sym-
metric closure of the free generating set for Fn. Let T 0 be a right transversal for Fn

in G and we assume that 1G 2 T
0
. Let T be the symmetric closure of T 0

. Observe
that Y := X [T is a symmetrically closed finite generating set for G. For each

74

y 2 Y and t 2 T
0
, ty 2 G thus ty = ftyt

0 for some fty 2 Fn and t
0 2 T

0
. Fix a string

wty := x1x2 · · · xr 2 X
⇤ such that x1x2 · · · xr =Fn fty.

We shall construct an automaton P
(W,1)
G

that accepts the word problem of G.

First we will give an intuitive description of how P
(W,1)
G

will work. We then define

P
(W,1)
G

and follow that with a detailed discussion about the transitions. Finally we

prove that L(P (W,1)
G

) = WP (G, Y).

Intuitive Description of P (W,1)
G

: The state set of the automaton will be a union
of T 0

, a final state qA and some auxiliary states which we shall describe later. The
initial state is 1G. (Recall that 1G 2 T

0.) Let ! = �1�2 · · · �k 2 Y
⇤
. Upon reading

an input letter �i from a state t 2 T
0 the automaton will move through a sequence

of auxiliary states ending with the state t
0 2 T

0 such that t�i = ft�it
0
. Through

the auxiliary states, the automaton will simulate the action of P (W,1)
Fn

reading wt�i ;
that is the auxiliary states will use the transitions in (T1), (T2) and (T3) in our

definition of P (W,1)
Fn

to read wt�i letter by letter. Thus at the end of the sequence of
auxiliary states, the stack would consist of the recursive free reduction of wR

t�i
S?;

i.e ⇢(SR
wt�i)?, where S? is the stack before entering the sequence of auxiliary

states. After reading the last letter of !, i.e., �k (and going through the sequence
of auxiliary states), if the automaton is at the state 1G then the input string is in
the coset that is equal to Fn1G and thus we will check whether the stack is empty
or not. If the stack is empty then the input string ! =G 1G and therefore ! will
be accepted by moving to the accept state qA.

Definition of P (W,1)
G

: We are now ready to formally define the automaton

P
(W,1)
G

:= (Q(W,1)
G

, I
(W,1)
G

,⌃(W,1)
G

,�
(W,1)
G

, �
(W,1)
G

,?, F
(W,1)
G

),

we do this below:

• The state set Q(W,1)
G

consists of the following states

– for every element t in the transversal T 0 we shall have a state t repre-
senting that element. We shall refer to this subset of the state set as T 0

as well.

– The states qA and .

– For ever t 2 T
0 and y 2 Y , there is a state (t, y). We shall call this

collection of states K.

– Recall that for every (t, y) 2 K we have fixed a string wty = x1x2 · · · xr

such that ty =G wtyt
0 for some t

0 2 T
0. There is a state representing

every letter in the string wty and is further indexed by (t, y). That is, for

75

every (t, y) 2 K there exist states named q(t,y,1), q(t,y,2), . . . q(t,y,r) where
r depends only on (t, y);

• the set of initial states is I(W,1)
G

= {1G};

• the input alphabet is ⌃(W,1)
G

= Y = X [T ;

• the stack alphabet is �(W,1)
G

= �
(W,1)
Fn

= X;

• the set of final states is F (W,1)
G

= {qA};

and finally the transition relation �
(W,1)
G

consists of the following transitions:

(T1) for every t 2 T
0
, y 2 Y and z 2 X[{?} there is a transition ((t, y, z), ((t, y), z));

that is at state t 2 T
0 upon reading y 2 Y with z at the top of the stack one

passes to the corresponding state (t, y) 2 K (thus recording both t and y)
while not changing the stack.

(T2) (a) For every (t, y) 2 K and z1 2 X [{?} there is a transition

(((t, y), ", z1), (q(t,y,1), P
(W,1)
Fn

(i0, x1, z1)))

where P
(W,1)
Fn

(i0, x1, z1) denotes the unique string such that

((i0, x1, z1), (i0, P
(W,1)
Fn

(i0, x1, z1)) 2 �
(W,1)
Fn

;

that is, at state (t, y), when the top letter of the stack is z1, there is a
transition to the state q(t,y,1) that places the same string on the stack
as the automaton for Fn did when reading the letter x1 with z1 at the
top of its stack.

(b) For every (t, y) 2 K and every z
0 2 X [{?} there is a transition

((q(t,y,i), ", z
0), (q(t,y,i+1), P

(W,1)
Fn

(i0, xi+1, z
0)))

for all 1  i  r � 1 where P
(W,1)
Fn

(i0, xi+1, z
0) denotes the unique string

such that

((i0, xi+1, z
0), (i0, P

(W,1)
Fn

(i0, xi+1, z
0))) 2 �

(W,1)
Fn

;

that is, at state q(t,y,i) when the top letter of the stack is z0, there is a
transition to the state q(t,y,i+1) that places the same string on the stack
as the automaton for Fn did when reading letter xi+1 with z

0 at the top
of its stack.

76

(c) For every (t, y) 2 K and every z
00 2 X [{?} there exists a transition

((q(t,y,r), ", z00), (t0, z00)); that is, at state q(t,y,r) there is a transition to
state t

0 that does not edit the stack, such that ty =G wtyt
0, and wty is

of length r.

(T3) There is a transition ((1G, ",?), (qA,?)).

(T4) For every z 2 X (and z 6= ?) there is a transition ((1G, ", z), (, z)).

Detailed discussion about the transitions of P
(W,1)
G

: Let ! = y1y2 · · · yk 2
Y

⇤. In what follows we assume ! is read by A, and we shall describe how A will use
the transitions to read !. We do this regardless of whether or not ! is accepted. We
will make some structural observations about how A reads ! in the points labelled
by (⌧ i) below and we highlight key points using the Observsations. This will be

useful to us when proving L(P (W,1)
G

) = WP (G, Y).
In (⌧1) we shall give an overview of what the transitions of the automaton do.

We shall also relate this to the definition of acceptance and thus conclude that
some transitions must only be used after the last letter of ! is read and processed.
In (⌧2) we discuss the order in which the automaton must use the transitions to
process !. We then discuss e↵ects of the transitions on the states and the stack.
We separate these into two di↵erent points, (⌧2.A) and (⌧2.B). These will be
recorded in observations to be used later. Finally, we shall make an observation
about the accept configurations in (⌧3).

(⌧1) We first note that transitions in (T1) are used to read input alphabet. Tran-
sitions in (T2) are "-transitions used to simulate reading strings of the form
wty in the automaton for Fn. Transitions in (T3) and (T4) are "-transitions
that are used to determine whether the input string is equal to the 1G or
not.

Recall Definition 2.2.19; ! is accepted if there is a run whose last configura-
tion is an accept configuration. In particular, all input letters must be read.
As mentioned above, the only reading-transitions are those in (T1) and oc-
cur from states in T

0. Further transitions in (T3) and (T4) are "-transitions
and there are no transitions from qA or to any other state. Therefore the
automaton cannot use transitions in (T3) or (T4) until it has read the whole
string !.

(⌧2) Upon reading an input letter yi 2 Y from a state t 2 T
0, with the being stack

S? where S 2 X
⇤, the automaton must use a sequence of transitions in (T1)

and (T2) ending at a state t0 such that tyi =G wtyit
0 where wtyi = x1x2 · · · xr.

We shall explain why the automaton cannot use any other transitions below

77

while describing what the transitions are. We do this in (⌧2.A). Moreover,
in (⌧2.A) we also describe how these transitions change the state of the
automaton. In (⌧.B), we describe the e↵ects of these transitions on the
stack.

(⌧2.A) Note that given the stack is S? for some S 2 X
⇤, the transitions below are

uniquely determined. We explain why each transition is uniquely determined
after each transition below.

(a) First the automaton uses a transition in (T1) to move to the state (t, yi).

(T3) and (T4) may only be used after all input letters have been pro-
cessed. Accordingly, if we are in state t and reading a letter yi, then
we must use a transition from (T1). Suppose the letter at the top of
the stack is z then there is only one choice for what the transition is,
namely ((t, yi, z), ((t, yi), z)). As the other transitions used in (b)-(d)
are from (T2), this transition is the only reading-transition. Note that
using this transition the stack has not been edited.

(b) The only transitions from (t, yi) are those in (T2)(a). Thus the automa-
ton must use a transition in (T2)(a). Recall that for every (t, yi) 2 K

and z 2 X [{?} there is a unique transition

(((t, y), ", z), (q(t,y,1), P
(W,1)
Fn

(i0, x1, z))),

and thus this is the transition that must be used by the automaton.
Thus the transition moves the state to q(t,yi,1), while writing the string

P
(W,1)
Fn

(i0, x1, z))) onto the stack. Recall the string P
(W,1)
Fn

(i0, x1, z))) is

the string that is written on the stack by A(W,1)
Fn

upon reading x1 from
i0 with z on the stack.

(c) For every 1  j  r � 1, the only transitions from q(t,yi,j) are those in
(T2)(b). Thus the automaton must use a transition in (T2)(b) to move
from state q(t,yi,j) to state q(t,yi,j+1). Recall that for every 1  j  r� 1,
with z

0
j
at the top of the stack, there is a unique transition from q(t,yi,j),

namely
((q(t,yi,j), ", z

0
j
), (q(t,yi,j+1), P

(W,1)
Fn

(i0, xj+1, z
0
j
))),

and thus this is the transition that must be used by the automaton.
Thus the transition moves the state from q(t,yi,j) to q(t,yi,j+1) via the

transition writing P
(W,1)
Fn

(i0, xj+1, z
0
j
) at the top of the stack.

(d) The only transitions from q(t,yi,r) are those in (T2)(c). Thus the au-
tomaton must use a transition in (T2)(c). Recall for every z 2 X [{?}

78

at the top of the stack, there is a unique transition from q(t,yi,r) to t
0

where tyi =G wtyit
0, namely

((q(t,y,r), ", z), (t
0
, z)).

As the transitions in (T2)(b) are uniquely determined, the letter at the
top of the stack from state q(t,yi,r), say z

0, is uniquely determined. Thus
the transition in (T2)(c) that must be used the by the automaton is

((q(t,y,r), ", z
0), (t0, z0)).

This moves the automaton from state q(t,yi,r) to state t
0 while not editing

the stack.

Observe that in the above points, the transitions used were the only ones
that could have been used. Thus there is no other way to be able to read
an input letter apart from going through the sequence above. Therefore the
automaton must go through the sequence of states as stated above every
time an input letter yi is read from a state t 2 T

0 and so we have the
following observation. Recall that a configuration of a PDA is a pair whose
first coordinate is a state and the second is the stack.

Observation 4: Any chain of relations reading ! = y1y2 · · · yk must be of
the following form

C0 ⇠y1 C
1
y1

⇠" C
1
1 ⇠" C

1
2 ⇠" · · · ⇠" C

1
|w1Gy1 |

⇠" C1

⇠y2 C
2
y2

⇠" C
2
1 ⇠" C

2
2 ⇠" · · · ⇠" C

2
|wt1y2 |

⇠" C2

...

⇠yi C
i

yi
⇠" C

i

1 ⇠" C
i

2 ⇠" · · · ⇠" C
i

|wti�1yi |
⇠" Ci

...

⇠yk
C

k

yk
⇠" C

k

1 ⇠" C
k

2 ⇠" · · · ⇠" C
k

|wtk�1yk |
⇠" Ck

⇠⇤
"
C!

where the following conditions hold.

(a) The configurations C0, C1, C2, . . . , Ck have their first coordinate being
t0, t1, . . . , tk 2 T

0 respectively such that t0 = 1G and

ti�1yi =G wti�1ti

for 1  i  k.

79

(b) The configurations C
i

yi
have their first coordinate being (ti�1, yi) for

1  i  k.

(c) The configurations C i

j
have their first coordinate being q(i�1,i,j).

(d) Finally the chain of relations can be partitioned in the following way

(T1)z }| {
Ci�1 ⇠yi | {z }

(T2)(a)

C
i

yi
⇠"

(T2)(b)z }| {
C

i

1 ⇠" C
i

2 ⇠" · · · ⇠" C
i

|wti�1yi |
C

i

1 ⇠" C
i

2 ⇠" · · · ⇠"

| {z }
(T2)(c)

C
i

|wti�1yi |
⇠" Ci

where

• Ci�1 ⇠yi Ci by a transition in (T1),

• C
i

yi
⇠" C

i

1 by a transition in (T2)(a),

• C
i

j
⇠" C

i

j+1 by a transition in (T2)(b) for 1  j  |wti�1yi |� 1,

• C
i

|wti�1yi |
⇠" Ci by a transition in (T2)(c)

for 1  i  k and the transitions above are uniquely determined as C0 is
always the initial configuration, i.e C0 = (1G,?) and that is independent
of !. Finally, as at Ck the automaton has finished processing the last
input letter

• Ck ⇠⇤
"
C! by a transition in (T3), (T4) or C! = Ck.

If ! 6= " then there exists first letter y1 of !. The automaton reads y1 from
the initial state 1G with the stack being empty, going through the states

(1G, y1), q(1G,y1,1), q(1G,y1,2), . . . , q(1G,y1,|w1Gy1 |)

and ending at state t1 where 1Gy1 =G w1Gy1t1.

(⌧2.B) We shall now elaborate on the e↵ect of the above transitions on the stack.
In what follows, whenever we refer to a transition, we mean the unique
transition that the automaton must use from a certain state with a particular
letter at the top of the stack, as outlined above.

We note that since transitions in (T1), (T2)(c), (T3), and (T4) do not alter
the stack we have the following observation.

Observation 5: For 1  i  k, the following configurations have the same
second coordinate

(a) Ci�1 and C
1
yi
,

(b) C
i

|wti�1yi |
and Ci, and

80

(c) Ck and C!.

Below, we investigate what the stack is for the configurations C i

|wti�1yi |
. We

do so by first investigating what the stack is for C1
|w1Gy1 |

, this is done in Point

I below by going through the transitions as outlined in (⌧2.A). In Point II,
we generalise what we do in Point I, to understand the stack for C

i

|wti�1yi |
.

Similar to I, in II we go through the transitions as outlined in (⌧2.A) to
understand their e↵ects on the stack.

I We start with the reading of the first letter y1 of ! (if ! 6= "). Recall
that initially the stack is empty. First recall that 1Gy1 =G w1Gy1t1 and
suppose w1Gy1 = x1x2 · · · x|w1Gy1 |. As in Observation 4 (and (⌧2.A)),
the automaton goes through the following sequence of transitions in
order.

i. First the automaton uses a transition in (T1). The only transition
that can be used is ((1G, y1,?), ((1G, y1),?)). Here the stack is
unchanged, i.e., the second coordinate of C1

y1
is ?.

ii. Now the automaton uses a transition in (T2)(a). Here the only
transition that can be used is (((1G, y1), ",?), (q1G,y1,1, x1?)) and
thus the second coordinate of C1

1 is x1? = ⇢(x1)?.

iii. Now the automaton uses transitions in (T2)(b). We shall show
that the second coordinate of C1

i
is ⇢(x1x2 · · · xi)?. We do this by

induction. Note that the base case is in the previous point.
Suppose the second coordinate of C1

i�1 is ⇢(x1x2 · · · xi�1)?. There
are three choices for what the transition is by which C

1
i�1 ⇠" C

1
i
.

• If ⇢(x1x2 · · · xi�1) = " then the only choice for the transi-
tion is ((q1G,y1,i�1, ",?), (q1G,y1,i, xi?)) and thus stack becomes
xi? = ⇢(x1x2 · · · xi)?. That is, the second coordinate of C1

i
is

⇢(x1x2 · · · xi)?.

• If the first letter of ⇢(x1x2 · · · xi�1) is x
�1
i

then the only choice
for the transition is ((q1G,y1,i�1, ", x

�1
i
), (q1G,y1,i, ")) and the let-

ter at the top of the stack gets deleted. That is, the second
coordinate of C1

i
is ⇢(x1x2 · · · xi)?.

• Otherwise, the first letter of ⇢(x1x2 · · · xi�1) is z 6= x
�1
i

then the
only choice for the transition is ((q1G,y1,i�1, ", z), (q1G,y1,i, xiz))
and xi gets written onto the stack. That is, the second coordi-
nate of C1

i
is ⇢(x1x2 · · · xi)?.

Therefore for every configuration C
1
i
, the second coordinate is

⇢(x1x2 · · · xi)?. In particular C1
|w1Gy1 |

has ⇢(w1Gy1)? as its second

coordinate.

81

iv. Finally the automaton uses a transition in (T2)(c). There is only
one that can be used; if the top of the stack at C

1
|w1Gy1 |

is z then

the transition is ((q(1G,y1,|w1Gy1 |), ", z), (t1, z)) and the stack is un-
changed. Thus the second coordinate of C1 is ⇢(w1Gy1)?.

II We shall now show that the second coordinate of C i

|wti�1yi |
is

⇢(w1Gy1wt1y2 · · ·wti�1yi)?.

We do this by induction. Note that the base case is in I above.

Suppose the second coordinate of C i�1
|wti�2yi�1 |

is

⇢(w1Gy1wt1y2 · · ·wti�2yi�1)?.

First we note that by Observation 5 the second coordinate of Ci�1

is the same as that of C i�1
|wti�2yi�1 |

and thus C
i

yi
also has the same sec-

ond coordinate. Recall that ti�1yi =G wti�1yiti and suppose wti�1yi =
b1b2 · · · bm 2 X

⇤. As in Observation 4 (and the (⌧2.A)), the automa-
ton goes through the following sequence of transitions in order.

i. First the automaton uses a transition in (T2)(a). There are three
choices for what the transition is by which C

i

yi
⇠" C

i

1.

• If ⇢(w1Gy1wt1y2 · · ·wti�2yi�1) = " then the only choice for the
transition is (((ti�1, yi), ",?,), (q(ti�1,yi,1), b1?)); thus the second
coordinate of C i

1 is b1? = ⇢(w1Gy1wt1y2 · · ·wti�2yi�1b1)?.

• If the first letter of ⇢(w1Gy1wt1y2 · · ·wti�2yi�1) is b
�1
1 then the only

choice for the transition is (((ti�1, yi), ", b
�1
1 ,), (q(ti�1,yi,1), ")) and

the letter at the top of the stack gets deleted. Thus the second
coordinate of C i

1 is ⇢(w1Gy1wt1y2 · · ·wti�2yi�1b1)?.

• Otherwise, the first letter of ⇢(w1Gy1wt1y2 · · ·wti�2yi�1) is z 6=
b
�1
1 . Then the only choice for the transition is

(((ti�1, yi), ", z,), (q(ti�1,yi,1), b1z))

and b1 gets written onto the stack. Thus the second coordinate
of C i

1 is ⇢(w1Gy1wt1y2 · · ·wti�2yi�1b1)?.

ii. Now the automaton uses transitions in (T2)(b). We shall show that
the second coordinate is C i

j
is ⇢(w1Gy1wt1y2 · · ·wti�2yi�1b1b2 · · · bj)?.

We do this by induction. We note the base case is in the previous
point.
Suppose the second coordinate of C i

j�1 is

⇢(w1Gy1wt1y2 · · ·wti�2yi�1b1b2 · · · bj�1)?.

There are three choices for the transition by which C
i

j�1 ⇠" C
i

j
.

82

• If ⇢(w1Gy1wt1y2 · · ·wti�2yi�1b1b2 · · · bj�1) = " then the only choice
for the what the transition is

((q(ti�1,yi,j�1), ",?), (q(ti�1,yi,j), bj));

the second coordinate of C i

j
is

bj? = ⇢(w1Gy1wt1y2 · · ·wti�2yi�1b1b2 · · · bj�1bj).

• If the first letter of ⇢(w1Gy1wt1y2 · · ·wti�2yi�1b1b2 · · · bj�1) is b
�1
j

then the only choice for the transition is

((q(ti�1,yi,j�1), ", b
�1
j
), (q(ti�1,yi,j), "))

and the letter at the top of the stack gets deleted. Thus the
second coordinate of C i

j
is

⇢(w1Gy1wt1y2 · · ·wti�2yi�1b1b2 · · · bj�1bj).

• Otherwise the first ⇢(w1Gy1wt1y2 · · ·wti�2yi�1b1b2 · · · bj�1) is z 6=
b
�1
j
. Then the only choice for the transition is

((q(ti�1,yi,j�1), ", z), (q(ti�1,yi,j), bjz))

and bj gets written onto the stack. Thus the second coordinate
of C i

j
is

⇢(w1Gy1wt1y2 · · ·wti�2yi�1b1b2 · · · bj�1bj).

This finishes our induction and in particular we see the second
coordinate of C i

|wti�1yi |
is

⇢(w1Gy1wt1y2 · · ·wti�2yi�1)?

as required. Thus we have the following observation.

Observation 6: For 1  i  k, the second coordinate of C i

|wti�1yi |
is

⇢(w1Gy1wt1y2 · · ·wti�1yi)?.

(⌧3) Finally by definition of the automaton we have the following observation.

Observation 7: qA is the only accept state. Thus any configuration with
the state being qA is an accept configuration. However, the only transition
that moves the state of the automaton to qA is ((1G, ",?), (qA,?)).

83

Proof of L(P (W,1)
G

) = WP (G, Y): Let ! = �1�2 · · · �k 2 Y
⇤. By Observations

4, 5 and 6 the automaton must read ! through the following chain

(1G,?) ⇠�1 ((1G, �1),?) ⇠⇤
"
(t1, ⇢(w1G�1)?)

⇠�2 ((t1, �2), ⇢(w1G�1)?) ⇠⇤
"
(t2, ⇢(w1G�1wt1�2)?)

⇠�3 ((t2, �3), ⇢(w1G�1wt1�2)?) ⇠⇤
"
(t3, ⇢(w1G�1wt1�2wt2�3)?)

...

⇠�k
((tk�1, �k), ⇢(w1G�1wt1�2wt2�3 · · ·wtk�2�k�1

)?))

⇠⇤
"
(tk, ⇢(w1G�1wt1�2wt2�3 · · ·wtk�2�k�1

wtk�1�k
)?), (3)

where ti�1�i =G wti�1�iti. Recall that the last configuration in (3) above is the
configuration Ck in Observation 4. We shall call it Ck throughout this proof as
well.

Now observe
�1�2 · · · �i =G w1G�1wt1�2 · · ·wti�1�iti

and
w1G�1wt1�2 · · ·wti�1�i =Fn ⇢(w1G�1wt1�2 · · ·wti�1�i)

R
.

Therefore ! =G 1G if and only if

⇢(w1G�1wt1�2 · · ·wtk�1�k
) = "

and tk = 1G. Thus ! =G 1G if and only if Ck = (1G,?). Recall there is a transition

(T3) ((1, ",?), (qA,?)) 2 �
(W,1)
G

and so the chain in (3) continues

Ck ⇠⇤
"
(qA,?).

Therefore if ! 2 WP (G, Y) then ! is accepted by Observation 7.
Conversely suppose ! 2 coWP (G, Y) then either

⇢(w1G�1wt1�2 · · ·wtk�1�k
) 6= "

or tk 6= 1G. Since the only transition to qA is from 1G (and there is no chain of
"-transitions from tk to 1G if tk 6= 1G) then if tk 6= 1G then ! cannot be accepted.
If tk = 1 then

⇢(w1G�1wt1�2 · · ·wtk�1�k
) 6= ".

Set ⇢(!) := ⇢(w1G�1wt1�2 · · ·wtk�1�k
). The chain in 3 continues

Ck = (1G, ⇢(!)?) ⇠⇤
"
(1G, ⇢(!)?) (4.1)

Ck = (1G, ⇢(!)?) ⇠⇤
"
(, ⇢(!)?) (4.2)

84

due to transitions in (T4). Finally we recall that the only reading transitions are

those listed in (T1) in �
(W,1)
G

and thus the automaton can only read ! through
the chain in (3) as in Observations 4, 5 and 6. Therefore the chain of relations
always continues as in (4.1) or (4.2) (or tk 6= 1) and ! is not accepted.

Therefore WP (G, Y) is the language accepted by P
(W,1)
G

. ⌅

Remark 2.3.10. The above automaton accepts after reading the string if the
state is qA. The only transition to qA is from state 1G when the stack is empty. �

As mentioned before P (W,1)
G

is nondeterministic, however a very simple modifi-

cation defines a new automaton P
(cW,1)
G

accepting coWP (G, Y). The modification
is as follows: the new automaton is defined in exactly the same way, with the
exception of the final states F

(cW,1)
G

. We define F
(cW,1)
G

:= { } [(T 0 \ {1}). Note
the transition relation for P (cW,1)

G
is the same as that for P (W,1)

G
thus they behave

the same way. Therefore the above arguments hold with the caveat that the fi-
nal states are now di↵erent. In particular, if a string was accepted in P

(W,1)
G

it

cannot be accepted in P
(cW,1)
G

and vice versa. By construction, P (cW,1)
G

accepts
coWP (G, Y). (We shall revisit this PDA in Chapter 4.) Further observe that if
!
0 =G 1 and t 2 T

0 then t! = ft!t with ft! =Fn 1. Therefore from a configuration
(t, S) reading a string !

0 =G 1, we return to (t, S). This observation will be useful
to us later, and in particular we call this property ignoring the word problem.

In the following section we shall discuss groups with context-free co-word prob-
lem.

2.3.3 coCF Groups

In this section we shall briefly discuss the class of groups whose co-word problem
is context-free. We start with the definition below.

Definition 2.3.11 (coCF Group). [27] Let G be a finitely generated group, G
is said to be coCF if there exists a pushdown automaton that accepts its co-
word problem with respect to some (and hence any) symmetrically closed finite
generating set. |

As we have discussed in the previous section, the word problem for a virtually
free group G is accepted by a (deterministic) pushdown automaton. Thus the
co-word problem of G is also accepted by a (deterministic) pushdown automaton,
and so we see that G is also coCF . Therefore context-free groups are contained
in the class of coCF groups. However there are groups that are coCF but not
context-free. In particular, Z2 is coCF (we see this below) but not virtually-free
and thus is not context-free. Therefore the class of coCF is a proper container
class for context-free groups.

85

The class of coCF groups has a number of interesting closure properties that
have become standard to aim for when studying groups defined by a language
theoretic class.

Proposition 2.3.12. [27] The class of coCF groups is closed under:

• passing to finitely generated subgroups,

• passing to finitely indexed overgroups,

• taking (finite) direct products, and

• standard restricted wreath product with context-free top group.

Since Z is context–free it is coCF . Due to Proposition 2.3.12, Z2 is coCF .

However for the sake of completeness and familiarising the reader with the tech-
nicalities involved, we show this below directly. However, we will start by giving a
definition of various functions �X which we shall use in various places throughout
this thesis.

Definition 2.3.13. Let Z 0 := {a1, a2, · · · , an} be any set and let Z be the sym-
metric closure of Z 0

. Further let x 2 Z
0 then set X := {x, x�1}.We define a monoid

homomorphism �X : Z⇤ ! Z
⇤ as follows. First let z 2 Z [{"} then

�X(z) =

(
z if z 2 X

" otherwise.

Now let !0 = z1z2 · · · zn 2 Z
⇤ then we define �X(!0) = �X(z1)�X(z2) · · ·�X(zn).

Now we define a function �X : Z⇤ ! Z
⇤ by �X(!) = ⇢X � �X(!). |

We note the e↵ect of �X on a string ! is deleting all occurrences of letters not
in X to get a string !

0 and then applying ⇢X to !
0. We illustrate this by way of

example. Let {a, b, a�1
, b

�1} be a set. We calculate the image of abb�1
a
�1
ba under

�{a,a�1}. First we apply �{a,a�1}: �{a,a�1}(abb�1
a
�1
ba) = aa

�1
a. Now we apply

⇢{a,a�1} (as defined in Definition 2.3.9): ⇢{a,a�1}(aa�1
a) = a.

Proposition 2.3.14. Z2 is coCF .

We shall first define a pushdown automaton A accepting the co-word problem
of Z2 with respect to the standard generating set X := {a, a�1

, b, b
�1}. We follow

this with a brief intuitive description of how A works. We then give a sequence
of lemmata ending with a proof of L(A) = coWP (Z2

, X). Following the proof,
we provide two example with explicit calculations, the reader may wish to take
detour and visit the examples before reading the proof.

86

Definition of A: We define A := (Q, I,⌃,�, �,?, F) as follows.

• The state set is Q = {i0, A,B,C, qA};

• the set of initial states is I = {i0};

• the input alphabet is ⌃ = {a, a�1
, b, b

�1};

• the stack alphabet is � = ⌃;

• the set of final states is F = {qA}; and

we describe the transition relation � below. The transition relation � consists of
the following transitions.

(T1) There exist transitions ((i0, ",?), (A,?)) and ((i0, ",?), (B,?)); that is,
there is two edges in the transition diagram from i0 labelled (",?,?), one
to A and the other to B.

(T2) (a) For every x 2 {a,?} there is a transition ((A, a, x), (A, ax)); that is,
there is an edge in the transition diagram from A to A labelled (a, x, ax),

(b) for every x 2 {a�1
,?} there is a transition ((A, a�1

, x), (A, a�1
x)); that

is, there is an edge in the transition diagram from A to A labelled
(a�1

, x.a
�1
x),

(c) there are two transitions ((A, a, a�1), (A, ")) and ((A, a�1
, a), (A, "));

that is, there are two edges in the transition diagram from A to A

labelled (a, a�1
, ") and (a�1

, a, ") respectively, and

(d) for every x 2 {b, b�1} and every y 2 {a, a�1
,?} there is a transition

((A, x, y), (A, y)); that is, there is an edge in the transition diagram
from A to A labelled (x, y, y).

(T3) (a) For every x 2 {b,?} there is a transition ((B, b, x), (B, bx)); that is,
there is an edge in the transition diagram from B to B labelled (b, x, bx),

(b) for every x 2 {b�1
,?} there is a transition ((B, b

�1
, x), (B, b

�1
x)); that

is, there is an edge in the transition diagram from B to B labelled
(b�1

, x, b
�1
x),

(c) there are two transitions ((B, b, b
�1), (B, ")) and((B, b

�1
, b), (B, ")); that

is, there are two edges in the transition diagram from B to B labelled
(b, b�1

, ") and (b�1
, b, ") respectively, and

(d) for every x 2 {a, a�1} and every y 2 {b, b�1
,?} there is a transition

((B, x, y), (B, y)); that is, there is an edge in the transition diagram
from B to B labelled (x, y, y).

87

(T4) (a) For every y 2 � [{?} there is a transition ((A, ", y), (C, y)); that is,
there is an edge in the transition diagram from A to C labelled (", y, y),
and

(b) for every y 2 � [{?} there is a transition ((B, ", y), (C, y)); that is,
there is an edge in the transition diagram from B to C labelled (", y, y).

(T5) For every y 2 � (i.e., when y 6= ?) there is a transition ((C, ", y), (qA, y));
that is, there is an edge from C to qA labelled (", y, y).

We represent the above automaton by the following diagram. The reader should
note however that for compactness we have used a single edge in the diagram to
represent multiple transitions when needed.

i0

A

B

C qA

(",?,?)

(",?,?)

(", y, y) for
every y 2 � [{?}

(", y, y) for
every y 2 � [{?}

(", y, y)
for y 6= ?

(a, x, ax)
for every x 2 {a,?}

(a�1
, x, a

�1
x)

for every x 2 {a�1
,?}

(y, x, x)
for every y 2 {b, b�1} and every x 2 {a, a�1

,?}

(a, a�1
, ") (a�1

, a, ")

(b, x, bx)
for every x 2 {b,?} (b�1

, x, b
�1
x)

for every x 2 {b�1
,?}

(y, x, x)
for every y 2 {a, a�1} and every x 2 {b, b�1

,?}

(b, b�1
, ") (b�1

, b, ")

Intuitive Description: Intuitively, we think of a run in this automaton as fol-
lows. First the automaton non-deterministically moves from the initial configura-
tion to (A,?) or (B,?) through transitions in 1. At state A (or B), the automaton

88

processes the input letters through the transitions in 2 (or 3). The states A and
B serve to freely reduce the projection of the input string onto one of the factors
of Z2. After the final letter has been read, the automaton uses the transitions in
4 to move from configuration (A, S) (or (B, S

0)) for some stack S (or S 0) to (C, S)
(or (C, S 0)). If the stack is non-empty then the state of automaton is moved to qA

and the input string is accepted.

Lemma 2.3.15. Let ! = x1x2 · · · xn 2 X
⇤. Then ! can only be read by A through

chains of the following form only

C0 ⇠" C
A

1 ⇠x1 C
A

2 ⇠x2 · · · ⇠xn C
A

n+1 ⇠⇤
"
C1

or
C0 ⇠" C

B

1 ⇠x1 C
B

2 ⇠x2 · · · ⇠xn C
B

n+1 ⇠⇤
"
C2

where C0 = (i0,?) and the states of CA

i
and C

B

i
are A and B respectively for

1  i  n+ 1.

Proof. First, we note that the only reading transitions are those in (T2) and (T3).
Further we note there is no sequence of "-transitions from C to A or B. Therefore
transitions in (T4) and (T5) can only be used after every input letter has been read.
Moreover, we observe that there are no transitions (or sequence of transitions) from
A to B, or vice versa. Finally the only transitions from i0 to A (or B) are those
in (T1).

Thus an input string ! = x1x2 · · · xn must be read by A as follows. First a
transition from (T1) is used to move the state to either A or B, thus

C0 ⇠" C
A

1 (5.1a)

or
C0 ⇠" C

B

1 (5.2a)

were C0 is the initial configuration (i0,?) and the states of CA

1 and C
B

1 are A and
B respectively.

Now the automaton uses transitions in (T2) to continue the chain (5.1a) as in
(5.1b) below since there are no other reading transitions from A apart from those
in (T2). Similarly, the automaton uses transitions in (T3) to continue the chain
(5.2a) as in (5.2b) below since there are no other reading transitions from B apart
from those in (T3). Therefore the chains continue as

C0 ⇠" C
A

1 ⇠x1 C
A

2 ⇠x2 · · · ⇠xn C
A

n+1 (5.1b)

and
C0 ⇠" C

B

1 ⇠x1 C
B

2 ⇠x2 · · · ⇠xn C
B

n+1 (5.2b)

89

respectively. Due to the transitions used being those in (T2) and (T3) respectively,
the states of CA

i
and C

B

i
are A and B respectively for 1  i  n + 1. Finally the

automaton may use transitions in (T4) and (T5) thereby the chains continue

C0 ⇠" C
A

1 ⇠x1 C
A

2 ⇠x2 · · · ⇠xn C
A

n+1 ⇠⇤
"
C1

and
C0 ⇠" C

B

1 ⇠x1 C
B

2 ⇠x2 · · · ⇠xn C
B

n+1 ⇠⇤
"
C2.

⌅

Now we prove another lemma that will provide insight about what the stack is
at a configuration.

Lemma 2.3.16. Let ! = x1x2 · · · xn 2 X
⇤. If A reads ! through the chain

C0 ⇠" C
S

1 ⇠x1 C
S

2 ⇠x2 · · · ⇠xn C
S

n+1 ⇠⇤
"
C

where S 2 {A,B} as in Lemma 2.3.15. Then the second coordinate of C
S

i
is

�{s,s�1}(x1x2 · · · xi�1)? where s = a if S = A, and s = b if S = B.

Proof. Let ! = x1x2 · · · xn 2 X
⇤ and by Lemma 2.3.15 the automaton reads !

through a chain of the form

C0 ⇠" C
S

1 ⇠x1 C
S

2 ⇠x2 · · · ⇠xn C
S

n+1 ⇠⇤
"
C

where S 2 {A,B}. We note that if S = A then the automaton must use transitions
in (T2) for the chain of relations

C0 ⇠" C
S

1 ⇠x1 C
S

2 ⇠x2 · · · ⇠xn C
S

n+1

and if S = B then the automaton must use transitions in (T3). Note that since
(T2) and (T3) are analogous we shall assume S = A.

Note that C0 ⇠" C
A

1 by the transition in (T1) that moves from i0 to A, and
thus the second coordinate of CA

1 is ?. If ! 6= " the automaton uses (T2) to read
the first letter x1 and there are 2 choices for what may happen:

1. either x1 /2 {a, a�1} then the automaton must use (T2)(d) as (T2)(a)-(c)
require the input letter to be in {a, a�1}. Thus the transition leaves the
stack empty. Thus the second coordinate of CA

2 is ? = �{a,a�1}(x1)?.

2. Otherwise x1 2 {a, a�1}, then the automaton writes x1 on the stack (via
(T2) (a) or (b)). (The choice is dependent on whether the input letter is a
or a�1 as per the definition of (T2)).) Thus the second coordinate of CA

2 is
x1? = �{a,a�1}(x1)?.

90

We shall now proceed by induction. Suppose the second coordinate of C
A

i
is

�{a,a�1}(x1x2 · · · xi�1)?. Now we consider the transition by which C
A

i
⇠xi C

A

i+1.
There are four choices for what may happen.

1. If xi /2 {a, a�1} then the automaton uses a transition in (T2)(d) and the
stack is unchanged. Therefore the second coordinate of CA

i+1 is

�{a,a�1}(x1x2 · · · xi�1)? = �{a,a�1}(x1x2 · · · xi�1xi)?.

For the remainder of the cases we assume xi 2 {a, a�1}.

2. If �{a,a�1}(x1x2 · · · xi�1) = " then the automaton must the transition

((A, xi,?), (A, xi?))

(in (T2)(a) or (b)) as there is no other choice of transition, and writes xi onto
the stack. Thus the second coordinate of CA

i+1 is xi? = �{a,a�1}(x1x2 · · · xi�1xi)?.

3. If the first letter of �{a,a�1}(x1x2 · · · xi�1) is x
�1
i

then the automaton must
the transition ((A, xi, x

�1
i
), (A, ")) (in (T2)(c)) as there is no other choice of

transition available, and deletes the letter at the top of the stack. Thus the
second coordinate of CA

i+1 is �{a,a�1}(x1x2 · · · xi�1xi)?.

4. Otherwise, the first letter of �{a,a�1}(x1x2 · · · xi�1) is xi then the automaton
uses the transition ((A, xi, xi), (A, xixi)) as there is no other choice of tran-
sition, and writes the letter xi onto the top of the stack. Thus the second
coordinate of CA

i+1 is �{a,a�1}(x1x2 · · · xi�1xi)?.

Therefore the second coordinate of CA

i+1 is �{a,a�1}(x1x2 · · · xi�1xi)? as required.
⌅

We also record a final observation below. This follows immediately from the
the definition of A.

Corollary 2.3.17. The only accept state is qA. Further, a string ! can only be
accepted if the last configuration in a chain such as in Lemma 2.3.15 is of the form
(qA, S?) where S 2 �

+.

Proof. From the definition of the automaton it follows that qA is the only accept
state. Further, the only transitions to qA are those in (T5). By Lemma 2.3.15
we know that a string ! can only be read by the chains in the statement of
Lemma 2.3.15. Therefore if ! is to be accepted then it must be that for at least
one chain in Lemma 2.3.15, the last configuration is an accept configuration. By
definition, an accept configuration is one whose state is an accept state. Thus it
must be that the state is qA. However, as the only transitions to qA are those in
(T5), it must be that the preceding configuration in the chain did not have an
empty stack. Otherwise, (T5) would not have been used. ⌅

91

Now we are ready to present the proof of Proposition 2.3.14.

Proof of Proposition 2.3.14. Let ! = �1�2 · · · �n 2 {a, a�1
, b, b

�1}⇤. Set A
0 :=

{a, a�1} and B
0 := {b, b�1}. By Lemma 2.3.15 and Lemma 2.3.16 the automa-

ton reads ! through the following chains only

(i0,?) ⇠" (A,?) ⇠�1 (A, �A0(�1)?)

⇠�2 (A, �A0(�1�2)?)
...

⇠�n (A, �A0(�1�2 · · · �n)?)

⇠" (C, �A0(�1�2 · · · �n)?) (6)

and

(i0,?),⇠" (B,?) ⇠�1 (B, �B0(�1)?)

⇠�2 (B, �B0(�1�2)?)
...

⇠�n (B, �B0(�1�2 · · · �n)?)

⇠" (C, �B0(�1�2 · · · �n)?). (7)

Denote the last configurations in (6) and (7) by CA0,! and CB0,! respectively.
Observe that ! 6=Z2 1 if and only if

�A0(�1�2 · · · �n) 6= "

or
�B0(�1�2 · · · �n) 6= ".

Therefore ! 6=Z2 1 if and only if

CA0,! 6= (A,?)

or
CB0,! 6= (B,?).

Suppose, without loss of generality, CA0,! 6= (A,?). Then the chain in (5) continues
as

C
0 ⇠⇤

"
(qA, �A0(�1�2 · · · �n)?)

and so ! is accepted by Corollary 2.3.17.
If ! =Zn 1Zn then

�A0(!0) = "

92

and
�B0(!0) = ".

Thus CA0,! = (C,?) and CB0,! = (C,?) and the automaton cannot use (T5). So
by Corollary 2.3.17, ! cannot be accepted. Therefore L(A) = coWP (Z2

, X). ⌅

Now we provide some examples.

Example 2.3.18. We shall work through how A reads the following strings.

1. !1 := aba
�1: First note that !1 2 Z2

, X). As we have discussed there are
two ways to read a string in A, one using the state A and the other using
the state B. Using A, we read through the following chain

(i0,?) ⇠⇤
"
(A,?) ⇠a (A, a?)

⇠b (A, a?)

⇠a�1 (A,?) ⇠⇤
"
(C,?)

and !1 is not accepted.

However using B, we read through the following chain

(i0,?) ⇠⇤
"
(B,?) ⇠a (B,?)

⇠b (b, b?)

⇠a�1 (B, b?) ⇠⇤
"
(qA, b?)

and !1 is accepted.

2. !2 := ab
�1
ba

�1 : Using A, we read through the following chain

(i0,?) ⇠⇤
"
(A,?) ⇠a (A, a?)

⇠b�1 (A, a?)

⇠b (A, a?)

⇠a�1 (A,?) ⇠⇤
"
(C,?)

and !2 is not accepted. Similarly, using B we read through the following
chain

(i0,?) ⇠⇤
"
(B,?) ⇠a (B,?)

⇠b�1 (B, b
�1?)

⇠b (B,?)

⇠a�1 (B,?) ⇠⇤
"
(C,?)

and !2 is not accepted.

93

Due to [27], we also have the following results concerning some decision prob-
lems of coCF groups.

Proposition 2.3.19. [27] Let G be a coCF group.

• The word problem of G is solvable in cubic time in terms of the length of the
input.

• The order problem of G is solvable. Moreover, if a string in the generators
of G represents an element of finite order, then its order can be determined.

• There exist coCF groups with unsolvable conjugacy problem and the gener-
alised word problem is, in general, unsolvable for coCF groups.

The study of R. Thompson’s Group V (originally introduced by R. Thompson
in the 1960’s but first appears in Thompson’s handwritten notes [41] circulated
circa 1970) has become central to the study of coCF groups. We shall give a brief
introduction to Thompson’s Group V below.

2.3.3.1 Thompson’s Group V

In this section we shall define Thompson’s group V. For further background on
Thompson’s groups in general, we recommend the work of Cannon, Floyd and
Parry [15].

We start by defining Cantor space.

Definition 2.3.20 (Cantor Space). The n-ary Cantor space, denoted Cn, is defined
to be {0, 1, .., n�1}! with the product topology induced by equipping {0, 1, ..., n�
1} with the discrete topology. An element z 2 Cn is viewed as a infinite sequence
z = x1x2x3 · · · such that for all i 2 N, xi 2 {0, 1, ..., n � 1}. We will refer to
elements of Cn as points in Cn. |

We note that Tychono↵’s theorem proves that Cn is a compact space and as a
product of Hausdor↵ spaces, it is also Hausdor↵.

In order to make our definition of Thompson’s group V, we first need to recall
the prefix relation.

