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SUMMARY

‘Just as the denominator polynomials of a J-fraction are
orthogonal polynomials with respect to some moment functional, the
denominator polynomials of an M-fraction are shown to satisfy a skew
orthogonality relation with respect to-a stronger moment functional.
Many of the properties of the numerators and denominators of an M-
fraction are also studied using this pseudo orthogonality relation
of the denominator polynomials. Properties of the zeros of the
denominator polynomials when the associgted moment functional is
positive definite are also considered.

A type of continued fraction, referred to as-a 3—fraction, is
shown to correspond to a power series about the origin and to another
power series about infinity such that the successive convergents of
this fraction include two more additional terms of any one of the
power series. Given the power series expansions, a method 6f
obtaining such a S—fraction, whenever it exists, is also looked at.
The first complete proof of the so cdlled strong Hamburger moment
problem using a continued fraction is given. In this case the
continued fraction is a J-fraction.

Finally a épecial class of S—fraction, referred to as positive

definite 3—fractions, is studied in detail.



The four chapters of this thesis are divided into sections.
Each section is given a section mumber which is made up of the
chapter number followed by the number of the section within the
chapter. The equations in the thesis have an equation number
consisting of the section number followed by the number of the
equation within that section.

In Chapter One, in addition to looking at some of the
historical and recent developments of corresponding continued
fractions and their applications, we also present some preliminaries.

Chapter Two deals with a differenf approach of understanding
the properties of the numerators and dencminators of corresponding
(two point) rational functions and continued fractions. This
approach, which is based on a pseudo orthogonality relation of the
denominator polynomials of the corresponding rational functions,
provides an insight into understanding the moment problems. In
particular, results are established which suggest a possible type
of continued fraction for scolving the strong Hamburger moment
problem.

In the third chapter we study in detail the existence
conditions and corresponding properties of this new type of continued
fraction, which we call J-fractions. A method of derivation of one
of these J-fractions is also considered. In the same chapter we also
look at the all important application of solving the strong Hamburger
moment problem, using these J-fractions.

The fourth and final chapter is devoted entirely to the study

: a0 .
of the convergence behaviour of a certain class of J-fractions,



namely positive definite J-fractions. This study also provides some
interesting convergence criteria for a real and regular J-fraction.
Finally a word concerning‘the literature on continued fractions
and moment problems. The more recent and up-to-date exposition on
the analytic theory of continued fractions and their applications is
the text of Jones and Thron [1980]. The two volumes of Baker and
Graves-Morris [1981] provide a very good treatment on one of the
computational aspects of the continued fractions, namely Pade
approximants. There are also the earlier texts of Wall [1948] and
Khovanskii [1963], in which the former‘gives an extensive insight
into the analytic theory of continued fractions while the latter,
being simpler, remains the ideal book for the beginner. In his
treatise on Applied and Computational Complex Analysis, Henrici
[1977] has also included an excellent chapter on continued fractions.
Wall [1948] also includes a few chapters on moment problems and
related areas. A much wider treatment of the classical moment
problems is provided in the excellent texts of Shohat and Tamarkin

[1943] and Akhieser [1965].
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Set of all real numbers.
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Imaginary part of z.

Complex conjugate of z.

Modulus or absolute value of z.
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CHAPTER ONE

INTRODUCTTION



1.1 HISTORY

Investigations into the problem of transforming arbitrary power
series into continued fractions began in the early nineteenth century.
Among those who contributed to the development of these so called
corresponding continued fractions were Stern [1832], Heilermann
[1846], Frobenius [1881], Stieltjes [1889] and Padé [1892]. With the
exception of Stieltjes, they were mainly interested in two particular
types of corresponding fractions, namely reguiar C-fractions and
associated fractions.

The significance of finding such corresponding continued
fractions was only realised when Frobenius and Padé arrived at
general and elaborate techniques of obtaining raztional approximants,
given as convergents of continued fraction expansions of analytic
functions in the complex plane. Padé in pa;ticular developed the
rational approximants of such analytic functions and then organised
them in tables. Such tables and their contents are no§~referred to
as Padé tables and Padé approximants.n With the recent advent of high
speed computers these techniques of Padé and Frobenius have become
powerful computational tools in mathematics and physical sciences,
under the general name of Padé approximants.

During the last thirty years or so many algorithms have been
developéd for arriving at corresponding continued fractions of
arbitrary power series. The most important of these techniques is
perhaps the quotient-difference (q-d) algorithm of Rutishauser

[1954], which can be used to find the regular C-fraction expansion.



M-fraction can be made to correspond simultaneously to a power series
about the origin and another power series about infinity. They
poiﬁted out that for such power series expansions, rational
approximants of various degrees of correspondence can be cbtained as
convergents of M—fractions. McCabe [1975] in particular, showed that
in a similar way to that of ordinary Padé approximants, these
rational approximants can also be organised in a table which he
célled an M-table. M-tables are alsc now sometimes referred to as
two-point Padé tables.
| For deriving M-fractions from given two power series, Mc(Cabe

[1975] developed an algorithm similar in nature to the q-d algorithm
of Rutishauser. The corresponding sequence algorithm of Murphy and
O'Donohoe [1977] proved to be a valuable alternative algorithm as it
works on many occasions when the q-d algorithm breaks down.

Independently of the above authors Jones and Thron [1977] and
Thron [1977] also discovered the corresponding properties of an M-
fraction. It is true to say that the continued fraction studied by
Jones and Thron was not an M-fraction but a corntinued fraction
equivalent to an M-fraction. They called their continued fraction
the general T-fraction in contrast to the‘ordinafy T-fraction of
Thron [1948]. They also developed many convergence criteria (see
for example Jones and Thron [1980]) for the general T-fractions.

Drew and Murphy [1977] described some ways of constructing M-
fractions from two given power series (not necessarily expansions
about the origin and infinity), and their derivafives and their
integrals. They also described scme ways of constructing other

continued fractions when the M-fraction does not exist, but in these



cases the continued fractions are not as regular as the M-fraction,
in the sense the partial quotients are not all of the same form.

Practical applications of M-fractions such as the numerical
inversion of Laplace transforms, were studied by Grundy starting in
[1977]. Jones and Magnus [1980] showed how M-fractions can be used
to find the poles of certain functions.

One of the most interesting properties of M-fractions is their
connection with the so called strong Stieltjes moment problem. ‘This
was brought to light when Jones, Thron and Waadeland [1980] proposed
and solved this problem by making it de?endent upon a positive
M-fraction (or T-fraction).

Other two point continued fractions and algorithms were also
looked at by McCabe [1981,1983]. A detailed study of the properties
of one of these continued fractions, referred to as the 3—fracfion,

forms the basis of Chapters 3 and 4 of this thesis.



1.2  PRELIMINARIES

An infinite or finite mathematical expression of the form

b + %l__~—-- , (1.2.1)
1t 2
b2+a§
bz + ay

where a, and bn are complex constants, complex variables or even
functions of complex variables, is known as a continued fraction.

For convenience other representations such as
+ K( b
bo + K(a /b ),

or

are also adopted. The factors 2, and bn are sometimes. referred to as
the coefficients or elements of the firaction but more ffequently they
are called the partial numerators and partial denominators
respectively,

The truncated continued fraction

a
= 2L 22 R
Ry=bg+ gk 22 5 (1.2.2)

is called the n-th convergent or n-th approximant of the continued
fraction (1.2.1). The limit of the sequence {Rn}, when it exists, is

the value of the continued fraction.



The continued fraction (1.2.1) can also be defined in terms of

linear fractional transformations (£.f.t.) by

so(w) =bg+w, s () ==, n=1,2,...,
n
Sg(w) = sg(w), Sn(w) = Sn_l(sn(m)), n=1,2,...,
so that
a as ®n
Sn(U)) =b0 +-E~i-+b2+ +bn+w

AHence, from above the n-th convergent Rn of (1.2.1) can be given by
Sn(O).

If we write

where

Ag = bg, Bp =1,

og
1

bob; + a3, B = by,

Ay = bgbyby + bpay + ajby, By = byby + ap,

and in general An and Bn are polynomials in 2, bj’ then these

polynomials satisfy the three term recurrence formulas

. (1.2.3)



The proof of these formulas, first established by Wallis in
1655, can be found for example in Khovanskii [1963]. An and Bn are
called the numerator and denominator of the n-th approximant,
respectively.

Any two continued fractions having their n-th approximants the
same for all n are said to be equivalent. Any equivalent continued

-

fractions of (1.2.1) can be obtained by the equivalence transformation

012} 03003y 00333 0304dy
oiby + ooby + g3by + oyby + .

b0+

where the sequence of numbers {cn} are chosen appropriately.

Any continued fraction of the form

FJ FzZ F32 FL{_Z
2+G) + 2+Gp + 2+G3 + z2+Gy + ...°

is said to be an M-fraction. The general T-fraction of Jones and

Thron [1977] is equivalent to the M-fraction and takes the form

1 z z z
e1z+f; + egz+fy + egz+£f3 + eyz+£fy, + ...

?
where these coefficients e and fn satisfy
i

= ) = = > 1
F 1l/e;, Gn fh/en, Fn+1 1/(enen+1)’ n 1.

Now, for the Hankel determinant Hgm) defined by

p™ -0, ™ o,
-1 0

and



C C ieean C
m m+1 m+r-1
C e C
Cm+l m+2 - m+r
(m) _
H = , (1.2.4)
C C e i C
m+r-1 m+r m+2r-2

for all m and 211 r 2 1, let us choose for a given k, the two sets

of elements {n(k) }OO and {d(k) }OO as
r+1 =1 T r=1

(k-1r) ,(k-(r-1))
n(k) 7 Hr+1 Hr—l

N ¢ C D I (s R
T+1 H T- g (k-1
T T
(1.2.5)
(k-r)  (k-1)
G0 e "y s
T+l (k-(r-1)) ., (k-(r+1)) ° )
H H
T T+1
Then for
K
RS U s L k>0
z 22 Zk ?
(k)
M (z) =
0 , - (k+1) <o
=C_, " ©_,z ¢ 2 , k 0
the r-th convergent Mik)(z) of the M-fraction
¢ /2" (k) (k) )
(K) k n; °z ns ‘z ng ’z
Mg 7 (2z) + ) 0 . “., (1.2.6)

z+dgk)+z+d§k)+z+d3 +Z+d,+



corresponds to &(r+k) terms. of the power series

=L, &, C2
fo(2) = -+ R SR

and 9(r-k) terms of the power series

z) = - - z - 22 -
g,(2) €17 % €_3

Here, the integer function ¢(N) is given by

(N, N=>0

0, N<O

The coefficients or elements nék) and dék), given by (1.2.5),

also satisfy the quotient difference relations (see McCabe [1975])

NS IR S I ¢S I €S T
n n

n+1 n
(1.2.8)
k1), (k+1) (k) (K) >
dn+1 /nn+1 B dn /nn+1’ n=1,

ngk) =0, dgk) = for all k.

with —ck/ck_1

Denoting the numerator and denominator of the n-th convergent

of the M(k)—fraction (1.2.6) by Aék)(z) and Bik)(z) respectively,

then we have

i}

(k)
An+1(z) (Z * n+l n+l
. n>1, (1.2.9)

B () = 2+ alpM () + 2l 50,

n+l n+1l

a0 2y + a0 24y,
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and

AUy = a0y 4 n(9a M gy

n+1l
n>1, (1.2.10)
B0 () =809 @)+ 0959

with initial conditions

i

Al () =By, 3 -1,

A 2y = 2+ a A o ck/z#, B () = @+ al®y.

The three term relation (1.2.9) follows from (1.2.3j. The
relation (1.2.10) can be proved inductively, using (1.2.9) and the
q-d relation (1.2.8).

The M-table (or two point Padé table) of McCabe [1975] is the
following table where the entry Mgk)(z) is the r-th convergent of

the MU _fraction (1.2.6).

I

u{~2) ui=2) m ™2 | u{"2) u(-2)
mi™Y) Mg'l) Mg-l) MY M("D)
Mgo) Mgo) Mgo) ng) M£O)
uih e e e M ()
MSZ) Mgz) Mgl) Mglj M£1)

. [



The M—tabie can be divided into three sections as indicated.
The entries lying in the upper section are also the entries of the
ordinary Padé table of the power series gg(z), and the entries lying
in the lower section are also entries belonging to the E-array of
Wynn [1960], for the series fy(z).

The elements of the M-table also. satisfy many of the identities
satisfied by the elements of the Padé table, for example the Wynn's

identity

: -1 -1
(k). (k) (k) (k)
{MDH(L) -M (z)} + {Mn_l(z) - M (z)}

n

, ) -1 N N -1
- {MTEkTU (z) - MIEI‘) (z)} " {Mr(ll\ D2y -Mr(ll‘)(z)j ,

for all k and all n > 1.
Finally for later reference, an identity relating the Hankel

determinants (1.2.4), is

2
{H(m)} _ -y ma) -1y () (1.2.11)
T T T T+l T-1 .

This identity is known as the Jacobi identity, and the proof of it

can be found in Henrici [1974].



CHAPTER THWO

PSEUDDO ORTHOGONAL POLYNOMIALS
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b
J L s(vat, (2.1.2)

a
where ¢(t) is non-negative in (a,b). Heine gives brief discussions
of the J-fraction associated with (2.1.2) and also an application of
the related orthogonal polynomials, namely approximate quadrature.
Later, in his most celebrated paper of [1894-95], Stieltjes
brought forward a new concept of iptegrals by replacing the ¢(t)dt
in (2.1.2) by dy(t), where ¢(t) is a bounded non-decreasing function
in the interval (a,b). This new idea éf integrals, now known as the
"Stieltjes integral', covers both integrals and sums such that, if

Y(t) is continuous and differentiable in (a,b) then

b b
) = | -yt
z -t J z -1 ’

a a

where ¢'(t) is the derivative of ¢¥(t). If ¢(t) is stépfwise with

increments only at the distinct poinfs t=z, then

b
J I dy(t) = L iz ) - u(z0)}
z-t ez~ 2z, hS 1 i
' i i
a
NOTE : A good explanation of the Stieltjes integrals is given in

Rudin [1976].
Introducing this new analytical tool, the Stieltjes-integral,
Stieltjes was able to not only widen the scope of the theory of

orthogonal polynomials, but also to use continued fractions for the
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treatment of his new problem, the Stieltjes moment problem in its
most general form. More details of such moment problems are
considered in the next chapter.

The achievements to the present day in this field of orthogonal
polynomials and continued fractions can be summarised as follows:

. .. fee
Given a sequence of finite valued complex numbers {cn} , we

n=0
define a linear complex valued functional I[-] on the vector space

of all polynomials on the real variable t, such that
n
I[t] = SN n=20,1,2,... . (2.1.4)

Then a sequence of orthogonal polynomials'{Qn(z)} can be defined by

0, 0 <s<n-l
1[t°Q (0] = (2.1.5)

v #0, . s=n

for all n 2 0. The existence of this orthogonal sequence such that

Qn(z) is of degree n precisely depends on the condition

HTEO) 40 for n=0,1,2,..., (2.1.6)

(k)

n
proof of this see Chihara [1978].

where H are the Hankel determinants given by (1.2.4). For the
The functional I[-] which is determined by the moment sequence
{Cn} is referred to as a moment functional. If the moments also
satisfy condition (2.1.6) then the functional is called a quasi-
definite moment functional. Hence, for every quasi-definite moment

functional Iq[-] there exists an orthogonal polynomial sequence

{Qn(z)}.
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In the special case where all the moments c, are real and

(9

n

where all the determinants H are positive then the corresponding
moment functional is called a positive-definite moment functional.
A positive definite moment functional, denoted by Ip[o] is also a

quasi-definite moment functional, but it further satisfies the

property

Ip[ﬂ(t)] > 0,

for all polynomials m(t) which are non-negative but not identically
zero for all t € EC (-o, o). The set E is called the supporting
set of the positive definite moment functional Ip[-].

From above it also follows that for any Ip[-], the corresponding

sequence of orthogonal polynomials {Qn(t)} are all real and, further
2 -
Ip[(Qn(t)) ] >O: n = 0:1:2;"'

Stieltjes [1894-95], Hamburger [1921] and others have shown
that any positive definite moment functional Ip[-] can be given in
terms of a bounded non-decreasing function ¥{t) with infinitely many

points of increase. That is

o)
Ip[tn] =J thdy(t), =n=0,1,2,... . (2.1.7)
-0
Later R.P. Boas [1939] pointed out that any real quasi-definite
moment functional Iq[-] can be given in terms of a function ¢(t) of

bounded variation, by
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@
Iq[tn] = [ t"de(t), n=0,1,2,... . (2.1.8)

-

The proof of (2.1.8), which follows from (2.1.7), can also be found
in Chihara [1978].

Having established the existence of the sequence of orthogonal
polynomials'{Qn(z)} for Iq[°], we can now define a second sequence

of polynomials {Pn(z)}, where Pn(z) is of degree (n-1). Specifically

Q (2) - (1)

Pn(z) = Iq [ p— }, n=20,1,2,...

These polynomials Pn(z) are the associated polynomials
appearing in the theory of orthogonal polynomials. For convenience,
setting the leading coefficient of Qn(z) to be unity, we find the
following three term relations are satisfied. (See Erdelyi [1953],

Szego [1959] and Chihara [1978].)

s~
~

]
~—

i}

(z~»bn+l)Pn(z) - an+an_1(z),

~
N

A
[t}

n+1

(z+b_ )Q (2) - a . Q  (2),

with Qu(z) = 1, Py(z) =0, Q(2) = (z+q; o), Py(2) = ¢

The coefficients a1 are non-zero for all n > 1. If the

moment functional Iq[-] is positive definite, then all the 204

are positive and all the b are real.
n+l

These three term relations immediately suggest that the

quotient Pn(z)/Qn(z) must be the n-th convergent of the J-fraction
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Cp as as
+ - z+b, - z+b, - Z+Db, -
Z2%41,0 2 3 L

It also follows from the definition of Pn(z) that

P (2) 1 [QD(Z) —'Qnm]
Q@ C G al 2%

[ g 2]
qlz-t Q(z) qafz-t]

Expanding the second term on the right hand side above in terms of

negative powers of z, we find

P (2) ® 1
n _ 1 -n (n) _-n-1 N S -5-1
Qn(z) = Iq I:Z - t:l - {z HEN . } Iq SZ) Q_n(t)t z .

