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ABSTRACT

An integral of a group G is a group H whose derived group (commutator

subgroup) is isomorphic to G. This paper continues the investigation on

integrals of groups started in the work [1]. We study:

• A sufficient condition for a bound on the order of an integral for a

finite integrable group (Theorem 2.1) and a necessary condition for

a group to be integrable (Theorem 3.2).

• The existence of integrals that are p-groups for abelian p-groups,

and of nilpotent integrals for all abelian groups (Theorem 4.1).

• Integrals of (finite or infinite) abelian groups, including nilpotent

integrals, groups with finite index in some integral, periodic groups,

torsion-free groups and finitely generated groups (Section 5).

• The variety of integrals of groups from a given variety, varieties of

integrable groups and classes of groups whose integrals (when they

exist) still belong to such a class (Sections 6 and 7).

• Integrals of profinite groups and a characterization for integrability

for finitely generated profinite centreless groups (Section 8.1).

• Integrals of Cartesian products, which are then used to construct

examples of integrable profinite groups without a profinite integral

(Section 8.2).

We end the paper with a number of open problems.

1. Introduction

In our recent paper [1], we defined an integral of a group G to be a group H

whose derived group is isomorphic to G, and called a group G integrable if it

has an integral.

We traced this idea back to a paper of Bernhard Neumann [13] in 1956, but it

is much older. In 1913, Burnside published a paper [2] in which he considered the

question (in our language) of whether a given p-group has an integral which is a

p-group. We call such a group p-integrable, and devote a section to such groups

below. Every abelian p-group is p-integrable, but it follows from Burnside’s

results that there are p-groups which are integrable but not p-integrable (the

smallest being the quaternion group of order 8).

We treat a number of further topics. The longest part (represented by Sec-

tions 4 and 5) of the paper considers integrals of infinite abelian groups in some

detail. We also examine profinite groups in Section 8 where we show that if a

profinite group G is integrable, and if either G is finitely generated (as profinite

group) or G has finite index in some integral, then G has a profinite integral.
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We also give a characterization for integrability in the case of finitely generated

profinite centreless groups and then provide examples of integrable profinite

groups without a profinite integral.

An important question left open in [1] is to find an explicit bound in terms

of G for the order of some integral of the finite group G (if it has one). Such a

bound would give us an algorithm for testing integrability of a finite group. We

were able to give bounds in some special cases, including abelian groups and

centreless groups. In this paper, we push the analysis further in Section 2. We

show that, to bound the order of some integral of G, it suffices to bound the

exponent of the centre of some integral of G in terms of G.

We observe that Bettina Eick has a characterization for groups that are Frat-

tini subgroups of other groups and look for a similar characterization, obtaining

a necessary condition for integrability in Section 3.

In Sections 6 and 7 we work on integrals of groups from a given variety

showing that such a class forms a variety and tackling the question of whether

it is finitely based. We also look at whether there are varieties of integrable

groups beyond that of abelian groups and also study classes of groups so that,

whenever we have an integrable groupG in such a class C, then G has an integral

in C.
In Section 9 we discuss the solution, by Efthymios Sofos, to Question 10.1

from our work [1], and give some more open questions.

In this paper, we use Car and Dir for the (unrestricted) Cartesian product

and the direct sum, respectively, of a family of groups.

2. Bounding the order of an integral

A problem left open in the first paper [1] is to find a bound for the integral of

an integrable finite group G in terms of G. If such a bound can be found, then

we have at least a computable test for the integrability of G (though not a very

efficient test): compute all groups of order divisible by |G| up to the bound,

and decide for each group whether its derived group is isomorphic to G.

We have now an argument that reduces this problem to the problem of finding

a bound for the exponent of Z(H) (for some integral H of G) in terms of G. It

is still open how to find such a bound, if it exists.
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Theorem 2.1: Suppose there is a function F from finite groups to natural

numbers such that, if G is an integrable finite group, then F (G) is a bound for

the exponent of the centre of some integral H of G. Then there is a function F ∗

from finite groups to natural numbers such that, if G is an integrable finite

group, then G has an integral of order at most F ∗(G).

Proof. Let G be a finite group, H an integral of G. We can assume H to be

finite by [1, Theorem 2.2].

The proof proceeds by three reductions:

Step 1. Let K = CH(G). Then H/K ≤ Aut(G). So it suffices to bound |K|.
Step 2. It suffices to bound |Z(H)|.
To see this, let h1, . . . , ht generate H . We know that t is bounded in terms

of G: t ≤ 2μ(G), where μ(G) is the maximal size of a minimal generating set

for G. This is because G is generated by commutators [h, h′] for h, h′ ∈ H ;

choose a minimal set of commutators which generate G, and replace H by the

subgroup generated by the elements appearing in those commutators.

Next, for i = 1, . . . , t, define φi : K → Z(G) by

φi : x �→ [x, hi].

Note that [x, hi] ∈ K ∩G = Z(G).

Take any x, y ∈ K. Then [y, hi] ∈ G, so this element commutes with y. So a

standard commutator identity shows that [xy, hi] = [x, hi][y, hi], that is, φi is a

homomorphism. Its kernel is CK(hi) and its image is contained in Z(G). So

|K/CK(hi)| ≤ |Z(G)|.

It follows that ∣∣∣∣K/
t⋂
i=1

CK(hi)

∣∣∣∣ ≤ |Z(G)|t.
Now

⋂t
i=1 CK(hi) = CK(H) (since H = 〈h1, . . . , ht〉) and

CK(H) = K ∩ Z(H) = Z(H),

because Z(H) ≤ CH(G) = K. Thus we conclude that

|K/Z(H)| ≤ |Z(G)|t ≤ |Z(G)|μ(G)/2,

proving our claim.
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Step 3. It suffices to bound the exponent of Z(H) in terms of G.

We show that, without loss of generality, rk(Z(H)) ≤ rk(Z(G)), where rk(A)

is the rank of the abelian group A (the minimal number of generators). It

follows that

|Z(H)| ≤ (exp(Z(H))rk(Z(G)),

and the step is complete.

Suppose that rk(Z(H)) > rk(Z(G)). Then there is a subgroup N of Z(H)

with Z(G) ∩N = 1. Then

N ∩G ≤ N ∩ (Z(H) ∩G) ≤ N ∩ Z(G) = 1.

So

(H/N)′ = H ′N/N ∼= G/(G ∩N) ∼= G,

so H/N is a smaller integral of G and we can use that instead. This reduction

terminates with rk(Z(H)) ≤ rk(Z(G)).

At this point, we hit an obstruction:

Example 2.2: For every n ≥ 3, the group C2 has an integral

Gn = 〈a, b | a2n−1

= b2 = 1, b−1ab = a2
n−2+1〉

of order 2n, with Z(Gn) cyclic of order 2n−2. Every proper subgroup or factor

group of the group Gn is abelian, so it is not at all clear how we could “reduce”

it to a group with smaller cyclic centre, although clearly such groups do exist.

3. Towards a characterization of integrable groups

Bettina Eick [3] proved the following remarkable theorem. Here Φ(G), Aut(G)

and Inn(G) denote the Frattini subgroup, automorphism group, and inner au-

tomorphism group of the group G.

Theorem 3.1 (Eick [3]): The finite group G is the Frattini subgroup of some

group H if and only if Inn(G) ≤ Φ(Aut(G)).

This gives a test, involving looking only at G, to decide whether a group is a

Frattini subgroup.

However, this is false if we replace “Frattini subgroup” by “derived subgroup”.

We showed in [1] that the non-abelian group G of order 27 and exponent 9 is

not integrable; but its inner automorphism group is contained in the derived
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group of its automorphism group. (The automorphism group of G has order 54;

its derived group has order 27, so is a normal Sylow-3-subgroup and contains

all 3-subgroups of Aut(G), including Inn(G) which has order 9.)

An analogue of Eick’s result for the derived group holds for various classes of

groups, including abelian groups and perfect groups. Moreover, the test works

in general one way round:

Theorem 3.2: If the group G is integrable, then Inn(G) ≤ Aut(G)′; indeed
Inn(G) has an integral within Aut(G).

Proof. LetH be an integral ofG, andK=CH(G); thenH/K embeds in Aut(G),

and K ∩G = Z(G). We have

(H/K)′ = H ′K/K = GK/K ∼= G/(G ∩K) = G/Z(G) ∼= Inn(G),

so H/K is an integral of Inn(G) and is contained in Aut(G). Moreover,

Inn(G) = (H/K)′ ≤ Aut(G)′

since H/K ≤ Aut(G).

4. p-integrals

We say that a p-group (finite or infinite) is p-integrable if it has an integral

which is a p-group.

As noted in [1], Guralnick [8] observed that an abelian group A of order n

has an integral of order 2n2, namely A � C2. So any finite abelian 2-group has

a 2-integral.

More generally, any abelian p-group has a p-integral. We give a more general

argument which will be used in the next section also.

Theorem 4.1: (a) Every abelian group has an integral which is nilpotent

of class 2.

(b) Every finite abelian p-group has a p-integral which is finite and nilpotent

of class 2.

(c) Every abelian p-group has a p-integral which is a nilpotent p-group of

class 2.

(d) Every periodic abelian group has an integral that is periodic and nilpo-

tent of class 2.
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Proof. Let A be an abelian group. Recall that a group is nilpotent of class 2 if

and only if its derived group is nontrivial and central.

Suppose first that A is the additive group of a ring R with identity. Then,

as remarked in [1], the group G of upper unitriangular 3× 3 matrices over R is

nilpotent of class 2 and satisfies G′ ∼= A.

Not every abelian group is the additive group of a ring with identity. For if A

is the additive group of R, then the exponent of A is equal to the additive order

of the identity of R; so a torsion abelian group of unbounded exponent will fail

this property. However, two classes of groups which do have the property are:

• Finitely generated abelian groups; such a group is a finite direct sum

of cyclic groups, and a cyclic group is the additive group of the ring of

integers or of integers mod n, according as its exponent is infinite or

finite. (Part (b) of the theorem follows from this, since if A is finite

then |G| = |A|3.)
• Free abelian groups. For let A be a free abelian group. By the previous

case, we can assume that A is not finitely generated. If its rank is

the cardinal number λ, then it is the additive group of the ring of

polynomials in λ indeterminates over Z.

Now, let A = F/R be an abelian group, where F is free abelian. Let T be

an integral of F , with F = T ′ ≤ Z(T ). Then R ≤ Z(T ), so R is normal in T ;

setting H = T/R we have H ′ = F/R = A.

The proof of (c) requires a little more care. Let A be an abelian p-group,

and write A = F/R, where F is free abelian, say F = Diri∈Λ〈fi〉. There is an

epimorphism θ : F → A. Let the order of fiθ be pri . Now let G = Diri∈ΛCi,

where Ci = 〈gi〉 is a cyclic group of order pri , and let φ be the epimorphism

from F to G defined by

fiφ = gi.