Definition 2.3.21 (Prefixes). Let X be a finite set. Let w1, w2 2 X
⇤ we say that

w1 is a prefix of w2, denoted w1  w2, if and only if there exists a finite string
(possibly the empty string) v 2 X

⇤ such that w2 = w1v.

Similarly a finite string w 2 X
⇤ is a prefix of an infinite string z 2 X

!
, denoted

w  z if and only if there exists an infinite string y 2 X
! such that z = wy.

Let a, b 2 X
⇤
, if neither a is a prefix of b nor b a prefix of a, we say that a and

b are incomparable and we write a ? b. |

94

Definition 2.3.22. (Antichain) Let X be a finite set and let A ✓ X
⇤
. We say A

is an antichain if for every a 2 A, a and b are incomparable for every b 2 A \ {a}.
That is to say, A is an antichain if any two distinct elements in A are incomparable.

|

We require one more definition before defining Thompson’s Group V .

Definition 2.3.23. (Finite Complete Antichain for C2) Let A ✓ {0, 1}⇤ be a
finite set. We say A is a finite complete antichain for C2 if it satisfies the following
conditions:

• A is an antichain, and

• for any point x 2 C2, there exists a 2 A such that a is a prefix of x.

|

Equivalently, a finite complete antichain for C2 is a finite set A ⇢ {0, 1}⇤ such
that for every point in x 2 C2 there exists a unique prefix y of x in A.

We are now ready to define Thompson’s Group V .

Definition 2.3.24 (Thompson’s Group V). Let A and B be two finite complete
antichains for C2 of equal size. Thus there is a bijection � : A ! B. This bijection
induces a homeomorphism �

⇤ on C2 which is defined below.
For every x 2 C2, there exists a unique prefix a 2 A of x and x1 2 C2 of x such

that x = ax1. We set �⇤(x) := �(a)x1.

Thompson’s group V is the subgroup of Homeo(C2) of homeomorphisms in-
duced by bijections between finite complete antichains as above. |

Thompson’s group V has become important in understanding the class of coCF
groups because of the following conjecture (widely known as Lehnert’s Conjecture)
due to the work of Lehnert [31] and, Bleak, Matucci, and Neunhö↵er [9].

Conjecture: Let G be a coCF group. Then G embeds into Thompson’s group
V.

Further, it is believed that coCF groups are not closed under free products. In
particular it is conjectured in [27] that Z2⇤Z is not coCF . There has been very little
progress in proving either statements. Attempting to prove the it is indeed a coCF
group is di�cult as there is not a lot of room for storing extra information that one
needs while doing computations in the PDA without needing to look arbitrarily
deep into the stack. This of course, is not something that can be done with PDA.
The non-determinism in the automaton of Z2 plays a major role in complicating
the problem. Proving that groups are not coCF is in general a di�cult problem

95

as there are not a lot of good tools available in proving negative statements about
groups defined by language classes. However, these two questions (whether or not
Z2 ⇤ Z is coCF and Lehnert’s Conjecture) have been linked in a paper by Bleak
and Salazar-Diaz [10] as they proved that Z2 ⇤ Z does not embed into V.

To conclude this section, we would like to note that the full strength of PDA
has not yet been utilised in most machines proving groups are coCF . Most of the
PDA designed so far have non-determinism at the beginning or use results from
the theory of PDA enabling constructing PDA with the aforementioned property.
This is understandable in that proofs are easier than they theoretically could be
if non-determinism appeared in a lot of places in the machine. However this also
means that there’s some reluctance to subscribe to Lehnert’s conjecture, as the
full reach of PDA is not well understood. Having non-determinism only in the
beginning turns out to be very useful for other kinds of machines as well. However
it still means that the limits of these machines in general regarding recognising
co-word problems is di�cult to understand.

2.3.4 co-indexed Groups

In this section, we shall define co-indexed groups and present some of their prop-
erties as in [28].

Definition 2.3.25 (co-indexed Group). [28] Let G be a finitely generated group,
G is said to be co-indexed if there exists a nested-stack automaton that accepts
its co-word problem with respect to some (and hence any) symmetrically closed
finite generating set. |

Similar to Proposition 2.3.12, the class of co-indexed groups is closed under a
number of operations.

Proposition 2.3.26. [28] The class of co-indexed groups is closed under:

• passing to finitely generated subgroups,

• passing to finitely indexed overgroups,

• taking (finite) direct products, and

• standard restricted wreath product with context-free top group.

We shall now turn our attention to defining what it means for an automaton
to ignore the word problem. This will be useful to us in chapters 3 and 4. Using
the convention stated in 2.2.3.4 (also see [28]), we may separate the states of
a nested stack automaton A into reading-and "-states. Thus we have reading-

96

and "-configurations. Let G be a co-indexed group with A accepting its co-word
problem. Let C be a start configuration and let ! = �1�2 · · · �n be a string in the
generators of G. There is a unique reading configuration C

0 such that

C ⇠�1 C1 ⇠⇤
"
C2 ⇠�2 C3 ⇠⇤

"
C4 ⇠�3 · · · ⇠�n C2n�1 ⇠⇤

"
C

0
,

and we set C! := C
0
. We are now ready to state the following definition.

Definition 2.3.27 (Ignoring the word problem). Let G be a co-indexed group
with A accepting its co-word problem. We say A ignores the word problem of G
if for any reading configuration C and any string w = uv in the generators of G
(u and v are also strings) such that v =G 1G, then C

w = C
u unless Cw is a sink.

We note that u may be the empty string. |

We note that sink is a standard term in the theory of automata, and simply
means a state that no other state can be reached from. For more details on this
we recommend [28].

97

Chapter 3

Stack Groups

3.1 Introduction

In this chapter we mainly discuss Theorem 11 of [28]. This chapter is an expository
chapter for the purpose of completeness as the constructions used in Theorem 11
inspire our own constructions in the proofs of Theorem 4.6.1 and Theorem 4.7.1.
However, we shall not prove the theorem in this chapter as the proof can be found
in [28]. We will give a detailed discussion of how the automaton involved works
and give a brief argument that it does indeed accept the language claimed.

The main takeaway of this chapter is understanding the construction used in
the proof of Theorem 11 of [28]. We shall highlight parts of the construction and
their implications that are of particular interest to us throughout by using remarks.
First we remind the reader of the conventions of [28] below, which we shall also
use here.

Convention: For every indexed language L, there exists a nested stack automa-
ton A such that L(A) = L, and A has the following property. The set of states Q
of A can be written as a disjoint union of two sets Q" and Q⌃ such that

• if a transition is from a state p 2 Q" then it is an "-transition, and

• if a transition is from a state q 2 Q⌃ then it is not an "-transition.

We refer to states in Q" and Q⌃ as "-and reading-states respectively. Further
let C = (q, S, ⇣) be a configuration of A. We say C is a reading-configuration if
q 2 Q⌃. Conversely, we say C is an "-configuration if q 2 Q". Further, we will also
assume (as in [28]):

• every sequence of consecutive "-transitions must terminate after finitely many
transitions.

98

We are now ready to define stack groups.

Definition 3.1.1 (Stack Groups). Let G be a co-indexed group and suppose X is
a finite generating set for G. Let A be a nested stack automaton. We say (G,A)
is a stack pair with respect to X if A has the following properties:

1. L(A) = coWP (G,X),

2. A is deterministic upon input (see Definition 2.2.39),

3. for every start configuration C = (q, S, ⇠), the stack S is non-nested, i.e.,
there is no coordinate in S with $ in it, and

4. A ignores the word problem (see Definition 2.3.27).

We say G is a stack group with respect to X if there exists a nested stack automaton
A such that (G,A) is a stack pair with respect to X. |

We shall intuitively discuss the above definition. We say a group G with finite
generating set X is a stack group if G is a co-indexed group such that there exits
a nested stack automaton A accepting coWP (G,X) satisfying conditions 2, 3,
and 4 above. Condition 2 is defined in Definition 2.2.39. This means that any
non-deterministic move can only occur before input letters are read. Further,
once the first input letter is read, there is no choice allowed and the automaton is
deterministic from that point onwards. Condition 3 means that upon reading the
first input letter the stack must be non-nested (see Definition 2.2.27). Finally we
shall now explain condition 4 (see Definition 2.3.27). Suppose the automaton was
in a reading configuration C and read a substring v of the input string such that
v =G 1G from C. Then the automaton returns to C after reading v. This happens
unless during the reading of v the automaton moved to a sink state. In that case,
it shall remain in that sink state. Similarly, if the state of C was a sink state q

then the automaton shall also remain in q after reading v.
We note that these conditions are very restrictive and it is unknown whether

every co-indexed group admits an automaton accepting its co-word problem that
satisfies the conditions of Definition 3.1.1. That is, it is unknown whether the class
of stack groups is a proper subclass of the class of co-indexed groups.

Unlike the classes of groups defined by languages in 2.3, it is not clear a priori
whether stack groups are independent of choice of generators. The following result
from [28] proves that stack groups are independent of choice of generators.

Proposition 3.1.2. [28, Proposition 9] Let G be group and suppose X and Y are
finite generating sets for G. Then G is a stack group with respect to X if and only
if G is a stack group with respect to Y .

99

Therefore it is permissible for us to use the phrase class of stack groups and we
may drop the reference to a specific generating set when discussing stack groups as
we do when we use the phrase “the group H is coCF”. The class of stack groups
also shares some closure properties with various other classes of groups defined by
languages, such as coCF and co-indexed groups.

Proposition 3.1.3. [28, Proposition 9] The class of stack groups is closed under:

• passing to finitely generated subgroups,

• passing to finite index overgroups,

• taking (finite) direct products, and

• standard restricted wreath product with context-free top group.

3.2 Technical Lemma due to Holt–Röver

In this section we discuss Lemma 13 in [28]. We do not prove this lemma com-
pletely but we do give a sketch of the proof for a part of the lemma as we rely
on understanding that part in our context in Theorem 4.7.1. For the other part
of the lemma, we explain what the statement of the lemma means and the right
frame to view it in. Before doing the above, we shall define some terminology that
is used in the lemma. We do this in the following subsection.

3.2.1 Definitions

We shall present the following set up which our next two definitions (Defini-
tion 3.2.1 and Definition 3.2.2) rely on.

Let G be a stack group with respect to X. Thus there exists a nested stack au-
tomaton A such that (G,A) is a stack pair with respect to X. By Definition 3.1.1,
A is deterministic upon input. Thus for a run

C0 ⇠⇤
"

⌘z }| {
C1 ⇠x1 C2 ⇠⇤

"
C3 ⇠x2 C4 ⇠⇤

"
· · · ⇠xn C2n ⇠⇤

"
C2n+1

reading x1x2 · · · xn, the transitions used in ⌘ (in the chain above) are uniquely
determined given a configuration C1. Note that C1 is the start configuration of
the run above. Suppose C1 = (q, S, ⇠). By Definition 3.1.1, we know that the
choice stack S is non-nested, i.e., there is no coordinate in S with $ in it. Suppose
S = (t, sn, sn�1, . . . , s1,?).

Definition 3.2.1. We assume the set up defined above.

100

1. We call the stack S the choice stack of the run.

2. Given a run such as the one above, if we can obtain the stack Si of every
configuration Ci = (qi, Si, ⇠i) (for i � 2) by inserting subsequences of the
form t, yk, yk�1, . . . , y1, $ between components of S then we say the choice
stack is not altered during the deterministic phase.

|

Before we continue, we shall elaborate on the above and give an example. The
choice stack is not altered during the deterministic phase simply means that modes
available to the machine during the deterministic phase do not alter the trunk of
the stack. Therefore, the automaton can use reading, branch creation and branch
destruction modes. However, the automaton must only use the pushdown mode
when the pointer is in a branch.

Suppose the choice stack of some run of some machine is S 0 = (t, A,B,A,?).
Observe that we cannot obtain (t, C, A,B,A,?) by inserting a sequence of the
form t, yk, yk�1, . . . , y1, $ into S

0. However, by inserting t, a, a, $ between B and
the A to the right of it we can obtain (t, A,B, t, a, a, $, A,?).

For our next definition, we shall assume the same set up as Definition 3.2.1, with
the added assumption that the choice stack is not altered during the deterministic
phase. We note that if that is the case, then the stack Si of any configuration
Ci = (qi, Si, ⇠i) is either branched or Si = S (for all i � 2).

Definition 3.2.2. We assume the same set up as Definition 3.2.1. Further suppose
the choice stack is not altered during the deterministic phase. (Then the stack Si

of any configuration Ci = (qi, Si, ⇠i) is either branched or Si = S, for all i � 2.)

1. We may refer to the readable portion of the stack (as in Definition 2.2.28)
of a configuration Ci as the active stack of Ci.

2. Suppose Si of a configuration Ci is branched, for some i. Let
(t, s0

k
, . . . , s

0
1, $, sl, . . . , s1,?) be the readable portion of Si. If s01 6= sl then

we say the active stack of Ci overlaps as much as possible with the choice
stack.

3. If the active stack of Ci overlaps as much as possible with the choice stack
for every i � 2 then we say the active stack always overlaps as much as
possible with the choice stack in that run. We may also refer to this by
similar language.

|

101

We note that in [28], the stack does not have the marker t, thus in the statement
of Lemma 3.2.4 when the phrase top of the stack is used, we mean the symbol that
is to the right of t in the active stack. Further, the pointer is referred to as
read-write-head or rwh for short.

We also note that a run is referred to as a computation. Further note that
strings are accepted in [28] by giving a description of a set of accept configurations.

We shall now present the final definition section.

Definition 3.2.3. Let C = (q,S) be a reading configuration. We say the top of
the stack contains a symbol representing the current state if the top of the active
stack contains a symbol representing q; i.e, the symbol in the r(S)� 1th coordinate
represents q. |

For the purposes of this lemma, as stated earlier, we shall give a sketch of the
proof of part of the lemma. In that sketch, we use the ideas in 2.2.3, in particular
Definition 2.2.32.

3.2.2 Lemma

We are now ready to present the lemma.

Lemma 3.2.4. [28, Lemma 13] Let G be a stack group with respect to a finite
generating set X. Then there exists a nested stack automaton A such that (G,A)
is a stack pair with respect to X and A satisfies the following properties.

(S4) In each computation of A the choice stack is not altered during the deter-
ministic phase and the active stack always overlaps as much as possible with
the choice stack

(S5) In every reading configuration of A the rwh is scanning the top of the stack,
which contains a symbol representing the current state.

As mentioned in 3.2, we shall not provide a proof of the above lemma as it
can be found in [28]. By Definition 3.1.1, there exists a nested stack automaton
A0 = (Q,⌃,�, I, F, $, t,?, �) (as defined in Definition 2.2.26) such that (G,A0) is a
stack pair with respect to X. The lemma does not claim that A0 has the properties
stated. Instead that there exists, possibly a di↵erent nested stack automaton,
A such that (G,A) is a stack pair with respect to X satisfying the properties
stated. As stated in 3.2, we provide a sketch of proof for one part of the lemma,
namely (S5) as we rely on a similar construction in the automaton used to prove
Theorem 4.7.1. We do so by constructing an automaton by modifying A0 to satisfy
(S5), following the proof in [28].

102

Remark 3.2.5. In the construction of the automaton that we will use to prove
Theorem 4.7.1, we will use some transitions after reaching some states in order
to write the names of those states on the pushdown stack. This technique is
important as it means that we will not need to rely on the states of the automaton
to know where a computation has ended and we can simply use the stack. �

Sketch of Proof of 3.2.2 (S5). By Definition 3.1.1, there exists a nested stack au-
tomaton

A0 = (Q,⌃,�, I, F, $, t,?, �)

such that (G,A0) is a stack pair with respect to X.
By the convention in 3.1, the state set Q of A0 is a disjoint union of "-states

Q" and reading-states Q⌃. We shall define a new automaton

A0
1 = (Q1,⌃,�, I, F, $, t,?, �1)

such that L(A0
1) = L(A0) by modifying Q1 and �1 so that every reading-transition

in �1 moves the automaton from a reading-state to an "-state as follows. First we
start with Q1 = Q and �1 = �, and we refer to the reading-states and "-states of
Q1 as Q1,⌃ and Q1," respectively. For every reading-state p 2 Q⌃ such that there
exists a transition ↵ = ((p, �, y), (q, w)) 2 �1 with q 2 Q⌃ we do the following.
Since �1 is finite there are finitely many transitions from p. In particular, there are
only finitely many transitions from p to reading-states. Let Tp be the set consisting
of those transitions in �1. For every � = ((p, �0

, y
0), (q0, w0)) 2 Tp we modify Q1

and �1 as follows:

• adjoin a state q� to Q1,",

• we delete � from �1, and

• we adjoin the following transitions to �1

�1 = ((p, �0
, y

0), (q�, w
0)) and �2 = ((q�, ", y

00), (q0, 0))

where y
00 is the letter pointed to if � is used in �.

Observe that C1 ⇠�0 C2 by � if and only if C1 ⇠�0 C
0 by �1 and C

0 ⇠" C2 by �2.
Thus whenever we have a chain of relations reading a string ! by transitions of A
with C1 ⇠�0 C2 by � appearing in the chain, then we can replace that occurrence
of

C1 ⇠�0 C2

by
C1 ⇠�0 C

0 ⇠" C2

103

where C1 ⇠�0 C
0 by �1 and C

0 ⇠" C2 by �2 to yield a chain of relations reading
a string string ! by transitions of A0, and vice versa.Therefore, L(A0

1) = L(A0).
Further, (G,A0

1) is a stack pair as we have not modified the automaton in anyway
that would violate the definition of a stack pair. We shall now modify A0

1 to satisfy
(S5).

We shall define a new automaton A0
2 = (Q2,⌃,�2, I, F, $, t,?, �2) and we start

by setting Q2 = Q1, �2 = �, and �2 = �1. We start by assuming that Q2\�2 = ?.
For every q 2 Q2, we shall adjoin a stack alphabet letter to �2 representing q and
we denote it by q as well. We shall refer to the reading-states and "-states of A0

2

as Q2,⌃ and Q2," respectively.
To ensure that (S5) is satisfied we shall modify �2 (and Q2) further. There are

two cases:

1. transitions that move the automaton to a reading-state, and

2. transitions that move the automaton from a reading-state.

We address these below.

1. For each transition µ = ((q1, ", y1), (q2, w1)) 2 �1 where q2 2 Q1,⌃ we do the
following modifications:

• we delete µ from �2,

• we adjoin a new state qµ to Q2,", and

• we add the following transitions to �2

µ1 = ((q1, ", y1), (qµ, w1)),

µt = ((qµ, ", ty2), (q2, tq2y2)), and

µy1 = (qµ, ", y2), (q2, tq2y2$)

where y1, y2 2 � [{?}.

Observe that having done these modifications, for every reading configuration
whose state is q 2 Q2,⌃, the rwh is at the top of the stack and is pointing
to q.

2. For each transition ⌫ = ((q01, �, y
0
1), (q

0
2, w

0
1)) 2 �1 where q

0
1 2 Q1,⌃ we do the

following modifications:

• we delete ⌫ from �2,

• we adjoin new states q⌫,1 and q⌫,2 to Q2,", and

104

• we add the following transitions to �2

((q1, �, tq1), (q⌫,1, t)),

((q⌫,1, ", t$), (q⌫,2, ")),

((q⌫,1, ", t), (q⌫,2,�1)), and

((q⌫,2, ", y
0
1), (q

0
2, w

0
1)).

Observe that having done these modifications, from reading-states we first
read an input letter and delete the top of the stack. If the stack is branched,
we delete the symbol underneath t if the result is an empty branch we delete
the branch. If the stack is not branched then we simply delete the symbol
under t and move the pointer down by one move. Then the pointer will
point to y

0
1. Then we move the state of the automaton to q

0
2 and modify the

stack the same way ⌫ does.

Observe that these modifications insert auxiliary subchains of configurations in a
chain of configurations without changing the last configuration in a meaningful
way and thus they do not change the language accepted, so L(A0

2) = L(A0
1). ⌅

We shall now discuss (S4). Recall we will not prove that (S4) can be satisfied,
but we will briefly discuss the main points of how to satisfy (S4). First we define a
new automaton A0

3 = (Q3,⌃,�3, I, F, $, t,?, �3) and we start by setting Q3 = Q2

and �3 = �2. Further we define a set �2 := {z | z 2 �2} consisting of barred
versions of symbols for every symbol in �2. More formally, let �0 be a set disjoint
from �2 and that there exists a bijection ✓ : �2 ! �

0. We denote the image ✓(x)
by x for every x 2 �2 and we say x is a barred version of x. We further denote �

0

by �2. Now we set �3 = �2 [�2.
We call a state q a start state if it is the state of a start configuration. Let

QN be the subset of Q2," with the following property. For every q 2 QN there
exists a configuration Cq where q is the state of Cq such that there exists a start
configuration C where

(q0, (t,?), (1, t)) ⇠⇤
"
Cq ⇠⇤

"
C

for every q0 2 I. The states in QN represent the states that are involved in the
transitions before the first reading-transition occurs from a start configuration,
i.e., the states in QN are those used in the non-deterministic phase of A0

3. Observe
that I ✓ QN .

We modify the automaton so that the stack alphabet used in the non-deterministic
phase of A0

3 are barred. That is, the transitions used in a run from the initial con-
figuration to the start configuration, have the same impact on the stack as the
non-deterministic phase of A0

2, but the stack alphabet used are barred versions of

105

those used in A2. Thus let q be a start state of A0
2. Then (q, S, (k + 2, t)) where

S = (t, z1, z2, · · · zk,?) is a start configuration of A0
2 if and only if (q, S, (k+2, t))

where S = (t, z1, z2, · · · zk,?) is a start configuration of A0
3.

Set QD := Q2 \ QN . The states in QD are those used in transitions from
reading the first input letter onwards, i.e., QD consists of the states involved in the
deterministic phase of A0

3. In particular, start states are in QD. One can modify
the transitions involving QD such that the following conditions are satisfied.

1. The alphabet written or deleted with these transitions are unbarred.

2. If the pointer is pointing to a barred letter y on the stack and the transition
does not write nor delete then the transition, i.e., the transition belongs to
J2 in Definition 2.2.26, then the transition has the same e↵ect on the stack
as it would if the pointer was pointing to y.

3. Suppose the pointer is at z where z is either barred or the bottom of stack
symbol. Further, suppose the transition is creating a branch, consisting
of tx1x2 · · · xr$ say. Then the pointer moves up by 1 step for every letter
of x1x2 · · · xr starting from the right. This happens until the letter xi in
x1x2 · · · xr is not the unbarred version of what the pointer is pointing to.
Then the pointer is moved down by 1 step again. Finally the automaton
branches from the trunk with the branch consisting of tx1x2 · · · xi$. Thus
we ensure that the active stack overlaps as much as possible with the choice
stack.

4. Conversely, when deleting top of the active stack, we replace transitions that
delete the top of the branch by transitions that move the pointer down by
one step if the letter being deleted is barred. Thus the pointer will reach the
same position it would if the deletion occurred but while satisfying 1 as well.

Remark 3.2.6. The alphabet used in non-deterministic phase are disjoint from
the alphabet used in the deterministic phase. The trunk will not be edited after
the non-deterministic phase, but a part of it is viewable by the pointer during
the deterministic phase. We use this in the construction of the automata in The-
orem 4.6.1 and Theorem 4.7.1. The first point is easy to do as shall define a
disjoint of alphabet for the check-stack alphabet that we use in a similar way;
i.e., to inform decisions made during the computation. The second point is more
complicated in a CSPD machine. This is because, in a NSA the pointer can move
up and down without editing the stack unlike in a CSPD automaton. We shall use
the pushdown stack alphabet, the states, and the pointer in a CSPD automaton
to achieve a similar e↵ect. We do this by adding onto the pushdown stack some
letters (W and M representing “wait” and “move”) in order to be able to move

106

up on the pushdown stack and thus be able to see more of the check-stack. Con-
versely, deleting these letters will result in viewing letters on the check-stack that
we have already been able to see at an earlier point. �

When discussing Theorem 11 of [28] in the following section, we shall assume
that the automata satisfy (S4) and (S5).

3.3 Free Products

In this section we shall explore Theorem 11 of [28]. Our goal is to elaborate on
the proof and familiarise the reader with ideas and the key points. First, we state
the theorem below. Then we shall give intuitive outline of the algorithm. We then
follow with a detailed discussion of how the automaton works. We end with a brief
argument that the automaton does indeed accept the language claimed.

Theorem 3.3.1. [28, Theorem 11] Let G1 and G2 be stack groups. Then the free
product G1 ⇤G2 is also a stack group.

3.3.1 Outline

To prove G1 ⇤ G2 is a stack group we must show that there exists a nested stack
automaton A such that (G1⇤G2,A) is a stack pair with respect to some generating
set for G1 ⇤G2.

Suppose X1 and X2 are finite generating sets for G1 and G2 respectively. Recall
since G1 and G2 are stack groups then there exist nested stack automata A1 and
A2 such that (G1,A1) and (G2,A2) are stack pairs with respect to X1 and X2

respectively. Further, we may assume that A1 and A2 satisfy the conditions in
Lemma 3.2.4. Recall in the previous section, the automata have two phases a
non-deterministic phase and a deterministic phase.

We shall first describe the non-deterministic phase of A. The automaton first
runs through the non-deterministic phase of A1 followed by the non-deterministic
phase of A2, and the automaton repeats this process some number of times. Then
the automaton uses an "-transition to move to the start state qr while pushing
the symbol qr onto the stack. From this point on wards, A will be deterministic.
Recall by our discussion in 3.2.2, the letters used in non-deterministic phase of A
will be barred. After the automaton runs through the non-deterministic phase of
A1 the letter under t is from the stack alphabet of A1. This letter will be treated
the same way ? is treated by A2. Similarly, at the end of the non-deterministic
phase of A2 the letter under t is from the stack alphabet of A2. This letter will
be treated the same way ? is treated by A1.

107

After each time the automaton runs a non-deterministic phase of Ai the symbol
under t is a symbol representing a start state of Ai. Thus the stack after running
the non-deterministic phases of A1 and A2 repeatedly in an alternating manner,
the stack is

(t, NP (A2)m, NP (A1)m . . . , NP (A2)2, NP (A1)2, NP (A2)1, NP (A1)1,?)

where NP (Ai)j denotes a sequence of barred stack alphabet (i.e., excluding t or
?) written on the stack during the non-deterministic phase of Ai when run for the
j
th time by A. Note that the first letter of every NP (Ai)j must represent a start
state of Ai by Lemma 3.2.4. Moreover, there are no branches in any NP (Ai)j
and thus there are no branches in the stack above. Finally, the last step in the
non-deterministic phase is moving to the start state qr, pushing a barred symbol
qr representing that on top of the stack, and moving the pointer down by one
position. So the stack at the end of the non-deterministic phase is

S = (t, qr, NP (A2)m, NP (A1)m . . . , NP (A2)2, NP (A1)2, NP (A2)1, NP (A1)1,?).

Finally, we note that the pointer at the end of the non-deterministic phase is at
qr.

Now we describe the deterministic phase of A. During this phase the automa-
ton follows one “meta-rule”, which we state below and elaborate on afterwards.

Meta-Rule: In a given run, suppose the input letter x being read
belongs to Xi. Further suppose that the last input letter from Xi

left the automaton at configuration C. If the automaton can use a
reading-transition with input letter x from C, then it does so. Thus
x is processed from C. Otherwise, the automaton uses the pointer to
move through the stack to find the first state q on the stack such that
q 2 �i and thereby the configuration is now one an input letter from
Xi can be processed from.

Now we shall elaborate on our “meta-rule”. Suppose the first letter of the input
string is x 2 Xi. The automaton moves the pointer from qr down until the first
letter representing a state in Ai is seen on the stack. In the above stack, this is
either the first letter of NP (A2)m or that of NP (A1)m. Suppose without loss of
generality, that the first letter on the stack representing a state of Ai is the first
letter of NP (A1)m, say q. Note this implies that x 2 X1. The automaton lets A1

run from the reading state q reading x with NP (A1)m on the stack and the pointer
at q. Recall that by Definition 3.1.1 A1 is deterministic upon input. We follow
all the transitions available until we reach a reading configuration, this yields the
following chain of relations in A1

C ⇠x C1 ⇠⇤
"
C2

108

such that C = (q, (t, NP (A1),?), ⇠) with ⇠ = (n�1, q) where n is the length of the
stack, and C1 and C2 are the unique configurations determined by the transitions
of A1 such that C2 is a reading-configuration. By Lemma 3.2.4, we know that
the choice stack is not altered in A1 and the active stack overlaps as much as
possible with the choice stack. Suppose C2 = (q1, S1, ⇠1) where the pointer points
to a symbol representing q1 on the stack S1. The automaton A will simulate the
transitions used in above chain of relations with the addition of returning to state
qr at the end of simulating transitions in A1. The automaton also determines
whether or not a branch exists, if a branch was created in the chain of relations,
then the symbol qr gets pushed onto the branch. If there was no branch that was
created, then the automaton simply moves the pointer up the stack until it sees
the symbol qr. All of these transitions (simulating A1 and the pointer pointing to
a state representing qr) yield the following chain

(qr,S, ⇠0) ⇠x C
0
1 ⇠⇤

"
C

0
2

where C
0
2 = (qr,S1, ⇠

0) where S 0 is the stack obtained by replacing NP (A1)m in S
with S1 (excluding the left-most t and ?) and then carrying out the transitions
necessary for the pointer to point at a symbol representing qr. Now A is ready to
read another input letter.

Suppose the input letter being read is y, with the pointer at a symbol repre-
senting qr. If that symbol is qr then there is a branch and we delete that symbol.
Now the automaton can view the symbol under qr, this symbol represents a state
p of A1 or A2. If y 2 Xi and p is a state of Ai then we can process y from the
state p. Otherwise, the pointer will travel down the stack until it finds the first
letter representing a state belong to the same automaton as y. That is, if y 2 Xi

then the automaton finds the first letter representing a state of p0 in Ai. Then the
automaton uses it to run the Ai from p

0 with the stack of Ai being what is viewable
to the automaton when it uses its pointer to move down, until the symbols on the
stack are no longer those of Ai. Then it uses the first symbol not from Ai as a
bottom of stack symbol. The stack gets edited the way Ai would edit the stack.
Finally if there is a branching the automaton moves the pointer to the top of the
branch and writes qr. Otherwise, the automaton moves to the top of the trunk
and points at qr.

This process ensures that when the automaton reads a syllable wi from Ai, it
will process that syllable in the way Ai would process it given the state of Ai that
was visible (say qi) and what the stack was (i.e. the contents of the stack from
qi to the first symbol that is not from Ai). Then if the following syllable wi+1 is
equal to the identity in its respective group, there will be no new branching. We
see this since there are two possibilities. The automaton Aj (i 6= j) gets used from
a state that is above qi (this will happen if states above qi now become visible

109

due to the part that wi belonged to now becoming trivial after the processing
of wi). Alternatively the state processing wi+1 is in the trunk and thus since
wi+1 is equal to the identity, and the configuration from which Aj runs was a start
configuration. The configuration after wi+1 is processed must be the same and thus
is a start configuration. Therefore the automaton will not create a new branch.
Then the automaton moves its pointer upwards until it sees a symbol representing
qr. Therefore the next syllable wi+2 will be viewed as being continuation of the
syllable wi. More importantly, the above is also true if no branch is created even
if wi+1 is not equal to the identity. This is very crucial. The reason is if there is a
run which in one of the automata does not accept a string (regardless of whether
or not it is equal to the identity), this is simulated in the automaton A if the
start state of that run is visible for that string where A views it as a syllable and
provided the stack is the same as it was in the start configuration of the run that
did not accept the string.

However, whenever syllable wj is equal to the identity in its respective groups,
the automaton treats wj�1wj+1 as a single syllable.

Remark 3.3.2. This technique of processing by syllables is one that we also make
use of. This is important because if a string in a free product is non-trivial then its
normal form has non-trivial syllables. So if one can prove that every element of the
normal form is accepted by such an automaton then the proof would follow with
the added assumption that the automaton used returns to its original configuration
upon reading a string whose free reduction is empty. This is because by inserting
finitely many strings with empty free reduction we can create any string in the
co-word problem from strings in normal form. �

In fact the above remark is also what the proof in [28] relies on.

Remark 3.3.3. We achieve this in Theorem 4.6.1 by projecting syllables from
both groups onto their free subgroups and then freely reducing in the structure of
the automaton, where the check-stack is used to determine the generators of the
free subgroups that we project onto.

We achieve this in Theorem 4.7.1 by projecting the syllables from the group Zn

onto its free subgroups and then freely reducing in the structure of the automaton,
where the check-stack is used to determine the generators of the free subgroups.
For syllables from the virtually free group, we simply use the automaton accepting
the word problem for a virtually free group in 2.3.2 to determine whether or not
the syllable is trivial. �

110

Chapter 4

co-ET0L Groups

4.1 Introduction

In recent years, a number of papers have been published that take specific co-
indexed groups from [28] and show that their co-word problem is an ET0L lan-
guage. An example of this is [17] where Ciobanu et al. prove that the co-word
problem of Grigorchuk’s group is an ET0L language. This was then extended to
proving that the co-word problem of bounded automata groups are ET0L lan-
guages by Elder and Bishop in [8]. In this chapter we shall discuss the class of
co-ET0L groups which we define below. We recall from 2.3, it is shown in [18] that
the class of ET0L languages are closed under inverse homomorphisms. Therefore
we have the following definition.

Definition 4.1.1 (co-ET0L group). Let G be a finitely generated group, G is said
to be co-ET0L if there exists a CSPD automaton that accepts its co-word problem
with respect to some (and hence any) symmetrically closed finite generating set.

|

Remark 4.1.2. The above statement is in the style of [28] and [27] where they
defined co-indexed groups and coCF , respectively. In the above statement we are
implicitly using Lemma 2.3.3 to show that being a co-ET0L group is a property of
the group and not of its chosen finite generating set, as ET0L languages are closed
under inverse homomorphisms as shown in [18]. �

In Theorems 4.2.1, 4.3.1, 4.4.1, and 4.5.1 we establish that co-ET0L groups are
closed under the following operations:

• taking finitely many direct products,

• passing to finitely generated subgroups,

111

• passing to finite index overgroups, and

• taking standard restricted wreath products with virtually free top groups.

We also prove that the class of co-ET0L groups contains Zn ⇤Zm and Zn ⇤G for a
virtually free G in Theorems 4.6.1 and 4.7.1, respectively. We shall follow a very
strict format when presenting and proving these results. Broadly speaking each
section is dedicated to a theorem, and there are at least two subsections for each
theorem. (Formally, there is a family of automata being used per theorem, and we
describe the general structure of the members su�ciently for the arguments to be
understood.) The first subsection will always be dedicated to the definition of the
automaton which we shall use to prove the theorem. The second subsection will
be the subsection where the formal proof is given, usually by means of providing
a sequence of lemmata, and a final proof combining the lemmata.

Excepting the first definition subsection, the definition subsections will be or-
ganised in the following way. First, we give a high level summary of the intuitive
description of each automaton, including a brief summary of why the automaton
works. This will be labelled as Intuitive Summary, and will be presented after
some initial setup. Then, we shall provide a detailed intuitive account of how the
automaton works. This will be labelled as Intuitive Idea. We then present the
formal definition of the automaton, and it will be labelled as Formal Definition
of A. For the first definition subsection we shall only present an intuitive summary
as Theorem 4.2.1 has a relatively short intuitive explanation.

We recall from 2.2.4 that for every CSPD automaton, there is an associated
regular language. We may intuitively think of a run in the automaton as being
divided into two stages. In the first stage, the automaton non-deterministically
chooses a string from the regular language and places it onto the check-stack. In
the second stage, the automaton processes the input string. Further recall that an
input string is accepted if there exists a run of the automaton reading the input
string such that the automaton is left in an accept state at the end of the run.
That is, there exists a string from the associated regular language such that with
that string on the check-stack, there is a processing of the input string (which
depends on the choice of string on the check-stack) that leaves the automaton in
an accept state at the end of processing.

4.2 Direct Products

In this section we shall present the following theorem.

Theorem 4.2.1. If G and H are co-ET0L groups, then G⇥H is co-ET0L.

112

Throughout this section we shall assume that X and Y are finite generating
sets for G and H, respectively.

We prove this theorem (including providing an intuitive explanation of our
automaton) following our two-subsection structure as described above.

4.2.1 Definition of Automaton

Let A1 = (Q1,⌃1,�1,�1, I1, F1,R1,?, �1) be a CSPD automaton that accepts
the coWP (G,X). Further let A2 = (Q2,⌃2,�2,�2, I2, F2,R2,?, �2) be a CSPD
automaton accepting coWP (H, Y). We shall construct a CSPD automaton A
accepting coWP (G⇥H,X [Y).

Intuitive Summary 4.2.2. The check-stack will contain a string r 2 R1 [R2.
Let ! be an input string and let k 2 G⇥H such that ! =G⇥H k. Since the group is
a direct product, for the element k there is g 2 G and h 2 H so that k = (g, h). The
automaton processes ! as follows. The automaton non-deterministically chooses
which coordinate of k to check is non-trivial. If it decides to check the ith coordinate
with r 2 Ri then the automaton simulates Ai while ignoring letters from the other
generating set as they project trivially onto the i

th coordinate. The automaton
accepts if Ai reaches an accept state. We note that ! 6=G⇥H 1G⇥H if and only if
the projection onto one of the coordinates of k is non-trivial. In that case, there
exists a simulation of A1 or A2 with some r0 2 R1[R2 on the check-stack yielding
an accept state. This is because one of A1 or A2 will simulate the projection of !
to X

⇤ or Y ⇤ respectively, and at least one of these projections is non-trivial in its
respective group. ⌥

Formal Definition of A: We define a CSPD automaton

A := (Q,⌃,�,�, I, F,R,?, �)

accepting coWP (G⇥H,X [Y) as follows.

• The state set consists of the following states

– for every state in q 2 Q1, there is a state in Q representing that state
which we shall denote by the same symbol. We shall refer to this subset
of Q as Q1 as well, and it will be clear from context which automaton
the set belongs to.

– For every state in q 2 Q2, there is a state in Q representing that state
which we shall denote by the same symbol. We shall refer to this subset
of Q as Q2 as well, and it will be clear from context which automaton
the set belongs to.

113

– The states q0 and qf .

• The input alphabet ⌃ = ⌃1 [⌃2 = X [Y .

• The check-stack alphabet � = �1 [�2.

• The pushdown stack alphabet � = �1 [�2.

• The set of initial states I = {q0}.

• The set of final states F = {qf}.

• The regular language R = R1 [R2.

• The transition relation � consists of the following transitions:

(T0a) for every q 2 I1 ✓ Q1 ✓ Q there is a transition ((q0, ", (?,?)), (q,?)) 2
�; i.e., for every q 2 I1 ✓ Q1 ✓ Q there is an "-transition from q0

with the pushdown stack being empty to state q without editing the
pushdown stack.

(T0b) For every q 2 I2 ✓ Q2 ✓ Q there is a transition ((q0, ", (?,?)), (q,?)) 2
�; i.e., for every q 2 I2 ✓ Q2 ✓ Q there is an "-transition from q0

with the pushdown stack being empty to state q without editing the
pushdown stack.

(T1a) For every transition ((q, x, (y, z)), (q1,!)) 2 �1 there is a transition
((q, x, (y, z)), (q1,!)) 2 �.

(T1b) For every y 2 Y , every pair (z, z1) 2 {(�1 ⇥ �1) [{(?,?)}} and every
state q 2 Q1 ✓ Q there is a transition

((q, y, (z, z1)), (q, z1)) 2 �;

i.e., there is a transition from state q 2 Q1 ✓ Q with z1 2 �1[{?} at the
top of the pushdown stack with z 2 �1 [{?} being the corresponding
letter on the check-stack (such that (z, z1) 2 {(�1 ⇥ �1) [{(?,?)}})
upon reading an input letter y 2 Y to state q without editing the stack.

(T2a) For every transition ((q, x, (y, z)), (q1,!)) 2 �2 there is a transition
((q, x, (y, z)), (q1,!)) 2 �,

(T2b) for every x 2 X, every pair (z, z1) 2 {(�2 ⇥ �2) [{(?,?)}} and every
state q 2 Q2 ✓ Q there is a transition

((q, x, (z, z1)), (q, z1)) 2 �;

114

i.e., there is a transition from state q 2 Q2 ✓ Q with z1 2 �2[{?} at the
top of the pushdown stack with z 2 �2 [{?} being the corresponding
letter on the check-stack (such that (z, z1) 2 {(�2 ⇥ �2) [{(?,?)}})
upon reading an input letter x 2 X to state q without editing the stack.

(T3a) For every state q 2 F1 ✓ Q1 ✓ Q and every pair (y, z) 2 {(�1 ⇥ �1) [
{(?,?)}} there is a transition

((q, ", (y, z)), (qf , z)) 2 �;

i.e., there is an "-transition from state q 2 F1 ✓ Q1 ✓ Q with z 2
�1 [{?} at the top of the pushdown stack with y 2 �1 [{?} being
the corresponding letter on the check-stack (such that (y, z) 2 {(�1 ⇥
�1) [{(?,?)}}) to state qf without editing the stack.

(T3b) For every state q 2 F2 ✓ Q2 ✓ Q every pair (y, z) 2 {(�2 ⇥ �2) [
{(?,?)}}there is a transition

((q, ", (y, z)), (qf , z)) 2 �;

i.e., there is an "-transition from state q 2 F2 ✓ Q2 ✓ Q with z 2
�2 [{?} at the top of the pushdown stack with y 2 �2 [{?} being
the corresponding letter on the check-stack (such that (y, z) 2 {(�2 ⇥
�2) [{(?,?)}}) to state qf without editing the stack.

Below we give a diagram to aid in understanding of how the automaton works.
We note while the diagram bears resemblance to a transition diagram, it is not a
transition diagram as all the states and transitions are not presented. We merely
present arrows representing (T0a), (T0b), (T1b), (T2b), (T3a), and (T3b). Fur-
ther, we do not present all the states. The states q0 and qf are explicitly presented
and the rest are implicit within the squares with labels A1 and A2. We shall
elaborate further on the diagram below.

115

q0

A1

A2

qf

(", (?,?),?)

(", (?,?),?)

(", (y, z), z)

(", (y, z), z)

(y, (z, z1), z1)
for every y 2 Y

(x, (z, z1), z1)
for every x 2 X

In the above diagram, the arrow from q0 to A1 with label (", (?,?),?) represents
an arrow from q0 to every initial state of A1 with label (", (?,?),?). Similarly,
the arrow from q0 to A2 with label (", (?,?),?) represents an arrow from q0 to
every initial state of A2 with label (", (?,?),?). These arrows reflect (T0a) and
(T0b) respectively. Further, the arrow A1 to qf with label (", (y, z), z) represents
an arrow from each final state of A1 to qf with label “(", (y, z), z) for every pair
(y, z) 2 {(�1 ⇥ �1) [{(?,?)}}”. The arrow from A2 to qf should be interpreted
analogously. These arrows reflect (T3a) and (T3b) respectively. The squares A1

and A2 represent the transition diagrams for A1 and A2 respectively. The arrow
from A1 to A1 with label “(y, (z, z1), z1) for every y 2 Y ” represents an arrow from
every state q of A1 to itself with label “(y, (z, z1), z1) for every y 2 Y and every
pair (z, z1) 2 {(�1 ⇥�1)[{(?,?)}}”. This reflects (T1b). The arrow from A2 to
itself should be interpreted analogously.

4.2.2 Proof of Theorem 4.2.1

In this section we first provide a sequence of technical lemmata. We then present
the proof of Theorem 4.2.1. Before we continue we recall Definition 2.3.13. Through-
out this subsection, we shall let G,H,X, Y,A1,A2 and A as in the subsection
above.

116

We start with giving a modified version of one of the functions defined in
Definition 2.3.13.