Hence, applying the orthogonality property (2.1.5), it follows that

Pa(2) .
Q,(z) q[

n) _-2n-l1
. t} + Yg )z 2 + lower order terms.

That is, the quotient Pn(z)/Qn(z) corresponds to the function given

by

1
S(Z) = Iq [;—_—:{].

The function S(z) is often referred to as the Stieltjes
function in the case where the moment functional is positive
definite. Expanding the function S{z) about infinity and using

(2.1.4) shows that it has the formal expansion
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S(z)

o, &1, S,
Z

This establishes the relation between corresponding J-fractions
and orthogonal polynomials.

As do those of the J-fractions, the denominator polynomials
of M-fractions also exhibit some interesting properties. The
remainder of this chapter is devoted to looking at some of these
properties.

(06}

Given a double sequence {cn} of finite valued complex

n=-o
numbers, we can define a linear moment functional I[+] on the vector

space of functions spanned by ...,t‘z,t‘l,l,t,tz,..., over a complex

field as

I[tn] =c,, mn= ce.,-2,-1,0,1,2,... . (2.1.9)

Hence, the Stieltjes function given by

1
S(z) =1 [z— t]’ (2.1.10)
has the following two formal power series expansions

£0(2) Z%Q'+%+%+ (2.1.11)

and

go(z) = SC_ TG,z - c gzt - . (2.1.12)

Brezinski [1980] has shown that for any polynomial Bn(z) of

degree n then, with the associated polynomial An(z) defined by
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B (z) -B (t)_l
n n
An(z] =1 [ z-t J’

the quotient An(z)/Bn(z), which is referred to as a Padé type

approximant of S(z), satisfies

A (z)
fo(z) - Bn(z) = ugn)z—n_l + lower order terms.
n

Hence, if we take Bn(z) to be the special n-th degree poly-

nomial satisfying the relation
1 [t‘“”s Bn(t)] = , (2.1.13)
= ugn)zn + higher order terms,

provided Bn(O) # 0. This can be seen as follows.

We have from the definition of An(z) that

An(z) 1 Bn(z) -Bn(t)]
B(2)  B_(2) e

-1_1- . II:Bn(t)]
z) .

z-t

0
P
/"
3]
[
ct
| S—
oe]
=]
~
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Expanding the right hand side about the origin, we find

A_(2) ) 1l [ o )
E;f}f': gol(z) - g;fﬁf * Y g%t ...} I LS:O B (1)t

s-1s
Hence, using the relation (2.1.13) immediately gives the required
result. Conditions for the existence of the polynomials Bn(z),
(n=> 0) will be considered in Section 2.2.

To show that the quotient An(z)/Bn(z) is the n-th convergent
of the M-fraction that corresponds to the formal expansions fy(z)
and gp(z), 1t is only necessary to show that An(z) and Bn(z) satisfy

the three term relations

A {z)

n+}

(24, )0, (2) oy

ZNNOP

=]
l

1,2, ...,

B (2) (z«-dn+1)Bn(z) + 1

N+ an;l(z),

n+}

with Bg(z) =1, Ag(z) =0, B1(z) = (z+by,g) and Aj(z) = cg.

Here, the polynomials Bn(z) are also assumed to be monic.

The polynomials An(z) and Bn(z) do satisfy these three term
relations and the proof is given in Section 2.3.

The polynomials Bn(z), n= 0, are n;t orthégonal, but the

functions defined for n= 0 by

-n
Rgn(z) =z BZn(Z)’
and

R2n+1(z) =z B2n+1(z)’



“21-

do form an orthogonal sequence, with respect to the moment functional
I[']. Some of the properties of these orthogonal functions IRn(z),
and their relations to the M-fraction that correspond to the
Stieltjes function S(z), were first considered by Jones and Thron
[1981] in a study that was carried out in parallel to the work
described in this chapter. In their study Jones and Thron only
considered bositive definite functionals.

Even though the polynomials Bn(z) are not orthogonal it will
be shown in later sections, that they do behave in mrany ways as
orthogonal polynomials. 1In view of this we will refer to them as

"pseudo orthogonal polynomials"'.



2.2  GENERAL PSEUDO ORTHOGONAL POLYNOMIALS

The polynomials Bék)(z), n=0,1,2,..., which we shall call

the k-th order pseudo orthogonal polynomials, are given by

n
k K } X
BV () I o) 27T, b xo (2.2.12)
and
0, 0 < s <n-1
I[tk‘n+55(k)(t)J = . (2.2.1b)
n
(.L)(k) S=n
n b

. . k .
Here, for convenience, the polynomials Bg )(z) are also considered

to be monic. That is bgk) = 1, for all n=> 0,

>

If k=0 then the resulting polynomials Bgo)(z), n 2 0, are the
polynomials Bn(z), n = 0, described in Section 2.1.
Using (2.1.9) we can write (2.2.1) as a system of simultaneous

N

)] .
equations in the coefficients of Bék’(z). That 1is,

(k) (x) (k) _

Ck-nbn,o ¥ Ck-n+1bn,1 B bn,n =0,
(k) - (k) (k) _
Ck—n+1bn,0 * Ck—n+2bn,1 e ® Ck+1bn,n 0,
(2.2.2)

(k) (k) (k) _

Ck—lbn,o * Ckbn,l e Ck+n—1bn,n =0,
- Y

c b(k) + C b(kj + ... +¢C b(kJ = w(k).

k' n,oC k+17n,1 k+n'n,n n



. .. k)
Now using Cramer's rule, the coefficient bg ; can be expressed as

3

p(K) | (K (k-n) p, (k=n)
n n

s n=20
n,n n+l

where Him) are the Hankel determinants given by (1.2.4).
Since, bék% is considered to be unity we must have
o) o ylkem) eem) sy (2.2.3)
n n+1l n

If we replace the last equation of (2.2.2) by

168 4 p ) L ) L g (K gy
n, 0 n,l n,n n o

and again apply the Cramer's rule we obtain

Ceon Skene1 Cto Sk
_ Ck-n+1%k-n+2 7 k41
(k) N _ > 4
B s =gy |- - , n>=>0. (2.2.4)
H
n C C C
k-1 k k+n-1
1 Z zn

Thus, we see that a condition necessary and sufficient for the

existence of the pseudo orthogonal polynomial Bﬁk)(z) is

HE) 2o, (2.2.5)

In (2.2.4) if we let z =0, then we have
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50 (o) - bﬁ%g = (0Pl g s (202,

Hence, a condition necessary and sufficient for the existence
of the polynomial Bﬁk)(z) with Bék)(O) # 0, is

yk-n)

N 40 and Hﬁk'(“‘l)) £0. (2.2.7)

Using the relation

(X (k) (k) _ k-(n+1), (k)
Ck-n—lbn,o + Ck—nbn,l oL+ Ck—lbn,n = I[t n )Bn (t)J,

in (2.2.2) we also find

Let us denote the moment functional which satisfies condition
(2.2.7) for all n > 0 as Ié?& and réfer to it as a "k-th order quasi
M-definite moment functional'; following Chihara's [1978] use of the
term quasi definite in the case of ordinary orthogonal polynomials.
Thus it follows that for a k-th order quasi M-definite moment
functional there always exists a sequence of polynomials {Bﬁk)(z)},
defined by (2.2.1), such that Bﬁk)(O) # 0 for all n=> 0. It will
also be shown that there always exists an M(k)—fraction associated
with the Ié%&[-].

We now define the two special functionals, namely the positive

definite and the positive M-definite moment functionals as follows.
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LEMMA 2.2.1 : The moment functional 1[-], defined by (2.1.9), s
satd to be positive definite, if all the moments C» n=...,-2,-1,0,
1,2,..., are real and, for any function w(t) belonging to the set of

functions spanned by L 1/t2,1/t,1,t,t2, ..., over a real field,
I{n(t)] > 0,

provided tﬁat m(t) Zs also non-negative but not identically equal to
zero for t € E C (-w, ®). Further, if the set E lies entirely on the
positive half of the real axis then the moment functional is also
called a‘positive M-definite moment functional.

Thé set E in Lemma 2.2.1 1is referrea to as a supporting set Qf
the positive definite or the positive M-definite moment functional.
We shall denote the positive definite and the positive M-definite
moment functionals as IP[-] and IP’M[-],'respectively. Hence, for

an Ip[-], we must have

0 2
2m s
L |t _2 £t >0
S=-N
n
2
for Y £ #0,
s=-n

where n is any positive integer and m is any integer, positive or
negative.
We note that this relation is equivalent to the positive

definiteness of the matrix given by
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¢ c .. € i
2m-2n 2m-2n+1 2m
c ce. C
C2m—2n+1 2m-2n+2 om+1
C C
| 2m 2m+1 C2m+2nd

From this we obtain, a necessary condition for the existence
of the positive definite moment functionai Ip[-], is (see for
example Wall [1948])

glZm20) 5 g gpg pl2mo2n) s g (2.2.9)
2n 2n+1

for all m and n = 0.
Similarly, for the positive M-definite moment functional

Ip,M[.]f we must have

£y 2
m S
Ip u® ) Bt >0
s=2
L2
for 2 gsz # 0:
s=23

where m,%;,%, are any positive or negative integers with £ < 2,.
Thus, from this we obtain, a necessary condition for the

existence of the positive M-definite moment functional Ip M[-], is

B

g1 5 o ana 5P > (2.2.10)
n n+l



for all m and n = 0.
It is seen from condition (2.2.10) that a positive M-definite
moment functional is also a k-th order quasi M-definite moment

functional.
With respect to the moment functional I[-], we now define the

two associated functions Oik)(z) and Aﬁk)(z) by

oﬁk)(z) = I[tk{Bﬁk)(z) - Bﬁk)(t)}/(z —t)], p >0, (2.2.11)

(Xx) _ 1 k., (k) k. (k)
An (z) = ;E'I[{Z Bn (z) -t Bn (t?}/(z-—t)}, n=>0. (2.2.12)

Then the quotients Oﬁk)(z)/ng)(z) and Aék)(z)/ng)(z) satisfy for

alln=0
(x)
Op (2 & Gy “k+n-1
*Tij———-= ;;—+ st .. T lower order terms,
B 7 (z) z z
n
= -c, _z - - ¢, z"%' 4 higher order terms
= —Ck_l k-2 e k-n g 1>,
A (2) A
—TET———-= fo(z) + Tt lower order terms,
B (z) z
n
= go(z) + uﬁk)zn_k + higher order terms.

To prove these results, we only need to consider (2.2.11) and

(2.2.12). From these it follows that
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OIEk)(Z) ] 1[ X J . thr(lk)(t)W
Bﬁk)(z) z-t
and

209 (5 =1[ 1 ] L 509 (]
Bﬁk)(z) z-t szgk)(z) z -t

Hence, expanding the right hand sides of these equations about the
origin and also about infinity, and then using the relation (2.2.1),
immediately gives the required results.

From (2.2.11) it is easily seen that the associated function
Oﬁk)(z) is a polynomial of degree (n-1). On the other hand the
associated functions Aék)(z) are not always polynomials but, even
though it may not be apparent from (2.2.12), they are polynomials

of degree (n-1), when n = k.
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2.3  SOME PROPERTIES OF THE PSEUDO ORTHOGONAL POLYNOMIALS AND

ASSOCIATED FUNCTIONS.

The most interesting and useful property of the pseudo

orthogonal polynomials Bﬁk?(z) and their associated functions Oﬁk)(z)
and Aﬁk)(z) is that when the corresponding moment functional is the
k-th order quasi M-definite moment functional, they all satisfy the

-following three term relations.

B - P BB, e
o = 44020 ¢ 2B, s
R I TR PV TE
for all n > 1. The coefficients n(k) and d(k) are given by
n+l n+l
nl) LW, K) s, 2.3.2)
and
x _ k) (K), (k)
disl = —nn+1vn_1/vn > n= L : (2.3-3)

where wik) and vﬁk) are defined by (2.2.3) and (2.2.8), respectively.
To prove these results, one has to consider first the poly-
. (X) - . (k) . . 21 of
nomials Bn (z) (n = 0). Since Bn (z) i1s a monic polynomial o
. . (X) (x) .
degree n, the polynomial given by Bn+1(z) - an (z)} is also at
most of degree n. Hence, this polynomial can be expressed in the

form
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{Béﬂ(z) - zBr(lk)(z)} = a0y {n(k)z +p(“’k)}sélfz(z)

n+l n n+l n-1

* pr(li‘;k)Brglf;(z) Foot pgn’k)ng)(z).

Multiplying by zk+r and using the functional I[-], gives

I[tk+r{8§§1(t)-tBik)(t)}}

_ I[tk+r{d(k)8(k)(t) N {niizt'kpi?;k)}B(k)(t)

n+l n n-1

+p0nm3&)u)+,..+p§uHB§)@ﬂ}, (2.3.4)

n-2 n-2

Therefore, by letting r = -1,-2,...,-n, we obtain

W0 200,00

(n,k)_(X)
18-y T O F e + 0 + Py vy o

T el [N T K RS S

If the functional I[-] is the k-th order quasi M-definite moment
functional then for all n 2 0 we must have the condition (2.2.7) to
hold. Thus, from (2.2.3) and (2.2.8), we see that the coefficients

(k) ()
n

w. and v are non-zero for all n 2 0, and so the coefficients

Pin’k) (r = 0,1,...,n-1) can be made equal to zero by taking
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LI L0 0
n n+l n-1
The result (2.3.2) follows at once from the fact wik) # 0 for
all r. This also establishes the three term relation (2.3.1a).
To find dﬁﬁi, we set T = n+l in (2.3.4) to give
S ONORINGNGE
n+l n n+l n-1
and from this (2.3.3) follows immediately.

The three term relation (2.3.l1a) can now be used to prove

(2.3.1b) and (2.3.1c). We have

n+l n n+l n-1

{Br(l]:)l(z) - 3K (t)}= [z+ dﬁ‘jﬂ{sflk) (2)- M) (t)}+ n (k) Z{B(k) (2) - B (t)}

(k) (k) 5 (k)
+(z~t){BI1 &)+nnuaplﬁ).
Multiplying by tk/(z—t) and using the functional Iq M[o], we arrive at

(k) - (k) 4 (X x) LK) (k) (x) (x)
On+1(z) - (z'+dn+l)on (z) + nn+1Z On—l(z) * wn * nn+1wn-1'
Thus, from (2.3.2), we obtain the three term relation (2.3.1b).
Now to show the relation (2.3.1c), it is only required to look

at (2.2.11) and (2.2.12). From this we obtain

Kk
____._} Brclk)(z) . z‘kolgk) ().

z -t
z -t

Aﬁk)(z) - z‘kr[



1
Since, on the right hand side above the coefficients of Bﬁﬁ)(z)
and Oik)(z) are independent of n, we immediately obtain from (2.3.12)
and (2.3.1b) the relation (2.3.1c).

We have for (2.3.1) the initial conditions

BN () = 1, B (2) = z+a(M, (dlck)=bl(lj%],
o (2) = o, o (z) = »

W,y -k |2 oL )k ()
Ag(z) =271 _EiTE_J’ AT (2) = A, (z)B1 (z)+z 0,7 (2).

The three term relations (2.3.1), together with the above
initial conditions, show that the quotient ng)(z)/Bik)(z) is the

n-th convergent of the M-fraction

ngk)z ngk)z nlgk)z

K

(x) (x) (X) (k)
z+-'d1 + z+d2 + z+ d3 + z+dl+ + ...

Ed

and that the quotient Aﬁk)(z)/Bﬁk)(z) is the n-th convergent of the
M(k)

-fraction
-k (k) (k) (k)
z“k I[zk-tk] . z ¢y n, z n; 'z n, 'z
z-t z*—dgk) + z+-d§k) + z+—d§k] + z-bdgk) + ...

By substituting from (2.2.3) and (2.2.8) respectively in

(2.3.2) and (2.3.3), we can write
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_ H(k-n) .H(k—(n~1))
n-1

(k) _
el © H(k_n) ‘H(k_(n_l)) s n=>1, (2.3.5)
n n
(k-n) (k-n)
- H « H
(k) _ n+l n
b1 T D). ey 0 Pl (2.3.6)
n n+1

The latter equation also holds for n equal to zero in view of
x) _ (&)
d,”" = bl,O'

As a consequence of the three term relation (2.3.1), many
results concerning Bﬁk)(z), Oék)(z) and Aﬁk)(z) can also be found.

For instance the so called determinant relations are

=
n-1"n n-1""""2 k g n=z,

(k) (k) (k) (k) _ n_(k)_(k) (k) . n-1
{On (z)Bn_l(z)- 0-"’B (z)} = {-1) non n.'c,z
(2.3.7)

{Aﬁk)(z)sifi(z)-Aﬁﬁz(z)gﬁk)(z)} - (-1)“n£k)n§fi...ngk)pkzn‘k‘l, n>2,

and the recurrence relation

n+l n i+l n

. 2 2
(K y o g + g () + n (B (K)o (K)
G ,1(2) = {Bn (z)} n: -d {Bn_l(z)} nons 2267 (2)
(2.3.8)

for n > 1, where

Gghn={%“%u%ﬂu)-%§%ﬂﬁmuﬁ, n>1.