We show that θ factors through φ. Let f =
∑
nifi (a finite sum) belong

to the kernel of φ. Then
∑
nigi = 0, so pri | ni for all i; but this implies

that fθ =
∑
ni(fiθ) = 0, so

∑
nifi ∈ ker(θ). In other words,

ker(φ) ≤ ker(θ).

Thus, there is an epimorphism ψ : G → A such that φψ = θ. (For g ∈ G,
define gψ = fθ, where f is a preimage of g under φ; the condition on kernels

shows that this is well-defined.) So we have A ∼= G/S for some S.
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For each i ∈ Λ, let Di be a group isomorphic to the group of upper uni-

triangular matrices of dimension 3 over Z/priZ; its centre, which is equal to

its derived group, is cyclic of order pri , and we identify this group with 〈fiθ〉.
Let H = Diri∈ΛDi. Then H is a p-group, and H ′ = G. Also S ≤ Z(H),

so S �H ; and S ≤ H ′, so

(H/S)′ = H ′/S = G/S ∼= A,

and we are done.

Part (d) is a consequence of part (c), since a periodic abelian group is a direct

sum of p-groups.

For non-abelian p-groups, some are p-integrable, for there are p-groups of

arbitrarily large derived length. But of the groups of order 8, the three abelian

groups are 2-integrable; the dihedral group is not integrable; and the quaternion

group is integrable (it has an integral SL(2, 3) of order 24) but not 2-integrable.

Indeed, the following two theorems were proved by Burnside [2]. Either of them

deals with Q8.

Theorem 4.2 (Burnside [2]): (a) A non-abelian p-group with cyclic centre

is not p-integrable.

(b) A non-abelian p-group whose derived group has index p2 is not p-

integrable.

Another open problem is to find the smallest p-integral of a given p-integrable

group. For the three abelian groups of order 8, the smallest 2-integral of the

cyclic group has order 32, and for the other two the smallest 2-integral has

order 64.

We consider further the question of the smallest 2-integral of an elementary

abelian 2-group, since this is relevant for the discussion of integrals of infi-

nite abelian groups in the next section. Any elementary abelian 2-group of

order n > 4 has an integral of order n2, namely a Suzuki 2-group, see Hig-

man [10]. However, we can do substantially better.

Let A be an elementary abelian 2-group of order 2n. We start with an exam-

ple. Logarithms are in base 2.

Example 4.3: Suppose that A is elementary abelian of order 2n, and let k be a

positive integer with k > logn. Let H be an abelian 2-group of order 2k and

consider the standard wreath product

W = C2 �H = B �H,
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where C2 is a cyclic group of order 2, and B is the base group of the product.

We have that W ′ ≤ B is an elementary abelian 2-group of index 2 in B; hence

|W ′| = 2|H|−1 = 22
k−1 ≥ 2n.

Since W is nilpotent, it admits a normal subgroup N ≤W ′, with |W ′/N | = 2n;

we let G =W/N . Then G′ =W ′/N ∼= A, so G is an integral of A, and

|G| = 2n+12k.

Now, we may well take k = �logn+ 1, and obtain

|G| ≤ |A|2�log n�+2.

Thus, f(n) ≤ n+ �logn+ 2, where f(n) = logF (A) is the function defined in

Theorem 2.1.

Observe that the inequality above implies

(1) |G/A| ≤ 4 log |A|.
Now, we aim at a lower bound for f(n). We require the following results [1,

Lemmas 4.1 and 4.2].

Lemma 4.4: Let H be a 2-group acting by automorphisms on the finite ele-

mentary abelian 2-group A. Then

|A/[A,H ]| ≥ |A|1/|H|.

Theorem 4.5: Let A be a finite elementary abelian 2-group, and G a 2-group

such that G′ = A; write H = G/A. Then

(2) |H | log2 |H | ≥ 2 log |A|.
Corollary 4.6: Let A be a 2-group, with A/A2 infinite, and letG be a 2-group

such that A = G′. Then G/A is infinite.

Proof. As A2 is characteristic in A and (G/A2)′ = A/A2, we may well as-

sume A2 = 1, so that A is an infinite elementary abelian 2-group.

Suppose, by contradiction, that G/A is finite. Given any finite index sub-

group H ≤ A, its normal core HG in G has finite index too, so by taking finite

index subgroups of A of increasingly larger order, we find subgroups N ≤ A

with N � G and A/N finite and arbitrarily large. But A/N is the derived

subgroup of G/N , and this contradicts Lemma 4.5.
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According to GAP [6], the order of the smallest p-integral of an elementary

abelian group A is 8|A| for |A| = 2k with 2 ≤ k ≤ 5, and 9|A| for |A| = 3k

with 1 ≤ k ≤ 4. However, as we have seen above, such bounds cannot hold

in general. A small open problem: find the largest value of k for which one

of them holds. For example, if p = 2, the above result shows that, if the

elementary abelian 2-group of order 2k has index 8 in its smallest 2-integral,

then 23 · 32 ≥ 2k, so k ≤ 36. What is the exact value?

We will see in Corollary 5.3 an estimate of the smallest order of a p-integral

of a finite abelian p-group when p is an odd prime number.

5. Integrals of abelian groups

We know that every abelian group has an integral. Here, we are concerned with

the existence of integrals of an abelian group that are in some sense ‘close’ to

the group.

5.1. Nilpotent integrals. We have seen that every abelian group has an

integral which is nilpotent of class 2, in Theorem 4.1 above. Let us add some

observations in the finite case.

Lemma 5.1: Let A be a finite abelian p-group of rank d and exponent pn. Then

there exists a finite p-group G such that A = G′ and |G| = |A|pn+d. If p = 2,

|G| = |A|2d+1.

Proof. Let A = 〈x1〉 × · · · × 〈xd〉, with |x1| = pn. Then consider a group

N = 〈y1〉 × · · · × 〈yd〉, where, for every i = 1, . . . , d, ypi = xi; let α be the

automorphism of N defined by yαi = yp+1
i ; thus, |α| = pn. (A simple induction

shows that (1 + p)p
n ≡ 1 (mod pn+1).) Finally, set G = N � 〈α〉. Then

|G| = |N ||α| = |A|pdpn,

and

G′ = [N,α] = {[yi, α] | i = 1, . . . , d} = {ypi | i = 1, . . . , d} = A.

If p = 2, the automorphism α above may be taken to be the inverse map,

yielding |G| = |A|2d+1.
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We do not claim that for a single abelian p-group A this construction yields a

nilpotent integral of smallest possible order: for instance, if A is the direct sum

of p− 1 cyclic groups of order pn, then A is isomorphic to the derived subgroup

of H = Cpn � Cp, and |H | = |A|pn+1. It however provides a smallest nilpotent

integral when A is cyclic and p �= 2.

Lemma 5.2: Let p be an odd prime and G a finite non-abelian p-group such

that G′ is cyclic of order pn. Then |G| ≥ p2n+1.

Proof. LetG be a finite p-group such that A=G′ is cyclic of order pn, with n≥1.

Now G/CG(A) is cyclic, so setting C = CG(A), there exists y ∈ G such

that G = C〈y〉.
Suppose first that C ′ = A. Then, since A is cyclic of prime-power order,

A=〈[a, b]〉 for some a, b∈C, and [a, b, b]=1; hence 1 �=[a, b]p
n−1

=[a, bp
n−1

], and

so bp
n−1

does not belong to CC(a)≥A〈a〉>A. So the elements 1, b, b2, . . . , bp
n−1

belong to distinct cosets of A〈a〉. This yields

|C| ≥ pn|A〈a〉| ≥ p2n+1.

We may then assume C′ < A. Since A = (C〈y〉)′ = C′[C, 〈y〉] is cyclic,

we deduce that there exists x ∈ C such that A = 〈[x, y]〉. Clearly, we may

also suppose G = 〈x, y〉. In this setting we prove, by induction on n, that

[x, yp
n−1

] �= 1. The case [x, y, y] = 1 has already been proved above, and

includes the case n = 1. Thus, let n ≥ 2 and K = [A, y, y] = 〈[x, y, y, y]〉;
observe that |K| ≤ pn−2, hence it is properly contained in 〈[x, y]p〉. Now,

[x, yp] = xy
p−1 = x(y−1)(1+y+···+yp−1) = [x, y]1+y+···+yp−1

,

thus, by standard commutator calculus,

[x, yp] = [x, y]p[x, y](y−1)+(y2−1)+···+(yp−1−1)

= [x, y]p[x, y, y]1+(1+y)+(1+y+y2)+···+(1+y+y2+···+yp−2)

≡ [x, y]p[x, y, y]1+2+···+(p−1) (mod K)

= [x, y]p[x, y, y]
p(p+1)

2

(as [x, y, y]y ≡ [x, y, y] (mod K)). Since p is odd and A = 〈[x, y]〉 is cyclic, we

deduce

(3) 〈[x, yp]〉 = 〈[x, y]p〉.
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Now, 〈[x, yp]〉 is the commutator subgroup of 〈x, yp〉, which, by (3) has or-

der pn−1. Therefore, by the inductive assumption,

(4) [x, yp
n−1

] = [x, (yp)p
n−2

] �= 1,

as wanted.

Now, since CG(x) ≥ 〈A, x〉, (4) implies yp
n−1 �∈ 〈A, x〉; therefore,

|G| ≥ pn|〈A, x〉| ≥ pn+1|A| = p2n+1

thus completing the proof.

This allows to find an exact general bound for odd primes.

Theorem 5.3: For every positive integer k ≥ 1, let fp(k) denote the smallest

positive integer such that every abelian group of order pk has an integral of

order pfp(k). Then, if p is an odd prime, fp(k) = 2k + 1.

Proof. Let k ≥ 1 and let A be an abelian group of order pk. If d is the rank

of A and pn its exponent, then pk ≥ pn+d−1. By Lemma 5.1 there exists an

integral G of A such that

|G| = |A|pn+d ≤ p2k+1.

This bound is sharp by Lemma 5.2.

For p = 2, Lemma 5.2 fails, as seen by consideration of dihedral 2-groups,

and we do not have yet the exact value of f2(k) (see also [1]).

Remark 5.4: It is clear that a finite p-group (for p a prime number) has a

nilpotent integral if and only if it has a finite integral that is a p-group. However,

not every integrable p-group has a nilpotent integral, the quaternion group of

order 8 being the smallest example of an integrable nilpotent group that does

not have a nilpotent integral. Indeed, by Theorem 4.2, no non-abelian nilpotent

group with cyclic centre has a nilpotent integral.

