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Abstract

State-space models (SSMs) are a popular and flexible framework for modelling time series
due to their ability to separate changes in the underlying state of a system from the noisy
observations made on these states. This thesis explores methods for estimating states and
model parameters in non-linear and non-Gaussian Bayesian SSMs. We focus on models of
wildlife population dynamics, in particular a case study of the UK grey seal population.

Calculation of the likelihood is fundamental to Bayesian analysis, but direct calculation is
typically intractable for non-linear non-Gaussian SSMs. We use a class of simulation-based
methods, Sequential Monte Carlo (SMC), which build on repeated importance sampling
of simulated states to deliver an unbiased estimate of the likelihood. We find that variance
of the estimated likelihood can be high and explore techniques for variance reduction.

For parameter inference, we use particle marginal Metropolis-Hastings (PMMH), which
embeds the SMC likelihood within a Markov chain Monte Carlo (MCMC) algorithm.
Careful balance is needed between computational effort expended on the SMC step and
the number of MCMC samples.

A much faster alternative is the Kalman filter, designed for linear and Gaussian SSMs. We
applied the Kalman filter to an approximation of the seal model. The posterior distribution
obtained was often close to the true posterior, while reducing computation time by a factor
of 1790.

We show the seal model suffers from identifiability issues which cannot be resolved by
increasing the accuracy of the observations or allowing more flexibility in the underlying
biological process with random effects. However, estimation of underlying states (i.e.,
population sizes) is unaffected by these issues.

A reduction in PMMH computation time can be achieved by exploiting the structure of
the state model: separately estimating likelihood components in each of the 4 seal regions
led to a 5-fold increase in speed.
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Abbreviations and Notation

Abbreviation Description

APF auxiliary particle filter
BF bootstrap filter
cdf cumulative distribution function
CV coefficient of variation
ESS effective sample size
GPU Graphical Processing Unit
IH Inner Hebrides
i.i.d. independent and identically distributed
IS importance sampling
KF Kalman filter
KFMH Kalman filter within Metropolis-Hastings
log-L log-likelihood
MCMC Markov chain Monte Carlo
MCMC-DA MCMC algorithm with data augmentation
MH Metropolis-Hastings
MLE maximum likelihood estimate
NDLM normal dynamic linear model
NS North Sea
OH Outer Hebrides
Ork Orkney
pdf probability density function
PF particle filter
PMCMC particle MCMC
PMMH particle marginal Metropolis-Hastings
RMSE root mean square error
SMC sequential Monte Carlo
SRMSE scale root mean square error
SSM state space model
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Notation Description

Cov covariance
d−→ convergence in distribution
E expected value
f transition pdf
g observation pdf
i : j range of integer values from i to j
L likelihood
M number of iterations of an MCMC algorithm
N number of particles in a bootstrap filter
p model pdf
q proposal pdf
r region

R̂ potential scale reduction
x state
y observation
t time
Var variance

α parameter for fecundity
β alternative carrying capacity parameter, inversely related to χ
χ parameter for carrying capacity
ω parameter for sex ratio
φa parameter for adult survival probability
φp,max parameter for maximum pup survival probability
φp,r,t pup survival probability in region r and year t
ρ parameter for density dependence shape
τ parameter for observation precision
θ parameter or parameter vector
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Chapter 1

Introduction

This thesis is about methods for fitting wildlife population dynamics models to data,
in particular non-linear non-Gaussian state space models in a Bayesian framework. We
do this through the case study of a model for the UK grey seal (Halichoerus grypus)
population. The fitting method that is currently used for this model is computationally
intensive and produces biased inference. We explore different alternatives to this fitting
method by using sequential Monte Carlo (SMC) methods (Chapters 2, 3 and 6) and by
employing an approximation to the model for fast inference (Chapter 4). In addition,
using one of these fitting methods, we explore how different sources of uncertainty in the
model affect posterior distributions (Chapter 5).

In this chapter, we first give an overview of the purposes of wildlife population dynamics
modelling and introduce the case study of the UK grey seal population that is central to
this thesis (Section 1.1). We then describe state space models, which form the framework
for all models in this thesis; we also define the particular state space model used for grey
seal population dynamics and introduce three simplifications to this model that will be
used throughout this thesis (Section 1.2). The next section (Section 1.3) is devoted to
inference for state-space models. We discuss some of the distributions that are commonly
of interest for these models and summarise the available methods to carry out inference.
Section 1.4 gives an overview of the software that can be used for inference and describes
what was used in this thesis. Finally, we present an outline of the remainder of the thesis
(Section 1.5).

1.1 Ecological Motivation: Wildlife Population Dynamics

Population dynamics models are tools to study the development of wildlife populations
as dynamical systems. The work by Malthus (1798) is often regarded as the beginning
of the field. Malthus stated that a population in an unchanging environment will grow
exponentially, and the simple exponential growth model with xt = x0e

rt, where xt is the
population size at time t and r is the population growth rate, is often called the Malthu-
sian growth model (Turchin, 2001). The modelling tools in this thesis are typically used
for larger vertebrate species, whose population growth can often be modelled as an an-
nual cycle and exhibits modest process stochasticity, i.e., modest year-to-year variation
in changes of population size. That distinguishes these populations from other animals,
e.g., insects, where other tools such as stochastic differential equations are commonly used
(Soulsby and Thomas, 2012). The types of models considered here can model size and age
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composition of a population by incorporating information about the animals such as sur-
vival, ageing and growth, birth, and sex assignment (Newman et al., 2014d). It is possible
to allow annual variation in the processes, e.g., by including external environmental factors
in the model and treating them as covariates that the model parameters depend upon, or
by placing random effects on parameters. These models can also describe populations at
different sites and their interaction, and even track multiple species, to model, e.g., the
competition between two species or their prey-predator relationship.

Modelling population dynamics can have many purposes. Newman et al. (2014c) mention
some examples, such as managing fish stocks and setting levels of take (anthropogenic
mortality) for a sustainable population, reintroducing a locally extinct animal such that the
new population is viable, managing populations that have grown beyond the environment’s
capacity and cause a deterioration of their habitat, and exploring scenarios for reversing a
population decline by testing the effect of various interventions on the abundance predicted
by a model.

These different purposes require similar information about the population in question.
Often, abundance is the primary emphasis and previous and current population sizes need
to be estimated from noisy observations. It might also be of interest to predict the future
development of the population, and to obtain estimates not just for the total population
size but also for a structured population, namely subsets grouped by age, size, sex or
location (Newman et al., 2014b). Next, it is often necessary to understand the processes
that drive these dynamics, both as a means to an end when abundance is estimated, or as a
question of interest in its own right, for example to know which parameters to target when
seeking to make a conservation intervention. This can mean determining likely ranges of
parameters, such as survival probabilities, for a fixed model or comparing several models
with each other to assess which of them best explains the observed population numbers.

1.1.1 Introduction to the grey seal case study

Grey seals (Halichoerus grypus) are a member of the family Phocidae or true seals. They
inhabit parts of the North Atlantic, North Sea, Baltic Sea and Arctic Ocean and feed on
various fish species, cephalopods and sand eels, and occasionally even on larger animals
such as harbor seals (van Neer et al., 2015). Adult male seals weigh up to 300kg and adult
females up to 180kg, with lengths of up to 200cm and 180cm respectively (Duck, 2007).
Male seals can live for over 20 years and female seals for over 30 years, beginning to breed
at around age 5 (Special Committee on Seals, 2021). The breeding cycle is 12 months long
and consists of a 3-4-month period between conception and implantation of the fertilized
egg, and an 8-month gestation period after which females give birth to a single pup. For
breeding, females aggregate in large colonies, typically in the UK on remote beaches and
uninhabited islands but increasingly also on beaches that are visited by the public (Hall
and Russell, 2018). Figure 1.2 shows an aerial photo of a breeding colony and the map in
Figure 1.3 shows the distribution of the breeding colonies in the UK. Newborn pups are
fed by their mothers for approximately 2-3 weeks (the lactation period), after which they
are abandoned. The breeding season occurs between September and December, starting in
the south-west and moving clockwise around the UK. Mating takes place towards the end
of the lactation period (Russell et al., 2019) with some males mating with up to 10 females
while others are excluded. Figure 1.1 shows a female grey seal with a newborn pup. Grey
seals are capital breeders: lactating mothers fast throughout the weaning period and rely
on fat stores accumulated through the year to provision their offspring (Houston et al.,
2006). During this time, their mass reduces significantly. Smout et al. (2020) estimated
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Figure 1.1: Female grey seal with newborn pup. Photo: Chris Morris, SMRU.

the mean loss of maternal mass to be 45%, using a sample of 584 adult females on North
Rona, Outer Hebrides, and 273 adult females on the Isle of May, Firth of Forth. They also
found that low body mass after weaning and poor environmental conditions negatively
affected the probability of breeding in the following year, while skipping breeding one year
increased the probability of subsequent breeding. Pups are born weighing between 11 and
20 kg and initially stay on land in breeding colonies for a 15-21 day-long lactation period
where they increase their weight up to 40 kg. A fasting period lasting around 21 days
follows which is suspected to be related to diving ability before leaving the colony (Hall
and Russell, 2018). After the breeding season, seals disperse and spend most of the time
at sea for foraging trips lasting several days, with shorter periods in-between spent hauled
out ashore (Lonergan et al., 2011). These haul-out sites are much larger in number and
more widely dispersed than the breeding sites (Russell et al., 2016).

In Special Committee on Seals (2021) an estimate of the total world-wide pup production
is given as 191,270. The ratio of the number of adult seals to pups is not known exactly
but estimated to be between 3 and 4.5. The UK grey seal population makes up around
35% of the global population abundance. The other major populations are in the western
Atlantic (57%) and Europe excluding the UK (8%) (Special Committee on Seals, 2021).

The conservation management of grey seals in the UK has an eventful history. In 1914,
after a decline of the population due to commercial and subsistence hunting, they became
the first mammal protected by an act of Parliament (Grey Seals Protection Act 1914) due
to concerns raised by sportsmen who suspected the total number of seals to be below 500
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(a) Full image.

(b) Close up of grey seals, including pups.

Figure 1.2: Grey seals breeding on the beach on Stroma, in the Pentland Firth. Photos: Chris
Morris, SMRU.
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Figure 1.3: Map showing the location of grey seal colonies in the UK and Isle of Man.
Regularly monitored colonies, which are the ones included in the analysis undertaken in this
thesis, are colour coded by region: Inner Hebrides (cyan), Outer Hebrides (pink), Orkney (blue)
and North Sea (central – orange, south – red; these were combined in the analysis reported
here). Image reproduced from Thomas et al. (2019, Supplementary Materials).
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(although this number is now estimated to have been between 2,000 and 4,000, Lambert,
2002). The Act established a closed season for hunting during the breeding period which
was extended to the whole year in 1932 and helped reverse the decline of the population.
Increasing population numbers led to complaints by fishermen in the 1950s that grey
seals damaged fishing gear and reduced fish stock abundances. Eventually, culls were
undertaken in the 1960s and 1970s with the goal of reducing the population to levels
that would be satisfactory both from a conservation management and from a commercial
fishing perspective. These were accompanied by public protests, most noteably a protest
led by Greenpeace with much support of the British public in 1978, which eventually led
to an abandonment of the cull (Lambert, 2002).

To improve the scientific evidence to support further conservation management efforts, in
1977 the government founded the Seal Mammal Research Unit (SMRU), managed from
within the Natural Environment Research Council. The Unit’s task was to provide advice
to government for managing seal populations, as specified in the 1970 Conservation of Seals
Act. It was initially based within in the British Antarctic Survey in Cambridge, but in
1996 moved to a purpose-built facility at the University of St Andrews. The advice is now
given by a committee of international experts, the Special Committee on Seals (SCOS)
and is informed by scientific information provided by SMRU (Unit, 2019). Early work in
Harwood and Prime (1978) used age structures of adults seals, estimated from a sample
of shot seals during culls at the Farne Islands to infer the total number of seals from pup
counts. The population was then growing nearly exponentially at an observed growth rate
in pup numbers of 7% per year, due to recovery from the historical human exploitation.
Since populations have a stable age structure under exponential growth (Iannelli and
Milner, 2017), it was relatively straightforward to estimate the total population size from
the number of pups born each year. However, the population growth slowed noticeably in
some of the regions, requiring more sophisticated modelling. A new approach for modelling
the seal population was described in Thomas and Harwood (2003). This forms the basis
of the model used today, although the model has been updated and modified since then,
with an extensive update given in Thomas et al. (2019).

A disadvantage of the modelling approach of Thomas et al. (2019) is that it is computer-
intensive to fit. With the current fitting algorithm, it takes around 3 days running using 20
parallel processes to produce the results given there. Even with this high computational
effort, some concessions have to be made with approximations that introduce bias into the
results (see Section 3.2.1.1). Improving the fitting algorithm is therefore desirable, both
to eliminate the bias and to reduce the computational effort. This would also allow the
exploration of some enhancements to the model to better reflect the data. In this thesis,
we explore various alternatives to the current algorithm.

1.1.2 Data

Directly counting the number of adult seals is difficult since they are widely dispersed,
except for during the moulting and breeding season, and so monitoring is undertaken
by counting pups on breeding colonies—the pups are concentrated in a small number of
colonies and are always present because they cannot yet swim. This was done through
high resolution aerial surveys at most colonies, supplemented by ground-based counts at
a few more accessible and smaller colonies. A picture showing grey seals, including pups,
that was taken as part of these surveys is shown in Figure 1.2 and a map of the monitored
colonies is shown in Figure 1.3. The breeding period is longer than the stay of an individual
pup and so statistical models were used to estimate the total number of pups born from
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Figure 1.4: Regional pup production data from 1984 to 2010 (see Table S1 in Thomas et al.,
2019).

repeated aerial and ground surveys of the breeding colonies, using various characteristics
of the pups such as body shape and moulting to assess their age (Russell et al., 2019). The
total pup production (i.e., number of pups born) was estimated by maximum likelihood
for each colony, taking differences in survey methods into account but were aggregated
into four regions to facilitate population dynamics modelling: North Sea, Inner Hebrides,
Outer Hebrides, and Orkney (see Figure 1.3). While colony-level uncertainty measures are
available for the pup estimates in aerially surveyed colonies, these are not independent due
to shared parameters within one region, leading to difficulties when deriving an aggregated
uncertainty on the regional level. Further, no uncertainty measures are available for the
ground-surveyed colonies. We therefore use only the maximum likelihood pup estimates at
the regional level for this thesis but treat the observation error variance of these estimates
as unknown.

For this thesis, we use the data from the annual surveys from 1984 to 2010, see Figure
1.4 and Table A.1. We note that in 2009, there is a missing value for the pup production
estimate for the Inner Hebrides. In this year, there were not enough aerial surveys in this
region to produce a reliable pup production estimate. While pup counts have been unter-
taken in some colonies since the 1950s (Russell et al., 2019), the methods have changed
considerably over time and therefore only counts since 1984 are used here. Since 2010
the survey method has changed to conducting only biennial surveys of the colonies. In
addition, the camera to take the photos of the colonies has changed with has resulted
in a jump in the observed pup numbers and further research is required to accurately
determine its cause (Russell et al., 2016). We note that around 10% of breeding occurs
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in colonies that are not regularly monitored. The results in this thesis correspond only to
the population size associated with regions that are regularly monitored.

The second source of information about the number of seals is a single independent es-
timate of total adult population size. As part of a larger survey targeting harbour seals
(Lonergan et al., 2011), the number of hauled-out grey seals was counted in August of
2007 to 2009. The proportion of hauled-out animals was estimated to be 31% by using
a sample of seals fitted with telemetry tags. Together, these led to an estimate of the
number of total adults, derived by Russell et al. (2016). The uncertainty in the estimate
was modelled as a shifted Gamma distribution by Thomas et al. (2019) for which that pa-
rameters can be found in Table A.2. Since the survey was conducted in August, before the
breeding season, the estimate does not include the pups born in that year. Even though
the estimate was derived using survey efforts spanning three years, the total estimate was
assigned to the year 2008 to facilitate modelling. The estimate is a sum of all adult seals
across all regions, because summer feeding regions are not necessarily close to a female
adult’s breeding colony (Russell et al., 2013) and because the survey was conducted in
August, before the new pups were born. We also note that we assumed no adult mortality
and no immigration or emigration between the time of the independent estimate in Au-
gust and the breeding season, when the number of pups is counted. Both observations are
assigned to the same time point, that is, after breeding occurs, which seems a reasonable
approximation given the high adult survival rates.

1.2 Models

The overarching case study of this thesis is the population dynamics model of the UK
grey seal population. This is a non-normal and non-linear state space model. We begin
by defining some notation and then outlining the state space model framework in general.
Then, we give details on the specific models used in this chapter. We describe the UK grey
seal model, which we refer to as the “complete seal model”. This is relatively complex
and challenging to fit. To simplify the estimation problem and to isolate some of these
challenges, we used three different models in addition to the complete seal model. We
specify these models and explain how they are related to the complete seal model.

1.2.1 Notation

Before formally defining state space models, we set out some notation that is used through-
out this thesis. Underlying true states, which can be scalars or vectors containing different
components of the state such as population sizes by age, are denoted xt and observations
yt, where t denotes time, a non-negative integer valued index. Indices of the form i:j
denote the range of integer values between i and j, following notation in, e.g., Chopin and
Papaspiliopoulos (2020). The notation x0:t then means all states from time 0 to time t,
so x0, ..., xt. Parameter vectors are denoted with θ.

For the distributions, we use a slight abuse of notation which is, however, very common
in the literature (see, e.g., Chopin and Papaspiliopoulos, 2020, Wills and Schön, 2023,
Kantas et al., 2015). Instead of distinguishing each probability density function (pdf)
with a different name or different indices, the pdf is identified by its arguments. Model
pdfs are generally denoted with p, and pdfs that are not part of a model but necessary
for proposing values in the context of inference methods are denoted with q. For example,
the prior pdf of a model is denoted with p(θ) and its posterior pdf with p(θ|y). Section
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1.3 defines some of the most commonly used densities in this thesis. An exception to
this are the state process (or transition) and observation equations in a state space model
because of their central importance to the model. These are denoted f and g respectively,
following, e.g., Kantas et al. (2015) and Newman et al. (2014a), and defined in detail in
the next section. We note that while p and q are probability density functions, we also use
these symbols when referring to the corresponding probability distribution. In contexts
where the parameter vector is assumed known throughout, e.g., Chapter 2, we drop θ from
the condition in the densities p(·|θ) for better readability.

A notation that becomes relevant from Chapter 2 on is that of denoting states with a

superscript (i) in addition to the subscript t for time, so x
(i)
t . This is used when describing

SMC methods where the simulation of many possible states at time t is necessary—the
superscript then indexes the different simulated states.

1.2.2 State Space Models

State space models (SSMs) are a framework for modelling two time series evolving in
parallel: one describing the state of some unobserved system and the other describing
the measurements taken on that system. They have a flexible and intuitive structure
and can separate process stochasticity from observation error. Process stochasticity refers
to the variation in the true underlying states through time, i.e., year-to-year changes of
population sizes, whereas observation error refers to the differences between the hidden
state and observed data. The first SSMs were normal dynamic linear models (NDLM),
i.e., models where the underlying states and observations can be modelled with linear
equations and normal distributions (see Section 4.2.1 for a formal definition). These were
used in aerospace engineering and together with the Kalman filter (see Chapter 4) were
an important tool for the Apollo missions where they helped with the estimation of a
spacecraft’s trajectory using imprecise location measurements. In ecology, SSMs began to
be used in the 1980s, for example in fisheries (Mendelssohn, 1988). Increase in computing
power and advances in Markov chain Monte Carlo (MCMC) methodology, a computa-
tional technique for sampling from complex probability distributions (see Chapter 3), in
the 1990s extended the possible applications of SSMs by allowing more complexity, such
as non-linear and non-Gaussian models. This also made Bayesian parameter inference fea-
sible when models had before been restricted to state inference with fixed parameters or
parameter inference within a frequentist framework. Today, sophisticated fitting methods
and software allow intricate model formulations which can incorporate parameters that
depend on covariates, multiple hierarchical levels, random effects, and complex observa-
tions such as capture-recapture data (King, 2012). For an extensive overview of the use
of state-space models in ecology, see Auger-Méthé et al. (2021).