. (k) . . . 9]
Here, the function Bn (z) is the derivative of Bn (z).
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From (2.3.8) in particular we obtain

2 2 2
(k) NG cn &) (k) [ (K) s (B (k) 2/, (K)
Consy (2) = {an (Z)} Mon192n {an-l(z)} "on+1"en * {an—z(z)}
(k) (k) (k) (K (x) ’
2
¥ Monka®on Pon-19oms2? {an-a(z)} T
k k k k k k 2
_— ngnzlngn) e n£ )ng )dg )22n—2{8§ )(z)}
2
+ ngglngi) ....... nfk)ngk)ngk)zzn{sgk)(z)} , (2.3.9a)
and
(x) (k) | ’ (k) (k) /LK) ’ (k) _ (k) (x) ‘
_ L0 ( , 2
Con' (2 = {an—l(z)} "an d?_n-l{BZn-z(Z)} "an nzn—lzé{gzn—acz)}
0.0 0,0 of 0 )
2 C
¥ Mon Ponl1Man-2%n 37 {an-q(z)} T
2
N N n(k)n(k)zzn_z{B(k)(z)}
2n " 2n-1 3 1
2
+ ngi)ngizl coeeonn ngk)ngk)ngk)dgk)zzn”szgk)(z)} . (2.3.9b)

For the k-th order quasi M-definite moment functional, the

polynomials B(k)(z) and the associated functions A(k)

0 » (z) also satisfy

the following property.
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B£k+l)(2) ) Bék)(z) . ngizgifi(z), n>1, (2.3.10a)

A§k+1)(z) = Aék)(z) . néﬁiAéfi(z), n>1. (2.3.10b)

These results can be easily proved by first considering the
polynomial {B£k+1)(z) —Bék)(z)} and then using similar analysis to
that of the proof of (2.3.1).

From (2.2.5) and (2.2.7) we see that for the k-th order quasi
M—definité moment functional, all the pélynomials Bﬁk)(z), (n=1),
exist and they also satisfy the property ng)(o) #0, (n=1). Omn
the other hand, for the same moment functional, all the polynomials
B£k+l)(z), (n # 1) do exist, but they may not satisfy B£k+1)(0) #0,
(n=1).

The relations (2.3.10) can be used together with the three

term relation (2.3.1) to obtain other three term relations such as

309 (2) = o0 () - x9N (o,

on-1 2n 2n-2
n=1,
(k) =y o8y (k+1) Xy, k) .
Aon (2) = (2+Dy A, 17 (8 - N A, (2,
(2.3.11)
(k+1) _ (k) (k) LK) (k) (k+1)
Boney (B = {[1 +N2n+1]z " D2n+1}B2n (z) - Ny ZZBLZn—l (z),
n=1,

(k+1) - (k) x) 1, (x) _2,(k+1)
Aner () = {(1'+N2n+1]z ¥ Dzn+1}Azn (2) = Nophp 2807 (2D
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where

I RO C IO AO)

2n 2n 2n °’ 2 +1 2n+1

(2.3.12)
p( _ (k) (k) = akK) (k)
2n 2n ’ 2n+1 2n+1 2n+2

Using the relations (2.3.5) and (2.3.6) and the Jacobil identity

(1.2.11), we can also write the coefficients N(k) and D(k) as
T T

- (2n-10))% (k- (2n-2)) yl-2n) (k= (2n-2))

(k) _J on 2n-2 N(k) _ 2ntl Hon-1
Nom = H(k-(zu-z)) H(k-zn) ’ 2n+1 {H(k—(Zn 1))}2 ’
2n-1 2n ” 2n
(2.3.13)
(k-(2n-1)) _ (k-(2n-1)) (k-(2n-1)) _, (k-2n)
p&) ~Hon Honoy p(K) T Honer Hon
an H(k—(zn—z)) H(k—zn) ? 2n+1 H(k—zn) H(k—(zn-l)) ?
2n-1 2n 2n+1 2n

As a consequence of the three term relations (2.3.11) we find

{ (k)( 8 1)( 2 - Atk 1)(2)8(1()(2)} (k) (k) N o gmeack

2n-1 2n 1 2n 1772 k
n=1,
(2.3.14)
(k+1) (k) (k) (k+1) LK) (K (k) 2n-k
{ oney (DByn (2) = A5 2 (2)B, 117 (2 )} =N LN N e 2T,
n=1,

and
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2n+1 2n+l| 2n 2n-1 ’ 2n+1 2n 2n-2

a2 K ) 2
«® (5 ={B§§)c23} ® {B(“)(z) K 1)(2\} ® ch)zz{B(k) (2)

3 ’ 2
REMeSIRICSM¢S ZZ{B(L) ) -zB(k+13(z)} .

2n+l1 2n 2n-1 2n-2 2n-3

c 2
- Ngileﬁﬁ) o Ngk)zzn{ng)(Z)} , (2.3.152)

) 2
k) (5 = {B(Ml)(z)} « NE) ) gy, (2.3.15b)

2n+2 2n+l 2n+2 2n+1

where

9,0 - (Do - P sl w) aso

and

k) () = {B'(k)(z)B(k+l)(z) _p/ kD) 5y () (z)}, n>0.

2n+2 n+2 2n+] 2n+1 2n+2

;



~-38-

2.4  ZEROS AND THE QUADRATURE FORMULA

From (2.2.6) and (2.2.7) we see that if thevmoment functional
is the k-th order quasi M-definite moment functional then z =0 is
not a zero of any of the polynomials Bﬁk)(z), (n= 1). Furthermore,
for this moment functional if we consider the determinant formula

(2.3.7), then for z = zgn’k), a zero of Bﬁk)(z), we have

i _ ’ n-1
o0 (oMK (o8 Ly (9,09 [T

i _ i n-k-1
Aﬁk)(zgn’k))Biﬁi(zgn’k)) = (—l)n lngk)n£§% ...n(k)ck{zgn’k)} .

Hence, we have the following result.

Theorem 2.4.1 : If the moment functional -1[-], defined by (2.1.9),
is the k-th order quasi M-definite moment functional, then for all
n = 1 the zeros of the pseudo orthogonal polynomial Bék)(z) are

different from the zeros of Bi%i(z), Oﬁk)(z) and Aék)(z).

Similarly, we can also show by using the formula of (2.3.14)

that the following hold.

Theorem 2.4.2 : For the k-th order quasi M-definite moment functional

all the zeros of Bgi)(z) are différenﬁ from the zeros of Bgifi)(z),

k k k+1 . 4.
Ogn)(z) and Agn)(z). Furthermore, any zerc of B§n+l)(z) which 1s not
equal to zero is also different from the zeros of Bgi)(z), Ogﬁif)(z)

and Ag:) (2).
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If the moment functicnal given by (2.1.9) is positive definite

. . . . k
and its supporting set E is an interval, then the zeros of Bg )(z)

exhibit a certain regularity in their behaviour with respect to E.

To discuss this behaviour let us consider from (2.2.1) the relations

Y
—

I [tk—ntk)(t)} =0, n (2.4.1a)

P

and

I {tk_nﬂ Bflk)(t)J =0, n>1. (2.4.1b)

Thus from lemma 2.2.1 that the functions {tanBék)(t)} and
{tk—n+1B£k)(t)} are not non-negative in the interval E. Now, suppose
E lies entirely on the positive half of the real axis, i.e., the
functional is positive M-definite. Then tkLn does not change sign

in E and so, Bék)(t) must change sign at least once in E. Let there

be r such points (i.e., zeros) zgn’k),zgn’k),...,zin’k)_(r < n) in E.
Then the polynomial given by
- h)
- “(t 2By e (oK) (t-zﬁn’k’)sﬁk) (1)

does not change sign in E, and we must have
k-n (n k) (n K (n,kK),.(K)
IP,M {:t (t - )(t - ) ... (t-zr )Bn (t)J #0

But if r < n, then the above result is a contradiction to

(2.2.1). Hence, there must be at least n points in the interval E
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at which Bﬁk)(t) is zero. Therefore, since ng)(z) is a polynomial

of degree n, we have the result:

Theorem 2.4.3 : If the moment functional given by (2.1.9) is positive
M-definite and its supporting set E, which lies on the posttive half
of the real axis, is also an interval, then all the zeros of the

polynomial ng)(z) are distinet and lie within E.

On the other hand if E is not necessarily on the positive half
of the rezl axis, then from (2.4.1a) for (k-n) even we have a similar
result, If (k-n) 1s odd then (k-n+l) is even. Hence, considering
(2.4.1b), we find that at least (n-1) of the zeros-of Bﬁk)(z) lie in

E. Summarising these results we obtain

Theoren 2.4.4 : If the moment functional given by (2.1.9) s positive
definite over a supporting interval E and 1f (k-n) is even then all
the zeros of Bﬁk)(z) are distinct and lie within E. If (k-n) is odd

then all the zeros of ng)(z) are real and distinct, but only (n-1)

of these zeros are certain to lie within E.

We have for the k-th order quasi M-definite moment functional
the relations (2?3.8) hold. Suppose this moment functional is
positive M-definite. Then from (2.2.10), (2.3.5) and (2.3.6) we find
that the coefficients ngii, (n= 1) and déi), (n > 0) all take
negative values, Thus, from (2.3.9) we have, if the moment functional

is positive M-definite then

G (2) = {Br'l(k)(z)ar(ll_‘)l(z) - B];E];)(z)BIEk)(z)} >0, (2.4.2)
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for n 2 1 and for all real values of z. An immediate consequence of

this result is (see Szego [1959]).

Theorem 2.4.5 : If the moment functional given by (2.1.9) s
positive M-definite then between any two zeros of Bi%%(z) there is a

zero of Bﬁk)(z).

We also have for the k-th order quasi M-defiﬁite moment
functional the relation (2.3.15) hold. Hence, if this moment
functional is positive definite, then from {2.2.9) and (2.3.13) we
note that the N£k) are all positive, provided k is even. Thus, from
(2.3.15) we find, if the k-th order quasi M-definite moment functiocnal

is positive definite then

kN () = {B;r(l}:)')(z)sg)(z) - Bzrr(lk)(z)B(kH)} >0,

2n+l 2n+1
(2.4.3)
0, = oD@l o - i @l @) > o,

for n > 0 and for all real values of z, provided k is even. Again an

immediate consequence of this result is (see Szego [1959]):

Theorem 2.4.6 : If the moment functional given by (2.1.9) s
positive definite and k-th order quasi M-definite, where k is even,

o g (k) (x) .
then the zeros of each of the polynomials BZn+1 (2), B2n+2(z), (n=20)

are all real and distinet. Furthermore, for all n = 0, between any

gizz(z) there s a zerc of B(k+1)(z) and between any

two zeros
of B 2n+1

(k+1) . PRNES)
two zercs of B2n+3 (z) there is a zero of 82n+2(z).
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From now on we only consider positive definite moment

functionals so that the zeros zgn’k) (i =1,2,...,n) of Bik)(z) are
real and distinct.
Let h(t) be an arbitrary function. Then we can express h{t)

by interpolation at the zeros of Bék)(z). That 1is,

h(t) = P_(8) + E (1),

where IPn(t) is the interpolating polynomial and IEn(t) is the
resulting error.
Expressing IPn(t) in Lagrangian form and the error‘IEn(t) by

the divided difference formula, it follows that

209 )

(n,k)
ENY hiz ")
T

h(t) =

[ s =]

Q)

! _ (MK

T

( )(t

r=1

N e L LRl

If h(t) is a polynomial of degree less than 2n then

h[t,zgn’k),...,zén’k)] is a polynomial of degree less than n (see for

example Phillips and Taylor [1973]). Hence, maltiplying by t' " and

using the functional Ip[-], we find the quadrature formula,

k-n R RS
Ip [t h(t)] = rzl A h(z 7)), (2.4.4)

where
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tk-ntk)(t)-

(n,k) 1
A = I |, r=1,2,...,n. (2.4.5)
A o Bn(k)(zin,k)) p (t _Zin,k))
If we take
; 2
h(t) Bl(lk) ©
t =
(k) . (n,k) (n,k), 1’
B, " (z J(t-zg )
a polynomial of degree (2n-2), then from (2.4.4)
r
(k) 2
L | ken By (8 : NCRS
P B;(k)(zgn,k))(t _Zgn,k)) i
and so
(1 Z]
B (1)
(n,k) 1 k-nj n
X = f I t — > (2'4‘6)
r Is (k)(zcn,k))_}z p RS J
n T T
for r=1,2,...,n.
Similarly, taking
2
h(t) "y 0
t) =t , >
5 (9 (8 (LB

a polynomial of degree (2n-1), also gives
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(n,k), (n,k) _ 1 k-n+1) °n

z, 0 A —{B'(k)(z(n’k))}z L)t _mt,z(n’k) ,(2.4.7)
n T . T

L

for r = 1,2,...,n.

Consequently we have the following.

Theorem 2.4.7 : If zgn’k),zgn’k),...,zén’k) denote the zeros of
Bﬁk)(z) then there exist n unique real numbers Xgn’k),kgn’k),...

Ain’k) such that

k-n T L 0,k (k)
Ip [t h(t)} = 21 A h(z, ),

whenever h(t) is a polynomial of degree less than or equal to (2n-1).

In addition <f (k-n) <s even then the numbers kin’k) are all positive
and ©f (k-n) Zs odd then they take the sign of the corresponding
zero z(n’k).

T

Following the theory of ordinary orthogonal polynomials, we
call these numbers Xin’k) the Christoffel numbers of ng)(z).
Now the following result concerning the zeros of

different pseudo orthogonal polynomial can be shown to hold

Theorem 2.4.8 : If (k-n) Zs even then between any two Zeros of

(k) o “ £ r(K) (k+1)
B, ~(2) there ewists at least one zero of B - (2) and B~ (2),

where v = 1.



Proof : Using the quadrature formula on Béilr(z), we have

Ir’{tk-(n+2r){tzrpn-lct)ng)(t)}}

n+2r )
= z )\.(n+2r:k){(zj(-n+21‘,l\))2rp

(n+2r,k), . (K), (n+27r,K)
i (z; )B, (25 )},

i=1 et
where pn_l(t) is an arbitrary polynomial of degree < (n-1).
. ) . k-n (k) 1
By writing the left hand side above as I_ |t p (t)RB (t)
P n-1 n |
we see that it is equal to zero. Hence, we have

n+2r " + +
2 x£n+2r,k){(z§n+2r,k))zrpnnl(Zgn 2r,k))B£k)(Z§n zr,k))} 0.

i=1

Here, if (k-n) is even then all the A§n+2r,k)

are positive.
Thus, by considering the fact that e 1(t) is an arbitrary polynomial
-

of degree less than n we can easily show that the sequence given by

n+2r

(x) ., _(n+2r,k)
(100 e, [,

i=1

changes sign at least n times. But, ng)(z) is a polynomial of
degree n and therefore, the proof of the first of the required
results follows.

The remaining result can similarly be obtained by considering
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Ip {tk+l—(n+2r-1) {tzr_zpn_l(t)ng)(t)}} - 0.

Let us now consider the quotients Oﬁk)(z)/Bék)(z) and
(

A(k)(z)/Bnk)(z). Since, under the k-th order quasi M-definite moment

n

functional the zeros of Oﬁk)(z) and Aﬁk)(z) are different from those

of Bﬁk)(z), these quotients have partial decompositions of the form

RGN T fn.x) ? n = 3 .
B(k)(z) i=1 z - (7K

n i

(k) (n,k)
Ar(lk)(Z)zlf wm}_*(ﬁ—k—)' n > [k, (2.4.9)
Bn (z) i=l z -zi 3

where

NCRS N PR SN O PR NN
1 n 1

S /By i=1,2,...,n, (2.4.10)

n K L 00 (@8 100

zgn’k)
i i

( ) i=1,2,...,n. (2.4.11)
In (2.4.9), n is taken to be greater than or equal to |k| because
only then is Aﬁk)(z) a polynomial of degree (n-1). Referring to

(2.2.11), it follows that
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—

oﬁk) (2) = tk{BrEk) (2) - Bflk) (t)}/(z —t)}

k-nf n (k), . _n (k) }
. t {t Bn (z) -z Bn (t) . I[tk_nB(k) &i}

z -t n () z -t

But, from (2.2.1) the second term on the right hand side is equal to

zero, and so

tk"“{tneflk) (2) - znsflk) (t)}
(z-1)

oflk) (z) =1

Hence, substituting z = zgn’k), a zero of Bﬁk)(z), we obtain

k-n_ (k)
n |t B (v
Ock)(z§n,k)) ) {Zgn,k)} I n

n i ¢ _Zgn,k)
i

Similarly, by considering (2.2.12), we find

k-n_ (k)
ROPRCR SN N RN G R S
n (Zl ) = Zi ——;—m—- .

Z_
1 J

Consequently, applying these results in (2.4.10) and (2.4.11) we

immediately find
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Theorem 2.4.9 : If the moment functional given by (2.1.9) <s
positive definite and k-th order quasi M-definite, then the

quotients Oﬁk)(z)/ng)(z) and Aik)(z)/Bﬁk)(z) have partial

decompositions of the form

0 (2 n o (,K)

™ =0 iy "L
B )(z) i=l =z -zgn’ )

n i
AWy q pmk

I(lk = 2 l(nk): n/’kl:
B )(z) i=1 z: °

n i

where

n
00 L O] 0
i \°1

1 1

n-k
mgn’k) = {zgn’k)} k(n’k) i=1,2,...,n.

(2.4.12)

(2.4.13)

From (2.4.13), we also note that the mgn’k) are positive for

i=1,2,...,n.

It has been shown by Jones, Thron and Waadeland [1980] and

Jones, Thron and Njasted [1983], that any positive definite moment

functional I_[-] can be given in terms of a bounded non-decreasing

function Y (t) with infinitely many points of increase, by



Ip[th = tdp(t), n= ...,-2,-1,0,1,2,...

The proof of this result using continued fractions, is given in
the next chapter. It would now be appropriate to end this chapter
with the analogous theorems to those of the separation theorems of

Tschebycheff, Markov and Stieltjes (see Szego [1959]).