Definition 4.2.3. Let Z 0 := {a1, a2, . . . , an} be any set and let Z be the symmetric
closure of Z 0. Let X be a symmetrically closed proper subset of Z. We define a
monoid homomorphism 'X : Z⇤ ! Z

⇤ as follows. First let z 2 Z [{"} then

'X(z) =

(
z if z 2 X

" otherwise.

Now let !0 = z1z2 · · · zn 2 Z
⇤ then define 'X(!0) = 'X(z1)'X(z2) · · ·'X(zn). |

Observe 'X simply deletes letters of a string that are not in X. We are now
ready to present a structural lemma about the automaton A.

Lemma 4.2.4. Let ! = �1�2 · · · �n 2 (X [Y)⇤. Set '1 := 'X and '2 := 'Y . Set
'1(!) = z1z2 · · · zl 2 X

⇤ and '2(!) = z
0
1z

0
2 · · · z0t 2 Y

⇤. There exist strings

u1, u2, . . . , ul+1 2 Y
⇤
,

and
v1, v2, . . . , vt+1 2 X

⇤

such that
! = u1z1u2z2 · · · ulzlul+1,

and
! = v1z

0
1v2z

0
2 · · · vtz0tvt+1.

Further set ui = yi,1yi,2 · · · yi,si and vi = xi,1xi,2 · · · xi,ri.
Then the following holds.

1. If A1 can read '1(!) through a chain of the following form

C
1
0 ⇠⇤

"
C

1
1 ⇠z1 C

1
2 ⇠⇤

"
C

1
3 ⇠z2 · · · ⇠zl

C
1
2l ⇠⇤

"
C

1
2l+1

then A can read ! through the chain

C0 ⇠" C
1
0 ⇠⇤

"
C

1
1 ⇠y1,1 C

1
1 ⇠y1,2 C

1
1 ⇠y1,3 · · · ⇠y1,s1

C
1
1

⇠z1 C
1
2 ⇠⇤

"
C

1
3 ⇠y2,1 C

1
3 ⇠y2,2 C

1
3 ⇠y2,3 · · · ⇠y2,s2

C
1
3

⇠z2 C
1
4 ⇠⇤

"
C

1
4 ⇠y3,1 C

1
4 ⇠y3,2 C

1
4 ⇠y3,3 · · · ⇠y3,s3

C
1
4

...

⇠zl
C

1
2l ⇠⇤

"
C

1
2l+1 ⇠yl+1,1

C
1
2l+1 ⇠yl+1,2

C
1
2l+1 ⇠y2l+1,3

· · · ⇠yl+1,sl+1
C

1
2l+1

⇠⇤
"
C1.

117

2. If A2 can read '2(!) through a chain of the following form

C
2
0 ⇠⇤

"
C

2
1 ⇠z

0
1
C

2
2 ⇠⇤

"
C

2
3 ⇠z

0
2
· · · ⇠z

0
t
C

2
2t ⇠⇤

"
C

2
2t+1

then A can read ! through the chain

C0 ⇠" C
1
0 ⇠⇤

"
C

1
1 ⇠x1,1 C

1
1 ⇠x1,2 C

1
1 ⇠x1,3 · · · ⇠x1,r1

C
1
1

⇠z
0
1
C

1
2 ⇠⇤

"
C

1
3 ⇠x2,1 C

1
3 ⇠x2,2 C

1
3 ⇠x2,3 · · · ⇠x2,r2

C
1
3

⇠z
0
2
C

1
4 ⇠⇤

"
C

1
4 ⇠x3,1 C

1
4 ⇠x3,2 C

1
4 ⇠x3,3 · · · ⇠x3,r3

C
1
4

...

⇠z
0
t
C

1
2t ⇠⇤

"
C

1
2t+1 ⇠xt+1,1 C

1
2t+1 ⇠xt+1,2 C

1
2t+1 ⇠xt+1,3 · · · ⇠xt+1,rt+1

C
1
2t+1

⇠⇤
"
C2.

Proof. Since 1 and 2 are analogous, we shall only prove 1. Let ! = �1�2 · · · �n 2
(X [Y)⇤. We shall assume as in statement of the lemma, that A1 can read '1(!)
through a chain of the form

C
1
0 ⇠⇤

"
C

1
1 ⇠z1 C

1
2 ⇠⇤

"
C

1
3 ⇠z2 · · · ⇠zl

C
1
2l ⇠⇤

"
C

1
2l+1. (8)

By definition of A1 as a CSPD automaton (see Definition 2.2.42), the stack of
configurations is a pair (S1, S2), and the first entry S1 of the pair is a tuple
(ak, ak�1, . . . , a1,?) such that akak�1 · · · a1 2 R1. Further S1 cannot be edited
using transitions. That is, if A1 reads '1(!) through the chain above, then it
must be that there exists a string akak�1 · · · a1 2 R1 on the check-stack in the
run above. We shall use this string on the check-stack in order to read ! below.
Further, we shall analyse the chain above to induce a chain in A reading !. First
we note that the only initial state of A is q0. Further observe that the state of C1

0 ,
say q

0
0 is an initial state of A1. The automaton A uses ((q0, ", (?,?)), (q00,?)) (in

(T0a)) to move the state from q0 to q
0
0 without editing the stack. Thus the chain

starts
C0 = (q0, ((ak, ak�1, . . . , a1,?), (?))) ⇠" C

1
0 .

Since C
1
0 ⇠⇤

"
C

1
1 , it must be that A1 used a sequence of "-transitions from C

1
0 to

C
1
1 . Since (T1a) consists of all the transitions of A1, we shall use precisely the

same transitions in the same order and thus continue the chain as

C0 = (q0, ((ak, ak�1, . . . , a1,?), (?))) ⇠" C
1
0 ⇠⇤

"
C

1
1 .

We shall now use transitions in (T1b); these transitions allow us to read input
letters from Y without changing the state of the automaton or editing the stack.

118

Therefore, A can use these transitions without changing the configuration. So the
chain continues as

C0 ⇠" C
1
0 ⇠⇤

"
C

1
1 ⇠y1,1 C

1
1 ⇠y1,2 C

1
1 ⇠y1,3 · · · ⇠y1,s1

C
1
1 .

The next input letter to be read is z1 2 X. Recall that A1 can read '1(!) through
the chain in (8). Therefore it must be that there exists a transition ↵ 2 �1 by which
C

1
1 ⇠z1 C

1
2 . Since ↵ is also in � (in (T1a)), we must have the chain continuing as

C0 ⇠" C
1
0 ⇠⇤

"
C

1
1 ⇠x1,1 C

1
1 ⇠x1,2 C

1
1 ⇠x1,3 · · · ⇠x1,r1

C
1
1

⇠z
0
1
C

1
2 .

Continuing in this manner, we see that A reads ! through the chain in the state-
ment of the lemma. ⌅

Lemma 4.2.5. Let ! = �1�2 · · · �n 2 (X [Y)⇤. Then the only chains by which A
can read ! are those in Lemma 4.2.4.

Proof. Let ! = �1�2 · · · �n 2 (X [Y)⇤. Now suppose that A reads ! through a
chain

C0 ⇠⇤
"
C1 ⇠�1 C2 ⇠⇤

"
C3 ⇠�2 · · · ⇠�n C2n ⇠⇤

"
C2n+1. (9)

We shall analyse the chain above and make some conclusions about transitions
that must have been used byA to read !. Using these transitions we shall construct
a chain by which A1 reads '1(!) or A2 reads '2(!).

First we note that there are no transitions from qf , thus if transitions from
(T3a) or (T3b) were used, it must be that they were used after every input letter
has been read. We shall assume that these transitions were not used, as if they
were the chain can simply be extended.

We note that if A reads ! through the chain in (9), then it must do so with a
string b1b2 · · · bm on the check-stack such that b1b2 · · · bm 2 R1 [R2. Now observe
that the transitions from q0 are " transitions to the initial states of A1 and A2

(as per (T0a) and (T0b)). Therefore it must be that the first transition in the
sequence of "-transitions used to obtain C0 ⇠⇤

"
C1 in (9) is a transition in (T0a) or

(T0b). Let ↵ be that transition and suppose ↵ is a transition from q0 to an initial
state of A1, say q

0
0. (The case for ↵ being a transition to an initial state of A2 is

similar.) Therefore we shall start by making this transition explicit in the chain.

C0 = (q0, (S1,?)) ⇠" (q
0
0, (S1,?)) ⇠⇤

"
C1 ⇠�1 C2 ⇠⇤

"
C3 ⇠�2 · · · ⇠�n C2n ⇠⇤

"
C2n+1.

(9)
Now observe that there are no transitions from any state in Q1 to any state in

Q2. Thus it must be that the state of C1 is in Q1. Thus (q00, (S1,?)) ⇠⇤
"
C1 is due

119

to a sequence of "-transitions from (T1a). Therefore this sequence is in �1, and
thus

(q00, (S1,?)) ⇠⇤
"
C1 (9.a)

is a chain of relations in A1.
Similarly, we note that the state of C2 must be in Q1 as there are no reading-

transitions from a state in Q1 ✓ Q to a state not in Q1. Either �1 2 X or �1 2 Y .
We shall now consider both these cases. If �1 2 X then it must be that there is a
transition in (T1a) by which C1 ⇠�1 C2. This transition by definition must be in
�1, and therefore the chain in (9.a) continues as

(q00, (S1,?)) ⇠⇤
"
C1 ⇠�1 C2. (9.a)

If �1 2 Y , then it must be that C2 = C1 as the transitions from a state in Q1 upon
reading a letter from Y remain at the same state and do not edit the stack.

Continuing in this manner, we see that the chain in (9) is induced by a chain
in A1 reading '1(!) in the sense of Lemma 4.2.4. ⌅

Before we are ready to provide the proof of Theorem 4.2.1, we shall record an
immediate consequence of the definition of A as well as the above lemmata.

Corollary 4.2.6. The only accept state is qf . Further, let ! = �1�2 · · · �n 2
(X [Y)⇤ be a string read by A through a chain such as

C0 = (q0, (S1,?)) ⇠" (q
0
0, (S1,?)) ⇠⇤

"
C1 ⇠�1 C2 ⇠⇤

"
C3 ⇠�2 · · · ⇠�n C2n ⇠⇤

"
C2n+1,

where q00 2 I1 (or I2) and S1 = (am, am�1, . . . , a1,?) for some string amam�1 · · · a1 2
R1 (or R2 respectively).

If ! is accepted through the above chain then

• the configuration C2n+1 = (qf , (S1, S2)) where there exists a configuration
C = (qA, (S1, S2)) such that

C2n ⇠⇤
"
C ⇠" C2n+1,

• and further C is an accept configuration of A1 (or A2 respectively).

Proof. By the definition of A we know that qf is the only accept state. Further,
we know that if ! is read through a chain, such as the in the statement then
by Lemma 4.2.5 it must be that this chain was induced by A1 (or A2) reading
'1(!) (or '2(!) respectively) as in Lemma 4.2.4. Further, by definition, if ! is
accepted it must be that transitions in (T3a) (or (T3b) respectively) were used

120

since there are no other transitions to qf . Therefore there must exist a configuration
C = (qA, (S1, S2)) where qA 2 F1 (or qA 2 F2 respectively) such that

C2n ⇠⇤
"
C ⇠" C2n+1.

Further as q 2 F1 (or F2), then C is an accept configuration of A1 (or A2 respec-
tively). ⌅

We are now ready to prove Theorem 4.2.1.

Proof of Theorem 4.2.1. We shall show thatA, defined in 4.2.1, accepts coWP (G⇥
H,X [Y). Let ! = �1�2 · · · �n 2 (X [Y)⇤. By Lemma 4.2.4 and Lemma 4.2.5 we
know that if A can read !, then it must do so as follows. If A can read !, then
by Lemma 4.2.5 it must be that at least one of A1 or A2 can read '1(!) or '2(!)
respectively such that any chain whereby Ai reads 'i(!) induces a chain by which
A reads ! as in Lemma 4.2.4.

Observe that ! 2 coWP (G⇥H,X[Y) if and only if '1(!) 6=G 1G or '2(!) 6=H

1H . Thus if ! 2 coWP (G⇥H,X[Y) then either '1(!) 2 L(A1) or '2(!) 2 L(A2).
Suppose ! 2 coWP (G⇥H,X [Y) and further suppose without loss of gener-

ality that '1(!) 6=G 1G. Let '1(!) = z1z2 · · · zl. Then there must exist a chain in
A1 accepting '1(!) such as

C
1
0 ⇠⇤

"
C

1
1 ⇠z1 C

1
2 ⇠⇤

"
C

1
3 ⇠z2 · · · ⇠zl

C
1
2l ⇠⇤

"
C

1
2l+1. (10a)

Then by Lemma 4.2.4 there is a chain in A (of the form given in the statement
of Lemma 4.2.4). Assuming the conditions of Lemma 4.2.4, the chain induced by
(10a) above is

C0 ⇠" C
1
0 ⇠⇤

"
C

1
1 ⇠y1,1 C

1
1 ⇠y1,2 C

1
1 ⇠y1,3 · · · ⇠y1,s1

C
1
1

⇠z1 C
1
2 ⇠⇤

"
C

1
3 ⇠y2,1 C

1
3 ⇠y2,2 C

1
3 ⇠y2,3 · · · ⇠y2,s2

C
1
3

⇠z2 C
1
4 ⇠⇤

"
C

1
4 ⇠y3,1 C

1
4 ⇠y3,2 C

1
4 ⇠y3,3 · · · ⇠y3,s3

C
1
4

...

⇠zl
C

1
2l ⇠⇤

"
C

1
2l+1 ⇠y2l+1,1

C
1
2l+1 ⇠y2l+1,2

C
1
2l+1 ⇠y2l+1,3

· · · ⇠y2l+1,sl+1
C

1
2l+1

⇠⇤
"
C1.

Since '1(!) is accepted by A1, then C
1
2l+1 is an accept configuration of A1. In

particular the state of C1
2l+1 is an accept state, say qA. Therefore A can use a

transition in (T3a) such that C
1
2l+1 ⇠" (qf , S) such that C

1
2l+1 = (qA, S). By

Corollary 4.2.6, we see that ! is accepted.
Now suppose ! /2 coWP (G⇥H,X[Y). Observe that ! /2 coWP (G⇥H,X[Y)

if and only if '1(!) =G 1G and '2(!) =H 1H . Therefore A1 does not accept

121

'1(!) =G 1G, and A2 does not accept '2(!) =H 1H . Thus there does not exist a
chain in A1 ending with an accept configurations reading '1(!). Similarly, there
does not exist a chain in A2 ending with an accept configurations reading '2(!).
Thus if Ai reads 'i(!) = z

i

1z
i

2 · · · ziji (where if i = 1 then z
i = z and j

i = l, and if

i = 2 then z
i = z

00 and j
i = t) through a chain such as

C
i

0 ⇠⇤
"
C

i

1 ⇠z
i
1
C

1
2 ⇠⇤

"
C

i

3 ⇠z
i
2
· · · ⇠z

i
ji
C

i

2ji ⇠⇤
"
C

i

2ji+1 (10b)

then C
i

2ji+1 is not an accept configuration. Therefore the last configuration in
the induced chain (by Lemma 4.2.4) cannot be an accept configuration of A as
(T3a) and (T3b) could not have been used. Further, by Lemma 4.2.5, there is no
other way to read !. Therefore by Corollary 4.2.6 ! is not accepted by A as the
state of the last configuration induced by the chain in (10b) cannot be an accept
configuration of A.

Therefore L(A) = coWP (G⇥H,X [Y). ⌅

4.3 Finite Index Overgroups

In this section we shall present the following theorem.

Theorem 4.3.1. Let G be a group and let H be a finite indexed subgroup of G. If
H is a co-ET0L group, then G is a co-ET0L group.

We prove this theorem (including providing an intuitive explanation of our
automaton) following our two-subsection structure as described in the introduction
of the chapter.

4.3.1 Definition of Automaton

Let X be a finite generating set for H. Let A0 = (Q0
,⌃0

,�0
,�0

, I
0
, F

0
,R0

,?, �
0) be

a CSPD automaton accepting coWP (H,X).
Let G be a finite index overgroup of H. Suppose H has index m in G. Let T 0

be a right transversal for H in G such that 1G 2 T
0.

Intuitive Summary 4.3.2. The check-stack in A will contain strings r 2 R0 just
as the check-stack in A0 did. Let ! be an input string and let g 2 G be such that
g =G !. Since G is a finite index overgroup H then the element g representing !

maybe expressed as ht where h 2 H and t 2 T . The automaton processes ! as
follows. The automaton non-deterministically chooses to determine whether h is
non-trivial or t is non-trivial.

To determine if t is non-trivial the automaton does the following. Upon reading
an input letter, the element representing the string read so far changes. Thus

122

the coset that element is in also changes. The automaton moves between states
representing cosets in a way that reflects these changes. We note that if t 6=G 1G
then the state reached at the end of this process will not be a state representing
the coset H1, and the automaton will accept !. The automaton does not rely on
the contents of the check-stack during the process we just described.

To determine if h is non-trivial the automaton does the following. The au-
tomaton simulates a run of AH reading a specific string µ! =H h with r on the
check-stack. (We describe the process of obtaining µ! later.) If the simulated run
of AH ends in an accept state the automaton will accept !. We note that ! 6=G 1G
if and only if either h 6=H 1H or t 6= 1G. These cases will be witnessed by the
automaton in some run, and thus ! will be accepted. ⌥

Let T be the symmetric closure of T 0. Observe that Y := X [T is a sym-
metrically closed generating set for G. For each y 2 Y and t 2 T

0
, ty 2 G thus

ty = htyt
0 for some hty 2 H and t

0 2 T
0. Fix a string wty := x1x2 · · · xr 2 X

⇤ such
that x1x2 · · · xr =H hty. (The string µ! is the string wt0y1wt1y2 · · ·wtn�1yn .) Let Z
denote the set {wty | t 2 T

0
, y 2 Y }.

We will make use of the following definition.

Definition 4.3.3. Let Z be a finite set. Let w 2 Z
⇤. We say v 2 Z

⇤ is a su�x of
w if there exists a u 2 Z

⇤ such that w = uv.
We denote the set of all su�xes of a string w by Su�x(w). Similarly, we set

Su�x(A) :=
S

w2A Su�x(w) for A ✓ Z
⇤. |

Intuitive Idea: The check-stack will contain strings from R0. The state set Q
can be viewed as a disjoint union of three sets which we describe below.

• The state i0, this state is also the initial state.

• For every q 2 Q
0
, t 2 T

0, and u 2 Su�x(Z), there is a state (q, t, u). We
denote the subset of states of the form (q0, 1G, ") where q0 2 I

0 by Q0.

• For every t 2 T
0, there is a state t representing that element. We denote this

set by T
0
1.

Below we give a diagram to aid in understanding how the automaton works. We
note that while the diagram resembles a transition diagram, it is not a transition
diagram. In particular we only represent the state i0 explicitly. The two other
squares represent two ways in which the automaton processes an input string. We
shall elaborate further on the diagram below.

123

i0

Simulation of H-part

Tracking transversal element

(", (?,?),?)

(", (?,?),?)

In the above diagram, the arrow from i0 to the rectangle labelled “Simulation of
H-part” represents the transitions from i0 to the subset of the states Q0, while the
arrow from i0 to the rectangle labelled “Tracking transversal element” represents
the transition from i0 to 1G 2 T

0
1.

The rectangle labelled “Simulation of H-part” represents the part of the au-
tomaton consisting of states of the form (q, t, u) where q 2 Q

0
, t 2 T

0, and
u 2 Su�x(Z) together with all the transitions between these states. However,
the rectangle labelled “Tracking transversal element” represents the part of the
automaton consisting of states in T

0
1 and all the transitions between them.

The diagram highlights the non-deterministic nature of the automaton as well
as the goal of its respective parts. Let y1y2 · · · yr 2 Y

⇤ be an input string that is
being read by A. We shall informally discuss what the transitions of A do in a run
reading y1y2 · · · yr. We shall do so in two parts as there are two ways y1y2 · · · yr
could be processed by A.

Firstly, we shall discuss how “Tracking transversal element” processes the in-
put string. Upon reading a prefix v = y1y2 · · · yl of y1y2 · · · yr, the state of the
automaton will be t 2 T

0
1 such that v =G ht where t 2 T

0 and h 2 H. From
state t, upon reading yl+1, the automaton will transition to state t0 2 T

0
1 such that

tyl+1 = h
0
t
0 where t

0 2 T
0
1 and h

0 2 H. This is what the transitions in (T4) do.
These transitions process the input string in the way described independently of
the choice of string on the check-stack.

We shall now discuss how “Simulation of H-part” processes the input string.
Suppose the check-stack contains a string r 2 R0. Let t0 = 1G and recall that
the strings wti�1yi are those that we have fixed such that wti�1yi =H hti�1yi where
hti�1yi are defined by

ti�1yi =G hti�1yiti.

124

If A0 can read wt0y1wt1y2 · · ·wtn�1yn through a chain of relations. Then the part of
A represented in the rectangle with the label “Simulation of H-part” simulates a
read of wt0y1wt1y2 · · ·wtn�1yn by A0 through the transitions in (T1), (T2), and (T3)
below (while also keeping track of the transversal element in a similar way as the
above).

Formal Definition of A: We define a CSPD automaton

A := (Q,⌃,�,�, I, F,R,?, �)

accepting coWP (G, Y) as follows.

• The state set Q consists of the following states:

– the state i0;

– for every state q 2 Q
0
, t 2 T

0, and u 2 Su�x(Z), there is a state (q, t, u);
and

– for every t 2 T
0, there is a state t representing that element. We shall

refer to this subset of the state set as T 0
1.

• The input alphabet ⌃ = Y .

• The check-stack alphabet � = �0.

• The pushdown stack alphabet � = �0.

• The set of initial states I = {i0}.

• The set of final states F consists of the following states:

– for every qf 2 F
0, and every t 2 T

0 there is a state (qf , t, "), and

– for every t 2 T
0
1 \ {1G} ✓ Q, there is a state representing t in F , and

we refer to it as t.

• The regular language R = R0.

• The transition relation � consists of the following transitions:

(T0a) for every q0 2 I
0 there are transitions

((i0, ", (?,?)), ((q0, 1G, "),?));

that is, there is an "-transition from i0 with ? at the top of the push-
down stack to (q0, 1G, ") without pushing a non-trivial string onto the
pushdown stack, for every q0 2 I

0.

125

(T0b) There is a transition

((i0, ", (?,?)), (1G,?));

that is, there is an "-transition from i0 with ? at the top of the push-
down stack to 1G 2 T

0
1 without pushing a non-trivial string onto the

pushdown stack.

(T1) For every q 2 Q, t 2 T
0
, y 2 Y , and every pair (A,B), there is a

transition
(((q, t, "), y, (A,B)), ((q, t0, wty), B));

that is, there is a transition from state (q, t, ") upon reading an input
letter y 2 Y to state (q, t0, wty) without editing the stack, such that
ty =G wtyt

0.

(T2) For every q 2 Q, t 2 T
0
, u 2 Su�x(Z), and every pair (A,B) there is a

transition
(((q, t, u), ", (A,B)), ((q1, t, u), w))

such that ((q, ", (A,B)), (q1, w)) 2 �
0; that is, there is an "-transition

from (q, t, u) to (q1, t, u) writing w onto the pushdown stack, whenever
((q, ", (A,B)), (q0, w)) 2 �

0.

(T3) For every q 2 Q, t 2 T
0
, xu 2 Su�x(Z) where x 2 X, and every pair

(A,B) there is a transition

(((q, t, xu), ", (A,B)), ((q1, t, u), w))

such that ((q, x, (A,B)), (q1, w)) 2 �
0; that is, there is an "-transition

from (q, t, xu) to (q1, t, u) writing w onto the pushdown stack, whenever
((q, x, (A,B)), (q1, w)) 2 �

0.

(T4) for every t 2 T
0
1, y 2 Y , and every pair (A,B), there exists a transition

((t, y, (A,B)), (t0, B)),

such that ty =G htyt
0.

4.3.2 Proof of Theorem 4.3.1

In this section, we first provide a sequence of technical lemmata. We then present
the proof of Theorem 4.3.1. Throughout this section, we shall let G,H,X, Y, Z,A0

and A as in the subsection above.

126

Lemma 4.3.4. Let ! = y1y2 · · · yn 2 Y
⇤. Further set t0 := 1G and recall that we

have fixed strings wti�1yi where wti�1yi =H hti�1yi where hti�1yi are defined by

ti�1yi =G hti�1yiti.

Further set li to be the length of the string wti�1yi. Then the following hold:

1. ! is read by A through the chain

(i0, (S,?)) ⇠" (1G, (S,?)) ⇠y1 (t1, (S,?)) ⇠y2 (t2, (S,?))

.

.

.

⇠y3 · · · ⇠yn (tn, (S,?)),

for any S = (ak, ak�1, . . . , a1,?) such that akak�1 · · · a1 2 R0.

2. Suppose A0 can read wt0y1wt1y2 · · ·wtn�1yn = x1x2 · · · xt 2 X
⇤ through a chain,

such as

(q0, (S
0
,?)) ⇠⇤

"
(q1, (S

0
, S1)) ⇠x1 (q2, (S

0
, S2)) ⇠⇤

"
(q3, (S

0
, S3))

⇠x2 (q4, (S
0
, S4)) ⇠⇤

"
(q5, (S

0
, S5))

...

⇠xt (q2t, (S
0
, S2t)) ⇠⇤

"
(q2t+1, (S

0
, S2t+1)),

where q0 2 I
0 and (S 0

, Si) are stacks for 1  i  2t + 1 such that S
0 =

(bk0 , bk0�1, . . . b1,?) for some bk0bk0�1 · · · b1 2 R0. Then A can read ! through
the following chain

(i0, (S
0
,?)) ⇠" ((q0, 1G, "), (S

0
,?)) ⇠⇤

"
((q1, 1G, "), (S

0
, S1))

⇠y1 ((q1, t1, w1Gy1), (S
0
, S1))

⇠⇤
"
((q2l1+1, t1, "), (S

0
, S2l1+1))

⇠y2 ((q2l1+1, t2, wt1y2), (S
0
, S2l1+1))

⇠⇤
"
((q2l2+1, t2, "), (S

0
, S2l2+1))

...

⇠yn ((q2ln�1+1, tn, wtn�1yr), (S
0
, S2ln�1+1))

⇠⇤
"
((q2ln+1, tr, "), (S

0
, S2ln+1)).

Proof. First we note that initial configurations of A are of the form (i0, (S, (?)))
where S = (ak, ak�1, . . . , a1,?) for some akak�1 · · · a1 2 R0 since i0 is the only
initial state.

127

1. Observe that the reading-transitions are those in (T1) and (T4). The states
in (T4) are those in T

0
1. Further observe that the automaton may use the

transition in (T0b) to move from an initial configuration to (1G, (S, (?))) for
any choice of check-stack S as

(i0, (S, (?))) ⇠" (1G, (S, (?))). (11.a)

Now we note that 1G 2 T
0
1, and the only transitions from states in T

0
1 are

those in (T4), these transitions do not edit the stack. Thus if the automaton
used the transition in (T0b), then it must use the transitions

((ti�1, yi, (?,?)), (ti,?))

in (T4) to read ! and thus the chain (11.a) continues as

(i0, (S, (?))) ⇠" (1G, (S, (?))) ⇠y1 (t1, (S, (?))) ⇠y2 (t2, (S, (?)))

.

.

.

⇠yn (tn, (S, (?))). (11.b)

2. Suppose A0 can read wt0y1wt1y2 · · ·wtn�1yn = x1x2 · · · xt 2 X
⇤ through a

chain, such as

(q0, (S
0
, (?))) ⇠⇤

"
(q1, (S

0
, S1)) ⇠x1 (q2, (S

0
, S2)) ⇠⇤

"
(q3, (S

0
, S3))

⇠x2 (q4, (S
0
, S4)) ⇠⇤

"
(q5, (S

0
, S5))

...

⇠xt (q2t, (S
0
, S2t)) ⇠⇤

"
(q2t+1, (S

0
, S2t+1)),

where q0 2 I
0 and (S 0

, Si) are stacks for 1  i  2t + 1 for some choice of
S
0. (Note a choice of S 0 is equivalent to a choice of a string in the regular

language R0 be definition.)

First we observe that the reading transitions are those in (T1) and (T4).
The states in (T1) are those in the form (q, t, u) where q 2 Q

0
, t 2 T

0
, and

u 2 Su�x(Z). Note A may use the transition

(i0, ", (?,?)), ((q0, 1G, "),?)

in (T0a) to move from the initial configuration (i0, (S 0
, (?))) to

((q0, 1G, "), (S 0
, (?))) as

(i0, (S
0
, (?))) ⇠" ((q0, 1G, "), (S

0
, (?))). (12.a)

128

The automaton A0 uses a sequence (possibly of length 0) of "-transitions to
move the from configuration (q0, (S 0

, (?))) to (q1, (S 0
, S1)). Let this sequence

be denoted by E1. The automaton A can use a sequence transitions in (T2)
that is analogous to E1; i.e, if mth transition in the sequence used by A is

(((q0, 1G, "), ", (A
0
, B

0)), ((q00, 1G, "), w))

then the m
th transition in E1 must be ((q0, ", (A0

, B
0)), (q00, w)). These tran-

sitions then must continue the chain (12.a) as follows

(i0, (S
0
, (?))) ⇠" ((q0, 1G, "), (S

0
, (?))) ⇠⇤

"
((q1, 1G, "), (S

0
, S1)). (12.b)

Note that the states from which transitions in (T1) are used to read input
letters all have " in the third component. Thus the automaton may use a
transition from (T1) that moves from state (q1, 1G, ") to (q1, t1, w1Gy1), these
transitions do not edit the stack and therefore the stack will be unchanged.
Therefore the chain (12.b) will continue as

(i0, (S
0
, (?))) ⇠" ((q0, 1G, "), (S, (?))) ⇠⇤

"
((q1, 1G, "), (S

0
, S1))

⇠y1 ((q1, t1, w1Gy1), (S
0
, S1)). (12.c)

Now since the third component of the last configuration is not ", the au-
tomaton cannot use a transition in (T1). Therefore the automaton must use
transitions in (T2) and (T3) to continue the chain. We shall describe which
ones the automaton uses below.

Suppose w1Gy1 = x1x2 · · · xl1 . Now consider the relevant part of the chain by
which A0 reads wt0y1wt1y2 · · ·wtn�1yn below.

(q0, (S
0
, (?))) ⇠⇤

"
(q1, (S

0
, S1)) ⇠x1 (q2, (S

0
, S2)) ⇠⇤

"
(q3, (S

0
, S3))

⇠x2 (q4, (S
0
, S4)) ⇠⇤

"
(q5, (S

0
, S5))

...

⇠xl1
(q2l1 , (S

0
, S2l1)) ⇠⇤

"
(q2l1+1, (S

0
, S2l1+1)).

Let the sequence of transitions of A0 used to move from (q1, (S 0
, S1)) to

(q2l1+1, (S 0
, S2l1+1)) be denoted by E2. The automaton A can use a sequence

of "-transitions from (T2) and (T3) that is analogous to E2; that is, if the
m

th transition in the sequence used by A is of the form

(((q0, t1, u), ", (A
0
, B

0)), ((q00, t1, u), w
0))

then the m
th transition in E2 is (q0, ", (A0

, B
0)), (q00, w0), and if the m

th tran-
sition in the sequence used by A is of the form

(((q0, t1, xu), ", (A
0
, B

0)), ((q00, t1, u), w
0))

129

then the mth transition used in E2 is ((q0, x, (A0
, B

0)), (q00, w0)). Note that the
sequence of transitions used byA will have the same e↵ect on the stack as E2.
We note that this sequence must progressively reduce the length of the string
in the third coordinate of the state since E2 contains reading-transitions, and
therefore this sequence must contain transitions from (T3) that reduce the
length of the third coordinate. Therefore the third coordinate will eventually
become " using the transitions in the sequence. Therefore using this sequence
of "-transitions the chain in (12.c) continues as

(i0, (S
0
, (?))) ⇠" ((q0, 1G, "), (S

0
, (?))) ⇠⇤

"
((q1, 1G, "), (S

0
, S1))

⇠y1 ((q1, t1, w1Gy1), (S
0
, S1))

⇠⇤
"
((q2l1+1, t1, "), (S

0
, S2l1+1)).

Since the third coordinate of the state in the last configuration is now ", the
automaton can now read another input letter. Continuing in this manner,
we see that A can read ! through the chain in the statement of the lemma.

⌅
Lemma 4.3.5. Let ! = y1y2 · · · yn 2 Y

⇤. The only chains by which A can read !

are those listed in Lemma 4.3.4.

Proof. Observe the only reading transitions are those in (T1) and (T4). Further,
note that there are no transitions from a state of the form (q, t, u) to one of the
form t

0. Thus if A reads ! through a chain, then either (apart from the initial
state) all states in the configurations of the chain are of the form (q, t, u) or are in
T

0
1.
Suppose the states are in T

0
1. Let S be any choice of check-stack. (Recall that

a choice of check-stack is equivalent to a choice of string from the regular language
R.) The only transition that can be used from the initial state to one of the states
in T

0
1 is the one in (T0b). Thus the chain starts as

(i0, (S, (?))) ⇠" (1G, (S, (?)))

Now the only transitions that can be used are those in (T4). Transitions in (T4)
do not change the stack. Thus, throughout the chain the pushdown stack must be
empty. Further, there are no "-transitions from states in T

0
1 thus the automaton

must use the transitions

((ti�1, yi, (?,?)), (ti,?))

where t0 = 1G and ti�1yi =G hti�1yiti. Therefore the chain continues as in 1 in
Lemma 4.3.4.

130

Now suppose that the states in the chain are of the form (q, t, u). Further
suppose we have the check stack being S. The only transitions from the initial
state i0 to states of the form (q, t, u) are those in (T0a). These transitions are from
i0 to (q0, 1G, ") where q0 2 I

0. We also note that (T0a) does not change the stack,
and so the chain starts as

(i0, (S, (?)) ⇠" ((q0, 1G, "), (S, (?))). (13.a)

Now the automaton may use a sequence of "-transitions K1 in (T2) to move to
a configuration C = ((q1, 1G, "), (S, S1)) from which A uses a reading-transition.
There is an analogous sequence K

0
1 of "-transitions in A0; that is, suppose the k

th

transition in K
0
1 is ((q0, ", (A0

, B
0)), (q00, w)) then the k

th transition in K1 is

(((q0, 1G, "), ", (A
0
, B

0)), ((q00, 1G, "), w)).

Note these transitions have the same e↵ect on the stack of configurations of A0 as
they do on the stack of configurations of A. Thus if the sequence of transitions
K1 continues the chain (13.a) as

(i0, (S, (?))) ⇠" ((q0, 1G, "), (S, (?))) ⇠⇤
"
((q1, 1G, "), (S, S1)) (13.b)

then the sequence K
0
1 results in the following chain of configurations in A0

(q0, (S, (?))) ⇠⇤
"
(q1, (S, S1)). (14.b)

(We note that if A does not use a sequence of transitions as mentioned above,
then we may simply take q1 = q0.)

Now the automaton must use a transition in (T1), to read the first input
letter y1 and move to the state (q1, t1, w1Gy1) (such that 1Gy1 =G h1Gy1t1) without
changing the stack and thus the chain (13.b) continues as

(i0, (S, (?))) ⇠" ((q0, 1G, "), (S, (?))) ⇠⇤
"
((q1, 1G, "), (S, S1))

⇠y1 ((q1, t1, w1Gy1), (S, S1)). (13.c)

Now the automaton must use some sequence of "-transitions in (T2) and (T3).
We note that transitions in (T3) must be used as they reduce the length of the
third component of the state and input letters can only be read when the third
component is of length 0. Thus the sequence of transitions used by A progressively
reduces the length of the third component of the state (except when the transitions
are from (T2)). Let K2 be a sequence of transitions that is used by A to move from
configuration ((q1, t1, w1Gy1), (S, S1)) to a configuration ((q2, t1, "), (S, S2)) where
we shall assume that A will read an input letter from ((q2, t1, "), (S, S2)). There is

131

an analogous sequence of transitions K
0
2 of A0; i.e., suppose the k

th transition in
K

0
2 is ((q0, ", (A0

, B
0)), (q00, w)) then the k

th transition in K2 is of the form

(((q0, t1, u), ", (A
0
, B

0)), ((q00, t1, u), w)),

and if the k
th transition in K

0
2 is

((q0, x, (A0
, B

0)), (q00, w))

then the k
th transition in K2 is of the form

(((q0, t1, xu), ", (A
0
, B

0)), ((q00, t1, u), w)).

Note these transitions have the same e↵ect on the stack of configurations of A0 as
they do on the stack of configurations of A. Thus if the sequence of transitions
K2 continues the chain (13.c) as

(i0, (S, (?))) ⇠" ((q0, 1G, "), (S, (?))) ⇠⇤
"
((q1, 1G, "), (S, S1))

⇠y1 ((q1, t1, w1Gy1), (S, S1))

⇠⇤
"
((q2, t1, "), (S, S2)) (13.d)

then the sequence K
0
2 continues the chain (14.b) as

(q0, (S, (?))) ⇠⇤
"
(q1, (S, S1)) ⇠x1 (p1, (S, S1,2)) ⇠⇤

"
(p2, (S, S2,2))

⇠x2 (p3, (S, S3,2)) ⇠⇤
"
(p4, (S, S4,2))

...

⇠xl1
(ql1+1, (S, Sl1+1)) ⇠⇤

"
(q2, (S, S2)), (14.d)

where (pi, (S, Si,2)) are the configurations obtained through the transitions in K
0
2.

Observe that continuing in this way we see if ! is read by A through a chain
whose states are of the form (q, t, u) (with the exception of the initial configuration)
then A0 can read wt0y1wt1y2 · · ·wtn�1yn where the states in the configurations are
related in the way outlined above. ⌅

We are now ready to present the proof of Theorem 4.3.1.

Proof of Theorem 4.3.1. Let ! = y1y2 · · · yn 2 Y
⇤. Further set t0 = 1G and recall

that we have fixed strings wti�1yi where wti�1yi =G hti�1yi such that hti�1yi are
defined by

ti�1yi =G hti�1yiti.

132

We note ! =G ht0y1ht1y2 · · ·htn�1yntn. Thus ! 2 coWP (G, Y) if and only if
ht0y1ht1y2 · · ·htn�1yn 6=H 1H or tn 6= 1G.

Suppose tn 6= 1G. By Lemma 4.3.4, we know that the automaton can read !

through the following chain

(i0, (S, (?))) ⇠" (1G, (S, (?))) ⇠y1 (t1, (S, (?))) ⇠y2 (t2, (S, (?)))

.

.

.

⇠yn (tn, (S, (?))),

for any choice of check-stack S.
Since tn 6= 1G and thus is a final state, therefore (tn, (S, (?))) is an accept

configuration and ! is accepted.
Now suppose ht0y1ht1y2 · · ·htn�1yn 6=H 1H , thus

wt0y1wt1y2 · · ·wtn�1yn 2 coWP (G,X).

Therefore wt0y1wt1y2 · · ·wtn�1yn is accepted by the automaton A0. In particular,
there is a chain of relations by which A0 reads wt0y1wt1y2 · · ·wtn�1yn

(q0, (S
0
, (?))) ⇠⇤

"
(q1, (S

0
, S1)) ⇠x1 (q2, (S

0
, S2)) ⇠⇤

"
(q3, (S

0
, S3))

⇠x2 (q4, (S
0
, S4)) ⇠⇤

"
(q5, (S

0
, S5))

...

⇠xt (q2t, (S
0
, S2t)) ⇠⇤

"
(q2t+1, (S

0
, S2t+1))

where q0 2 I
0 and some choice of choice-stack S

0. Since, wt0y1wt1y2 · · ·wtn�1yn 2
L(A0) we may assume wt0y1wt1y2 · · ·wtn�1yn is accepted through the chain above
and so we can assume q2t+1 2 F

0. By Lemma 4.3.4, ! is read by A by the following
chain

(i0, (S
0
, (?))) ⇠" ((q0, 1G, "), (S

0
, (?))) ⇠⇤

"
((q1, 1G, "), (S

0
, S1))

⇠y1 ((q1, t1, w1Gy1), (S
0
, S1))

⇠⇤
"
((q2l1+1, t1, "), (S

0
, S2l1+1))

⇠y2 ((q2l1+1, t2, wt1y2), (S
0
, S2l1+1))

⇠⇤
"
((q2l2+1, t2, "), (S

0
, S2l2+1))

...

⇠yn ((q2ln�1+1, tn, wtn�1yr), (S
0
, S2ln�1+1))

⇠⇤
"
((q2ln+1, tn, "), (S

0
, S2ln+1)).

133

Since q2t+1 2 F
0 the state (q2ln+1, tr, ") 2 F since q2ln+1 = q2t+1 and thus ! is

accepted.
Therefore if ! 2 coWP (G, Y) then ! 2 L(A).
We shall now assume ! 2 WP (G, Y). Thus ! 2 WP (G, Y) if and only if

ht0y1ht1y2 · · ·htn�1yn =H 1H and tn =G 1G.
By Lemma 4.3.5, we know that the only way to read ! is through chains in

listed in Lemma 4.3.4. Thus by chain 1 in Lemma 4.3.4, ! is read by A through
the following chain

(i0, (S
00
, (?))) ⇠" (1G, (S

00
, (?))) ⇠y1 (t1, (S

00
, (?))) ⇠y2 (t2, (S

00
, (?)))

.

.

.

⇠yn (tn, (S
00
, (?)))

for any choice of check-stack S
00. As tn =G 1G, tn /2 F and thus ! is not accepted

in this run.
By Lemma 4.3.5 a run reading ! that is not the above run, must be a run

of the form in chain in 2 in Lemma 4.3.4. Suppose A0 reads wt0y1wt1y2 · · ·wtn�1yn

through a chain such as

(q0, (S
000
, (?))) ⇠⇤

"
(q1, (S

000
, S1)) ⇠x1 (q2, (S

000
, S2)) ⇠⇤

"
(q3, (S

000
, S3))

⇠x2 (q4, (S
000
, S4)) ⇠⇤

"
(q5, (S

000
, S5))

...

⇠xt (q2t, (S
000
, S2t)) ⇠⇤

"
(q2t+1, (S

000
, S2t+1))

for some choice of choice-stack S
000. Since

wt0y1wt1y2 · · ·wtn�1yn =H ht0y1ht1y2 · · ·htn�1yn

then wt0y1wt1y2 · · ·wtn�1yn /2 L(A0). Therefore we may assume that whenever A0

reads wt0y1wt1y2 · · ·wtn�1yn then the state of the last configuration is not an accept

134

state. So q2t+1 /2 F
0. By 2 in Lemma 4.3.4, A can read ! through

(i0, (S
000
, (?))) ⇠" ((q0, 1G, "), (S

000
, (?))) ⇠⇤

"
((q1, 1G, "), (S

000
, S1))

⇠y1 ((q1, t1, w1Gy1), (S
000
, S1))

⇠⇤
"
((q2l1+1, t1, "), (S

000
, S2l1+1))

⇠y2 ((q2l1+1, t2, wt1y2), (S
000
, S2l1+1))

⇠⇤
"
((q2l2+1, t2, "), (S

000
, S2l2+1))

...

⇠yn ((q2ln�1+1, tn, wtn�1yr), (S
000
S2ln�1+1))

⇠⇤
"
((q2ln+1, tn, "), (S

000
, S2ln+1)).

Since q2t+1 /2 F
0 then (q2ln+1, tn, ") /2 F (as q2t+1 = q2ln+1). Therefore ! is not ac-

cepted. We note that if A reads ! through another chain whose states (apart from
i0) are of the form (q, t, u) then the chain induces a read of wt0y1wt1y2 · · ·wtn�1yn

in A0 as seen in the proof of Lemma 4.3.5. Therefore it must be that A0 reads
wt0y1wt1y2 · · ·wtn�1yn through a corresponding chain whenever ! is read by A in a
chain such as the one above whose states (apart from i0) are of the form (q, t, u).