Formally, SSMs are models for a time series of state vectors x0:T = (x0, ..., xT ), with
xt ∈ Rn for t ∈ N0, n ∈ N. The state vectors themselves can take any value in Rn. We
also assume the times t = 1, ..., T to be evenly spaced and so have regular time intervals.
(This assumption can readily be relaxed, but all models described in this thesis have
evenly spaced time points.) The elements of x0:T arise from a first order Markov process.
This means that the distribution of the state at time t + 1 given the state at time t is
independent of any previous states, i.e., p(xt+1|x0:t) = p(xt+1|xt). The transition process
can therefore be described through the following pdf, where θ denotes the vector of model
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parameters:

Initial state pdf: x0 ∼ f0(·|θ)
Transition pdf: xt|x0:t−1 ∼ ft(·|xt−1, θ) (1.1)

The state vectors xt are not directly observed, but are related to a series of observations,
or measurements y1:T = (y1, ..., yT ), with yt ∈ Rm. Any observation yt is independent
of (x0, ..., xt−1, xt+1, ..., xT ) conditional on xt . This relationship is described through the
observation pdf

Observation pdf: yt|x0:T ∼ gt(·|xt, θ). (1.2)

The process and observation densities can vary throughout the time series which is indi-
cated by the index t, i.e., ft and gt. However, we will omit this index from now on. It is
usually clear from the arguments of the pdf which time point is meant. We will also omit
writing the parameter θ as a conditioning variable unless the dependence on a parameter
needs to be made explicit. With the transition and observation densities as defined above,
we can write the joint pdf as

p(x, y) = f(x0)
T∏
t=1

f(xt|xt−1)g(yt|xt)

which is sometimes called the complete data likelihood and the marginal pdf for the
observations as

p(y) = p(y1)

T∏
t=2

p(yt|y1:t−1) (1.3)

which is sometimes called the observed data likelihood. This way of specifying the model
is helpful later on, when various algorithms are discussed.

We use a Bayesian framework for this model, and hence add an additional layer to the
transition and the observation process which is the prior pdf for the model parameters θ:

Prior pdf: θ ∼ p(·)

In the context of population dynamics, we are interested in the posterior distribution of
the parameters which we denote p(θ|y1:T ) as well as the distribution of x1:T |y1:T . For a
more detailed description of state space models, see Doucet et al. (2001), and see Newman
et al. (2014a) for the usage of state space models in the context of population dynamics.

1.2.3 Complete Seal Model

The model described here is the one that is currently used for the estimation of the UK
grey seal population (Thomas, 2021) and extensively described and justified in Thomas
et al. (2019). We note that this model is very complex given the available data. It has 10
parameters that need to be estimated, while relying almost exclusively on observations on
only one age class out of seven, other than in one year where an estimate of total abundance
is available. This leads to a challenging estimation task, as can be seen throughout this
thesis. Chapter 5 explores the challenges with fitting this model and suggests some solution
for future research.
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1.2.3.1 States

The complete seal model has a 28-dimensional state: it contains the number of pups and
adult female seals in each of the four surveyed regions North Sea (NS), Inner Hebrides
(IH), Outer Hebrides (OH) and Orkneys (Ork). Adult males are not modelled as part
of the SSM. For every region the number of seals is modelled according to age. Pups
and female seals aged between one and five years are modelled in their own age group,
and female seals aged six and above are grouped together. The reason for this is the
following. Harwood and Prime (1978) describes two samples of seals that were shot in
culls in 1972 and 1975. For these two samples, it was found that 16% of female adult
seals had had their first pup aged 5, 45% at age 6 and 39% at age 7 and over. For the
purposes of this model, these findings are simplified to assume that only females from age
6 onwards are able to produce a pup. This leads to seven age categories per region and
so to 28 categories in total. The state in year t is denoted by a row vector with 28 entries
xt = (xa,r,t)a=0:6,r=1:4 = (xa=0,r=1,t, ..., xa=6,r=1,t, xa=0,r=2,t, ..., xa=6,r=4,t) where t denotes
the year, r the region numbered 1 through 4, and a the age group from 0 to 61.

1.2.3.2 State Process

The state process from one year to the next consists of survival, age incrementation and
birth, in that order. These three sub-processes are described below, with the notation
following Newman et al. (2014a).

The survival process is modelled as binomial, with survival probabilities φp,r,t for pups
dependent on region and year, and φa for adults2, constant across regions and time. We
assume pup survival to be density dependent and use an extended Beverton-Holt function
(Beverton and Holt, 1957) to relate pup survival to the pup carrying capacity of the region,
the maximum pup survival rate φp,max, and the numbers of new-born pups x0,r,t:

φp,r,t =
φp,max

1 + (βrx0,r,t)ρ
(1.4)

The parameter βr determines for which numbers of pups the survival probability starts to
decline. The parameter ρ governs the shape of the density dependent pup survival rate.
The steepness of the decline in survival probability increases as ρ decreases (Figure 1.5).

The density dependent pup survival leads to a maximum number of pups (and a resulting
maximum total number of seals) that can be sustained, also called the carrying capacity
χr of the region r. The parameter βr is inversely proportional to this carrying capacity.
As described in Thomas and Harwood (2005), we can calculate the carrying capacity
dependent on the other parameters:

χr =
1

βr

(
0.5αφp,maxφ

5
a

1− φa
− 1

)1/ρ

. (1.5)

The proof for this relationship is given in Appendix A.2.1. As we can easily switch between
βr and χr with the help of the above transformation, it does not matter mathematically
which of the two parametrisations we use in the model formulation. As the interpretation

1Occasionally, we use the absolute year of a state or observation instead of the time index t. When it
is not clear from the context whether the year or the time index is used, we will use year in the index
instead of t.

2For the purposes of this model, all animals aged 1 and older are considered to be “adults”.
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Figure 1.5: Beverton-Holt density dependent pup survival for different values of β and ρ. The
maximum pup survival probability φp,max here is 1.

of χr is more intuitive, making it easier to choose a prior distribution, we use this parameter
in our model formulation and analysis.

This leads to the following survival process, where u denotes an intermediate state between
xt and xt−1 and the index s denotes numbers after survival:

ut,s =



u0,r=1,t,s

u1,r=1,t,s
...

u6,r=1,t,s
...

u0,r=4,t,s
...

u6,r=4,t,s


∼



Bin(x0,r=1,t, φp,r=1,t)
Bin(x1,r=1,t, φa)

...
Bin(x6,r=1,t, φa)

...
Bin(x0,r=4,t, φp,r=4,t)

...
Bin(x6,r=4,t, φa)


,

where the parameter φa is the probability of adult survival (for all individuals older than
pups). The age incrementation (numbers after ageing denoted with index a) is determin-
istic but we include the binomial sexing process in the pup age incrementation. The sex
ratio at birth is assumed to be 50:50.

ut,a =



u0,r=1,t,a

u1,r=1,t,a

u2,r=1,t,a
...

u6,r=1,t,a
...

u0,r=4,t,a
...

u6,r=4,t,a


=



0
∼ Bin(u0,r=1,t,s, 0.5)

u1,r=1,t,s
...

u6,r=1,t,s + u5,r=1,t,s
...
0
...

u6,r=4,t,s + u5,r=4,t,s


.
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Finally, we model the birth process which leads to the new state xt+1 where females aged
6 and above are assumed to be able to produce a pup.

xt+1 =



x0,r=1,t

x1,r=1,t
...

x6,r=1,t
...

x0,r=4,t
...

x6,r=4,t


=



∼ Bin(u6,r=1,t,a, α)
u1,r=1,t,a

...
u6,r=1,t,a

...
∼ Bin(u6,r=4,t,a, α)

...
u6,r=4,t,a


,

where α is the probability than an age 6+ female gives birth to a single pup. Adult males
are not modelled explicitly in the states. Whenever the total numbers of adults is required,
it can be calculated by multiplying the number of female adults with the adult sex ratio
parameter denoted ω. We refer to ω as the sex ratio parameter throughout this thesis but
note that more strictly it is the ratio of the total number of adult seals to the number of
adult female seals.

We note that for fixed parameter values, the four regions are independent of each other.
The model assumes that seals never change region. However, all parameters other than
the carrying capacity χr are shared between the four regions.

1.2.3.3 Observation Process: Pup Production Estimates

There are two sources of information about the seal numbers which are assumed to be
independent of each other. The first is a yearly estimate of pup production (i.e., numbers
of pups born). The observed pup numbers yt = (yr=1,t, yr=2,t, yr=3,t, yr=4,t)

′ are assumed
to be unbiased normally distributed observations of the true pup numbers with a constant
coefficient of variation (CV) and precision parameter τ , so

yt =


yr=1,t

yr=2,t

yr=3,t

yr=4,t

 ∼

N(x0,r=1,t, x

2
0,r=1,t/τ)

N(x0,r=2,t, x
2
0,r=2,t/τ)

N(x0,r=3,t, x
2
0,r=3,t/τ)

N(x0,r=4,t, x
2
0,r=4,t/τ)

 .

We note that strictly τ is not the precision of the distribution, which is the inverse of
the variance and in this case is τ/x20,r,t but rather the inverse of the square of the CV,

so τ = 1/CV 2 =. For convenience, we refer to τ as the precision parameter throughout
this thesis but note that to arrive at the true precision of the distribution, τ needs to be
divided by the square of the the mean of the distribution.

For this case study, we use the pup production estimate for the years 1984-2010 as de-
rived by Russell et al. (2019). The 1984 estimate is used as y0 to derive the initial state
distribution.

1.2.3.4 Observation Process: Independent Estimate

The independent estimate of total adult population size by Russell et al. (2016) based on
the survey in Lonergan et al. (2011) includes male and female adult animals. The number

13



that was estimated therefore requires the sex ratio parameter ω and is

xadults,24 = ω
4∑
r=1

6∑
a=1

xa,r,t=24. (1.6)

The uncertainty in the estimate was quantified using a non-parametric bootstrap by Rus-
sell et al. (2016) which was modelled as a right-shifted Gamma distribution in Thomas
et al. (2019). They used the following notation for the estimate and its distribution:

yadults,24 ∼ κ0 + Ga(κ1, κ2). (1.7)

Here, κ0 is the shift parameter, κ1 the shape parameter and κ2 the scale parameter. These
parameters were estimated as κ0 = 59167.84, κ1 = 12.96 and κ2 = 2719.38, leading to an
expected value of 94398.51 and a standard deviation of 9788.03 (see Table A.2). However,
there are two problems with using this in the state space model framework. Firstly, there
needs to be a realisation of the observation process, so a number (or a vector of numbers)
that denote the observation that was actually made in that year. With the notation
in Equation 1.7, there is no fixed number associated with yadults,24, just a distribution.
Secondly, the observation density should depend on the underlying state x24. This is also
not the case here, as κ0, κ1 and κ2 are fixed in advance and independently of the states.
These two issues can be solved in two steps. The first step is to change the interpretation
of the uncertainty in the estimate. Rather than saying that the estimate is distributed
according to Equation 1.7, the distribution quantifies how likely the underlying true state
is given the observations that were made in the survey. This introduces the underlying
state into the equation and allows us to make a connection between the state and the
parameters κ0:2.

xadults,24 ∼ κ0 + Ga(κ1, κ2).

In a second step, we change the interpretation of the parameters and the state. Instead of
treating xadults,24 as the random variable and κ0, κ1 and κ2 as fixed parameters, we treat
xadults,24 as fixed, and κ0 as the random variable. This leads to

κ0 ∼ xadults,24 −Ga(κ1, κ2). (1.8)

Therefore, if we set the observation of the independent estimate to yIE,24 := κ0, and treat
κ1 and κ2 as fixed and known parameters, the independent estimate fits exactly into the
SSM framework. Since there is only one independent estimate, we will usually drop the
index 24 and denote the independent estimate only by yIE .

We note that the above formulation can seem unintuitive and offer the following mathe-
matically equivalent formulation,

κ∗0 ∼ xadults,24 −Ga(κ1, κ2) + κ1κ2 (1.9)

where the observation is re-defined as κ∗0 := κ0 + κ1κ2. Because κ1κ2 is the mean of the
Gamma distribution, the observation now has a mean of xadults,24 and is therefore centred
around the true state value, similar to the pup observations. By contrast, the observation
error is not distributed according to a normal distribution but according to the mirrored
and shifted Gamma distribution −Ga(κ1, κ2) + κ1κ2 which has mean 0. Since κ1 and κ2
are known, adding this constant to both sides in Equation 1.9 does not change the model
other than providing a more intuitive formulation. From a mathematical perspective
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it unnecessarily complicates the model and we therefore work with the formulation in
Equation 1.8 throughout this thesis when implementing models. Whenever observations
of adult counts are depicted in a plot, we shift them so that the mean of their distributions
is equal to the true count.

Including the independent estimate yIE,24 in the state space model in addition to the
annual pup production is done by augmenting the observation in year t = 24:

p(y1:T , yIE) =

(
t∗−1∏
t=1

p(yt|y1:t−1)

)
p(yt∗ , yIE |y1:t∗−1)

(
T∏

t=t∗+1

p(yt|y1:t−1, yIE)

)

This means that whatever the fitting algorithm usually does with the observation yt, it now
does with both the pup production observation and the independent estimate in year t∗.
All later steps in the algorithm incorporate the information provided by the independent
estimate. A second option for including the independent estimate is discussed in Chapter
6.

1.2.3.5 Initial state pdf

For the initial distribution of the states in year t = 0, we use the first observation, made
in 1984, and effectively reverse the observation density to obtain the initial distribution
of pup numbers. Thomas et al. (2019) additionally dispersed the values further with a
uniform distribution using the dispersion parameter a. This was done to ensure that all
possible initial values are captured by the initial distribution.

x∗r ∼ N(yr,0, y
2
r,0/τ)

x0,r,t=0 ∼ Unif(x∗r/a, ax
∗
r),

where a was set to 1.3. As desired, this increases the variance of the distribution of initial
pup states from Var(x∗r) = y2r,0/τ to

Var(x0,r,t=0) =
1

3

(
a2 + 1 +

1

a2

)
y2r,0/τ +

1

12

(
a− 1

a

)2

y2r,0.

It also increases the expected value from E(x∗r) = yr,0 to

E(x0,r,t=0) =
1

2

(
a+

1

a

)
yr,0.

The proof for this is given in Appendix A.2.2. This might be less welcome as it introduces a
bias in the distribution. An alternative solution for future updates of the model could be to
further distribute the initial values according to the distribution Unif((1−a)x∗r , (1+a)x∗r),
where a could be set to 0.3, so Unif(0.7x∗r , 1.3x

∗
r).

The initial distribution of adult females of age 1 through 5 is the result of applying the
survival process to the initial pup numbers:

xa=1,r,t=0 ∼ Bin(xa=0,r,t=0, 0.5φp,r,t=0)

xa,r,t=0 ∼ Bin(xa−1,r,t=0, φa,r,t=0), 2 ≤ a ≤ 5.

Here, φp,r,t=0 is calculated as in Equation 1.4, substituting the observed number of pups
y0 for the true number of pups. For adult female numbers of age 6+, the breeding process
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is reversed by drawing the number of non-breeding females from a negative binomial
distribution and adding the number of breeding females (which is equal to the number of
pups).

xa=6+,r,t=0 ∼ Negbin(xa=0,r,t=0, α) + xa=0,r,t=0.

As the first observation y0 is used to determine the initial distribution of the states, it
cannot be used again as a standard observations to determine the filtering distribution.
We therefore usually only mean y1:T when referring to the observations.

1.2.3.6 Prior Distributions

The prior distributions for the model are the ones used in Thomas et al. (2019), where an
extensive justification is included, and are given in Table 1.1.

Parameter Prior distribution Prior mean (SD)

Maximum pup survival φp,max Beta(2.87, 1.78) 0.62 (0.20)

Adult survival φa 0.8+0.17 × Beta(1.6,1.2) 0.90 (0.04)

Fecundity α 0.6+0.4 × Beta(2,1.5) 0.83 (0.09)

Density dependence shape ρ Ga(4,2.5) 10 (5)

NS carrying cap. χNS Ga(4,5000) 20000 (10000)

IH carrying cap. χIH Ga(4,1250) 5000 (2500)

OH carrying cap. χOH Ga(4,3750) 15000 (7500)

Ork carrying cap. χOrk Ga(4,10000) 40000 (20000)

Observation precision τ Ga(2.1,66.67) 140 (96.61)

Sex ration ω 1.6 + Ga(28.08,3.7E-3) 1.7 (0.02)

Table 1.1: Prior distributions and summary statistics for the parameters of the complete seal
model

While these prior distributions are set independently, we note that the Beverton-Holt
density dependence induces a dependence between some of the parameters. Examining
Equation 1.5 makes it clear that the term

0.5αφp,maxφ
5
a

1− φa
− 1

needs to be non-negative as this number is exponentiated with 1/ρ. A simulation of
10,000,000 parameter values from the prior showed that only 66.3% of values satisfied the
condition above. Figures 1.6 and 1.7 show the resulting prior distributions and correlations
once all invalid combinations have been discarded.

1.2.4 Complete Seal Model Without Independent Estimate

The independent estimate contains information about the parameters but also introduces
some fitting challenges. In order to isolate these challenges and to be able to assess
the exact influence of the independent estimate, we also estimated the posterior for the
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Figure 1.6: Prior distributions for φp,max, φa and α (red lines) as induced by the Beverton-Holt
density dependence. The black lines indicate the original independent prior distributions.

Figure 1.7: Paired density plots of the priors for φp,max, φa and α as induced by the Beverton-
Holt density dependence. The correlation coefficients between the induced prior distributions
are ρφa,φp,max = −0.312, ρφp,max,α = −0.024 and ρα,φa = −0.107.

complete seal model without the independent estimate, i.e., only using the annual pup
production estimates. As the independent estimate is the only source of information
about the sex ratio ω, inference for this parameter was omitted in this case. All other
aspects of the model remain the same.

1.2.5 7-state model

This and the following model were used in the simulation studies. Here, we reduced the
model to one region only and therefore had only 7 instead of 28 states. This reduces the
number of parameters from 10 (or 9, excluding sex ratio) to 6 because only one instead
of 4 carrying capacity parameters need to be estimated. As in the previous Section 1.2.4,
only pup production estimates were used as the observation process. Because only one
region is modelled, the observation at each time point is a scalar instead of a vector with
4 components. The prior distributions were adopted from the complete seal model. For
the carrying capacity parameter, we chose the prior of the Inner Hebrides region.

1.2.6 2-state model

This model is the simplest of the 4 models investigated in this thesis. It is closely related
to the model described in the previous Section 1.2.5 and has the same 6 parameters but
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consists of only two age groups (pups and adult breeding females) instead of 7. The
survival and age incrementation process is then

ut,sa =

(
u0,t,sa
u1+,t,sa

)
∼
(

0
Bin(x0,t−1, 0.5φp,t) + Bin(x1+,t−1, φa)

)
.

After the birth process we obtain the new state

xt=1 =

(
x0,t+1

x1+,t+1

)
∼
(

Bin(u1+,t,sa, α)
u1+,t,sa.

)
.

We calculate the density dependent pup survival with the same formula as given in Equa-
tion 1.4. Because there are only 2 instead of 7 states, this leads to a different relationship
between β and χ. By adapting the proof in Appendix A.2.1, we obtain

χ =
1

β

(
0.5αφp,max

1− φa
− 1

)1/ρ

.

As in the previous two models, we only use the pup production estimates as the observation
process. The priors are the same as in the 7-state model.

1.3 Inference for State Space Models

Name pdf

Filtering p(xt|y1:t)
Joint filtering p(x0:t|y1:t), t = 0, ..., T − 1
Smoothing p(xt|y1:T ), t = 0, ..., T − 1
Joint smoothing p(x0:T |y1:T )
Prediction p(xt+1|y1:t)
Prior p(θ)
Posterior p(θ|y1:T )
Joint posterior p(x0:T , θ|y1:T )
Likelihood L(θ; y1:T ) = p(y1:T |θ)
Joint likelihood L(x0:T , θ; y1:T ) = p(x0:T , y1:T |θ)

Table 1.2: Definition of names for relevant distributions for inference in state space models.
Note that the likelihood is not technically a distribution when considered a function of θ but
is featured in this table for convenience. This table is modified from a table in Schön and
Lindsten (2017).

When we discuss inference for state space model, several different tasks can be distin-
guished. First, we might consider inference where the parameter vector is assumed known,
and inference for the underlying states is the focus. The so-called filtering distribution is
the distribution of a state xt given all observations up to time t, so y1:t. This is relevant in
applications outside of statistical ecology where states need to be estimated live, e.g., in
navigation. For reasons related to the computation of the likelihood that are discussed in
Chapter 2, the filtering distribution is equally important when estimates of the likelihood
are required in a parameter inference context. When data beyond time t are available
in the estimation of xt, the distribution of xt|y1:T , t, T is called the smoothing distribu-
tion. These distributions can be extended to include a series of states x0:t and are then
called the joint filtering and joint smoothing distributions. To emphasise the difference,
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the distributions of only one state are sometimes called marginal filtering and marginal
smoothing distribution (Schön et al., 2018) but we omit this here. The distribution of
xt+1 given observations until time t is called the prediction distribution.

For parameter inference, the prior is denoted with p(θ) and the posterior with p(θ|y1:T ).
The likelihood is often denoted with L(θ; y1:T ) = p(y1:T |θ) although we usually use only
the second term in this thesis. When the likelihood of both a parameter θ and a set of
states x0:T is calculated, this is called the joint likelihood.

1.3.1 Inference Methods

While SSMs allow flexible and complex model formulations, these can sometimes be dif-
ficult to fit, and this is certainly the case for the case study in this thesis. Here, we give
a brief overview of the available methods to compute or estimate the distributions men-
tioned in the previous section. No single method is universally best and rather depends
on the model in question, the expertise and time available for tuning the fitting method,
and the goal of the fitting task (Fasiolo et al., 2016).