(n,k)

Theorem 2.4.10 : If (k-n) Zs even then the zeros 2 s
r=1,2,...,n of Bik)(z) arranged in incréasing order, alternate with

. n,k ' .
a unique set of real numbers ug ? ), r=0,1,2,...,n, i.e.,

O N
n

e 0]

3

Z(n»k) < u(n’k) < Z(n’k), r=1,2,...,n-1,
T T T+1

where these numbers ugn’k) satisfy
u (MK
T . .
Ai“’k) - FMaye), rt=1,2,...,0.
u(n,k)

r-1

Proof : Let nl(z) and nz(z) be polynomials of degree (2n-2), such

that for r<n
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ﬂl(z}gn’k)) = P

0, if k = r+l,r+2,...,n

(2.4.14)
wl’(zin’k)) =0, 1if k = 1,2,...,r—1,r+1,...,n,
and
0, if k = 1,2, ,T
n,k)
TTZ(Z]E J) = 7 s
1, if k = r+1,r+2,...,n
(2.4.15)
2'(z£“’k)) =0, if k =1,2,...,T,T+2,...,0.

()

Z(n,k) Z(n,k) (nk) Z(h,k)
1 r r+1 n
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Hence, in the quadrature formula (2.4.4), choosing h(t) to be

successively ﬁl(t) and nz(t), we find that

. o)
N U TSN =[ 7, (1) a(e),

-co
and

(0]
Ai?;k) + xif;k) + ..+ xﬁ“’k) = { tk"nwz(t) dy(t).

-00
Since (k-n) is even it follows immediately that

L, (0,5

- ' r + Y r +
I Y (R K (v > ARLETIeS

-0 -0
(2.4.16)
and that
[es) o9}
(n,k) (n,k) {(n,k) k-n ' k-n
Apar FA Tt AL > t U, () dy(e) > T ody(t).
Z(n,k) Z(n,k)
T+l ~ T+l -

(2.4.17)

In (2.4.4) letting h(t) =1, we also find
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*
xf”’k) + xgn’k) boo# xén’k) =J M ay(e)

-0

Hence, subtracting the inequality (2.4.17) from the above relation

yields

()
T - 1
tk

)RR < Tap(). (2.4.18)

Thus we note from (2.4.16) and (2.4.18) that there exists z

.
unique number uin’k), lying between zin’k) and zﬁfiﬁ), such that
u(m)
Agn,k) . Agn,k) . s Aﬁn,k) - tk_ndw(t),

-0

and this concludes the proof of the theorem.
This result can be extended to the case where (k-n) is odd, as

follows

Theorem 2.4.11 : If (k-n) <s odd then the zeros zﬁn’K),

k .. , ‘s
r=1,2,...,n of Bﬁ )(z) arranged in increasing order, clternate with

. n,k
a unique set of real numbers u( ? ), r=20,1,2,...,n, where
T

WR) L )

o,
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and
o (oK)
Z(n,k)k(n’k) = tk_n+1 dq‘)(t), r=1,2,...,n,
T by
I (n, k)
Ur
Proof :

In (2.4.4), choosing h(t) to be the polynomials t-wl(t) and
t.m,(t), where m,(t) and m,(t) are the polynomials defined by
(2.4.14) and (2.4.15), and then using an argument similar to that of

the proof of the theorem 2.4.10 gives at once the required result.



CHAPTER THREE

~

J-FRACTIONS AND THE STRONG

HAMBURGER MOMENT PROBLEM
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3.1 THE MOMENT PROBLEM

In his paper Recherches sur les fractions continues of 1894-
95, Stieltjes proposed and solved the following problem.
Given the prescribed set of real numbers Cn’ n=20,1,2,...,

find conditions for the existence of a non-decreasing function y(t)

in the interval [0,w®) such that

thdy(t) =c, n=0,1,2,...

Stieltjes called this the problem of moments by referring to

00 fos
J tdy (t) and J t2dy(t), respectively the first moment (statical
0 0

moment) and the second moment (moment of inertia), appearing in
Mechanics. To solve this problem, now known as the Stieltjes
moment problem, Stieltjes makes extensive use of continued fractions

of the type

1 1 1 1

ajz + ap + azz + ay +

and

2] 22 23 o
Z+mM] - 2+ My - 2+ Mg - Z +My -

corresponding to the serles expansion

(e

1 =% ,8 %
p— dy(t) = s ) + -3 + ...



In the Stieltjes moment problem the range of integration is’
the semi-axis [0,m). If this range is extended to the whole axis
(-0, ®), then the resulting moment problem is called the Hamburger
moment problem, after Hamburger [1920,1921] who was the first to
propose and solve this problem. Imporfant results connecting the
Hamburger moment problem and many branches of mathematics were
achieved almost immediately by Nevanlinna [1922]; Riesz [1921,1922;
1923], Hellinger [1922], Carleman [1922,1923,1926] and Hausdorff
[1923]. Hausdorff gives criteria for the solution to the moment
problem in a finite interval. |

The development of M-fractions by McCabe ané Murphy [Eg,1976]
and the equivalent T-fractions by Jones and Thron [1977], enabled
Jones and Thron and Waadeland [1980] to consider a further moment
problem, which they called the strong Stieltjes moment problem.

The problem can be stated as follows.

For a given double sequence {cn}OO of finite valued real
numbers, find conditions to ensure the ;;gztence of 2 bounded non-
decreasing function ¢ (t) with infinitely many points of increase in

the interval [0,®) such that

thdy (1) = ¢, m=...-2,-1,0,1,2,... . (3.1.1)

Jones, Thron and Waadeland [1980] showed that a non-decreasing

function P (t) satisfying (3.1.1) exists if and only if



~-56-

(-n) (-n) .
Hn >0 and Hn+1 >0, (3.1.2)

(m)

for n = 0,1,2,..., where the Hr

are the Hankel determinants.
This condition can be obtained by making it equivalent to the

existence of an M-fraction

Cp NoZ N3z nyz
z+dy + z+dy + z+dy + z+dy +

which corresponds to the power series expansions

c c c : ’
fo(z) = ;§-+ ;%—+ ;%—+ cee (3.1.3a)
= - - - 2 _
go(2) c_y ¢,z - ¢ .2 vee (3.1.3b)

and for which ¢y > 0 and all the n_ and dr are negative.

By considering the convergence criteria of the Mffraction,
Jones, Thron and Waadeland [1980] aléo showed that under the condition
(3.1.2) the strong Stieltjes moment problem has either a unique
solution or twoAdistinct solutions.

The next step was to look at the strong Hamburger moment
problem, i.e., the strong problem in the extended interval (-co, o).
This problem although it seems a trivial extension tc the strong
Stieltjes moment problem, it is by no means straightforward to solve.
The inability to find any suitable continued fraction made the
problem even more difficult. Howéver, following Riesz [1921,1922,

1923] (who solved the Hamburger moment problem on the basis of



quasi-orthogonal polynomials), Jones, Thron and Njastad [1983a]
solved the strong Hamburger moment problem by considering a certain
type of function, which they cailed the quasi-orthogonal Laurent
palynomials. They showed that the necessary and sufficient condition

for the existence of a solution is

p2m 5 o aa g2 s g, (3.1.4)
2N 2n+1

forn=0,1,2,...

Jones, Thron and Njastad [1983b] made attempts to find this
condition by means of using continued fréﬁtions, but they could
only arrive at partial conditions (i.e., conditions which are
sufficient but not necessary).

Subsequent work in this chapter is concerned with obtaining
the condition (3.1.4) of the strong Hamburger moment problem via

continued fractions.
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3.2 J-FRACTIONS AND THEIR CORRESPONDENCE
A J-fraction is a continued fraction of the form

{a) (2)}%2  {ap(2)}?2  {a3(2)}? {ay(2)}?
Z+b1 - Z+b2 - Z+b3 - Z+bq - ...

(3.2.1)

where all bn are complex constants and each an(z) is a complex
function taking either the form @n + imn) or (ln + imn)z. Here,
ln,mn € R.

The J-fraction (3.2.1) is a J-fraction if all the an(z) are
complex constants (Zn + imn). In Chapter 4, a detailed study of a
special type of J-fractions (under the name positive definite 3-
fractions) is considered. For the purpose of the strong Hamburger
moment problem only real J-fractions, in which all m are zero and
all bn are real, are looked at in this Chapter.

It is well known that given a power series fp(z) as in (3.1.3a)
it is possible, under certain conditions, to obtain a J-fraction which
corresponds to this power series. Likewise, it is also possible to
find J-fractions which correspond to a power series fg(z) and to
another power series gp(z) given by (3.1.3b).

To find such a 3—fraction, first of all let us consider the
M(k)—fraction (1.2.6), with r-th convergent Mﬁk)(z) corresponding to
®(r+k) terms of the series fg(z) and ®(r-k) terms of the series go(z).
The integer function &(N) is defined by (1.2.7).

) (2,

Now let us define a new continued fraction, denoted by L

such that its r-th convergent Lgk)(z) is given by
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LS;) (z) = Mg;) (2),

(3.2.2)
(x) _ oy (k+1)
Lass1 (B = Myo 7 (205
for s = 0,1,2,... . Then it follows that Lgi)(z) corresponds to

¢ (2s+k) terms of the series fy(z) and ¢(2s-k) terms of the series
go(z), while ngzl(z) corresponds to ®(2s+2+k) terms of the series
fg(z) and ¢(2s-k) terms of the series gg(z).

Denoting the numerator and denominator of Lik)(z) by Pik)(z)
and Qﬁk)(z) respectively, and further asshming that Qﬁk)(z) is a

monic polynomial, we find from (3.2.2) that

Pz(?(z) =A§§)(z), n>o, 7
QM@ =8P @, n>o,
- (3.2.3)
(k) _ 4 (k+1)
st+1(z) - A2s+1 (z), n=0,
Q{9 @ = i@, n>o,

where Agk)(z) and Bik)(z) are the numeratgr and éenominator of
Mik)(z) as described in Chapter 1. Hence, using the three term
recurrence relations (1.2.9) and (1.2.10) for Agk)(z) and Bik)(z),
together with the relation (3.2.3), we arrive at the following three

term relations.



09 - oo, @ o,

®
V

1, (3.2.4a)

105 (2 - x®e® )

(k) - (
Qg (2) = (z+D; 7)Q; 7, 2s Lsla

P(k) (z) = {{1+ N(k)lJz + pK) }P(k)(z) - N(k) 22 P(k) (zJ,

25+ 2s+1j 25 25+1 2s5-1

s> 1, (3.2.4b)

(k) (z) = {{14—N(k) )z + D(k) }Qgi)(z) - N(k) z2-Q(k) (z),

2s+1 2s+1 25+1 2s5-1

where

N 2 n 09,00 500 ()

2s 2s 2s ’ 2s ?

(3.2.5)
k) _ &) (&) (k) _ () (k)
Npse1 ™ Pasin/ds Drssr = doshy * Nos+2”
As initial conditions for (3.2:4), we also find that
k k k
M@ =1, P = u{W ),

(3.2.6)

oz = 2+ ™y = @™y, pM () = e e () 4 e /2K

Thus, from the recurrence relations (3.2.4) and the initial

conditions (3.2.6), it immediately follows that
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k
. ¢, /z (k) (k) 2 (k
1By = u® ey » o Moo Notr N )
20~ zp{F) My w p{R) L zip(R)
(3.2.7)

In particular, when k=0, it follows that

L(O)(Z) _ _<g N, N3z2 Ny N5z2
z+Dy - z+Dy - (1+Nz)z+D3 - z+Dy - (1+Ng)z+Dg5 - ...’
(3.2.8)
where
0
Noo=N% ana b =0 for a1l r>1.
r+l T+l T T

After a suitable equivalence transformation the continued

. 0 .
- fraction L( )(z) can be written as

N3 ,2 Ny Ng
L(O) (z) = Cp N2 1+N3 1+N3 1+Ng
z+Dy - z+4Dy - - Dy - z+Dy - .+ Dg
1+N3 1+Ng

(3.2.9)

Comparing (3.2.9) with (3.2.1) we see that L(O)(z) is also a
J-fraction. If all the Nr are positive and all the Dr are real then
L(O)(z) is also a real J-fraction. In addition to being a 5—fraction,
L(O)(z) also has another important property in that its partial

numerators are alternately constants and variables. As a consequence,

as is shown in the next Chapter, this continued fraction possesses
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some interesting convergence properties.

In a J-fraction the denominator of the n-th convergent is
always a monic polynomial of degree n. But in the case of the J-
fractions of the form (3.2.1) this is not so. However, in the
continued fraction (3.2.8), which is in fact equivalent to a 3—fraction,
all the denominator polynomials are monic. For this reason, continued
fractions of this form which will also be referred to as 3-fractions,
are found to be more practical.

For the derivation of the J-fraction L(O)(z) it was assumed
that the M-fractions M(o)(z) and M(l)(z) both exist. In other words,
from (1.2.5), the following condition is satisfied

(-n) (-n) (-(n-1))
Hn #0, Hn+1 # 0 and Hn+1 £0

for n = 0.
But, we have shown in Chapter 2 that for the 0-th order quasi

M-definite moment functional, i.e., when the condition

("n) (—Il) £ >
Hn # 0 and Hn+1 #0, n=0, (3.2.10)

is satisfied, then there exist polynomials Pn(z), n 2 0 and Qn(z),
(n 2 0) such that they satisfy three term relations of the form
(3.2.4). Furthermore the quotient P2n(z)/Q2n(z) is the 2n-th

(z)

(0) . .
convergent of the M " “-fraction and the quotient P2n+1(z)/Q2n+1

corresponds to 2n+2 terms of the series fg(z). Since, the condition

(3.2.10) is not sufficient to ensure that Q (0) # 0, the

2nt+l}

correspondence of P (z)/Q2n+1(z) to the power series gg(z) is

2n+1

not determined.



Thus we note that under the condition (3.2.10), the J-fraction
(3.2.8) still exists, but with a weaker correspondence behaviéur fhan
as given by (3.2.2).

The coefficients Nr and Dr of the J-fraction (3.2.8) can be

given in terms of the Hankel determinants as follews.

w(-(2n-10)]% (- (2n-2))
20 2n-2
2n H(—(zn—z)) H(-zn) g
2n-1 2n

1
o]
WV
et

_yt-en-1))  ,(-(2n-1))
2n 2n-1
2n yl-(en-2)) (-2n)
2n-1 *on

» (3.2.11)
Wyt onct ) §
N2n+1 = {H("(Zn“l))}z 3 ‘ n 1:

2n

_gl-(en-1))  ,(-2n)
_ 2n+1 2n
2n+l H(—Zn)- H(—(anl)) ’
2n+1 2n

From (3.2.11) it follows that if

(-2n) (-2n) (-(2n-1))
B “0 #0, H U0 #0 and Hp # 0, (3.2.12)

for all n > 0, then all the partial coefficients are finite and,
further, the numerators Nr are all non-zero.
The condition (3.2.12) is in fact sufficient for the existence

of the J-fraction (3.2.8). To understand this, we consider a
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different approach to the evaluation of the coefficients of this
fraction.

Given the J-fraction (3.2.8), the numerator polynomials Pn(z)
and denominator polynomials Qn(z) of the n-th convergent Ln(z) satisfy

the recurrence relations

pZS(Z) - (Z+D?_S)P25—1(Z) h NZSPZS—Z(Z)’
s =1,
Qs(2) = (240,00, ,(2z) - N, Q0 _,(2),
b (3.2.13a)
- . _ 2
p25+1(z) - {[1 +N25+1}Z * D25+1}P25(Z) N25+1Z Pes—l(z)’
s =1,
- _ 2
Q25+1(Z) - {[14.N25+1JZ * D25+1}Q25(Z) N25+lz st—l(z)’ )
with initial conditions
Qo(z) = 1, JPolz) = 0,
(3.2.13b)
Q1(z) = z+Dy, P1(z) = cg,

From (3.2.13) we note that the numerators Pn(z) are polynomials
of degree (n-1) and the denominators Qn(z) are polynomials of the

form
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QO(Z) =1, Ql(z) = z +Dy,
n
2n
= - >
Q2n(z) z * -7 Z (D2r~1D2r Nzr)’ n 1,
r=1
_ 2n+l P
Q2n+1(z) =z e ¥ (1*'N2n+1)Q2n(O)L * D2n+1

Q,,(0),

n

=1,

b (3.2.14)

Furthermore, using the same recurrence relations, it can also

be shown that

__(z+Dy)cy

A NGOk

(z+D2n+2)N2n+1N2q...N2c0 P
Lynaa(2) = L,p(2) = ‘ T
2n+2 2n Qyre, (DO, (2)
2n
L (z) -L (z) = {(1+—N2n+3)z+'D2n+3}Nzn+zNzn+1"'NzcoZ
2n+3 2n+l Q2n+3(z)Q2n+1(z)
° 2n
N N ...N c z
2n+2 2n+l 20
L (z) - L (z) = , n=0.
2n+2 2n+1 Q2n+2(z)Q2n+1(z)

+(3.2.15)

Since Qn(z), (n 2 0) are monic polynomials of degree n, expanding

the right hand sides of the equations in (3.2.15) about infinity

yields
' -1
L,(z) - Lg(z) = cgz  + lower order terms,
_ ' »_=-2n-1
Loz (B) = Ly (2) = AN, Np e oNyey iz

+ lower order terms, n =1,
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) ~201-3
- = J J 7 ~ ~ - <
L2n+3(z) L2n+1(z) {(14-N2n+3)h2n+2...h2co}z + lower order terms,
n =0,
L (z) - L (z) = {N N . .N ¢ 272" % 4 Tower order terms
2n+2 2n+1 2n+2 2n+1 270} ’

n=0.