Therefore L(A) = coWP (G, Y). ⌅

4.4 Finitely Generated Subgroups

In this section we shall present the following theorem.

Theorem 4.4.1. Let G be a finitely generated group and H be a finitely generated
subgroup of G. If G is co-ET0L, then H is co-ET0L.

We prove this theorem (including providing an intuitive explanation of our
automaton) following our two-subsection structure as described in the introduction
of the chapter.

4.4.1 Definition of Automaton

Let G be a finitely generated co-ET0L group with finite generating setX. LetH be
a finitely generated subgroup ofG, with finite generating set Y . SinceG is co-ET0L
then there exists a CSPD automaton AG = (QG,⌃G,�G,�G, IG, FG,RG,?, �G)
accepting coWP (G,X).

Intuitive Summary 4.4.2. The check-stack in AH contains a string r 2 RG just
as the check-stack in AG did. For a string ! 2 Y

⇤, the automaton AH simulates
a run of AG reading a specific string !

0 2 X
⇤ such that ! =G !

0 with r on the

135

check-stack. (We shall describe the process of obtaining !
0 later.) If an accept

state is reached in a simulated run, then ! is accepted. We note that if ! 6=H 1H
then !

0 6=G 1G. Thus there is a run of AG reading !
0 that ends in an accept

state. When AH simulates this run with an appropriate string from RG on the
check-stack, the run will end in an accept state thereby accepting !. ⌥

First, for every y 2 Y we shall we fix a string wy = x1x2 · · · xr 2 X
⇤ such

that wy =G y. Let Z denote the set {wy | y 2 Y }. In what follows, we shall use
Definition 4.3.3.

Intuitive Idea: The check-stack contains a string r 2 RG just as the check-stack
in AG did. The state set QH consists of the following states:

• for every q 2 QG and every string u 2 Su�x(Z) there is a state (q, u).

The initial states are the states (q0, ") where q0 2 AG.
Let ! = y1y2 · · · yn 2 Y

⇤. Note by definition of the strings wy we see that
! =G wy1wy2wy3 · · ·wyn . (The string wy1wy2wy3 · · ·wyn is the string we called !

0 in
the intuitive summary above.) The automatonAH reads a string ! in a similar way
to how the “Simulation of H-part” worked in 4.3.1. Namely, we can read input
letters from states of the form (q, "). Suppose the stack is (S1, S2) upon reading a
letter y from state (q, ") with B at the top of the pushdown stack with A being
the corresponding letter on the check stack, the automaton AH moves to the state
(q, wy) without editing the pushdown stack. This is reflected in transitions in (T1)
below. The automaton AH then uses "-transitions ending at a state (q0, "), these
transitions simulate the automaton AG reading the string wy from state q with the
stack being (S1, S2) to state q

0. This is reflected in transitions in (T2) and (T3)
below. In particular transitions in (T2) simulate "-transitions in AG as the second
component of the state remains the same after the transition is made. Conversely,
transitions in (T3) simulate reading-transition in AG as the second component
of the state reduces in length by 1. Finally, as we can only read input letters
in AH from states whose second component is ", it must be that the transitions
that were used resulted in reducing the length of the second component until it
reached 0. This ensures that we simulate reading the entirety of wy in AG before
reading another input letter in AH . When the second component of the state is
", we can then read another input letter using transitions in (T1), or we can use
"-transitions in (T2) to simulate "-transitions in AG before reading another input
letter. By the definition of transitions in (T2) and (T3) we see that a transition
↵H = (((q, u), ", (A,B)), ((q0, v), w)) 2 �H precisely when there is a corresponding
transition ↵G = ((q, x, (A,B)), (q0, w)) 2 �G where x 2 X if u = xw, and x = " if
u = v. This link between the transitions of AG and AH is why it permissible for
us to use the word “simulate” in our above description.

136

We note that we write things as a list below even though there sometimes is
one item in the list. We do this to be consistent in our presentation.

Formal Definition of AH: We define a CSPD automaton

AH := (QH ,⌃H ,�H ,�H , IH , FH ,RH ,?, �H)

accepting coWP (H, Y) as follows.

• The state set QH consists of the followings states:

– for every q 2 QG and u 2 Su�x(Z), there is a state (q, u).

• The input alphabet ⌃H = Y .

• The check-stack alphabet �H = �G.

• The pushdown stack alphabet �H = �G.

• The set of initial states IH consists of the following states:

– for every q0 2 QG, there is a state (q0, ").

• The set of final states FH consists of the following states:

– for every qf 2 FG, there is a state (qf , ").

• The regular language RH = RG.

• The transition relation �H consists of the following transitions:

(T1) For every q 2 QG, y 2 Y , and every pair (A,B), there is a transition

(((q, "), y, (A,B)), ((q, wy), B));

that is, there is a transition from state (q, ") upon reading an input
letter y 2 Y to state (q, wy) without editing the stack.

(T2) For every q 2 QG, u 2 Su�x(Z), and every pair (A,B) there is a
transition

(((q, u), ", (A,B)), ((q1, u), w))

such that ((q, ", (A,B)), (q1, w)) 2 �G; that is, there is an "-transition
from (q, u) to (q1, u) writing w onto the pushdown stack, whenever
((q, ", (A,B)), (q0, w)) 2 �G.

137

(T3) For every q 2 QG, xu 2 Su�x(Z) where x 2 X, and every pair (A,B)
there is a transition

(((q, xu), ", (A,B)), ((q1, u), w))

such that ((q, x, (A,B)), (q1, w)) 2 �G; that is, there is an "-transition
from (q, xu) to (q1, u) writing w onto the pushdown stack, whenever
((q, x, (A,B)), (q1, w)) 2 �G.

4.4.2 Proof of Theorem 4.4.1

In this section, we first provide a sequence of technical lemmata. We then present
the proof of Theorem 4.4.1. Throughout this subsection, we shall letG,H,X, Y, Z,AG

and AH as in the subsection above.

Lemma 4.4.3. Let ! = y1y2 · · · yn 2 Y
⇤. Recall that we have fixed strings wyi

such that yi =G wyi. Set li to be the length of the string wyi.
Suppose AG reads !0 := wy1wy2 · · ·wyn = x1x2 · · · xt through a chain such as

(q0, (S
0
, (?))) ⇠⇤

"
(q1, (S

0
, S1)) ⇠x1 (q2, (S

0
, S2)) ⇠⇤

"
(q3, (S

0
, S3))

⇠x2 (q4, (S
0
, S4)) ⇠⇤

"
(q5, (S

0
, S5))

...

⇠xt (q2t, (S
0
, S2t)) ⇠⇤

"
(q2t+1, (S

0
, S2t+1)),

where q0 2 IG and (S 0
, Si) are stacks for 1  i  2t + 1 and some choice of

check-stack S
0. Then AH can read ! through the following chain

((q0, "), (S
0
, (?))) ⇠⇤

"
((q1, "), (S

0
, S1))

⇠y1 ((q1, wy1), (S
0
, S1))

⇠⇤
"
((q2l1+1, "), (S

0
, S2l1+1))

⇠y2 ((q2l1+1, wy2), (S
0
, S2l1+1))

⇠⇤
"
((q2l2+1, "), (S

0
, S2l2+1))

...

⇠yn ((q2ln�1+1, , wyn), (S
0
, S2ln�1+1))

⇠⇤
"
((q2ln+1, "), (S

0
, S2ln+1)).

Proof. First observe that the reading-transitions only occur from states whose
second component is ". In particular the reading transitions are those in (T1).

We shall analyse the chain by which AG reads !1. The automaton AG uses a
sequence (possibly of length 0) of "-transitions to move from an initial configuration

138

(i0, (S 0
, (?))) to (q1, (S 0

, S1)). Let this sequence be denoted by E1. The automaton
AH can use a sequence transitions in (T2) that is analogous to E1; i.e., if the m

th

transition in the sequence used by AH is

(((q0, "), ", (A0
, B

0)), ((q00, "), w))

then the m
th transition in E1 must be ((q0, ", (A0

, B
0)), (q00, w)). These transitions

yield
((q0, "), (S

0
, (?))) ⇠⇤

"
((q1, "), (S

0
, S1)). (15.a)

Now the automaton can use a transition from (T1) to read the first input letter y1
to move the state from (q1, ") to (q1, wy1). Recall transitions in (T1) do not edit
the stack, therefore the chain (15.a) continues as

((q0, "), (S
0
, (?))) ⇠⇤

"
((q1, "), (S

0
, S1))

⇠y1 ((q1, wy1), (S
0
, S1)). (15.b)

Now since the second component of the last state in (15.b) is not ", AH cannot
use any transition in (T1). Therefore AH must use transitions in (T2) and (T3)
to continue the chain. We shall describe which ones the automaton uses below.

Suppose wy1 = x1x2 · · · xl1 . Now consider the relevant part of the chain by
which AG reads !1 below.

(q0, (S
0
, (?))) ⇠⇤

"
(q1, (S

0
, S1)) ⇠x1 (q2, (S

0
, S2)) ⇠⇤

"
(q3, (S

0
, S3))

⇠x2 (q4, (S
0
, S4)) ⇠⇤

"
(q5, (S

0
, S5))

...

⇠xl1
(q2l1 , (S

0
, S2l1)) ⇠⇤

"
(q2l1+1, (S

0
, S2l1+1)).

Let the sequence of transitions of AG used to move from (q1, (S 0
, S1)) to

(q2l1+1, (S 0
, S2l1+1)) be denoted by E2. The automaton AH can use a sequence

of "-transitions from (T2) and (T3) that is analogous to E2; that is, if the m
th

transition in the sequence used by AH is of the form

(((q0, u), ", (A0
, B

0)), ((q00, u), w0))

then the mth transition in E2 is ((q0, ", (A0
, B

0)), (q00, w0)), and if the mth transition
in the sequence used by AH is of the form

(((q0, xu), ", (A0
, B

0)), ((q00, u), w0))

then the m
th transition used in E2 is ((q0, x, (A0

, B
0)), (q00, w0)). Note that the

sequence of transitions used by AH will have the same e↵ect on the stack as

139

E2. We also note that this sequence must progressively reduce the length of the
string in the second coordinate of the state since E2 contains reading transitions,
and therefore this sequence must contain transitions from (T3) that reduce the
length of the second coordinate. Therefore the second coordinate will eventually
become " using the transitions in this sequence. Therefore using this sequence of
"-transitions the chain in (15.b) continues as

((q0, "), (S
0
, (?))) ⇠⇤

"
((q1, "), (S

0
, S1))

⇠y1 ((q1, wy1), (S
0
, S1))

⇠⇤
"
((q2l1+1, "), (S

0
, S2l1+1)).

Since the second coordinate of the state in the last configuration is now ", the
automaton AH can now read another input letter. Continuing in this manner, we
that AH can read ! through the chain in the statement of the lemma. ⌅
Lemma 4.4.4. Let ! = y1y2 · · · yn 2 Y

⇤. The only chains by which AH can read
! are those in Lemma 4.4.3.

Proof. Suppose AH reads ! through a chain C where the check-stack is S
0
1. In

what follows we shall determine what transitions must be applied and the order in
which they can be applied concluding that if AH reads ! through C then it must
be that C was induced by a chain of configurations of AG in sense of Lemma 4.4.3.

First we observe that for any q0 2 IG, any state of the form (q0, ") is an initial
state of AH . Thus an initial configuration of AH is one of the form

((q0, "), (S, (?)))

where q0 2 IG and choice-stack S. For the chain C the choice-stack is S 0
1.

The automaton AH may use a sequence of "-transitions K1 in (T2) to move
to a configuration C = ((q1, "), (S 0

1, S1)) from which AH uses a reading-transition.
There is an analogous sequence K 0

1 of "-transitions in AG; that is, suppose the kth

transition in K
0
1 is ((q0, ", (A0

, B
0)), (q00, w)) then the k

th transition in K1 is

(((q0, "), ", (A0
, B

0)), ((q00, "), w)).

Note transitions in K
0
1 have the same e↵ect on the stack of configurations of AG

as those in K1 have on the stack of configurations of AH . Thus if the sequence of
transitions K1 yields

((q0, ")(S
0
1, (?))) ⇠⇤

"
((q1, "), (S

0
1, S1)) (16.a)

then the sequence K
0
1 results in the following chain in AG

(q0, (S
0
1, (?))) ⇠⇤

"
(q1, (S

0
1, S1)). (17.a)

140

(We note that if AH does not use a sequence of transitions as mentioned above,
then we simply take q1 = q0.)

Now the automaton must use a transition in (T1), to read the first input letter
y1 and move to the state (q1, wy1) without changing the stack and thus the chain
(16.a) continues as

((q0, "), (S
0
1, (?))) ⇠⇤

"
((q1, "), (S

0
1, S1))

⇠y1 ((q1, wy1), (S
0
1, S1)). (16.b)

Now the automaton AH must use some sequence of "-transitions in (T2) and
(T3), as the second component of the state in the last configuration above is not
". We note that transitions in (T3) must be used as they reduce the length of
the second component of the state and input letters can only be read when the
second component is of length 0. Thus the sequence of transitions used by AH

progressively reduces the length of the second component of the state (except
when the transitions are from (T2)).

Let K2 be a sequence of transitions that is used by AH to move from con-
figuration ((q1, wy1), (S

0
1, S1)) to a configuration ((q2, "), (S 0

1, S2)) where we shall
assume that AH will read an input letter from ((q2, t1, "), (S 0

1, S2)). There is an
analogous sequence of transitions K 0

2 of AG; i.e., suppose the k
th transition in K

0
2

is ((q0, ", (A0
, B

0)), (q00, w)) then the k
th transition in K2 is of the form

(((q0, u), ", (A0
, B

0)), ((q00, u), w)),

and if the k
th transition in K

0
2 is

((q0, x, (A0
, B

0)), (q00, w))

then the k
th transition in K2 is of the form

(((q0, xu), ", (A0
, B

0)), ((q00, u), w)).

Note the transitions in K
0
2 have the same e↵ect on the stack of a configuration of

AG as those of K2 do on the stack of a configuration of AH . Thus if the sequence
of transitions K2 continues the chain (16.b) as

((q0, "), (S
0
, (?))) ⇠⇤

"
((q1, "), (S

0
1, S1))

⇠y1 ((q1, wy1), (S
0
1, S1))

⇠⇤
"
((q2, "), (S

0
1, S2) (16.c)

then the sequence of transitions K 0
2 continues the chain (17.a) as

(q0, (S
0
1, (?))) ⇠⇤

"
(q1, (S

0
1, S1)) ⇠x1 (p1, (S

0
1, S1,2)) ⇠⇤

"
(p2, (S

0
1, S2,2))

⇠x2 (p3, (S
0
1, S3,2)) ⇠⇤

"
(p4, (S

0
1, S4,2))

...

⇠xl1
(ql1+1, (S

0
1, Sl1+1)) ⇠⇤

"
(q2, (S

0
1, S2)), (17.b)

141

where (pi, (S 0
1, Si,2)) are the configurations obtained through the transitions in K

0
2.

Observe that continuing in this way we see if ! is read by AH through a chain
then AG can read wy1wy2 · · ·wyn where the states in the configurations are related
in the way outlined above. ⌅

We are now ready to present the proof of Theorem 4.4.1.

Proof of Theorem 4.4.1. Let ! = y1y2 · · · yn 2 Y
⇤. Recall that we have fixed

strings wy 2 X
⇤ for every y 2 Y such that y =G wy. Observe that y1y2 · · · yn =G

wy1wy2 · · ·wyn therefore

! 2 coWP (H, Y) if and only if wy1wy2 · · ·wyn 2 coWP (G,X).

Suppose ! 2 coWP (H, Y) then wy1wy2 · · ·wyn = x1x2 · · · xt 2 coWP (G,X).
Thus there exists a chain C below by whichAG accepts wy1wy2 · · ·wyn 2 coWP (G,X),

(q0, (S
0
, (?))) ⇠⇤

"
(q1, (S

0
, S1)) ⇠x1 (q2, (S

0
, S2)) ⇠⇤

"
(q3, (S

0
, S3))

⇠x2 (q4, (S
0
, S4)) ⇠⇤

"
(q5, (S

0
, S5))

...

⇠xt (q2t, (S
0
, S2t)) ⇠⇤

"
(q2t+1, (S

0
, S2t+1)),

where (q2t+1, (S 0
, S2t+1)) is an accept configuration, and S

0 is some choice of check-
stack.

Now, set li to be the length of the string wyi . Then by Lemma 4.4.3, we see
that A reads ! through the following chain

((q0, "), (S
0
, (?))) ⇠⇤

"
((q1, "), (S

0
, S1))

⇠y1 ((q1, wy1), (S
0
, S1))

⇠⇤
"
((q2l1+1, "), (S

0
, S2l1+1))

⇠y2 ((q2l1+1, wy2), (S
0
, S2l1+1))

⇠⇤
"
((q2l2+1, "), (S

0
, S2l2+1))

...

⇠yn ((q2ln�1+1, , wtr�1yr), (S
0
, S2ln�1+1))

⇠⇤
"
((q2ln+1, "), (S

0
, S2ln+1)).

Since (q2t+1, (S 0
, S2t+1)) is an accept configuration then it must be that q2t+1 2 FG.

Further, q2t+1 = q2ln+1 therefore (q2ln+1, ") is an accept state and therefore ! is
accepted by AH .

142

Suppose ! 2 WP (H, Y) then wy1wy2 · · ·wyn 2 WP (G,X). Then for any choice
of choice stack S

00 if AG reads wy1wy2 · · ·wyn through a chain such as

(q0, (S
00
, (?))) ⇠⇤

"
(q1, (S

00
, S1)) ⇠x1 (q2, (S

00
, S2)) ⇠⇤

"
(q3, (S

00
, S3))

⇠x2 (q4, (S
00
, S4)) ⇠⇤

"
(q5, (S

00
, S5))

...

⇠xt (q2t, (S
00
, S2t)) ⇠⇤

"
(q2t+1, (S

00
, S2t+1)),

then by Lemma 4.4.3, A reads ! through the chain

((q0, "), (S
00
, (?))) ⇠⇤

"
((q1, "), (S

00
, S1))

⇠y1 ((q1, wy1), (S
00
, S1))

⇠⇤
"
((q2l1+1, "), (S

00
, S2l1+1))

⇠y2 ((q2l1+1, wy2), (S
00
, S2l1+1))

⇠⇤
"
((q2l2+1, "), (S

00
, S2l2+1))

...

⇠yn ((q2ln�1+1, , wtr�1yr), (S
00
, S2ln�1+1))

⇠⇤
"
((q2ln+1, "), (S

00
, S2ln+1)).

Since wy1wy2 · · ·wyn 2 WP (G,X), q2t+1 is not an accept state. Therefore as
q2ln+1 = q2t+1, (q2ln+1, ") is also not an accept state. Therefore ! is not accepted.
Further note that by Lemma 4.4.4, there is no other way to read a string !; i.e., for
a string ! to be read it must be that the chain by which ! is read is induced by a
chain inAG reading wy1wy2 · · ·wyn as in Lemma 4.4.3. Therefore if ! 2 WP (H, Y),
then ! is not accepted by AH . ⌅

4.5 Wreath Products With Virtually Free Top
Groups

In this section we shall present the following theorem.

Theorem 4.5.1. Let B be a co-ET0L group and let T be a finitely generated
virtually free group. Then the standard restricted wreath product W = B o T is
co-ET0L.

We prove this theorem (including providing an intuitive explanation of our
automaton) following our two-subsection structure as described in the introduction
of the chapter. That is, we follow the same structure as we have done in previous

143

sections of this chapter. Similar to Lemma 7 of [28], our proof is based on the
techniques in the proof of Theorem 10 of [27].

However, we shall first define some notation that will be helpful to us in the
rest of the chapter.

Definition 4.5.2. Let X be a set. Let v 2 X
⇤ and let x 2 X be the last letter of

v. We define v � x to be the unique prefix u of v such that v = ux, and we write
v � x = u. |

4.5.1 Definition of Automaton

In this section we shall define an automaton A accepting the co-word problem of
W .

Let XB be a finite symmetrically closed generating set for B. Since B is co-
ET0L, there is a CSPD automaton

AB = (QB,⌃B,�B,�B,RB, IB, FB,?, �B)

accepting coWP (B,XB).
Let XT be a finite symmetrically closed generating set for T , such that XT is a

union of a symmetrically closed generating set of its free subgroup of finite index
and the symmetric closure of a transversal set T

0 which contains 1T . We shall
denote the finite index free subgroup of T by Fn.

Since T is virtually free, by Theorem 2.3.8 there exists a pushdown automaton
accepting WP (T,XT) as in 2.3.2. We shall use the automaton P

(cW,1)
G

defined in
2.3.2 in the construction of the automaton accepting the co-word problem of W .
For the purposes of this section, denote P

(cW,1)
G

by

AT = (QT , IT ,⌃T ,�T ,?, �T , FT).

Recall that the input alphabet ⌃T = XT , and as in the construction in 2.3.2
�T is the generating set we shall use for Fn.

Intuitive Summary 4.5.3. Recall that the standard restricted wreath product
W = B o T is a semi-direct product. Thus every element g 2 W may be expressed
as xt where t 2 T and x 2

L
t2T Bt (where Bt

⇠= B for every t 2 T).
The check-stack of A will consist of a string r 2 RB followed by the letter P

some non-zero number of times. Let ! be an input string and let g 2 W be such
that g =W !. We may assume that g = xt as above. We note that if ! 6=W 1W
then either x is non-trivial in the base group, or t is non-trivial in the top group.
The automaton will non-deterministically choose between two ways of processing
!, reflecting the semi-direct product structure of W . The first way is determining

144

whether t is non-trivial. This is done by simulating the pushdown automaton
AT reading ! while ignoring letters from XB (as they project trivially to the top
group). We note that we may assume that the check-stack is long enough for this
calculation to take place as the associated regular language allows for an arbitrarily
large number of occurrences of the letter P after a string from RB.

The second way of processing ! is by determining whether x is non-trivial
in the base group. The automaton non-deterministically chooses and locates a
coordinate of x to check since if x is non-trivial, then there is a coordinate at
which the entry of x is non-trivial in B. The automaton chooses and locates the
coordinate by simulating a modified version of P (W,1)

T
non-deterministically. (Note

the use of non-determinism ensures that there is some run that will check the
correct coordinate, if such a coordinate exists.) This is done in more detail in
the loading and coordinate location stages below. We note that while simulating
P

(W,1)
T

or a modified version of it, letters from XB are ignored as they do not
impact the chosen coordinate of x. The automaton then simulates AB to read
input letters that impact the chosen coordinate. We note that this construction
is more complicated than simply simulating AB as upon reading a letter from XT

the coordinate under consideration changes. The coordinate under consideration
returns to the chosen coordinate when the product of letters read from XT are
trivial in T . We deal with this by using P

(W,1)
T

. (Again, while simulating P
(W,1)
T

the automaton ignores letters from XB as they do not have an impact on the
chosen coordinate.) The automaton oscillates between simulating AB (from where

its processing was paused) and P
(W,1)
T

until the input string is read (regardless of

whether P
(W,1)
T

was left in an accept state). At the end of processing if AB was
left in an accept state then ! is accepted. Indeed if ! is accepted through this
way of processing, then there is a coordinate of x such that the only letters of !
impacting that coordinate form a non-trivial product in B. ⌥
Remark 4.5.4. We note that at any point when AB is being simulated there are
no letters from P

(W,1)
T

on the pushdown stack, thus ensuring that the simulation
of AB is correct. We also note that no transitions will be added to AB to enable
a transition when the pointer on the check-stack is at P . Further, the addition of
extra P letters ensures that P (W,1)

T
will always complete its computation and not

be cut o↵ due to insu�cient length on the check-stack. At any point in the second
way of processing, the pushdown stack is used to both simulate the pushdown stack
of AB as well as keep track of the coordinate of x that is currently active, with the
top of the stack serving one purpose or another depending on where the machine is
in its processing. The simulation of AB pauses when tracking the currently active
coordinate of x starts. Tracking the coordinate of x ends when the coordinate is
the same as the one originally chosen, and then the simulation of AB resumes. �

Now recall that QT consists of the following states:

145

• for every element t in the transversal T 0 we shall have a state t representing
that element. We shall refer to this subset of the state set as T 0 as well.

• The states qA and .

• For ever t 2 T
0 and y 2 XT , there is a state (t, y). We shall call this collection

of states K.

• Recall that for every (t, y) 2 K we have fixed a string wty = x1x2 · · · xr (in
2.3.2) such that ty =G wtyt

0 for some t
0 2 T

0. There is a state representing
every letter in the string wty and is further indexed by (t, y). That is, for
every (t, y) 2 K there exist states named q(t,y,1), q(t,y,2), . . . q(t,y,r) where r

depends only on (t, y). We shall call this collection of states K1.

We shall use the states in T
0 as well as those in K1 in multiple places in our

construction below. We recommend that the reader recall the constructions of
P

(W,1)
Fn

and P
(W,1)
T

in 2.3.2 as we rely on them rather heavily in the constructing
the automaton A below. However, we remind the reader of a few key points that
are crucial to the construction of P (W,1)

T
.

1. There is a unique initial state 1T .

2. There is a unique final state qA.

3. A string is accepted if upon reading the string we reach the state qA. How-
ever, we can only reach the state qA from state 1T if the stack is empty.

Since B is co-ET0L, there exists a CSPD automaton

AB = (QB,⌃B,�B,�B,RB, IB, FB,?, �B)

accepting coWP (B,XB).
We shall first give an intuitive idea of how A works. We then follow this with

the formal definition of A.

Intuitive Idea: The automaton A works as follows.
The check-stack of A will contain a string r 2 RB followed by the letter P

some non-zero number of times.
First the automaton makes a choice about whether it checks the base group or

the top group.
If the automaton checks the top group then it processes the input string as if it

was AT while ignoring letters from XB. That is, the letters from XT are processed
the same way AT processes them, and after a letter from XT is finished processing
then a letter from XB does not edit the stack nor change the state.

If the automaton checks the base group, then it processes the input string in
three stages.

146

1. The loading stage,

2. the coordinate location stage, and

3. processing the remainder of the string stage.

The Loading Stage: In this stage the automaton non-deterministically writes
a freely reduced string on the pushdown stack, and moves to a state representing
a transversal element. The product of the string on the pushdown stack and the
transversal element defines an element of the top group, say h. This will be the
inverse of the coordinate that we will locate in the following stage.

The Coordinate Location Stage: In this stage, the automaton simulates
P

(W,1)
T

while ignoring the letters from XB until it reads the shortest prefix !0 of
the input string such that 'XT (!0) = h

�1. That is, after the previous stage, we
read the shortest string !0 so that the state is 1T and the stack is empty after
processing !0.

Processing the remainder of the string stage: In this stage, the automa-
ton processes letters from XB the same way AB does until a letter from XT is read.
(Letters from �B will be treated like bottom of stack symbols.) Upon reading a

letter from XT the automaton enters a mode which simulates P (W,1)
T

while ignoring

letters from XB until P (W,1)
T

accepts. Then the stack must have returned to the
way it was before the letters from XT were read and the automaton continues
processing letters from XB in the same way AB would. This processes repeats
until the string is read.

We note that if the automaton checks the top group, the pushdown stack will
only contain letters from �T . However, if the automaton checks the base group
then then pushdown stack will contain letters from �B [�T .

Formal Definition of A: We define a CSPD automaton

A := (Q,⌃,�,�, I, F,R,?, �)

accepting coWP (W,XG [XH) as follows.

• The state set Q consists of the following states:

– the states q0, and ql.

– For every in q 2 QT , there is a state q representing that element of QT ,
we shall refer to it by the same name. We shall refer to this subset of
Q as QT as well.

– For every q 2 QT \{qA, }, there is a state qc representing that element
of QT . This collection of all states qc is denoted by Q

c

T
. (We note that

as the symbols are di↵erent, Qc

T
\QT = ?.)

147

– For every q 2 QB and every t 2 T
0, there is a state (q, t). We call this

collection of states Q1.

– Recall that for every t 2 T
0, and every y 2 XT , there is a state

in K1 ✓ QT representing every letter of wty and is further indexed
by (t, y). That is, if wty = x1x2 · · · xr 2 �

⇤
T

then these states are
q(t,y,1), q(t,y,2), . . . , q(t,y,r). For each one of these states q(t,y,i) in K1 ✓ QT ,
there is a state (q, t, q(t,y,i)), for every q 2 QG, t 2 T

0, and y 2 XT .

• The input alphabet is ⌃ = ⌃B [⌃T = XB [XT .

• The check-stack alphabet is � = �B [{P}.

• The pushdown stack alphabet is � = �B [�T .

• The regular language is R = RB{P}⇤.

• The set of initial states is I = {q0}.

• The set of final states is F = FT [(FB ⇥ T
0),

and finally the transition relation � consists of the following transitions.

(T0)(a) For every q 2 IH , there is a transition

((q0, ", (?,?)), (q,?));

that is, there is an "-transition from state q0 with the pushdown stack being
empty to state q 2 IH without editing the stack.

(T0)(b) There is a transition
((q0, ", (?,?)), (ql,?));

that is, there is a transition from q0 with the pushdown stack being empty
to ql without editing the stack.

(T1)(a) For every transition ↵ = ((q, x, y), (q0, w)) 2 �T where q, q
0 2 QT and x 2

XT [{"}, there is a transition

((q, x, (A, y)), (q0, w))

for every A 2 � [{?}. That is, there is a transition from q upon reading
x with the top of the pushdown stack being y with corresponding letter on
the check-stack A that moves to the same state ↵ does from q upon reading
x, and writes onto the pushdown stack the string that ↵ writes.

148

(T1)(b) For every q 2 T
0 ✓ QT , every x 2 XB and every pair (A,B) there is a

transition
((q, x, (A,B)), (q, B));

that is, from a state q 2 T
0 ✓ QT , upon reading x 2 XB with top of the

pushdown stack being B and corresponding letter on the check-stack being
A, the automaton remains at q and does not edit the stack.

(T2)(a) For every z 2 �T there is a transition

((ql, ", (?,?)), (ql, z?));

that is, there is an "-transition from ql with the pushdown stack being empty
to ql while while adding z onto the stack, for every z 2 �T .

(T2)(b) For every z, z
0 2 �T such that z0 6= z

�1 there are transitions

1.
((ql, ", (A, z)), (ql, z

0
z));

that is, there is an "-transition from ql to ql where z is replaced with z
0
z

at the top of the pushdown stack for every z
0 6= z

�1 and for any A 2 �,
and

2.
((ql, ", (A, z)), (ql, "));

that is, there is an "-transition from ql to ql that deletes z from the top
of the pushdown stack for any z 2 �T and any A 2 �.

(T2)(c) For every t
c 2 T

0c ✓ Q
c

T
and pair (A,B) there is a transition

((ql, ", (A,B)), (tc, B));

that is, there is an "-transition from state ql to state t
c for every state t

c 2
T

0c ✓ Q
c

T
that does not edit the stack.

(T3) (a) For every x 2 XB we have the following transitions.

(i) For any A 2 � and z 2 �T (i.e. z 6= ?) there is a transition

((1c
T
, x, (A, z)), (1c

T
, z));

that is, there is a transition from 1c
T
to itself upon reading x when

the top of the pushdown stack is z 2 �T (i.e. the pushdown stack
is non-empty) that does not edit the stack.

149

(ii) For any t
c 2 T

0c ✓ Q
c

T
such that tc 6= 1c

T
, any A 2 � [{?}, and

any B 2 �T [{?} there is a transition

((tc, x, (A,B)), (tc, B));

that is, there is a transition from t
c to itself (whenever tc 6= 1c

T
upon

reading x that does not edit the stack.

(b) For every y 2 XT we have the following transitions.

(i) For any A 2 � and z 2 �T (i.e. z 6= ?) there is a transition

((1c
T
, y, (A, z)), ((1c

T
, y)c, z));

that is, there is a transition from 1c
T
upon reading y 2 XT when

the top of the pushdown stack is z 2 �T (i.e. the pushdown stack is
non-empty) that moves to state (1c

T
, y)c without editing the stack.

(ii) For any t
c 2 T

0c ✓ Q
c

T
such that tc 6= 1c

T
, any A 2 � [{?}, and

any B 2 �T [{?} there is a transition

((tc, y, (A,B)), ((tc, y)c, B));

that is, there is a transition from t
c to (tc, y)c upon reading y with

B 2 �T [{?} at the top of the pushdown stack with A being the
corresponding letter on the check-stack that does not edit the stack.

(c) Recall that for every y 2 XT and t 2 T
0, we have fixed a string wty =

x1x2 · · · xr 2 �
⇤
T
such that ty =T wtyt

0 for some t 2 T
0.

For every t
c 2 T

0c and y 2 XT we have the following transitions.

(i) For any z 2 �T [{?} and any A 2 � [{?} there is a transition

(((tc, y)c, ", (A, z)), (qc(tc,y,1), P
(W,1)
Fn

(i0, x1, z)))

where P
(W,1)
Fn

(i0, x1, z) denotes the unique string such that

((i0, x1, z), (i0, P
W,1(i0, x1, z))) 2 �

(W,1)
Fn

;

that is, from state (tc, y)c and the top of the pushdown stack being
z and the corresponding check-stack symbol is A there is an "-
transition to state q

c

(tc,y,1) that places the same string on the stack

as the automaton P
(W,1)
Fn

for Fn did when reading the letter x1 with
z at the top of its stack.
(Note that this is analogous to transitions of P (W,1)

T
. We also note

that in the case when t
c = 1c

T
, even though the transitions account

for when z = ? there are no transitions to (1c
T
, y) if the top of the

pushdown stack is empty.)

150

(ii) For every 1  i  r � 1, every A 2 � [{?}, every z 2 �T [{?}
there is a transition

((qc(tc,y,i), ", (A, z)), (q
c

(tc,y,i+1), P
(W,1)
Fn

(i0, xi+1, z)))

where P
(W,1)
Fn

(i0, xi+1, z) denotes the unique string such that

((i0, xi+1, z), (i0, P
W,1(i0, xi+1, z))) 2 �

(W,1)
Fn

;

that is, at state q
c

(tc,y,i) when the top letter of the stack is z there
is an "-transition to the state q

c

(tc,y,i+1) that places the same string

on the stack as the automaton P
(W,1)
Fn

for Fn did when reading the
letter xi+1 with z at the top of its stack.
(Note that this is analogous to transitions of P (W,1)

T
.)

(iii) For any z 2 �T [{?} and A 2 � [{?} there is a transition

((qc(tc,y,r), ", (A, z)), (t
0c
, z)).

(Note that this is analogous to transitions of P (W,1)
T

.)

(d) For any q 2 IB there is a transition

((1c
T
, ", (?,?)), ((q, 1T),?));

that is, there is an "-transition from 1c
T
to (q, 1T) for any q 2 IB.

(T4) For every transition
((q, x, (A,B)), (q0, w)) 2 �B

there is a transition

(((q, 1T), x, (A,B)), ((q0, 1T), w));

that is, there is a transition from state (q, 1T) upon reading x 2 XB [{"}
with B on the pushdown stack and corresponding check-stack letter A to
state (q0, 1T) writing the string w whenever

((q, x, (A,B)), (q0, w)) 2 �B.

(T5) For any t 2 T
0, and y 2 XT recall we have fixed a string wty = x1x2 · · · xr 2

�
⇤
T
such that ty =T wtyt

0.

For any q 2 XB, t 2 T
0
, y 2 XT , and A 2 � [{?} we have the following

transitions.

151

(a) (i) For every B 2 �B there is a transition

(((q, t), y, (A,B)), ((q, t, (q, t, q(t,y,1))), (P
(W,1)
Fn

(i0, x1,?)�?)B))

where (P (W,1)
Fn

(i0, x1,?)�?)B denotes the concatenation of

P
(W,1)
Fn

(i0, x1,?)�?

and B, with P
(W,1)
Fn

(i0, x1,?) denoting the unique string such that

((i0, x1,?), (i0, P
(W,1)
Fn

(i0, x1,?))) 2 �
(W,1)
Fn

;

that is, from state (q, t) upon reading y 2 XT with B 2 �B at
the top of the pushdown stack and A being the corresponding
check-stack letter there is a transition to (q, t, q(t,y,1)) that adds

P
(W,1)
Fn

(i0, x1,?)�? on top of the pushdown stack.

(ii) For every B 2 �T [{?} there is a transition

(((q, t), y, (A,B)), ((q, t, q(t,y,1)), P
(W,1)
Fn

(i0, x1, B)));

that is, from state (q, t) upon reading y 2 XT with B 2 �T [{?}
at the top of the pushdown stack and A being the corresponding
check-stack letter there is a transition to (q, t, q(t,y,1))) writing the

same string on pushdown stack the automaton P
(W,1)
Fn

for Fn did
when reading the letter x1 with B at the top of its stack.

(b) For every 1  i  r � 1 we have the following transitions.

(i) For every B 2 �B there is a transition

(((q, t, q(q,t,i)), ", (A,B)), ((q, t, q(t,y,i+1)), (P
(W,1)
Fn

(i0, xi+1,?)�?)B))

where (P (W,1)
Fn

(i0, xi+1,?)�?)B denotes the concatenation of

P
(W,1)
Fn

(i0, x1,?)�?

and B, with P
(W,1)
Fn

(i0, xi+1,?) denoting the unique string such that

((i0, xi+1,?), (i0, P
(W,1)
Fn

(i0, xi+1,?))) 2 �
(W,1)
Fn

;

that is, from state (q, t, q(t,y,i)) there is an "-transition with B 2 �B

at the top of the pushdown stack and A being the corresponding
check-stack letter to state (q, t, q(t,y,i+1)) that adds P

(W,1)
Fn

(i0, x1,?)�
? to the top of the pushdown stack.

152

(ii) For every B 2 �T [{?} there is a transition

(((q, t, q(t,y,i)), ", (A,B)), ((q, t, q(t,y,i+1)), P
(W,1)
Fn

(i0, xi+1, B)));

that is, from state (q, t, q(t,y,i)) there is an "-transition with B 2
�T [{?} at the top of the pushdown stack and A being the corre-
sponding check-stack letter to state (q, t, q(t,y,i+1)) writing the same

string on pushdown stack the automaton P
(W,1)
Fn

for Fn did when
reading the letter xi+1 with B at the top of its stack.

(c) For any pair (A,B) here is a transition

(((q, t, q(t,y,r)), ", (A,B)), ((q, t0), B));

that is, there is a "-transition from (q, t, q(t,y,r)) to (q, t0) without editing
the stack.

(T6) For every x 2 XB, and q 2 QB we have the following transitions.

(a) For any t 2 \T 0 \ {1T}, and any pair (A,B) there is a transition

(((q, t), x, (A,B)), ((q, t), B));

that is, there is a transition from the state (q, t) upon reading x 2 XB

with B at the top of pushdown stack and A being the corresponding
letter on the check-stack that does not change the state or the stack.

(b) For any z 2 �T , and A 2 � there is a transition

(((q, 1T), x, (A, z)), ((q, 1T), z));

that is, there is a transition from state (q, 1T) upon reading x 2 XB with
z 2 �T at the top of the pushdown stack and A being the corresponding
check-stack letter that does not change the state or the stack.

4.5.2 Proof of Theorem 4.5.1

In this section, we will provide a sequence of technical lemmata. We then present
the proof of Theorem 4.5.1. Throughout this subsection, we shall letB, T,XB, XT ,AB,

AT , and A as in the subsection above. First, we shall define some notation that
will be useful in this section. We note that this notation is local to this section
only.

153

Definition 4.5.5. Let C be a configuration of the automtaton A. Further, let
u = x1x2 · · · xl 2 X

⇤
B
. Suppose

C ⇠x1 C ⇠x2 C ⇠x3 · · · ⇠xn C.

We denote the above chain by C ⇠u C. |

Due to the technical nature of the lemmata in this section we, we shall give an
intuitive description about how the structure of the automaton relates to a wreath
product. Further, we shall give a non-formal intuitive description of the statements
of the first two lemmata before stating them. This will help in understanding the
statements themselves.

We shall first relate the intuitive description of the automaton A to the struc-
ture of a wreath product.

Recall that the wreath product W = B o T is a semi-direct product (as in
Definition 2.1.15) and thus an element w

0 of W is a pair. The structure of the
automaton reflects that. The two modes corresponds to checking non-triviality in
either component.

In the first mode, we check whether the entry in the second component of
w

0 is non-trivial. The second mode, checks whether the first component of w0 is
non-trivial. However, the first component is a tuple therefore it is non-trivial if
there is a coordinate for which the entry in that coordinate is non-trivial. We give
an outline as to how this is achieved below. First the automaton loads a freely
reduced string in the generators of finitely indexed free subgroup Fn of T onto the
pushdown stack. Then it passes to a state representing a transversal element. This
defines an element y of T as every element of T can be expressed as a product of
an element in Fn with a transversal element. The element y is the inverse of the
coordinate that we will check. Then the automaton moves into coordinate location
stage. In this stage the automaton simulates P (W,1)

T
when reading letters from XT

(while not editing the stack if the input letter is from XB). We keep doing this
until the first time we see ? at the top of the pushdown stack and the state is
1c
T
. Then the automaton simulates AB reading a string in the generators XB until

a letter of XT is read. With every letter from XT read the coordinate which we
are checking changes, thus the letters from XB that are read do not impact the
coordinate we are interested in until we have read a string in XT that is equal to
1T as this represents returning to the correct coordinate. This process of possibly
changing coordinate (and returning to the one we are interesting) repeats until the
input string is read. We note that we only processed letters from XH using AH

when we were at the right coordinate.
We are now ready to give an intuitive description of our first lemma.
Intuitive Description Lemma 4.5.6: The Lemma 4.5.6 describes how the

first mode of processing of A processes a string ! = u1y1u2y2 · · · unyn where ui 2

154

X
⇤
B

and yi 2 XT for all 1  i  n. Recall the first mode of processing checks
whether the second component of the element defined by ! is non-trivial. Further
recall the top group T is virtually free. Therefore the first mode of processing is
simply the processing of AT , but with two modifications as follows.

1. SinceA is a CSPD automaton, the transitions and configurations look slightly
di↵erent to those of AT , in particular we have to account for the check stack
in the configurations.

2. All letters from XB are ignored; i.e., they have no e↵ect on the stack and
state, and therefore they do not change the configurations.

Further, to be able to access the first mode of processing we must use the "-
transition from q0 to 1T .

Lemma 4.5.6. Let ! = u1y1u2y2 · · · unyn 2 (XB[XT)⇤ be such that ui 2 XB

⇤ and
yi 2 XT for all 1  i  n. Set t0 = 1T and ti�1yi =T wti�1yiti for all 1  i  n.
Denote ⇢�T by ⇢.

Then A reads ! through the following chain, where we write the pushdown stack
as a string instead of a tuple,

(q0, (S,?)) ⇠" (1T , (S,?))

⇠u1 (1T , (S,?)) ⇠y1 ((1T , y1), (S,?)) ⇠⇤
"
(t1, (S, ⇢(w1T y1)?))

⇠u2 (t1, (S, ⇢(w1T y1)?)) ⇠y2 ((t1, y2), (S, ⇢(w1T y1)?))

⇠⇤
"
(t2, (S, ⇢(w1T y1wt1y2)?))

...

⇠un (tn�1, (S, ⇢(w1T y1wt1y2 · · ·wtn�2yn�1)?))

⇠yn ((tn�1, yn), (S, ⇢(w1T y1wt1y2 · · ·wtn�2yn�1)?))

⇠⇤
"
(tn, (S, ⇢(w1T y1wt1y2 · · ·wtn�2yn�1wtn�1yn)?)))

for a long-enough choice of check-stack S.