For normal dynamic linear models, a Kalman filter (see Chapter 4 and Kalman, 1960)
can be used to calculate the exact state filtering distributions and likelihood values and,
with some additional steps, the smoothing distributions. For models with other distribu-
tions or non-linear dynamics, extensions to the Kalman filter exist such as the extended
Kalman filter (Gordon et al., 1993) and unscented Kalman filter (Wan and van der Merwe,
2001), although these only provide approximations to the likelihood and filtering distri-
butions. Maximum likelihood estimates can be obtained through numerical optimisation.
For Bayesian inference, any MCMC method that requires the likelihood of a parameter
can be employed (see Section 3.2.2.1 for a brief introduction of MCMC methods).

For more complex model, the likelihood can be approximated in various ways. For low-
dimensional states, up to 2-3, the states can be discretised by assigning them to cells in a
grid. This discretised model can then be fitted with the tools for Hidden Markov Models
(Besbeas and Morgan, 2020). While this might be an option for the 2-state model, the
complete seal model has a 28-dimensional state and discretising is not a feasible option.

A second option is the Laplace approximation. Here, the marginal likelihood p(θ|y1:T ) =∫
p(θ, x0:T |y1:T )dx0:T is approximated using the second-order Taylor expansion of the inte-

grand to obtain a Gaussian integral. This method has been widely applied in a frequentist
setting but also been explored for Bayesian inference (Monnahan and Kristensen, 2018).
In this thesis, this method is not investigated although this is an avenue of further research.

Third, and most important in the context of this thesis, are SMC methods (see, e.g.,
Kantas et al., 2015 for a general review). These provide estimates of the state distributions
of interest by iteratively simulating states through importance sampling schemes. They
can also generate unbiased estimates of the likelihood. To obtain maximum likelihood
estimates (MLEs), stochastic optimisation procedures are required due to the randomness
of the likelihood estimates, and that is not covered in this thesis. For Bayesian parameter
inference, several methods exist that build on the ideas for state inference, either by
expanding the state space with the parameters, or by using the likelihood estimates in
an MCMC algorithm. These are the algorithms studied in much of this thesis, namely in
Chapters 2 and 3 and they are laid out in detail there.

Instead of calculating, approximating or estimating the likelihood p(y1:T |θ), Bayesian data
augmentation uses the joint likelihood L(x0:T , θ; y1:T ) in an MCMC algorithm to generate
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samples from the joint posterior p(x0:T , θ|y1:T ) and then marginalises over the states to
obtain samples from the parameter posterior distribution (King, 2011). This method is
popular due to its flexibility but was not expected to perform well for the seal model. We
used it in Chapter 4 where three different algorithms were compared.

A recent discussion of these methods can be found in Newman et al. (2023).

1.4 Software

There is a wide range of software packages available for fitting SSMs which provide one
or more fitting methods. Rather than provide a full review of these, we refer to Newman
et al. (2023), where a classification of the most commonly used software packages can be
found. We also refer to Beraha et al. (2021) for a comparison of nimble, JAGS and Stan

for Bayesian inference, where computation times, goodness of fit of the output and tuning
requirements are compared across a number of different models.

All analysis in this thesis was done with R (R Core Team, 2023). The fitting algorithms
used the packages nimble (version 1.0.1, de Valpine et al., 2023; see also de Valpine
et al., 2017) and nimbleSMC (version 0.10.1, NIMBLE Development Team, 2021, see also
Michaud et al., 2021). These packages include MCMC algorithms that are translated to
compiled C code and are therefore faster than implementations of the same algorithms in
R code. nimble was chosen because of its flexibility with implementing complex models
and algorithms. This allowed, e.g., the implementation of the Kalman filter in Chapter
4. Where nimble was insufficient for implementing the algorithm under consideration, we
implemented our own customised algorithm in R.

1.5 Thesis Outline

The rest of this thesis is structured as follows.

In Chapter 2, we discuss inference methods for the models introduced in Section 1.2 in
cases where the parameter is assumed known. The inference tasks are then to generate
samples from the state filtering or smoothing distribution and to estimate the likelihood at
the parameter value. In the first part of the chapter, we provide a review of SMC methods.
We start with importance sampling techniques and give simple (“toy”) examples to pro-
vide some intuition for the considerations that need to be made when these techniques are
used. To apply this technique to state space models, we show how importance sampling
techniques can be used sequentially, resulting in a bootstrap filter, the basic building block
on which the more advanced SMC techniques rely. We then describe several extensions to
the bootstrap filter. We discuss the aspects that need to be considered when an extension
is used and the theoretical advantages and disadvantages of the available options. A sim-
ulation study follows, where we explore the most relevant of these methods by estimating
the likelihood for the 2-state model. This simplification is necessary to reduce the com-
putation time to a level that allows the detailed study of 4 different factors while keeping
the Monte Carlo error of the results low. We then apply the results of this simulation
study to the 7-state and the complete seal model, and only adapt the computational effort
for each model. We briefly explore the effect of re-formulating the complete seal model
by exploiting the independence of the four regions in a factorised formulation. This is
promising and further developed in Chapter 6.
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Chapter 3 discusses parameter inference in the context of the seal model. Similar to
Chapter 2, we first review the available SMC methods to generate samples from the
posterior distribution. These are divided into three groups. The first group consists of
methods that augment the unknown state with the parameter and then use SMC methods
for state inference, treating the parameters similarly to the states. The second group
are methods that build on MCMC algorithms, like data augmentation and the particle
marginal Metropolis-Hastings (PMMH) algorithm, which relies on likelihood estimation
with SMC and then uses this estimate within an MCMC algorithm. In the third group,
we describe the SMC2 algorithm, which combines these two techniques. Following this
review, we explore various options for the PMMH in detail by fitting the 2-state model,
again for computational reasons. We then adapt the outcomes of this study to each of
the increasingly complex models. This yields samples from the posterior distribution for
the complete seal model with the real data, albeit requiring an often prohibitively long
computing time (11 days running 10 parallel processes). We demonstrate our attempts to
fit the seal model with the SMC2 algorithm but the method shows difficulties even for the
2-state model, and did not converge for the complete seal model. The chapter is concluded
by analysing the posterior obtained with the PMMH and comparing the results with those
previously obtained in Thomas et al. (2019).

The difficulties in Chapter 3 justify the use of an approximation for parameter inference,
which is investigated in Chapter 4. We linearise and normalise the seal model and are then
able to calculate the exact likelihood of this NDLM approximation with the Kalman filter.
This likelihood is used as part of a Metropolis-Hastings algorithm to generate samples
from the posterior distribution. To assess the quality of this approximated posterior, we
compare it with the posterior distribution produced by a PMMH algorithm and by an
MCMC algorithm using data augmentation which both target the true posterior distri-
bution. This comparison is done for the 2-state model in five scenarios to evaluate the
closeness of the approximation to the true posterior distribution under various challenging
conditions. We then compare the posterior distributions of the three methods, using the
complete seal model with the real data. In most of the cases explored in this chapter,
the Kalman filter approximation is close to the true posterior while profiting from a much
lower runtime. We briefly investigate two ideas for getting the approximation even closer
to the true posterior but conclude that neither of these show an improvement.

Rather than discussing more inference methods, in Chapter 5 we analyse the posterior
distribution of the 2-state model. Motivated by difficulties in estimation in previous chap-
ters, in particular when comparing posterior means with the true parameter values, we
investigate factors affecting identifiability of the models. Building on previous work by
Auger-Méthé et al. (2016) for maximum likelihood estimation, we suspected that the size
of the observation error and the process stochasticity might be related to these difficulties.
First we decrease the observation error, which results in mean parameter estimates that
are further away from the true parameter value as the error decreases. We then increase
the process stochasticity by placing a random effect on one of the parameters and find
that the posterior mean estimates are not strongly affected by these changes but that the
estimated correlation effects are. The results also highlight an issue with the identifia-
bility of two of the parameters whose marginal posterior distributions remain relatively
wide even when high-precision observations are used for the estimation and who are highly
correlated. However, this is not an issue when state estimation is considered. Here, precise
observations lead to precise and unbiased state estimates.
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In Chapter 6, we pick up the idea of factorising the likelihood to obtain estimates with a
lower variance using less computational effort, first explored in Chapter 2. The factorised
model formulation cannot not easily be transferred to the complete seal model due to the
independent estimate which negates the independence of the four regions. We describe
three options for using a modification of this idea that can be used even in the presence
of one observation that combines the regions. One of these options is then implemented.
We show the effect of this implementation on the variance of the likelihood and see that
the required computational effort is reduced by a factor of about 10-30 to obtain the same
variation of the estimates, depending on the measure used to assess this. We then generate
samples from the posterior distribution and find that the computational effort is reduced
by a factor of about 5 to achieve the same effective sample size.

Chapter 7 concludes the thesis and summarises the key findings. We propose how the
results obtained might be further developed and give an outlook to further directions of
research.
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Chapter 2

Likelihood Estimation With SMC
Methods

2.1 Introduction

In this chapter, we study SMC methods that enable state inference and yield estimates of
the likelihood when the model is evaluated at a specific parameter value θ. The reasons for
studying these methods are twofold. First, gaining knowledge about the hidden states can
be a problem in its own right. This might be the case in scenarios where the parameters
are known physical constants, for example in Schön et al. (2005), where the flight path for
the Swedish fighter aircraft Gripen is estimated, or where parameters have been estimated
a priori, as in the analysis of seal movement in Jonsen et al. (2005). Second (and most
common in ecology), the model parameters are unknown and estimating them is of interest.
Many methods that perform parameter inference rely on state inference methods as one of
their building blocks. This is because these methods not only produce an estimate of the
distribution of the hidden states for given parameters but also of the likelihood value for
these parameters. It is therefore important to ensure that the best possible state inference
method has been chosen for a particular parameter inference method. It is predominantly
from this perspective that we discuss state inference methods, before we apply the gained
insights to parameter inference methods in Chapter 3.

We first (Section 2.2) describe and classify the SMC methods for state inference and
likelihood estimation. A subset of these methods are then applied in Section 2.3 to a
simplified version of the seal model (the 2-state model described in Section 1.2.6) using
simulated data in order to determine which algorithm to use as a building block in the more
complex parameter inference methods described in Chapter 3. We use the simplified model
to enable us to test the methods thoroughly in feasible computation time. Most results
can be generalised to these more complex models but the computational effort needs to be
adjusted for the 7-state and the full model by increasing the number of so-called particles
(Sections 2.4 and 2.5). We also compare in Section 2.5 two different formulations of the
full model to study the effect of factorising the model in different blocks. We conclude
(Section 2.6) with a discussion of the results and their implications for state and parameter
estimation.

For the methods that are described in Section 2.2 but not considered in the simulation
study, there are either existing results that can be directly applied to our case, or we
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discuss the theoretical considerations that rule out the use of these methods for the seal
model.

2.2 Review of SMC Methods for State Inference and Like-
lihood Estimation

In this section, we present a survey of several Sequential Monte Carlo (SMC) algorithms
for state inference and likelihood estimation. Most of these methods build on the so-
called bootstrap filter (BF). We therefore start by introducing the bootstrap filter and the
technique of importance sampling on which it relies. We then introduce various ways in
which elements of this filter can be extended and improved. The result is a methodological
toolbox that allows various techniques to be combined in a manner suited to the challenges
posed by a particular inference problem.

2.2.1 Importance Sampling

Importance sampling is a Monte Carlo procedure that can both estimate expected values
expressed as integrals and yield samples from a particular probability distribution. It is
a central building block of sequential Monte Carlo methods and we therefore introduce it
here briefly, both as a reminder to the reader and to set up the notation that will be used
from here on. The description here follows Chapter 8 in Chopin and Papaspiliopoulos
(2020) where an extensive discussion of this technique can be found.

Monte Carlo integration is a numerical method to approximate quantities that can be
written as an expected value,

Ep(φ(X)) =

∫
φ(x)p(x)dx, (2.1)

where p is the so-called target density of the random variable X. Given an i.i.d. sample
of size N from p, the quantity

1

N

N∑
i=1

φ(xi), xi ∼ p (2.2)

is an unbiased estimator of Ep(φ(X)) with mean square error

Ep

(
1

N

N∑
i=1

φ(xi)− E(φ(X))

)2

=
1

N
Varp φ(X).

Importance sampling (IS) comes into play when generating samples from the target den-
sity p is difficult or impossible but generating samples from another density q is feasible
and potentially easier and faster. We will call q the proposal density and an essential
requirement is that its support includes the support of p, or more strictly put, the support
of the integrand. In that case, we observe that

Ep(φ(X)) =

∫
φ(x)p(x)dx =

∫
φ(x)

p(x)

q(x)
q(x)dx =

= Eq

(
φ(X)

p(X)

q(X)

)
.
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Since we are able to generate samples from q, we can use the Monte Carlo estimator for the
expectation in the last term as given in Equation 2.2. Introducing the so-called importance
weight function w(x) = p(x)/q(x), we obtain the unbiased estimator

Êp(φ(X)) =
1

N

N∑
i=1

φ(xi)
p(xi)

q(xi)
=

1

N

N∑
i=1

φ(xi)w(xi), xi ∼ q (2.3)

which has a mean square error of

1

N
Varq (w(X)φ(X)) .

A useful measure to quantify the Monte Carlo error of the estimate in an intuitive manner
is the effective sample size (ESS, introduced in Kong et al., 1994), defined as

ESS(w(xi)i=1:N ) =

(∑N
i=1w(xi)

)2
∑N

i=1w(xi)2
. (2.4)

For normalised weights, i.e., if
∑N

i=1w(xi) = 1, this can be rewritten as

ESS(w(xi)i=1:N ) =

(∑N
i=1w(xi)

)2
∑N

i=1w(xi)2
=

N2

N(Var(w(xi)) + 1)

=
N

Var(w(xi)) + 1
.

In the case where p = q and therefore all weights are equal, the ESS equals N . At the
other extreme, where all but one of the weights are 0, the ESS is 1. The ESS therefore
offers an intuitive interpretation to understand the effect of the variance of the weights on
the quality of the importance sample.

The estimator in Equation 2.3 is useful in situations where it is impossible to sample from
the target density p directly but p(x) can be evaluated for any given x. This is called
normalised importance sampling. We can easily verify that this estimator is unbiased:

Eq

(
1

N

N∑
i=1

φ(xi)w(xi)

)
=

1

N

N∑
i=1

Eq

(
φ(xi)

p(xi)

q(xi)

)
(2.5)

=

∫
φ(xi)

p(xi)

q(xi)
q(xi)dxi =

∫
φ(xi)p(xi)dxi (2.6)

= Ep(φ(Xi)) (2.7)

The importance sampling estimator is a useful approximation when evaluating the integral
in Equation 2.7 is infeasible but generating samples from the density q with corresponding
importance weights w(xi) = p(xi)/q(xi) is possible. In many practical settings, however,
the weight function w = p/q can only be evaluated up to a constant. A typical example
of this is in Bayesian inference when p is a posterior distribution, for example

p(θ|y) =
p(θ)p(y|θ)∫
p(θ)p(y|θ)dθ

,

for some parameter vector θ and data vector y. Here, it is often easy to evaluate both fac-
tors in the numerator for given θ and y but the normalising constant in the denominator,

25



the marginal density for the data, is an intractable integral. In this case, a variation of im-
portance sampling called self-normalised IS, sometimes also referred to as auto-normalised
IS (e.g., in Chopin and Papaspiliopoulos, 2020), can be used. Instead of using p and q to
calculate the importance weight, we use unnormalised versions pu and qu of these densities
with p = pu/Zp and q = qu/Zq where Zp =

∫
pu(x)dx and Zq =

∫
qu(x)dx. The estimator

then becomes (with 1/N kept in the fraction for comparability with Equation 2.3)

Êp(φ(X)) =
1/N

∑N
i=1 φ(xi)wu(xi)

1/N
∑N

i=1wu(xi)
, xi ∼ q,

where

wu(xi) =
pu(x)

qu(x)
.

While self-normalised importance sampling is often the only possible choice in practice, it
has the substantial disadvantage that its estimator is biased for any fixed N and is only
asymptotically unbiased.

The asymptotic unbiasedness follows from Slutsky’s theorem (Slutsky, 1925) since the
denominator converges to the normalisation constant Zp/Zq, and the numerator converges
to

Zp/Zq Ep(φ(Xi))

as n→∞. It then follows that the ratio of the numerator and the denominator converges
to the ratio of their limits. The bias and variance of the estimator are of order 1/N . For
a formal discussion of asymptotic results, see Chopin and Papaspiliopoulos (2020).

We demonstrate the bias of the estimator with an example. We estimate the mean of
p = U(0, 4) through importance sampling with the proposal distribution q = N(0, 1). We
note that in practice this is not a good choice for a proposal distribution because it is very
unlikely to obtain values close to 4. These values then have large importance weights,
leading to a low ESS. For normalised importance sampling (IS), the estimator for the
expected value EU(0,4)(X) is

ÊIS(X) =
1

N

N∑
i=1

xi
p(xi)

q(xi)
, X ∼ U(0, 4),

where p is the density of the target distribution U(0, 4) and q is the density of the proposal
distribution N (0, 1). For self-normalised importance sampling (autoIS), we divide by the
sum of all weights rather than by N :

ÊautoIS(X) =
1∑N

i=1 xi
p(xi)
q(xi)

N∑
i=1

xi
p(xi)

q(xi)
, X ∼ U(0, 4).

To demonstrate how the variance and bias (in the case of self-normalised importance
sampling) of these estimates decrease with increasing sample size N , we show in Figure
2.1 the mean of 100 estimated means for sample sizes N = 1, ..., 2000 for both normalised
and self-normalised importance sampling. Here, we use the term particles for the proposed
values in correspondence with the use of this term for the SMC methods introduced in the
next section.
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(a) Importance sampling (b) Self-normalised importance sampling

Figure 2.1: Means of 100 estimated means of U(0, 4) through importance sampling and self-
normalised importance sampling with proposal distribution N (0, 1) for a varying number of
particles. The shaded area shows the region between the 10th and 90th percentile.

We note that importance sampling can not only be used to estimate integrals of the form
in Equation 2.1 but also to more formally approximate the target density p(x) with

p̂N (x) =
1

N

N∑
i=1

w(xi)δxi(x), (2.8)

where δxi(x) denotes the Dirac delta mass at xi (see Doucet and Johansen, 2009) and
where

w(xi) =
wu(xi)∑N
j=1wu(xj)

in the self-normalised case.

An important consideration for importance sampling is the choice of proposal distribution.
It is generally advisable to choose a proposal distribution q that is similar to φp or simply
p. For normalised importance sampling, the variance of the estimator is minimised if
the proposal distribution q is set to q(x) ∝ p(x)|φ(x)| (Proposition 8.2 in Chopin and
Papaspiliopoulos, 2020) and a similar theorem is available for self-normalised importance
sampling. This theorem is not particularly applicable because the normalisation constant
Ep(φ(x)) cannot be calculated (precisely the reason to use importance sampling in the
first place). In addition, we are often interested in a number of different test functions φ
and therefore do not benefit from tuning the proposal distribution to fit only one specific
function. In practice, we therefore often try to proposal distributions that are close to the
target distribution p which ensures that the importance weights do not vary too much.

A particularly inadequate choice for q is one where the probability mass in the tails p
decreases more slowly than it does for q. This can lead to very few importance weights
with a very high value, resulting in a very high Monte Carlo error variance of the estimator
(see Chopin and Papaspiliopoulos, 2020 for the theoretical optimal choice for a proposal
distribution and a discussion of its practical implications). We demonstrate this by extend-
ing the example above and comparing the effect of using different proposal distributions
on the estimation of the mean of the target distribution U(0, 4) through self-normalised
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(a) Proposal distribution N (0, 1) (b) Proposal distribution N (2, 4)

Figure 2.2: Histogram of weighted samples of sample size 10000 from U(0, 4) generated from
two different normal distributions as proposal distribution, with the density of their proposal
distribution superimposed.

importance sampling. As the first proposal distribution, we use the inadequate choice
N (0, 1) as before, and compare it with the much better suited N (2, 4). This second pro-
posal distribution has a relatively high density in the interval [0, 4] and therefore does not
suffer from having a high variance in the importance weights. Figure 2.2a shows the effect
of having weights with a high variance in the importance sample—the sample is not an
adequate approximation of the distribution towards the right side of the support. The
proposal distribution N (2, 4) used in Figure 2.2b achieves a much closer approximation
with the same sample size. This is reflected in the ESS of the two samples. For Figure
2.2a, it is 165.9, and for Figure 2.2b it is 6625.0. Figure 2.3 shows the effect of using
importance samples of different quality on estimating the mean of the target distribution.
With a sample size of 5000, the estimated means are very close to the true value of 2
when an adequate proposal distribution is used as in Figure 2.3b but the variance of the
estimated mean is much higher with the less suitable proposal distribution in Figure 2.3a.

Sometimes it is desirable to have independently sampled values with equal weights, rather
than pairs of sampled values and weights (xi, wi). We can achieve this by drawing a sample
from {xi}i=1N where the probability to draw a value xi is proportional to its weight wi (see
Gelman et al., 2013, Chapter 10.4). An overview of methods for generating this sample is
given in Section 2.2.5.