5.2. Finitely integrable abelian groups. This section deals with Prob-

lem 10.8 of [1]. We say that a group A is finitely integrable if there exists a

group G such that A ∼= G′ and |G : G′| is finite.
Not every abelian group is finitely integrable: it is proved in [1] that an

infinite direct sum of cyclic 2-groups with pairwise distinct orders is not finitely

integrable. On the other hand, we have the following simple fact.
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Proposition 5.5: For every abelian group A, the direct sum A×A is finitely

integrable.

Proof. Consider the automorphism α of A×A defined by

(x, y) �→ (y, y − x)
for every (x, y) ∈ A × A. Then the order of α divides 6. Moreover, for each

(x, y) ∈ A×A,
[(x, y), α] = (y − x,−x),

hence [A×A,α] = A×A. Letting G = (A×A)� 〈α〉, we have that G′ = A×A
has finite index in G.

Remark 5.6: If A contains no elements of order 3, we can use the automorphism

(x, y) �→ (y,−x− y), with order 3, instead.

Corollary 5.7: Every free abelian group is finitely integrable.

5.2.1. Periodic groups. In this subsection we consider periodic abelian groups,

aiming at a description of the finitely integrable ones. Clearly, if A is a periodic

abelian group with no elements of order 2, then A is finitely integrable via the

inversion automorphism; thus, the question reduces to characterizing abelian

2-groups that are finitely integrable.

Another immediate reduction is to reduced groups. An abelian p-group A is

divisible if and only if Ap = A, and it is reduced if it contains no non-trivial

divisible subgroup. Any abelian p-group A has a unique (hence characteristic)

maximal divisible subgroup D, and A = D × B with B reduced. For x ∈ D,

choose y ∈ D with y2 = x; then [y−1, α] = x, where α is the inversion automor-

phism; so [D,α] = D. It follows that A is finitely integrable if and only if the

reduced group B ∼= A/D is finitely integrable.

So it is enough to consider reduced 2-groups.

We need the following lemma on reduced p-groups (only in the case p = 2).

Lemma 5.8: Let A be a reduced abelian p-group, and suppose that A/Ap is

finite. Then A is finite.

Proof. Let σ be the pth power map on A. Then σ induces maps (which we also

denote σ) as follows:

A/Ap → Ap/Ap
2 → · · · → Ap

m

/Ap
m+1 → · · · .
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All these maps are surjective homomorphisms. Since A/Ap is finite, there ex-

ists m such that, for all n ≥ m, the map σ : Ap
n

/Ap
n+1 → Ap

n+1

/Ap
n+2

is an

isomorphism.

Suppose first that Ap
m

> Ap
m+1

, and choose an element x ∈ Apm \ Apm+1

.

Then successively applying σ to x any number n−m of times gives an element

which is non-trivial modulo Ap
n+1

, and hence non-trivial; so x has infinite order,

a contradiction.

So we must have

Ap
m

= Ap
m+1

= Ap
m+2

= · · · .
But then the subgroupAp

m

is divisible. Since A is assumed reduced, this implies

that Ap
m

= 1. But

|A| = |A : Ap
m | ≤ |A/Ap| · |Ap : Ap2 | · · · |Apm−1

: Ap
m | ≤ |A : Ap|m−1,

so A is finite, as required.

If G is an abelian p-group, and n a non-negative integer, we set

G[pn] = {x ∈ G | xpn = 1} and Gp
n

= {xpn | x ∈ G}.
These are characteristic subgroups of G and G/G[pn] ∼= Gp

n

. We also write

Gp
ω

=
⋂
n≥0

Gp
n

.

The simplest reduced groups are direct sums of cyclic p-groups. The following

is essentially proved in [1].

Lemma 5.9: Let A be a homocyclic 2-group of rank k≥2: that isA = Diri∈I Hi,

with Hi
∼= C2n for some fixed n ≥ 1, and |I| = k ≥ 2. Then A has an integral

of type A�Q, with |Q| dividing 21.

Proof. If k is finite, this is done in [1], in the construction at the start of Section 4

(p. 159) (see also Remark 5.6 above); indeed, the construction shows that, if k

is even, we may take |Q| = 3 (see below).

If k is an infinite cardinal, we may find a partition I = J∪J ′ with |J |= |J ′|=k.
If j �→ j′ is a bijection from J to J ′, then A = Dirj∈J(Hj ×Hj′) and there is an

automorphism α of order 3 of A (again by Remark 5.6), fixing every Hj ×Hj′

and such that [Hj × Hj′ , α] = Hj × Hj′ , so that A is the derived subgroup

of A� 〈α〉.
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5.2.2. Ulm–Kaplansky invariants. In this subsection, we suggest another ap-

proach to the question of which abelian 2-groups are finitely integrable, using

the concept of Ulm–Kaplansky invariants.

Let p be a prime number and A an abelian p-group. If σ is an ordinal we

define Ap
σ+1

= (Ap
σ

)p, while for a limit ordinal σ, we set Ap
σ

=
⋂
λ<σ A

pλ .

Thus, for example

Ap
ω

=
⋂
n∈N

Ap
n

.

If A is reduced then there exists a smallest ordinal τ , that we call the height

of A, such that Ap
τ

= 1.

Let A be a reduced abelian 2-group of height τ ; then for every ordinal σ < τ

we define the Ulm section

Uσ(A) =
A2σ ∩A[2]
A2σ+1 ∩A[2] .

Clearly, Uσ(A) is a characteristic section of A, and is an elementary abelian

2-group. The cardinal number

fσ(A) = rk(Uσ(A))

is called the σ-th Ulm–Kaplansky invariant of A.

For the next result, we remind the reader of a result about coprime ac-

tion: if H is a p′-group of automorphisms of a finite abelian p-group G, then

G = CG(H)× [G,H ] (see, for example, [7, Theorem 5.2.3]).

Theorem 5.10: Let A be a reduced 2-group which is finitely integrable. Then

(1) only finitely many Ulm–Kaplansky invariants of A are equal to 1;

(2) if A has height τ > ω then fσ(A) �= 1 for every ordinal ω ≤ σ < τ .

Proof. (1) Let A be a reduced 2-group of height τ , and let G be an integral

of A with G/A finite. Let G/A = H/A×Q/A, where H is a 2-group and Q/A

a finite group of odd order. By coprime action (since Q/A is finite and A an

abelian 2-group), A = [A,Q]× C, where C = CA(Q). As [A,Q] � G, we have

(H/[A,Q])′ = A/[A,Q],

hence C ∼= A/[A,Q] is finitely 2-integrable and so, by Corollary 4.6, C/C2 is

finite. Since C is reduced, Lemma 5.8 shows that C is finite. Then, in particular,

C ∩A[2] is finite.
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Now the action of Q on any section of A[2] is completely reducible; so,

if C ∩Aσ ∩A[2] = C ∩Aσ+1 ∩A[2], then Q acts fixed-point-freely on

(Aσ ∩A[2])/(Aσ+1 ∩A[2]) = Uσ(A).

Hence only a finite number of sections Uσ(A) (with σ < τ) may be centralized

by Q, and so only a finite number of such sections are cyclic.

(2) Let A be a reduced 2-group of height τ > ω, and suppose that fσ(A) = 1

for some ordinal ω ≤ σ < τ . Let Q ≤ Aut(A) be a finite group of odd order.

Then A = C × B, where C = CA(Q) and B = [A,Q]. Now, Q centralizes the

factor Uσ(A), hence, in particular, C∩A2ω �= 1. But, clearly, A2ω = C2ω×B2ω ,

hence C2ω �= 1, which implies, in particular, that C is an infinite reduced group.

But then, by Corollary 4.6, A/B ∼= C is not 2-integrable. This shows that A is

not finitely integrable.

However, the converse is not true in general (even for countable groups).

Example 5.11: For every positive integer n ≥ 1, let 〈an〉 by a cyclic group of

order 2n, and write H = Dirn≥1〈an〉. Let
N = 〈a2n−1

n a2
n

n+1 | n ≥ 1〉,
and H∗ = H/N . Now, for every n ≥ 1,

(an+1N)2
n

= a2
n

n+1N = (anN)2
n−1

= · · · = a1N ;

thus

(5) 〈a1N〉 =
⋂
n≥1

H2n

∗ = H2ω

∗ .

It is not difficult to show that H∗/H2ω∗ ∼= H , and that fσ(H∗) = 1 for every

finite ordinal σ ≤ ω (while fn(H) = 1 for n a finite ordinal and fω(H) = 0).

We consider A = H1 ×H2 × H , with H1
∼= H2

∼= H∗. Then fn(A) = 3 for

every finite ordinal n, and fω(A) = 2.

We claim that A is not finitely integrable. Suppose, by contradiction, that

there exists a group G with A = G′ and G/A finite, and let Q be the odd order

component of G/A. Now Q acts on A and we may suppose that the action is

faithful. Then Q acts on every section Uσ(A). As these sections are elementary

abelian of order 23 or 22, we have that, for each σ ≤ ω, Q/CQ(Uσ(A)) is cyclic
of order 1, 3 or 7. Since, by coprime action,⋂

σ≤ω
CQ(Uσ(A)) = CQ(A[2]) = CQ(A) = 1,

we conclude that Q is the direct sum of cyclic groups of order 3 or 7.
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Suppose that A2ω is centralized by Q; then, writing Y = CA(Q),

[A,Q]2
ω ≤ A2ω ∩ [A,Q] ≤ [A,Q] ∩ Y = 1.

It thus follows from the decomposition A = [A,Q] × Y that A2ω = Y 2ω ; in

particular, Y is infinite and, since it is also reduced (because A/A2ω =W/B is

reduced and A2ω finite), Y/Y 2 is infinite. On the other hand, Y ∼= A/[A,Q] is

finitely 2-integrable and so, by Corollary 4.6, Y/Y 2 is finite, which is absurd.

Thus, CQ(A
2ω ) < Q and so, as A2ω is elementary abelian of order 4, there

is an element x of order 3 in Q such that [A2ω , x] = A2ω . Let C = CA(x)

and K = [A, x]. Then A2ω ≤ K and so, arguing as before, K is infinite and,

in particular, K[2] is infinite. As x acts fixed-point-freely on K we deduce that

every section Uσ(K) (with σ ≤ ω) is either trivial or of rank 2. In particular,

there are infinitely many positive integers n such that fn(K) = 2. Now, for

every positive integer n,

3 = fn(A) = fn(C) + fn(K),

hence there are infinitely many n such that fn(C) = 1. Since C is reduced,

it follows from Proposition 5.10 that C is not finitely integrable. However,

C ∼= A/K = (G/K)′, and this is the final contradiction.