Hence from above we see that by choosing the coefficients
Nn(n 2 2) and Dn(n > 1) appropriately, the convergent L2n(z) of the
J-fraction (3.2.8) can be made to correspond to 2n terms of the

series f3(z) and the convergent L2n+1(z) can be made to correspond

to (2n+2) terms of the same series f3(z). That is,

£,(2) - LG(z) = Yon)Z—2n~1 + lower order terms, n > 0,
(3.2.16)
__(2n+#1) -2n-3 ) S
fo(z) - L2n+l(z) =Y, z + lower order terms, n=0,
where
(0) _ (2n) _ >
Yy =Co Yy = N2n+1N2n - Nzco, n 1,
(3.2.17)
(en+1) _ ; ) >
Y; = (1+ N2n+3)h2n+2N2n+l ces NZCO’ n=0

Multiplying the equations of (3.2.16) by Q2n(z) and Q2n+1(z)

respectively, gives

QZn(z). fo(z) - PZH(Z) = Yfzn)z_l + lower order terms, n=0,
(3.2.18)

(2n+1)z-2

1 + lower order terms, n = 0.

QUne (2) - £,(2) - P, (2 =9

Now, going back to the equations of (3.2.15), consider the
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expansions of the right hand sides about the origin, first making the

assumption that

B~

= - N >
Q,, (0 ©,. D, - N, )#0, forall n>1. (3.2.19)

r=1

Then, we have

Lo(z) - Lo(z) = + higher order terms,

Q (0)
D2n+2N2n+1N2n"‘N2Co 2n
2n+2( z) - ( ) = q n+2( )Q o z“" + higher order terms,

n=1.

From this it follows that the convergent LZn(z) of the J-fraction
(3.2.8) may also be made to correspond to 2n terms of the power series
go(z). Furthermore, we also have from (3.2.15)

Qo(z) . La(z) - Pp(2) =

+ higher order terms,

Q (0)
Dzn+2N2n+1N2n"°N2CO on
QZn(Z)' 2n+2(2)- p (Z) = Q2n+2(0) z° +higher order terms,
n=1,
( L (z)-P (z) = 2222 2n+1...N2CO 22" ¢ higher order terms
Qe (2« Lpnap (2D = Py (20 = sy O] g o
n=0.
Thus, if L (z) corresponds to (2n+2) terms of the power

series go(z), we must also have from above that



Q,,(z) . go(z) - PZn(z) = pgzn)zzn + higher order terms, n >0,
- (3.2.20)
2n+1 .
Q2n+1(Z)- go(z)-'P2n+1(Z) = og n )zzn + higher order terms, n > 0,
where
b(o) - _Docy )
1 DD, - Ny °
(2n) D2n+2N2n+1Nzn T Nzco
rzl (D2r—1D2r h Nzr) g (3.2.21)
(2n+1) _ NoneoNans1Non -0 N8 > 0
1 = nEl 3 n =# .
rzl (pr_1Por = Nyp) .
Therefore, writing Qn(z) and Pn(z) in (3.2.18) and (3.2.20) as
_ (@ n (n) _n-1 (n) >
Qn(z) =q, "z + qn—lz T q0 , n=0,
and

- - p(n) n-1 (n) n-2 (n) >
Po(z) =0, Pn(z) = Pn—lz + Pn-zz S PO , n=1,

the following four systems of linear equations are obtained.



(2n)

(2n)
RN

(2n)
9 HERTAT

(2n)

RS HERRS |

[od q(zn) +

02

c q(2n+

1)
1% Te

(2n+1) .
h ...

q(anl) ‘e

(2n+1)
c
0o 9 Taeet

1°1

{2n+1)
Coql + .

(2n)
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+ +

q

(2n)

2n-2 '2n-1

~ (2n)
2n-3q2n—1

(2n)
€o%n1 ¥

(2n+1) + C
2n+1 *2n

(2n+1)
+C
2n+1 '2n

. (2n+1)
2n-1"2n

(2n+1) .
0 2n

(2n) |,
2n-1 '2n-1

2nq

+
2n—1q

+
2n-2

ClC{

ot

(2n+1)

2n+2 2n+1

(2n+1)

2n+2 "2n+1l

(2n+1) -

2n '2n+1

(2n+1) _

1 2n+1

(2n+1) _

c0q2n+1

(2n) _
oan 1
(2n) _ _(2n)
on Py :
(2n) _ p(zn)
2n L7 (3.2.22)
(2n) _ _(2n)
on  ~ Popooe
(2n) _ _(2m)
2n~ f2n-17|
_ Yfzn+1)’\
=0,
(2n+1)
P s
0 L (3.2.23)
(2n+1)
T Yon-1 2
_ . (2n+1)
2n ?
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(2n) {(2n) (2n) (zn) (2n) _ (2n)
Cona1% T %o T T T S T S % T Sy T T e
(2n) (2n) ' (2n) (2n) _ . (2n)
~¢_an% T To2n+l ) T T %% T S %n 0 = Pona)
(2n) (2n) (2n) (2n)
~2n+1% —on+2h -1%n-2 2n-2
_ (2n) (2n) _ . (en)
€_2% Y Py
(2n) _ . (2n)
“C1% 0
and
c (2n+1) (2n+1) (2n+1) (2n+1)
“Y.2n-1%0 T Y-oonn T -2*2n-1 -1'2n
_ _(2n+1) __(2n+1)
- pl + 2n 3
(2n+1) _ (2n+1) _ _ (2n+1)  _ (2n+1)
“To2nto -2n+1 '1 -1t2n-1 on-1 ’
(2n+1) (2n+1) (2n+1)
“C 2% - Ca% Py ’
(2n+1) _ . (2n+1}
_1q - po

>

3

3

b (3.2.24)

L (3.2.25)




7]~

Now, subtracting each equation of (3.2.24) from the

corresponding equation of (3.2.22), gives the system of equations

(2n) (2n) (2n) (2n) _ (2n) )
—on-1% T oY T %00 T %y T T T
(2n) (2n) (2n) (2n) _
ConYo Tt CoommYy oo MO0 Y S, T =0
(2n) (2n) (2n) (2n)
_ q + C_ q + ... v Ccq 0 +Cq = 0,
2n+1 10 2n+2 1 0'2n-1 17°2n L (3.2.26)
(2n) (2n) | (2n) (2n) _
€% T CAr Tt e T O %) P Conn %y 0 T 0
(2n) (2n) (2n) (2n) _ _(2n)
% T T 9% 7 “on-1%n-1 7 Conon - T2 0
Hence, by remembering qgin) = 1, and applying Cramer's rule to
the last 2Zn+l equations, we obtain
-2 -2n
Y1(2n3 - H£n+rll)/H£n ), n>o, (3.2.27)

while applying Cramer's rule to the first 2n+l equations we find

Also from (3.2.26) taking the last 2n+l equations and

replacing the last of these 2n+l equations by



1. qun) . 2 q£2n) . .
we obtain
1

Q2n(z) = HS-ZH)
Zn

From this it follows that

n

Q, (0= ] (©
r=1

for n> 1.

. +

D
2r-1 2r
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2n-1_(2n) 2n_(2n) _

z on-1 & 2n QZH(Z)’

€ _2n+1 o

: , n=1

C. e

0 2n-1

Z .. 220

_ _ y(-(2n-1)) ,,,(-2n) "
N, ) = H” /Hy (3.2.29)

Now, subtracting each equation of (3.2.25) from the

corresponding equation of (3.2.23), provides the system

(2n+1) (2n+1) - (2n+1) (2n+1) _ (2n+1)
¢_2n-1% -2nt1 e T C 9, T Co%npa1 T T TP
c (2n+1) . (2n+1) .+ {2n+1) . c (2n+1) _ 0,
-2nto -2n+1'1 0'2n 1'2n+1
(2n+1) (2n+1) (2n+1) (2n+1)
+ ... + + =0
¢ _2na1% T ¢ oon+2ty “1%n 2%2n+1 ’
{2n+1) (2n+1) (2n+1) (2n+1) _
€040 BRSS! Toee ¥ Cpfon T Con+1%n+1 0,
: 2n+1
(2n+1) q(2n+1) . . (2n+1) . (2n+1) _ Y( n )_
1% 211 2n+1 '2n 1

2n+2 2n+1l

2
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Consequently from this we find that

Y(2n+1) - H(-zn)/H(—zn)

1 2n+2 ' 2n+1 n =0, (3.2.30)
2n+1 ~-(2n+1 -2n
p£ ) = H§n£2 ))/H§n+1)’ n =0, (3.2.31)
and
Coon  Slopmn ¢
Q (2) = —2— |: : : > 0
on+1 e N : . s M7
2n+1 0 1 et 2n+l
1 Z 2n+1
from which
¥ (-(2n-1)) ,,,(-2n)
= - = g\~ - - >
Q2n+1(0) D2n+1 r§1 (DZr—lDzr Nzr) H2n+1 /H2n+1 ? 0s
(3.2.32)

for all n = 0.
The only assumption we made to arrive at these results was

that Q2n(0) # 0 for all n > 1. Hence, from (3.2.29) we must have

Hz(;(zn'l)) 40, for all n>1. (3.2.33)
Now, substituting for an), pfn) and Qn(O) the previous

expressions in terms of the coefficients Nr and Dr we immediately
arrive at the relations (3.2.11) for these coefficients. Thus by

summarising the above results, we obtain
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Theorem 3.2.1 : If the condition (3.2.12) holds, ther there exists
a 3-f?action of the form (3.2.8) with coefficients N. and Dr given
by (3.2.11), such that its 2n-th convergent correspoﬁds to exactly
2n terms of the series fy(z) and at least 2n terms of the series

go(z), while Zts (2n+l)-th convergent corresponds to at least 2n+2

terms of the series fy(z).

The correspondence of the (2n+l1)-th convergent of this J-
fraction to the series gy(z) has not yet been considered. From

(3.2.20) it follows that

g (z) -L (z) = ..,_l,rzy {pfzn+1)zzn

+ higher order terms n=0.
0 2n+1 Uoey & }’ -

Now let us suppose that for a given m, Q (0) is not equal

2m+1

to zero. Thus, we can write

(2m+1)Z2m

(z) = ¥

go(z) - L + higher order terms.

Using (3.2.32) we find that the condition required for this to
('(Zm—l)) # 0. .

be the case is H
2m+1

But for any given m, if Q (0) = 0 and Q£m+1(0) # 0, that

2m+1

is from (3.2.14) 1 + N2m+1 # 0, then we have

_ (2m+1)zzm—1

go(z) - L2m+l(z) = ul,l + higher order terms,

and the additional conditions required for this to be the case is

found to be HC- (2™ 1)) - g ana y(-(2m-2)) £ 0.
2m+1 om

In particular if the condition
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pi-2m 5 6 ang w2 s o Lo
2n 2n+l

is satisfied then using the Jacobi identity (1.2.11) we also find

that

p-(2n-2)) 45 s,
2N

Thus, summarising these results, we obtain

Theorem 3.2.2 : If the condition

(-2n) (-2n) (-(2n-1)) , > |
H2n+l >0, HZn > 0 and H2n #0, n=0, (3.2.34)

holds then there exists a 3—f¥action of the form (3.2.8) with
coefficients N and Dr gtven by (3.2.11), such that its 2n-th
convergent corresponds to exactly 2n terms of the series fy(z) and
at least 2n terms of the series gg(z), while its (2n+l)-th convergent
cofresponds to exactly (2n+2) terms of the series fy(z) and at least

(2n-1) terms of the series gg(z).

If we also consider a 3-fraction of the form

{c_1}¥2/c, N5 z2 N3 N, z2 N:
*

* * * * * *
z +D, - (1+N)z+ D, - z+D; - (1+NL+)Z+Dl+ -z+D, - ...

where

,» (3.2.35a)
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: \
p(-2r) . y(-(2r-2))
N* _ 2T 2r-2 r>1
2r H(—(ZI—I)] 2 ’ ?
or-1 ‘
. _ H(-zr) . H(—(Zr—l))
D - 21r-1 2r r>1
or T TFGr1)) (em) ’
2r-1 to2r
3 (3.2.35b)
. H(—(2r+1)) 2 H(—zr)
N _ j2r+l 2r-1 r>1
2T+1 H(—zr) H(-(2r+2)) ’ ’
27 2r+l]
. _yl-Cere1))  (-(21r+1))
D - 2141 2r r>0
2T+] g2ty (-(2r+2)) ’ ’
2r Toi2r+l J

then we also have

Theorem 3.2.3 : If the condition

(-2n) (-2n) (-(2n+1)) >
Hy oy >0, H_“Y >0 and H) - #0, n=>0 (3.2.36)

holds then there exists the 3—fraction (3.2.35) for which the 2n-th
convergent corresponds to exactly 2n terms of the series fy(z) and
at least 2n-1 terms of the series go(z), while the (2n+l1)-th
convergent corresponds to exatly 2n terms of the series fy(z) and at

least 2n+2 terms of the series go(z).



3.3  METHODS OF DERIVATION

Given the power series expansions f;(z) and gy(z) then the

(0)

coefficients n_ and dr of the corresponding M~ “ -fraction, when it
exists, can be obtained for example by the gq-d algorithm (1.2.8).
These coefficients in turn can be used in the relations of (3.2.5)
to arrive at the coefficients of the J-fraction (3.2.8). Likewise
using a similar relation the coefficients of the J-fraction (3.2.35)
can also be obtained.

A draw back in this method of derivation is that the M(O)—
fraction might not exist, .even then the 3~fraction exlists. This is
because the required condition for the existence of a J-fraction is
only part of the condition required for the existence of the M(G)-
fraction. An interesting method of obtaining a 3—fraction, whenever
it exists, is the corresponding sequence aigorithm of Murphy and
O'Donohoe [1977].

Let us consider the J-fraction (3.2.8). This fraction can be

generated by the recurrence relations
hy(z) = ¢o - (z +D1)hg(2),

h (z) = -N__h

2n 2n 2n—2(Z) - (Z+D2n)h

2n-1

h (z) = -N zzh2n_1(z) - {(1+N2n

2n+l 2n+1 +1

=
)z-+D2n%1}h2n(z), n=1,

/

such that it follows that

(z), n=>1, b (3.3.1)



! 2 N

h (Z) - Cq I\2 _ N3Z 2n ,n>1,

0 z+D) - z+Dy - (1+N3)z+ D3 - ... - 24~D2n + .h2n(z)

hzn—l (2)
and that
2

h (2) = Cyo No N322 N2n+lz

0 z+D; - z+ Dy - (14N3)z+ D3 - ... - (1+N2n+1)z+D2n+1 + h2n+l(z)’

AhZH(Z)
n=1.

Furthermore, from (3.3.1) and the three term relations (3.2.13),

it also follows that

Q (2) - hy(z) - P (2) = (-1)"h (2), n>0. (3.3.2)

Hence, if we denote the power series expansions of hn(z), about
the origin and about infinity, by gn(z) and fn(z) respectively, then
for the continued fraction to satisfy the correspondence properties

given by (3.2.18) and (3.2.20), we must have

fgzn)z—l + fon)Z—z + fgzn)z—3 + ..., n=0,

o (2) =
_ (2n)_2n (2n) _2n+1 {(2n) _2n+2 <
an(Z) =g, 2" v g2 + g,z + ..., n=0,
b (3.3.3)

f (z) = f(znﬂ)z_2 + f(2n+1)z—3 + f(2n+1)z-q + ..., n=0,

2n+1 0 1 2

_ (2n+1) _2n (2n+1) 2n+l1 (2n+1) 2n+2 >

g2n+1(z) = gO z * gl z + g2 yA + , N 0,
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where

0
f(O) = ¢ and g( ) = -¢ , for r=0.
T T r -r-1

From (3.3.1) we find, by taking expansions about infinity and

the origin, that

f1(z) = ¢cg - (z+Dy)fp(2),
go(z) = cqg - (z+Dy)go(z),
Fon(2) = Nt 0,2 - (2 Dzn)fzn-l(z)’
n=1,

En(2) = Ny8on ,(2) - (24D, ey, (2),

! = - 2 -
f2n+1(z) N2n+1Z f2n—1(z) ta- N2n+1)z*'Dzn+1}f2n(Z)’

n=1
= _N 2 -

)4y (2 N, e 2 gzn_ICZ) {1+ N2n+1)24-02n+1}g2n(2),

Therefore, if we use (3.3.3) in the above equations, then by
equating the corresponding coefficients the following (corresponding

sequence) algorithm is obtained.

0 0
p, = -£{0/£(0),

1

T ) O S S
Tr r+2 1 1+l

(1) _ (€0 (0)
g, " = fy 7 - Dy s

a _ _ (@ (0) >
g, = -8.;-Dbel7, =1,

_ (2n-1),2 (2n-2) (2n-1) {zn-2) (2n-1)
N, = {gQ P/ g, gy - g g, 1,
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N (2n-2), (2n-1)
Don ™ Nongo /8, ;

(2n) _ (2n-2) {2n-1)
£ = Nt - 5 ’

f(Zn) - N glen-2) f(2n~1) - D f(Zn—l), r>1,
T 2n r T 2n r-1
(2n) _ (2n-2) (2n-1) (2n-1) S
Er T TNon8ran - D2n T+2 T8y 0 T 0,
_ (2n) ,, ~(2n) (2n-1)
N2n+1 - _fo /{fo * f0 Ly
D - _ N f(2n—1) ¢ (1+N )f(2n)./f(2n),
21+1 2n+171 2n+1° 1 0
f(2n+1) - f(zn—l) _ QN )f(Zn) - D ‘f(zn)’
T 2n+1 T+2 2n+17 T2 2n+1 T+l
(2n+1) _ (2n-1) (2n)
& - °N2n+1go - D2n+1go :
(2n+1) _ (2n-1) (2n) (2n)
T - °N2n+1gr " Yone18r - (1+'N2n+1)grv1 ’

forn=1.

As an example consider the power series expansions

=S, &2, %
fo(z) o = + -3 + ...,

go(z) =-C_ - C_,z-cC 2% - ...,

-2 -3

where the coefficients c. are given by

‘v = Vor |
-

T =20,

o8 _ 2 2 :
e [Tr FEEUN g L 5 1.0,1,2,... . (3.3.4)
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Using the method of integration by parts, these coefficients

c. can be shown to satisfy

Cy = 1,
Cose1 = 0>
3 (3.3.5)
= (2s+ +
Cogen = (25¥1)Cyg + C o0 s
Cs-2 7 S J

for all s = 0.