2.2.2 Bootstrap Filter

We now introduce the first algorithm of a class of methods called Sequential Monte Carlo
methods. These are based on the idea of importance sampling and are useful for state space
models because they exploit the sequential nature of these models to their advantage. The
basic building block is the so-called bootstrap filter (BF) which was introduced by Gordon
et al. (1993). We describe this algorithm in this section and use the following sections
to discuss extensions and possible improvements to this filter. As in the definition of
the models in Section 1.2, we use f for the transition pdf and g for the observation pdf.
Proposal distributions are denoted with q, and p is used for all other pdf’s.
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(a) Proposal distribution N (0, 1) (b) Proposal distribution N (2, 4)

Figure 2.3: Histogram of estimated means of U(0, 4) through self-normalised importance
sampling with 5000 particles for two different proposal distribution. Note the very different
x-axis scales on the two plots.

The bootstrap filter is an algorithm that can be applied to a state space model to produce
a weighted sample of filtered states, so a sample from the distribution p(xt|y1:t). The
algorithm works by using importance sampling to sequentially produce these estimates.
From the model densities, it sequentially simulates a set of possible states, called particles
and focusses its computational effort only on those particles that match the observations
well. We note that because of this use of particles, SMC methods are sometimes also
referred to as particle methods and filtering algorithms in particular as particle filters.

After an initialisation step to generate a sample {x(i)0 }i=1,...,N
1 from f0(x0), we choose

p(x1|y1) as the first target distribution. Rewriting this density gives

p(x1|y1) ∝ p(x1, y1) =

∫
p(x0, x1, y1)dx0

=

∫
g(y1|x1)f(x1|x0)f0(x0)dx0.

To estimate this integral we choose q(x1) = p(x1) =
∫
p(x1, x0)dx0 =

∫
f(x1|x0)f0(x0)dx0

as the proposal distribution. It is straightforward to simulate from this distribution by

sampling X
(i)
1 ∼ f(X1|x(i)0 ) where we use the sample {x(i)0 }Ni=1 generated from f0(x0) in

the initialisation step. The weights are then

w
(i)
1 ∝

p(x
(i)
1 |y1, x

(i)
0 )

p(x
(i)
1 |x

(i)
0 )

∝ g(y1|x(i)1 )f(x
(i)
1 |x

(i)
0 )

f(x
(i)
1 |x

(i)
0 )

= g(y1|x(i)1 ).

The convenience of this choice of proposal distribution now becomes apparent: after can-

celling, the only term left in the importance weight function is g(y1|x(i)1 ). Evaluating

f(x
(i)
1 |x

(i)
0 ) is not necessary: it is enough to be able to simulate from this distribution.

If necessary, we can now turn this weighted sample into independently sampled values of

1Note that the index to count the sampled values is now a superscript to allow the index for time to
remain a subscript.
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equal weights by resampling the particles with probability proportional to the importance
weights and setting the weights to 1. In the most basic version of the bootstrap filter,
this is done at every iteration, but it is also possible to continue with a weighted sample
and resample at a later iteration. In that case, the weights are carried over to the next
iteration, and multiplied by the new importance weights. While resampling introduces
additional Monte Carlo error, it has the advantage of focusing the computational effort in
the areas of interest, i.e., the particles with higher density, and eliminates very unlikely
particles. The aspects to consider for this decision are discussed in Section 2.2.6, as well as
the different options for the resampling scheme in Section 2.2.5, like multinomial sampling
where each particle is chosen with probability proportional to its weight.

The steps above generate a weighted sample from the filtering distribution p(x1|y1), start-
ing with a sample from f0(x0). Following the same steps again, we can generate a sample
from the filtering distribution p(x2|y1:2), using the sample from p(x1|y1) as a starting
point. Iterating this process allows a simulation of a sample for all filtering distributions

p(xt|y1:t). Saving the so-called ancestor particles or paths of each particle, so x
(i)
0:T , results

in samples from the smoothing distribution p(xt|y1:T ). When instead the filtering distri-
butions p(xt|y1:t) are required, only the current state is resampled, not the prior states.
The bootstrap filter algorithm (with smoothed state trajectories) is summarised in Algo-
rithm 1. In practice, the weights and likelihoods are computed on the log-scale to avoid
underflow.

Algorithm 1 Bootstrap Filter

t← 0 . Initialisation
for i← 1, ..., N do

sample X
(i)
0 ∼ f(x0)

w
(i)
0 ← 1 . Set importance weights

end for
for t← 1, ..., T do

if resampling condition met then

Resample state trajectories (X̄
(i)
0:t−1) with probabilities proportional to

{w(i)
t−1}i=1...N

w
(i)
t−1 ← 1 for all i = 1, ..., N . Set weights

else
(X̄

(i)
0:t−1)← (X

(i)
0:t−1) for all i = 1, ..., N

end if
for i← 1, ..., N do

Sample X
(i)
t ∼ f(xt|X̄(i)

t−1) . Forward propagation

Set X
(i)
0:t ← (X̄

(i)
0:t−1, X

(i)
t )

Compute w
(i)
t ← w

(i)
t−1g(yt|X(i)

t ) . Weighting
end for

end for
return a set of weighted state trajectories {X(i)

0:T , w
(i)
t }i=1...N

return an unbiased estimator of p(y1:T ), p̂(y1:T ) =
∏T
t=1

1
N

∑N
i=1w

(i)
t

We note that the samples produced by the bootstrap filter are the product of a sophis-
ticated version of self-normalised importance sampling; hence the estimate of the distri-
bution is only asymptotically unbiased and should therefore be treated with caution for
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low sample sizes N . We can, however, establish a central limit theorem for the estimates
produced by the bootstrap filter.

Theorem 1. Consider any test function φ : X → R and its filtered expectation It(φ) =

E(φ(Xt)|y1:t). For x
(i)
t and w

(i)
t generated by a standard bootstrap filter with multinomial

resampling at every time step, as N →∞

√
N

(
N∑
i=1

wtφ
(
x
(i)
t

)
− It(φ)

)
d−→ N (0, Vt(φ))

with

Vt(φ) =

t∑
k=0

∫
p(xk|y1:t)2

p(xk|y1:(k+1))
(Ik,t(φ|xk)− It(φ))2 dxk

Ik,t(φ|xk) = E
(
φ(Xt)|y(k+1):t,xk

)
Proof. See Chopin (2004).

2.2.3 Bootstrap Filter as Likelihood Estimator

Estimating the filtering distributions is only one use of the bootstrap filter. Another is
to provide an estimate of the likelihood p(y1:T ) or p(y1:T |θ) if we do not treat the model
parameters θ as fixed. The likelihood can be rewritten as

p(y1:T ) =
T∏
t=1

p(yt|y1:t−1). (2.9)

Examining the factors on the right-hand side, we see that

p(yt|y1:t−1) =

∫
p(yt, xt|y1:t−1)dxt =

∫
g(yt|xt)p(xt|y1:t−1)dxt

≈ 1

N

N∑
i=1

w
(i)
t = p̂(yt|y1:t−1). (2.10)

We note that the weights are required in their unnormalised form as the last step is
simply using the Monte Carlo estimator introduced in Equation 2.2 where we exploit the
fact that the bootstrap filter produces a (potentially weighted) sample from the prediction
distribution p(xt|y1:t−1) in the propagation step. Multiplying these estimates results in an
estimate for the likelihood:

p̂(y1:T ) = p̂(y1)

T∏
t=2

p̂(yt|y1:t−1)

=
1

NT

T∏
j=1

N∑
i=1

w
(i)
t . (2.11)

Contrary to the estimate of the filtering distribution, and perhaps suprisingly, this estimate
is an unbiased estimate of the likelihood, even for the more advanced particle filters that
will be discussed below. A formal proof is given in Del Moral (2004) (Theorem 7.4.2)
(see Pitt et al., 2012 for a more accessible version of the same proof). Here, we show a
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Figure 2.4: Likelihood estimates p̂(y1:t|θ) for the toy example given in Equations 2.12 with
true parameter θ = 0.9 (indicated by the black vertical line). The likelihood was estimated
with a bootstrap filter (BF, red lines) 5 times at each parameter value with 100 particles each.
The true likelihood was calculated with a Kalman filter (KF, blue line).

simplified proof sketch for an SSM with T = 1 and using only the basic bootstrap filter as
given in Algorithm 1:

E (p̂(y1)) = E

(
1

N

N∑
i=1

w
(i)
1

)

=
1

N

N∑
i=1

E (g(y1|X1))

=

∫
X0

∫
X1

g(y1|x1)f(x1|x0)f(x0)dx1dx0

=

∫
X1

g(y1|x1)
∫
X0

f(x1, x0)dx0dx1

=

∫
X1

g(y1|x1)p(x1)dx1

= p(y1)

The relative variance of the likelihood estimate p̂(y1:t|θ)/p(y1:t|θ) can be bounded with
Cθt/N where Cθ is a constant dependent on the model and the parameter θ (Whiteley,
2013). This means that while the variance grows with t, this can be balanced by increasing
the number of particles N linearly with t.

To illustrate the properties of this likelihood estimator, we make use of the following toy
example:

Transition pdf: xt+1 = θxt +N (0, 1)

Observation pdf: yt = xt +N (0, 1) (2.12)

Observations from this model were simulated with θ = 0.9 for T = 30 observations. As
this model is linear and Gaussian, the likelihood can be calculated analytically with the
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(a) θ = 0.9. The mean of p̂(y1:t|θ)/p(y1:t|θ)
is 1.001513.

(b) θ = 1.5, The mean of p̂(y1:t|θ)/p(y1:t|θ)
is 1.001043.

Figure 2.5: Histogram of 10,000 estimates p̂(y1:t|θ)/p(y1:t|θ) for two values of θ. The
estimates p̂ were produced by a bootstrap filter with 100 particles. The mean of the estimates
is indicated with a blue vertical line (�).

Kalman filter (see Chapter 4, where this algorithm is studied in detail) which serves as
the point of comparison. In Figure 2.4, we can see that the likelihood esimate by the
bootstrap filter is quite close to the true likelihood, especially in proximity to the true
parameter value. However, the plot already hints at a potential problem. When the
likelihood decreases, as it does here for high values of θ, the estimate of the bootstrap
filter is less accurate and, in 4 out of the 5 simulation replicates shown, underestimates
the true likelihood. This is not due to a bias but rather to the skewness of the distribution
of the likelihood estimates which is discussed in the next paragraph.

With this example, we also demonstrate that the likelihood estimates produced by the
bootstrap filter are unbiased. At two values of θ, the true value 0.9 and 1.5, the likelihood
was estimated 10,000 times with a bootstrap filter with 100 particles. Once again, the true
likelihood was calculated with the Kalman filter. Figure 2.5 illustrates the unbiasedness
of the likelihood estimator, as the mean of the ratio p̂(y1:t|θ)/p(y1:t|θ) is very close to 1:
1.001513 at θ = 0.9 and 1.001043 at θ = 1.5. However, it also shows that the estimates
exhibit some skewness that increases when θ = 1.5, where the true likelihood is much
lower than for θ = 0.9. In Figure 2.6, we illustrate how the skewness decreases as the
number of particles increases.

The following sections discuss how the bootstrap filter can be extended and improved.

2.2.4 Number of Particles

As seen in the previous examples in Figures 2.5 and 2.6, an important decision when using
the bootstrap filter is how to choose the sample size, or number of particles, N . This
depends on many factors and ultimately means balancing computation time with the size
of the Monte Carlo error of the filtering distribution and the likelihood estimate.

This choice also depends heavily on the purpose of the filter. If it only needs to be
run once, for example to produce state estimates for fixed parameters, the number of
particles can be increased more liberally. When the likelihood estimate of the filter is used
as part of an MCMC algorithm, the number of particles needs to be carefully balanced
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(a) N = 20 (b) N = 100 (c) N = 1000

Figure 2.6: Histograms of 10,000 likelihood estimates p̂(y1:t|θ)/p(y1:t|θ) for θ = 1.5 for
numbers of particles N . The mean of the estimates is indicated with a blue vertical line (�).
Note the difference in x-axis scale.

with the number of iterations of the MCMC chain (see Chapter 3). Under some strong
assumptions including linearity and normality of the model Sherlock et al. (2015), Doucet
et al. (2015) and Golightly et al. (2019) give guidelines on the variance of the log-likelihood
estimate, when this estimate is used in a PMCMC scheme. These guidelines recommend
values between 2 and 3.3 for the log-likelihood variance at a central value of the posterior
distribution, depending on the exact, often strict, assumptions. The result in Sherlock
et al. (2015) even assumes that the variance is independent of the parameter value at
which the likelihood is evaluated which is decidedly not the case with any of the models
studied here. These number can therefore only provide a very rough orientation when the
number of particles are chosen in more complex models such as the seal model.

2.2.5 Resampling Method

The resampling step in the bootstrap filter introduces randomness and therefore increases
the variance of the likelihood estimate p̂(y1:t). We can, however, use sampling techniques
that reduce the increase in variance. The only requirement for the resampling method is
that the expected number of copies stays the same, that is, proportional to its resampling
weight (Schön et al., 2018). Various different resampling schemes and their properties are
discussed in detail in Douc et al. (2005) and in Murray et al. (2016) which also provides
an excellent intuitive visualisation of the different methods in their Figure 1. We present a
selection of those most relevant to the seal model case study here. In the following section,
we assume that the weights (w1, ..., wN ) are normalised, i.e.,

∑N
i=1wi = 1.

Multinomial Multinomial resampling is the obvious choice for this step, and arguably
the easiest to implement. Because of its simplicity, it is often used as a placeholder for
more sophisticated methods in the literature. For each index value, we independently
pick from the particles with probability proportional to their weights (w1, ..., wN ). We

can do this by associating each index k with the interval Ik =
(∑k−1

j=1 wj ,
∑k

j=1wj

)
with

normalised weights (
∑N

j=1wj = 1) and using the convention
∑0

j=1wj = 0.We then sample
N independent uniform variables Ui ∼ U(0, 1) and select for each the index k with Ui ∈ Ik.
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Stratified Instead of sampling the indices independently from U(0, 1), we sample Ui ∼
U( i−1N , iN ). As before, we select the index k with Ui ∈ Ik. This enforces a more uniform
selection of the particle indices.

Systematic Taking the scheme above one step further, we can space the Ui evenly. We
sample U1 ∼ U(0, 1/N) and set Ui = U1 + (i− 1)/N .

Residual This method uses the expected number of copies for each index, which is
Nwi. Each index i is copied Ci = bNwic + C̄i times, where the first term denotes the
rounded down expected value. The terms C̄1, ..., C̄N are distributed according toMult(N−
R; w̄1, ..., w̄N ), with R =

∑N
i=1bNwic and

w̄i =
Nwi − bNwic

N −R
.

In Douc et al. (2005), it is stated that stratified, systematic and residual resampling lead to
comparable results but that multinomial resampling should be avoided due to its increased
Monte Carlo variance.

2.2.6 Resampling Schedule

In the bootstrap filter as described in Algorithm 1, one choice that needs to be made is
whether to resample the particles at every iteration. If not, some criterion needs to be
chosen to determine at each iteration whether resampling occurs. Before examining the
options for this, we discuss heuristically the advantages and disadvantages of resampling.
Each resampling step introduces additional Monte Carlo variance, which should usually be
limited as much as possible. Skipping the resampling step could also be helpful if there are
outliers or other unexpected behaviour in the observations y1:T . Rather than immediately
discarding a particle that does not fit the observation, skipping the resampling step allows
the particle to continue on. If the observations exhibit an unexpected behaviour, this
particle might then display a state trajectory that fits the observations quite well overall
compared to other particles that were closer to the observations earlier on in the time
series.

On the other hand, not resampling means that computation time is wasted on particles
that do not fit the observations at all and have low weight. More formally this means that
the variance of the importance weights is high and that the ESS is low. An extreme case
of this is sequential importance sampling, where no resampling takes place but instead the
weights are multiplied at every step. While this is theoretically correct in that it produces
an asymptotically unbiased estimate of the filtered state distribution and an unbiased
estimate of the likelihood, these estimates usually have a very large Monte Carlo error
because of the low ESS (see Doucet et al., 2000 for a discussion).

Another consideration when determining the resampling schedule is the potential com-
puting time reduction achieved by resampling less often. In one example in Chopin and
Papaspiliopoulos (2020) (Chapter 10.5.1) a reduction of up to 30% computation time was
achieved by resampling parsimoniously.

We now introduce a few common choices when determining when and how often to perform
a resampling step.
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Always Resampling at every step is the easiest to implement and requires no additional
tuning by the user. This is what is done in a standard bootstrap filter procedure. In the
literature, this is often used as a placeholder for more sophisticated schedules.

Never As mentioned above, it is possible to never resample the particles and instead
build up the weights by multiplying the new weight at every step (sequential importance
sampling). In practice, this leads to large variance in the weights and a low ESS, also
referred to as particle degeneracy, and is not recommended.

Deterministic schedule Liu (2001) suggests choosing a fixed interval t0 and hence to
sample at times t0, 2t0, 3t0, .... In this case, the resampling interval t0 needs to be tuned
to the particular inference problem.

Dynamic schedule Alternatively, Doucet et al. (2000) uses the ESS (see Equation 2.4)
as a measure for degeneracy. One can then set a threshold ESSmin (for example 0.5N)
and resample whenever ESS < ESSmin. Liu (2001) even suggests using a series of time-
dependent thresholds ESSmin(t). Convergence results using a fixed ESS-based threshold
can be found in Moral et al. (2012).

It is often recommended to use the ESS at each time step as a dynamic criterion for
resampling. Thresholds of 0.5N (e.g., Zhou et al., 2016 and Doucet and Johansen, 2009)
or 0.9N (Finke et al., 2019) are commonly used but this value depends on the specific
inference problem.

2.2.7 Auxiliary Particle Filter

An extension of the bootstrap filter is the auxiliary particle filter (APF, Pitt and Shephard,
1999). The algorithm is given in Algorithm 2, with the notation closely following that of
Schön et al. (2018). The APF introduces two ways to improve the bootstrap filter.

First, rather than simulating the particles by sampling from the initial state density f0(x0)
and the process density f(xt|xt−1), it allows the choice of proposal densities q(x0) and
q(xt|xt−1, yt). Importantly, the proposal density for xt can depend on the new observation
yt and so guide the particles in the right direction rather than blindly simulating forward.
The weights then become

wi ∝
p(x

(i)
t |yt, x

(i)
t−1)

q(x
(i)
t |yt, x

(i)
t−1)

∝
g(yt|x(i)t )f(x

(i)
t |x

(i)
t−1)

q(x
(i)
t |yt, x

(i)
t−1)

.

This shows the drawback of introducing a different proposal density q. Here, the factor

f(x
(i)
t |x

(i)
t−1) does not conveniently cancel as in the bootstrap filter and therefore the ability

to evaluate the process density is required. With the goal of reducing the Monte Carlo
error of our estimate and therefore having a low variance in the weights, the theoretical
optimal choice for a proposal distribution is

q(xt|xt−1, yt) = p(x
(i)
t |yt, x

(i)
t−1).

In this case, the weights cancel to wi = 1 and the variance of the weights is therefore
0. An important class of state-space models where this is possible is the class of normal
dynamic linear state-space models (NDLM). However, for this class there are also other
deterministic inference algorithms available, for example the Kalman filter (see Section
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4.2.2), and we do not need to rely on Monte Carlo methods. For more complicated

models, we can almost never sample from p(x
(i)
t |yt, x

(i)
t−1). We can, however, attempt to

design proposal distributions that are close to p(x
(i)
t |yt, x

(i)
t−1).

The second place where the APF introduces some flexibility is the option of adjusting
the resampling weight with an adjustment multiplier. Rather than resampling with prob-

ability proportional to w
(i)
t , we calculate the adjustment multiplier v

(i)
t = v(x

(i)
t−1, y1:t)

and resample with probability proportional to w
(i)
t v

(i)
t . As with the proposal distribu-

tion q(xt|xt−1, yt), this allows us to incorporate knowledge about yt when generating the

particles x
(i)
t .

The importance weights in the APF ensure that the particle filter delivers a weighted
sample of state trajectories with the desired target distribution p(x0:t|y1:t). The weights
compensate for the fact that f(xt|xt−1) was not used as the proposal density and g(yt|xt)
not as the resampling weight. In contrast to the bootstrap filter, they are therefore not
set to 1.

Algorithm 2 Auxiliary Particle Filter

t← 0 . Initialisation
for i← 1, ..., N do

sample X
(i)
0 ∼ q(x0)

w
(i)
0 ←

f0(X
(i)
0 )

q(X
(i)
0 )

. Set importance weights

end for
for t← 1, ..., T do

for i← 1, ..., N do

v
(i)
t−1 ← v(X

(i)
t−1, yt) . Adjustment multiplier

resample state trajectories (X̄
(i)
0:t−1) with probabilities proportional to

{w(i)
t−1v

(i)
t−1}Ni=1

sample X
(i)
t ∼ q(xt|X̄

(i)
t−1, yt) . Forward propagation

X
(i)
0:t ← (X̄

(i)
0:t−1, X

(i)
t )

w
(i)
t−1 ←

g(yt|X(i)
t )f(X

(i)
t |X

(i)
t−1)

q(X
(i)
t |X

(i)
t−1,yt)v

(i)
t−1

. Set weights

end for
end for
return a set of weighted state trajectories {X(i)

0:T , w
(i)
t }Ni=1

return an unbiased estimator of p(y1:T ) :

p̂(y1:T ) =
(

1
N

∑N
i=1w

(i)
0

)(∏T
t=1

1
N

∑N
i=1w

(i)
t v

(i)
t−1

)
As with the bootstrap filter, the APF also produces an unbiased estimate of the likelihood
p(y1:T ) in addition to the weighted state trajectories, although this estimate needs to be
adjusted to reflect the use of different resampling weights. At time t, the algorithm delivers
an unbiased estimator of p(yt|y1:t−1), namely

p̂(yt|y1:t−1) =
1

N

N∑
i=1

w
(i)
t v

(i)
t−1 =

1

N

N∑
i=1

g(yt|X(i)
t )f(X

(i)
t |X

(i)
t−1)

q(X
(i)
t |X

(i)
t−1, yt)

.