Remark 5.12: The isomorphism type of a countable reduced abelian p-group

is determined by its Ulm–Kaplansky invariants (see [5], Theorem 77.3), thus,

in principle, the finite integrability of a countable reduced 2-group should be

readable from the sequence of its Ulm–Kaplansky invariants.

5.2.3. Torsion-free groups. The case of abelian torsion-free groups seems much

more involved, and we have at the moment little to say.

Proposition 5.13: There exist torsion-free abelian groups that are not finitely

integrable.

Proof. For every prime p let Ap = Z[ 1p ] (written multiplicatively), and

A = Dir
p
Ap.

For every p, Ap is the largest p-divisible subgroup of A and is therefore char-

acteristic. This implies that every automorphism of finite order of A is an

involution. Observe also that A/A2 is infinite.
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Now, suppose there exists an integral G of A such that |G : A| is finite and

write C = CG(A). By what was observed above, as the action of G/C is by

automorphisms on A which are involutions, G/C is a finite 2-group. Moreover,

Z(C) has finite index in C and so C ′ is finite. As A is torsion-free, we thus

have C′ ∩A = 1 and we may well suppose C′ = 1. Let K = C2; we then have

K/A2 ∼= (C/A2)[2] ≥ A/A2

(via the homomorphism cA2 �→ c2A2); in particular, C/K is infinite and

so AK/K is infinite. But then G = G/K is a 2-group with G
′
= AK/K infinite

elementary abelian, which (by Corollary 4.6) implies that G/G
′ ∼= G/AK is

infinite, which is a contradiction.

Theorem 5.14: Let G be a torsion-free abelian group. If G admits an auto-

morphism α of odd order n (possibly trivial) such that CG(α)/CG(α)
2 is finite,

then G is finitely integrable.

Proof. Let G be an abelian torsion-free group and let α be an automorphism

of odd order n of G such that CG(α)/CG(α)
2 is finite. Then, for every g ∈ G,

gn[g, α] · · · [g, αn−1] = g1+α+···+αn−1 ∈ CG(α);
hence Gn ≤ CG(α)[G,α]. Then, since n is odd,

G

[G,α]G2
=
CG(α)[G,α]G

2

[G,α]G2
∼= CG(α)

CG(α) ∩ [G,α]G2

is finite by hypothesis. Denote by λ the inversion automorphism of G;

then β = αλ is a fixed-point-free automorphism of order 2n of G, whence

[G, β] ∼= G/CG(β) = G. But

[G, β] ≥ [G,α][G, λ] = [G,α]G2

has finite index in G. Thus, by letting H = G� 〈β〉, we have H ′ = [G, β] ∼= G,

showing that G is finitely integrable.

Corollary 5.15: Every torsion-free abelian group of finite rank is finitely

integrable.

Proposition 5.14 implies, in particular, that a torsion-free abelian group ad-

mitting a fixed-point-free automorphism of odd order is finitely integrable. How-

ever, because of the abundance of indecomposable torsion-free abelian groups,

nothing similar to Theorem 5.10 is to be expected in this case. For instance,
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examples of indecomposable (as direct sums) torsion-free groups admitting a

fixed-point-free automorphism of order 3 may be found in [5, Chapter XVI]:

e.g., Example 2 at page 272. That group is indeed of rank 2 and so it is

finitely integrable anyway by Corollary 5.15; it is however possible to extend

that construction to obtain indecomposable groups of infinite rank with a fixed-

point-free automorphism of order 3.

Example 5.16: Let P be a partition into an infinite number of infinite disjoint

subsets of the set of all primes q ≡ 1(mod 6). For every I ∈ P , let AI be

a torsion-free group as constructed, with respect to the set of primes in I, in

[5, Example 2 of page 272]. The groups AI (for I ∈ P) are indecomposable,

pairwise non-isomorphic, and admit a fixed-point-free automorphism of order 3.

The direct sum G = DirI∈P AI of these groups admits a fixed-point-free auto-

morphism of order 3, hence it is finitely integrable, but it is not decomposable

as the direct sum of two (or more) isomorphic subgroups, and is such that G/G2

is infinite.

5.3. Finitely generated integrals. We know (see [1]) that a finitely gen-

erated abelian group has a finitely generated integral (and even a nilpotent one,

by Theorem 4.1). On the other hand, it is well known that the derived sub-

group of a finitely generated group need not be finitely generated (for instance,

consider the derived subgroup of the non-abelian free group of rank 2), and thus

it makes sense to ask which abelian groups have an integral which is finitely

generated, a question that goes back to P. Hall [9]. In his paper, Hall found

necessary conditions for an abelian group to occur as a normal subgroup with

polycyclic factor of a finitely generated group. Much later, in [11, Theorem

1.1], Mikaelian and Olshanskii proved that the class of abelian groups described

by Hall is precisely that of groups which are isomorphic to a subgroup of the

derived group of a finitely generated (in fact, 2-generated) metabelian group. In

the same paper (Theorem 1.3 and Example 5.1), Mikaelian and Olshanskii show

that not all such groups may be embedded as the derived group of a finitely

generated group.

For every set π of primes, denote by Dπ the set of all rational numbers whose

denominator is a positive π-number: also, set D∅ = Z. From [11] it is not

difficult to retrieve the following necessary condition.
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Proposition 5.17: Let G = T ×D where

• T is a finite or countable abelian group of finite exponent, and

• D is the direct sum of a family of groups {Dπi | i ∈ I}, with I finite or

countable and
⋃
i∈I πi finite.

Then there exists a finitely generated group H such that G ∼= H ′.

We have no idea whether this condition is also necessary; thus, a full charac-

terization of abelian groups that have a finitely generated integral seems to be

still open.

6. Varieties of groups

6.1. The integral of a variety. The starting point of this subsection was

Problem 10.13 of [1]. We know that, if V is a variety of groups, then the class

of all integrals of groups in V is a variety [1]. In fact we can say a bit more.

Proposition 6.1: The class of integrals of groups in the variety V is a variety;

indeed it is the product variety VA, where A is the variety of abelian groups.

Proof. The product variety VA consists of all groups which have a normal

subgroup in V with quotient inA; it is a variety (Neumann [14, 21.11]). Clearly,

if H is an integral of a group G ∈ V then H ∈ VA.

Conversely, suppose that H ∈ VA. Then there is a subgroup N � H

with N ∈ V and H/N abelian; so H ′ ≤ N and so H ′ ∈ V, since V is subgroup-

closed.

We call VA the integral of V.

Let G be a finite group, V the variety generated by G. Then V is finitely

based, by the Oates–Powell Theorem, see [14, 52.11]. Is the integral W of V

also finitely based?

A basis for W consists of the identities

v(x1, . . . , xm) = 1,

where v is an identity ofV and x1, . . . , xm are elements of the relevant free group

which are products of commutators [14, 21.12]. This set is infinite. So, to get a

finite basis for the identities, we would require that there is a positive integer k0

with the property that, if each identity v(u1, . . . , ur) holds when each ui is

a product of at most k0 commutators, then it holds in general without this

restriction.
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This leads us to the following definition. Let S be a symmetric subset of a

group G (that is, S = S−1). Let

Bk(S) =

k⋃
i=0

Si

be the ball of radius k in the Cayley graph of G with respect to S.

We say that a group identity w = 1 has gauge k if, whenever S is a symmetric

generating set for a finite group G and the identity w = 1 holds in Bk(S), then

the identity holds in G.

The gauge of a variety V is the smallest k such that, if the identities w = 1

defining the variety all hold in Bk(S), where S is a symmetric generating set

for a group G, then G ∈ V. (This is in general weaker than requiring that all

the identities defining V have gauge at most k. But if V is finitely based, then

it is defined by a single identity, and we can require this identity to have finite

gauge.)

Remark 6.2: Why symmetric? First, it makes a difference. Consider the sym-

metric group Sn with the usual generating set a = (1, 2) and b = (1, 2, . . . , n).

Consider the metabelian identity [[x, y], [z, w]] = 1. If we use the generating set

S = {a = a−1, b, b−1}, and we substitute x = a, y = b, z = a, w = b−1, the

identity does not hold. But if we use the generating set {a, b}, any substitution

of generators satisfies one of x = y; z = w; {x, y} = {z, w}. In each case the

identity is satisfied.

Second, in our application, the generating sets that arise will be symmetric.

For the derived group of a group G is generated by all commutators [x, y]

for x, y ∈ G, and [x, y]−1 = [y, x].

Our earlier considerations give the following result.

Theorem 6.3: Let V be a variety which is finitely based and has finite gauge.

Then the integral of V is finitely based.

Proposition 6.4: Each of the following varieties has gauge 1: the variety A

of abelian groups, the variety Am of abelian groups of exponent dividing m,

and the variety Nc of nilpotent groups of class at most c.

Proof. If the generators of G commute, then G is abelian; if in addition the

generators have order dividing m, then G has exponent dividing m.
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The variety Nc is defined by the identity [x1, x2, . . . , xc+1] = 1, where the

commutator is left-normed, defined inductively by

[x1, . . . , xk+1] = [[x1, . . . , xk], xk+1]

for k ≥ 2. The proof is by induction on c, the first part of the proposition giving

the case c = 1.

So let G be a group with symmetric generating set S satisfying the iden-

tity [x1, x2, . . . , xc+1] = 1. This identity shows that the element [x1, . . . , xc],

for x1, . . . , xc ∈ S, commutes with every generator, and so belongs to Z(G).

This shows that G/Z(G) with generating set S = SZ(G)/Z(G) has the property

that all generators satisfy [x1, . . . , xc] = 1; by induction, G/Z(G) is nilpotent

of class at most c− 1, so G is nilpotent of class at most c.

Proposition 6.5: The identity x2 = 1 has gauge 2 (and not 1).

Proof. If x2 = y2 = 1, then (xy)2 = 1 if and only if x and y commute. So, if all

generators and their pairwise products have order 2, then all pairs of generators

commute, and G is abelian of exponent 2. But of course there are non-abelian

groups generated by elements of order 2. Moreover, it is straightforward to

verify that if g2 = 1 for every g ∈ B2(S), then g
2 = 1 for every g ∈ G.

In the other direction, we have the following:

Proposition 6.6: The variety of metabelian groups has infinite gauge.

Proof. Let R = 〈a, b〉 be a non-abelian simple group, and consider the restricted

wreath product G = R � 〈x〉, where x is an element of infinite order. Denote

by E the base of the wreath product (i.e. the direct sum of all coordinate

subgroups Rx
z

for z ∈ Z); thus E = G′ and G is the semidirect product E�〈x〉.
Let n be a positive integer, and N = 4n+ 1. Let c = bx

N

; then

S = {a, a−1, c, c−1, x, x−1}
is a symmetric set of generators of G. As introduced earlier, for k ≥ 1 denote

by Bk =
⋃k
i=0 S

i the ball of radius k and, for g ∈ G, by �(g) the length of g

as a word in S, that is, its distance from the identity in the Cayley graph of G

with generating set S.