Proof. By our work in 2.3.2, we know that AT reads y1y2 · · · yn through the chain

(1T ,?) ⇠y1 ((1T , y1),?) ⇠⇤
"
(t1, ⇢(w1T y1)?)

⇠y2 ((t1, y2), ⇢(w1T y1)?) ⇠⇤
"
(t2, ⇢(w1T y1wt1y2)?)

...

⇠yn ((tn�1, yn), ⇢(w1T y1wt1y2 · · ·wtn�2yn�1)?)

⇠⇤
"
(tn, ⇢(w1T y1wt1y2 · · ·wtn�2yn�1wtn�1yn)?). (18.a)

155

The transitions used in the above chain, are analogous to those in (T1)(a). (The
transitions in (T1)(a) are those of AT but modified to account for the check-stack.)

Let S be a long-enough choice of check-stack. Note the transitions in (T1)(b)
imply that letters fromXB do not e↵ect any configuration whose state is an element
t 2 T

0 ✓ QT representing the transversal element t. Further, there are no reading-
transitions reading letters from XB from any state in QT \ T 0. Therefore the only
way A can read an input letter from XB at a state in QT then is by being at a
state in T

0. Therefore letters from XB must be read from states in T
0, and letters

from XB have no e↵ect on any configuration whose state belongs to T
0.

We also note that there is the transition in (T0)(a) moving the automaton
from q0 to 1T , as 1T is the unique initial state of AT . The transition changes state
without editing the stack. Therefore, A reads ! through a chain starting as

(q0, (S,?)) ⇠" (1T , (S,?)). (18.b)

Using the transitions in (T0)(a) that are analogous to those yielding (18.a) and
since letters from XB have no e↵ect on any configuration whose state belongs to
T

0, (18.b) continues as

(q0, (S,?)) ⇠" (1T , (S,?))

⇠u1 (1T , (S,?)) ⇠y1 ((1T , y1), (S,?)) ⇠⇤
"
(t1, (S, ⇢(w1T y1)?))

⇠u2 (t1, (S, ⇢(w1T y1)?)) ⇠y2 ((t1, y2), (S, ⇢(w1T y1)?))

⇠⇤
"
(t2, (S, ⇢(w1T y1wt1y2)?))

...

⇠un (tn�1, (S, ⇢(w1T y1wt1y2 · · ·wtn�2yn�1)?))

⇠yn ((tn�1, yn), (S, ⇢(w1T y1wt1y2 · · ·wtn�2yn�1)?))

⇠⇤
"
(tn, (S, ⇢(w1T y1wt1y2 · · ·wtn�2yn�1wtn�1yn)?))).

⌅
Intuitive Description of Lemma 4.5.7: The Lemma 4.5.7 describes how

the second mode of processing of A processes a string ! = !0u1v1u2v2 · · · unvn.
The lemma divides the processing of ! into three categories. These are the initial
chain, chains of type U , chains of type V . These chains process di↵erent parts of
the string !.

The initial chain processes a prefix !0 of ! such that 'XT (!) =T h
�1 for some

h 2 T . This is done through the transitions P (W,1)
T

while ignoring letters from XB.
Chains of type U are responsible for processing the ui, chains of type V are

responsible for processing the vi.
We note that the following lemma is long and technical, this because there is

some setup involved.

156

Lemma 4.5.7. Fix h 2 T and t 2 T
0. Let ! = �1�2 · · · �r 2 (XB [XT)⇤. Assume

there exists a prefix !0 = u
0
1y1u

0
2y2 · · · u0

n
yn (where u

0
i
2 X

⇤
B

and yi 2 XT) of !
such that y1y2 · · · yn =T h

�1. We assume the last letter of !0 is in XT . Set t0 := t

and ti�1yi =T wti�1yiti for all 1  i  n� 1.
Consider the following decomposition of !

! = !0u1v1u2v2 · · · unvn,

where
ui = xi,1xi,2 · · · ui,l(ui) 2 X

⇤
B

and vi 2 (XB [XT)⇤ such that the first and last letter of vi is in XT , for all
1  i  n. Further suppose for each 1  j  n� 1, there does not exist a prefix v

0
j

such that 'XT (v
0
j
) 6=T 1T , but 'XT (v

0
j
) =T 1T .

Let
vi = yi,1u

0
i,1yi,2u

0
i,2 · · · yi,l(vi)�1u

0
i,l(vi)�1yi,l(vi)

for all 1  i  n. Set ti,0 = 1T for every 1  i  n. Further set

ti,j�1yi,j =T wti,j�1yi,j ti,j

for every 1  j  l(vi) and every 1  i  n. Further, let zi,j 2 �T be the first
letter of wti,j�1yi,j

Suppose there exists a choice of check-stack S = (am, am�1, . . . , a1,?) (where
amam�1 · · · a1 2 RB) such that AB reads u1u2 · · · un through the chain

(q, (S, (?))) ⇠⇤
"
(q"1,1, (S, S

"

1,1)) ⇠x1,1 (q1,1, (S, S1,1))

⇠⇤
"
(q"1,2, (S, S

"

1,2)) ⇠x1,2 (q1,2, (S, S1,2))
...

⇠⇤
"
(q"1,l(u1), (S, S

"

1,l(u1))) ⇠x1,l(u1)
(q1,l(u1), (S, S1,l(u1)))

⇠⇤
"
(q"2,1, (S, S

"

2,1)) ⇠x2,1 (q2,1, (S
0
, S2,1))

⇠⇤
"
(q"2,2, (S, S

"

2,2)) ⇠x2,2 (q2,2, (S, S2,2))
...

⇠⇤
"
(q"2,l(u2), (S, S

"

2,l(u2))) ⇠x2,l(u2)
(q2,l(u2), (S, S2,l(u2)))

...

⇠⇤
"
(q"

n,1, (S, S
"

n,1)) ⇠xn,1 (qn,1, (S, Sn,1))

⇠⇤
"
(q"

n,2, (S, S
"

n,2)) ⇠xn,2 (qn,2, (S, Sn,2))
...

⇠⇤
"
(q"

n,l(un), (S, S
"

n,l(un))) ⇠xn,l(un)
(qn,l(un), (S, Sn,l(un)))

157

where q 2 IB. (We note that we enumerated the states and pushdown stacks in
a way to help with keeping track of what has already been read and what type of
transitions have been used. That is, after ⇠" the symbol denoting pushdown stack
is decorated with an " as a superscript, and the subscripts are enumerated in the
same way the input alphabet is, as illustrated above.) Then there exists a long
enough extension of S

S
0 = (P, P, . . . , P, am, am�1, . . . , a1,?)

such that A reads ! through a chain which we decompose into 2n + 1 parts that
can be categorised into three categories.

The categories are as follows

1. initial chain,

2. chain of type U , and

3. chain of type V .

There is one chain in the initial chain category, which we shall call the initial
chain. There are n chains of type U , and n chains of type V .

The first chain of type U starts after the initial chain ends. The i
th chain of

type V starts after the i
th chain of type U ends. The i+ 1th chain of type U starts

after the i
th chain of type V ends.

We list the initial chain below, as well as the i
th chain of type U , and the i

th

chain of type V . Below we denote ⇢�T by ⇢.
We express the pushdown stack as a string instead of a sequence for the initial

chain and chains of type V .
The initial chain is the part of the chain responsible for processing !0. The

initial chain can start as

(q0, (S
0
,?)) ⇠" (ql, (S

0
,?)) ⇠⇤

"
(tc, (S 0

, u?)),

where ut =T h. Further if it does then it continues as follows

(q0, (S
0
,?)) ⇠" (ql, (S

0
,?)) ⇠⇤

"
(tc, (S 0

, u?))

⇠u
0
1
(tc, (S 0

, u?)) ⇠y1 ((t
c
, y1)

c
, (S 0

, u?)) ⇠⇤
"
(t1

c
, (S 0

, ⇢(uwt0y1)?))

⇠u
0
2
(t1

c
, (S 0

, ⇢(uwt0y1)?)) ⇠y2 ((t1
c
, y2)

c), (S 0
, ⇢(uwt0y1)?))

⇠⇤
"
(t2

c
, (S 0

, ⇢(uwt0y1wt1y2)?))
...

⇠u0
n
(tn�1

c
, (S 0

, ⇢(uwt0y1wt1y2 · · ·wtn�2yn�1)?))

⇠yn ((tn�1
c
, yn)

c
, (S 0

, ⇢(uwt0y1wt1y2 · · ·wtn�2yn�1)?))

⇠⇤
"
(tn, (S

0
, ⇢(uwt0y1wt1y2 · · ·wtn�2yn�1wtn�1yn)?)) = (1T

c
, (S 0

, (?)))

⇠" ((q, 1T), (S
0
, (?))).

158

The i
th chain of type U is the part of the chain responsible for processing ui =

xi,1xi,2 · · · xi,l(ui), and it is as follows

((q"
i,1, 1T)(S

0
, S

"

i,1)) ⇠xi,1 (qi,1, (S
0
, Si,1))

⇠⇤
"
((q"

i,2, 1T), (S
0
, S

"

i,2)) ⇠xi,2 ((qi,2, 1T), (S
0
, Si,2))

...

⇠⇤
"
((q"

i,l(ui), 1T), (S
0
, S

"

i,l(ui))) ⇠xi,l(ui)
((qi,l(ui), 1T), (S

0
, Si,l(ui)))

⇠⇤
"
((q"

i+1,1, 1T), (S
0
, S

"

i+1,1)).

The i
th chain of type V is the part of the chain responsible for processing

vi = yi,1u
0
i,1yi,2u

0
i,2 · · · yi,l(vi)�1u

0
i,l(vi)�1yi,l(vi),

and it is as follows

((q"
i+1,1, 1T), (S

0
, S

"

i+1,1)) ⇠yi,1 ((q
"

i+1,1, 1T , q(q"i+1,1,1T ,1)), (S
0
, zi,1S

"

i+1,1))

⇠⇤
"
((q"

i+1,1, ti,1), (S
0
, ⇢(w1T yi,1)S

"

i+1,1))

⇠u
0
i,1

((q"
i+1,1, ti,1), (S

0
, ⇢(w1T yi,1)S

"

i+1,1))

⇠yi,2 ((q
"

i+1,1, ti,1, q(q"i+1,1,ti,1,1)
), (S 0

, ⇢(w1T yi,1zi,2)S
"

i+1,1))

⇠⇤
"
((q"

i+1,1, ti,2), (S
0
, ⇢(w1T yi,1wti,1yi,2)S

"

i+1,1))

⇠u
0
i,2

((q"
i+1,1, ti,2), (S

0
, ⇢(w1T yi,1wti,1yi,2)S

"

i+1,1))

...

⇠yi,l(vi)�1
((q"

i+1,1, ti,l(vi)�2, q(q"i+1,ti,l(vi)�2),1),

(S 0
, ⇢(w1T yi,1wti,1yi,2 · · ·wti,l(vi)�3yi,l(vi)�2

zi,l(vi))S
"

i+1,1))

⇠⇤
"
(q"

i+1,1, ti,l(vi)�1),

(S 0
, ⇢(w1T yi,1wti,1yi,2 · · ·wti,l(vi)�3yi,l(vi)�2

wti,l(vi)�2yi,l(vi)�1
)S"

i+1,1)

⇠u
0
i,l(vi)�1

(q"
i+1,1, ti,l(vi)�1),

(S 0
, ⇢(w1T yi,1wti,1yi,2 · · ·wti,l(vi)�3yi,l(vi)�2

wti,l(vi)�2yi,l(vi)�1
)S"

i+1,1)

⇠yi,l(vi)
((q"

i+1,1, ti,l(vi)�1, q(q"i+1,1,ti,l(vi)�1,1)),

(S 0
, ⇢(w1T yi,1wti,1yi,2 · · ·wti,l(vi)�2yi,l(vi)�1

zi,l(vi))S
"

i+1,1))

⇠⇤
"
((q"

i+1,1, ti,l(vi)),

(S 0
, ⇢(w1T yi,1wti,1yi,2 · · ·wti,l(vi)�1yi,l(vi)

)S"

i+1,1)).

Proof. We shall first construct the initial chain. Let S 0 be as in the statement of
the lemma.

159

First we shall prove that the chain can start in the way lemma states it does.
Observe that (T0)(b) is an "-transition from q0 to ql that does not edit the

stack. Therefore the chain starts with

(q0, (S
0
,?)) ⇠" (ql, (S

0
,?)).

In the transition in (T2)(a), letters are written onto on an empty stack. The
transitions in (T2)(b) write z

0
z onto the stack where z

0 6= z
�1 if z was at the

top of the pushdown stack, and can also delete the letter z from the top of the
pushdown stack. Thus after using the transitions in (T2)(a) and (T2)(b), the
pushdown stack will not contain two consecutive letters that are the inverse of one
another. Thus these transitions write a freely reduced string onto the pushdown
stack. Further, as the transitions account for all possible combinations of the top
of the pushdown stack and letters that be written onto the stack then using the
transitions the automaton can write any freely reduced string onto the pushdown
stack. The string u in the statement is such a string and thus be written by the
automaton. Now, the transitions in (T2)(c) move the state of the automaton from
ql to a state t

0c without editing the stack. Further, there transitions from ql to
every state t0c for every t

0 2 T
0. Thus the automaton can move from ql to the state

t
c in the statement of the lemma. Therefore the chain starts with

(q0, (S
0
,?)) ⇠" (ql, (S

0
,?)) ⇠⇤

"
(tc, (S 0

, u?)).

We shall now construct the initial chain. We shall construct the part of the
chain reading u

0
1v1. The transitions in (T3)(a) show that upon reading a letter

from XB with the state being a transversal element with a superscript c as a
decoration, then the state and the stack are not changed. Using (T3)(a) the chain
continues

(q0, (S
0
,?)) ⇠" (ql, (S

0
,?)) ⇠⇤

"
(tc, (S 0

, u?))

⇠u
0
1
(tc, (S 0

, u?)).

Reading y1, the automaton uses a transition in (T3)(b) that reads y1 with the first
letter of u being at the top of the stack and moving to a state (tc1, y1)

c without
editing the stack. Thus the chain continues as

(q0, (S
0
,?)) ⇠" (ql, (S

0
,?)) ⇠⇤

"
(tc, (S 0

, u?))

⇠u
0
1
(tc, (S 0

, u?)) ⇠y1 ((t
c
, y1)

c
, (S 0

, u?)).

Now observe that the transitions in (T3)(c) are analogous to those of P (W,1)
T

, and
the use of these transitions has the same e↵ect on the pushdown stack as their ana-
logues do on the stack of P (W,1)

T
while the state gets decorated with the superscript

160

c. Thus the chain continues as

(q0, (S
0
,?)) ⇠" (ql, (S

0
,?)) ⇠⇤

"
(tc, (S 0

, u?))

⇠u
0
1
(tc, (S 0

, u?)) ⇠y1 ((t
c
, y1)

c
, (S 0

, u?)) ⇠⇤
"
(tc1, (S

0
, u?)).

We shall assume we have constructed the part of the chain reading
u
0
1y1u

0
2y2 · · · u0

i�1yi�1, and we shall now construct the part of the chain reading u0
i
yi.

After reading u0
1y1u

0
2y2 · · · u0

i�1yi�1 (and then using a sequence of "-transitions), the
configuration is

(tc
i�1, (S

0
, ⇢(uw1T y1wt1y2 · · ·wti�2yi�1)?))

by our assumption. The transitions in (T3)(a) show that upon reading a letter
from XB with the state being of the form t

c the automaton does not change state
or edit the stack. Therefore the chain continues as

(tc
i�1, (S

0
, ⇢(uw1T y1wt1y2 · · ·wti�2yi�1)?)) ⇠u

0
i
(tc

i�1, (S
0
, ⇢(uw1T y1wt1y2 · · ·wti�2yi�1)?)).

Further, by (T3)(b) we see that when a letter from XT is read from state tc
i�1, the

automaton moves to state (tc
i�1, yi)

c without editing the stack. The chain continues
as

(tc
i�1, (S

0
, ⇢(uw1T y1wt1y2 · · ·wti�2yi�1)?)) ⇠u

0
i
(tc

i�1, (S
0
, ⇢(uw1T y1wt1y2 · · ·wti�2yi�1)?))

⇠yi ((t
c

i�1, yi)
c
,

(S 0
, ⇢(uw1T y1wt1y2 · · ·wti�2yi�1)?)).

Now, observe that the transitions in (T3)(c) are analogous to those of P
(W,1)
T

,
and the use of these transitions has the same e↵ect on the pushdown stack as
their analogues do on the stack of P (W,1)

T
while the state gets decorated with the

superscript c. Thus the chain continues as

(tc
i�1, (S

0
, ⇢(uw1T y1wt1y2 · · ·wti�2yi�1)?)) ⇠u

0
i
(tc

i�1, (S
0
, ⇢(uw1T y1wt1y2 · · ·wti�2yi�1)?))

⇠yi ((t
c

i�1, yi)
c
,

(S 0
, ⇢(uw1T y1wt1y2 · · ·wti�2yi�1)?))

⇠⇤
"
(tc

i
, (S 0

, ⇢(uw1T y1wt1y2 · · ·wti�1yi)?)).

This shows the initial chain is as in the statement of the lemma up to reading yn.
Since, y1y2 · · · yn =T h

�1 and thus hy1y2 · · · yn =T 1T then it must be that tn = 1T
and the stack is empty (as seen in the proof of L(P (W,1)

T
) = WP (T,XT) in 2.3.2).

Now we can use the transition in (T3)(d) from 1c
T
to the state (q, 1T) where q 2 IB.

Thus we achieve the initial chain in the statement of the lemma.

161

We shall now construct the first chain of type U and the first chain of type V .
The first chain of type U is the one responsible for reading u1 = x1,1x1,2 · · · x1,l(u1).
The first chain of type of V is the one responsible for

v1 = y1,1u
0
1,1y1,2u

0
1,2 · · · y1,l(v1)�1u

0
1,l(v1)�1y1,l(v1).

We shall start with the first chain of type U . The initial chain ends with the
configuration ((q, 1B), (S 0

,?)). The automaton AB reads u1 = x1,1x1,2 · · · x1,l(u1)

through the chain

(q, (S, (?))) ⇠⇤
"
(q"1,1, (S, S

"

1,1)) ⇠x1,1 (q1,1, (S, S1,1))

⇠⇤
"
(q"1,2, (S, S

"

1,2)) ⇠x1,2 (q1,2, (S, S1,2))
...

⇠⇤
"
(q"1,l(u1), (S, S

"

1,l(u1))) ⇠x1,l(u1)
(q1,l(u1), (S, S1,l(u1)))

⇠⇤
"
(q"2,1, (S, S

"

2,1)).

The transitions in (T4), are analogous to those of �B, in that if a transition

((q, x, (A,B)), (q0, w)) 2 �B

then there is a transition

(((q, 1T), x, (A,B)), ((q0, 1T), w))

in (T4). Thus the chain above induces the following chain reading u1 in A

((q, 1T), (S
0
, (?))) ⇠⇤

"
((q"1,1, 1T), (S

0
, S

"

1,1)) ⇠x1,1 ((q1,1, 1T), (S
0
, S1,1))

⇠⇤
"
((q"1,2, 1T), (S

0
, S

"

1,2)) ⇠x1,2 ((q1,2, 1T), (S
0
, S1,2))

...

⇠⇤
"
((q"1,l(u1), 1T), (S

0
, S

"

1,l(u1))) ⇠x1,l(u1)
((q1,l(u1), 1T), (S

0
, S1,l(u1)))

⇠⇤
"
((q"2,1, 1T), (S

0
, S

"

2,1)).

We shall now construct the first chain of type V . The first chain of type U

ends with the configuration ((q"2,1, 1T), (S
0
, S

"

2,1)). Upon reading y1,1, there is a
transition in (T5)(a) that moves from state (q"2,1, 1T) to state (q"2,1, 1T , q(q"2,1,1T ,1))
that pushes the first letter of w1T ,y1,1 , say x1 onto the stack. Thus the chain starts

((q"2,1, 1T), (S
0
, S

"

2,1)) ⇠y1,1 ((q
"

2,1, 1T , q(q"2,1,1T ,1)), (S
0
, x1S

"

2,1)).

162

The transitions in (T5)(b) simulate reading w1T y1,1 in P
(W,1)
Fn

, and thus as the end
of applying transitions in (T5)(b), the chain continues as

((q"2,1, 1T), (S
0
, S

"

2,1)) ⇠y1,1 ((q
"

2,1, 1T , q(q"2,1,1T ,1)), (S
0
, x1S

"

2,1))

⇠⇤
"
((q"2,1, t1,1), , (S

0
, ⇢(w1T y1,1)S

"

2,1)).

Reading an input letter from XB with the state being (q"2,1, t1,1) the automaton
uses transitions in (T6), and the state and the stack do not change. Therefore the
chain above continues as

((q"2,1, 1T), (S
0
, S

"

2,1)) ⇠y1,1 ((q
"

2,1, 1T , q(q"2,1,1T ,1)), (S
0
, x1S

"

2,1))

⇠⇤
"
((q"2,1, t1,1), , (S

0
, ⇢(w1T y1,1)S

"

2,1))

⇠u
0
1,1

((q"2,1, t1,1), , (S
0
, ⇢(w1T y1,1)S

"

2,1)).

We shall now assume that we have constructed the first chain of type V up to
reading y1,iu

0
1,i. We shall now construct the part reading y1,i+1u

0
1,i+1. The last

configuration in the part of the chain reading y1,1u
0
1,1y1,2u

0
1,2 · · · y1,iu0

1,i is

((q"2,1, t1,i), (S
0
, ⇢(w1T y1,1wt1,1y1,2 · · ·wt1,i�1y1,i)S

"

2,1)).

Upon reading y1,i+1, there is a transition in (T5)(a) that moves from state (q"2,1, t1,i)
to state (q"2,1, t1,i, q(q"2,1,t1,i,1)) that processes the first letter of wt1,i,y1,i+1 , say xi+1

the same way P
(W,1)
T

if the symbol at top of its stack was the first letter of
⇢(w1T y1,1wt1,1y1,2 · · ·wt1,i�1y1,i). Therefore the chain continues

((q"2,1, 1T), (S
0
, S

"

2,1)) ⇠y1,1 ((q
"

2,1, 1T , q(q"2,1,1T ,1)), (S
0
, x1S

"

2,1))

⇠⇤
"
((q"2,1, t1,1), , (S

0
, ⇢(w1T y1,1)S

"

2,1))

⇠u
0
1,1

((q"2,1, t1,1), , (S
0
, ⇢(w1T y1,1)S

"

2,1))

...

⇠y1,i+1 ((q
"

2,1, t1,i, q(q"2,1,t1,i,1)
),

(S 0
, ⇢(w1T y1,1wt1,1y1,2 · · ·wt1,i�1y1,ixi+1)S

"

2,1)).

The transitions in (T5)(b) simulate reading wt1,i,y1,i+1 in P
(W,1)
Fn

, and thus as the

163

end of applying transitions in (T5)(b), the chain continues as

((q"2,1, 1T), (S
0
, S

"

2,1)) ⇠y1,1 ((q
"

2,1, 1T , q(q"2,1,1T ,1)), (S
0
, x1S

"

2,1))

⇠⇤
"
((q"2,1, t1,1), , (S

0
, ⇢(w1T y1,1)S

"

2,1))

⇠u
0
1,1

((q"2,1, t1,1), , (S
0
, ⇢(w1T y1,1)S

"

2,1))

...

⇠y1,i+1 ((q
"

2,1, t1,i, q(q"2,1,t1,i,1)
),

(S 0
, ⇢(w1T y1,1wt1,1y1,2 · · ·wt1,i�1y1,ixi+1)S

"

2,1))

⇠⇤
"
((q"2,1, t1,i+1), (S

0
, ⇢(w1T y1,1wt1,1y1,2 · · ·wt1,i�1y1,iwt1,i,y1,i+1)S

"

2,1)).

Reading an input letter from XB with the state being (q"2,1, t1,i+1) the automaton
uses transitions in (T6), and the state and the stack do not change. Therefore the
chain above continues as

((q"2,1, 1T), (S
0
, S

"

2,1)) ⇠y1,1 ((q
"

2,1, 1T , q(q"2,1,1T ,1)), (S
0
, x1S

"

2,1))

⇠⇤
"
((q"2,1, t1,1), , (S

0
, ⇢(w1T y1,1)S

"

2,1))

⇠u
0
1,1

((q"2,1, t1,1), , (S
0
, ⇢(w1T y1,1)S

"

2,1))

...

⇠y1,i+1 ((q
"

2,1, t1,i, q(q"2,1,t1,i,1)
),

(S 0
, ⇢(w1T y1,1wt1,1y1,2 · · ·wt1,i�1y1,ixi+1)S

"

2,1))

⇠⇤
"
((q"2,1, t1,i+1),

(S 0
, ⇢(w1T y1,1wt1,1y1,2 · · ·wt1,i�1y1,iwt1,i,y1,i+1)S

"

2,1))

⇠u
0
1,i+1

((q"2,1, t1,i+1),

(S 0
, ⇢(w1T y1,1wt1,1y1,2 · · ·wt1,i�1y1,iwt1,i,y1,i+1)S

"

2,1)).

Thus we see that the first chain of type V ends with the configuration

((q"2,1, t1,l(v1)), (S
0
, ⇢(w1T y1,1wt1,1y1,2 · · ·wt1,l(v1)�1y1,l(v1)

)S"

2,1)).

However, since y1,1y1,2 · · · y1,l(v1) =T 1T then it must be that t1,l(v1) = 1T and the

stack is empty (as seen in the proof of L(P (W,1)
T

) = WP (T,XT) in 2.3.2). Since
t1,l(v1) = 1T the automaton can now use transitions in (T4) to continue reading u2

through the second chain of type U .
We shall now assume that we have constructed the k

th chain of type U and V

for all k  i� 1.
We will first construct the i

th chain of type U . The i� 1th chain of type V

ends with the configuration

((q"
i,1, 1T), (S

0
, S

"

i,1)).

164

Recall the ith chain of type U is the one responsible for processing ui = xi,1xi,2 · · · xi,l(ui).
Examining the chain by which AB reads u1u2 · · · un we see that the part of that
chain responsible for reading xi,1xi,2 · · · xi,l(ui) is the following,

(q"
i,1, (S, S

"

i,1)) ⇠xi,1 (qi,1, (S, Si,1))

⇠⇤
"
(q"

i,2, (S, S
"

i,2)) ⇠xi,2 (qi,2, (S, Si,2))
...

⇠⇤
"
(q"

i,l(ui), (S, S
"

i,l(ui))) ⇠xi,l(ui)
(qi,l(ui), (S, Si,l(ui))).

The transitions in (T4), are analogous to those of �B, in that if a transition

((q, x, (A,B)), (q0, w)) 2 �B

then there is a transition

(((q, 1T), x, (A,B)), ((q0, 1T), w))

in (T4). Thus the chain above induces the following chain reading ui in A

((q"
i,1, 1T), (S

0
, S

"

i,1)) ⇠xi,1 ((qi,1, 1T), (S
0
, Si,1))

⇠⇤
"
((q"

i,2, 1T), (S
0
, S

"

i,2)) ⇠xi,2 ((qi,2, 1T), (S
0
, Si,2))

...

⇠⇤
"
((q"

i,l(ui), 1T), (S
0
, S

"

i,l(ui))) ⇠xi,l(ui)
((qi,l(ui), 1T), (S

0
, Si,l(ui)))

⇠⇤
"
((q"

i+1,1, 1T), (S
0
, S

"

i+1,1)).

We shall now construct the i
th chain of type V . From the above, we see that

the last configuration of the i
th chain of type U is

((q"
i+1,1, 1T), (S

0
, S

"

i+1,1)).

Recall the i
th chain of type V is the one responsible for processing

vi = yi,1u
0
i,1yi,2u

0
i,2 · · · yi,l(vi)�1u

0
i,l(vi)�1yi,l(vi).

Upon reading yi,1 there is a transition in (T5)(a) that moves from state (q"
i+1,1, 1T)

to state (q"
i+1,1, 1T , q(q"i+1,1,1T ,1)) that pushes the first letter of w1T yi,1 , say b1 onto

the pushdown stack. Thus the chain starts

((q"
i+1,1, 1T), (S

0
, S

"

i+1,1)) ⇠yi,1 ((q
"

i+1,1, 1T , q(q"i+1,1,1T ,1)), (S
0
, b1S

"

i+1,1)).

165

The transitions in (T5)(b) simulate reading w1T yi,1 in P
(W,1)
Fn

, and thus at the end
of applying transitions in (T5)(b), the chain continues as

((q"
i+1,1, 1T), (S

0
, S

"

i+1,1)) ⇠yi,1 ((q
"

i+1,1, 1T , q(q"i+1,1,1T ,1)), (S
0
, b1S

"

i+1,1))

⇠⇤
"
((q"

i+1,1, ti,1), (S
0
, ⇢(w1T yi,1)S

"

i+1,1)).

Reading an input letter from XB with the state being (q"
i+1,1, ti,1) the automaton

uses transitions in (T6), and the state and the stack do not change. Therefore the
chain above continues as

((q"
i+1,1, 1T), (S

0
, S

"

i+1,1)) ⇠yi,1 ((q
"

i+1,1, 1T , q(q"i+1,1,1T ,1)), (S
0
, b1S

"

i+1,1))

⇠⇤
"
((q"

i+1,1, ti,1), (S
0
, ⇢(w1T yi,1)S

"

i+1,1))

⇠u
0
i,1

((q"
i+1,1, ti,1), (S

0
, ⇢(w1T yi,1)S

"

i+1,1)).

We shall now assume that we have constructed the i
th chain of type V up to

reading yi,ju
0
i,j
. We shall now construct the part reading yi,j+1u

0
i,j+1. The last

configuration in the part of the chain reading yi,1u
0
i,1yi,2u

0
i,2 · · · yi,ju0

i,j
is

((q"
i+1, ti,j), (S

0
, ⇢(w1T yi,1wti,1yi,2 · · ·wti,j�1yi,j)S

"

i+1,1)).

Upon reading yi,j+1 there is a transition in (T5)(a) that moves from state
(q"

i+1, ti,j) to state (q"
i+1, ti,j, q(q"i+1,ti,j ,1)

) that processes the first letter of wti,jyi,j+1 ,

say bj+1 the same way P
(W,1)
T

would if it the symbol at the top of its stack was the
first letter of ⇢(w1T yi,1wti,1yi,2 · · ·wti,j�1yi,j). Therefore the chain continues

((q"
i+1,1, 1T), (S

0
, S

"

i+1,1)) ⇠yi,1 ((q
"

i+1,1, 1T , q(q"i+1,1,1T ,1)), (S
0
, b1S

"

i+1,1))

⇠⇤
"
((q"

i+1,1, ti,1), (S
0
, ⇢(w1T yi,1)S

"

i+1,1))

⇠u
0
i,1

((q"
i+1,1, ti,1), (S, ⇢(w1T yi,1)S

"

i+1,1))

...

⇠yi,j+1 (q
"

i+1, ti,j, q(q"i+1,ti,j ,1)
),

(S 0
, ⇢(w1T yi,1wti,1yi,2 · · ·wti,j�1yi,jbj+1S

"

i+1,1)).

The transitions in (T5)(b) simulate reading wti,jyi,j+1 , and thus as the end of ap-

166

plying transitions in (T5)(b), the chain continues as

((q"
i+1,1, 1T), (S

0
, S

"

i+1,1)) ⇠yi,1 ((q
"

i+1,1, 1T , q(q"i+1,1,1T ,1)), (S
0
, b1S

"

i+1,1))

⇠⇤
"
((q"

i+1,1, ti,1), (S
0
, ⇢(w1T yi,1)S

"

i+1,1))

⇠u
0
i,1

((q"
i+1,1, ti,1), (S

0
, ⇢(w1T yi,1)S

"

i+1,1))

...

⇠yi,j+1 ((q
"

i+1, ti,j, q(q"i+1,ti,j ,1)
),

(S 0
, ⇢(w1T yi,1wti,1yi,2 · · ·wti,j�1yi,jbj+1)S

"

i+1,1))

⇠⇤
"
((q"

i+1, ti,j),

(S 0
, ⇢(w1T yi,1wti,1yi,2 · · ·wti,j�1yi,jwti,jyi,j+1)S

"

i+1,1)).

Reading an input letter from XB with state being (q"
i+1, ti,j) the automaton uses

transitions in (T6), and the state and the stack do not change. Therefore the chain
above continues as

((q"
i+1,1, 1T), (S

0
, S

"

i+1,1)) ⇠yi,1 ((q
"

i+1,1, 1T , q(q"i+1,1,1T ,1)), (S
0
, b1S

"

i+1,1))

⇠⇤
"
((q"

i+1,1, ti,1), (S
0
, ⇢(w1T yi,1)S

"

i+1,1))

⇠u
0
i,1

((q"
i+1,1, ti,1), (S

0
, ⇢(w1T yi,1)S

"

i+1,1))

...

⇠yi,j+1 ((q
"

i+1, ti,j, q(q"i+1,ti,j ,1)
),

(S 0
, ⇢(w1T yi,1wti,1yi,2 · · ·wti,j�1yi,jbj+1)S

"

i+1,1))

⇠⇤
"
((q"

i+1, ti,j),

(S 0
, ⇢(w1T yi,1wti,1yi,2 · · ·wti,j�1yi,jwti,jyi,j+1)S

"

i+1,1))

⇠u
0
i,j+1

((q"
i+1, ti,j),

(S 0
, ⇢(w1T yi,1wti,1yi,2 · · ·wti,j�1yi,jwti,jyi,j+1)S

"

i+1,1)).

Thus we see that the i
th chain of type V ends with the configuration

((q"
i+1,1, ti,l(vi)), (S

0
, ⇢(w1T yi,1wt1,1y1,2 · · ·wti,l(vi)�1y1,l(vi)

)S"

i+1,1)).

However, since yi,1yi,2 · · · yi,l(vi) =T 1T then it must be that ti,l(vi) = 1T and the

stack is empty (as seen in the proof of L(P (W,1)
T

) = WP (T,XT) in 2.3.2). Since
ti,l(vi) = 1T the automaton can now use transitions in (T4) to continue reading
ui+1 through the i+ 1th chain of type U . ⌅

Lemma 4.5.8. Let ! = �1�2 · · · �r. The only chains by which A reads ! are those
in Lemma 4.5.6 and Lemma 4.5.7.

167

Proof. We first observe that q0 is the only initial state. Further, the only transitions
from q0 are those in (T0).

Observe the transitions in (T0)(a) move the state from q0 to q, where q 2 IT .
However, we note that IT consists of one state, in particular 1T . Further observe
that transitions from 1T are to states in QT , and any transition from a state in
QT is to a state that is also in QT . We see this from the transitions in (T1), as
they are the only transitions from states in QT . Therefore if in a chain reading !,
A first uses the transition in (T0)(a), then it must use only transitions in (T1) for
the rest of the chain. We also note that the transitions in (T1)(a) are those from
�T , but they are modified to account for A being a CSPD automaton. Therefore,
a transition from q to q

0 upon reading x 2 XT in (T1)(a) has the same e↵ect on
the pushdown stack as its analogue in �T does on the stack of AT . Thus if AT

reads y1y2 · · · ys through the chain

(1T ,?) ⇠y1 ((1T , y1),?) ⇠⇤
"
(t1, ⇢(w1T y1)?)

⇠y2 ((t1, y2), ⇢(w1T y1)?) ⇠⇤
"
(t2, ⇢(w1T y1wt1y2)?)

...

⇠yn ((tn�1, yn), ⇢(w1T y1wt1y2 · · ·wtn�2yn�1)?)

⇠⇤
"
(tn, ⇢(w1T y1wt1y2 · · ·wtn�2yn�1wtn�1yn)?),

where t0 = 1T and ti�1yi =T wti�1yiti then A reads y1y2 · · · ys through the following
chain

(q0, (S,?)) ⇠" (1T , (S,?))

⇠y1 ((1T , y1), (S,?)) ⇠⇤
"
(t1, (S, ⇢(w1T y1)?))

⇠y2 ((t1, y2), (S, ⇢(w1T y1)?))

⇠⇤
"
(t2, (S, ⇢(w1T y1wt1y2)?))

...

⇠yn ((tn�1, yn), (S, ⇢(w1T y1wt1y2 · · ·wtn�2yn�1)?))

⇠⇤
"
(tn, (S, ⇢(w1T y1wt1y2 · · ·wtn�2yn�1wtn�1yn)?)))

for a long enough choice of check-stack S. Now suppose ! = u1y1u2y2 · · · unyn,
were ui 2 X

⇤
B
. We note that the transitions in (T1)(b) read letters from XB from

a state t representing a transversal element in QT to state t, without editing the
stack. Thus, if ! is read through a chain where the first transition is from (T0)(a)

168

then the chain must be

(q0, (S,?)) ⇠" (1T , (S,?))

⇠u1 (1T , (S,?)) ⇠y1 ((1T , y1), (S,?)) ⇠⇤
"
(t1, (S, ⇢(w1T y1)?))

⇠u2 (t1, (S, ⇢(w1T y1)?)) ⇠y2 ((t1, y2), (S, ⇢(w1T y1)?))

⇠⇤
"
(t2, (S, ⇢(w1T y1wt1y2)?))

...

⇠un (tn�1, (S, ⇢(w1T y1wt1y2 · · ·wtn�2yn�1)?))

⇠yn ((tn�1, yn), (S, ⇢(w1T y1wt1y2 · · ·wtn�2yn�1)?))

⇠⇤
"
(tn, (S, ⇢(w1T y1wt1y2 · · ·wtn�2yn�1wtn�1yn)?)),

as in Lemma 4.5.6.
Now we suppose the first transition that was used was not in (T0)(a). The

only other transition from q0 is that in (T0)(b) to ql without editing the stack.
Before we continue, we see from the transitions that there is no state in QT that
can be reached by a sequence of transitions from ql. We shall suppose that the
check-stack is long enough, we will explain what the check-stack must be later.
We will denote the check-stack by S

0.
We note that the transitions in (T2) are those from ql, with (T2)(a) and (T2)(b)

being from ql to ql. As transitions in (T2)(b)1. do not add a letter z�1 on top of
z on the pushdown stack, the string written on the pushdown stack after repeated
usage of transitions in (T2)(a) and (T2)(b) is freely reduced. Suppose that string
is u. The only transitions from ql to another state are those in (T2)(c). Transitions
in (T2)(c) move the state from ql to a state t

c without editing the stack. A freely
reduced string u in �T and the transversal element t define an element of y 2 T as
every element of T can be expressed as a product of an element of the free group
which is of finite index in T and a transversal element. Thus the chain starts as

(q0, (S
0
,?)) ⇠" (ql, (S

0
,?)) ⇠⇤

"
(tc, (S 0

, u?)).

Observe the only transitions from a state with c as a superscript are those in (T3).
The "-transition in (T3)(d) is the only transition in (T3) from a state with c as
a superscript to a state without c as a superscript. We note that the transitions
in (T3)(b) and (T3)(c) are analogous to transitions of P (W,1)

T
, and thus have the

same e↵ect. Further, the only way to use (T3)(d) is for the state to be 1c
T
and

the pushdown stack being empty, and there is no other transition from 1c
T
with

the stack being empty. As the transitions in (T3)(b) and (T3)(c) simulate P
(W,1)
T

,

A reads the letters of ! and processes the letters from XT the same way P
(W,1)
T

does. That is, the automaton A moves through the same configurations (while
accounting for the check-stack and superscript c). The automaton A ignoring the

169

letters from XB as these are read using the transitions from (T3)(a), and these
transitions do not change the state or stack. This automaton processes the letters
of ! in this way until it reaches the state 1c

T
and the pushdown stack becomes

empty. Then the only transition that can be used is the one in (T3)(d). Thus
the automaton A has read the shortest prefix !0 of ! such that ut'XT (!0) =T 1T .
We note that since the only transition from 1c

T
with the stack being empty is in

(T3)(d), there cannot exist another prefix !1 of !0 such that ut'XT (!1) =T 1T
that is processed in the way !0 is processed. Otherwise there must be a transition
from 1c

T
with the stack being empty to another state with c as a superscript.

Suppose !0 = u0,1y
0
1u0,2y

0
2 · · · u0,ny

0
n
where u0,i 2 X

⇤
B

and y
0
i
2 XT . Further

set t0,0 = t, and t0,i�1y
0
i
=T wt0,i�1y

0
i
t0,i. Then by our observations in the above

paragraph, the chain must continue as

(q0, (S
0
,?)) ⇠" (ql, (S

0
,?)) ⇠⇤

"
(tc, (S 0

, u?))

⇠u0,1 (t
c
, (S 0

, u?)) ⇠y
0
1
((tc, y01)

c
, (S 0

, u?)) ⇠⇤
"
(t0,1

c
, (S 0

, ⇢(uwt0y
0
1
)?))

⇠u0,2 (t0,1
c
, (S 0

, ⇢(uwt0,0y
0
1
)?)) ⇠y

0
2
((t0,1

c
, y

0
2)

c), (S 0
, ⇢(uwt0,0y

0
1
)?))

⇠⇤
"
(t0,2

c
, (S 0

, ⇢(uwt0,0y
0
1
wt0,1y

0
2
)?))

...

⇠u0,n (t0,n�1
c
, (S 0

, ⇢(uwt0,0y
0
1
wt0,1y

0
2
· · ·wt0,n�2y

0
n�1

)?))

⇠y0n ((t0,n�1
c
, y

0
n
)c, (S 0

, ⇢(uwt0,0y
0
1
wt0,1y

0
2
· · ·wt0,n�2y

0
n�1

)?))

⇠⇤
"
(t0,n, (S

0
, ⇢(uwt0,0y

0
1
wt0,1y

0
2
· · ·wt0,n�2y

0
n�1

wt0,n�1y
0
n
)?)) = (1T

c
, (S 0

, (?)))

⇠" ((q
0
, 1T), (S

0
, (?))),

for some q
0 2 IB.

We note that the above is the initial chain as in Lemma 4.5.7.
We shall now explore how A must read the remainder of !. We can express !

as follows
! = !0u1v2u2v2 · · · unvn

where
ui = xi,1xi,2 · · · xi,l(ui) 2 X

⇤
B
,

and vi 2 (XB [XT)⇤ such that the first and last letter of vi is in XT for all
1  i  n.

Suppose the current active state is (q, t) where q 2 QB and t 2 T
0. Then

suppose the automaton processes vi. Upon reading an input letter from y 2 XT

the automaton must use a transition in (T5)(a) as these are the only transitions
that can read input letters from XT . We then observe the rest of the transitions
in (T5)(b) and (T5)(c) simulate the processing of y in P

(W,1)
T

from state t, while
treating symbols from �B as bottom of stack symbols. Further at the end of

170

simulating processing y in P
(W,1)
T

the automaton is at a state (q, t0) where ty =T

wtyt
0. We note that these transitions must be used as there are no other transitions

that can be used. From state (q, t0), if t0 6= 1T then if an input letter from XB

is read it must be read using (T6)(a) as these are the only transitions reading
letters from XB from a state in Q1 whose second coordinate is not 1T . Similarly
if t0 = 1T but the top of the pushdown stack contains a symbol from �T , and an
input letter from XB is read then it must be read using (T6)(b) as there are no
other transitions that can be used to read an input letter from XB in that case.
Therefore we ignore letters from XB except when the second coordinate of the
state is 1T and the pushdown stack does not contain a symbol from �T at the top.
That is, if (q, t) = (q, 1T) and at the end of reading vi the automaton is back at
(q, 1T) with the symbol at top of the pushdown stack not being from �T , then it

must be that 'XT (vi) =T 1T (by our construction of P (W,1)
T

). Therefore we may
assume that 'XT (vi) =T 1T for all i  n� 1 and further that there is no prefix v

0
i

of vi such that 'XT (v
0
i
) =T 1T .