The factor v
(i)
t−1 cancels and we therefore need to define the adjustment multiplier only up

to a constant of proportionality.
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We note that, for ease of notation, resampling occurs at every step in Algorithm 2 but it
is easily possible to introduce more flexible resampling schedules as in Algorithm 1.

In the following sections, we discuss different options for the proposal distribution both

for simulating the initial particles x
(i)
0 and for propagating the particles forward to x

(i)
t ,

and for the adjustment multiplier.

2.2.7.1 APF: Initialization

We now discuss some options for the initial state proposal density q(x0).

Using the initial state density The most simple choice is to sample from the initial
state pdf f(x0) as in the bootstrap filter. This has the benefit that evaluation of f0(x0)
is not necessary, as this value cancels in the calculation of w0 and leads to an importance
weight w0 of 1.

Diversifying the initial states To ensure a greater diversity among the initial sample,
we can choose q(x0) to have a greater variance than f0(x0). This sometimes leads to a
better ESS in the first iterations of the algorithm in cases where the initial state density
of the model does not match the data. We can do this by flattening the initial state
density and for example use q(x0) ∝ (f0(x0))

ρ, where ρ ∈ (0, 1). When the complete seal
model was fitted in Thomas et al. (2019), the diversity was increased by first sampling
x̃ ∼ f0(x0) and then X0 ∼ U(x̃/1.3, 1.3x̃). More generally, we can replace the factor
1.3 with any multiplier c > 1 or use other more sophisticated distributions to increase
diversity.

2.2.7.2 APF: Forward propagation

The options for the proposal distribution in the propagation step are similar to the ini-
tialization step, but we can now also utilize the observation yt.

Using the transition density As in the bootstrap filter, we can use q = f and so
sample from the transition density. This is the only choice that avoids evaluation of f and
therefore the only available option when evaluation of f is impossible.

The optimal proposal If available in closed form, we can use

q(xt|xt−1, yt) = p(xt|xt−1, yt)

and so sample from the distribution of xt conditional on xt and yt. This is desirable
because it minimizes the variance of the weights and therefore maximizes the ESS (see
Chopin and Papaspiliopoulos (2020), Theorem 10.1). In most cases, this is not possible,
but staying close to this is desirable.

Kalman filter For linear Gaussian SSMs, the Kalman filter can calculate the exact
density p(xt|xt−1, yt). For non-linear non-Gaussian SSMs, variants of the Kalman filter
exist (e.g., the Unscented Kalman filter, see Section 4.5.1) that give approximations to
this density. For the forward propagation, we can sample from this exact or approximated
density. This is described in detail in Wan and van der Merwe (2001).
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2.2.7.3 APF:Adjustment multiplier

The adjustment multiplier v
(i)
t−1 = v(xt−1, yt) allows us to incorporate information about

the next observation yt when resampling. A few possible choices for this multiplier are
given here.

No adjustment The simplest option here is to set vt−1 = 1, as is the case in the
bootstrap filter.

The optimal adjustment Pitt and Shephard (1999) recommend using

v(xt−1, yt) = p(yt|xt−1) =

∫
g(yt|xt)f(xt|xt−1)dxt. (2.13)

In most practical scenarios this density is not tractable and therefore cannot be used.
However, the theoretical implications of this choice are interesting to study and have
been discussed in Poyiadjis et al. (2005). Since this is the optimal choice, any v that
approximates this can be a good possible candidate for the adjustment multiplier.

Expected value Instead of integrating over all possible states xt in Equation 2.13, we
can simplify the problem and only consider the expected value Ef (Xt|xt−1). Liu and West
(2001) use this approach and set v(xt−1, yt) = g(yt|Ef (Xt|xt−1)). This tends to be much
easier calculate than the optimal adjustment and is often a very helpful approximation.
However, it depends a lot on the process density and would not work for e.g., a bimodal
process density.

Tempering the weights Liu (2001) suggests to resample according to weights wρi with

ρ ∈ (0, 1). In our notation this corresponds to the adjustment multiplier v
(i)
t−1 = wρ−1i .

This strategy allows us to balance the need for a diverse sample with the need to keep
only promising samples via ρ. A typical value for ρ is 1/2 and Thomas et al. (2019) used
ρ = 1/4.

2.2.8 Smoothing

Often, we are not only interested in the filtering density p(xt|y1:t) but rather in the joint
smoothing density p(x1:T |y1:T ) or marginal smoothing density p(xt|y1:T ). In the bootstrap
filter and auxiliary particle filter, an estimate of the smoothing density is available simply

by using the trajectories {X(i)
1:T }Ni=1 that are part of the output of the algorithm. However,

the resampling step leads to very few unique states at early points of the time series.
Therefore, the approximation suffers from particle degeneracy and has a high Monte Carlo
variance. There are several methods to try and reduce this variance.

One is the forward filter/backward simulator suggested by Lindsten and Schön (2013).
This algorithm starts with a regular particle filter algorithm but saves all states that
are generated at each iteration. Then it generates new trajectories by starting with the

last states {X(i)
T }Ni=1 and sampling a new ancestor X

(j)
T−1 particle from all states that

were generated by the particle filter at time T − 1 (whether subsequently resampled or
not). The importance weight for this sampling step is a product of the weight that was
assigned to the state when the particle filter was first run, and the transition density from

f(X
(i)
T |X

(j)
T−1).
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Harvey (1990) describes Forward Backward Smoothing as a method to obtain the smooth-
ing density p(xt|y1:T ). There, it is described with respect to the Kalman filter but it can
be applied to other particle filter algorithms as well. The idea is to run the particle filter
forwards to time t to obtain p(xt|y1:t), but to also reverse the whole time series and run
the filter backwards from T to t to obtain p(xt|yt:T ). This is only possible under certain
conditions, the most obvious being that we need to be able to reverse the transition pdf.

Another approach to this problem are fixed-lag approximations, first suggested in this con-
text by Kitagawa and Sato (2001). The underlying idea is that p(x0:t|y0:T ) ≈ p(x0:t|y0:n+L)
where L is a large enough positive integer, that is, that new observations do not bring
a lot of new information about states that are more than L time steps in the past. For
the particle filter, this can be implemented by only resampling the last L components of
the trajectory rather than all of it. The difficulty is tuning the lag L with respect to the
underlying model.

A similar concept lies behind a popular extension to the auxiliary particle filter, the
Resample-Move algorithm (Gilks and Berzuini, 2001). This algorithm moves the last L
states by sampling from a Markov kernel K of invariant distribution p(x1:t|y1:t) but updat-
ing only the last L iterations. As the fixed-lag approximation in the previous paragraph,
it suffers from the same difficulty of correctly tuning the lag L.

We note that none of these techniques are necessary for the likelihood estimate, as we
can see from Equations 2.9 and 2.10 that only the filtering distributions are necessary.
However, we will return to these techniques when state inference is required.

2.3 Simulation Study

For the seal model, the parameter values are unknown and state inference with fixed pa-
rameter values is thus not in itself the main goal. However, many of the more complex
SMC algorithms for parameter estimation contain steps that require state inference meth-
ods for fixed parameters. Often, these methods are necessary to compute an estimate of
the likelihood p(y1:T ) (or p(y1:T |θ) if we make the dependence on a parameter θ explicit).
In order to optimize this building block of the more complex algorithms, we need to de-
termine which of the SMC methods introduced in the previous section are most useful in
the particular case of the seal model. We isolate the likelihood estimation problem and
conduct a simulation study to determine which variant of a particle filter should be used
for this problem.

2.3.1 Simulation Methods

For this study, we wanted to be able to run any algorithm many times in order to reduce
the Monte Carlo error and to increase our certainty in the conclusions we draw. As the
complete seal model takes a relatively long time to fit, a simplified version of the model was
chosen for the majority of the simulations: the 2-state model as introduced in Section 1.2.6.
We used this simplified model as a baseline model to determine which of the algorithms
above produce the most precise likelihood estimate (Section 2.3.2). The outcomes could
then be used as a starting point when the algorithm was adapted for the more complex
models (Section 2.4 and 2.5).

The baseline algorithm used to estimate the likelihood for each simulated dataset in the
2-state model was a simple bootstrap filter (see Algorithm 1). We then tuned the algo-
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rithm to obtain the best possible likelihood estimate and identified which of the algorithm
variants introduced in Section 2.2 could be applied to the seal model. While many of the
variants and tuning parameters can be applied at the same time, here only one factor
was studied at a time instead of a complete factorial study. In total we undertook four
simulations to study the effect of four factors: (1) the number of particles, (2) resampling
using an ESS-dependent threshold, (3a) APF with an expected value adjustment multi-
plier, and (3b) APF with tempering of the weights. Each simulation build on the results
of the previous and uses the optimal setting for the factor studied there.

For each factor, we simulated a time series of T = 50 observations and studied the effect
of varying that factor with three parameters vectors: the one that was used to create
the observations, and two that are further away and have a much lower likelihood given
the simulated data. To be useful in the context of parameter inference, any likelihood
estimation algorithm has to be able to reliably produce estimates not just for parameters
with a high true likelihood but also for parameters with lower true likelihood.

The true parameter values used to simulate the observations were chosen such that the
observations show a similar behaviour to those from the complete seal model, and show
the population growth both in its exponential growth phase and once carrying capacity is
reached. The incorrect parameter values were chosen in a subjective manner to be values
in a region with non-negligible posterior weight but also not close to the true value. The
values of the three parameter vectors can be seen in Table 2.1. To determine the Monte
Carlo variance of the algorithms, each state inference algorithm was run multiple times.
For Factor 1, 100 likelihood estimates were produced for each number of particles and
each of the three parameter vectors. For the remaining three factors, the runtime was
decreased due to the lower number of particles and therefore, 1000 likelihood estimates
were produced for each setting to determine the Monte Carlo variance.

To ensure that any observed effects were not just due to the specific observations, we
repeated each simulation with a second set of observations, created in the same way as
described above. Here, we only show the results of the first set of observations unless they
differ greatly from the second set. The results of the second set of observations can be
found in Appendix B. The two sets of simulated observation can be seen in Figure 2.7.

Parameter True parameter False parameter 1 False parameter 2

maximum pup survival
φp,max

0.48 0.30 0.55

adult survival φa 0.9 0.95 0.85

fecundity α 0.8 0.9 0.75

Carrying capacity χ 2500 3200 2300

dens dep. ρ 6 8 5

CV precision τ 100 120 90

Table 2.1: Parameter vectors used in the simulation study

In order to compare different algorithms, we need a criterion to determine which of the
algorithm is preferable for our purposes. The main reason for using state inference al-
gorithms is that they provide us with an unbiased estimate of the likelihood of the ob-
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Figure 2.7: Two sets of pup and adult numbers used in the simulation study, generated using
the 2-state model with the true parameter in Table 2.1. Observations of pup numbers are
displayed as blue circles and the pup carrying capacity is indicated by a black horizontal line.

servations p(y|θ). Hence, we want to reduce the Monte Carlo variance of that estimate.
Because the variance is scale-dependent in our case, we chose the coefficient of variation
(CV) (standard deviation divided by mean) as the criterion to determine which meth-
ods work best. We do not know the true mean and therefore use the estimated mean to
calculate the CV. This criterion has been used for similar studies in the literature, e.g.,
by White et al. (2016) in their simulation study to find the optimal number of particles.
A second justification for choosing the CV as criterion is as follows. In many parameter
inference methods, we use likelihood ratios to determine which parameter vector works
best. For example, in the PMMH (Particle Marginal Metropolis Hastings) algorithm (Al-
gorithm 6), the acceptance probability contains this ratio as a factor. Assuming we have
two parameters θ1 and θ2, we calculate how much the ratio changes if we overestimate
L(θ1) by one standard deviation, so L̂(θ1) = L(θ1) + sd, where sd is the Monte Carlo
standard deviation of the likelihood estimate produced by a particle filter. This is

L̂(θ1)/L(θ2)

L(θ1)/L(θ2)
=
L̂(θ1)

L(θ1)
=
L(θ1) + sd

L(θ1)
= 1 + cv,

where cv is the coefficient of variation of the likelihood estimator. We are therefore in-
terested in keeping the CV as low as possible, and used this as the criterion. We also
examined the variance of the log-likelihood and aimed to keep this at least as low as 2
for the true parameter. However, this threshold was only used as a guideline because
the assumptions used in the theoretical derivation of the various thresholds discussed in
Section 2.2.4 are not met by the seal model.

Now that the general set-up of the study has been described, we discuss the four studied
factors. A summary can be found in Table 2.2.

First (Factor 1), the effect of the number of particles on the likelihood estimate was studied,
from 1-30,000. The tested values were 1, 3, 10, 30, 100, etc., because 3 is approximately
halfway between 1 and 10 on the log-scale and we wanted to cover multiple orders of
magnitude for N in the study. We also used the mean of the 100 estimates with N =
30, 000 particles as a close estimate of the true likelihood of the three parameter vectors.
Finally, the computational cost of running the algorithm with an increasing number of
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Studied Factor Partices N ESS threshold
ESSmin/N

Adjustment
multiplier

Factor 1 Number of particles 1-30,000 fix at 80% -

Factor 2 Resampling Schedule fix at 100 0-100% -

Factor 3a Adj. multiplier fix at 100 fix at 80% expected value

Factor 3b Adj. multiplier fix at 100 fix at 100% tempering,
exponent 1/16-2

Table 2.2: Choices for each of the four simulations

particles N was considered. While the computational complexity of the bootstrap filter is
O(N) (Chopin and Papaspiliopoulos, 2020), for small numbers of particles the overhead
of running the algorithm becomes a larger part of the overall runtime and the algorithm
is therefore less efficient. The consequence of this was studied by recording the runtime
of the bootstrap filter per particle for each of the selected numbers of particles.

After a reasonable number of particles had been determined, we then investigated letting
the resampling step depend on the ESS, testing thresholds of ESSmin/N from 0 to 100%
(Factor 2). For each of these values, the particles were only resampled when their ESS
fell below the threshold. A threshold of 1 corresponds to a standard bootstrap filter
where resampling happens at every step and a threshold of 0 corresponds to sequential
importance sampling with no resampling.

Next, we turned towards the auxiliary particle filter and the approach of changing the
resampling weights in two ways. First, we examined the effect of ‘looking ahead” when
resampling the particles (Factor 3a). Instead of using only the current importance weight
when resampling a particle, we considered the expected value of the state of that particle
at the next time step. In the 2-state model this expected value E(xt+1|xt) was straightfor-
ward to calculate, as was the likelihood g(yt+1|E(xt+1|xt)). This likelihood was multiplied
with the importance weight to obtain the resampling weight. After the resampling step,
we divided by this factor to revert back to a correct importance weight. Adjusting the
resampling weight in this way is not implemented in nimble and therefore bespoke code
was written in R. To assess a potential increase in computing time due to this change, we
tracked the computing times for the BF in R code and in compiled nimble code, and for
the APF only in R code.

Second, the resampling weights were tempered by exponentiating the weights with values
ρ = 2,

√
2, 1,
√

2/2, 1/2, ..., 1/16 (Factor 3b). Using values of ρ < 1 dampens the effect of
the weights, and results in particles with low weights being discarded less quickly, keeping
the set of particles more diverse and allowing for potentially unexpected developments of
the observations in future time steps. For completeness’ sake, the opposite situation was
also examined. Using ρ > 1 leads to a resampling step which disproportionately favours
particles that match the observation well. Previously, Thomas and Harwood (2008) used
ρ = 1/4 and another typical value is ρ = 1/2.

The simulations were implemented in R. For the investigations of the number of particles
and the ESS threshold, we used the R package nimbleSMC (NIMBLE Development Team,
2021). Changing the resampling weights is not implemented in nimble yet, and so bespoke
code was written for the algorithms that adjust these weights by using the expected value
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or by tempering them. These simulations do not cover all of the methods mentioned in
Section 2.2.

In the remainder of this subsection we give a justification for each of the omitted methods.

Resampling Method We did not include a trial of these methods in the simulation
study in Section 2.3 but instead relied on Douc et al. (2005). Code used in this thesis that
is written by the author will usually use residual resampling but this is not necessarily
the same for other software packages. As the differences between the resampling methods,
other than the high variance for multinomial resampling, are minor (Douc et al., 2005), we
usually use multinomial resampling as a placeholder in any description of the algorithms
and omit any details on which exact method is used.

Resampling Schedule For the resampling schedule, using a deterministic schedule has
a similar effect as a dynamic schedule only that it does not incorporate any information
on particle diversity at any given time step and this is therefore not studied.

APF: Initialisation In the initialization step, the diversifying step employed by Thomas
et al. (2019) is not necessary for the 2-state model, as the initialisation is more straight-
forward and does not require sequentially simulating 6 age groups.

APF: Forward propagation Any improvement on the forward propagation step in
the APF requires that we are able to evaluate the process density f . In the seal model,
this requires a relatively lengthy computation. The calculation of the probability of the
new number of pups is straightforward as it is only the result of the binomial distribution
of the number of births by the number of adults at the previous time step:

f(xt,0|xt−1) = Bin(xt,0|xt−1,1, α).

However, calculating the probability of the new number of adults is more complicated, as
this number is the sum of the number of survived seals that were already adults at the
previous time step and the number of survived female pups. We therefore need to sum
over all possible numbers of survived female pups, denoted by ut,s as in Section 1.2.3.2:

f(xt,1|xt−1) =

xt−1,0∑
ut,s=0

f(xt,1, ut,s|xt−1) =

xt−1,0∑
ut,s=0

f(xt,1|ut,s, xt−1)f(ut,s|xt−1)

=

xt−1,0∑
ut,s=0

Bin(xt,1 − ut,s|xt−1,1, φa)Bin(ut,s|xt−1,0, 0.5φp,t−1).

The number of seals in the data and our simulations are often in the 100s or 1000s and
therefore so is the number of evaluations of the density of the binomial distribution. This
is prohibitive when this sum needs to be evaluated many times as would be the case in
the particle filter. Thus, no changes to the forward propagation distribution were made as
using the process density f is the only choice that avoids its evaluation because the term
cancels in the computation of the importance weights (see Step 2(d) in Algorithm 2). We
note that we briefly explored using the forward propagation step of the Unscented Kalman
filter which is described in Section 4.5.1. However, we could not detect an improvement in
the performance of the filter and this change increased the computation time considerably.
That approach is therefore not further pursued here.
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Smoothing algorithms We also did not investigate any smoothing algorithms in this
simulation study, as we are only interested in changes in the algorithm that affect the
likelihood estimate and not the sampled state trajectories. Whenever samples from the
smoothing density are required, we use the näıve approach (as implemented in nimble) of
simply saving the ancestors of a particle and producing an estimate of the smoothing den-
sity with these ancestor particles as the first choice (Michaud et al., 2021). This approach
can lead to poor estimates when t is much smaller than T . When this approach is not
sufficient, we use the forward filter/backward simulator algorithm. For fixed parameters,
generating samples from the smoothing density in our model is relatively simple, and this
algorithm meets our requirements without much further tuning.

2.3.2 Simulation Results and Interpretation

We describe the results for the 2-state model obtained with the first dataset. Since the
results obtained with the second simulated dataset (see Figure 2.7) showed no notable
difference, these are reported only in Appendix B.1.

2.3.2.1 Factor 1: Number of Particles

The CV of the likelihood and the variance of the log-likelihood estimates can be seen in
Table 2.3 and in Figure 2.8. The log-likelihood of the true parameter was estimated to be
-320.4. For the first false parameter it was -382.1 and for the second false parameter it
was -362.3.

True parameter False parameter 1 False parameter 2

N CV(L) Var(logL) CV(L) Var(log-L) CV(L) Var(log-L)

1 3.49E+00 6.72E+03 6.67E+00 1.71E+04 1.00E+01 1.85E+06
3 1.83E+00 4.39E+01 4.65E+00 5.23E+02 1.00E+01 4.12E+04

10 1.26E+00 1.15E+00 2.01E+00 7.67E+00 6.99E+00 1.44E+03
30 5.40E-01 3.13E-01 1.18E+00 1.56E+00 9.99E+00 4.05E+02

100 3.04E-01 9.54E-02 7.13E-01 4.64E-01 7.30E+00 1.33E+02
300 1.49E-01 2.21E-02 4.57E-01 2.19E-01 6.51E+00 6.02E+01

1000 1.03E-01 1.13E-02 2.65E-01 6.52E-02 9.30E+00 2.30E+01
3000 5.39E-02 2.91E-03 1.27E-01 1.55E-02 6.07E+00 1.29E+01

10000 3.13E-02 9.85E-04 6.94E-02 4.86E-03 5.23E+00 5.07E+00
30000 1.65E-02 2.73E-04 3.72E-02 1.41E-03 2.48E+00 3.12E+00

log-L -320.39 -382.09 -362.32

Table 2.3: Measures of variation of 100 likelihood estimates computed by a standard bootstrap
filter with varying numbers of particles N . The likelihood was estimated at the true parameter
value and at two false parameter values (defined in Table 2.1). The first column gives the CV
of the likelihood estimates, the second column the variance of the log-likelihood estimates.
The bottom row gives the log of the mean of 100 likelihood estimates as calculated with
N = 30, 000 particles.