For each 0 ≤ t let
At = 〈a(xz) | |z| ≤ t〉, Ct = 〈c(xz) | |z| ≤ t〉 and Wt = 〈At, Ct〉.

Observe that W x
t ∪W x−1

t ⊆Wt+1.
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Claim: Bt ∩ E ⊆W�t/2�.

We prove this by induction on t, the fact being clear for t = 1. Thus, let t ≥ 2

and suppose u = vy ∈ Bt ∩ E with v ∈ Bt−1 and y ∈ S. If y ∈ {a, a−1, c, c−1},
then v ∈ Bt−1 ∩E and we are done by induction. Let u = vx; then since u ∈ E
there is, in the writing of v as a word of length t− 1 in S, an occurrence of x−1

somewhere; that is

u = v1x
−1v2x,

with v1, v2 ∈ E and 1 ≤ �(v2) ≤ t− 2. By inductive assumption, v2 ∈ W�t/2�−1

and so x−1v2x ∈ W�t/2�; since v1 ∈ E ∩Bt−3, we have u ∈W�t/2�, as wanted.
Now, observe that At, Ct are abelian for every t; moreover,when t ≤ 2n, At

and Ct have trivial intersection and commute element-wise, so that, for t ≤ 2n,

Wt = 〈At, Ct〉 = At × Ct
is abelian. Let finally g1, g2, g3, g4 ∈ Bn; then [g1, g2], [g3, g4] ∈ B4n ∩E ⊆W2n,

and so

[[g1, g2], [g3, g4]] = 1.

Thus the metabelian identity holds in Bn but not in the whole group, meaning

that its gauge is greater than n. This holds for all n, so the gauge is infinite.

However, a metabelian variety generated by a finite group may have finite

gauge. For example, consider the variety V generated by the group S3. It is

known that V = A3A2, and as a basis for the identities we may take

x6 = [x2, y2] = [x, y]3 = [x2, [y, z]] = [[x, y], [z, w]] = 1.

We claim that this variety has gauge 1. For if the generators of a group satisfy

these identities, then their squares and commutators commute and have order

dividing 3, so generate a group in A3; the quotient is in A2.

6.2. Varieties with every group integrable. A possibly easier question

[1, Problem 10.15], on which we have some results, is the following.

Question 6.7: Is there a variety of groups, other than a variety of abelian groups,

with the property that every group in the variety is integrable?

The class Bp ∩ N2 is a candidate for prime p, where Bp is the variety of

groups of exponent p, and N2 the variety of nilpotent groups of class at most 2.

We prove that it does indeed have the required property.
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Theorem 6.8: Let p be an odd prime. Then every group in the variety of

groups of exponent p and nilpotency class at most 2 has an integral.

Proof. Let G be a group of exponent p, for p an odd prime, and nilpotency class

at most 2. The set G becomes a Lie GF (p)-algebra LG by setting, for x, y ∈ G,

x+ y = xy[x, y]
1
2

and letting the group commutator be the Lie product (this is essentially the

simplest case of Malcev’s correspondence) where by y
1
2 we mean the preimage

of the isomorphism a �→ a2.

If {x1, . . . , xn} is a minimal set of generators of the group G, then

LG = L1 ⊕ L2

where L1 is the GF (p)-space spanned by x1, . . . , xn and L2 = [LG, LG]. The

map

x⊕ z �→ (−x)⊕ z
(for x ∈ L1, z ∈ L2) is an automorphism of LG, to which there corresponds an

automorphism α of the group G of order 2. Thus, α induces the inversion map

on G/G′, hence, letting H = G� 〈α〉, we have H ′ = G.

A different perspective, suggested by the proof of the result about the orders

for which every group is integrable [1, Theorem 7.1], is to ask whether every

group in the variety ApAq is integrable, where p and q are primes with q � p−1.

On this, we can prove the following:

Theorem 6.9: Let p, q be distinct primes such that p � q−1. Then every finite

group in AqAp has an integral.

We introduce the principal argument for the proof in a separate Lemma.

Lemma 6.10: Let p, q be distinct primes such that p � q − 1 and m = ordp(q).

Let G be a finite group in AqAp, and let Q be the largest normal q-subgroup

of G and suppose Q �= G; then there exists an automorphism α of G of order

m which acts as a non-trivial power on G/Q.

Proof. We proceed by induction on |G|. Since m | p − 1, the claim is obvious

if Q is trivial since the map α(g) = g
1−p
m fits the requirements. Let P be a

Sylow p-subgroup of G. By assumption, P is not trivial.
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Suppose C = CP (Q) �= 1. Then P = C × P1, where P1 = [P,Q], and, by the

inductive assumption, G1 = QP1 admits an automorphism α acting as a power

of order m on G1/Q. Now, G = C ×G1 and by letting α act on C by the same

power it acts on G1/Q we are done. Thus, we now suppose CP (Q) = 1.

If Q is indecomposable as GF (q)P -module, then P is cyclic, |Q| = qm,

and G = QP may be represented as a group of affine transformations of the

field GF (qm). (The order formula for the general linear group shows that the

group of affine transformations of GF (qm) contains a p-group whose order is

the p-part of GL(m, q). Thus G is conjugate to a subgroup of this affine group.)

Then a Galois automorphism of order m induces an automorphism of G that

acts as a non-trivial power on G/Q ∼= P .

Now, suppose Q = Q1 ×Q2, with Q1, Q2 non-trivial normal subgroups of G.

For i = 1, 2, let Gi = G/Qi. By inductive assumption, each Gi admits an

automorphism σi of orderm acting as a power on Gi modulo Q/Qi. By possibly

replacing σ2 with one of its powers, we have that σ1, σ2 induce the same power

on the appropriate quotients. Then σ = (σ1, σ2) ∈ Aut(G1 × G2) acts as a

power automorphism on G1 × G2 modulo its largest (normal) q-subgroup Q0.

Now, we have a natural injective homomorphism π : G→ G1 ×G2, and

π(G) > π(Q) = Q0.

Since σ acts as a power on (G1 ×G2)/Q0, it in particular fixes π(G). Hence σ

induces an automorphism of G of order m that acts as a power on G/Q.

Proof of Theorem 6.9. Let G = QP be a finite group in AqAp, where Q is a

normal (elementary abelian) q-subgroup and P a Sylow p-subgroup of G. As,

by coprime action, Q = CQ(P )× [Q,P ], we have

G = CQ(P )× [Q,P ]P.

Hence we may well assume Q = [Q,P ], since CQ(P ) is an abelian direct factor

and so it is integrable.

Let m = ordp(q). By Lemma 6.10, G admits an automorphism α of order m

acting as a non-trivial power on G/Q. By a standard fact, we may assume that

α(P ) = P , so that [P, α] = P . Let H = G� 〈α〉, so that clearly H ′ ≤ G. Then

H ′ ≥ [Q,P ][P, α] = QP = G.

and we are done.
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7. Self-integrating classes of groups

We now consider integrals within certain classes of groups. This section is

related to Problem 10.15 of [1].

Let C be a class of groups. (We use this phrase to mean that C is isomorphism-

closed.) The strongest property we might require is to ask the following: if a

group G ∈ C is integrable, then every integral of G is in C. It is reasonable to

require that C is subgroup-closed, otherwise there will be uninteresting examples

such as the class of non-abelian groups. In this case, C contains the trivial group,
and hence all abelian groups, and hence (by induction) all soluble groups. But

certainly the class of all soluble groups has our properties. Again we then

get uninteresting examples such as groups which have at most one nonabelian

composition factor, this factor being A5.

A more sensible definition is the following. We say that a class C of groups

is self-integrating if, whenever G is an integrable group in C, then G has an

integral in C.
We saw in [1] that the class of finite groups, and the class of finitely generated

groups, are both self-integrating.

Obviously, the class of soluble groups is self-integrating, as well as every class

which is closed by extensions by abelian groups (e.g., the class of amenable

groups). However, not everything is so trivial.

Lemma 7.1: The following classes of groups are self-integrating.

(1) finite groups;

(2) finitely generated groups;

(3) polycyclic groups, and more generally groups satisfying Max;

(4) finitely generated, residually finite groups.

Proof. (1) and (2) are true by [1, Theorem 2.2, Proposition 9.1]. As (3) follows

easily from (2), we only consider (4).

Thus, let G be a finitely generated residually finite group. For every n ≥ 1,

let Kn be the intersection of all subgroups of G of index at most n; then,

each Kn is characteristic. Moreover, since G is finitely generated, G/Kn is

finite for every n, and,
⋂
n≥1Kn = 1, because G is residually finite.

Now, suppose that G has an integral H , which, by point (2), we may suppose

is finitely generated. For every n ≥ 1, the commutator subgroup of H/Kn is

finite; hence, since H/Kn is finitely generated, Zn/Kn = Z(H/Kn) has finite
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index in H/Kn (see, for instance, [18, exercise 14.5.7]). Also, Zn/Kn is a finitely

generated abelian group, and so there exists a subgroup Cn/Kn of Zn/Kn with

[Zn : Cn] finite and Cn ∩ G = Kn. For take Cn/Kn to be a complement for

the torsion subgroup of Zn/Kn, noting that G/Kn is contained in this torsion

subgroup since it is finite. Observe that Cn � H and that [H : Cn] is finite.

Setting C =
⋂
n≥1 Cn, we have C � H and

C ∩G =
⋂
n≥1

(Cn ∩G) =
⋂
n≥1

Kn = 1.

Thus, (H/C)′ = GC/C ∼= G, and we are done since H/C is residually finite

(and finitely generated).

Question 7.2: Which other “natural” classes of groups are self-integrating? For

instance: periodic groups, torsion-free groups, linear groups, residually finite

groups in general, virtually free groups, . . . .

We show in this paper that the class of finite p-groups, and the class of

residually finite groups, are both not self-integrating (Theorem 4.2 for p-groups,

Lemma 8.12 and Proposition 8.13 below for residually finite groups).

8. Profinite groups and Cartesian products

8.1. Profinite and abstract integrals. Let G be a compact topological

group. Recall that G is said to be profinite if the following equivalent conditions

are satisfied (cf. [17, Lemma 2.1.1 and Theorem 2.1.3]):

(i) there exists an inverse system {Gi, ϕij : Gi → Gj | i, j ∈ I, i > j} of

finite groups such that G = lim←−i∈I Gi, and {ker(ϕi) | i ∈ I} is a basis

of open neighbourhoods of the identity, where ϕi : G→ Gi denotes the

canonical epimorphism for every i ∈ I;
(ii) there exists a basis of open neighbourhoods of the identity U consisting

of normal subgroups of G, such that G = lim←−N∈U G/N .