For these coefficients, the corresponding M-fraction does not
exist. Therefore, the method of using the relation (3.2.5) to obtain
the coefficients of the J-fraction (3.2.8) is not applicable. On
the other hand using the above corresponding sequence algorithm, we

get

to give the J-fraction

2 2 2
z 2z 3z
-2z - 3z 4z (2.3.6)

N

1 1 1
z z z

N

Here, since Dn = 0 for all n, we must have from the relation

(3.2.11) and the condition (3.2.34)

H(-(2n+1)) =0 and H(—(Zn-l)) =0
2n+1 2n+1
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for all n 2 0. Hence, it can be secen from theorem 3.2.3 that in

this case the corresponding J-fraction (3.2.35) does not exist.



3.4  J-FRACTIONS AND THE STRONG HAMBURGER MOMENT:PROBLEM

The problem in study, ''the strong Hamburger moment problem',

can be stated as follows.

Given a double sequence of finite valued real numbers {cn}zi_m
find conditions to ensure the existence of a bounded non-decreasing

function Y(t) in the interval (-oo, ®) such that

[es]
[ t"dy () = ¢, M= ...-2,-1,0,1,2,... . (3.4.1)

-0

If we first assume that there exists such a bounded non-
decreasing function y(t), which is sometimes called a solution,

then we must have for all n = 0

[e's) n 2
J Yoogtthdy(e) > o, (3.4.2)
r=-n T
-
whenever
n
2
I &.>0
r=-n

Hence, using the relation (3.4.1) in (3.4.2), we obtain the

quadratic form
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3 i c cen 17 7]
[;-ng—n+1 gn} C—Zn -2n+l C0 g—n
c o vees C
-2n+1 -2n+2 Cl g-n+1
. >0, n=0
c C C 3
| 0 1 2n_ | 'n )

Hence for all n = 0, the above square matrix must be positive
definite. The positive definiteness of this matrix is in fact

equivalent to the condition (see Wall [1948])

pi-2m 5 o,

on+l -1 r=20,1,2,...,2n+1. (3.4.3)

Thus it follows for all n = 0 that the above condition 1is
necessary for the strong Hamburger moment problem to have a solution.
Let us now consider the J-fraction (3.2.8). For this fraction

we have from the three term relations (3.2.13) that

_ 2n-2 >
{Pzn(Z)an—l(Z) - Pzn—1(Z)Q2n(Z)} - Nanzn—l Nzcoz > n=
, (3.4.4)
o 2n >
{P2n+1(Z)Q2n(Z) h Pzn(z)Q2n+1(Z)} - N2n+1N2n Tt NzcoZ > n=1

In addition if

K_(2) {QT;(Z)Q“_I(ZD - Q;_lcz)qn(z)}, n>1,

where Q;(z) is the derivative of Qn(z), then
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2

K2n+2(z) = {Q2n+1(z)} + N K (z), (3.4.53)

2n+2 2n+l

and

2 2

: 2
K2n+1(z) - {an(z)} ¥ N2n+1{an(Z)— Zan—l(Z)} +N?_n%lNznZz{an—z(Z)}

2

\ 2 -
Non+1Nonon-1 2 {QZn-z(Z) Zan-s(Z)} T

2n o
£ NN NN 2PHQg (2)32 (3.4.5b)

In the J-fraction (3.2.8), suppose we have

c_ #0, Nr+1 >0, er(O) # 0 and Dr real (3.4.6)

for all r > 1. Then we see from the three term relation (3.2.13) and
from (3.4.5) that Kn(z) > 0 for all z real and for all n>1. An
immediate consequence of this result is that all the roots of Qn(z)
are real, distinct and different from those of Qn—l(z)" The proof
is similar to that of the proof in the case of any set of orthogonal
polynomials, and can be found for example in Szeg5 [1959] (see also
theorem 2.4.6).

Now using the relation (3.4.4) it is seen that if zgn), a root
of the polynomial Qn(z),is non-zero then it is not a root of Pn(z),
while if it is zero then it is also a root of Pn(z).

(n)
T

Since all the roots z , T =1,2,...,n, of the polynomial
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Qn(z) are real and distinct and since the non-zero ones are not roots

of Pn(z) the quotient Pn(z)/Qn(z) has a partial decomposition of the

form
Pn(z) n lﬁn)
= —— = 4.
Qn(z) rzl z-z(n) ’ " - 547
T
where
b,
P (z°0)
zﬁ“) = L r=1,2,...,1n. (3.4.8)

N

(n)

T

If we rewrite & in the form

(n) (n) (n) (n)
(n) _ P2y )Qn—l(zr ) - Pn—l(zr )Q, (z.77)

T

L

4

oMy, My -l Mg M)

and then use the equations (3.4.4) and (3.4.5), we obtain

(2m) 2m-2
2(2m) _ N2mN2m—1 T NZCO{ZI !
T

(z (2™

2m. T
(3.4.9)

(2m+1) 2™
g lam+1) _ Nome1Nom * 7 Nycylz } r
r 2

(Z(2m+1))

K2m+1 by

1,2,...,2m+]1,

Consequently we note from (3.4.9), for the J-fraction (3.2.8), if
the condition (3.4.6) holds and further ¢y is also greater than

zero, then



z(n) =0, r=1,2,...,n, n
T

V
—

and

lin) > 0, whenever 'z(n) # 0.

Furthermore, we have

n oz Z(H)

(n) T
2 = Lt z — = Lt ——— n=1.
1 T z >0 r=1 z-zin) Z> 0 Qn(z)

It~

T
As Pn(z) is a polynomial of the form

n-1
cpz + lower order terms,

then from this and from (3.2.14), we obtain

7o m
2 L7 = cos for n=>1.

T=1

Now, let us define a sequence of step functions {wn(t)} by

(0, for -wo<t < an)
(t) = § 1M for W << ™ o120 (3.4.10)
ll'n "'ﬁs—l s > ZI‘ = r4+1° = 3Ly aecs . BC
l€0> for zﬁn) <t<w

for n =2 1. Thus, it can be noted from (3.4.7) that the quotients

Pn(z)/Qn(z) can be given as
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1
—— 4di =
— dyn(t), n=1. (3.4.11)

This result immediateiy follows from the definition of the Stieltjes
integral (see for example Widder [1952]). ~
To proceed any further we require the following result which

is due to Helly.

Theorem : Let f(t) be a continuous, complex valued function of the

real variable t such that

Lt f(t) = 0,

t>%w

and let {d)n(t)} be a sequence of real valued non—decreasiﬁg functions

defined on (-o0, ), such that

)\<¢n(t)<u for -0 <t<ow aud n =1,2,...
Then there exists a subsequence {nk} of positive integers such that

Lt o0 (t) = ¢(t), for -0o<t<ow,

nk+m k

and

00 00
Lt J £(1)do (1) = J HOERIOR
n, > k

k ~00 _ -00

where ¢(t) is also a real valued, non—decreasing function defined on

(-0, ©) such that A < ¢(t) < u.
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The proof of this theorem can be found in Wall [1948] and Natanson
[1955].

Using the Helly theorem we immediately see that for the
sequence of functions {wn(t)} defined by (3.4.10), there exist a sub-

sequence {nr} of positive integers such that

Lt lpn (t) = U)(t), - < t < @,
nr->oo b

and \ (3.4.12)

o0 [0 8]
Lt J L a9 J‘;—l_—t—dw(t),
-00 -00

where ¢(t) is a real valued non-decreasing function such that
0<y(t) Sc, for - <t < .

Now, given the double sequence of real numbers {Cp}zi—aa we
define the J-fraction (3.2.8) such that its coefficients are given
by (3.2.11). Then we see from theorem 3.2.2 that under the condition
(3.2.34) this J-fraction corresponds to the power series expansions

=%0 %1, %2
fo(z) =t 2 + 3 o,

and

= - - - 2 _
go(z) c_4 C_,Zz - ¢ ;2 .o

From (3.2.11) and (3.2.29), we also see that this J-fraction
satisfies the condition (3.4.6) with cg > 0. Therefore, it follows

from (3.4.11) and (3.4.12) that there exists a real valued non-
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decreasing function ¥ (t) such that 0 < y(t) < ¢g for -0 <t <o

and

(e¢]
1 =S, %2, S
J s W) = o oe e s
-00
= - - - 2 _
€, - C 2 - c_ 2 s

for z large and small respectively.

Hence, expanding the left hand side of the above equation about
the origin and about infinity, and comparing the corresponding
coefficients, we find the required results (3.4.1).

The only requirement on the real numbers <, for arriving at
this result was that the condition (3.2.34) is satisfied. 1In other
words, that the condition (3.2.34) is sufficient for the existence
of a solution y(t) to the Hamburger moment problem.

Similarly by considering the corresponding j—fraction-(S.Z.SS),
we can also arrive at condition (3.2.36) as another sufficient
condition for the existence of a solution to the strong Hamburger
moment problem.

We further note from the Jacobi identity (1.2.11) that if

(-2n) (-2n) S -
Hy ©7° >0 and H Y >0, n>0 (3f4.1o)

then for any value of r > 1

g 1)) g

(-(2r+1))
2r-1 H # 0

and
: 2T+1

i g0 T1)) _ g nite
2r .
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(-(2r-1)) (-(2r+1))
H2r # 0 and H2r+2 # 0

e y(=(2r+1))
if H2r+1 = 0,

Using these results we find it is always possible to construct
a corresponding J-fraction with condition (3.4.13) alone. The
convergents of these new J-fractions are chosen from the convergents
of the regular J-fractions (3.2.8) and (3.2.35). There may be more
than one such corresponding J-fraction which can be constructed.
To understand this, let us look at a possible construction.

Suppose we have Hg;(zr—l)) = 0 and Hg;(zs—l)) # 0 for
s =0,1,...,r-1. Then it follows that H(—(zr—l)) # 0 and

2r-1

H£;£§r+l)) # 0. Hence, we start with the J-fraction (3.2.8) and at

the (2r-1)-th stage we switch to the J-fraction (3.2.35). This can

be done as follows

2 (=) 2
Nzr-sZ Nzr—z 1\‘2r-1z
. =) (=)
e - +N2r—3)Z+D2r—3 z'+D2rfz a +N2r-1)Z+D2r~1
N* 22 N*
2T 2T+1

*
2r+l

* *
(1+N292+D2r— z+D

(-(2r+2m+1))

= 0 for some m > 1 then we switch back to
2r+2m+1

Further if H

the J-fraction (3.2.8) as follows



24
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* ) N’f 22 N(+)
2r+2m-1 2r+2m 2T+2m+]

* * * (+)

. - z+D - (1+N z+D - z+D
2r+2m-1 ( 2r+2m) 2r+Zm 2r+2m+1
N
2r+2m+2
- Z D -
2r+2m+2

Such change over is made whenever necessary. The ccefficients

N(—) 5 D(—) s N(+) and D(+) which are used for these switches can
2s5+1 25+1 2s+1 ,25+1

be proved to satisfy:

(-(2s+1))]2 ,(-(25-2)) _ )
N(-) - H25+1 L HZS—l
25+1 (-(2s-1)) (-(2s+2)) °
Hos J Haser

1(-28) | (-(25+1))

D(—) - 2s 2s+1
25+1 y(-(2s-1)) (-(2s+2)) °
28 2S8+1
boo(3.4.14)
(-25) ,(-2s)
N(+) - HZS—l H2$+1
25+1 (-25)12 °
"}
(-2s) (-(2s-1)) (-(2s+1)) ,(-2s)
p(*) o Hoser Has ) Hoseo Hos
2s+1 (-(2s+1)) ., (-25) (~25) ,.(-(2s+1)) °
H25+1 H2 H25+1 H25+1 J

From (3.2.11), (3.2.35) and (3.4.14) we note that the partial
numerators of this new corresponding J-fraction are positive. Hence,
as for the regular J-fractions (3.2.8) and (3.2.35), it is also

possible to find integral representations for the convergents of this
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J-fraction. This in turn implies that the condition (3.4.13) alone
is sufficient for the existence of a solution to the strong Hamburger
moment problem. Consequently, looking also at (3.4.3) we can
conclude that the necessary and sufficient condition for the
existence of a solution to the strong Hamburger moment problem 1is

that the real numbers < satisfy (3.4.13).



CHAPTER FOUR

CONVERGENCE BEHAVIOUR OF A

CLASS OF J-FRACTIONS
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4.1 POSITIVE DEFINITE J-FRACTIONS

As defined in Chapter 3, a J-fraction is a continued fraction

of the form

1 {ap(2)}?  {a3(2)}? {a,(2)}?
z +b1 - z+b, - z+bg - z+ b, - ...°~7

(4.1.1)

in which all the bn are complex constants and each {an(z)} is either
a complex comnstant (Zn + imn) or a complex variable of the form
(zn + imn)z. Here, all the zn and m are Teal,

If all the bn are real and all the m ~are equal to zero then
the continued fraction is referred to as a real J-fraction. Following
the definition of a positive definite J-fraction by Wall [1948], the
fraction (4.1.1) will be referred to as a '"positive definite J-
fraction'" if the coefficienps {an(z)} and bn satisfy the following
property:

For all y > 0 and for all n=> 1

n

n-1
2
r§1 (Y'+Br)5r " rgl 0Lr+1(z)gr£r+1 >0, (4.1.2)

n
whenever 7 og2>o0,
T
r=1

where y = Im(z), Br = In&br) and ar+1(z) =_Im{ar+1(z)}.

The term positive definite comes from the fact that the
relation (4.1.2) is equivalent to the positive definiteness of the

tri-diagonal matrix
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[y +8))  -0p(2) 0 0 ereieieeeieeen. 0
-az(z) (v +82) ~a3(z) 0 e eierneaeaea 0
0 -OL3(Z) (}"*‘83) —th(Z) csestessraresans 0
L . —an_l(z) (y-*Bn 1) —an(z)
i 0- ................. . 0 —an(z) (y-*Bn)-

for y > 0 and for n > 1.
We know, from the theory of continued fractions, that the
numerator Pn(z) and the denominator Qn(z) of the n-th approximant of

the J-fraction (4.1.1) satisfy

P (2) = (z+b)P  (2) - {a (2)}?P _ (2),

o
V

1, (4.1.3)

Q,(2) = (z+b)Q . (2) - {a (2)}Q (2],

with al(z) =1, P_l(z) = -1, Q_l(z) =0, Po(z) = 0 and Qo(z) = 1.

Using (4.1.3) it can be seen that the denominator polynomials
Qn(z) can also be given in terms of the following determinant

formula
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(z +by) -asx(z) 0 0 el 0
~as(z) (z +by) -asz(z) 0 i 0
0 —ag(Z) (Z +b3) —aq(Z) ...... seenen 0

Q,n(z) T T e T e e e e s e . >

for n = 1.

Considering now the following system of linear homogeneous

equations in the complex variable Ur’

(z+b)Uy - a(z)Uz = O,

-ap(z)Uy + (z +bp)Uy - a3z(z)Uz =0,
------------------------------------------- (4.1.4)
-an_l(z)Un_2 + (z +bn_l)Un_1 - an(z)Un = 0,

--:3.]’1(2)Un_1 + (24‘bn)Un = 0,

we note that this system has Qn(z) as its determinant. Hence, this
system has no solution other than the trivial solution if, and only

if, Qn(z) is non-zero.

Multiplying the equations of (4.1.4) by ﬁl,ﬁz,...,ﬁn respectively

and adding the resulting equations, we obtain
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n n-1

2 i i =
rzl (z+b)[U_[* - rzl a (@ WU +0U 3=0 (41.9

Now, if the fraction (4.1.1) is a positive definite J-fraction
then from (4.1.2) we also have

n n-1

2 - -
rzl v +8[U_|* - rzl e, (@ I  +TUu >0, (4.1.6

n
for all y > 0 and for all n = 1 provided [Url2 > 0.
r=1

Since the left hand side of (4.1.6) "is the imaginary part of
the left hand side of (4.1.5), we see that if (4.1.1) is positive
definite then, for y > 0, (4.1.5) is true if and only if,

U, =U, = ... = Un = 0, or equivalently, When the determinant

Qn(z) # 0. Hence, the following result is established.

Theorem 4.1.1 : If the J-fraction (4.1.1) is positive definite then
the denominators Q,(2) of all its convergents are non—zero for all z

for which the imaginary part is positive.

It is very difficult to see when a J-fraction is positive
definite using (4.1.2). Hence, we require another way of identifying
a positive definite J-fraction. There is in fact such a method and

it can be given as:

Theorem 4.1.2 : The j—fTaction (4.1.1) Zs positive definite if, and

only if



I Bn = l'm(bn) = 0, n=12,..., (4.1.7)

II  There exist numbers g),g,,83,.-., Satisfying g1 =0, 0 < g, <1,

(n > 2) such that for all n>1

2

M1 = Pnfna (T-gen, (4.1.82)
if an+l(z) = Zn+1 + im oo but
- 2 — -
Mo = 0 and £n+1 = (1 gn)gn+1 (4.1.8b)
if an+1(z) = (ln+1 + 1mn+1)z.
In (4.1.82) g 18 taken to be zero whenever m 1s zero and in
n+1 n+l

(4.1.8b) gn+lvmust be less than unity if 8r+1 =0 for r=0,1,2,3,..

Proof : Let us consider the definition (4.1.2) of a positive
definite 3—fraction. Here, if we let gr = 0 for all r except

T = p<n then it becomes

g ) > 0.
(y + p)

Consequently, since y > 0, the necessity of the relation (4.1.7)
follows immediately. Now in (4.1.2), letting &3 = &, = ... =0,

gives
(v +B1)E% - 202(2)E,E, - (¥ +B,)E5 > 0,

and here completing the square then leads to
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2
, +6.) - 2
(y+81)%£1 _ uz(z)/é Eph + (y+81) (y+£2) ;2/(0‘2(2)) 152 > 0.
(y+B1) (y+81)

Therefore we note, it is necessar)y that

{ap(2)} < (v +81) (y +82) .