As expected, the Monte Carlo variance of the estimate decreased as the number of particles
increases. However, this variance was drastically different for the three parameters. It was
lowest for the true parameter, which had the highest log-likelihood. The variance of the
log-likelihood estimates of the first false parameter was about 4 to 10 times higher than
for the true parameter. For the second false parameter, this factor ranged from 275 to
almost 12,000. Two things are interesting to note here. First, the likelihood of the second
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Figure 2.8: Measures of variation of 100 likelihood estimates of three different parameter
values in the 2-state model computed by a standard bootstrap filter with varying numbers of
particles N . The first figure shows the CV of the likelihood estimates, the second figure the
variance of the log-likelihood estimates. The black horizontal line shows the limit of 2 for the
variance of the log-likelihood estimates.

false parameter was higher than for the first false parameter. The increase in variance was
therefore not owed to a decrease in likelihood. Second, as can be seen in Figure 2.8 (blue
line), the variance of the log-likelihood estimates for the second false parameter decreased
with increasing particles much more slowly than for the other two parameters—indeed, the
CV hardly decreased as the number of particles increased. This is likely due to the mean
likelihood estimate being much lower than the true likelihood when only 100 estimates
with low numbers of particles are used, see Figure 2.9c.

Looking at the distribution of the likelihood estimates in Figure 2.9, we noticed that
the estimates were right-skewed for the true parameter and the first false parameter and
showed the same behaviour as in the toy example in Figure 2.3a. Because of the theoretical
unbiasedness of the algorithm, this means that there were many estimates that very slightly
underestimated the likelihood and a few that overestimated it by a lot. From Figure 2.9a
to 2.9b, this skewness became more pronounced as the variance of the estimates increased.
Figure 2.9c seems to illustrate a different behaviour. However, we can assume that for this
parameter, where the variance is much larger, the skewness is also much larger and very
high values are possible but occur only rarely. It is therefore unsurprising that for low
numbers of particles none of these large values appeared when only 100 estimates were
computed. This changed once the number of particles reaches 1000.

When the computation time was considered, the increasing efficiency of the filter can
be seen in Figure 2.10. The computation time per particle decreased as the number of
particles in the filter increased from 1 to 300 and then stayed roughly the same for the
particle filters with 300 to 30,000 particles. This indicates that for these larger particle
filters the overhead of the algorithm is negligible for the total computation time.

These results were used to determine the number of particles to use in subsequent sim-
ulations. One criterion was to aim for a log-likelihood variance of 2 or less at a central
value of the posterior distribution. This threshold was passed with 10 particles for the
true parameter (Figure 2.8), which arguably can be considered a “central” value of the
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(a) True parameter value (b) False parameter value 1 (c) False parameter value 2

Figure 2.9: Boxplots of 100 likelihood estimates of three different parameter values in the
2-state model for varying numbers of particles N .

Figure 2.10: Bootstrap filter runtime per particle for varying number of particles N .

posterior distribution. For the first false parameter, this threshold was passed with 30
particles whereas it was never passed for the second false parameter even with 30,000
particles. Because the likelihood estimation seemed to suffer from very high variance for
the false parameters, we opted for a higher number of particles than the guideline of a
log-likelihood variance of 2 suggests. We also wanted to avoid too much time spent on the
overhead of the algorithm, as would be the case with only 10 particles. The somewhat
heuristic choice moving forward was therefore N = 100 particles for the 2-state model
in this chapter. This was a compromise that kept the running time reasonably low (e.g.,
0.349 sec for 100 likelihood estimates with N = 100 versus 32.1 sec with N = 10, 000)
but had to make the concession that the likelihood estimates for some parameters like the
second false parameter suffer from severe Monte Carlo error.

2.3.2.2 Factor 2: Resampling Schedule

Table 2.4 and Figure 2.11 show the variation in the likelihood estimates when the number
of resampling steps was decreased depending on the ESS of the weighed particles for the
true parameter and the first false parameter. The CV was higher at either extreme of
the ESS threshold and lower but similar for a wide range of values from approximately
0.5 to 0.9. Note that a threshold of 0, i.e., an algorithm without resampling, seems quite
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True parameter False parameter 1 False parameter 2

ESSmin/N CV(L) Var(logL) CV(L) Var(log-L) CV(L) Var(log-L)

0 7.05E-01 3.24E-01 3.11E+00 2.71E+00 3.16E+01 9.49E+03
0.1 4.03E-01 1.66E-01 9.32E-01 6.78E-01 1.36E+01 3.06E+02
0.2 3.57E-01 1.27E-01 7.82E-01 4.80E-01 2.80E+01 2.36E+02
0.3 3.18E-01 1.05E-01 6.87E-01 4.25E-01 2.55E+01 1.86E+02
0.4 3.17E-01 1.01E-01 7.41E-01 4.25E-01 2.79E+01 1.50E+02
0.5 2.97E-01 8.83E-02 7.01E-01 3.85E-01 3.00E+01 1.25E+02
0.6 3.01E-01 9.35E-02 7.19E-01 4.04E-01 2.22E+01 1.31E+02
0.7 3.11E-01 1.02E-01 7.59E-01 4.93E-01 2.15E+01 1.35E+02
0.8 3.03E-01 9.71E-02 7.97E-01 5.57E-01 1.62E+01 1.25E+02
0.9 3.15E-01 9.64E-02 8.79E-01 5.15E-01 2.18E+01 1.11E+02

1 3.61E-01 1.34E-01 1.06E+00 8.26E-01 2.80E+01 1.30E+02

Table 2.4: Measures of variation of 1000 likelihood estimates computed by a bootstrap filter
with varying ESS thresholds ESSmin/N for resampling. The likelihood was estimated at the
true parameter value and at two false parameter values for the 2-state model. The first column
gives the CV of the likelihood estimates, the second column the variance of the log-likelihood
estimates.

Figure 2.11: Measures of variation of 1000 likelihood estimates of two parameters in the
2-state model computed by a bootstrap filter with varying ESS thresholds ESSmin/N for
resampling. False parameter 2 is not included in the plot because the values are too large
and show no discernible trends. The first figure shows the CV of the likelihood estimates, the
second figure the variance of the log-likelihood estimates. The black horizontal line shows the
limit of 2 for the variance of the log-likelihood estimates.

disadvantageous, whereas a threshold of 1, i.e., always resampling only showed a slightly
worse performance than the values between 0.5 and 0.9. This means that neither extreme of
the choice of threshold was ideal and instead a value in the middle seemed more favourable.
The flatness of the CV in the area between 0.5 and 0.9 indicates that all of these values
seemed to achieve a relatively low variance for the two parameter vectors. As predicted
from the results in the previous section, the variance of the log-likelihood estimates for the
second false parameter was very high with only N = 100 particles, namely three orders of
magnitudes larger than for the true parameter, and showed no discernible pattern. The
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values for this parameter were therefore excluded from Figure 2.11, so that the nuances
are visible for the other two parameters. We note that lower values for the resampling
threshold led to slightly less computation time because the resampling step occurred less
frequently. From the range of values that we found to work well, we chose 0.8 as the ESS
threshold ESSmin/N moving forward.

2.3.2.3 Factor 3a: Adjustment Multiplier—Expected Value

True parameter False parameter 1 False parameter 2

Alg CV(L) Var(logL) CV(L) Var(log-L) CV(L) Var(log-L)

BF 3.65E-01 1.24E-01 8.11E-01 4.98E-01 2.31E+01 1.21E+02
APF 3.72E-01 1.29E-01 8.43E-01 6.14E-01 2.54E+01 1.35E+02

Table 2.5: Measures of variation of 1000 likelihood estimates of three different parameter
values in the 2-state model computed by a bootstrap filter (BF) and by an auxiliary particle filter
(APF) using the expected value in the adjustment multiplier. The likelihood was estimated at
the true parameter value and at two false parameter values. The first column gives the CV of
the likelihood estimates, the second column the variance of the log-likelihood estimates.

(a) True parameter value (b) False parameter value 1 (c) False parameter value 2

Figure 2.12: Boxplots of 1000 log-likelihood estimates of three different parameter values in
the 2-state model comparing a bootstrap filter (BF) and an auxiliary particle filter (APF) using
the expected value in the adjustment multiplier.

Table 2.5 and Figure 2.12 show that while the performance of the two algorithms was
similar, the APF seemed to exhibit no improvement at all. In fact, the bootstrap filter
showed a slightly smaller Monte Carlo variance when compared to the auxiliary particle
filter for all three parameters. This might be explained by the relatively small process
stochasticity in the model due it consisting of binomial distribution with a high number
of trials. For example, with a fecundity of α = 0.8 in the true parameter vector and
3000 adult females (just below carrying capacity in the simulated data), the CV of the
number of pups is 0.91%. This is a lot lower than the CV of 10% for the observations.
The expected value might therefore not be necessary to guide the particles in the right
direction. In cases where the data contain outliers, this technique might be more helpful.
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It is worth mentioning that nimble is about twice as fast as standard R code, excluding the
compilation time necessary for nimble. Calculating 1000 estimates with 100 particles each
and an ESS threshold of 0.8 took 2.98 seconds with nimble and 5.24 seconds in standard
R code. Including the information about the expected value in the adjustment multiplier
increased this time to 5.87 seconds. We note that NIMBLE code requires building and
compiling of the model and corresponding bootstrap filter which is not necessary with R
code. This took 32.62 seconds though it is only necessary to execute this once. Because the
APF with an expected value adjustment multiplier showed no improvement but increased
computing time by a factor of almost 2, we do not use the expected value adjustment
multiplier in the algorithm in the remainder of this thesis.

2.3.2.4 Factor 3b: Adjustment Multiplier—Tempering of Weights

True parameter False parameter 1 False parameter 2

Exp. CV(L) Var(logL) CV(L) Var(log-L) CV(L) Var(log-L)

2 2.45E+00 4.34E+01 7.98E+00 2.00E+02 3.16E+01 2.99E+04√
2 5.33E-01 6.28E-01 1.09E+00 1.59E+00 2.61E+01 2.22E+02
1 2.56E-01 6.46E-02 1.06E+00 5.11E-01 2.98E+01 1.28E+02√

2/2 2.93E-01 8.84E-02 7.79E-01 4.89E-01 2.93E+01 1.74E+02
1/2 3.24E-01 1.03E-01 8.33E-01 6.15E-01 3.13E+01 2.49E+02√
2/4 3.83E-01 1.53E-01 9.65E-01 8.89E-01 3.04E+01 3.85E+02
1/4 4.83E-01 2.21E-01 1.31E+00 1.31E+00 2.81E+01 5.61E+02√
2/8 6.08E-01 3.68E-01 1.78E+00 2.10E+00 2.46E+01 8.83E+02
1/8 1.17E+00 6.87E-01 3.49E+00 3.37E+00 3.05E+01 1.28E+03√

2/16 2.02E+00 1.08E+00 3.41E+00 5.07E+00 3.16E+01 1.82E+03
1/16 1.99E+00 1.69E+00 5.82E+00 7.54E+00 2.89E+01 2.57E+03

Table 2.6: Measures of variation of 1000 likelihood estimates computed by an auxiliary particle
filter using tempered weights with varying exponents in the resampling step. The likelihood
was estimated for the 2-state model at the true parameter value and at two false parameter
values. The first column gives the CV of the likelihood estimates, the second column the
variance of the log-likelihood estimates.

The results in Table 2.6 and Figures 2.13 and 2.14 show that using an exponent of 1 (for
the true and the second false parameter) or one only slighty smaller at

√
2/2 (for the

first false parameter) led to the smallest Monte Carlo variance in the likelihood estimates.
Smaller exponents seemed to slowly increase the variance whereas exponents above 1 led
to a drastic increase. As in the previous section, we suspect that smaller exponents would
only be beneficial in the case of outliers in the data. The boxplots in Figure 2.14 seem
to illustrate a bias in the estimates when the exponent is 2. However, the mean of the
likelihood estimates for the true parameter for this exponent is -320.31—close to the -
320.39 determined in Section 2.3.2.1 and within the values of the means across all the
exponents which range from -320.52 to -319.78. The distribution seems biased due to the
log-scale and because it shows medians rather than means. Since both 1 and a slightly
smaller value are reasonable choices from a performance view when all three parameters
are considered, we proceeded with an exponent of 1 and therefore eliminated the need for
an adjustment multiplier. This allowed the continued use of nimble, thereby profiting
from the fast methods already implemented in this software package.
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Figure 2.13: Measures of variation of 1000 likelihood estimates of three different parameter
values in the 2-state model computed by an auxiliary particle filter using tempered weights
with varying exponents in the resampling step. The first figure shows the CV of the likelihood
estimates, the second figure the variance of the log-likelihood estimates. The black horizontal
line shows the limit of 2 for the variance of the log-likelihood estimates.

(a) True parameter value (b) False parameter value 1 (c) False parameter value 2

Figure 2.14: Boxplots of 1000 log-likelihood estimates computed by an auxiliary particle
filter using tempered weights with varying exponents in the resampling step, for three different
parameter values in the 2-state model.
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2.4 Application to the 7-State Model

In this Section, we describe how we adapted the algorithm for the 7-state model, again
with simulated data, using the outcomes for the 2-state model as a starting point.

2.4.1 Methods

Regarding the results for the ESS threshold and the effect of introducing an adjustment
multiplier, we transferred the results obtained with the 2-state model to the 7-state model
which adds 5 age classes between pups and pup-producing adults in comparison to the
2-state model (see also Section 1.2.5). However, the number of particles needed to be
adapted to this specific model and was varied from 3 to 30,000 particles. For each number
of particles, 100 estimates of the likelihood were generated to measure the Monte Carlo
variance of these estimates by calculating the CV of the likelihood and the variance of
the log-likelihood. As before, a value of 2 for the log-likelihood variance was used as a
guideline when choosing the number of particles.

The parameter for simulating the data was the mean of the posterior distribution in
Thomas et al. (2019), using the carrying capacity and starting observation of the Inner
Hebrides region (see Table 2.7). We also reduced the number of annual observations to
T = 26, which is the number of observations for the complete seal model. Figure 2.15
shows the number of pups and the number of the adult females aged six years and older
in the simulated data. The effect of reaching the carrying capacity is clearly visible in
the data. On the other hand, the period of near-exponential growth is missing in the
simulated data even for the early years and the effect of approaching the carrying capacity
noticeable from the start of the times series.

We estimated the likelihood at two further sets of parameter values besides the true
parameter. The first false parameter was set to the prior mean in Thomas et al. (2019)
which is quite far away from the true parameter. Nevertheless, as this is a central value
in the prior distribution, it is important to be able to reliably evaluate its likelihood. The
second false parameter was chosen to have a likelihood between the other two parameters.
All three parameter values can be found in Table 2.7.

Parameter True parameter False parameter 1 False parameter 2

maximum pup survival
φp,max

0.48 0.62 0.45

adult survival φa 0.95 0.9 0.93

fecundity α 0.9 0.83 0.92

Carrying capacity χ 3110 5000 2900

dens dep. ρ 5.95 10 5

CV precision τ 112 140 90

Table 2.7: Parameter vectors used in the simulation study for the 7-state model
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Figure 2.15: Two sets of simulated counts from the 7-state model. Only numbers of pups
and adult females aged at least 6 years are shown. Observations of pup numbers are shown as
blue circles and the pup carrying capacity is indicated with a black horizontal line.

2.4.2 Results and Interpretation

The estimated log-likelihood of the true parameter was -185.92. The first false parameter
was far away from the true parameter which was reflected by the much lower log-likelihood
of -230.97. For the second false parameter, the likelihood was estimated to be -197.90.

True parameter False parameter 1 False parameter 2

N CV(L) Var(logL) CV(L) Var(log-L) CV(L) Var(log-L)

3 1.51E+00 3.35E+01 9.90E+00 4.67E+03 9.48E+00 3.92E+02
10 8.22E-01 3.06E+00 1.00E+01 8.87E+02 6.60E+00 7.19E+01
30 5.24E-01 3.62E-01 8.90E+00 2.38E+02 4.64E+00 1.81E+01

100 3.36E-01 1.26E-01 9.01E+00 8.31E+01 5.26E+00 8.30E+00
300 1.69E-01 3.01E-02 7.39E+00 4.36E+01 1.83E+00 3.20E+00

1000 9.67E-02 9.34E-03 8.95E+00 2.04E+01 1.91E+00 1.66E+00
3000 4.84E-02 2.37E-03 3.53E+00 9.94E+00 1.88E+00 9.47E-01

10000 3.02E-02 9.23E-04 7.10E+00 6.57E+00 6.15E-01 3.10E-01
30000 1.63E-02 2.64E-04 4.88E+00 3.19E+00 4.39E-01 1.62E-01

log-L -185.92 -230.97 -197.90

Table 2.8: Measures of variation of 100 likelihood estimates of the 7-state model computed by
a standard bootstrap filter with varying numbers of particles N . The likelihood was estimated
at the true parameter value and at two false parameter values. The first column gives the CV
of the likelihood estimates, the second column the variance of the log-likelihood estimates.
The bottom row gives the log of the mean of 100 likelihood estimates as calculated with
N = 30, 000 particles.

The effect of increasing the number of particles was similar to the effect seen with the 2-
state model (see Table 2.8 and Figures 2.16 and 2.17). The CV of the estimate decreased
as the number of particles increased, and the estimates for the true parameter showed
a much lower variance than for the other two parameters. For the true parameter, 30
particles were sufficient to achieve a variance of the log-likelihood of less than 2, whereas
1000 were necessary for the second false parameter, and even 30,000 were not enough for
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Figure 2.16: Measures of variation of 100 likelihood estimates of the 7-state model computed
by a standard bootstrap filter with varying numbers of particles N . The first figure gives the
CV of the likelihood estimates, the second figure the variance of the log-likelihood estimates.
The black horizontal line shows the limit of 2 for the variance of the log-likelihood estimates.

(a) True parameter (b) False parameter 1 (c) False parameter 2

Figure 2.17: Boxplots of 100 likelihood estimates of the 7-state model for varying numbers
of particles N at three different parameter values.
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the first false parameter. The distribution of the likelihood estimates of the true parameter
in Figure 2.17a showed the same right-skewed behaviour as in the 2-state case. For the
two false parameters in Figures 2.17b and 2.17c, the few outliers indicated a right-skewed
distribution too.

As the Monte Carlo variance for the true parameter is slightly higher in the 7-state model
as in the 2-state model, the number of particles should reflect this. Therefore, a reasonable
choice could be 300 to account for the increased complexity of this model. However, we
adapt this number in Chapter 3 depending on the purpose of the filter.

2.5 Application to the Complete Seal Model

Finally, the outcomes of the simulation study for the 2-state model were applied to the
complete seal model without independent estimate, which extends the 7-state model by
simultaneously tracking 4 regions with independent populations. We used both simulated
and real data here. For the simulated data, we compared two ways of formulating the
model and its effect on the likelihood estimation.

2.5.1 Methods

As with the 7-state model in the previous section, we relied on the results obtained with
the 2-state model for all of the settings of the algorithm other than the number of particles.
This was varied from 10 to 30,000 particles and the likelihood estimated 100 times for each
number. In the previous sections, it became apparent that while the likelihood estimation
of the false parameters suffered from higher Monte Carlo variance, the overall trends
remained the same. We therefore studied the effect of the number of particles only by
estimating the likelihood of the true parameter. This is also sufficient when the guideline
of a log-likelihood variance below 2 (Section 2.3.2.1) is considered because this guidelines
refers to the likelihood estimates at a central parameter value and not at values at the
extremes.

Instead of studying the behaviour of the estimator for different parameter values when the
number of particles are varied, we focussed on another aspect of the complete model. For
this, we only consider the slightly simplified version of the complete model, where there is
no independent estimate of the total number of adult seals. The independent estimate is
the only observation that links the four regions with each other. Omitting this estimate
therefore results in the independence of the four regions from each other, given the joint
parameter, and the likelihood as calculated in Equations 2.9 and 2.10 can be factorised
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into four components from each of the regions.

p(yt,r=1:4|y1:t−1,r=1:4) =

∫
p(yt,r=1:4, xt|y1:t−1,r=1:4)dxt (2.14)

=

∫
g(yt,r=1:4|xt)p(xt|y1:t−1,r=1:4)dxt =

=

∫ 4∏
r=1

g(yt,r|xt,r)
4∏
r=1

p(xt,r|y1:t−1,r)dxt

=

4∏
r=1

∫
g(yt,r|xt,r)p(xt,r|y1:t−1,r)dxt,r

=

4∏
r=1

p(yt,r|y1:t−1,r) ≈
4∏
r=1

1

N

N∑
i=1

w
(i)
t,r (2.15)

The likelihood for each of the four regions can therefore be estimated separately by inde-
pendent particle filters. For the overall likelihood, these estimates are simply multiplied.
The unbiasedness of the total estimate is preserved because of the independence of the
four estimates.