(For the definition of inverse system and projective limit, see [17, §1.1].) Observe

that a subgroup of a compact topological group is open if, and only if, it is closed

and of finite index (cf., e.g., [17, Lemma 2.1.2]). For a profinite group G and a

subset X ⊆ G, X will denote the closure of X .
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There are two notions of derived group in the class of profinite groups: either

the abstract (the subgroup generated by commutators) or the topological (the

closure of the preceding). We say that a profinite group G has a profinite

integralK ifK is a profinite group andG is the topological derived subgroupK ′.
We show that a profinite group which has finite index in some integral has

a profinite integral, and that a finitely generated profinite group which has

an integral has a profinite integral. However, in general it is not true that an

integrable profinite group has a profinite integral (see Theorem 8.6, Lemma 8.12

and Proposition 8.13).

We begin with a known remark that we will use throughout this section.

Remark 8.1: Let G be a topologically finitely generated profinite group. (Hence-

forth, “finitely generated profinite group” will be intended in the topological

sense.) By a remarkable result of Nikolov and Segal (cf. [16]), G boasts the

following properties:

(i) the abstract derived subgroup of G is closed, i.e., G′ = G′;
(ii) all the subgroups of finite index ofG are open, and there are only finitely

many of them of a given index.

For every positive integer n, let G(n) denote the intersection of all the sub-

groups of G of index at most n. From property (ii), one deduces that G(n) is

a closed characteristic subgroup of finite index—and thus G(n) is also open. It

is straightforward to see that for every ascending sequence of positive integers

i1 < i2 < · · · < in < · · · , the family U = {G(in) | n ≥ 1} is a basis of open

neighbourhoods of the identity consisting of normal subgroups of G, and thus

G = lim←−
n≥1

G/G(in).

We use this notation throughout the present section.

Proposition 8.2: Let (I,≤) be a directed set, and let {Gi, ϕij | i, j ∈ I} be

an inverse system of finite groups with associated profinite group G = lim←−iGi.
Suppose that there exists an inverse system of finite groups {Ki, ψij | i, j ∈ I},
with associated profinite group K = lim←−iKi, such that one has an isomor-

phism τi : Gi → K ′
i for every i ∈ I. Then

G � K ′.
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Proof. The short exact sequences of finite groups

1 Gi
τi

Ki Ki/Gi 1,

for every i ∈ I, yield a monomorphism of profinite groups τ : G → K such

that τ(G) is a closed normal subgroup of K, and ψi ◦ τ = τi ◦ϕi for every i ∈ I
(cf. [17, Proposition 2.2.4]). Moreover, K/τ(G) is an abelian profinite group, as

every quotient Ki/Gi is abelian. Therefore, one has the inclusion τ(G) ⊇ K ′.
On the other hand, for every i ∈ I let Ni be the kernel of the canonical

epimorphism ψi : K � Ki. Then {Ni | i ∈ I} is a basis of open neighbourhoods

of the identity. Now pick an arbitrary element x of τ(G), and an arbitrary open

neighbourhood U ⊆ K of x. Thus, there exists j ∈ I such that the coset xNj—

which is an open neighbourhood of x—is contained in U . Since the diagram

G

ϕj

τ
K

ψj

Gj
τj

K ′
j Kj

commutes, one has (ψj ◦ τ)(G) ⊆ K ′
j. Up to rewriting the images of the homo-

morphism ψj as cosets of Nj , it makes sense to write xNj ∈ K ′
j. Since

K ′
i = (K/Ni)

′ = (K ′ ·Ni)/Ni
for every i ∈ I, one has that xNj = hNj for some h ∈ K ′. Therefore

h ∈ xNj ⊆ U , in other words, every element of τ(G) is arbitrarily close to K ′.
Hence, τ(G) ⊆ K ′.

Theorem 8.3: Let G be a profinite group and H an integral of G (as group)

with |H : G| finite. Then there exists a profinite group K which is both a

profinite integral and an abstract integral of G, i.e., G = K ′ = K ′.

Proof. Pick a basis of open neighbourhoods of the identity U = {Ni | i ∈ I},
with (I,≤) a directed set such that Ni ≤ Nj for every i, j ∈ I such that i ≥ j,

consisting of normal subgroups of G, and set Gi = G/Ni. Then Gi is a finite

group for every i ∈ I, and G = lim←−iGi. For every i ∈ N , set

Ki :=
⋂

hG∈H/G
h−1Nih.

Since H/G is finite by hypothesis, Ki is the intersection of a finite number of

open subgroups of G, and thus it is open. Moreover, Ki ≤ Kj for every i, j ∈ I
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such that i ≥ j, and for every open subset U of G there exists i ∈ I such

that U ⊇ Ni ⊇ Ki. Hence, K = {Ki | i ∈ I} is a basis of open neighbourhoods

of the identity in G, and G = lim←−iG/Ki.

For every i ∈ N , one has that [H : Ki] = [H : G][G : Ki] is finite.

Thus, {H/Ki, H/Ki � H/Kj for Ki ≤ Kj} is an inverse system of finite

groups, and we may define the profinite group K = lim←−iH/Ki, which has K
as a basis of open neighbourhoods of the identity consisting of normal sub-

groups. Since
⋂
i∈I Ki = {1}, the definition of K yields a monomorphism of

groups φ : H ↪→ K, and hence H may be considered as a subgroup of K, so

that

G = H ′ ≤ K ′.

Observe that G is an open (and thus also closed) subgroup of K, as

G =
⋃

gKi∈G/Ki

gKi for each i ∈ I

and every gKi ∈ G/Ki is an open subset of K.

On the other hand, for every i ∈ I let ϕi : K → H/Ki denote the canonical

epimorphism. Then H/Ki � K/ ker(ϕi) = K/Ki, while G/Ki = (H/Ki)
′ by

hypothesis. Altogether,

K

G
� K/Ki

G/Ki
� H/Ki

(H/Ki)′
for each i ∈ I,

hence K/G is abelian. Consequently, G contains K ′, and thus also K ′, as G is

a closed subgroup of K. Therefore, G = K ′ = K ′.

Theorem 8.4: Let G be a finitely generated profinite group which is integrable

as abstract group. Then there exists a finitely generated profinite groupK which

is both a profinite integral and an abstract integral of G, i.e., G = K ′ = K ′.

Proof. Let H be an integral of G. Take a set of generators g1, . . . , gs of G

as profinite group. By the proof of [1, Proposition 9.1], we can find a finitely

generated abstract subgroup T of H so that 〈g1, . . . , gs〉 = T ′. We define

H∗ := GT and L := (H∗)′ ≤ G.

Let G(n) be defined as in Remark 8.1. For any n ∈ N we observe that

G(n) ≤ G(n)L ≤ G,
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so G(n)L is a finite index subgroup of G. By Remark 8.1, G(n)L is an open—

and thus also closed—subgroup of G. Moreover, since G(n)L ≥ 〈g1, . . . , gs〉, we
have

G ≥ G(n)L = G(n)L ≥ 〈g1, . . . , gs〉 = G

and so G = G(n)L for every n ∈ N.

Moreover, H∗/G = GT/G ∼= T/(T ∩ G) is finitely generated as an abstract

group.

Notice that

(H∗/G(n))′ = L ·G(n)/G(n) = G/G(n)

is a finite group, and so by the same argument of the proof of [1, Theorem 2.2]

we have that Z(H∗/G(n)) = Zn/G(n) for a suitable subgroup Zn ≤ H∗ so that

H∗/Zn is a finite group. Since H∗/G is finitely generated as an abstract group

and G/G(n) is finite, we have that H∗/G(n) is finitely generated as an abstract

group. Moreover, since Zn/G(n) has finite index in H∗/G(n), then Zn/G(n) is
an abelian finitely generated abstract group.

Let N2 ≤ Z2 be such that N2 ∩ G = G(2) and [Z2 : N2] < ∞ (for example,

take N2/G(2) to be a complement to the torsion subgroup of Z2/G(2)). Now

assume we have constructed Nn ≤ Nn−1 ≤ · · · ≤ N2 so that

Nn ∩G = G(n) and [H∗ : Nn] <∞.
Since (Zn+1 ∩Nn)/G(n+1) is central and has finite index in H∗/G(n+1), we

can find Nn+1 ≤ Nn so that

Nn+1

G(n+ 1)
≤ Zn+1 ∩Nn

G(n+ 1)
, Nn+1 ∩G = G(n+ 1) and [H∗ : Nn+1] <∞.

Observe that Nn is normal in H∗ for all n ≥ 2, as G(n) ≤ Nn ≤ Zn and

Zn/G(n) is a central factor of H∗.
By construction, the system of finite groups {H∗/Nn, πn,m | n,m ≥ 1}, where

πn,m :
H∗

Nn
→ H∗

Nm
, πn,m(hNn) = hNm, m ≤ n,

forms an inverse system and(H∗

Nn

)′
=

(H∗)′Nn
Nn

=
LNn
Nn

=
LG(n)Nn

Nn
=
GNn
Nn

∼= G

G ∩Nn =
G

G(n)
.

Set Kn = H∗/Nn for every n ≥ 1, and

K := lim←−
n≥1

Kn.



32 J. ARAÚJO ET AL. Isr. J. Math.

Then K is a profinite group, and since K ′
n
∼= G/G(n) for every n ≥ 1, Propo-

sition 8.2 implies that G ∼= K ′—recall that G = lim←−nG/G(n) (cf. Remark 8.1).

Therefore, K is a profinite integral of G. Observe that the definition of K yields

a homomorphism of groups φ : H∗ → K with kernel
⋂
n≥1Nn.

Since

[H∗ : GNn][GNn : Nn] = [H∗ : Nn] <∞ for every n ≥ 1,

and g1, . . . , gs are the topological generators of the profinite group G, then

we have that g1Nn, . . . , gsNn generate the finite group GNn/Nn. Moreover, if

t1, . . . , tr are the abstract generators of the abstract group T , then the cosets

t1GNn, . . . , trGNn generate the finite group H∗/GNn. Therefore the cosets

t1Nn, . . . , trNn, g1Nn, . . . , gsNn

generate the finite groupH∗/Nn for every n≥1. Consequently, [17, Lemma 2.4.1]

implies that K is (topologically) generated by the elements

φ(t1), . . . , φ(tr), φ(g1), . . . , φ(gs),

namely, K is a finitely generated profinite group. In particular, K ′ = K ′ by
Remark 8.1, and thus K is both a profinite and an abstract integral of G.

The obvious generalisation of these two theorems would assert that if a profi-

nite group has an integral, then it has a profinite integral. But this is false, as

we show in Section 8.2.