Now recall that at the end of the initial chain above, the last configuration
is (q0, 1T). Further we note that upon reading an input letter from XB with the
second coordinate of the state being 1T and the top of the pushdown stack not
being a letter from �T the automaton must use transitions in (T4) as there are no
other transition reading letters in of XB in that case. We further observe that these
transitions are from �B but were modified to only change the first coordinate of the
state. Therefore, using these transitions does not change the second coordinate
of the state. So at the end of reading u1 the second coordinate of the state will
still be 1T . This, together with the previous paragraph implies the automaton
processes the ui and the vi in the following way.

1. The ui are processed using transitions in (T4), and since these transitions
come from �B we see that if A processes the non-contiguous substring
u1u2 · · · un of ! through a chain (after the initial chain) then it must be that
that chain can be induced from a chain that AB uses to read u1u2 · · · un.
Thus we can partition the chains into n parts in the following way. The i

th

part of the chain of A processes ui in the same way the ith part of the chain
of AB processes ui. This ith part of the chain of A is the ith chain of type U
in Lemma 4.5.7.

2. The vi are processed using transitions in (T5) (while ignoring letters from
XB using (T6)), thus producing a chain of type V as in the statement of
Lemma 4.5.7.

Now, as a chain reading ! is induced by a chain of AB reading u1u2 · · · un, it must
be that the string r1 on the check-stack in the chain of AB reading u1u2 · · · un is a
prefix of the string r2 on the check-stack in the chain of A reading ! that we have

171

just described. Further, as R = RBP
⇤ then r2 = r1P

m for some m � 0 such that
r2 is long enough for A to process !. ⌅

We are now ready to present the proof of Theorem 4.5.1.

Proof of Theorem 4.5.1. Let ! 2 (XB [XT)⇤, and let w be the element in W such
that w =W !. Suppose ! is read by A. Then by Lemma 4.5.8 reads ! through
the chains in Lemma 4.5.6 and Lemma 4.5.7.

Suppose ! 2 coWP (W,XB [XT). Then either the second coordinate of w is
non-trivial, or the first coordinate is non-trivial.

Suppose the second coordinate of w is non-trivial. Suppose ! = a1y1a2y2 · · · aryr
where ai 2 X

⇤
B

and yi 2 X
⇤
T
for all 1  i  r. Then the second coordinate is

y1y2 · · · yr. By Lemma 4.5.6, A reads ! through the following chain

(q0, (S,?)) ⇠" (1T , (S,?))

⇠a1 (1T , (S,?)) ⇠y1 ((1T , y1), (S,?)) ⇠⇤
"
(t1, (S, ⇢(w1T y1)?))

⇠a2 (t1, (S, ⇢(w1T y1)?)) ⇠y2 ((t1, y2), (S, ⇢(w1T y1)?))

⇠⇤
"
(t2, (S, ⇢(w1T y1wt1y2)?))

...

⇠ar (tr�1, (S, ⇢(w1T y1wt1y2 · · ·wtr�2yr�1)?))

⇠yr ((tr�1, yr), (S, ⇢(w1T y1wt1y2 · · ·wtr�2yr�1)?))

⇠⇤
"
(tr, (S, ⇢(w1T y1wt1y2 · · ·wtr�2yr�1wtr�1yr)?)))

for a long-enough choice of check-stack S. Since y1y2 · · · yr 6=T 1T , either tr 6= 1T
or ⇢(w1T y1wt1y2 · · ·wtr�2yr�1wtr�1yr) 6= " as

y1y2 · · · yr =T ⇢(w1T y1wt1y2 · · ·wtr�2yr�1wtr�1yr)tr.

If tr 6= 1T then tr 2 FT ✓ F , and thus ! is accepted. If

⇢(w1T y1wt1y2 · · ·wtr�2yr�1wtr�1yr) 6= "

while tr = 1T then there is a "-transition in AT (and thus there is analogue of it
in (T1)(a)) from 1T to 2 FT when the pushdown stack is non-empty, and thus
! is accepted.

Now suppose the first coordinate is non-trivial. Recall that the first coordinate
is a tuple. Since the first coordinate is non-trivial, then it must be non-trivial in
a certain coordinate, say h 2 T . It must be that there exists a shortest prefix
!0 (where the last letter of !0 is in XT) of ! such that 'XT (!0) =T h. We may
express h

�1 as a product of an element of Fn, say u, and a transversal element,
say t.

172

Thus we may express ! = !0u1v1u2v2 · · · unvn, where ui 2 X
⇤
B
and vi 2 (XB [

XT)⇤ such that the first and last letter of vi is in XT , for all 1  i  n. We
also suppose that 'XT (vj) =T 1T for all 1  j  n � 1. Further suppose for each
1  j  n�1, there does not exist a proper prefix v

0
j
of vj such that 'XT (v

0
j
) =T 1T .

Since the first coordinate is non-trivial, and is non-trivial at coordinate h. Then
it must be the entry in that coordinate is u1u2 · · · un. Since u1u2 · · · un 6=B 1B then
there exists a chain C by which AB reads u1u2 · · · un and the last configuration in
C is an accept configuration. By Lemma 4.5.7, we see B induces a chain reading
! as in Lemma 4.5.7. We note the state of the last configuration in the n

th chain
of type V has as its first coordinate the same state of QB as the first coordinate of
the state of the last configuration of the nth chain of type U . This first coordinate
is the state in the last configuration of the chain C. That is, this state is an accept
state of AB.

Therefore if ! 2 coWP (W,XB [XT) then ! is accepted.
Conversely, suppose !

0 2 WP (W,XG [XT) then !
0 = W1W . Therefore the

first coordinate is trivial and the second coordinate is also trivial.
Suppose !0 = b1y

0
1b2y

0
2 · · · br1y0r1 where bi 2 X

⇤
B
, and y

0
i
2 XT . The second coor-

dinate is y1y2 · · · yr1 . Since the second coordinate is trivial then y1y2 · · · yr1 =T 1T .
Thus the chain reading ! in Lemma 4.5.6 ends with the configuration (1T , (S,?))
for some long enough check-stack. However, there is no "-transition in AT from
1T with the stack being empty to an accept state of AT . Therefore using the chain
in Lemma 4.5.6, A cannot accept !0.

For the first coordinate of 1W to be trivial, it follows that the tuple consists
of the identity element of B, 1B in every coordinate. That is, regardless of what
freely reduced string and transversal element we pick (and consequently prefix
!
0
0 of !), there is no decomposition of !

0 whereby !
0 = !

0
0u1v1u2v2 · · · umvm

with u1u2 · · · um 2 coWP (B,XB), where ui and vi are as in the statement of
Lemma 4.5.7. Therefore for every chain reading u1u2 · · · um in AB, the chain ends
at a configuration whose state is not an accept state. Therefore the chain in A
induced by Lemma 4.5.7 reading !

0 also ends at a configuration whose state is not
an accept state.

Therefore if !0 2 WP (W,XB [XT) then !
0 is not accepted. ⌅

4.6 The free product Zn ⇤ Zm

In this section we shall prove the following theorem.

Theorem 4.6.1. The free product Zn ⇤ Zm is co-ET0L.

Similar to previous sections, we shall start by giving a high level intuitive
summary of how and why the automaton works. Then we present the intuitive

173

idea giving a detailed intuitive account of how the automaton works, and then
we formally define the automaton accepting the co-word problem of Zn ⇤ Zm. We
then give a proof that the automaton does indeed accept the co-word problem of
Zn⇤Zm. Finally we provide some examples to aid in understanding the automaton,
and the reader may wish to go through the examples before reading the proof. Our
construction is motivated by the construction used in proving Theorem 11 of [28].

4.6.1 Definition of Automaton

Let Zn be generated by the set {a1, a2, . . . , an}, and let Zm be generated by the set
{b1, b2, . . . , bm}. Define the setXn to be the symmetric closure of the generating set
of Zn, i.e Xn := {a±1 , a±2 , . . . , a±n }. Similarly, define the set Ym := {b±1 , b±2 , . . . , b±m}
to be the symmetric closure of the generating set of Zm.

We will also define sets X
c

n
:= {A1, A2, . . . An} and Y

c

m
:= {B1, B2, . . . , Bm}.

(Note that the elements of these sets are capitalised versions of the letters in the
generating sets of Zn and Zm, respectively. The fact they are capitalised versions
is why X

c

n
and Y

c

m
have the superscript c.)

For the purpose of the following intuitive summary, we describe how the au-
tomaton accepts a string. We first describe what a string on the check-stack looks
like. Given a string ! not representing the identity element of Zn⇤Zm, we describe
how to select a string ⌫ in the regular language associated to the automaton, such
that with ⌫ on the check-stack the automaton accepts !. Then we describe the
contents of the pushdown stack at the end of processing. We also provide a figure
to aid in understanding what is stored on the pushdown stack.

Intuitive Summary 4.6.2. We call any element of Xc

n
an A-type letter, and any

element of Y c

m
a B-type letter. The regular language associated to the check-stack

will be a subset of (Xc

n
[Y

c

m
)⇤. We shall now describe a process by which we can

obtain a string on the check-stack that will be used to show that an input string
representing a non-identity element of Zn ⇤ Zm is accepted.

Let ! = !1!2 · · ·!k be an input string with !i being syllables of !. Let
! = ⇠1⇠2 · · · ⇠t be the normal form expression for the element of Zn⇤Zm representing
!, with ⇠i being syllables of !. Further suppose t > 0 and thus ! does not represent
the identity element of Zn ⇤ Zm.

Since ! is in normal form then each syllable ⇠i is non-trivial in its respective
group. Thus there exists a generator of that group with non-zero exponent sum
in ⇠i. We denote this generator by xi, for all 1  i  t. The image of the string
x1x2 · · · xt under the extension of the following map

aj 7! Aj for all j 2 {1, 2, . . . n}
bl 7! Bl for all l 2 {1, 2, . . .m}

174

is a string over Xc

n
[Y

c

m
such that if the j

th letter belongs to X
c

n
then the j + 1th

letter belongs to Y
c

m
(and vice versa).

Let µ be the image of the string xp1
1 x

p2
2 · · · xpt

t under the map above, for suitably
large p1, p2, . . . , pt. If the first letter of µ is a B-type letter then append onto the
beginning of µ a prefix of the form A

p0
l

for some l 2 {1, 2, . . . , n} and a suitably
large p0 to form a string µ

0. Further if the last letter of µ0 is an A-type letter,
append onto the end of µ0 a su�x of the form B

pt+1

l0 for some l
0 2 {1, 2, . . . ,m}

and a suitably large pt+1 to form a string µ
00. Finally we form a final string µ

(3)

by appending a long enough su�x of the form

Ai1
s1Bj1

s
0
1Ai2

s2Bj2
s
0
2 · · ·Ail

slBjl

s
0
l ,

for some i1, i2, . . . , il 2 {1, 2, . . . , n}, j1, j2, . . . , jl 2 {1, 2, . . . ,m}, and suitably
large l, s1, s01, s2, s

0
2, . . . sl, s

0
l
. It is with µ

(3) on the check-stack, that the automaton
will recognise that ! does not represent the identity element of Zn ⇤ Zm.

Remark 4.6.3. The core of the processing will be done using the substring µ

of the check-stack, and we pick exponents to be suitably large in order to ensure
that the processing will be completed. That is, the automaton will not stop (and
thus reject) due to an insu�ciently long string on the check stack. However, µ is
extended to µ

(3) to ensure that the string is long enough to allow the processing of
all syllables of ! (regardless of whether they trivialise or not). Another reason of
extending µ to µ

(3) is to ensure that the string is in our chosen regular language,
which has strings of the form

Ai1
s1Bj1

s
0
1Ai2

s2Bj2
s
0
2 · · ·Ail

slBjl

s
0
l ,

where i1, i2, . . . , il 2 {1, 2, . . . , n}, j1, j2, . . . , jl 2 {1, 2, . . . ,m}, and
l, s1, s

0
1, s2, s

0
2, . . . sl, s

0
l
> 0. �

The automaton will use the pushdown stack to store the projection of each
syllable ⇠i onto < xi >. It does so by first using bookkeeping states and padding
symbols to search for the image of xi under the map defined above. Then the
automaton uses di↵erent bookkeeping states to freely reduce the projection of
⇠i onto ({xi} [{xi}�1)⇤. Since ! does not represent the identity of Zn ⇤ Zm,
these projections will be non-trivial and thus the stack will be non-empty. The
automaton will accept when the stack is non-empty at the end of processing which
will happen for input strings that do not represent the identity, as we have outlined.

Below we show what the stacks look like at the end of a run processing the
string ! = a1a

�1
1 a2b1b

�1
1 a

�1
2 a1b1 in Z2 ⇤ Z with A1A1B1B1B1 on the check-stack.

In the example below, we have chosen to denote our padding symbols with $ for
simplicity.

175

B1

B1

...

? ?

A1

A1

B1

check-stack

...

...

...

a1

$

?

b1

pushdown

pointer

⌥

We define a relation ./ between Xn [Ym and X
c

n
[Y

c

m
as follows.

Let a 2 {a±1 , a±2 , . . . , a±n }. Then a ./ A for all A 2 {A1, A2, . . . , An}. Further
let b 2 {b±1 , b±2 , . . . , b±m}. Then b ./ B for all B 2 {B1, B2, . . . , Bm}. Further,
suppose d 2 Xn [Ym and D 2 X

c

n
[Y

c

m
such that d ./ D. Then d = a

±
i
or d = b

±
j

for some i and j. If d = a
±
i
and D = Ai then we write d ./

0
D. Similarly if d = bj

and D = Bj then write d ./
0
D.

We shall now give an intuitive description of the automaton A accepting the
coWP (Zn ⇤ Zm

, Xn [Ym).

Intuitive Idea: The check-stack contains strings of the form

x
i1
1 y

j1
1 x

i2
2 y

j2
2 · · · xit

t
y
jt
t

where xl 2 X
c

n
and yl 2 Y

c

m
for all 1  l  t, where t � 1, and

i1, i2, . . . it, j1, j2, . . . jt � 1. The automaton works in multiple stages, and they
are as follows.

• Reading input letter stage

• Locating the correct corresponding check-stack letter stage

• Pushing input letter onto the pushdown stack stage

• Pre-check stage

• Action stage

• Clean up of the stack stage

176

• Check stage

Reading input letter stage: In this stage, the automaton simply reads an input
letter � and moves to the next stage while writing a W onto the pushdown stack,
this letter is read regardless of the contents of the check-stack and pushdown stack.

(It maybe helpful to the reader to identify W with the word “wait”, this is
because this e↵ectively what the automaton is doing every time W is at the top of
the pushdown stack. That is, the automaton must make a decision however all the
information needed to make the decision is not yet available and so it is “waiting”
and finding out more information to be able to make the decision.)

Locating the correct corresponding check-stack letter stage: Suppose
the corresponding check-stack letter to W (written onto the pushdown stack in
the previous stage) is X. The goal of this stage of the automaton is to locate the
first check-stack letter Y that is“above” X, and � ./ Y . (We use the word “above”
here, thinking of the stacks as in the diagrams of 2.2.4.1.)

If � ./ X then the automaton moves to the next stage. Otherwise, the automa-
ton locates the first Y such that � ./ Y where Y is above X on the check-stack.
First the automaton deletes W in order to view the check-stack letter Z below X.
If � ./ Z then the automaton moves to qX . (We view this as a rejection.) If � is
not ./ related to Z then the automaton writes WM onto the stack. We note that
W is now one position higher than where it was before.

(It maybe helpful to the reader to identify M with the phrase “move on”, as
if M was written the automaton must have viewed that position before via a W

and does not need to test it again.)
Now the automaton can view the check-stack letter one position above X. This

process repeats until the first Y on the check-stack such that � ./ Y is located.
The automaton then moves to the next stage.

Pushing input letter onto the pushdown stack stage: At the end of the
previous stage, we have found the first check-stack letter Y such that � ./ Y (or
moved to qX). The automaton deletes W and writes � and then moves to the next
stage.

Pre-check stage: At this stage, the top of the pushdown stack is � and the
corresponding letter on the check-stack, say Y is such that � ./ Y .

If � ./
0
Y then the automaton deletes � and moves to the action stage.

Otherwise, the automaton the automaton deletes � and moves to the clean up
of the stack stage.

Action stage: At the end of the last stage, the automaton deleted � from the
top of the pushdown stack. If the top of the pushdown stack is ��1 then we delete
it. Otherwise, we write � onto the pushdown stack.

At the end of this stage, the automaton moves to the clean up of the stack
stage.

177

Clean up of the stack stage: If at this stage the top of the pushdown stack
is M then the automaton deletes it. This repeats until the top of the pushdown
stack is not M , then the automaton moves back to the reading input letter stage.

Check stage: After reading every letter in the way we just described, after
the last letter has been read and the automaton moved back to the reading stage,
the automaton moves to this stage. Here, if the pushdown stack is non-empty the
automaton accepts the string.

We shall now give the formal definition of the automaton. We follow this with
an informal description of the states. The reader may wish to take a detour there
before reading the formal definition of A as we link the states of the automaton
to the stages discussed in the intuition above.

Formal Definition of A: We define a CSPD automaton

A := (Q,⌃,�,�, I, F,R,?, �)

accepting coWP (Zn ⇤ Zm
, Xn [Xm) as follows.

• The state set Q consists of the following states.

– The state qr.

(This is the state from which the input letters are read. This is why
this state has r as a subscipt.)

– The state qA.

(This is the accept state, and the subscript A stands for “accept”.)

– The state qX .

(This serves as a reject state.)

– For every � 2 Xn [Ym there is a state q�

– For every � 2 Xn [Ym there are states q�,l,1 and q�,l,2.

(These states locate the correct entry on the check-stack. The l in the
names of the state stand for the word “locate”.)

– For every � 2 Xn [Ym there is a state P.D.�.

(This state pushes the letter � onto the pushdown stack. P.D. stands
for pushdown.)

– There is a state Cp.

(This state checks whether the letter on the pushdown stack is ./0 related
to the corresponding letter on the check-stack. We view this as “pre-
check”. Hence the subscript p.)

178

– For every � 2 Xn [Ym there is a state A�.

(This state simulates the processing of �, we call this “acting” by �.
The letter A in the name of the state stands for the word “act”.)

– There is a state C0.

(This is referred to as the “clean-up” state.)

– There is a state C1

(This is referred to as the “check state”.)

• The input alphabet is ⌃ = Xn [Ym.

• The check-stack alphabet is � = X
c

n
[Y

c

m
.

• The pushdown stack alphabet is � = Xn [Ym [{W,M}.

• The set of initial states is I = {qr}.

• The set of final states is F = {qA}.

• The regular language R is defined to consist of all the strings of the following
form x

i1
1 y

j1
1 x

i2
2 y

j2
2 ...x

it
t y

jt
t where xl 2 X

c

n
and yl 2 Y

c

m
for all 1  l  t, where

t � 1, and i1, i2, . . . it, j1, j2, . . . jt � 1,

and finally the transition relation � consists of the following transitions.

(T0) From qr we have the following transitions. For every pair (X, Y) we have the
following transitions.

(a) For every � 2 ⌃ there is a transition

((qr, �, (X, Y)), (q�, Y));

that is, there is a transition from qr upon reading � to q� for every
pushdown stack letter Y and corresponding check-stack letter X that
does not edit the stack.

(b) There is a transition

((qr, ", (X, Y)), (C1, Y));

that is, there is an "-transition from qr to C1 without editing the stack.

(T1) For every � 2 ⌃, from q� we have the following transitions. For every pair
(X, Y) there is a transition

((q�, ", (X, Y)), (q�,l,1,WY));

that is, there is an "-transition from q� to q�,l,1 that adds W onto the push-
down stack.

179

(T2) For every � 2 ⌃, from q�,l,1 we have the following transitions. For every pair
(X,W) we have the following transitions.

(a) For every X such that � ./ X there is transition

((q�,l,1, ", (X,W)), (P.D.�,W));

that is, there is an "-transition from q�,l,1 to P.D.� without editing the
stack whenever � ./ X.

(b) For every X such that � is not ./ related X there is a transition

((q�,l,1, ", (X,W)), (q�,l,2, "));

that is, there is an "-transition from q�,l,1 to q�,l,2 deleting W whenever
� is not ./ related to X.

(T3) For every � 2 ⌃, from q�,l,2 we have the following transitions. For every pair
(X, Y) we have the following transitions.

(a) For every X such that � ./ X there is a transition

((q�,l,2, ", (X, Y)), (qX , Y));

that is, there is an "-transition from q�,l,2 to qX without editing the
stack, whenever � ./ Y .

(b) For every X such that � is not ./ related to X there is a transition

((q�,l,2, ", (X, Y)), (q�,l,1,WMY));

that is, there is an "-transition from q�,l,2 to q�,l,1 that adds WM onto
the pushdown stack whenever � is not ./ related to X.

(T4) For every � 2 ⌃, from P.D.� we have the following transitions. For all pairs
(X,W) such that � ./ X there is a transition

((P.D.�, ", (X,W)), (Cp, �));

that is, there is an "-transition from P.D.� to Cp that deletes W and writes
� instead whenever � ./ X.

(T5) From Cp we have the following transitions. For all pairs (X, �) where � ./ X

we have the following transitions.

180

(a) For every X such that � ./
0
X there is a transition

((Cp, ", (X, �)), (A�, "));

that is, there is an "-transition from Cp to A� deleting � whenever
� ./

0
X.

(b) For every X such that � is not ./0 related to X there is a transition

((Cp, ", (X, �)), (C0, "));

that is, there is an "-transition from Cp to C0 deleting � whenever � is
not ./0 related to X.

(T6) For every � 2 ⌃, from A� we have the following transitions. For everyX 2 �
we have the following transitions.

(a) There is a transition

((A�, ", (X, �
�1)), (C0, "));

that is, there is an "-transition from A� to C0 that deletes ��1 if ��1 is
at the top of the pushdown stack.

(b) For every Y 2 � \ {��1}, there is a transition

((A�, ", (X, Y)), (C0, �Y));

that is, there is an "-transition from A� to C0 that pushes � onto the
stack (i.e. the automaton writes �Y) whenever Y 6= �

�1.

(T7) From C0 we have the following transitions. For every X 2 � we have the
following transitions.

(a) There is a transition

((C0, ", (X,M)), (C0, "));

that is, there is an "-transition from C0 to C0 that deletes M if at M is
at the top of the pushdown stack.

(b) For every Y 2 (� \ {W,M}) [{?} there is a transition

((C0, ", (X, Y)), (qr, Y));

that is, there is an "-transition from C0 to qr that does not edit the
stack, whenever Y /2 {W,M}.

181

(T8) From C1 we have the following transitions.

(a) For every (X, Y) 2 �⇥ � there is a transition

((C1, ", (X, Y)), (qA, Y));

that is, there is an "-transition from C1 to qA whenever the pushdown
stack.

(b) There is a transition

((C1, ", (?,?)), (qX ,?));

that is, there is an "-transition from C1 to qX whenever the pushdown
stack is empty.

Before we prove Theorem 4.6.1 we shall give a informal description of the states
and the processes they achieve.

Description of States: As mentioned in the intuitive description of the ma-
chine, the automaton works in multiple stages. Here we shall specify what states
make up these stages.

Reading Stage: The state qr is responsible for this stage. Upon reading an
input letter � from qr the automaton moves to state q�.

Locating the correct corresponding check-stack letter stage: The
states q�,l,1 and q�,l.2 are responsible for this stage. The automaton moves from
q� to q�,l,1 while adding a W onto the stack. The automaton then uses the states
q�,l,1 and q�,l,2 in the way we described in the intuitive description until the correct
letter has been found or the string is immediately rejected. Then the automaton
moves to the following stage by moving to the state P.D.�.

Pushing input letter onto the pushdown stack stage: The state P.D.�

is responsible for this stage (for every � 2 ⌃). It deletes W and writes �. The
automaton then moves to the next stage by moving to the state Cp.

Pre-check stage: The state Cp is responsible for this stage. At the top of the
pushdown stack there is an input letter, say �, with the corresponding check-stack
letter being Y where � ./ Y .

If � ./
0
Y then it deletes � and moves to the action stage.

Otherwise, it deletes � and moves to the clean up stage.
Action stage: The state A� is responsible for this stage (for every � 2 ⌃).

If the top of the pushdown stack is not �
�1 then we simply write � onto the

pushdown stack and move to the clean up of the stack stage. Otherwise, we delete
�
�1 from the top of the stack, and move to the clean up of the stack stage.

182

Clean up of the stack stage: The state C0 is responsible for this stage. If
the top of the pushdown stack is not M then we move back to the reading stage.
Otherwise, we delete M until the top of the pushdown stack is not M .

Check stage: The state responsible for this is C1. The automaton moves from
qr to C1. From C1 there is a transition to qA if the pushdown stack is not empty.

4.6.2 Proof of Theorem 4.6.1

In this section, we shall prove the theorem. We do so by first explaining the process
by which the automaton reads a string. It will be useful to the reader to revisit
the description of the states and the intuitive description, as we shall rely on the
stages we described above.

Explanation of how a string is read: Let ! = u1v1u2v2 · · · ulvl be a string
in the generators of Zn ⇤ Zm, where ui 2 X

⇤
n
and vi 2 Y

⇤
m
. We shall describe how

A reads ! and then we shall follow that with the proof that L(A) = coWP (Zn ⇤
Zm

, Xn [Ym).
Recall Definition 2.1.14. The strings ui and vi, for all i, are syllables.
The automaton reads the syllable ui = xi,1xi,2 · · · xi,r. If ui 6= " then the

automaton proceeds to read it in the way we described in the intuitive description;
i.e., it starts by reading xi,1, and then it locates the correct corresponding check-
stack letter. It does so by pushing a W onto the pushdown stack via (T1). Now
the automaton uses the transitions in (T2) and (T3) to find the first check-stack
letter Xi such that xi,1 ./ Xi where Xi 2 X

c

n
. That is, Xi = Aj for some j 2

{1, 2, . . . , n}. Now the automaton uses (T4) to replace W by the letter xi,1 so that
Xi is the corresponding check-stack letter. If xi,1 is not ./0 related to Xi then the
automaton deletes xi,1 and removes the letter M from the top of the stack until
the top of the stack is no longer M (via a sequence of transitions in (T5)(b) and
(T7)(a)). Otherwise, the automaton uses (T5)(a) and (T6). These transitions do
the following. The automaton deletes xi,1, and if the the new top of the pushdown
stack is x

�1
i,1 then it deletes it. Otherwise it writes xi,1. That is, let u be the

maximal prefix of the pushdown stack (where the top of the pushdown stack is
the beginning of the string) such that u 2 X

⇤
n
and let y be the letter after u in

the pushdown stack such that y 2 Ym. Then after using (T5)(a) and (T6) the
prefix u is replaced by �{aj ,a�1

j }(uxi,1) on the pushdown stack. This is because the

transition (T6)(a) freely reduces the string when inverses are on top of each other
on the pushdown stack while (T6)(b) writes a generator � on top of the pushdown
stack if the top of the stack is not ��1. Further, if the top of the pushdown stack
before a letter � is read is either � or ��1 then by the stage that locates the correct
check-stack letter it must be that either there is enough letters on that part of the

183

check-stack to allow processing of � or the string is rejected in that run.
We shall assume that there is enough subsequent letters after Xi on the check-

stack that are also equal to Xi so that the entire syllable of ui gets processed.
Otherwise by (T3)(a) the string gets rejected (since we move to state qX and there
are no transitions from qX). Thus we may assume that syllables get processed
by in the same way as there is enough of the same check-stack letter on top of
each other. Therefore after reading ui, the maximal prefix on the pushdown stack
consisting of letters in Xn will be �{aj ,a�1

j }(uui).

Now suppose that vi =Zm 1Zm . By the above we may assume that there is a long
enough substring of the check-stack consisting of the letter Yi 2 {B1, B2, . . . , Bm}
after Xi for the syllable vi to be read. Let Yi = Bk for some k. Since vi =Zm

1Zm then it is trivial in every coordinate. Therefore for all p 2 {1, 2, · · · ,m},
�{bp,b�1

p }(vi) = ". In particular

�{bk,b�1
k }(vi) = ".

Therefore after reading vi the pushdown stack will be the same as it was after
reading ui. Now the automaton is ready to read ui+1. We note that if vi =Zm 1Zm

then ui and ui+1 are in the same part. We observe that not only we require the
number of letters of the string consisting of Xi (located previously) that are on
top of each other on the check-stack to be enough so that syllable ui can be read,
we also require that the number is large enough so that every syllable in the same
part can be read consecutively. Otherwise, (T3)(a) would result in the string being
rejected. Reading ui+1 will be similar to reading ui described above and at the
end of reading ui+1, the maximal prefix of the pushdown stack consisting of letters
from Xn will be �{aj ,a�1

j }(uuiui+1). We are now ready to read another syllable, and

the process will repeat.
There are no other choices that the automaton can make at any point during its

processing. Thus the way it reads a string is unique given a choice of check-stack.
We shall now prove that given a string is read in the above way the automaton

accepts exactly the co-word problem of Zn ⇤ Zm.

Proof of Theorem 4.6.1. Let ! 2 WP (Zn ⇤ Zm
, Xn [Ym). Suppose

! = u1v1u2v2 · · · utvt

where ui 2 X
⇤
n
and vi 2 Y

⇤
m
. Since ! 2 WP (Zn ⇤Zm

, Xn[Ym) either every syllable
is equal to the identity in its respective group, or not all syllables are equal to the
identity in their respective groups.

If every syllable is equal to the identity then

�{ar,a�1
r }(ui) = "

184

for every r 2 {1, 2, . . . , n} and every i 2 {1, 2, . . . , t}. Similarly,

�{bs,b�1
s }(vj) = "

for every s 2 {1, 2, . . . ,m} and every j 2 {1, 2, . . . , t}.
Therefore, for any long enough choice of check-stack where there is enough let-

ters to process every syllable the automaton will process the syllables as explained
earlier. Assuming there are enough check-stack letters to process every syllable,
upon reading every syllable the pushdown stack will be as follows. Either

• �X(u)? where u can be replaced by every syllable ui, and X = {ai1 , a�1
i1
}

where i1 is determined by the index of the corresponding check-stack letter
Ai1 . We note that Ai1 will be the first check-stack letter to appear on the
check-stack. Therefore �X(u) = " and thus the pushown stack is empty.
Alternatively, the pushdown stack will be

• �Y (v)M e? for some e > 0 where v can be replaced by every syllable vi, and
Y = {bj1 , a�1

j1
} where j1 is determined by the index of the corresponding

check-stack letter Aj1 . We note that Aj1 will be the first check-stack letter
that is not Ai1 . Therefore �X(u) = " and thus the stack will only then consist
of M e. However, the transitions in (T7)(a) will delete all occurrences of M
and then stack will be empty.

Since the pushdown stack will be empty at the end of processing !, it will not be
accepted since the transitions (T8)(a) are the only transitions to the accept state,
and they can only be used if the stack is not empty.

Now we suppose that not all syllables are trivial. Suppose ! = w1w2 · · ·wr

where wi is a syllable for every 1  i  r. Let i1 2 {1, . . . , r} be the smallest
index such that wi1 6= 1 (where 1 is the identity of the group which the letters
of wi1 belong to). Then there exists a next syllable wj 6= 1. (Otherwise w 2
coWP (Zn ⇤ Zm

,⌃).) As every wk is equal to the identity of its respective group
for where i < k < j, we see that wi and wj belong to the same part and will be
processed by the automaton as if they are one syllable. We note that otherwise
the appropriate part of the check-stack is not long enough and the string gets
rejected. That is, there exists a long enough appropriate substring of the check
stack u

l

1 where u1 is Ap or Bq (for some index p or q) such that every letter of
both wi and wj will be ./ related to u1) or the string will be rejected. If wiwj will
be processed in the same way then either wiwj is equal to the identity or not. If
wiwj is equal to the identity then we are done, since regardless of what u1 is, the
pushdown stack will not contain any string corresponding to the part of ul

1 that
was being used. Otherwise there must exist another syllable wq that will also be
in the same part. The automaton thus repeatedly finds these syllables, processing

185

them from the same part of the check-stack until the pushdown stack is empty
and thus the string is rejected. Otherwise the syllables cannot be processed in the
same way due to l being too small and thus the automaton will also reject the
string in that instance. Therefore any string in WP (Zn ⇤Zm

, Xn [Ym) never gets
accepted.

Now we suppose that !0 2 coWP (Zn ⇤Zm
, Xn[Ym). Suppose !0 = w

0
1w

0
2 · · ·w0

d

where each w
0
i
is a syllable.

First suppose that every syllable is not equal to the identity in its respective
group. As wi is not equal to the identity for every i then there exists a generator
�i for every wi such that the sum of the exponents of �i is non-zero in wi. If
wi 2 X

⇤
n
then �i 2 {a1, a2, · · · , an}, and if wi 2 Y

⇤
m

then �i 2 {b1, b2, · · · , bm}.
By repeatedly picking these generators for each syllable we induce a sequence
A

0
1B

0
1 . . . A

0
d
B

0
d
where A

0
1, . . . , A

0
d
2 {A1, . . . , An} and B

0
1, . . . B

0
d
2 {B1, . . . , Bm}.

There exist lengths l1, l2, . . . l2d such that A
0
1
l1B

0
1
l2 · · ·B0

k

l2k is a long enough se-
quence on the check-stack such that w1w2 · · ·wd can be processed with the au-
tomaton.

Let w0
i�i

be the projection of the string wi onto the free subgroup generated by

�i. Further let ⇢(w0
i�i
) be the reverse of the free reduction of w0

i�i
.

By the construction of the automaton and by our choice of check-stack, the
pushdown stack will consist of the product of all ⇢(w0

i�i
) (with strings consisting

of the letter M in between them). Since none of these images are trivial, the stack
is non-empty and the string is accepted.

Now we may suppose that there is a syllable that is equal to the identity of
its respective group. Let !̃ be the reduced form of !. Note that ! is related
to !̃ by a sequence of reductions of substrings of ! that are trivial. Further
there exists a string r 2 R such the automaton accepts !̃ with r on the check
stack by the above. Thus there exists a string r

0 2 R such that r
0 consists of

the same choices of letters of as r, but r
0 is just longer to accommodate for the

processing of !. For example if r = A1A1B2B2A4A4B1 then the indices used for
r
0 do not change, but we simply have a longer substring for each letter such as
A1A1A1A1B2B2B2A4A4A4A4B1B1B1B1 would be a valid choice for r0. (The string
may require more letters to be appended afterwards but there is a prefix of r0 where
the indices used in the letters are determined by r.)

The automaton can process w and w̃ with r
0 on the check-stack and accepts w̃.

Since the reductions of substrings that are equal to the identity result in returning
the stack to how it was before, regardless of the generator considered for the
reduction we know that the pushdown stack upon reading w will be non-empty
with r

0 on the check stack. Therefore w is accepted by the automaton. ⌅

186

4.6.3 Examples

In this section, we go through how the automaton processes two string with dif-
ferent check-stacks. We focus on Z2 ⇤Z. Let Z2 be generated by {a1, a2} and Z be
generated by {b1}. Thus the check-stack letters are {A1, A2, B1}. The two strings
we consider are

1. !1 = a
�1
2 a1a2b1a1a

�1
1 b

�1
1 , and

2. !2 = a
�1
1 a

�1
2 b

�1
1 b1a2a1.

We observe that !1 is non-trivial (since !1 =Z2⇤Z a1), while !2 is trivial.
In our descriptions below, we shall not refer to the specific states but will refer

to the stages instead. For !1, we shall show how the string is processed three
times, with three di↵erent strings on the check-stack in order to exhibit di↵erent
behaviours of the automaton.

1. Suppose the string on the check-stack is A2A2B1B1A2B1.

First the automaton goes into the reading stage, reading a
�1
2 . Then it moves

into locating the correct corresponding check-stack letter stage. Here, W
gets written onto the stack. So the pushdown stack becomes W?. The letter
now corresponding to W on the check-stack is A2, and a

�1
2 ./ A2. Thus the

automaton enters the Pushing input letter onto the pushdown stack stage.
Here W gets deleted and a

�1
2 gets written instead. Now the automaton

moves to the pre-check stage. As a�1
2 ./

0
A2, the automaton deletes the top

of the pushdown stack and moves to the action stage. Since the pushdown
stack is now empty, the action stage writes a�1

2 onto the pushdown stack. So
the pushdown stack becomes a�1

2 ?. Now the automaton moves to the clean
up of the stack stage. Since, the top of the pushdown stack is not M , the
automaton moves back to the reading stage.

After reading the first letter, the pushdown stack is a
�1
2 ?. In this reading

stage the automaton reads a1 and moves to the locating the correct corre-
sponding check-stack letter stage. Here, W gets written onto the stack. So
the pushdown stack is Wa

�1
2 ?. The letter now corresponding to W is A2.

Since a1 ./ A2, the automaton enters the pushing input letter onto the push-
down stack stage. Here W gets deleted and a1 gets written instead. The
pushdown stack is now a1a

�1
2 ?. The automaton now moves to the pre-check

stage. Since a1 is not ./0 related to A2, the automaton deletes a1 and moves
to the clean up of the stack stage. The pushdown stack is now a

�1
2 ?, and

since the top of the pushdown stack is not M the automaton moves back to
the reading stage.

187

Now the automaton reads a2. The automaton moves to locating the correct
corresponding check-stack letter stage. Here W gets written onto the push-
down stack. So the pushdown stack isWa

�1
2 ?. The letter now corresponding

to W is A2. Since a2 ./ A2, the automaton enters the pushing input letter
onto the pushdown stack stage. Here W gets deleted and a2 gets written
instead. The pushdown stack is now a2a

�1
2 ?. The automaton now moves

to the pre-check stage. Since a2 ./
0
A2, the automaton moves to the action

stage and deletes a2. So the top of the pushdown stack is a�1
2 . Therefore the

action stage, deletes the top of the pushdown stack. So the pushdown stack
is ?. Now the automaton moves to the clean up of the stack stage. Since the
top of the stack is not M , the automaton moves back to the reading stage.

Now the automaton reads b1 and moves to locating the correct correspond-
ing check-stack letter stage. Here W gets written onto the stack. So the
pushdown stack is W?. The letter now corresponding to W is A2. Since b1

is not ./ related to A2 the automaton deletes W and WM instead. Now the
pushdown stack is WM?, and the corresponding check-stack letter to W is
A2 again. Since b1 is not ./ related to A1, the automaton again deletes W

and writes WM instead. So the pushdown stack is WMM?, with the cor-
responding check-stack letter being B1. Since b1 ./ B1 the automaton enters
the pushing input letter onto the pushdown stack stage. Here W gets deleted
and b1 is written instead, so the pushdown stack is b1MM?. The automaton
now moves to the pre-check stage. Since b1 ./

0
B1 the automaton deletes b1

and moves to the action stage. The pushdown stack is now MM?, since the
top of the pushdown stack is not b�1

1 , the automaton writes b1 and moves to
the clean up of the stack stage. The pushdown stack is now b1MM?. Since
the top of the pushdown stack is not M the automaton moves back to the
reading stage.

Now the automaton reads a1 and moves to locating the correct corresponding
check-stack letter stage. Here W gets written onto the stack. So the push-
down stack is Wb1MM? with the letter on the check-stack corresponding
to W being B1. Since a1 is not ./ related to B1, the automaton deletes W
and writes WM thus the pushdown stack is WMb1MM?. Now the corre-
sponding check-stack letter is A2. Since a1 ./ A2 the automaton moves to the
pushing input letter onto pushdown stack stage. Here W gets deleted and
a1 gets written instead, and the automaton moves to the pre-check stage.
The pushdown stack is now a1Mb1MM?. Since a1 is not ./ related to A2,
the automaton deletes the top of the stack and moves to the clean up of the
stack stage. The top of the pushdown stack is now M and so the automaton
deletes it, so the pushdown stack is b1MM?. Since the top of the pushdown
stack is no longer M , the automaton moves back to the reading stage.

188

Now the automaton reads a�1
1 with the pushdown stack being b1MM?, and

it moves to locating the correct corresponding check-stack letter stage. Here
W gets written onto the stack. So the pushdown stack is Wb1MM?, with
the corresponding check-stack letter being B1. Since a1 is not ./ related to
B1, the automaton deletes W and writes WM instead. So the pushdown
stack is now WMb1MM?. The corresponding check-stack letter to W is
now A2. Since a

�1
1 ./ A2, the automaton moves to pushing input letter onto

pushdown stack stage. The automaton deletesW and writes a�1
1 instead, and

moves to the pre-check stage. The pushdown stack is a
�1
1 Mb1MM?, with

the corresponding check-stack letter being A2. Since a
�1
1 is not ./ related to

A2 the automaton deletes a�1
1 and moves to the clean up of the stack stage.

The pushdown stack is Mb1MM?. The top of the stack gets deleted, so
the pushdown stack is b1MM?. Since the top of the pushdown stack is no
longer M , the automaton moves back to the reading stage.

Now the automaton reads b�1
1 with the pushdown stack being b1MM?, and

it moves to locating the correct corresponding check-stack letter stage. Here
W gets written onto the stack. So the pushdown stack is Wb1MM?. Now
the corresponding check-stack letter is B1. Since b

�1
1 ./ B1 the automaton

moves to pushing input letter onto pushdown stack stage. The automaton
deletes W and writes b

�1
1 instead, and moves to the pre-check stage. Since

b
�1
1 ./

0
B1, the automaton deletes the top of the stack and moves to the

action stage. The pushdown stack is now b1MM?. Now since the top of the
stack is b1 the automaton deletes the top of the stack an moves to the clean
up of the stack stage. The pushdown stack is now MM?. Since the top of
the pushdown stack is M the automaton deletes it, so the pushdown stack
is now M?. Again, the top of the pushdown stack is M so the automaton
deletes it. Now the stack is ?, and the automaton returns to the reading
stage.

Now, since the automaton has read all the input letters it moves to the check
stage. Since the stack is empty, the automaton does not accept the input
string.

2. Suppose the string on the check-stack is A1B1B1A2A2B1.

First the automaton goes into the reading stage, where it reads a
�1
2 . The

automaton moves to locating the correct corresponding check-stack letter
stage where it writes W onto the pushdown stack. So the pushdown stack
becomes W?, with the corresponding check-stack letter being A1. Since
a
�1
2 ./ A1, the automaton moves to pushing input letter onto the pushdown

stack stage. Here W gets deleted and a
�1
2 gets written instead. The au-

tomaton then moves to the pre-check stage. Since a
�1
2 is not ./ related to

189

A1, the automaton deletes it and moves to the clean up of the stack stage.
The pushdown stack is empty, hence the top of the stack is not M and the
automaton moves back to the reading stage.

The automaton now reads a1. The automaton moves to locating the correct
check-stack letter stage where it writes W onto the pushdown stack. So
the pushdown stack is W?, with the corresponding check-stack letter is
A1. Since a1 ./ A1 the automaton moves to pushing input letter onto the
pushdown stack stage. Here the automaton deletes W and writes a1, and
moves to the pre-check stage. Since a1 ./0 A1, the automaton deletes a1 from
the top of the stack and moves to the action stage. Since the top of the
pushdown stack is now empty, the automaton writes a1 onto the pushdown
stack and moves to the clean up of the stack stage. The pushdown stack is
a1?, since the top of the pushdown stack is not M the automaton moves
back to the reading stage.

The automaton now reads a2 and moves to locating the correct correspond-
ing check-stack letter stage where it writes W onto the stack. The pushdown
stack is now Wa1?, where the corresponding check-stack letter is B1. How-
ever, the letter below B1 is A1, and a2 ./ A1. Thus the automaton moves to
qX rejecting the string.

3. Suppose the string on the check-stack is A1A1B1B1A2B1.

First the automaton goes into the reading stage, where it reads a
�1
2 . The

automaton then moves to locating the correct corresponding check-stack let-
ter stage. Here it writes a W onto the pushdown stack. The pushdown
stack is now W?, with the corresponding check-stack letter being A1. Since
a
�1
2 ./ A1 the automaton moves to pushing input letter onto the pushdown

stack stage. Here W gets deleted and a
�1
2 gets written on the stack instead.