E

(
4∏
r=1

1

N

N∑
i=1

w
(i)
t,r

)
=

4∏
r=1

E

(
1

N

N∑
i=1

w
(i)
t,r

)
=

4∏
r=1

p(y1:T,r)

This factorisation of the likelihood might improve the estimation. In the joint particle
filter, each particle consists of 28 components, each of which must be a relatively good
match for the observation in order to be resampled. This means that particles that might
contain reasonable simulated values of the states in one region are still discarded because
of the simulated values in another regions. More particles might therefore be necessary
to obtain the same ESS. We compared the variance of the log-likelihood estimates when
they were estimated jointly for all four regions with the estimates that were produced by
multiplying the estimates of the four independent regions. This was done by generating
100 estimates with both the joint and the factorised model formulation.

We note that while these deliberations about the model formulation might lead to im-
provements in the computational cost of the particle filter, these improvements cannot
directly be transferred to the complete seal model with independent estimate. In that
model, the regions are dependent via the independent estimate of the total number of
adult seals in all regions. Chapter 6 discusses some options how this idea can be modified
to include the independent estimate.

To further simplify things, we omitted the overdispersion of the initial states for the
simulated data when comparing the joint and the factorised model formulation. The
purpose of the overdispersion in the model was to allow a wider range of possible starting
conditions because the initial distribution might not quite reflect the real data correctly
and therefore produce a too narrow range of initial states. As the simplified full model
was studied only using data that were simulated from that model, this was not a concern
here.

As the last step and the ultimate objective of this chapter, we tuned the number of particles
for the real model—including the independent estimate, the overdispersion of the initial
states, and missing data in one region in one of the years. Here, we used the real data,
rather than simulated data. The parameter value at which the likelihood was estimated
was the mean of the posterior distribution as given by Thomas et al. (2019).
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2.5.2 Results and Interpretation

Joint Factorised Real data, joint

N CV(L) Var(logL) CV(L) Var(log-L) CV(L) Var(log-L)

10 4.98E+00 1.09E+02 1.64E+00 2.09E+01 7.00E+00 2.57E+03
30 3.07E+00 3.18E+01 1.05E+00 1.19E+00 5.44E+00 8.75E+02

100 1.71E+00 5.77E+00 6.33E-01 2.96E-01 4.68E+00 3.49E+02
300 1.05E+00 1.72E+00 3.42E-01 1.07E-01 7.82E+00 1.11E+02

1000 5.67E-01 4.51E-01 2.05E-01 4.04E-02 2.39E+00 2.37E+01
3000 3.84E-01 1.75E-01 9.30E-02 9.25E-03 1.74E+00 8.21E+00

10000 2.24E-01 5.47E-02 5.34E-02 2.79E-03 1.60E+00 2.17E+00
30000 1.30E-01 1.79E-02 3.27E-02 1.09E-03 9.70E-01 9.31E-01

log-L -807.31 -807.69 -806.34

Table 2.9: Measures of variation of 100 likelihood estimates computed by a particle filter
with varying numbers of particles N . The likelihood was estimated at the true parameter
value for two different formulations of the simplified full model, using simulated data, and at
the posterior mean for the real full model using real data. The first column gives the CV
of the likelihood estimates, the second column the variance of the log-likelihood estimates.
The bottom row gives the log of the mean of 100 likelihood estimates as calculated with
N = 30, 000 particles.

Figure 2.18: Measures of variation of 100 likelihood estimates computed by a standard
bootstrap filter with varying numbers of particles N . The likelihood was estimated at the true
parameter value for the joint formulation and the factorised formulation of the simplified full
model, using simulated data, and at the posterior mean for the real full model using real data.
The first figure gives the CV of the likelihood estimates, the second figure the variance of the
log-likelihood estimates. The black horizontal line shows the limit of 2 for the variance of the
log-likelihood estimates.

Figure 2.18 and Table 2.9 show the effect of the number of particles on the variance of the
likelihood estimate. The general relationship between the CV of the likelihood estimate or
the variance of the log-likelihood estimate and the number of the particles was the same
as in the previous sections. Focusing first on the effect of using a factorised approach
to estimate the likelihood, we noticed that there was a large decrease of the variance
when the factorised estimate was used. The variance of the log-likelihood when using the
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factorised estimate was less than 2 even when only 30 particles were used. To achieve
the same low variance for the joint estimate, 300 particles were necessary. This factor
10 in computational effort remained roughly the same for other values of variance of the
log-likelihood.

The variance of the log-likelihood estimate for the real data showed the same trend but
was overall larger than the variance for the estimates from the simulated data. To achieve
a variance of the log-likelihood estimate of less than 2, more than 10,000 particles were
necessary. This is unsurprising and corresponds to the findings in the previous sections.
There, we saw that estimating the likelihood at the false parameter values led to a higher
variance of the estimate. Here, the parameter was chosen at a central point of the posterior,
but using real instead of simulated data inevitably resulted in a data that fit the model
less well.

Finally, we investigated the variance of the weights in the complete seal model with the
real data at each iteration of the bootstrap filter, using the joint formulation. In Figure
2.19, the CV of the weights at each time t is shown for three runs of a bootstrap filter with
N = 1000 particles each. We note that the CV tended to decrease as time t increased. This
indicates that more particles were projected forward to high-density areas and thus might
point to the fact that the data more closely matched the model. The first 5 iterations
seemed particularly problematic as the weights had a CV larger than 1 for all 3 runs for
these iterations. A reason for this might be that the initialisation of the model with density
f0 is not appropriate for the data and that many particles were therefore starting in low-
density areas. Other than this general trend in time, no clear outliers or other anomalies
could be detected that might explain the large variance in the likelihood estimates.

Figure 2.19: Effective sample sizes of the particles at each iteration from 3 runs of a bootstrap
filter with N = 1000 particles, run with the complete seal model using real data with the
independent estimate, with the parameter set to the posterior mean.

2.6 Discussion and Conclusion

In this chapter, we introduced particle filter algorithms and showed how they can be used
to estimate the likelihood in state-space models. We also described some of the available
techniques to improve the performance of these algorithms, both when estimating the
underlying states and the likelihood for a fixed parameter. While there is a large repertoire
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of these techniques in the literature, many are not available for the seal model because
they require the evaluation of the process density f(xt|xt−1) or require a Gaussian or linear
model. Of the methods that can be applied to the seal model, none greatly improved the
performance of the algorithm. Most of the methods did either not reduce the Monte Carlo
variance of the likelihood estimate at all, or only did so at a much higher computational
cost.

When using the ESS as a measure of particle degeneracy to reduce the number of re-
sampling steps in the particle filter, the results of the simulation study agreed with the
literature. In the rest of this thesis, a threshold of 0.8 will be used as this results in a
slightly lower Monte Carlo variance compared to resampling at every iteration or resam-
pling less frequently.

Using an adjustment multiplier to change the resampling weights proved less useful. When
the expected value of xt|xt−1 was used to calculate how well the state xt−1 in a particle
fits the observation at the next time step yt, no decrease could be seen in the variance of
the likelihood estimate, while the computation time rose slightly. When the resampling
weights were flattened by exponentiating them with a value less than one, no large effect
could be observed for exponents between 1/2 and 1, with 1 resulting in the lowest variance
for two of the three examined sets of parameter values. Smaller exponents, and exponents
above 1, resulted in a much higher Monte Carlo variance. Therefore, neither of these two
options to adjust the resampling weights was used for the seal model.

The number of particles used in the algorithm had the most direct effect on the variance
of the likelihood estimate. As this number comes at a linearly increasing computational
cost, it is important to choose it carefully depending on the context. This could be state
inference or likelihood estimation for a fixed parameter, or parameter inference. When
parameter estimation is the ultimate goal and the likelihood estimate is used as part of
an MCMC chain, some guidelines exist in the literature, e.g., aiming for a variance of the
log-likelihood of less than 2 at a central parameter value (Golightly et al., 2019). The
trade-offs associated with the number of particles in this scenario will be explored in more
detail in the next chapter.

We found a large difference in the performance of the algorithms when estimating the
likelihood at different parameters across the different numbers of particles. While for all
three parameters the general downward trend of the variance of the log-likelihood esti-
mates was similar, the Monte Carlo error differed considerably between them. For certain
parameters the required number of particles was much higher than for other parameters
to achieve the same likelihood variance. While in our simulation study the variance was
always lowest for the true parameter value, there was no direct relation between the value
of the likelihood and the variance of its estimates. In fact, the second false parameter had
a much higher log-likelihood of -362.1 compared to the first with -382.1 but its estimates
showed a much higher variance throughout the simulation study. It is however hard to
draw a firm conclusion based on the results of only three sets of parameter values. We note
that even 30,000 particles were not sufficient to achieve a variance of the log-likelihood of
less than 2.

The only change that resulted in a large reduction of the likelihood estimate variance was
the factorisation of the likelihood estimate into four separate regions. This change is not
readily available for the complete seal model as the regions are not completely independent.
We devote Chapter 6 to an investigation of how modifications of this idea might still be
implemented for the complete seal model.
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In summary, most methods described in Section 2.2 are either not applicable to the seal
model or failed to improve the likelihood estimate variance. Resampling less frequently
while taking the ESS into account was moderately successful at improving the estimate
but not enough to manage the large variances for some of the parameters used in the
study. How to handle these large variances will be a key point when studying parameter
inference methods in Chapter 3.
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Chapter 3

Parameter Inference

3.1 Introduction

In this chapter, we discuss methods for parameter inference in state-space models. Com-
pared to the algorithms for state inference in the previous chapter, which are relatively
straightforward and tend to work well, the situation for parameter inference is much more
complex.

In alignment with the structure of the previous chapter, we first give an overview of several
state-of-the-art parameter inference methods and discuss their advantages and drawbacks.
The algorithms are divided into two categories. In the first, the parameters are treated as
if they were a part of the state vector and SMC algorithms are applied to the augmented
states. In the second, standard MCMC algorithms are used as a building block of more
complex algorithms that rely on the likelihood p(y1:T |θ). Lastly, we discuss the SMC2

algorithm which combines these two approaches. Algorithms for maximum likelihood
parameter estimation are only briefly mentioned, as the seal model requires a Bayesian
approach which therefore is the focus of this chapter. We refer to Kantas et al. (2015) for
a comprehensive review of sequential particle methods both within a Bayesian and in a
maximum likelihood framework.

After this review of methods, we conduct several simulation studies that highlight different
aspects of some of the methods. The aim of these studies is to learn how to perform
parameter inference for the seal model and to understand the potential challenges with
this task. We also attempt to apply the gained knowledge to the complete seal model to
make parameter inference with the real data.

3.2 Review of SMC Methods for Parameter Inference

3.2.1 Augmenting the unknown states with the parameters

The idea behind the algorithms in this section is to treat the unknown parameters as
if they were unknown states. The vector of the unknown states is augmented with the
parameter vector and becomes (xt, θt). With this framework, the state inference algorithms
detailed in Chapter 2 can be applied directly to this augmented state vector. In the
initialisation step, θi0 is sampled from the prior distribution p(θ). As the parameter vector
remains constant over time, the forward propagation is simply the identity function, so
f(θt|θt−1) = θt−1. For the forward propagation of the states in any particle, the parameter

61



values in that particle are used in the model densities, so xit ∼ f(xt|X̄i
t−1, θ

i
t−1). The same

happens when the weight for a particle is calculated with wit ← wit−1g(yt|Xi
t , θ

i
t). The

algorithm is given in Algorithm 3. It returns a set of weighted particles containing state
trajectories and parameter values that approximate the density p(x0:T , θ|y1:T ). To obtain
a sample from the posterior distribution p(θ|y1:T ), one can simply marginalise over the
states, that is, use only the parameter value of each weighted particle and discard the
states.

Algorithm 3 Bootstrap filter with augmented state

for i← 1, ..., N do . Initialisation
sample θi0 ∼ p(θ)
sample Xi

0 ∼ f(x0|θi)
wi0 ← 1 . Set importance weights

end for
for t← 1, ..., T do

for i← 1, ..., N do
if resampling condition met then

resample state trajectories and parameters (X̃i
0:t−1, θ̃

i
t−1) with probabilities

proportional to {wit−1}i=1...N

wit−1 ← 1 . Set weights
end if
Set θit ← θ̃it−1
Sample Xi

t ∼ f(xt|X̃i
t−1, θ

i
t) . Forward propagation

Set Xi
0:t ← (X̃i

0:t−1, X
i
t)

Compute wit ← wit−1g(yt|Xi
t , θ

i
t) . Weighting

end for
end for
return a set of weighted particles containing state trajectories and parameters
{Xi

0:T , θ
i
T , w

i
T }i=1...N

While this approach easily allows the transfer of the state inference methods from Chapter
2 to the parameter inference problem, this method leads to severe particle degeneracy. The
states naturally vary throughout the time series, and therefore diversity is introduced into
the sample with every forward propagation. This is not the case for the parameters which,
at least in the models considered here, stay constant through time. The parameter space is
only explored in the initialisation step, when parameter values are sampled from the prior.
At every iteration of the algorithm, parameter values are discarded when the particles are
resampled. As the parameters do not evolve over time, no diversity is introduced into
the sample as the algorithm progresses. Instead, the number of unique parameter values
decreases at each iteration.

The severity of this effect can be seen in the following example, where we use the toy
example first introduced in Chapter 2 in Equation 2.12. The parameter θ is now treated
as unknown and has a normal prior:

Prior: θ ∼ N (1, 1)

Transition pdf: xt+1 = θxt +N (0, 1)

Observation pdf: yt = xt +N (0, 1). (3.1)

As in Chapter 2, we simulate a series of T = 30 observations with θ = 0.9. Applying
Algorithm 3 to estimate the posterior distribution of θ clearly illustrates the particle
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Figure 3.1: Decrease of unique parameter values in the bootstrap filter with augmented state
algorithm. Observations were simulated from the model in Equation 3.1 with θ = 0.9 (black
horizontal line) and T = 30. The top plot shows the number of unique parameter values over
time. The bottom plot shows the values of the remaining parameter values, with the size and
color indicating how many copies of this values are present in the sample.

degeneracy problem. After 30 iterations of the algorithm, the initial 1000 unique parameter
values have reduced to 10 unique values (see Figure 3.1). Because of the large disparity
in the weights between these values, the effective sample size is even smaller at only 2.21.
Using such a small sample size leads to a large Monte Carlo error in parameter estimates.
While it is possible to increase the number of particles for toy examples like this, the
computational cost quickly becomes too high and make this approach infeasible for more
complicated models.

Several strategies exist to alleviate this problem. We notice that the particle degeneracy
does not pose a problem for the state inference. When two particles are assigned the
same state value xt in the resampling step, new diversity is introduced in the forward
propagation step, as this usually contains a random part. Therefore, while these two
particles might originate from the same state, they differ once they pass the forward
propagation step. This idea can be applied to the parameters by introducing an artificial
evolution of the parameter values over time. Kitagawa (1998) proposed adding a normally
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distributed noise with variance Wt to the parameter value in the forward propagation step:

θt = N (θt−1,Wt).

We note that jittering the parameter values according to a normal distribution is only
appropriate when these values are on the real number line. When this is not the case, the
values need first to be transformed to the real line, then moved, and then back-transformed.
There are several choices for these transformations, two of which are given in Table 3.1.
These logarithmic and logistic transformations are common in the literature (see, e.g.,
Chapter 1.8 in Gelman et al., 2013) and are used in this thesis whenever a transformation
is necessary.

Domain A r : A→ R r−1 : R→ A

x ∈ [a,∞) r(x) = log(x− a) r−1(y) = exp(y) + a

x ∈ (a, b) r(x) = log
(
x−a
b−x

)
r−1(y) = b exp(y)+a

exp(y)+1

Table 3.1: Transformations from different domains to R and back

While moving the parameter values by adding a normal error prevents degeneracy of the
parameter sample, it artificially inflates its variance. In Liu and West (2001), this problem
is mitigated by using a kernel smoothing step instead of simply adding random noise to
each parameter value at each iteration of the algorithm. After the resampling step, the
parameters are moved according to this kernel which is chosen such that the expected
mean and variance of the parameter sample stays the same. For this, the weighted mean
θ̄t and variance-covariance matrix Vt of the parameters are calculated. In the forward
propagation step of the algorithm, the parameter value of each particle is then moved
according to the following process:

θit+1 = λθit + (1− λ)ζt, ζt ∼ N
(
θ̄t,

1 + λ

1− λ
Vt

)
, 0 ≤ λ ≤ 1. (3.2)

This move corrects for the over-dispersion of the parameters by pushing the new parameter
value towards the mean. Combining this move with the resampling step shows that the
new parameter values in the particles now come from the normal mixture distribution

p(θt+1|θ1:Nt ) =
N∑
i=1

wipN
(
θt+1|λθit + (1− λ)θ̄t, (1 + λ)(1− λ)Vt

)
,

where pN (x|µ,Σ) denotes the density of a multivariate normal distribution with mean µ
and covariance matrix Σ evaluated at x. Note that the change of the factor in the variance
component arises from the factor 1−λ in Equation 3.2. A short calculation shows that this
distribution has the same expected value and variance as the mean and sample variance
of the particles before the move.

E(θt+1) =

N∑
i=1

wi
(
λθit + (1− λ)θ̄t

)
= λ

N∑
i=1

wiθ
i
t + (1− λ)θ̄t

N∑
i=1

wi

= λθ̄t + (1− λ)θ̄t = θ̄t

Var(θt+1) = Var(E(θt+1|θit)) + E(Var(θt+1|θit)) =

Var(λθit + (1− λ)θ̄)) + E((1 + λ)(1− λ)Vt)

= λ2Vt + (1− λ2)Vt = Vt
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This kernel fixes the problem of the over-dispersion in Algorithm 3. However, the corre-
sponding states are not moved, which means that the augmented state particles are no
longer a sample from the joint distribution p(xt, θt|y1:t). This can lead to considerable
bias (see Chopin et al., 2013 for a numerical demonstration). To keep this bias small, the
tuning parameter λ is usually kept close to 1. Liu and West (2001) recommend a value of
λ between 0.974 and 0.995 while Thomas et al. (2019) even use λ = 0.99997.

Another technique employed by Liu and West (2001) in their algorithm is the use of
an adjustment multiplier as explained in Section 2.2.7.3. They incorporate not only the
expected value of xit+1|xit but also the expected value of the parameter after moving it,
which is λθit + (1 − λ)θ̄t. Some examples where this algorithm is used in practice are
pedestrian navigation combining indoor maps and smartphone sensors (Yu et al., 2017)
and the prediction of remaining battery life of lithium-ion batteries (Liu et al., 2011).
It is also the basis of the algorithm that is currently used for inference for the Grey Seal
model. The details of that exact algorithm are given in Paragraph 3.2.1.1 at the end of this
section. In spite of its continued usage, de Valpine et al. (2022) note that the performance
of the Liu-West-Algorithm is often poor compared to other more recent SMC algorithms.

We briefly describe two further algorithms that are based on the idea of augmenting the
state with the parameter. The first is called iterated filtering (abbreviated IF2) and was
proposed by Ionides et al. (2015). Similarly to the Liu-West-Algorithm, the parameters
are moved by a kernel at every iteration. However, here the particle filter is run several
times: the parameter input of each particle filter is the output of the previous one and the
variance of the parameter kernel is decreased at every iteration. Under certain conditions,
this leads to the convergence of the parameters to the maximum likelihood estimate. The
second is the data cloning method by Lele et al. (2007) which relies on the same principle
of running a particle filter iteratively to find parameter estimates. Here, the parameters
are only moved with a Metropolis-Hastings kernel after each run of the particle filter
rather than also at each iteration within it. Cloning the data here refers to re-using the
same data multiple times for multiple simulated state trajectories xi0:T |θ. Multiplying the
likelihoods p(y1:T |xi0:T , θ) for the acceptance ratio in the Metropolis-Hastings kernel (see
Section 3.2.2.1) leads to samples from an exaggerated posterior, that is, the mode of the
posterior becomes a more extreme peak. With enough copies of the data, this eventually
leads to parameter samples that approximate the maximum likelihood estimate. Because
we are mainly interested in Bayesian inference for the seal model, both of these algorithms
for maximum likelihood inference are not further considered in this thesis.

3.2.1.1 Case Study: Complete Seal Model

Here, we describe the algorithm that has been used for inference on the seal model until
now. The data and some minor tuning choices in the algorithm are updated every one to
two years. We use here the algorithm and data as described in Thomas et al. (2019). The
algorithm is based on the Liu-West algorithm and is run 400 times with N = 1, 000, 000
each to provide sufficient Monte Carlo accuracy. It therefore includes a few further tech-
niques to handle the numerical issues that arise when running the algorithm on a large
scale.