It is natural to ask whether the finitely generated profinite group G has a

profinite integral if and only if G/G(n) is integrable for all n ≥ 1. We can

answer this question in the case when Z(G) = 1. We begin with a simple

observation.

Lemma 8.5: LetN be a characteristic subgroup of the groupG with Z(G) ≤ N .

Then for every integral H of G there exists a uniquely defined section H1

of Aut(G) such that H1 is an integral of G/N and a homomorphic image of H .

Proof. Let K = CH(G); then H/K is (isomorphic to) a subgroup of Aut(G).

Since K ∩G = Z(G) ≤ N � H , we have( H

NK

)′
=
GK

NK
=

G

G ∩NK =
G

N(G ∩K)
=
G

N
;

thus H1 = H/NK is an integral of G/N .



Vol. TBD, 2024 INTEGRALS OF GROUPS. II 33

Theorem 8.6: Let G be a finitely generated profinite group with Z(G) = 1.

Then the following are equivalent:

(1) G/G(n) is integrable for every n ≥ 1;

(2) G has a profinite integral, i.e., there exists a profinite group K such

that G = K ′.

Proof. Since every G(n) is a characteristic subgroup of G, (2) implies

that G/G(n) = (K/G(n))′. Since G is finitely generated, G(n) is an open

subgroup of G for every n (cf. Remark 8.1), and thus G/G(n) is a finite sub-

group of the profinite groupK/G(n). Hence, also (K/G(n))′ is a finite subgroup
of K/G(n), and thus

(K/G(n))′ = (K/G(n))′,

observe that every finite subgroup of a profinite group is closed, as profi-

nite groups are totally disconnected (cf. [17, Theorem 2.1.3:(b)]). Therefore,

G/G(n) = (K/G(n))′, and this shows the implication (2)⇒(1). So we proceed

in proving (1)⇒(2).

Thus, let G be a finitely generated profinite group, and suppose that G/G(n)

is integrable for every n ≥ 1. For every n ≥ 1, we write Qn = G/G(n) and

denote by πn : G→ Qn the natural projection.

Given an index i ≥ 1 suppose that Z(Qi+n) �≤ πi+n(G(i)) for every n ≥ 0.

Then, as G/G(i) is finite, there exists x ∈ G, with 1 �= xG(i) ∈ Z(Qi) such that

πi+n(x) ∈ Z(Qi+n)
for infinitely many n ≥ 0.

Then

[x,G] ≤
⋂
n≥0

G(i + n) = 1

and so x is a non-trivial central element of G, which is a contradiction. There-

fore, for every i ≥ 1 there exists i∗ ≥ i + 1 such that G(i)/G(j) ≥ Z(Qj)

for every j ≥ i∗, and we may thus select an infinite subset I = {i1, i2, . . .} of

positive integers such that i1 < i2 < · · · and
πj(G(in)) ≥ Z(Qim)

for every in, im ∈ I with n < m. For each n ≥ 1, we write Gn = Qin ; so that Gn

is a quotient of Gn+1 modulo a characteristic subgroup; we also set

I(Gn) = {H | H is a section of Aut(Gn+1) and H
′ ∼= Gn}.
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By Lemma 8.5 and the fact that Gn+1 is integrable, I(Gn) is not empty, and

finite; moreover, for every Y ∈ I(Gn+1) there are a uniquely defined Y ∗ ∈ I(Gn)

and a surjective homomorphism Y → Y ∗.
For every n ≥ 1, and every pair (Hn, Hn+1) ∈ I(Gn) × I(Gn+1), we then

write an arrow Hn → Hn+1 if Hn = H∗
n+1. This gives rise to an infinite locally

finite directed tree which, by König’s Lemma, has an infinite path

H1 −→ H2 −→ · · · −→ Hn −→ · · · .
Then (reversing the arrows) for each n ≥ 1, there exists a surjective homomor-

phism Hn+1 → Hn, and by taking compositions we have, for every 1 ≤ n < m,

a surjective homomorphism ψm,n : Hm → Hn. Let

K := lim←−
n≥1

Hn

be the profinite group associated to the inverse system thus defined. Since

Gn = G/G(in) ∼= H ′
n for every n ≥ 1, and

G = lim←−
n≥1

Gn = lim←−
n≥1

G/G(in)

(cf. Remark 8.1), Proposition 8.2 implies that G ∼= K ′, and thus K is a profinite

integral of G.

Example 8.7 (finite groups): For n ≥ 2, letXn be an elementary abelian 2-group

of order 2n; the number of maximal subgroups of Xn is ν(n) = 2n − 1. Let

M1,M2, . . . ,Mν(n) be the distinct maximal subgroups ofXn; let p1, p2, . . . , pν(n)
be distinct odd primes, and for each i = 1, . . . , ν(n), let 〈ai〉 be a cyclic group

of order pi. We let Xn act on the cyclic group

An = 〈a1〉 × · · · × 〈aν(n)〉
by setting CXn(ai) = Mi and Xn/Mi act as the inversion map on 〈ai〉, for

every i = 1, 2, . . . , ν(n). We now consider the semidirect product

Hn = An �Xn.

Then Hn is an integral of the cyclic group An, and Hn/An is n-generated.

But for every subgroup R with An ≤ R < Hn we have CAn(R) �= 1, and

so R′ < An. Thus, Hn is a minimal integral of An and, in particular, does not

contain any integral of An with less than n generators.
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Example 8.8 (profinite groups): We first partition the set D of all odd primes

in a countable union of disjoint sets D =
⋃
n≥2Dn, with |Dn| = 2n − 1 for

every n ≥ 2. Then, for every n ≥ 2, we consider the group Hn as constructed

in Example 8.7, with {pn,1, . . . , pn,ν(n)} = Dn and An = 〈an,1, . . . , an,ν(n)〉, and
set H = Carn≥2Hn. Then H , endowed with the product topology, is a profinite

group. In particular, one has

H = lim←−
n≥2

(( n∏
i=2

Ai

)
�

( n∏
i=2

Xi

))
= A�X,

where the epimorphisms
∏n
i=2 Ai �

∏m
i=2 Am and

∏n
i=2Xi �

∏m
i=2Xm,

for n ≥ m, are the canonical projections. Observe that X := lim←−n(
∏n
i=1Xi) is

a pro-2-Sylow subgroup of H , while

A := lim←−
n≥2

( n∏
i=2

Ai

)
� {(kp)p∈D ∈ Car

p∈D
Z/pZ},

whose cardinality is a supernatural number prime to 2. Moreover, since

Ẑ = {(kn)n≥2 ∈ Car
n≥2

Z/nZ | kn ≡ km mod m for m | n},

one has an epimorphism of profinite groups φ : Ẑ→ A, so that A is pro-cyclic,

generated (as a profinite group) by the “diagonal” element

ā := (an,i)n≥2, 1≤i≤ν(n) = φ(1).

Since An = H ′
n for every n ≥ 2 (cf. Example 8.7), one has H ′ = A by Proposi-

tion 8.2.

On the other hand, we observe that A does not coincide with H ′, the ab-

stract derived group of H . To see that, observe first that H ′ is the subgroup

generated by all commutators [b, x] with b ∈ A, x ∈ X . We claim that ā can-

not be expressed as a product of a finite number of such commutators. Indeed,

set h = [b1, x1] · · · [br, xr] for some b1, . . . , br ∈ A and x1, . . . , xr ∈ X , and r ≥ 1.

Pick n such that r < ν(n), and let πn : A → An and τn : X → Xn denote the

projections onto the n-th component. Then

πn(h) = [πn(b1), τn(x1)] · · · [πn(br), τn(xr)] = a
si1
n,i1
· · ·asirn,ir ,

for some 1 ≤ ij ≤ ν(n) and 1 ≤ sij ≤ pn,ij for every j = 1, . . . , r. Since

πn(ā) = an,1 · · · an,ν(n), and r < ν(n), the elements an,i1 , . . . , an,ir are less

than ν(n), and hence they are not enough to generate πn(ā), so that h �= ā.

Therefore, ā does not belong to the abstract derived group H ′.
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8.2. Products. In [1], we asked whether the group D8 ×D8 has an integral.

Here, we answer this negatively, in a strong form: no finite direct power of a

non-abelian dihedral group has an integral.

Proposition 8.9: Let n ≥ 3 and let G be a normal subgroup of the group H ,

with G ∼= (D2n)
m (the direct product of m copies of the dihedral group D2n).

Then

G ∩H ′ < G.

Proof. For i = 1, . . . ,m, set

Gi = 〈yi, xi | yni = x2i = 1, yxi

i = y−1〉,
and G = G1×· · ·×Gm. Let A = 〈y1, . . . , ym〉; then A is a characteristic abelian

subgroup of G, it is homocyclic of type nm, and CG(A) = A.

Let K = CH(A); then K �H and K ∩ G = A. Moreover, H/K embeds in

Aut(A), which is isomorphic to the group GL(m,Z/nZ) of all invertible m×m
matrices over the ring Z/nZ.

Let x̄1 be the image of (x1, 1, . . . , 1)K in GL(m,Z/nZ). Then x̄1 acts on A

as the matrix ⎡
⎢⎢⎢⎣
−1 0 · · · 0

0 1 · · · 0

· · · · · ·
0 0 · · · 1

⎤
⎥⎥⎥⎦ ,

and in particular det(x̄1) = −1. This means that x̄i does not belong to the de-

rived subgroup of GL(m,Z/nZ) and so it cannot possibly belong to the derived

group (H/K)′ = H ′K/K. Thus, (x1, 1, . . . , 1) ∈ G \H ′.

Observe that, in the previous Proposition, the group H need not be finite.

Corollary 8.10: For every n ≥ 3 and m ≥ 1 the direct sum (D2n)
m does not

have an integral.

Now we use the above result to construct a profinite group which has an inte-

gral, but does not have a profinite integral, or even a residually finite integral.

Our group is

G = Car
n∈Z

Gn

where, for every n ∈ Z, Gn ∼= D8 = 〈yn, xn | y4n = x2n = 1, yxn
n = y−1

n 〉, and Car

denotes the unrestricted Cartesian product—so, G is profinite by Remark 8.11
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below. We identify Gn with the n-th coordinate subgroup of G, while for a

generic element of G, we write ḡ = (gn)n∈Z, with gn ∈ Gn. We also set un = y2n,

for every n ∈ Z; thus

Z(G) = G′ = Car
n∈Z

〈un〉.

Remark 8.11: Let H be a finite group, and set G = Carn∈ZGn, where Gn ∼= H

for every n ∈ Z, and consider every Gn as a discrete group. Then G, endowed

with the product topology, is a profinite group—namely, every open subset U

of G has the shape

U = (Car
n∈I

Un)× ( Car
n∈Z�I

Gn)

for some finite subset I ⊂ Z, and some subset Un ⊆ Gn for every n ∈ I. One

may see G as the projective limit of a directed system of finite groups as follows.