Now the automaton moves to the pre-check stage. Since a�1
2 is not ./0 related

to A1, the automaton deletes it and moves to the clean up of the stack stage.
The pushdown stack is empty, in particular the top of the pushdown stack
is not M and thus the automaton moves back to the reading stage.

Now the automaton reads a1 and moves to locating the correct corresponding
check-stack letter stage. Here, W gets written onto the pushdown stack.
The pushdown stack is W? with the corresponding check-stack letter being
A1. Since a1 ./ A1 the automaton moves to pushing input letter onto the
pushdown stack stage. Here W gets deleted and a1 gets written instead.
So the pushdown stack is a1?. Now the automaton moves to the pre-check
stage. Since a1 ./

0
A1 the automaton deletes a1 from the top of the stack

and moves to the action stage. Since the top of the stack is not a
�1
1 the

automaton writes a1 and moves to the clean up of the stack stage. The top

190

of the pushdown stack is not M , and thus the automaton moves back to the
reading stage.

Now the automaton reads a2, and moves to locating the correct correspond-
ing check-stack letter stage. Here W gets written onto the pushdown stack.
The pushdown stack is Wa1?, with the corresponding check-stack letter be-
ing A1. Since a2 ./ A1 the automaton moves to pushing input letter onto the
pushdown stack stage. Here W gets deletes and a2 gets written instead. So
the pushdown stack is a2a1?. Now the automaton moves to the pre-check
stage. Since a2 is not ./ related to A1 the automaton deletes the top of the
stack and moves to the clean up of the stack stage. The top of the pushdown
stack is not M and thus the automaton moves back to the reading stage.

The automaton now reads b1, and moves to locating the correct correspond-
ing check-stack letter stage. Here W gets written onto the pushdown stack.
The pushdown stack is now Wa1? with the corresponding check-stack letter
being A1. Since b1 is not ./ related to A1 the automaton deletes W and
writes WM instead. So the pushdown stack is WMa1? with the corre-
sponding check-stack letter being B1. Since b1 ./ B1 the automaton moves
to pushing input letter onto the pushdown stack stage. Here W gets deleted
and b1 gets written instead. So the pushdown stack is b1Ma1?. Now the
automaton moves to the pre-check stage. Since b1 ./

0
B1 the automaton

deletes b1 and moves to the action stage. The top of the pushdown stack is
not b�1

1 and thus the automaton writes b1 onto the pushdown stack. So the
pushdown stack is b1Ma1?. Then the automaton moves to the clean up of
the stack stage. Since the top of the pushdown stack is not M the automaton
moves back to the reading stage.

Now the automaton reads a1, and moves to locating the correct correspond-
ing check-stack letter stage. Here W gets written onto the pushdown stack.
The pushdown stack is now Wb1Ma1?, with the corresponding check-stack
letter being B1. Since a1 is not ./ related to B1, the automaton deletes W
and writes WM instead. So the pushdown stack is WMb1Ma1?, with the
corresponding check-stack letter being A2. Since a1 ./ A2 the automaton
moves to pushing input letter onto the pushdown stack stage. Here W gets
deleted and a1 gets written instead. So the pushdown stack is a1Mb1Ma1?.
Now the automaton moves to the pre-check stage. Since a1 is not ./0 related
to A2 the automaton deletes a1 from the top of the pushdown stack and the
automaton moves to the clean up of the stack stage. The pushdown stack
is Mb1Ma1?. The automaton deletes the top of the pushdown stack, and
so the pushdown stack is b1Ma1?. Now the automaton moves back to the
reading stage.

191

Now the automaton reads a�1
1 , and moves to locating the correct correspond-

ing check-stack letter stage. Here W gets written onto the pushdown stack.
The pushdown stack is now Wb1Ma1?, with the corresponding check-stack
letter being B1. Since a

�1
1 is not ./ related to B1, the automaton deletes

W and writes WM instead. So the pushdown stack is WMb1Ma1?, with
the corresponding check-stack letter being A2. Since a

�1
1 ./ A2 the automa-

ton moves to pushing input letter onto the pushdown stack stage. Here
W gets deleted and a

�1
1 gets written instead. So the pushdown stack is

a
�1
1 Mb1Ma1?. Now the automaton moves to the pre-check stage. Since

a
�1
1 is not ./

0 related to A2 the automaton deletes a
�1
1 from the top of the

pushdown stack and the automaton moves to the clean up of the stack stage.
The pushdown stack is Mb1Ma1?. The automaton deletes the top of the
pushdown stack, and so the pushdown stack is b1Ma1?. Now the automaton
moves back to the reading stage.

Now the automaton reads b�1
1 , and the moves to locating the correct corre-

sponding check-stack letter stage. Here W gets written onto the pushdown
stack. The pushdown stack is nowWb1Ma1?, with the corresponding check-
stack letter being B1. Since b

�1
1 ./ B1 the automaton moves to pushing input

letter onto the pushdown stack stage. Here W gets deleted and b
�1
1 gets writ-

ten instead. So the pushdown stack is b�1
1 b1Ma1?, and the automaton moves

to the pre-check stage. Since b�1
1 ./

0
B1 the automaton deletes the top of the

stack and moves to the action stage. Since the top of the stack is now b1, the
automaton deletes it and moves to the clean up of the stack stage. Now the
pushdown stack is Ma1?. The automaton deletes the top of the pushdown
stack, so the pushdown stack becomes a1?. Since the top of the pushdown
stack is no longer M , the automaton moves back to the reading stage.

Now, since the automaton has read all the input letters it moves to the check
stage. Since the pushdown stack is not empty, the automaton accepts the
string.

We remark that in the first run of above we wanted to highlight that it is not
necessary for string ! 2 coWP (Zn ⇤Zm

, Xn [Xm) to be accepted in every run. In
the second run we wanted to highlight how a string can be rejected in the middle
of processing. Finally, in the third run we gave an example of how a string is
accepted.

We shall now consider !2 = a
�1
1 a

�1
2 b

�1
1 b1a2a1 when the string on the check

stack is A1A1B1B1A1B1.
First the automaton goes into the reading stage, where it reads a

�1
1 . The

automaton the moves to locating the correct corresponding check-stack letter stage.
Here it writes W onto the pushdown stack. The pushdown stack is now W?, with

192

the corresponding check-stack letter being A1. Since a
�1
1 ./ A1, the automaton

moves to pushing input letter onto the pushdown stack stage. Here W gets deleted
and a

�1
1 gets written instead. So the pushdown stack is a

�1
1 ?. The automaton

then moves to the pre-check stage. Since a
�1
1 ./

0
A1 the automaton deletes the

top of the stack and moves to the action stage. Since the top of the stack is now
?, the automaton writes a

�1
1 onto the stack and moves to the clean up of the

stack stage. Since the top of the stack is not M the automaton moves back to the
reading stage.

The automaton now reads a�1
2 and moves to locating the correct corresponding

check-stack letter stage. Here it writesW onto the pushdown stack. The pushdown
stack is now Wa

�1
1 ?, with the corresponding check-stack letter being A1. Since

a
�1
2 ./ A1, the automaton moves to pushing input letter onto the pushdown stack

stage. Here W gets deleted and a
�1
2 gets written instead. So the pushdown stack is

a
�1
2 a

�1
1 ?. The automaton then moves to the pre-check stage. Since a

�1
2 is not ./0

related to A1 the automaton deletes the top of the pushdown stack and moves to
the clean up of the stack stage. Since the top of the stack is not M the automaton
moves back to the reading stage.

The automaton now reads b�1
1 and moves to locating the correct corresponding

check-stack letter stage. Here it writesW onto the pushdown stack. The pushdown
stack is now Wa1�1? with the corresponding check-stack letter being A1. Since
b
�1
1 is not ./ related to A1, the automaton deletesW and writesWM instead. Thus
the pushdown stack is WMa

�1
1 ?. Now the corresponding check-stack letter is B1.

Since b
�1
1 ./ B1 the automaton moves to pushing input letter onto the pushdown

stack stage. Here W gets deleted and b
�1
1 gets written onto the stack instead. So

the pushdown stack is b
�1
1 Ma

�1
1 ?. Then the automaton moves to the pre-check

stage. Since b
�1
1 ./

0
B1 the automaton deletes b

�1
1 from the top of the stack and

moves to the action stage. Since the top of the stack is not b1 the automaton
writes b�1

1 and moves to the clean up of the stack stage. Now the pushdown stack
is b�1

1 Ma
�1
1 ?. Since the top of the pushdown stack is not M the automaton moves

back to the reading stage.
The automaton now reads b1 and moves to locating the correct corresponding

check-stack letter stage. Here it writesW onto the pushdown stack. The pushdown
stack is now Wb

�1
1 Ma

�1
1 ? with the corresponding check-stack letter being B1.

Since b1 ./ B1 the automaton moves to pushing the input letter onto the pushdown
stack stage. Here W gets deleted and b1 gets written onto the stack instead. So
the pushdown stack is b1b

�1
1 Ma

�1
1 ?. Then the automaton moves to the pre-check

stage. Since b1 ./
0
B1 the automaton deletes the top of the stack and move to

the action stage. Since the top of the pushdown stack now is b�1
1 the automaton

deletes the top of the pushdown stack and moves to the clean up of the stack stage.
The pushdown stack is now Ma

�1
1 ?. Since the top of the pushdown stack is M

193

the automaton deletes it. The pushdown stack is now a
�1
1 ?. Since the top of the

pushdown stack is not M , the automaton returns to the reading stage.
The automaton now reads a2 and moves to locating the correct corresponding

check-stack letter stage. Here its writes W onto the pushdown stack. The push-
down stack is now Wa

�1
1 ? with the corresponding check stack letter being A1.

Since a2 ./ A1 the automaton moves to pushing the input letter onto the push-
down stack stage. Here W gets deleted and a2 gets written onto the stack instead.
So the pushdown stack is a2a

�1
1 ?. The automaton then moves to the pre-check

stage. Since a2 is not ./0 related to A1 the automaton deletes a2 from the top of
the stack and moves to the clean up of the stack stage. The pushdown stack is
a
�1
1 ?, thus the top of the pushdown stack is not M so the automaton moves back

to the reading stage.
The automaton now reads a1 and moves to locating the correct corresponding

check-stack letter stage. Here it writesW onto the pushdown stack. The pushdown
stack is now Wa

�1
1 ? with the corresponding check-stack letter being A1. Since

a1 ./ A1 the automaton moves to pushing the input letter onto the pushdown
stack stage. Here W gets deleted and a1 gets written onto the stack instead. So
the pushdown stack is a1a

�1
1 ?. Now the automaton moves to the pre-check stage.

Since a1 ./0 A1 the automaton deletes the top of the stack. The pushdown stack is
now a

�1
1 ?. Since the top of the pushdown stack is a�1

1 the automaton deletes and
moves to the clean up of the stack stage. Since the stack is empty, the top of the
pushdown stack is not M . Therefore the automaton moves back to the reading
stage.

Now, since the automaton has read all the input letter it moves to the check
stage. Since the pushdown stack is empty, the automaton does not accept the
string.

4.7 The free product Zn ⇤G for a virtually free G

In this section we shall prove the following theorem.

Theorem 4.7.1. Let G be a virtually free group. The free product Zn ⇤ G is
co-ET0L.

Similar to the previous section, we shall start by giving a high level intuitive
summary of how and why the automaton works. Then we present the intuitive
idea giving a detailed intuitive account of how the automaton works, and then we
formally define the automaton accepting the co-word problem of Zn ⇤G. We then
give a proof that the automaton does indeed accept the co-word problem of Zn⇤G.
Our construction is motivated by the construction used in proving Theorem 11 of
[28].

194

4.7.1 Definition of Automaton

The automaton A we define in this section works in a very similar way to the one
accepting the co-word problem of Zn ⇤ Zm.

Let Zn be generated by the set {a1, a2, . . . , an}. Let Xn be the symmetric
closure of {a1, a2, . . . , an}. Let G be a virtually free group. Let Fk be the free
subgroup of finite index in G. As in 2.3.2, we shall take XFk

to be the symmetric
closure of the free generating set for Fk. Let T 0 be a right transversal for Fk in G,
and we assume that 1G 2 T

0. Let T be the symmetric closure of T 0. Observe that
Y := XFn [T is a symmetrically closed finite generating set for G. For each y 2 Y

and t 2 T , ty 2 G thus ty = ftyt
0 for some fty 2 Fk and t

0 2 T
0. As in 2.3.2 we fix

a string wty := x1x2 · · · xr 2 X
⇤
Fk

such that x1x2 · · · xr =Fk
fty.

Recall the pushdown automaton

P
(W,1)
G

= (Q(W,1)
G

, I
(W,1)
G

,⌃(W,1)
G

,�
(W,1)
G

, �
(W,1)
G

,?, F
(W,1)
G

)

defined in 2.3.2. We shall use a modified version of this automaton when we define
the automaton A accepting the co-word problem of Zn ⇤G.

We define a set Xc

n
:= {A1, A2, . . . , An} and a set {P}.

For the purpose of the following intuitive summary, we describe how the au-
tomaton accepts a string. We first describe what a string on the check-stack looks
like. Given a string ! not representing the identity element of Zn ⇤G, we describe
how to select a string ⌫ in the regular language associated to the automaton, such
that with ⌫ on the check-stack the automaton accepts !. Then we describe the
contents of the pushdown stack at the end of processing.

Intuitive Summary 4.7.2. We call any element of Xc

n
an A-type letter. The

regular language associated to the check-stack will be a subset of (Xc

n
[{P})⇤. We

shall now describe a process by which we can obtain a string on the check-stack
that will be used to show that an input string representing a non-identity element
of Zn ⇤G is accepted.

Let ! = !1!2 · · ·!k be an input string with !i being syllables of !. Let
! = ⇠1⇠2 · · · ⇠t be the normal form expression for the element of Zn⇤G representing
!, with ⇠i being syllables of !. Further suppose t > 0 and thus ! does not represent
the identity element of Zn ⇤G.

Since ! is in normal form then each ⇠i is non-trivial in its respective group. For
each ⇠i 2 Xn

⇤ there exists a generator in Xn with non-zero exponent sum in ⇠i.
We denote this generator by xi. Observe that xi is not defined for every 1  i  t.

If xi is not defined then we set xi = P . The image of the string x1x2 · · · xt under
the extension of the following map

aj 7! Aj for all j 2 {1, 2, . . . , n}
P 7! P

195

is a string over Xc

n
[{P} such that if the jth letter belongs to X

c

n
then the j + 1th

letter is P (and vice versa).
Let µ be the image of the string xp1

1 x
p2
2 · · · xpt

t under the map above, for suitably
large p1, p2, . . . , pt. If first letter of µ is P then append onto the beginning of µ a
prefix of the form A

p0
l

for some l 2 {1, 2, . . . , n} and a suitably large p0 to form a
string µ

0. Further if the last letter of µ0 is an A-type letter, append onto the end
of µ0 a su�x of the form P

pt+1 for a suitably large pt+1 to form a string µ
00. Finally

we form a final string µ
(3) by appending a long enough su�x of the form

A
s1
i1
P

s
0
1A

s2
i2
P

s
0
2 · · ·Asl

il
P

s
0
l ,

for some i1, i2, . . . , il 2 {1, 2, . . . , n} and suitably large l, s1, s
0
1, s2, s

0
2, . . . , sl, s

0
l
. It

is with µ
(3) on the check-stack, that the automaton will recognise that ! does not

represent the identity element of Zn ⇤G.

Remark 4.7.3. The core of the processing will be done using the substring µ

of the check-stack, and we pick exponents to be suitably large in order to ensure
that the processing will be completed. That is; the automaton will not stop (and
thus reject) due to an insu�ciently long string on the check-stack. However, µ is
extended to µ

(3) to ensure that the string is long enough to allow the processing of
all syllables of ! (regardless of whether they trivialise or not). Another reason of
extending µ to µ

(3) is to ensure that the string is in our chosen regular language,
which has strings of the form

A
s1
i1
P

s
0
1A

s2
i2
P

s
0
2 · · ·Asl

il
P

s
0
l ,

where i1, i2, . . . , il 2 {1, 2, . . . , n} and l, s1, s
0
1, s2, s

0
2, . . . sl, s

0
l
> 0. �

The automaton will use the pushdown stack to store the product of the projec-
tions of each syllable ⇠i onto < xi > if ⇠ 2 X

⇤
n
, and what is written onto the stack

of P (W,1)
G

upon reading ⇠i if ⇠i 2 Y
⇤. It does so by first using bookkeeping states

and padding symbols to search for the image of xi under the map above. Then
the automaton uses di↵erent bookkeeping states to freely reduce the projection of
⇠i onto ({xi} [{x�1

i
})⇤ if ⇠i 2 X

⇤
n
. However, if ⇠i 2 Y

⇤ then the automaton simu-

lates P (W,1)
G

by using bookkeeping states and recording the state of P (W,1)
G

reached
at the end of reading ⇠i onto the stack. Since that state is always recorded, the
automaton will always be able to continue processing from the same place if the
next syllable of ! it reads is trivial in its respective group. The automaton will
accept when the stack is non-empty at the end of processing. Thereby, accepting
strings that do not represent the identity as we have outlined. ⌥

We define a relation ./ between Xn [(Y [T
0) and X

c

n
[{P} as follows.

196

Let a 2 {a±1 , a±2 , . . . , a±n }. Then a ./ A for all A 2 {A1, A2, . . . , An}. Further
let b 2 Y [T

0. Then b ./ P . Further, suppose d 2 Xn[(Y [T
0) and D 2 X

c

n
[{P}

such that d ./ D. Then d = a
±
i
for some i 2 {1, 2, . . . , n}, or d 2 Y [T

0. If d = a
±
i

and D = Ai then we write d ./
0
D. Similarly if d 2 Y [T

0 and D = P then write
d ./

0
D.

We shall now give an intuitive description of the automaton A accepting the
coWP (Zn ⇤G,Xn [Y).

Intuitive Idea: The check-stack contains a string of the form

x
i1
1 P

j1x
i2
2 P

j2 · · · xit
t
P

jt

where xl 2 X
c

n
for all 1  l  t, where t � 1, and i1, i2, . . . it, j1, j2, . . . jt � 1. The

automaton works in multiple stages, and they are as follows.

• Reading input letter stage

• Locating the correct corresponding check-stack letter stage

• Pushing input letter onto the pushdown stack stage for input letters from
Zn/Moving to the appropriate state stage for input letters from G

• Pre-check stage

• Action stage

• Clean up of the stack stage

• Check stage

Reading input letter stage: In this stage, the automaton simply reads an input
letter � and moves to the next stage while writing a W onto the pushdown stack,
this letter is read regardless of the contents of the check-stack and pushdown stack.

(It maybe helpful to the reader to identify W with the word “wait”, this is
because this e↵ectively what the automaton is doing every time W is at the top of
the pushdown stack. That is, the automaton must make a decision however all the
information needed to make the decision is not yet available and so it is “waiting”
and finding out more information to be able to make the decision.)

Locating the correct corresponding check-stack letter stage: Suppose
the corresponding check-stack letter to W (written onto the pushdown stack in the
previous stage) is X. The goal of this stage of the automaton is to locate the first
check-stack letter Y1 that is“above” X, and � ./ Y1. (We use the word “above”
here, thinking of the stacks as in the diagrams of 2.2.4.1.)

197

If � ./ X then the automaton moves to the next stage. Otherwise, the automa-
ton locates the first Y1 such that � ./ Y1 where Y1 is above X on the check-stack.
First the automaton deletes W in order to view the check-stack letter Z below X.
If � ./ Z then the automaton moves to qX . (We view this as a rejection.) If � is
not ./ related to Z then the automaton writes WM onto the stack. We note that
W is now one position higher than where it was before.

(It maybe helpful to the reader to identify M with the phrase “move on”, as
if M was written the automaton must have viewed that position before via a W

and does not need to test it again.)
Now the automaton can view the check-stack letter one position above X. This

process repeats until the first Y1 on the check-stack such that � ./ Y1 is located.
The automaton then moves to the next stage.

Pushing input letter onto the pushdown stack stage for input letters
from Zn/Moving to the appropriate state stage for input letters from G:

At the end of the previous stage, we have found the first check-stack letter Y1

such that � ./ Y1 (or moved to qX).
The automaton deletes W and writes � if � 2 Xn and then moves to the

pre-check stage
If � 2 Y then the automaton deletes W moves to an intermediate state labelled

by � (which we call W�) revealing a letter representing a transversal element t at
the top of the stack (if there is one), which we delete and move to state (t, �).
If there is no transversal element t, then we simply move to (1G, �). Then the
automaton moves to the action stage.

Pre-check stage: At this stage, the top of the pushdown stack is �, if � 2 Xn

and the corresponding letter on the check-stack, say Y1 is such that � ./ Y1. We
assume that � 2 Xn, as we do not enter this stage if � 2 Y .

If � ./
0
Y then the automaton deletes � and moves to the action stage. (We

delete � as we wish to view the symbol underneath it on the pushdown stack. This
is crucial to be able to act correctly. Since if the symbol underneath is ��1 then
a free reduction would result in deleting �

�1. Otherwise, we need to write � onto
the pushdown stack.)

Otherwise, the automaton deletes � and moves to the clean up of the stack
stage.

Action stage: At the end of the last stage, the automaton deleted � from the
top of the pushdown stack, if � 2 Xn. In that case, if the top of the pushdown
stack is �

�1 then we delete it. Otherwise, we write � onto the pushdown stack.
Then automaton moves to clean up of the stack stage.

If � 2 Y , the state is (t, �) for some t 2 T
0 (as seen in moving to the ap-

propriate state stage). The automaton now simulates the sequence of transitions

the automaton P
(W,1)
G

uses from state (t, �) until it reaches a state representing

198

a transversal element, say t
0. However, between each transition simulating the

aforementioned transitions in P
(W,1)
G

the automaton goes into a mini-check stage.
This stage simply checks that the next letter on the check-stack is P . If at any
point the next letter on the check-stack is not P , the automaton moves to state qX .
Otherwise, the automaton finishes simulating the transitions in P

(W,1)
G

(which in
turn simulate reading wt� in the automaton for Fk) ending at a state t0 represent-
ing the transversal element t0 where t� =G wt�t

0. If t0 = 1G, then the automaton
does another mini-check. If there is a letter at the top of the pushdown stack from
the stack alphabet �G of P (W,1)

G
then the automaton writes 1G onto the top of the

pushdown stack and moves back to the reading stage. If there is no letter at the
top of the pushdown stack from the stack alphabet �G of P (W,1)

G
and t

0 = 1G then
the automaton moves to the clean up of the stack stage. If t0 6= 1G then write t

0

onto the pushdown stack and moves to the reading stage.
Clean up of the stack stage: If at this stage the top of the pushdown stack

is M then the automaton deletes it. This repeats until the top of the pushdown
stack is not M , then the automaton moves back to the reading input letter stage.

Check stage: After the last letter has been read and the automaton moved
back to the reading stage, the automaton moves to this stage. Here, if the push-
down stack is non-empty the automaton accepts the string.

We shall now give the formal definition of the automaton. We follow this with
an informal description of the states. The reader may wish to take a detour there
before reading the formal definition of A as we link the states of the automaton
to the stages discussed in the intuition above.

Formal Definition of A: Before we define the automaton A accepting the co-
word problem of Zn ⇤ G we ask the reader to recall the states and transitions of
P

(W,1)
G

(as in 2.3.2) as we shall use them below.
We define a CSPD automaton

A := (Q,⌃,�,�, I, F,R,?, �)

accepting coWP (Zn ⇤G,Xn [Y) as follows.

• The state set Q consists of the following states.

– The state qr.

(This is the state from which the input letters are read. This is why
this state has r as a subscript.)

– The state qA.

(This is the accept state, and the subscript A stands for “accept”.)

199

– The state qX .

(This serves as a reject state.)

– For every � 2 Xn [Y there is a state q�.

– For every � 2 Xn [Y there are states q�,l,1 and q�,l,2.

(These states locate the correct entry on the check-stack. The l in the
names of the states stand for the word “locate”.)

– For every � 2 Xn there is a state P.D.�.

(This state pushes the letter � onto the pushdown stack. P.D. stands
for pushdown.)

– For every � 2 Y there is a state W�.

(The W in W� stands for “wait”.)

– For every t 2 T
0, there is a state representing t, which we call by the

same name.

– For every t 2 T
0 and every y 2 Y we have a state (ts, y).

– For every state q(t,y,i) 2 Q
(W,1)
G

we have a state q(ts,y,i).

– For every state q(ts,y,i) defined above, we have two states state q
(c,1)
(ts,y,i)

and q
(c,2)
(t,y,i). There is also a state 1c

G
.

(The states q(c,1)(ts,y,i)
and q

(c,2)
(t,y,i) serves to check whether the next letter on

the check-stack is P . The state 1c
G
whether there is a letter from �

(W,1)
G

under the 1G on the stack. The superscript c stands for “check”.)

– There is a stack Cp.

(This state checks whether the letter at the top the pushdown stack is
./

0 related to the corresponding letter on the check-stack, if the letter at
the top of the pushdown stack is in Xn. We view this as a “pre-check”.
Hence the subscript p.)

– For every � 2 Xn there is a state A�.

(This state simulates the procesing of �, we call this “acting” by �. The
letter A in the name of the state stands for the word “act”.)

– There is a state C0.

(This is referred to as the “clean-up” state.)

– There is a state C1.

(This is referred to as the “check state”.)

• The input alphabet is ⌃ = Xn [Y .

200

• The check-stack alphabet is � = X
c

n
[{P}.

• The pushdown stack alphabet is � = Xn [�
P

(W,1)
G

[T
0 [{W,M}.

• The set of initial states is I = {qr}.

• The set of final states is F = {qA}.

• The regular language R is defined to consist of all the strings of the following
form x

i1
1 P

j1x
i2
2 P

j2 · · · xit
t P

jt where xl 2 X
c

n
for all 1  l  t, where t � 1,

and i1, i2, . . . it, j1, j2, . . . jt � 1,

and finally the transition relation � consists of the following transitions.

(T0) From qr we have the following transitions. For every pair (X, Y1) we have
the following transitions.

(a) For every � 2 ⌃ there is a transition

((qr, �, (X, Y1)), (q�, Y1));

that is, there is a transition from qr upon reading � to q� for every
pushdown stack letter Y1 and corresponding check-stack letter X that
does not edit the stack.

(b) There is a transition

((qr, ", (X, Y1)), (C1, Y1));

that is, there is an "-transition from qr to C1 without editing the stack.

(T1) For every � 2 ⌃, from q� we have the following transitions. For every pair
(X, Y1) there is a transition

((q�, ", (X, Y1)), (q�,l,1,WY1));

that is, there is an "-transition from q� to q�,l,1 that adds W onto the push-
down stack.

(T2)(a) For every � 2 Xn, from q�,l,1 we have the following transitions. For every
pair (X,W) we have the following transitions.

(i) For every X such that � ./ X there is transition

((q�,l,1, ", (X,W)), (P.D.�,W));

that is, there is an "-transition from q�,l,1 to P.D.� without editing the
stack whenever � ./ X.

201

(ii) For every X such that � is not ./ related X there is a transition

((q�,l,1, ", (X,W)), (q�,l,2, "));

that is, there is an "-transition from q�,l,1 to q�,l,2 deleting W whenever
� is not ./ related to X.

(T2)(b) For every � 2 Y , from q�,l,1 we have the following transitions. For every pair
(X,W) we have the following transitions:

(i) For every X such that � ./ X there is transition

((q�,l,1, ", (X,W)), (W�, "));

that is, there is an "-transition from q�,l,1 to W� deleting W from the
top of the stack whenever � ./ X

(ii) For every X such that � is not ./ related X there is a transition

((q�,l,1, ", (X,W)), (q�,l,2, "));

that is, there is an "-transition from q�,l,1 to q�,l,2 deleting W whenever
� is not ./ related to X..

(T3) For every � 2 ⌃, from q�,l,2 we have the following transitions. For every pair
(X, Y1) we have the following transitions.

(a) For every X such that � ./ X there is a transition

((q�,l,2, ", (X, Y1)), (qX , Y1));

that is, there is an "-transition from q�,l,2 to qX without editing the
stack, whenever � ./ Y1.

(b) For every X such that � is not ./ related to X there is a transition

((q�,l,2, ", (X, Y1)), (q�,l,1,WMY1));

that is, there is an "-transition from q�,l,2 to q�,l,1 that adds WM onto
the pushdown stack whenever � is not ./ related to X.

(T4)(a) For every � 2 Xn, from P.D.� we have the following transitions. For all pairs
(X,W) such that � ./ X there is a transition

((P.D.�, ", (X,W)), (Cp, �));

that is, there is an "-transition from P.D.� to Cp that deletes W and writes
� instead whenever � ./ X.

202

(T4)(b) For every � 2 Y , from W� we have the following transitions.

(i) For all pairs (X, t) where t 2 T
0 there is a transition

((W�, ", (X, t)), ((t, �), "));

i.e., there is an "-transition from W� deleting t 2 T
0 from the top of the

stack and moving to state (t, y).

(ii) For all pairs (X, Y1) where Y1 /2 �
(W,1)
G

there is a transition

((W�, ", (X, Y1), ((1G, �), Y1));

i.e., there is an "-transition from W� to (1G, �) that does not edit the
stack.

(T5) From Cp we have the following transitions. For all pairs (X, �) where � ./ X

and � 2 Xn we have the following transitions.

(a) For every X such that � ./
0
X there is a transition

((Cp, ", (X, �)), (A�, "));

that is, there is an "-transition from Cp to A� deleting � whenever
� ./

0
X.

(b) For every X such that � is not ./0 related to X there is a transition

((Cp, ", (X, �)), (C0, "));

that is, there is an "-transition from Cp to C0 deleting � whenever � is
not ./0 related to X.

(T6) For every � 2 Xn, from A� we have the following transitions. For every
X 2 � we have the following transitions.

(a) There is a transition

((A�, ", (X, �
�1)), (C0, "));

that is, there is an "-transition from A� to C0 that deletes ��1 if ��1 is
at the top of the pushdown stack.

(b) For every Y1 2 � \ {��1}, there is a transition

((A�, ", (X, Y1)), (C0, �Y1));

that is, there is an "-transition from A� to C0 that pushes � onto the
stack (i.e., the automaton writes �Y1) whenever Y1 6= �

�1.

203

(T7) Let t 2 T and y 2 Y . Further let wty = z1z2 · · · zr and ty =G wtyt1.

(T7)(a) (i) For every pair (X, Y1), there is a transition

(((t, y), ", (X, Y1)), (q
(c,1)
(t,y,1),WY1)),

that is there is an "-transition from (t, y) to q
(c,1)
(t,y,1) that pushes W onto

the stack.

(ii) For every pair (X,W) such that y is not ./ related to X there is a
transition

((q(c,1)(t,y,1), ", (X,W)), (qX ,W));

that is, there is an "-transition from the state q
(c,1)
(t,y,1) to qX without

editing the stack when y is not ./ related to X.

(iii) For every (X,W) such that y ./ X there is a transition

((q(c,1)
t,y,1 , ", (X,W)), (q(c,2)(t,y,1), "));

that is there is a "-transition from q
(c,1)
(t,y,1) to q

(c,2)
(t,y,1) deleting W whenever

W is at the top of the stack and with corresponding check-stack letter
X where y ./ X.

(iv) For every pair (X, Y1) such that Y1 2 �
(W,1)
G

there is a transition

((q(c,2)(t,y,1), ", (X, Y1)), (q(t,y,1), P
(W,1)
Fk

(i0, z1, Y1)))

where P
(W,1)
Fk

(i0, z1, Y1) denotes the unique string such that

((i0, z1, Y1), (i0, P
(W,1)
Fk

(i0, z1, Y1))) 2 �
(W,1)
Fk

;

that is, there is an "-transition from q
(c,2)
(t,y,1) to q(t,y,1) with Y1 at the top of

the pushdown stack, with X being the corresponding check-stack letter
writing the string that P (W,1)

Fk
writes if it read z1 with Y1 at the top of

its stack.

(v) For every pair (X, Y1) such that Y1 2 Xn [{M,?} there is a transition

((q(c,2)(t,y,1), ", (X, Y1)), (q(t,y,1), (P
(W,1)
Fk

(i0, z1,?)�?)Y1))

where (P (W,1)
Fk

(i0, z1,?)�?)Y1 denotes the concatenation of

P
(W,1)
Fk

(i0, z1,?)�?

204

and Y1, where P
(W,1)
Fk

(i0, z1,?) denotes the unique string such that

((i0, z1,?), (i0, P
(W,1)
Fk

(i0, z1,?))) 2 �
(W,1)
Fn

;

that is, there is an "-transition from q
(c,2)
(t,y,1) to q(t,y,1) with Y1 at the top

of the pushdown stack with the corresponding check-stack letter being
X writing what P (W,1)

Fk
writes if it read z1 with Y1 at the top of its stack

(treating Y1 as a bottom of stack symbol).

(T7)(b) For every in i 2 {1, . . . , r � 1} we have the following transitions.

(i) For every pair (X, Y1), there is a transition

((q(t,y,i), ", (X, Y1)), (q
(c,1)
(t,y,i),WY1)),

that is there is an "-transition from q(t,y,i) to q
(c,1)
(t,y,i) that pushes W onto

the stack.

(ii) For every pair (X,W) such that y is not ./ related to X there is a
transition

((q(c,1)(t,y,i), ", (X,W)), (qX ,W));

that is, there is an "-transition from the state q
(c,1)
(t,y,i) to qX without

editing the stack when y is not ./ related to X.

(iii) For every (X,W) such that y ./ X there is a transition

((q(c,1)(t,y,i), ", (X,W)), (q(c,2)(t,y,i), "));

that is there is a "-transition from q
(c,1)
(t,y,i) to q

(c,2)
(t,y,i) deleting W whenever

W is at the top of the stack and with corresponding check-stack letter
X where y ./ X.

(iv) For every pair (X, Y1) such that Y1 2 �
(W,1)
G

there is a transition

((q(c,2)(t,y,i), ", (X, Y1)), (q(t,y,i+1), P
(W,1)
Fk

(i0, zi+1, Y1)))

where P
(W,1)
Fk

(i0, zi+1, Y1) denotes the unique string such that

((i0, zi+1, Y1), (i0, P
(W,1)
Fk

(i0, zi+1, Y1))) 2 �
(W,1)
Fk

;

that is, there is an "-transition from q
(c,2)
(t,y,i) to q(t,y,i+1) with Y1 at the

top of the pushdown stack, with X being the corresponding check-stack
letter writing the string that P (W,1)

Fk
writes if it read zi+1 with Y1 at the

top of its stack.

205

(v) For every pair (X, Y1) such that Y1 2 Xn [{M,?} there is a transition

((q(c,2)(t,y,i), ", (X, Y1)), (q(t,y,i+1), (P
(W,1)
Fk

(i0, zi+1,?)�?)Y1))

where (P (W,1)
Fk

(i0, zi+1,?)�?)Y1 denotes the concatenation of

P
(W,1)
Fk

(i0, zi+1,?)�?

and Y1, where P
(W,1)
Fk

(i0, zi+1,?) denotes the unique string such that

((i0, zi+1,?), (i0, P
(W,1)
Fk

(i0, zi+1,?))) 2 �
(W,1)
Fn

;

that is, there is an "-transition from q
(c,2)
(t,y,i) to q(t,y,i+1) with Y1 at the top

of the pushdown stack with the corresponding check-stack letter being
X writing what P

(W,1)
Fk

writes if it read zi+1 with Y1 at the top of its
stack (treating Y1 as a bottom of stack symbol).

(T7)(c)

(i) For every pair (X, Y1), there is a transition

((q(t,y,r), ", (X, Y1)), (q
(c,1)
(t,y,r),WY1));

that is, there is an "-transition from q(t,y,r) to q
(c,1)
(t,y,r) that pushes W onto

the stack.

(ii) For every pair (X,W) such that y is not ./ related to X there is a
transition

((q(c,1)(t,y,r), ", (X,W)), (qX ,W));

that is, there is an "-transition from the state q
(c,1)
(t,y,r) to qX without

editing the stack when y is not ./ related to X.

(iii) For every (X,W) such that y ./ X there is a transition

((q(c,1)t,y,r , ", (X,W)), (q(c,2)(t,y,r), "));

that is, there is a "-transition from q
(c,1)
(t,y,r) to q

(c,2)
(t,y,r) deleting W whenever

W is at the top of the stack and with corresponding check-stack letter
X where y ./ X.

(iv) For every pair (X, Y1) such that Y1 2 �
(W,1)
G

there is a transition

((q(c,2)(t,y,r), ", (X, Y1)), (t1, t1Y1));

that is, there is an "-transition from q
(c,2)
(t,y,r) to t1 with Y1 at the top of

the pushdown stack, with X being the corresponding check-stack letter
writing t1 onto the pushdown stack.

206

(v) For every pair (X, Y1) such that Y1 2 Xn [{M,?} there is a transition

((q(c,2)(t,y,r), ", (X, Y1)), (t1, t1Y1));

that is, there is an "-transition from q
(c,2)
(t,y,r) to t1 with Y1 at the top of

the pushdown stack with the corresponding check-stack letter being X

writing t1 onto the pushdown stack.

(T7)(d)

(i) From the state 1G, for every pair (X, 1G) there is a transition

((1G, ", (X, 1G)), (1
c

G
, "));

that is, there is an "-transition from 1G to 1c
G
that deletes the 1G from

the top of the pushdown stack.

(ii) From the state 1c
G
, for every pair (X, Y1) such that Y1 2 �

(W,1)
G

there is
a transition

((1c
G
, ", (X, Y1)), (qr, 1GY1));

that is, there is an "-transition from 1c
G

to qr pushing 1G onto the
pushdown stack whenever the top of the pushdown stack is an element
of �(W,1)

G
.

(iii) From the state 1c
G
, for every pair (X, Y1) such that Y1 /2 �

(W,1)
G

there is
a transition

((1c
G
, ", (X, Y1)), (C0, Y1));

that is, there is an "-transition from the state 1c
G
to C0 without editing

the stack whenever the top of the pushdown stack is not an element of
�
(W,1)
G

.

(T8) From C0 we have the following transitions. For every X 2 � we have the
following transitions.

(a) There is a transition

((C0, ", (X,M)), (C0, "));

that is, there is an "-transition from C0 to C0 that deletes M if at M is
at the top of the pushdown stack.

(b) For every Y1 2 (� \ {W,M}) [{?} there is a transition

((C0, ", (X, Y1)), (qr, Y1));

that is, there is an "-transition from C0 to qr that does not edit the
stack, whenever Y1 /2 {W,M}.

207

(T9) From C1 we have the following transitions.

(a) For every (X, Y1) 2 �⇥ � there is a transition

((C1, ", (X, Y1)), (qA, Y1));

that is, there is an "-transition from C1 to qA whenever the pushdown
stack.

(b) There is a transition

((C1, ", (?,?)), (qX ,?));

that is, there is an "-transition from C1 to qX whenever the pushdown
stack is empty.

Before we prove Theorem 4.7.1 we shall give a informal description of the states
and the processes they achieve.

Description of States: As mentioned in the intuitive description of the ma-
chine, the automaton works in multiple stages. Here we shall specify what states
make up these stages.

Reading Stage: The state qr is responsible for this stage. Upon reading an
input letter � from qr the automaton moves to state q�.

Locating the correct corresponding check-stack letter stage: The
states q�,l,1 and q�,l.2 are responsible for this stage. The automaton moves from
q� to q�,l,1 while adding a W onto the stack. The automaton then uses the states
q�,l,1 and q�,l,2 in the way we described in the intuitive description until the correct
letter has been found or the string is immediately rejected. Then the automaton
moves to the following stage by moving to the state P.D.� if � 2 Xn and W� if
� 2 Y .

Pushing input letter onto the pushdown stack stage for input letters
from Zn/Moving to the appropriate state stage for input letters from G:
The state P.D.� is responsible for this stage (for every � 2 Xn). It deletes W and
writes �. The automaton then moves to the next stage by moving to the state Cp.

For every � 2 Y , before moving to W� the automaton deletes W . From W�

if the top of the stack is t (for some t 2 T
0 then the automaton moves to state

(t, �). If there is no transversal element t, then we simply move to (1G, �). Then
the automaton moves to the action stage.

Pre-check stage: The state Cp is responsible for this stage. At the top
of the pushdown stack there is an input letter from Xn, say � 2 Xn, with the
corresponding check-stack letter being Y1 where � ./ Y1.

If � ./
0
Y1 then it deletes � and moves to the action stage.

208

Otherwise, it deletes � and moves to the clean up stage.
Action stage: For every � 2 Xn the state A� is responsible for this stage.

If the top of the pushdown stack is not �
�1 then we simply write � onto the

pushdown stack and move to the clean up of the stack stage. Otherwise, we delete
�
�1 from the top of the stack, and move to the clean up of the stack stage.
For every � 2 Y , the states that are responsible for this stage are q(t,y,i) for

every 1  i  |wty|. The states q(c,1)(t,y,i) and q
(c,2)
(t,y,i) are responsible for the mini-check

stages, where the automaton checks that the next letter on the check-stack is P .
The transitions simulated are those of P (W,1)

G
, and so at the end of reading y the

pushdown stack of the automaton will be the same as the pushdown stack of P (W,1)
G

if y was read from t. Then the automaton writes the transversal element t1 onto
the pushdown stack where ty =G wtyt1. After that, the automaton makes sure

there are some letters from �
(W,1)
G

if t1 = 1G using state 1c
G
. Then the automaton

moves to the reading stage if the later holds, or t1 6= 1G. Otherwise, it moves to
the clean up of the stack stage.

Clean up of the stack stage: The state C0 is responsible for this stage. If
the top of the pushdown stack is not M then we move back to the reading stage.
Otherwise, we delete M until the top of the pushdown stack is not M .

Check stage: The state responsible for this is C1. The automaton moves
from qr to C1, and from C1 there is a transition to qA if the pushdown stack is not
empty.

4.7.2 Proof of Theorem 4.7.1

In this section, we shall prove the theorem. We do so by first explaining the process
by which the automaton reads a string. It will be useful to the reader to revisit
the description of the states and the intuitive description, as we shall rely on the
stages we described above.

Explanation of how a string is read: Let ! = w1w2 · · ·wt be a string in the
generators of Zn ⇤G, where wi are syllables. We shall describe how A reads ! and
then we shall follow that with the proof that L(A) = coWP (Zn ⇤G,Xn [Y).

Recall that the automaton accepting the co-word problem of Zn ⇤ Zm treated
letters on the pushdown stack that were not from Xn as bottom of stack symbols
when processing a syllable belonging to Zn. The automaton A here, treats letters
on the pushdown stack not from Xn as bottom of stack symbols when processing a
syllable belonging to Zn as well. Similarly the automaton A here, treats symbols
on the pushdown stack that are not from �

(W,1)
G

[T
0 as bottom of stack symbols

when processing a syllable from G.

209

The automaton reads a syllable wi 2 X
⇤
n
in exactly the same way the automaton

accepting the co-word problem of Zn ⇤Zm does. (Since the transitions concerning
the generatorsXn are the same.) Therefore, we may assume that during processing
there are enough subsequent letters on the check-stack allowing the entire syllable
to processed in the same way, as we did in 4.6.2. Further, as in 4.6.2 upon reading
a wi, if the appropriate check-stack letter is Aj, then the automaton will freely
reduce the projection wi onto the free subgroup generated by aj. Let that free
reduction be u Hence the top of the stack will consist of the free reduction of u
and the maximal prefix of the pushdown stack with letters in Xn. This is exactly
the same as it was in 4.6.2.