There are two different cases to look at, namely a,(z) = £, +imp
and a,(z) = (22 +imp)z. In the first case we have a,(z) = mp and

2
thus m, <(y +81)(y +82). Since this relation must hold for all

y > 0 it follows that
m22 < B1Bo .

Hence, we can choose, g} = 0 and 0 < g, < 1, with g, = 0 whenever

my = 0, such that
2 2
{ap(2)}" = m, = B18,(1- g1)g2. (4.1.9)

In the second case, when aj;(z) = (2, +imp)z, we have

ar(z) = L,y + mpx, where z = x +iy. Hence, for the condition

(Loy + mpx)Z < (y +81) (¥ +8),

to hold for all y > 0 and for all x, we must have

.
m, =0 and %, <1, (with 222<1for By =By =0).
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Thus, we can choose g; = 0 and 0 < gy, <1, (g <1, if B, =8, =0),

such that

2
my = 0 and %5 = (1-g1)gs-
From this we also have
12 = 0.2y2 = 2
{o2(2)} = 2, y% = y*(1 -g1) g2- (4.1.10)
Now, taking &, = &5 = ... = 0, we obtain from the definition
(4.1.2),

2
(Y+81)€12 - 20p(2) €18, + (y+B)ES - 2a3(2) €283 + (y+B3)&3 > 0. (4.1.11)

Suppose a(z) = £, +imy. Then using (4.1.9) for o,(z), the

relation (4.1.11) can be written as

: 2
2 r % % % 2
Y€1 + {(1~ g1) 8178 - g2232252} + goy&o

2 2
+ (1 -g2)(y +B2)&2 -"203(2)8283 + {y+B3)&3 ~ O.

On the other hand, suppose a»(z) = (22 +imp)z. Then, using (4.1.10),
the relation (4.1.11) can be written as

2
2 % z 2
B1E1 + Y{(l -g1)%8 - gzziz} + g2B282

' 2 2
+ (1 -g2)(y+82)82 - 203(z)&p83 + (y+B3)E3 > 0.

Therefore, it is necessary that
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. ' 2
(1-g)(y+ 82)522 - 203(2)883 + (y+ B3)Ez = 0.

Here, only the inequality is assumed when 8; =8, =0. From this we

obtain
{a3(2)}° < (1 -22) (v +82) (¥ +B3).

Once again considering the two possible cases, we find that for

a3(z) = 2,3 +13 m3,

2 2
{a3(z)} my = ByB3(l- go)gs,

where 0 < g3 < 1, with g3 = 0 when m3 = 0.

n

For aj3(z) = (23 +im3)z,
2
m3 = 0 and 23 = (1-g2)gs,

where 0 < g3 < 1, with g3 <1 if B; =8, =83 =0,
‘ Continuing this manner, it can be seen that the condition
(4.1.8) is also necessary for (4.1.2) to hold.
To prove the sufficiency of the relations (4.1.7) and (4.1.8),

let us consider these relations. From (4.1.8) we have

2 _ 2 _ .
fo (@Y =m < G+e)r+8 )0 -glg, ,» (4.1.122)
if an+1(z) = £n+1 + 1 LI while if an+1(z) = (£n+1 + 1.mn+1)z then
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{an+1(z)}2 = 22 ly2 < (y+8)y+8 )1 -gle  , (4.1.120)

n+ 1

In (4.1.12a) equality holds only when 8ne1 =0 and in (4.1.12Db)
equality holds only when Bn =8n+1 =(0. An important point to note

here is that when equality holds in (4.1.12) for n = 1,2,...,m,

then we have

8ay < 1 (4.1.13)
Using (4.1.12) we have
m 5 m-1
rzl (y+8)¢. - 2 rzl oL, (DEE
T % % % % z
) r21 {(l gty TEL - gr+1(y‘+8r+1) Er+1}
2
* (1-g)(y+gJE , (4.1.14a)

whenever equality holds in (4.1.12) for n = 1,2,...,m, and otherwise

m ) m-1
rzl (y+BJEL -2 rzl %1 (BELE 0
m L L ¥ 5 2
>r&,&l—g9 U+BQ Mrl—gﬂld+8ﬁi)[%wﬁ}
£ (1-g)(r+8 el (4.1.14b)

Thus using (4.1.7) and (4.1.13) we see that the left hand side
of (4.1.14) always takes a positive value, under (4.1.7) and (4.1.8).
This concludes the proof of the sufficiency of (4.1.7) and (4.1.8)
for the positive definite relation (4.1.2) to be true and hence the

theorem is proved.
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If the J-fraction (4.1.1) is real then it follows that Bn is
zero for all n and, for any n, a (z) is either & or £ z. Thus
n+l n+1 n+1

from theorem (4.1.2), we have the result

Corollary 4.1.2a : If the J-fraction (4.1.1) <s real then it is
positive definite i1f and only if, there exist numbers gj,gs,g3,«--

satisfying g1 = 0, 0 < g, <1 (n=>2) and such that, for n =1

=0
gIH-l
of n+1(z) = 2n+1 and
= ¢2 -
Ere1 = fnar /(-8
if an+1(z) = 2n+1z'
Let us now consider a special case of a real J-fraction given
by
2. 2 2 2 2 2
1 Lo 23 22 Ly L5 2z Le

Z+b1"Z+b2—Z+b3—z+b’+_z+b5_z+b6_ D Y (4.1.15)

where all the bn and L, are real.

The partial numerators of (4.1.15) alternately take constant
and variable values as indicated. If this regular real J-fraction is
positive definite then in theorem 4.1.2 we have that all the g, are

equal to zero and all the ,n+, 2TC less than unity. Hence, we have
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Corollary 4.1.2b : The regular recl J-fraction (4.1.15) <s positive
definite if and only <f

2
22n+1 <1 for n=1,2,3,...

It can be noted that the 3—fractipn (3.2.8) with all the Nr
positive and all the Dr real is equivalent to a positive definite

j-fraction of the form (4.1.15).
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4.2  CONVERGENCE CIRCLE

The J-fraction (4.1.1) can be generated by the following linear

fractional transformations (L.f.ts).

to(z,w) = 1l/w, tp(z,w) =z + bp - {ap+l(z)}2/w, p>1, (4.2.1)

il

To(z,w) to(z,w), Tp(z,w) = Tp_l(z,tp(z,w)), p=1. (4.2.2)

Thus,

1 {az(z)}2 {ap(z)}2 {ap+l(z)}2

z+by - z+by - ... - z+-bp - W

Tp(z,w) (4.2.3)

From (4.2.3) it follows that the n-th convergent of the J-

fraction (4.1.1), is

P (2)

@

= Tn(z,aﬂ. (4.2.4)

Now, by assuming that the J-fraction (4.1.1) is positive
definite, let us consider for the 2.f.ts tp(z,w) the range of values

of w given by

W, (D) 2 {w :In(w) > (y+8_  Jg .,y = Imcz)}, p>1, (4.2.5)

p+1°7p+l
where the numbers gp are defined according to theorem 4.1.2.
We see that for any ¢ > 0, the values of w lying in the half-

plane region Wp+1(z) also satisfy, for y > 0
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B 1-
(y + p)(y+8p+1)( gp)gp+1 b 1.

Im(w) = >
(y+8p)(1 —gp) +€

Hence using (4.1.12) in this relation then gives, for y > O,

{ap+l(z)}2

Im(w) = < - — >
6% Bp)(l gp) €

e>0, p>1. (4.2.6)

We now make an interesting observation that all the values of

w satisfying (4.2.6) also satisfy the following relation,

i{ap_{_l(z) }2
2{(y + Bp) (1- gp) +¢e}

o, ()2

w + 3
2{(y+8p)(l —gp) + e}

> e=>0, p=1.

(4.2.7)

This can be seen pictorially in the following diagram, in which the
relation (4.2.6) describes the region on or above the ‘dotted line,
and the relation (4.2.7) describes the region on or outside the

circle.

2
A ’ y = {ap+1 (=)}
: (Y*‘Bp) (1'gp) +e

- i{ap+l(z) }2
2{(y+8p)(l-gp) +el
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“~

It immediately follows from relation (4.2.7) that

ifa_, (2)}? {a_, (2)}?

w

=

2{(Y'+8P)(1 —gp) +e} -

Thus, squaring both sides and then expressing each side in terms of
their real and imaginary parts, we find that

hf

{a . (z)}2
(yeg)(1-g) + ¢ - Im| —PXL 1> 0,

Here, however small the value of €, this condition is true

(z). Hence, for all such

whenever Im(z) = y>0 and w lies in wp+1

values of w the above condition must also hold for € =0. Thus, we

obtain
{a +l(z)}2 _
(y+8) - In e N O Byl &y

Now, since the left hand side of this inequality can be
identified as the imaginary part of tp(z,w), we arrive at the
following result.

For any z for which Im(z) = y>0,

Im{t_(z,w)} > +B , > 1
p( ) (y p)gp P
whenever

Im(w) = (y +8__ )8

p+1”°p+1’ p= 1.
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By a similar argument we can also show (see also Wall [1948])

that for any z for which Im(z) = y>0

Im{t_(z,w)} = y+8 =1,
it P( ) Yy ng’ P

whenever

W
[

N> = 3
Im(w) (y +Bp+1)gp+l and ap+l(z) 2p+1 + lmp+1’ P

Summarising these results we have

Theorem 4.2.1 : If the J-fraction (4.1.1) is positive definite then
for any z lying above the real axis the corresponding &.f.ts

tp(z,w), p = 1, defined by (4.2.1) satisfy:

t (z,w) €W (z),
p( ) p()

whenever w lies in Wp+1(z). In particular, for any p = 1, we also

have

Im{t (z,w)} = y+8 g ,
_p( ) Y pgp

whenever w lies in Wp+1(2) and ap+1(z) 18 a constant. Here, the real

numbers gp, p = 1 are defined according to theorem 4.1.2.

We can now use this result to study the image of the half-plane
region Wp+1(z), under the linear fractional transformation Tp(z,w).
Let us first denote this image by Kp(z). We can easily see from
the equation (4.2.2) and the theorem 4.2.1 that the region K__ (z)

p+1

is contained in Kp(z), for any z having a positive imaginary part.
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These regions Kp(z), p=1,2,3,..., may be either circular regions
or half-plane regions. But, if Kq(z) is a circular region for'any
q = 1, then for all r = 1 the regions given by Kq+r(z] are also.
circular regions.

Let us now look at the region K;(z), which is the image of

the half-plane region W,(z), under the 2.f.t. Ty(z,w). That is

Ky (z) = T1(z,W2(2)).

Since Ty(z,Wo(2)) To(z,t1(2,W2(2))) then from theorem 4.2.1

[}

we note that when a;(z) 2o + img

K1(z) = T1(z,W2(2)) C To(z,W,(2)), fory >0,
where W{(z) is the half-plane region given by

{w:Im(w) = y +81¢1}.
But g; = 0, and hence
W{(y) = {w : m(w) = y}.

Thus from Ty(z,w) = 1/w, we obtain that the region TO(Z,W{(Z)) is the
circular region given by
i

| L —
Wl <o (4.2.8)

for any z for which Im(z) = y>0, Hence, we have the following:
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Theorem 4.2.2 : If the 3—f%action (4.1.1) Zs positive definite then
for the corresponding 1.f.t. T (z,w), given by (4.2.2), the image

Kn(z) of the half-plane region Wn+1(z) satisfies

< =
K (2) 2K (2, n>1,

1

for any z with a positive imaginary part. In particulor, <Tf ay(z)
18 a constant, then all these regions Kn(z), n =1, are circular

regions and satisfy
!
To(z,W1(¥)) 2 Ki(z) 2 Kp(2) 2 K3(2) 2 ...

for any such z.

The point c 1lies on the boundary of the half-plane region
Wn+1(z). Therefore, the n-th convergent Tn(z,aﬂ of the positive
definite J-fraction of the form (4.1.1) must lie on the boundary of

Kn(z). In particular if as(z) = £, + imp then Kn(z) lies inside the

circle To(z,W{(z)). Consequently, wé have, for Tn(z,aﬂ = Pp(z)/Qn(z),
P (2/Q ()| <1/y, n=>1, (4.2.92)
Im{p (2)/Q (2)} <0, =n=>1, (4.2.9b)

provided that Im(z) = y>0.
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4,3  LIMIT POINT CASE

If the sequence of circular regions {Kn(z}} in theorem 4.2.2
converges to a limit point for any z for which y >0 then it is said
that the positive J-fraction with a,(z) a constant satisfies the
limit point case for that z. Otherwise the sequence of circular
regions converges to a limit circle, and hence, the fraction is said
to satisfy the limit circle case, for that z.

Let us denote the J-fraction with ap(z) = %5 +1imy as a 3*—
fraction. Heﬁce, if the positive definite 3*—fraction satisfies the
limit point case for any z, then for this value of z the convergents
of this fraction also converge to this limit point. On the other
hand if this fraction satisfies the 1imit circle case for any z then
the value of the n-th convergent of the fraction will be on the
boundary of Kn(zL but as n increases these Qalues do not necessarily
converge to a single point in the boundary of the 1imit circle. But
if it does so then we have, for this particular value.of z,
convergence in the limit circle case for the positive definite 3*—
fraction,

To be certain of whether the limit point case or the limit
circle case holds, some understanding of the radius of the circular
regions Kn(z) is required. We shall denote this radius by rn(z).

Using (4.2.3), the g2.f.t. Tn(z,w) can be given in terms of

Pn(z) and Qn(z) as follows
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wP (2) - {a , (2)}?P (2)

n>1. (4.3.1)

Tn(zsw) = 3
wQ,(2) - {a,,, (2)}2Q,_,(2)

Let us now for convenience define two new sequences of functions

{Xn(z)} and {Yn(z)} by

Xo(2z) = -1, Yg(z) =0, X;(2) =0, Y,(2) =1,

Pn(z) "
Xn+1(z) - a,(z) az(z) ... an+1(z)’ n=1, (4.3.2)
Q (2)
Yn+1(Z) - a,(z) az(z) ... an+1(z)’ n= 1.

Then it follows that

an+1(z) - an+l(z)Xn(z)
wﬂﬁl&)- %Hﬁz”nu),

T (2,4) = n> 1. (4.3.3)

Using (4.1.3), the functions Xn(z) and Yn(z) can easily be

shown to satisfy the three term relations

- a (DX (@) ¢ (2R)X (D) -2 (DX (2)

1t
o
-

1
n=1. (4.3.4)

-2, (@Y (@) + (z+bY (2) -2 (DY, (2)

I
o
-

+

Here, aj(z) 1s taken to be equal to unity.
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Furthermore these functions can also be shown to satisfy the
determinant formulas

Xn+l(z)Yn(z) - Xn(z)Yn+1(z) = l/an+1(z), (4.3.5)

and

Xn+2(Z)Yn(Z) - Xn(z)Yn+2(z) = (z+bn+ )/ an+2(z)an+l(z) , (4.3.6)

1
for n = 1.

Since Kn(z) is the image of the half-plane region Wn+l(z)
under the £.f.t. Tn(z,w), it follows from (4.3.3) that the point

which has the centre of Kn(z) as its image point is (see for example

Wall [1948])

W) = 2y +8, e, + AL, (T ()T ().

n+l

Thus from the fact Tn(z,aﬂ is on the boundary 6f.Kn(z), we

find that the radius rn(z) can be given as

1@ = T Y @) - T (2,0 -

Consequently from the relation (4.3.3) we obtain

r (z) = ) 1 .
Y, (@07 (Y () - a (Y ()]
When substituting the value of wgn)(z) we find, after some simple

manipulation,
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r (2) = ' 1 . (4.3.7)

2 (y-+Bn+1)gn+llYn+l(z)l2 - Im{an+1(z)yn(z)§n+1(z)}

In order to change (4.3.7) into a more convenient form we take

from (4.3.4) the equation
- ar(z)Yr_l(z) + (z +br)Yr(z) - ar+1(z)Yr+l(z) = 0.

Multiplying this equation by ?r(z) and summing over r = 1,2,...,n,

we arrive at

- n
T A (@Y, @ = L e @]
n - —
- rzl ar+1(z){Yr+l(z)Yr(z) + Yr(z)Yr+1(z)}_

Hence, using the imaginary part of this equation in (4.3.7),

gives
R 1
2rh(z) ~ Tl n _ _
rzl (y+8 ) Y, (2|2 - rzlam(z) {Yr+1(z)Yrcz) +Yrcz)Yr+1(z)}
- 8, ) -g Y (]2

Now, applying the result (4.1.14a) in this equation, yields for

the positive definite and real 3*—fraction
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_ 1
_H""l 1L 12
) (y+e)<1—gw (2) - (y+8, )% Y, (D))

1‘+1 Tr+1
r=1

2rn(z)

(4.3.8)
Relation (4.3.8) suggests, 1f the series given by

e % % 2}2 |2
I |8 -g)% (2) - (y+8,,) (2] 5 (4.3.9)

+ +
r=1 rlrl

is divergent for any z, then rr(z) - 0, giving the limit point case
1
for the positive definite and real J -fraction for that z.
*

We also note from corollary 4.1.2b, that for the positive

(r-1-15)

definite and real J- fractlo?Aall the g, are equal to zero and all

the g are equal to l§r+1' Hence for this continued fraction the

2r+]

series becomes

2 o6}
@ +y) a-4 )\

-+
= 21+1

(Z)

-2 Y
2r 2r+1 21+l 2T+l

[0 0]
y )l |Y, (2
r=1

As a consequence, we have the following:

Theorem 4.3.1 : For the positive definite and real J,-fraction of
the form (4.1.15) the limit point case holds for any z such that

Im(z) > 0 Zf, and only if, one or both of the following series

Qo

o -2 ]y

L orel (z) ]2, (4.3.10)

2r+]
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- 12
z 'YZI‘(Z) £2r+1Y2r+1(Z)vl 3 (4.3.11)

diverges.