Write Z = {i1, i2, . . . , in, . . .}, and for every n ≥ 1 set Pn =
∏n
k=1Gik , endowed

with the canonical projections ϕn,m : Pn → Pm, with ker(ϕn,m) =
∏n
k=m+1Gik ,

for every n > m. Then {Pn, ϕn,m} makes up a directed system of finite groups,

and

G = lim←−
n≥1

Pn.

Lemma 8.12: The unrestricted wreath product D8 �̄ Z is an integral of G.

Proof. By a result of Peter Neumann [15, Corollary 5.3], the derived subgroup

of the unrestricted wreath product D8 �̄ Z is exactly the base group, which by

definition is isomorphic to G.

Proposition 8.13: No integral of G is residually finite.

Proof. Let

L = {y±1
n ū | n ∈ Z, ū ∈ Z(G)};

then easy considerations show that L is the set of all elements ḡ ∈ G such

that |ḡ| = 4 and 〈ḡ〉�G.

Suppose that the group H is an integral of G. Then, for every n ∈ Z

and h ∈ H , yhn ∈ L, that is, yhn = y±1
j ū, for some j ∈ Z and ū ∈ Z(G).

Consequently,

uhn = (yhn)
2 = uj.

This proves that, by conjugation, H acts as a group of permutations on the

set X = {un | n ∈ Z}.
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Assume now, for a contradiction, that H is residually finite. Let N be a

normal subgroup of finite index in H such that G0 ∩N = 1, and M = G ∩N .

Then, for every h ∈ N , y−1
0 yh0 = [y0, h] ∈ M , that is, yh0 = y0ḡ, with ḡ ∈ M .

On the other hand, as observed before, yh0 = y±1
j ū, for some j ∈ Z and ū ∈ Z(G).

Suppose that j �= 0. Then, since M is normal in G, it contains

[ḡ, x0] = (y−1
0 yh0 )

−1(y−1
0 yh0 )

x0 = (y−1
0 yj ū)

−1(y−1
0 yj ū)

x0 = y0y
−1
j ū · y0yjū = u0,

which is a contradiction. Thus, yh0 = y±1
0 ū, and uh0 = (yh0 )

2 = u0. Therefore,

N ≤ CH(u0); since |H : N | is finite, the H-orbit of u0 by conjugation is finite.

Let I be the finite subset of Z such that uH0 = {ui | i ∈ I}; then write

D = Dir
i∈I

Gi and Z∗ = Car
j∈Z\I

〈uj〉.

As Z∗ is central in G, we have Z∗ �G. We claim that D∗ = DZ∗ = DZ(G) is

normal in H .

For every i ∈ I and h ∈ H we have yhi = y±1
t ū, for some t ∈ Z and ū ∈ Z(G);

as uhi =(yhi )
2=ut belongs to u

H
i =uH0 , we have t∈I, whence yhi ∈DZ(G)=D∗.

Consider now xi (i ∈ I) and yj with j ∈ Z \ I; let h ∈ H , then there ex-

ists k ∈ Z \ I such that

[yj , x
h
i ] = [yh

−1

j , xi]
h = [ykū, xi]

h = [yk, xi]
h = 1.

Therefore, if Y =Carj∈Z\I〈yj〉, we have xhi ∈ CG(Y ) = D×Y , and since |xhi | = 2,

xhi ∈ D × Y 2 = D × Z∗ = D∗.

As D = 〈yi, xi | i ∈ I〉, we have proved that Dh ⊆ D∗ for every h ∈ H , and

consequently we have D∗ �H . Now,

D∗
Z∗

=
DZ∗
Z∗
∼= D

D ∩ Z∗
= D

is the direct sum of |I| copies of the dihedral group D8, and so, by Proposi-

tion 8.9,D∗/Z∗ is not contained in the derived group ofH/Z∗. Thus,D∗�≤H ′=G,
which is the final contradiction.

8.3. Cartesian products and periodic integrals. By [15, Corollary 5.3],

we see that the unrestricted wreath product of S3 with Z is an integral of the

Cartesian product, thus we investigate periodic integrals of profinite groups in

this section.
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Proposition 8.14: LetGn∼=S3 for every n∈Z. Then the groupG=Carn∈ZGn

does not have periodic integrals.

Proof. For each n ∈ Z, let Gn = 〈yn, xn | y3n = x2n = 1, yxn
n = y−1〉. We

identify Gn with the n-th coordinate subgroup of G, while for a generic element

of G, we write ḡ = (gn)n∈Z, with gn ∈ Gn. Let S = {〈yn〉 | n ∈ Z}; then S
is the set of all normal subgroups of G of order 3, thus, in particular, every

automorphism of G permutes the elements of S.
Let the group H be an integral of G, and assume, by contradiction, that H

is periodic. Now, since it is contained in G = H ′, x0 is the product of a finite

number of commutators in H , so there exists G < N ≤ H with x0 ∈ N ′

and N/G finitely generated, and, because H/G is periodic abelian, N/G is

finite. As 〈y0〉 ∈ S, it follows that the N -conjugation orbit of 〈y0〉 is finite.

Let I be the finite subset of Z such that {〈yi〉 | i ∈ I} is the N -orbit of 〈y0〉,
and set D = Diri∈I Gi.

Let C = Carj∈Z\I〈yj〉 so that C ×D′ = Carn∈Z〈yn〉 = G′ = H ′′. We show

that D∗ := DC = D × C is normal in N . We have just observed that CD′ is
normal in H ; thus, consider xi with i ∈ I, and g ∈ N . Now, for every j ∈ Z \ I,
〈yg−1

j 〉 = 〈yk〉 for some k ∈ Z \ I, whence

y
xg
i

j = (yg
−1

j )xig = (yg
−1

j )g = yj .

Therefore, xgi∈CG(C)=D×C=D∗. Moreover, if h∈N is such that 〈yi〉=〈y0〉h,
that is yh0 = yεi with ε ∈ {1,−1}, then

(yεi )
xi = y−εi = (y−1

0 )h = (yh0 )
xh
0 = (yεi )

xh
0 ,

showing that xh0 ∈ xiCD∗(yi); similarly, xh0 ∈
⋂
i
=k∈I CD∗(yk) = GiG

′, and

therefore xh0 ∈ xiG′, yielding in particular xi ∈ N ′, since G′ ≤ N ′ and xh0 ∈ N ′.
Hence xgi ∈ N ′ ∩D∗ for every g ∈ N .

Since D∗ is generated by G′ ≤ N ′ and {xi}i∈I ⊆ N ′ and that all of their

N -conjugates still live in D∗, then D∗ ≤ N ′ is normal in N . Finally,

D∗
C

=
DC

C
∼= D

D ∩ C = D

is the direct sum of |I| copies of the dihedral group S3, and so by Proposition 8.9

D∗/C is not contained in the derived group of N/C, a contradiction to the fact

that D∗ ≤ N ′.
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9. Questions

We begin with a solution to Question 10.1 in our previous paper [1] by Efthymios

Sofos. We are grateful to him for permission to publish it here.

Theorem 9.1 (Sofos): The number of integers n with 1 < n < x for which

every group of order n is integrable is asymptotically

e−γ
x

log log log x
,

where γ is the Euler–Mascheroni constant.

Outline of proof. This follows by a modification of the proof of the result of

Erdős [4] for the number of integers n for which every group of order n is cyclic.

This can be found as Theorem 11.23 in the book [12] (which we follow closely).

One has to replace property (i) by “n is cube-free” and leave property (ii) as

is. Then define Ap(x) as the number of “integrable” n ≤ x such that the least

prime divisor of n is p. It is shown in pages 387 and 388 that∑
p≤log log x

Ap(x) = O(x(log log log x)−2),

but in fact only property (ii) is used for this. So the same proof holds for our

case as well.

The rest of the proof needs only small modification: replace

If n does not satisfy (i), there is a prime p with p2 | n. The

number of such n ≤ x is at most �x/p2 ≤ x/p2. Hence the

total number of n in Φ(x, y) for which (i) fails is not more

than x
∑

p>y p
−2 � x/(y log y).

by

If n does not satisfy (i), there is a prime p with p3 | n. The

number of such n ≤ x is at most �x/p3 ≤ x/p3. Hence the

total number of n in Φ(x, y) for which (i) fails is not more

than x
∑

p>y p
−3 ≤∑

p>y p
−2 � x/(y log y).

Now we turn to some further open questions arising from this paper.

Question 9.2 (Section 2): Find a bound, or a procedure for calculating one, for

the order of the integral of an integrable finite group of order n.
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Question 9.3 (Section 3): Find classes of groups G for which the condition

Inn(G) ≤ Aut(G)′ is sufficient for integrability. We note that this is true in two

extreme cases, abelian groups and perfect groups.

Question 9.4 (Section 4): Theorem 4.2(b) shows that a non-abelian p-group

whose derived group has index p2 is not p-integrable. Is there a non-abelian

p-integrable p-group whose Frattini subgroup has index p2 (that is, one which

is 2-generated)?

Question 9.5 (Section 5): Is the following true? The finite or countable abelian

2-group G is finitely integrable if and only if it has subgroups A,B, F such that

G ∼= A×A×A×B ×B × F,
where F is the direct product of a divisible group and a finite group.

In particular, is it true that a direct sum of finite cyclic groups is finitely inte-

grable if and only if the set of natural numbers n for which the cyclic group C2n

has multiplicity 1 in the product is finite?

Question 9.6 (Section 5): Is it true that integrability of a reduced p-group of

arbitrary cardinality is determined by its Ulm–Kaplansky invariants?

Question 9.7 (Section 6): Let V be a finitely based variety of groups. We know

that the class of all integrals of groups in V is a variety. Is it finitely based?

Question 9.8 (Section 6): (1) Is it true that all groups of exponent p and

class at most p− 1 are integrable?

(2) Is it true that, if p and q are primes with p � q − 1, then every group in

the variety AqAp is integrable?

Question 9.9 (Section 8): Let G be a finitely generated profinite group G and

let G(n) be as in Remark 8.1. Does G have a (profinite) integral if and only

if G/G(n) has an integral for every n ≥ 1? (Theorem 8.6 shows that this is true

if Z(G) = 1.)

Question 9.10 (Section 8): (1) Does there exist a countable integrable lo-

cally finite group which does not have a periodic integral?

(2) Is it true that every integrable finitely generated periodic group has a

periodic (finitely generated) integral?

(3) Which infinite periodic groups have a (periodic) integral? For example,

what about Grigorchuk’s first group?
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