Now suppose the syllable read is wj 2 Y
⇤. If wj 6= " then the automaton

proceeds to read it in the way we described in the intuitive description. That is, it
reads it letter by letter where upon a letter x it moves to state qx. Then it locates
the correct corresponding check-stack letter. It does so by pushing a W onto the
pushdown stack via (T1). Now the automaton uses the transitions in (T2)(b)(ii)
and (T3) to find the first check-stack letter P such that x ./ P . Upon doing
so, W is deleted from the top of the pushdown stack and moving to state Wx by
(T2)(b)(i). Now the automaton views the letter at the top of the pushdown stack.
If that letter is t where t represents a transversal element. Then the automaton
moves to state (t, x) while deleting t by (T4)(b)(i). Otherwise, the automaton
uses (T4)(b)(ii) moving to state (1G, x). Suppose we have reached (t0, x) for some
transversal element t0

From this point onwards the automaton uses the states q(t0,x,1), q(t0,x,2), . . . q(t0,x,r)
where r is the length of wt0x. These states simulate reading wt0x in P

(W,1)
Fn

However,

the automaton also uses states q
(c,1)
(t0,x,i) and q

(c,2)
(t0,x,i) for 1  i  r in order to check

that the next letter on the check-stack is also P . If at any point that is not
the case, the automaton immediately rejects. This is done through (T7)(a) and
(T7)(b). Finally the automaton moves to a state t1 such that t0x =G wt0xt1, this
is done using (T7)(c). Here the automaton writes t1 onto the pushdown stack.
Then if t1 = 1G the automaton uses transitions in (T7)(d) to check whether there

is a letter under 1G from �
(W,1)
G

, if not the automaton moves to C0. If there was

a letter under 1G from �
(W,1)
G

then the automaton moves to qr and another letter
is read. At C0 the automaton deletes W o↵ the top of the pushdown stack and
then moves to qr using the transitions in (T8). The process then repeats until the
syllable is read.

Observe that if at the end of reading a syllable (or a part) using the transitions

we described, and the stack does not have a symbol from �
(W,1)
G

then it must be
that the syllable (or part) was equal to the identity in G. This is because that is

the only way the stack is empty in P
(W,1)
G

.
There are no other choices that the automaton can make at any point during its

210

processing. Thus the way it reads a string is unique given a choice of check-stack.

Proof of Theorem 4.7.1. Let ! 2 WP (Zn ⇤G,Xn [Y). Suppose

! = u1v1u2v2 · · · utvt

where ui 2 X
⇤
n
and vi 2 Y

⇤. Since ! 2 WP (Zn ⇤G,Xn [Y) either every syllable
is equal to the identity in its respective group, or not all syllables are equal to the
identity in their respective groups.

If every syllable is equal to the identity then

�{ar,a�1
r }(ui) = "

for every r 2 {1, 2, . . . , n} and every i 2 {1, 2, . . . , t}. Similarly, since vj = 1G
for every j 2 {1, 2, . . . , t} upon reading vj using P

(W,1)
G

the automaton P
(W,1)
G

will
return to state 1G with an empty stack.

Therefore, for any long enough choice of check-stack where there is enough let-
ters to process every syllable the automaton will process the syllables as explained
earlier. Assuming there are enough check-stack letters to process every syllable,
upon reading every syllable the pushdown stack will be as follows. Either

• �X(u)? where u can be replaced by every syllable ui, and X = {ai1 , a�1
i1
}

where i1 is determined by the index of the corresponding check-stack letter
Ai1 . We note that Ai1 will be the first check-stack letter to appear on the
check-stack. Therefore �X(u) = " and thus the pushown stack is empty.
Alternatively, the pushdown stack will be

• M
e? for some e > 0 since P

(W,1)
G

results in an empty stack with the state
being 1G upon reading vi for every i. However, the transitions in (T8)(a)
will delete all occurrences of M and then stack will be empty.

Since the pushdown stack will be empty at the end of processing !, it will not be
accepted since the transitions (T9)(a) are the only transitions to the accept state,
and they can only be used if the stack is not empty.

Now we suppose that not all syllables are trivial. Let i1 2 {1, . . . , r} be the
smallest index such that wi1 6= 1 (where 1 is the identity of the group which the
letters of wi1 belong to). Then there exists a next syllable wj 6= 1. (Otherwise
w 2 coWP (Zn ⇤ G,⌃).) As every wk is equal to the identity of its respective
group for i < k < j, we see that wi and wj belong to the same part and will be
processed by the automaton as if they are one syllable. We note that otherwise
the appropriate part of the check-stack is not long enough and the string gets
rejected. That is, there exists a long enough appropriate substring of the check
stack u

l

1 where u is Ap (for some index p) or P such that every letter of both wi and

211

wj will be ./ related to u1) or the string will be rejected. If wiwj will be processed
in the same way then either wiwj is equal to the identity or not. If wiwj is equal
to the identity then we are done, since regardless of what u1 is, the pushdown
stack will not contain any string corresponding to the part of ul

1 that was being
used. Otherwise there must exist another syllable wq that will also be in the same
part. The automaton thus repeatedly finds these syllables, processing them from
the same part of the check-stack until the pushdown stack is empty and thus the
string is rejected. Otherwise the syllables cannot be processed in the same way
due to l being too small and thus the automaton will also reject the string in that
instance. Therefore any string in WP (Zn ⇤G,Xn [Y) never gets accepted.

Now we suppose that !0 2 coWP (Zn ⇤ G,Xn [G). Suppose !
0 = w

0
1w

0
2 · · ·w0

d

where each w
0
i
is a syllable, and if w0

i
2 X

⇤
n
then w

0
i+1 2 Y

⇤ and vice versa.
First suppose that every syllable is not equal to the identity in its respective

group. As wi is not equal to the identity for every i then there exists a generator �i

for every wi such that the sum of the exponents of �i is non-zero in wi if wi 2 X
⇤
n
.

If wi 2 Y
⇤ then the pushdown P

(W,1)
G

will either not result in an empty stack or

the state of P (W,1)
G

will not be 1G. If wi 2 X
⇤
n
then �i 2 {a1, a2, · · · , an}. By

repeatedly picking these generators for each syllable in Xn we induce a sequence
A

0
1, A

0
2, . . . , A

0
d
where A

0
1, . . . , A

0
d
2 {A1, . . . , An}. There exist lengths l1, l2, . . . , l2d

such that A0
1
l1P

l2 · · ·A0l2d�1
d

P
l2d is a long enough sequence on the check-stack such

that w1w2 · · ·wd can be processed with the automaton.
Let w0

i�i
be the projection of the string wi onto the free subgroup generated by

�i, whenever w0
i
2 X

⇤
n
. Further let ⇢(w0

i�i
) be the reverse of the free reduction of

w
0
i�i
.
By the construction of the automaton and by our choice of check-stack, the

pushdown stack will consist of the product of all ⇢(w0
i�i
) whenever w0

i
2 X

⇤
n
, with

the product of stack that is produced by P
(W,1)
G

upon reading w
0
i
whenever w0

i
2 Y

⇤

and the state that it ends on (with strings consisting of the letter M in between
them). Since none of the images are trivial, and either the state is not 1G or the

stack produced by P
(W,1)
G

is non-empty upon reading a syllable that is not equal
to the identity, the pushdown stack is non-empty and the string is accepted.

Now we may suppose that there is a syllable that is equal to the identity of its
respective group. Let !̃ be the reduced form of !. Note that ! is related to !̃ by
a sequence of reductions of substrings of ! that are trivial. Further there exists a
string r 2 R such the automaton accepts !̃ with r on the check stack by the above.
Thus there exists a string r

0 2 R such that r0 consists of the same choices of letters
of as r, but r0 is just longer to accommodate for the processing of !. For example if
r = A1A1PPA4A4P then the indices used for r0 do not change, but we simply have
a longer substring for each letter such as A1A1A1A1PPPA4A4A4A4PPPP would
be a valid choice for r

0. (The string may require more letters to be appended

212

afterwards but there is a prefix of r
0 where the indices used in the letters are

determined by r.)
The automaton can process w and w̃ with r

0 on the check-stack and accepts
w̃. The reductions of substrings that are equal to the identity result in returning
the stack to how it was before reading the substring. For strings in X

⇤
n
, this is

true regardless of the generator considered for the reduction. For strings in Y
⇤

this is true by the way P
(W,1)
G

is constructed. Thus we know that the pushdown
stack upon reading w will be non-empty with r

0 on the check stack. Therefore w

is accepted by the automaton. ⌅

213

Chapter 5

Epiregular Groups

5.1 Introduction

In this chapter we will introduce a new class of groups defined by a language
theoretic property. We shall explore various closure properties of this class as
well as distinguish it from a few well known classes of groups that are related to
language theory.

This new class arose in an analysis by Jim Belk of a construction of Ville Salo
[40]. Salo’s construction embedded right angled Artin groups (RAAGs) into the
Brin-Thompson’s group 2V . Further we show that the class of automatic groups
is contained within the class of epiregular groups, and the Baumslag Solitar group
BS(1, 2) is epiregular. Thus the class of epiregular groups is not the same as the
class of coCF groups nor it is equal to the class of automatic groups. This is because
BS(1, 2) is known to neither be coCF (as shown in [27]) nor is it automatic.

This chapter has become the basis for a paper currently in preparation joint
with Collin Bleak and Luke Elliott where we explore the class of epiregurlar groups
further.

Definition 5.1.1. Let G be a finitely generated group. Let X be a finite (sym-
metrically closed) generating set for G. We say that G is epiregular with respect
to X if there exists a finite state automaton A such that

• L(A) \WP (G,X) = ?

• for every non-identity element, h, there exists wh 2 coWP (G,X) such that
wh 2 L(A) and wh =G h.

|

In the next section we shall show that being epiregular is a property of groups;
i.e, it is independent of the generating set.

214

5.2 Well-definedness of epiregularity

Theorem 5.2.1. Let G be a finitely generated group, and let X and Y be finite
symmetrically closed generating sets for G. Then G is epiregular with respect to
X if and only if G is epiregular with respect to Y .

Proof. Suppose G is epiregular with respect to X then there exists a regular
language LX such that LX \ WP (G,X) = ? and for every non-identity ele-
ment h there exists wh 2 coWP (G,X) such that wh 2 LX and wh =G h. Let
AX = (QX ,⌃X , �X , IX , FX) be a deterministic finite state automaton such that
L(AX) = LX , .

For every element xi 2 X, we fix a string wi in wi 2 Y
⇤ such that wi =G xi.

x1 =G y1,1y1,2 . . . y1,l(1) =: w1,

x2 =G y2,1y2,2 . . . y2,l(2) =: w2,

.

.

.

xn =G yn,1yn,2 . . . yn,l(n) =: wn.

We define an automaton AY = (QY ,⌃Y , �Y , IY , FY) as follows. First we set ⌃Y =
Y, IY = IX , and FY = FX . We define QY and �Y as follows.

For every state q 2 QX and x 2 ⌃X there is a unique state q
0 such that

((q, x), q0) 2 �X . By the above, there is a string w = y1y2 · · · yl of some length l

such that w =G x. We introduce l � 1 states, qx,1, qx,2, . . . , qx,l�1 such that in �Y

we have the following transitions

((q, y1), qx,1),

((qx,1, y2), qx,2),

.

.

.

((qx,l�2, yl�1), qx,l�1), and

((qx,l�1, yl), q
0).

We do this for every state q 2 QX and every x 2 ⌃X . These transitions are the
only transitions in �Y and QY is a union of QX and the states qx,1, qx,2, . . . , qx,l�1

for every state q 2 QX and every x 2 ⌃.

215

We observe that the edge from q to q
0 via the input letter x traversed in the

graph of the transition diagram of AX defines a path from state q 2 QX ✓ QY

to state q
0 2 QX ✓ QY through the states qx,1, qx,2, . . . , qx,l�1 (defined above) via

the string w that is traversed in the transition diagram of AY . Conversely, a path
from a state p 2 QX ✓ QY to a state p

0 2 QX ✓ QY that does not pass through
another p00 2 QX ✓ QY via a string w

0 must by definition be defined by an edge
from state p to state p0 via an input letter x0 such that we have fixed w

0 such that
w

0 =G x
0.

Therefore, for every string x1x2 · · · xr accepted byAX , there is a string w1w2 · · ·wr

accepted by AY such that x1x2 · · · xr =G w1w2 · · ·wr. Further, by the paragraph
above, for every string u accepted by AY there is a string v accepted by AX and
u =G v. Thus there is no string accepted by AY representing the identity element.
Therefore AY shows that G is epiregular with respect to Y . ⌅

Let G be a group. Suppose there is a finite generating set X such that G is
epiregular with respect to X. Then by Theorem 5.2.1, G is epiregular with respect
to every finite generating set of G. Therefore we shall simply refer to G as an
epiregular group.

5.3 Examples

In this section, we shall show that some groups are epiregular.

Finite Groups Finite groups are epiregular. They are a very extreme case of
epiregular groups, this is due to the languages demonstrating their epiregularity.
By Anisimov’s theorem (see Proposition 2.3.6), there exists a finite state automa-
ton accepting the entirety of the co-word problem. Further, finite groups are the
only groups where a finite state automaton can accept all of the co-word problem.
However, it is also possible to accept a language that is only finite demonstrating
their epiregularity. An example of this is a language consisting of the non-trivial
elements over itself as an alphabet.

The group Zn The group Zn is epiregular. We shall prove that Zn is epiregular
with respect to the standard generating set A := {a±1 , a±2 , . . . , a±n }.

Let i 2 {1, ..., n}. We will define automata Ai such that Li := L(Ai) consists
of strings of the form a

n

i
w where n 2 Z \ {0} and w 2 (A \ {a±

i
})⇤. (We can think

of each Li = L+
i
[L�

i
, where L+

i
consists of the subset of strings of Li that start

with ai and L�
i
consists of the subset of strings of Li that start with a

�1
i
.) Further

let A =
S

n

i=1 Ai. This is the automaton that is required to show that Zn with
respect to A is epiregular.

216

Below we define Ai.

i�Ai Ai

R

�X
i

X
iqA

a
�1
i

a
�1
i

"

ai

aj 6=i

a
�1
j 6=i

ai
ai

a
�1
i

"

aj 6=i

a
�1
j 6=i

" "

ai

a
�1
i

ai

a
�1
i

As mentioned earlier, we may think of Li = L+
i
\L�

i
, where L+

i
consists of strings

that do not represent the identity element that are accepted by paths reaching the
accept state through the right side of the machine. Similarly L�

i
consists of strings

that do not represent the identity element that are accepted by paths reaching the
accept state through the left side of the machine, i.e.

L+
i
= {an

i
w | n > 0 and w 2 (A \ {a±

i
})⇤} ✓ coWP (Zn

, A)

and
L�

i
= {(a�1

i
)nw | n > 0 and w 2 (A \ {a±

i
})⇤} ✓ coWP (Zn

, A).

Proposition 5.3.1. Zn is epiregular with respect to A.

Proof. We shall use A. Let z 2 Zn, we denote the sum of the exponents of the
letter ai in z by expi(z).

Let g 2 Zn\{1Zn}. Since g 6= 1Zn there exits i 2 {1, 2, ..., n} such that expi(g) 6=
0. There exists a string wg =G g that begins with expi(g) occurrences of ai and
no further occurrences of ai (if expi(g) < 0 then there is a positive number of
occurrences of a�1

i
) which is accepted by Ai. Thus wg 2 Li.

Let w 2 WP (Zn
, A). Since w =Zn 1Zn , there does not exist j 2 {1, ..., n} such

that expj(w) 6= 0; i.e., for all j 2 {1, ..., n}, expj(w) = 0. Therefore there is no
t 2 {1, ..., n} such that w 2 Lt. ⌅

We shall now prove that some well known and well-studied classes of groups
are epiregular. We first turn our attention to automatic groups.

217

5.3.1 Automatic groups

In this subsection, we shall prove that every automatic group is epiregular. We
thank Sarah Rees for observing that fact. First we define some notions that are
used in the definition of automatic groups. We do this for completeness, but we
shall not use any of these concepts in the proof of Theorem 5.3.6. The reader will
be able to understand the proof of Theorem 5.3.6 by reading Definition 5.3.4, as
well as reading the statement of Proposition 5.3.5. For more information regarding
automatic groups or any of the definitions involved, the reader may wish to consult
[26] and [21].

We base our explanation of two-tape finite state automata below on Section
2.10.1 of Chapter 2 of [26].

We shall first introduce the notion of padding. The main objective of padding
is to be able to read two strings at the same time, even if they have unequal length.
We pad the shorter of the strings so that the resulting padded string has the same
length as the longer string. We do this formally below.

Definition 5.3.2 (Padding). Let A be an alphabet. We adjoin to A a padding
symbol, denoted by $, which is assumed not to lie in A, and we define B =
A[{$}. The padded alphabet associated with A is the set B. Let u, v 2 A

⇤, where
u = a1a2 · · · an and v = b1b2 · · · bm, with each ai, bi 2 A. We define (u, v)P 2
B ⇥ B \ {($, $)} to be the string

(↵1, �1)(↵2, �2) · · · (↵k, �k),

where k := max(n,m), and

1. ↵i = ai for 1  i  n and ↵i = $ for n < i  k;

2. �I = bi for 1  i  m and �i = $ for m < i  k.

We call (u, v)P the padded pair string corresponding to (u, v). |

For example, the padded pair string corresponding to (hi, hello) is

(h, h)(i, e)($, l)($, l)($, o).

We are now ready to define a two-tape finite state automaton.

Definition 5.3.3 (Two-tape finite state automaton). We say a finite state automa-
ton M over A is a two-tape finite state automaton if M is a finite state automaton
over the alphabet B ⇥ B \ {($, $)} such that all strings in L(M) are of the form
(u, v)P for strings u, v 2 A

⇤.
|

218

We are now ready to define an automatic group as in [21].

Definition 5.3.4 (Automatic Group). Let G be a group. An automatic structure
on G consists of a set A that is a finite symmetrically closed generating set for G,
a finite state automaton W over A, and finite state automata Mx over (A,A) for
x 2 A [{"}, satisfying the following conditions.

1. For every element g 2 G, there is a wg 2 W such that wg =G g.

2. For x 2 A [{"}, the padded string corresponding to the pair (w1, w2) is
accepted by Mx if and only if w1x =G w2, and both w1 and w2 are elements
of L(W).

We say G is automatic if there is an automatic structure on G. |

We will only use the language L(W) in our proof of Theorem 5.3.6. However,
before we are ready to present our proof. We shall state the following proposition,
which is proven in Theorem 2.5.1 of [21].

Proposition 5.3.5. Let G be an automatic group as in Definition 5.3.4. Then
there exists a regular language LW 0 such that for every group element g there exists
a unique string wg 2 LW 0 such that wg =G g.

Theorem 5.3.6. Every automatic group is epiregular.

Proof. Let G be an automatic group as in Definition 5.3.4. By Proposition 5.3.5,
there exists a regular language LW 0 of unique representatives for every group ele-
ment of G. Let e be the unique string in LW 0 such that e =G 1G. The set {e} is
a regular language. Therefore LW 0 \ {e} is also a regular language. By Proposi-
tion 5.3.5, LW 0 \{e} consists of unique representatives for every non-trivial element
of G. Therefore G is epiregular. ⌅

We note that automatic groups have a number of interesting properties that
we will not discuss here. However, it is well-known that the class of automatic
groups is closed under taking free products and passing to finite index overgroups
[26]. Therefore context-free groups are automatic since they are virtually free. So,
context-free groups are epiregular.

Corollary 5.3.7. Every context-free group is epiregular.

In the next subsection, we turn our attention to the Baumslag-Solitar group
BS(1, 2).

219

5.3.2 Baumslag-Solitar group BS(1, 2)

Theorem 5.3.8. The Baumslag-Solitar group BS(1, 2) = ha, b | bab�1 = a
2i is

epiregular.

Proof. In Section 2 of [14], Burillo and Elder give the following normal form. Every
element can be expressed as b�i

a
k
b
j such that

1. i and j are greater than or equal to 0, and

2. if i and j are greater than 0 then 2 does not divide k.

We note that the only expression in the stated normal form for the identity element
is (b�1)0a0b0. Thus we shall separate the expressions for non-trivial elements (i.e.,
all expressions excluding the one for the identity element) into four categories
below.

1. If i = 0, then the expression above is akbj for j > 0 and k 2 Z.

2. If j = 0, then the expression above is b�i
a
k for i > 0 and k 2 Z.

3. If i = j = 0, then the expression above is ak for k 2 Z \ {0}.

4. If i and j are strictly greater than 0, then the expression above is b
�i
a
k
b
j

and 2 does not divide k, where k > 0 or k < 0.

If we prove that each of the expressions above define a regular language then
BS(1, 2) is epiregular since a finite union of regular languages is regular.

It remains to show that these languages are regular.
We shall draw four transition diagrams below, the automata defined by the

diagrams accept exactly the expressions above in order.
The transition diagram for the first expression is the following.

i1 12

A1

""

bb

aa
�1

b

220

One can see that the language accepted by the above automaton is {akbj | k 2
Z, j > 0}

The transition diagram for the second expression is the following.

i2

3 A2A3

b
�1

b
�1

"
a

"
a
�1

One can see that the language accepted by the above automaton is {b�i
a
k | i >

0, k 2 Z}.
The transition diagram for the third expression is the following.

i3A4 A5
a a

�1

a
�1a

One can see that the language accepted by the above automaton is {ak | k 2
Z \ {0}}.

The transition diagram for the fourth expression is the following.

i4 4

5 6 7

8 9 10

11

A6

b
�1

b
�1

"

"

a a

"

"

a

b

a
�1

a
�1

"

"

a
�1

b

One can see that the language accepted by the above automaton is {b�i
a
k
b
j | i, j >

0, k = 1(mod 2)}.
Since a finite union of regular languages is regular, the union of the above four

languages demonstrates the epiregularity of BS(1, 2). ⌅

221

The above proof technique can be easily adapted to the case of BS(1, n). Thus
we have the following corollary.

Corollary 5.3.9. The Baumslag-Solitar group BS(1, n) is epiregular.

We also conjecture that BS(m,n) is epiregular for any m and n. However, we
have not yet checked this.

It is known in [13] that in general BS(1, n) is not automatic. Therefore we
have the following corollary,

Corollary 5.3.10. The class of epiregular groups is not equal to the class of au-
tomatic groups.

Moreover since it is shown that BS(1, n) is not coCF (for |n| 6= 1) in [27]. We
deduce the following corollary.

Corollary 5.3.11. The class of epiregular groups is not equal to the class of coCF
groups.

5.4 Closure Properties

In this section we shall prove that the class of epiregular groups is closed un-
der passing to finite index overgroups and taking graph products of groups (see
Definition 5.4.2).

Theorem 5.4.1. Let H be an epiregular group. Let G be a finite index overgroup
of H. Then G is epiregular.

Proof. Let n be the index of H in G. Let X be a finite generating set for H. Let
T = {t0, t1, ..., tn�1} be a transversal of H in G, with t0 = 1G.

Every element of G can be written as a product ht for some h 2 H and t 2 T.

Therefore elements of G are either elements of H, elements of T, or a product of
both.

Let L be a regular language over X demonstrating H is epiregular. We see that
L
0 := L[(T \{1G})[L(T \{1G}) is a regular language (being the union of finitely

many regular languages) over X [(T \ {1G}) demonstrating G is epiregular. ⌅

In the next subsection we prove that the class of epiregular group is closed
under taking graph products.

222

5.4.1 Graph Products

First, we introduce the definition of graph products of groups as in [24].

Definition 5.4.2. Let � be a finite simple graph. For every v 2 V (�), let Gv be
a finitely generated group presented by < X

0
v
| R0

v
>. We define the graph product

G� of the groups {Gv | v 2 V (�)} over the graph � as the group with the following
presentation

< X
0 | R0

>,

where X
0 =

S
v2V (�) X

0
v
, and R

0 ✓ X
0⇤ is the set of relations such that

R
0 = (

[

v2V (�)

R
0
v
) [{[x0

v
, x

0
w
] | x0

v
2 X

0
v
, x

0
w
2 X

0
w
, {v, w} 2 E(�)}.

We call Gv the vertex group associated to v (or by similar language). |

We note that since every Gv is finitely generated, by Xv say, then G� is finitely
generated by

S
vinV (�) Xv.

That is, the graph product of the groups {Gv | v 2 V (�)} over the graph � is
generated by all the groups Gv with the relations being a union of all the relations
of the groups Gv together with relations that ensure [Gv, Gw] =G� 1G� for any
{v, w} 2 E(�).

Before proving Theorem 5.4.10, we shall define some terminology and state
some results from [25] which we shall rely on in our proof. For this purpose, we
follow the exposition of [25], and redirect the reader to [25] for more details. We
note that the work in [25] is based on [23].

For the remainder of this subsection, we will do the following. We shall set
� be the finite graph. We will totally order the vertices of � and label them
vA, vB, . . . , vZ where the vertices are ordered lexicographically. (If there are more
vertices, then simply choose an indexing set that is big enough with a natural
ordering.) The associated vertex groups will be denoted by GA, GB, . . . GZ and
their finite generating sets will be denoted by XA, XB, . . . , XZ . We shall further
set the union of the finite generating sets to be ⌃.

We will use the capital letters I, J, and K to stand for arbitrary letters.

Definition 5.4.3 (Local string and type). Let ! 2 ⌃⇤. A contiguous substring
!
0 of ! is said to be a local string if it is written in letters from the generators of

exactly one vertex group, and there does not exist a longer contiguous substring
containing !

0 that is written in letters of the generators of exactly one vertex
group. The type of a local string is the label of the corresponding vertex. |

Since any string is a product of local strings we can define the type of a string

223

Definition 5.4.4 (Type of a string). Let ! = !2⌃⇤ be a string. The product of
the types of local strings of ! is the type of !. Further, the string of types of ! is
the type of !. |

For example, suppose we have a string ! = !A!C!J where each !I 2 X
⇤
I
. Then

the type of ! is ACJ .

Definition 5.4.5 (Global Length). The global length of a string is the number of
local strings into which it can be decomposed. |

We may shu✏e local string !I and !J in a string if !I and !J are adjacent
in that string, and {I, J} 2 E(�). That is, we may use the commuting relations
defined by [GI , GJ] =G� 1G� to obtain an equivalent string in the group when the
corresponding vertices are adjacent. If in the process of shu✏ing, two local strings
of the same type become adjacent then they amalgamate into a single local string.
If it is equal to the identity of the corresponding group, then it is removed.

The process we describe above, will eventually stabilise global length. That
is, it will no longer be possible to shu✏e local strings of the same type to be-
come adjacent. Then, we can choose a string of minimal type with respect to the
lexicographic order.

Definition 5.4.6. The process outlined above, of taking a string, shu✏ing, amal-
gamating, and eventually finding a smallest representative with respect to Short-
Lex ordering of types is called pruning. Further, a pruning of a ! is a string
obtained from ! by the pruning process. |

We are now ready to state Proposition 3.1 of [25].

Lemma 5.4.7 ([25],Proposition 3.1). Let ! and !
0 be strings in ⌃⇤ such that

! =G� !
0. Further let T and T

0 be the types of prunings of ! and !
0, respectively.

Then T = T
0.

The above result simply states that a group element uniquely determines the
type of the pruning of strings representing the element. We note that the identity
element is the only element with " as the type of any pruning.

In [25], the authors also give a normal form for graph products of groups
(assuming one already has a normal form for every vertex group). They do this
in Proposition 3.2. While we do not have such a normal form, we will state the
conditions the strings must satisfy below as will make use of a construction relying
on the property (O).

Definition 5.4.8. A string ! is said to be proper if satisfies the following condi-
tions.

224

(L) Each local string is in its prescribed normal form.

(O) If ! = · · ·!I · · · · · ·!J · · · with I � J and {vI , vJ} 2 E(�) then there is a
local string !K such that ! = · · ·!I · · ·!K · · ·!J · · · where {vK , vJ} /2 E(�).

|

The authors of [25] prove in Proposition 3.2 that the set of proper strings is a
set of normal forms for G�.

In the proof of Theorem B of [25], the authors construct a graph which they call
the admissible graph. This graph is a finite state automaton AAG(�) accepting the
proper strings of a graph product of cyclic groups of order 2. Further, since cyclic
groups of order 2 have only one non-trivial element, a proper string corresponds
exactly to the string of types of the proper string. Thus as in Theorem B of [25],
AAG determines the types of strings that are allowed. That is, for every type of a
proper string in a graph product of groups, the string can be read o↵ by following
a path in the admissible graph. Conversely, any path in the admissible graph
reads the type of a proper string. In the proof below, we shall replace states of the
admissible graph by automata that prove epiregularity for the vertex groups. First
we shall state a few properties of the admissible graph so that our construction is
clear. For the construction of the admissible graph itself, we redirect the reader
to [25].

The admissible graph of a graph �, AAG(�), constructed in [25] is a finite state
automaton with the following properties:

1. There is a unique initial state, this is not a final state.

2. Every non-initial state is labelled by some vertex vI of the graph �. (The
construction of the admissible graph does not guarantee a unique non-initial
state for every vertex vI .)

3. Every edge of the admissible graph from a state labelled by vJ 2 V (�) to a
state labelled by vI 2 V (�) has as a label the generator of GI . (Recall the
admissible graph is based on the graph product of cyclic groups of order 2
over �, hence these groups are generated by a single element.)

4. Every non-initial state is an accept state.

5. There are no "-transitions in the admissible graph.

6. The language accepted by the admissible graph is the set of strings of types
of proper strings of G�.

Further, we extract the following statement from [25]. We do not prove this here
as this covered in Proposition 3.2 as well as Theorem B of [25].

225

Lemma 5.4.9. Let g 2 G� be a non-trivial element of G�. Then there is a string
! in the generators of G� such that ! =G� g and the type string of ! is the type
string of some proper string of the graph product of cyclic groups of order 2 over
�. Further, every local string of ! is non-trivial in its corresponding vertex group.

We are now ready to prove the following theorem.

Theorem 5.4.10. Let � be a finite graph as above. For every vI 2 V (�), let GI

be an epiregular group with finite generating set XI . Let G� be the graph product
of groups {GI | vI 2 V (�)} over the graph �. Then G� is epiregular.

Proof. For every vI 2 V (�), let AI be a deterministic finite state automaton
demonstrating epiregularity of GI . (We call these AI sub-automata.) We will
construct an automaton A demonstrating epiregularity of G� by “gluing” AI onto
every vertex of the admissible graph AAG(�) that is labelled by vI as follows.

Let q and p be states of AAG(�) that are labelled by vI and vJ , respectively.
Suppose there is an edge into q from state p in AAG(�). Remove that edge, and
insert an edge with label xI 2 XI from the final state of AJ to the unique state
q
0 that is reached from the initial state of AI upon reading xI . Do this for every
xI 2 XI and all states p and q of AAG(�). (We note that since there may be
multiple states in AAG(�) labelled by the same vertex of �, we take disjoint copies
of AI as needed to ensure we do not identify the states of AAG(�) with each other.)
The initial state of this new automaton A will be the initial state of AAG(�). The
final states consist of all the final states of every copy of AI that we have glued
onto the admissible graph by the above process. (If there is an edge from a sub-
automaton to another, then it is from a final state of one sub-automaton to the
initial state of the other.)

We note that any path in A projects onto a path in AAG(�) by identifying
all the edges in a sub-automaton AI , and edges between a final state of a sub-
automaton and the initial state of another will be edges between the vertices of
AAG(�) that the sub-automata were glued onto. Therefore, any path in A must
yield the same type string as a path in AAG(�).

Since the initial state is not an accept state and the identity element of G�

has type ", by Lemma 5.4.7 the identity element of G� is not represented by any
accepted string of the above automaton. By Lemma 5.4.9, we know that every
non-trivial element of G� can be expressed as a string whose type is the type of a
proper string of the graph product of cyclic groups of order 2 over �, with every
local string !I being non-trivial in GI . For each such local string, there is a string
!
0
I
in the language accepted by AI such that !I =GI !

0
I
. Thus the automaton A

simply replaces the types of proper strings of the graph product of cyclic groups
with these local strings !0

I
while preserving the type string. Therefore there is a

string representing every non-trivial element of G� in L(A), and there is no string
in L(A) representing the identity element of G�. Therefore G� is epiregular. ⌅

226

Chapter 6

Conclusion

There have been two main topics that we have explored in this thesis which we
discuss below. The first was exploring the class of co-ET0L groups. We have done
this in Chapter 4. We have proven in Theorems 4.2.1, 4.3.1, 4.4.1, and 4.5.1 that
the class of co-ET0L groups is closed under the following operations:

• taking finitely many direct products,

• passing to finitely generated subgroups,

• passing to finitely indexed overgroups, and

• taking standard restricted wreath products with virtually free top groups.

Since [27], it is unknown whether the class of coCF groups is closed under taking
free products with finitely many factors. Indeed it is unknown whether Z2 ⇤ Z is
coCF . However, in [28] it was shown that Z2 ⇤ Z is co-indexed. We have shown
that it is in fact co-ET0L in Theorem 4.6.1. More generally we have shown that
Zn ⇤ Zm is co-ET0L. Further, we have shown Zn ⇤G is co-ET0L for any virtually
free G in Theorem 4.7.1. The methods we use are similar to those used in [28] to
prove stack groups are closed in free products.

Recall that stack groups are co-indexed groups with extra restrictions on the
automata accepting the co-word problem. It is possible to introduce analogous
restrictions on automata proving a group is co-ET0L. This defines a subclass of
co-ET0L groups. In this discussion, we shall refer to this class of groups as PD-
ish. An area of possible future research is to study the class of PD-ish groups. We
conjecture that that every group currently known to be a stack group is in fact
PD-ish. Further we conjecture the class of PD-ish groups is closed under all the
operations mentioned above, and is also closed under taking free products with
finitely many factors.

227

It is currently unknown whether the classes of coCF , co-ET0L, co-indexed,
and stack groups are all equal. It is unclear whether the class of PD-ish groups
is a proper subclass of co-ET0L. It is also unclear what the relation is between
the class of PD-ish groups and the classes of coCF , co-indexed, and stack groups.
Indeed, we believe these questions to be as di�cult as analogous questions that are
currently open about the classes of groups already mentioned. We note that there
are currently no known su�cient criteria for a group to not be a stack group. This
presents a major problem in understanding what groups cannot be stack groups.
A similar problem exists for PD-ish groups. To be able to separate the classes,
we believe a good place to start is finding suitably strong su�cient conditions for
groups to not be in a certain class. However, this too seems to be a rather di�cult
problem.

Of course Lehnert’s conjecture (stated in Chapter 1) remains open and of great
interest. Moreover, we do not know whether groups such as those proven to be
coCF in [7] and [22] are stack groups or PD-ish. These present further areas of
possible future research.

In Chapter 5 we introduced and studied a new class of groups that we named
epiregular groups. We have shown that finite groups and virtually free groups
are epiregular. Unlike the classes of groups that we have mentioned previously,
we have proven that the class of epiregular groups is distinct from the class of
coCF groups. We have done this by showing that the Baumslag-Solitar group
BS(1, 2) is epiregular in Theorem 5.3.8. This is su�cient as it is proven in [27] that
BS(1, 2) is not coCF . We have also shown that automatic groups are epiregular
in Theorem 5.3.6. However, it is known in [13] that BS(1, 2) is not automatic.
Therefore we have shown that the class of epiregular groups is not equal to the
class of automatic groups.

In Theorems 5.4.1 and 5.4.10 we have proven that the class of epiregular groups
is closed under the following operations:

• passing to finitely indexed overgroups, and

• taking a graph product of groups over a finite graph.

At the time of writing this thesis, we have not been able to find an example of a
finitely generated group that is not epiregular. We are currently investigating this.
Another possibility of future work is understanding the relationship between any
of the classes of coCF , co-ET0L, co-indexed, stack, or PD-ish groups and the class
of epiregular groups. Further, it is possible to define an analogous class of epi-C
groups where we require the language of representatives for non-trivial elements of
the group to be in C, for a language class C. We wish to understand these classes of
groups better and whether or not they are all distinct. Finally we end this chapter
with a concrete question that we wish to answer in future work.

228

Question 6.0.1. Are the Higman-Thompson groups Gn,r epiregular?

229

Bibliography

[1] Alfred V. Aho, Indexed grammars—an extension of context-free grammars, J.
Assoc. Comput. Mach. 15 (1968), 647–671. MR 258547

[2] , Nested stack automata, J. Assoc. Comput. Mach. 16 (1969), 383–406.
MR 267980

[3] A. V. An̄ıs̄ımov, The group languages, Kibernetika (Kiev) (1971), no. 4, 18–24.
MR 301981

[4] Peter R. J. Asveld, Controlled iteration grammars and full hyper-AFL’s, In-
formation and Control 34 (1977), no. 3, 248–269. MR 445916

[5] James Belk, Collin Bleak, and Francesco Matucci, Embedding right-angled
Artin groups into Brin-Thompson groups, Math. Proc. Cambridge Philos.
Soc. 169 (2020), no. 2, 225–229. MR 4138920

[6] James Belk, Collin Bleak, Francesco Matucci, and Matthew C.B.
Zaremsky, Progress around the boone-higman conjecture, arXiv preprint
arXiv:2306.16356 (2023).

[7] Rose Berns-Zieve, Dana Fry, Johnny Gillings, Hannah Hoganson, and Heather
Mathews, Groups with context-free co-word problem and embeddings into
Thompson’s group V , Topological methods in group theory, London Math.
Soc. Lecture Note Ser., vol. 451, Cambridge Univ. Press, Cambridge, 2018,
pp. 19–37. MR 3889099

[8] Alex Bishop and Murray Elder, Bounded automata groups are co-ET0L, Lan-
guage and automata theory and applications, Lecture Notes in Comput. Sci.,
vol. 11417, Springer, Cham, 2019, pp. 82–94. MR 3927687

[9] Collin Bleak, Francesco Matucci, and Max Neunhö↵er, Embeddings into
Thompson’s group V and coCF groups, J. Lond. Math. Soc. (2) 94 (2016),
no. 2, 583–597. MR 3556455

230

[10] Collin Bleak and Olga Salazar-Dı́az, Free products in R. Thompson’s group
V , Trans. Amer. Math. Soc. 365 (2013), no. 11, 5967–5997. MR 3091272

[11] WilliamW. Boone, Between logic and group theory, Proceedings of the Second
International Conference on the Theory of Groups (Australian Nat. Univ.,
Canberra, 1973), Lecture Notes in Math., vol. Vol. 372, Springer, Berlin-New
York, 1974, pp. 90–102. MR 354880

[12] William W. Boone and Graham Higman, An algebraic characterization of
groups with soluble word problem, J. Austral. Math. Soc. 18 (1974), 41–53.
MR 357625

[13] Marcus Brazil, Growth functions for some nonautomatic baumslag-solitar
groups, Transactions of the American Mathematical Society 342 (1994), no. 1,
137–154.

[14] José Burillo and Murray Elder, Metric properties of Baumslag-Solitar groups,
Internat. J. Algebra Comput. 25 (2015), no. 5, 799–811. MR 3384081

[15] J. W. Cannon, W. J. Floyd, and W. R. Parry, Introductory notes on Richard
Thompson’s groups, Enseign. Math. (2) 42 (1996), no. 3-4, 215–256. MR
1426438

[16] N. Chomsky, Three models for the description of language, IRE Transactions
on Information Theory 2(3) (September 1956), 113–124.

[17] Laura Ciobanu, Murray Elder, and Michal Ferov, Applications of L systems
to group theory, Internat. J. Algebra Comput. 28 (2018), no. 2, 309–329. MR
3786421

[18] Karel Culik, II, On some families of languages related to developmental sys-
tems, Internat. J. Comput. Math. 4 (1974), 31–42. MR 363009

[19] M. Dehn, Über unendliche diskontinuierliche Gruppen, Math. Ann. 71 (1911),
no. 1, 116–144. MR 1511645

[20] M. J. Dunwoody, The accessibility of finitely presented groups, Invent. Math.
81 (1985), no. 3, 449–457. MR 807066

[21] David B. A. Epstein, James W. Cannon, Derek F. Holt, Silvio V. F. Levy,
Michael S. Paterson, and William P. Thurston, Word processing in groups,
Jones and Bartlett Publishers, Boston, MA, 1992. MR 1161694

231

[22] Daniel Farley, Local similarity groups with context-free co-word problem, Topo-
logical methods in group theory, London Math. Soc. Lecture Note Ser., vol.
451, Cambridge Univ. Press, Cambridge, 2018, pp. 67–91. MR 3889102

[23] Elisabeth Ruth Green, Graph products of groups, Ph.D. thesis, University of
Leeds, 1990.

[24] V. S. Guba and M. V. Sapir, Diagram groups are totally orderable, J. Pure
Appl. Algebra 205 (2006), no. 1, 48–73. MR 2193191

[25] Susan Hermiller and John Meier, Algorithms and geometry for graph products
of groups, J. Algebra 171 (1995), no. 1, 230–257. MR 1314099

[26] Derek F Holt, Sarah Rees, and Claas E Röver, Groups, languages and au-
tomata, vol. 88, Cambridge University Press, 2017.

[27] Derek F. Holt, Sarah Rees, Claas E. Röver, and Richard M. Thomas, Groups
with context-free co-word problem, J. London Math. Soc. (2) 71 (2005), no. 3,
643–657. MR 2132375

[28] Derek F. Holt and Claas E. Röver, Groups with indexed co-word problem,
Internat. J. Algebra Comput. 16 (2006), no. 5, 985–1014. MR 2274726

[29] John E. Hopcroft and Je↵rey D. Ullman, Introduction to automata theory,
languages, and computation, Addison-Wesley Series in Computer Science,
Addison-Wesley Publishing Co., Reading, Mass., 1979. MR 645539

[30] Lila Kari, Grzegorz Rozenberg, and Arto Salomaa, L systems, Handbook of
formal languages, Vol. 1, Springer, Berlin, 1997, pp. 253–328. MR 1469997

[31] J. Lehnert, Gruppen von quasi-automorphismen, Ph.D. thesis, Goethe Uni-
versität, Frankfurt, 2008.

[32] Astrid Lindenmayer, Mathematical models for cellular interactions in devel-
opment i. filaments with one-sided inputs, Journal of Theoretical Biology 18
(April 1968), no. 3, 280–299.

[33] , Mathematical models for cellular interactions in development ii. sim-
ple and branching filaments with two-sided inputs, Journal of Theoretical Bi-
ology 18 (April 1968), no. 3, 300–315.

[34] David E. Muller and Paul E. Schupp, Groups, the theory of ends, and context-
free languages, J. Comput. System Sci. 26 (1983), no. 3, 295–310. MR 710250

232

[35] , The theory of ends, pushdown automata, and second-order logic, The-
oret. Comput. Sci. 37 (1985), no. 1, 51–75. MR 796313

[36] P. S. Novikov, On the algorithmic unsolvability of the word problem in group
theory, Izdat. Akad. Nauk SSSR, Moscow, 1955, Trudy Mat. Inst. Steklov.
no. 44. MR 75197

[37] Derek J. S. Robinson, A course in the theory of groups, Graduate Texts in
Mathematics, vol. 80, Springer-Verlag, New York, 1993. MR 1261639

[38] Grzegorz Rozenberg, Extension of tabled OL-systems and languages, Internat.
J. Comput. Information Sci. 2 (1973), 311–336. MR 0413614

[39] G. Roznberg and A. Salomaa (eds.), Handbook of formal languages, Springer,
1997.

[40] Ville Salo, Graph and wreath products in topological full groups of full shifts,
arXiv preprint arXiv:2103.06663 (2021).

[41] Richard J. Thompson, Notes on three groups of homeomorphisms, Unpub-
lished but widely circulated handwritten notes (1970), 1–11.

[42] Jan van Leeuwen, Variations of a new machine model, 17th Annual Sym-
posium on Foundations of Computer Science (Houston, Tex., 1976), 1976,
pp. 228–235. MR 0474980

233