From the determinant equation (4.3.6), we obtain for the real

3*—fraction (4.1.15)

Zz+ b

|

e = r - » ) \ ( >
8.z X2r+1(Z)Y2r—l(z) x2r~1(21Y2r+1‘z)’ T 1. (4.3.12)

. . . 2 % 2 L .
Hence, multiplying this by (1 - £2r—1) (1 - £2r+1) and summing over
r=2,3,...,n, we find
P oo g ¥ S
=2 2r-1 2r+1 22r+122rz
= 121 1-22 )% -2 ) Ex Y. (2) -X Y. (2
- =2 Q-2 )70 2re1 (P Y op 1 (2 =X, (DY, (B

. L2
NOTE : Since the fraction is positive definite £2r+1 must be less
than unity for all r= 1,
Thus, if we apply to the right hand side of the above equation
the Schwarz inequality
n

2 n
< 1 odulz. 1 Ivl% n>1,
P=1 P:l

’i

p_

UV
1 PP

where Up, Vp’ p 2 1 are any complex numbers, we then obtain
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r=2 #r-d 2rel Lope1tar®
(4.3.13)
n ) n ,
< - 2 _ 2
‘ Zl (1 £2r—1)!X2r+l(Z)‘ ) rzl (1 !Lzrﬂ)lyzrﬂ(z)I

Suppose now that the left hand side of (4.3.13) diverges as
n > . Then from the right hand side it follows that one of the

series

o )
r=1 ¢ —22r+1)’xzr+1(z)‘ ’
s (4.3.14)
P -y (@2,
‘r=1 21+1 2r+1 )

muét also be divergent. But from (4.2.9) and (4.3.2), it follows

that if (4.1.15) is positive definite then

for all y = Im(z) > 0 and for all n = 1.
Hence we see that if the first of the series of (4.3.14)
diverges then so does the other. Consequently we arrive at the

following:
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Theorem 4.3.2 : A sufficient condition for the positive definite and
real 3~f?action of the form (4.1.15) to satisfy the limit point case

for all z for which Im(z) > 0, ©s that one or both of the following

hold.
(o8]
2 % 2 |k 1
} (-9 )4(1 -2 )% e = 0, (4.3.15)
r=2 2r-1 21+1 £2r+122r
© b
2 % 2 % 2r
Z (-2, %01 2 T — = ®. (4.3.16)
r=2 2r+1 27

Let us now consider the series (4.3.11), and if we use the
three term relation (4.3.4) on this we find that this series is

equivalent to

e8]
Y [xzryzr_l(z) - b Y (2)]2.

r=1 2r 2r
Thus, suppose b2r = 0 for all r > 1. Then a sufficient
condition for the positive definite 3*—fraction (4.1.15) to satisfy

the limit point case is

8

2 2 -
22r|Y2r-1(Z)| T

1~

r=1

Hence, as before using the formula (4.3.12) and the Schwarz

inequality, we arrive at the following result,

Theorem 4.3.3 : A sufficient condition for the positive definite and
real J-fraction of the form (4.1.15), with all the b21‘=0, to satisfy

the limit point case for all z for which Im(z) > 0, is that
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0
) ,{22r+2/22r+1}, = . (4.3.17)

=1
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4.4  LIMIT CIRCLE CASE

Restricting z to values which satisfy the conditions z =1y and
y > 0, the positive definite J-fraction of the form (4.1.1) can be

given, after a suitable equivalence transformation, as

Al Ao A3 Ay (4.4.1)
1+u) + 14Uy + 1+ug + 1 +uy + ... T

where uo o= bn/y’ n>1, Ay =1y,
= - 3 2 2
)\n+1 (2n+1 * lmn+1) /ys
if an+l(z) = Zn+1 +im and while if an+1(z) = £n+1z
2
A =2 , for all n= 1.
n+l n+1

The continued fraction (4.4.1) can be generated by the 2.f.ts

= ol >
s (ysw) = 2 /(E+pu +w), n=>1, (4.4.2)
and

S1(y,w) =s (y,w), S (y,w) =5 _ (y,s (y,W)), n=>1. (4.4.3)

Hence, from (4.4.3) we note that the n-th convergent of (4.4.1)
is given by Sn(y,O).
It is quite easy to verify that the 2.f.t. Tn(z,w) of Section

4.2 and the 2.£f.t. Sn(y,w) are related by

S, = T Gy, -{a,, (N¥/¥)), n>1,  (4.4.42)
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1. (4.4.4b)

A%

s (v, ~fa, (iN)}/(wy)) =T (iy,w), =n

It has been shown in Section 4.2 that for the positive definite

3*—fraction the 2.f.ts Tn(z,w) satisfy

Kn(z) = Tn(z,w (z)), n=1,

n+l
To(2,W)(2)) 2 T)(2,W,(2)) 2 T,(2,05(2)) 2 T4(z,0,(2) 2 ... ,

where TO(Z’W{(Z)) is the circular region given by (4.2.8) and Wn+l(z),
n = 1, are the half-plane regions given by (4.2.5). Hence, for the

regions Vn(y), n 2 1 defined by

V) = e GYNI/ON L GY), n>1, (4.4.5)

it follows from (4.4.4) that

To(iy,W{(iy)) 25, r,Vi(M) 25,0V, () 28,y,V,; () 2 ...

(4.4.6)

This implies that for any y > 0, if the positive definite J, -
fraction satisfies the limit circle case then the sequence of
circular regions Sn(y,Vn(y)) must converge to a limit circle.

Now, considering the positive definite and real 3*-fraction of

the form (4.1.15), it follows, since aZn(z) = lzn’ gzn = 0,
Z
- = <
a2n+1(z) 22n+1Z and Ean+1 22n+1 1, that
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1t

Voo ) = V] = {w:In(w) > 0}, (a half-plane),

(4.4.7)

Vzn(Y) v, = {w dlw o+ 3] <13, (a circle),

forn = 1.

Such regions VT and V;, which are called ”fwin regions', have
been studied extensively by Thron [1944, 1949] and by Jones and
Thron [1970].

For a given value of y > 0, let us now define for convenience

a new sequence of 2. f.ts {Hn(w)} by

H (W) o W), n> o,

2n-1 SZn-l

(4.4.8)

H (w)

-1
>
(0 =8, (v, (), n>1,

- -1
where vll(w) = (w-1)/(iw - 1) and v, (W) = (w-1)/2 are the 2.f.ts
which map the unit circle U onto, respectively, VI and VZ.

Hence from (4.4.6) we have
To(iy,Hy(i¥)) 2 H (V) 2H, (W) 2H (W) 2 ..n o (4.4.9)

Thron [1963] has shown that any sequence of £.f.ts {Hn(w)}

satisfying (4.4.9) can be given as

Hn(w) = Cn + Rn{(w-+?n)/(an-+l)}, n=1, (4.4.10)

in which
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[F | =f <1 and |C_ -C|<r -r for all m<n,
n n n m m n

where C_ is the centre of H_(U) and r_ = |R_| is the radius of H_(U).
n n n n n

Thus, for the limit circle case to occur for the given z =iy

the radius T, of Hn(U) must satisfy

r ¥ >0 as n > w.

For the positive definite and real 3*-fraction of the form
{(4.1.15) to converge under the limit circle case for the given z =1y,

it is required that its convergents Tn(iy,aﬂ converge to a single

point in the limit circle. In other words, the sequence {Tn(iy,aﬂ =

Sn(y,O) = Hn(i)} is a Cauchy sequence. To find out when this is so,
we need to know some properties of this sequence.

We have from (4.4.1) and (4.4.3) that for the real 3*—fraction

(4.1.15)

-1i- = =
Sypay Yo-i-b,/¥) =S, (y,®), mn=>1,

= =
Szn(YSw) Szn_l(y,o)! n 11

2 - .
= 1 =

and

-1i- = >
S,p(¥s-i-b, /¥) =8, o), n=1,

= n =
5, (7,0 =8, (y,00, n>2,

2 _ _
SZ“’Z(Y’O) ) szn—s(y’("zzn—z/yz)/(l'*bzn_z/Y)), n=> 2,
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Thus, for the particular value of z =iy, using (4.4.8) we

immediately obtain the following relations,

2-1b) /Y
H - =H (o) n=>1 (4.4.11a)
S I Y ’ ;
2n+1 b2n+1 y 2n
H, (@) = Ho,), n > 1, , (4.4.11b)
(ZREn Dt L 1/y
i) = - - > 4.11c
Hzn—l(l) Hzn-z i+b 7y s n=2, (4.4.11c)
2n-1
-5 =H - >
Hzn( i 2b2n/y) H2n_1( i), n=1, (4.4.122a)
-1 = i =
Hy_,(-1) =8, @G), n=>2, (4.4.12b)
| (1-23 Ji+b, Jy
Hy (1) =H,_ 2z 2L > 2. (4.4.120)
(L+25n-0) = iby /Y

Hence, from (4.4.10) and (4.4.11b) we find the relation

+ R, = + R . n=1
Con on Mo T Coniy PRy %y 27 L
where
i+ F
- 2n-1
n- iF +1
2n-1 2n-1

Rearranging the terms and then taking the modules of both sides gives

T
-f-z—“-<|c
2n

-C + 7 lo n> 1.
2n-1 2nl on-1' 2n—1l’ ~
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Thus, using the fact Ionn = 1 and also the fact that
£

N

< -
IC2n—1 CZn’ r2n—l rzn’
we find

r I 1-f n

i R RN

2n-1 2n

Since on <1 for all n > 1, the right hand side of this

inequality is bounded by zero and one. Furthermore, we have from

(4.4.9) and (4.4.10) that r /

< 1 for all n. Hence, by

T
2n-1" "2n-2

taking the product of these quotients, we obtain

n 1 -f2k
rznlg A_]'”r 1 - T [ > 1, (4.4.13)
k=1 2k

where A is a constant independent of n.
Since, we must have T, Y r > 0 for the 1limit cirele case, it

follows from (4.4.13) that

o {(1-f K
D S e
k=1 2k
From above it also follows that
w
- < .
kzl (1-f) <o

Now, let us consider the relations (4.4.11a) and (4.4.11b).

From these we have
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2-1b, /Y ’
H - = H (1) n=1.
2n+1 - ?
n+ b2n+17y 2n-1

If we use (4.4.10) on this we find

+ R o = + >
Consl an+1 %one1 T Copey F Ropoy Topeyr 7L
where
w'+ F 2 -ib
g 1) - 2n+1 ‘,\]’ _ 2n+l/y
2n+l  Ww'F +1° - / ’
2n+1 ' b2n+1 Y
and
i+ F
- - 2n-1
2n+1 iF +1°
2n+}

Therefore as before, rearranging the terms and taking the

modulus of both sides we find

T
2n+1 < 2

[} )
r21’1—1 1 +102n+l!

Under the limit circle case the left hand side of this

inequality is bounded from below by some number greater than zero,

4

and therefore, |02

n+1l must be bounded from above. Further, since

[w'| > 1 we also must have that lo; | > 1. Hence, by rewriting

n+l
the above inequality as

14
Ton+1 IU2n+1l -1

< 1 - n=
[DNERS
r2n—1 o 1

2n+1

\
ot
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we arrive at

) {1 -1/l
1 -1/c } < w.
k=1 2k+1

This result enables us to establish (see Jones and Thron [1970]) that
g)
(1 - f ) < w.
k=1 2k+1

Summarising these results yielids the following:

Theorem 4.4.1 : If the positive defintte and real S—fkaction of the
form (4.1.15) satisfies the limit circle case for any z =iy, y > 0,
then for the corresponding l.f.t. Hn(w) given by (4.4.10), the
following hold

@

I A-£)<w, (4.4.14)
n=1

m -

I a-£, ,)<o. , (4.4.15)
n=1 .

Let us now consider the following three cases respectively,

coming from (4.4.11a), (4.4.12b) and (4.4.11c).

2 L2
1-f 1-f
2n+1 2n
K =-R + R {——2BY n=>1,
n R PP P 2n Fon
l"finﬂ l'_fin
= . . 2n+l _2n >
Kn R2n+1 F +1 * R2n F. -1{°? n 1,
2n+1 2n
1"f§n+1 1"f§n
K =-R —2mll LR n>1,

+ -1 + ) ’
n 2n+1 F2n+1 i 2n an 1/ N
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where
= F - F - =
Kn R2n+1F2n+1 RZnFZn C2n * C2n+1’ n=l,
2 -1ib /y
My = ———B—Eﬂil——-, n>1, (4.4.162)
2n+1
and
2 .
(227 .. -1) +ib_ /y
6,0 = 2”?+b /‘”” , n> 1. (4.4.16b)
2n+1 y

Here, subtracting one equation from the other and then taking the

quotients of the resulting equations, we get

(i- 1/nzn+1
(1+1/n ){F

-+
2n+1 2n+1

Y Fypey -1} iR, +1/6,)
iy - Q78 iF, -iF°

(4.4.17)

(i '1/n2n+1){F2n+1 -1} i i{an +1/62n}

- - - )
21‘[FZn*l*l * 1/n2n+1} . (1-+ 1/621'1) FZn

forn > 1.
Similarly considering the three cases which arise from (4.4.11b},

(4.4.12a) and (4.4.12¢) we also obtain

(1/p, ) IF,y, - 33 AL Y

UFy *100nd G o) Fonoy #3117

(4.4.18)
i{an-+1/p2n} ) (i-+1/y2n_l){F2n_l +i}

(L+1/e, 0F,  (A-1/v,, DIF,  -iF”’
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for n = 1, where

= - i - s -3
L i 2b2n/), n=1, (4.4.19a)

and
2
) (1 —£2n)1 + b2n/y

Y - Fy n
2n-1.
1+22 ) - i ’
(1+ 2n) ib 2n/ Y

V
]

(4.4.19b)

Now, suppose that f,in > ¢ > 0 for all n= 1. Then from

(4.4.19b) we have |y | < 1-¢;, where €7 > 0. Hence, under the

2n-1
limit circle case, from theorem 4.4.1 and from equations (4.4.17)

and (4.4.18) we obtain

an_l—/+1 and F2n—7‘>1 as n > . (4.4.20)

Consider again the following cases which arise from (4.4.11a)

and (4.4.11b).

= = 1 —finﬂ ! _fin
R F -R_F =(C._-C ) - : + R - ——=
2n+1" 2n+1 2n 2n 2n 2n+1 2n+1 F2n+1 + 1/n2n+1 2n F2n
and
= = 1- fin 1- fin 1
R F -R F = (C -C ) - R — . _____-____’
- - - 2T~ -
2n 2n 2n-1 2n-1 2n-1 2n 2n on n-1 an—l 1

for all n > 1,
Here, using the telescopic effect of these equations together
with the properties in theorem 4.4.1 and equation (4.4.20), we

immediately establish that {RnFn} is a Cauchy sesquence.
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Therefore, realising that Hn(w) can alsc be given in the form

RnFn 1- fi
Hn(w) - Cn * £2 T Fw+1|’
n

- n

we establish that the sequence {Hn(i)} is also a Cauchy sequence.

Consequently the result:

Theorem 4.4.2 : If the positive definite and real J-fraction of the
form (4.1.15) satisfies the limit circle case for any z =iy, (y > 0),
then for this z the fraction converges to a single point in the limit

eircle, 1f there exists an € > 0 such that

2

on = e for all n=> 1, (4.4.21)
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4.5 UNIFORM CONVERGENCE

We see from the theorems 4.3.2 and 4.3.3 that when the co-
efficients of the positive definite and real J-fraction of the form
(4.1.15) satisfy any of the conditions (4.3.15), (4.3.16) and
(4.3.17) then for any z for which Im(z) > 0, the fraction converges
to a finite value.

Similarly we also note from theorem 4.4.2 that when the
coefficients 22n’ (n 2 1) satisfy the condition (4.4.21) then the
positive definite and real J-fraction of the form (4.1.15) converges
to a finite value for any z =iy for which y > 0.

So far we have only considered the convergence of the fraction
at any particular point z lying inside some domain. The question of
uniform convergence in any domain still remains to be answered.

Let us now consider the following theorem known as the

"convergence continuation theorem'.

Theorem : Let {Fp(z)} be an infinite sequence of functions, analytic
over a simply connected open domain S, which is uniformly bounded
over every finite closed domain S' entirely within S. Let the
sequence converge over an infinite set of points having at least one
limit-point interior to S. Then, the sequence converges uniformly
over every finite closed domain entirely within S to a function of z

which is analytic in S.

The proof of this theorem can be found for example in Wall
[1948]. We now consider the sequence Fn(z) = Pn(z)/Qn(z), which is

the n-th convergent of the positive definite and real J-fraction of
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the form (4.1.15).' Since all the zeros of Qn(z) lie outside the
region {z : Im(z) > 0} it follows that Fn(z) is analytic for all n
in the domain S, which is the half-plane given by {z :Im(z) > 0].
We also have from (4.2.9b) that Fn(z) is uniformly bounded over
every finite closed domain S' entirely within S.

Thus using these results together with the results of the
theorems 4.3.2, 4,3.3 and 4.4.2 on the convergence continuation

theorem we immediately obtain the following.

Theorem 4.5.1 : For all z lying entirely on the top half cf the
complex plane, the positive definite and real J-fraction of the form
(4.1.15) converges uniformly to a function analytic in this region,

if the coefficients of the fraction satisfy any of the following:

(o8

2 5 2 5 1
I ) (1-22 )%(1-2° )% ———r} = 0,
r=2 2r-1 2r+l 22r£2r+1
[0 9]
2 % 2 % 2y
II ) {(-22. )P -25 V¥ ——} = o,
=2 21-1 2Tr+1 22r22r+1
7 [s o]
= = =
II1 b, =0, t>1 and ] {zzﬂz/zzﬁl} ©,
r=1
IV 2§r>s>0 for all 1> 1.
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