The first of these is a technique called rejection control, which was introduced by Liu
(2001). Here it is used both in the initialisation and in the final step of the algorithm. The
idea behind this is to reduce the computational effort spent on particles with particularly
low weight while only reducing the effective sample size slightly. An arbitrary weight limit
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Algorithm 4 Seal algorithm based on the Liu-West-Algorithm

choose tuning parameter 0 ≤ λ ≤ 1 for kernel smoothing (Thomas et al., 2019 use
λ = 0.99997)
while less than N particles have been retained do

t← 0 . Initialisation
for i← 1, ..., N do

sample θi0 ∼ p(θ)
sample xi0 ∼ f(x0|θi0)
sample xi1 ∼ f(x1|xi0, θi0) . Look-ahead
set weights wi∗1 ← g(y1|xi1, θi0) . Weights for rejection control

end for
set wc ← 1/N

∑N
i=1w

i∗
1

retain each particle with probability ri1 = min
(
wi∗1 /wc, 1

)
. Initial rejecton control

update weights of retained particles wi1 ← wi∗1 /ri
end while
keep first N of the retained particles, re-index with 1, ..., N
for t← 1, ..., T do

for i← 1, ..., N do
transform parameters to real line τ it−1 ← h(θit−1) with h as in Table 3.1

end for
calculate weighted transformed parameter mean τ̄t−1 . Prepare kernel smoothing
calculate weighted covariance matrix Vt−1
for i← 1, ..., N do

calculate expected value xi∗t ← E(xt|xit−1)
calculate weights wi∗t ← wit−1g(yt|xi∗t )

calculate tempered resampling weights qit ← 4
√
wi∗t

end for
resample N particles with probability proportional to {qit}i=1...N (residual resam-

pling)
re-index with 1, ..., N
for i← 1, ..., N do

sample τ i∗t ← λτ it−1 + (1− λ)ζi, where ζi ∼ N
(
τ̄t−1,

1+λ
1−λVt−1

)
. Kernel

smoothing
set θit ← h−1(τ i∗t )
sample xit ∼ f(xt|xit−1, θit) . Project forward

update weights wit ←
wit−1g(yt|xit,θit)

qit
end for

end for
for i← 1, ..., N do . Final rejection control

standardize weights viT ← wiT

∑N
j wjT
N

end for
retain each particle with probability riT = min

(
viT /vc, 1

)
, where vc = 100

update weights of retained particles wiT ← viT /r
i
T

return a set of weighted particles containing state trajectories and parameters
{xi0:T , θiT , wiT }i=1...N
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wc is set—here, the mean weight is chosen in the initialisation and 100 times the mean
weight in the final step. All particles with a weight above this limit are automatically
retained but particles with lower weights are discarded with probability 1−wi/wc. After
this step, the weights of the resampled particles are adjusted by setting them to wc while
the weights of the particles that were automatically retained due to their weight higher
than wc remain unchanged. With these adjusted weights, the remaining particles after
rejection control still represent the target distribution. Using this rejection control step
in the initialisation means that only relatively promising parameter and state pairings are
used to start the particle filter. In the final step it is done to reduce computer memory
and to make post-processing feasible. After the particle filter has been run 400 times, an
additional rejection control step with a rejection limit of 1,000 times the mean weight is
undertaken before the remaining particles are combined. This further reduces the required
computer memory while keeping a high effective sample size.

Another step that is necessary to avoid numerical underflow is the standardisation of the
weights at each iteration so that their mean is approximately 1. As the divisor for the
standardisation needs to be the same across all 400 runs of the particle filter, the divisors
were pre-computed in a pilot run.

As implemented by Thomas et al. (2019), the algorithm with these settings took approxi-
mately 3 days to run, using 20 parallel processes. After final rejection control, the number
of unique ancestor particles was 1669, from 400 million unique particles at initialisation.
While we are not aware of a method for estimating the ESS for this algorithm, this number
of unique ancestor particles can be treated as a lower bound of the ESS. The independent
estimate was only incorporated at the very end by reweighting the particles. Calculat-
ing the ESS of this weighted sample, again via the conservative method of counting the
number unique ancestor particles, led to an ESS of 478.

We initially experimented with improving the performance of this algorithm by improving
the quality of the initial parameter sample. For this, we generated an approximated sample
from the posterior distribution with the unscented Kalman filter (Wan and van der Merwe,
2001). This sample was then used instead of sampling parameters from the prior, and the
weights adjusted to reflect this change. The idea was that by starting with parameters that
were already relatively close to the posterior distribution, the particle degeneracy problem
could be mitigated. This was however not the case and the technique did not show any
clear improvements. One reason for this is that there is a lot of random variability in the
forward propagation of the states. Therefore, even parameter values from high-density
areas of the posterior distribution can get discarded in the resampling step because their
state values do not match the observations. In addition, using the unscented Kalman filter
requires a lot of tuning and careful implementation even for small changes to the model
or data. We therefore did not further pursue this approach.

3.2.2 Particle MCMC and Variants

The algorithms in this section rely on simulating parameter values with Markov chain
Monte Carlo (MCMC). This powerful statistical technique stands in contrast to direct
sampling techniques like rejection sampling or importance sampling which was introduced
in Section 2.2.1. Rather than the direct sampling of values, the idea behind MCMC is to
construct a Markov chain whose stationary distribution is the target distribution. Then
a sequence of values of this chain is simulated which approximate the target distribution.
One key advantage of MCMC over other sampling methods is its ability to handle high-
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dimensional and complex distributions, where other techniques may be computationally
intractable or may not be possible at all. For this reason, it is an important technique for
inference for state-space models.

We first describe one of the most widely used MCMC methods, the Metropolis-Hastings
algorithm, in detail. Then we discuss two techniques that rely on MCMC methods for
parameter inference, namely data augmentation and the particle marginal Metropolis-
Hastings (PMMH) algorithm. While the focus lies on the latter, we describe the first due
to its popularity and use in well-known software packages like JAGS. We also discuss the
difference between the PMMH algorithm and a similar algorithm called the Monte Carlo
within Metropolis (MCWM) algorithm which differs in the way the likelihood estimate is
treated.

3.2.2.1 MCMC

Markov Chain Monte Carlo methods rely on constructing a sequence of random variables
θ0, θ1, θ2... that have the Markov property. This means that the distribution of θm+1 given
θm is independent of all previous values θ0, ..., θm−1. To obtain samples from some target
distribution, e.g., a posterior distribution given some data p(θ|y)1, the Markov process
needs to have this target distribution as a stationary distribution. This means that we
construct transition kernels Tm(θm|θm−1) such that if θm−1 is a random sample from the
target distribution, so is θm. Then, under the additional conditions of aperiodicity and
irreducibility (see, e.g., Chapter 11.2 in Gelman et al., 2013), the values are drawn from
a distribution that more closely matches the target distribution with each iteration of the
chain. For more details on the concepts on which MCMC builds, see Chapter 11 and 12
in Gelman et al. (2013).

The key challenge is the construction of the transition kernels Tm. Two standard and
widely used methods are the Gibbs sampler and the Metropolis-Hastings algorithm. Many
of the more advanced algorithms rely on these two methods as their building blocks. We
therefore briefly describe these before moving on to algorithms that use them for inference
for state-space models.

Gibbs Sampler When the parameter θ is multidimensional, the components of the
parameter vector can be updated sequentially. Each component or sub-vector of θ is
sampled conditionally on the other components. In many simple models with standard
distributions, it is then possible to directly sample from the conditional target distribution
p(θi|(θ1, ..., θi−1, θi+1, ..., θd), y), while cycling through the components {θi}i=1,...,d. Even
when direct sampling is not possible for all of the components, more involved methods
need then only be applied to the components that require it.

Metropolis-Hastings The Metropolis-Hastings (MH) algorithm, introduced by Hast-
ings (1970) who extended the method proposed by Metropolis et al. (1953), is a method
to generate samples from the posterior distribution p(θ|y) when one can evaluate the prior
density p(θ) and the likelihood p(y|θ) for any given parameter vector θ but direct condi-
tional sampling of the parameter components as described above is impossible or for other
reasons undesirable. This is achieved by proposing a new parameter value θ∗, given the
previous value in the chain, θm−1, by sampling from a proposal distribution q(θ∗|θm−1).

1We use y in this section to mean any type of data including observations in a state-space model, as
MCMC methods can be used for many different types of models and not only time series.
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Then an acceptance probability is calculated for this proposed value:

α(θm−1, θ
∗) = min

(
p(y|θ∗)p(θ∗)

p(y|θm−1)p(θm−1)
q(θm−1|θ∗)
q(θ∗|θm−1)

, 1

)
.

With probability α(θm−1, θ
∗), the next value of the chain θm is set to the proposed value

θ∗, otherwise it is set to θm−1. The first ratio in the acceptance probability compares how
much higher the posterior density of the proposed value is compared to the previous value
of the chain. This corresponds to the intuition that values with a larger posterior should
be accepted with higher probability. The second ratio takes the proposal distribution q
into account and compensates for the fact that some values might more easily be proposed
by the chain. The entire process is given in Algorithm 5.

Algorithm 5 Metropolis-Hastings Algorithm

set θ0 . Initialisation
for m← 1, ...,M do

sample θ∗ ∼ q(·|θm−1) . Generate proposal value

α(θm−1, θ
∗)← min

(
p(y|θ∗)p(θ∗)

p(y|θm−1)p(θm−1)
q(θm−1|θ∗)
q(θ∗|θm−1)

, 1
)

. Acceptance probability

sample um ∼ U(0, 1)
if um < α(θm−1, θ

∗) then
θm ← θ∗

else
θm ← θm−1

end if
end for

There exist many different special cases of the Metropolis-Hastings algorithm. One is the
Metropolis algorithm (Metropolis et al., 1953) which precedes the MH algorithm. Here,
the proposal distribution for a new value is symmetric, i.e., q(θ∗|θm−1) = q(θm−1|θ∗). This
leads to a simplification of the acceptance probability as the second ratio cancels. In this
case, q(θ∗|θm−1) is often chosen to be a random walk with θ∗ = θm−1 + ε, ε ∼ f (random
walk Metropolis). A common choice for f is a normal distribution. Similarly to the Gibbs
sampler, not all components of the parameter need to be updated simultaneously but
can be updated sequentially. It is even possible to combine different methods to update
different components, e.g., use direct Gibbs sampling where possible and a MH kernel
otherwise.

One of the key challenges of the Metropolis-Hastings algorithm is the design of a “good”
proposal distribution whereby the chain can efficiently explore the parameter space of
the posterior distribution. Even for a normal proposal distribution in a random walk
Metropolis algorithm, the difficulty in tuning the proposal can be appreciated: if the
variance parameter of the proposal distribution is too small, successive values of the chain
are highly correlated and it takes many iterations of the chain for the exploration of the
parameter space. If it is too high, often a value will be proposed that lies far outside of the
plausible range of the posterior distribution and will likely be rejected. Much research has
been undertaken to address this and we only mention two examples here. The adaptive
Metropolis algorithm (Haario et al., 2001) varies the variance of the proposal distribution
based on the history of the chain and thereby achieves a desirable acceptance ratio. A
more advanced technique is Hamiltonian Monte Carlo (HMC) (see, e.g., Neal, 2012) which
uses Hamiltonian dynamics to propose distant jumps that still result in proposed values
with high posterior density and therefore reduces the autocorrelation of the samples in the
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Markov chain. However, it requires the calculation of the slope of the target distribution
which is a difficult task in a state-space model. It also tends to perform well in situations
where the shape of the posterior is such that the Markov chain struggles to explore the
space of the distribution when a simpler proposal distribution such as a random walk is
used. As this is not the case in the seal model, we do not explore this technique in this
thesis. We refer to Buchholz et al. (2021) for some recent research on combining SMC
methods with HMC.

Diagnostic Tools for MCMC algorithms We mention two concepts here to assess
the quality of a chain of values produced by an MCMC algorithm. The first is diagnosing
whether a chain has approximately converged, that is, is no longer strongly dependent
on its starting conditions and is producing samples from the target distribution. The
second is to quantify how efficient the algorithm is in producing samples from the target
distribution once converged.

To assess whether convergence has been achieved, we use the potential scale reduction
factor R̂ proposed by Gelman and Rubin (1992) (extended by Brooks and Gelman, 1998
for the multivariate case) which uses an analysis of variance technique to compare the
posterior estimates from (at least) two chains with overdispersed starting values. The
idea is to estimate the variance of the posterior distribution both by computing the mean
of the variances of each chain (after discarding some initial values as burn-in), and by
computing the overall variance of all chains combined. If the chains have converged, both
values are unbiased estimates of the posterior variance. Otherwise, the first method will
generally underestimate the variance as the chains have not yet explored the entire range
of the posterior distribution, and the second method will overestimate the variance, as
the starting values were overdispersed. The convergence diagnostic for a one-dimensional
parameter for m chains with n iterations each is

R̂ =

√
(d+ 3)V̂

(d+ 1)W
, (3.3)

with

V̂ = σ̂2 +
B

mn
,

d =
2V̂ 2

Var(V̂ )

W is the mean of the empirical variances within each chain, B is n times the empirical
variance of the means of the chains and σ̂2 the empirical variance from all chains together.
This measure and variants for the multivariate case can be calculated in R with the coda

package (Plummer et al., 2006). Values close to 1 indicate covergence.

In addition, trace plots of two chains with different starting values are a useful tool to
understand when two chains might have converged. These are line graphs with the iter-
ation of the Markov chain on the x-axis and the value of one of the components of the
parameter vector on the y-axis (e.g., Figure 3.6). When two chains that started at dif-
ferent values have converged, the trace plots shows lines that cover the same area of the
parameter space. This visual aid also helps with determining the burn-in period of the
chain, that is, the number of iterations at the start of the chain before it has converged.
The samples from this period are discarded for any analysis of the posterior distribution.
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It is important to note we can generally not prove convergence but these methods can
identify some cases where the chains have not converged.

The Monte Carlo accuracy of the samples produced by a converged MCMC chain can be
assessed using a measure for the effective sample size. In Equation 2.4 in Chapter 2, such
a measure was given for importance samples, where a high variance of the weights leads to
a decreased effective sample size. For MCMC samples, the individual parameter values in
a chain are often highly autocorrelated. This means that a sequence of sampled values is
usually much less informative than an independent sample of the same size would be. This
concept can be quantified by incorporating the autocorrelation of the sequence into the
measure for the effective sample size. The idea is to calculate the Monte Carlo variance
when estimating E(θ|y) which would be 1/nVar(θ|y) for n independently sampled values.
The ESS is then the size of a sample of i.i.d. values that would lead to the same Monte
Carlo variance of the estimate of E(θ|y) as when estimated the autocorrelated values of
the MCMC chain. For one variable, the effective sample size is defined as

ESSMCMC =
n

1 +
∑∞

t=1 ρt
, (3.4)

where ρt is the lag-t autocorrelation of the values of the MCMC chain (Gelman et al.,
2013). For the multivariate case, Vats et al. (2019) generalise this measure to incorporate
the multivariate dependence structure. Since the individual parameter values in a chain
are usually highly autocorrelated, the ESS is typically much lower than the number of
iterations and depends on how well the chain has mixed. Good mixing here means that
the Markov chain efficiently explores the parameter space of the posterior distribution.
We use the coda package (Plummer et al., 2006) to estimate the ESS of the chains for the
one-dimensional case, and the mcmcse package (Flegal et al., 2021) for the multivariate
case.

3.2.2.2 Data augmentation

The MCMC methods described above all rely on the computation of the data likelihood
p(y|θ). However, other than for a small number of special cases (see, e.g., the exam-
ple in Equation 2.12 in Chapter 2), this likelihood is intractable for state-space models
where the true states are unknown. One popular method to deal with this problem is
data augmentation (Tanner and Wong, 1987). Here, the parameter θ is augmented with
the underlying unknown states x0:T . This leads to a straightforward calculation of the
likelihood L(θ, x0:T ; y1:T ) = p(y1:T |θ, x0:T ). Standard MCMC methods can then be used
to obtain a sample from the joint posterior distribution p(θ, x0:T |y1:T ). To obtain samples
from the parameter posterior distribution, only the marginal distribution of θ is consid-
ered:

∫
p(x1:T , θ|y0:T )dx1:T = p(θ|y0:T ). In practice, this means that the samples states

are discarded (see p. 293 in Gelman et al., 2013). These types of algorithms can take
much longer to converge as the parameter space under consideration is larger but have the
advantage of being more general and not requiring the specific structure of a state space
model. The joint posterior distribution, while often high-dimensional, can be treated like
any other posterior distribution and therefore opens up the inference problem to the whole
range of available MCMC methods. This is the approach to inference taken in software
like JAGS (Plummer, 2003) and OpenBUGS (Spiegelhalter et al., 2003) when an SSM
is modelled. However, it often suffers from performance problems if the states and the
parameters are highly correlated (Borowska and King, 2023). We do not explore data
augmentation in this chapter, as it shows no potential for the complete seal model due to
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the high correlation between the parameters and the components of the state. However,
it is used as one of three methods for the simpler 2-state model in Chapter 4, where we
see that even for some cases for the 2-state model it does not converge within a feasible
time period, e.g., in Section 4.3.3.3.

3.2.2.3 Particle MCMC

As described above, not being able to calculate the likelihood p(y|θ) prevents us from
directly using a Metropolis-Hastings algorithm with target distribution p(θ|y). However,
as established in Section 2.2.3, we can use a particle filter algorithm to obtain an unbiased
estimate of this likelihood. This leads us to the question of whether this estimate can
be used to replace the exact likelihood. This approach was first proposed by Fernández-
Villaverde and Rubio-Ramı́rez (2007) but only in Andrieu et al. (2010) was it shown that,
remarkably, the target distribution indeed remains the same. Since then, it has been
applied in many areas such as systems biology (Golightly and Wilkinson, 2011), natural
language processing (Dubbin and Blunsom, 2012), finance (Pitt et al., 2012) and ecology,
e.g., for population modelling (Knape and de Valpine, 2012, White et al., 2016) and range
expansion (Osada et al., 2019).

The idea follows from the more general theory of pseudo-marginal samplers (see, e.g.,
Andrieu and Roberts, 2009 for a discussion of their properties). There, we assume that we
can construct a random variable Z ∼ p(z|θ) and a function L(θ, z) such that E(L(θ, Z)) =
p(y|θ). If the new proposal z∗ only depends on θ∗ and is independent of the previous
value of z, the MH algorithm can than be used to sample from the augmented space
Θ×Z, replacing the likelihood term in the acceptance ratio with L(θ, z). Even though this
approximation is used, it can be shown that the marginal distribution for θ of the invariant
distribution of the Markov chain is the posterior distribution p(θ|y) (see Proposition 16.1
in Chopin and Papaspiliopoulos, 2020 for a proof). Andrieu and Roberts (2009) discuss
the properties of this sampler in detail. In particular, they compare the pseudo-marginal
sampler with a possibly more intuitive Monte Carlo approximation to the MH algorithm,
where the likelihood p(θ|y) is newly estimated at each iteration by sampling a new value
for z, rather than augmenting the space with z. This second approach does not admit
p(θ|y) as the invariant distribution. However, if the likelihood estimate L(θ, Z) is the
result of importance sampling with sample size N , under mild assumptions, the invariant
distribution converges to the posterior distribution p(θ|y) as N →∞. We further discuss
the notion of re-estimating the likelihood in Section 3.2.2.4.

In the Particle Marginal Metropolis Hastings algorithm (PMMH) as proposed by Andrieu
et al. (2010), a particle filter is run at each iteration of the MH algorithm. The random
variable Z is then the collection of particles from the particle filter, and the likelihood
estimate L(θ, Z) is the one computed by the filter. One step of the PMMH is given in
Algorithm 6. Here, we obtain samples from the joint posterior distribution p(x0:T , θ|y0:T )
but if the interest lies only in the posterior distribution of the parameter θ, the steps for
sampling a smoothed state trajectory x0:T can be omitted as this is not required in the
acceptance probability.

As with all MCMC algorithms, the PMMH requires a number of tuning choices that
affect the performance of the algorithm. First of all, we can choose any particle filter
variant to calculate the unbiased likelihood estimate. A crucial choice is balancing the
number of particles N of the particle filter with the number of iterations M of the MCMC
sampler. Using strong assumptions, a number of theoretical results exist that recommend
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Algorithm 6 Particle Marginal Metropolis-Hastings (One Step)

Require: θm−1, X0:T (m− 1), p̂m−1(y1:T |θm−1)
sample θ∗ ∼ q(·|θm−1) . Generate proposal value
run particle filter to generate p̂∗(y1:T |θ∗) and to sample X∗0:T
α(θm−1, θ

∗)← min
(

p̂(y|θ∗)p(θ∗)
p̂m−1(y|θm−1)p(θm−1)

q(θm−1|θ∗)
q(θ∗|θm−1)

, 1
)

. Acceptance probability

sample um ∼ U(0, 1)
if um < α(θm−1, θ

∗) then
θm ← θ∗, X0:T (m)← X∗0:T , p̂m(y1:T |θm)← p̂m−1(y1:T |θm−1)

else
θm ← θm−1, X0:T (m)← X0:T (m− 1), p̂m(y1:T |θm)← p̂∗(y1:T |θ∗)

end if

selecting N to achieve a certain standard deviation of the log-likelihood estimates. For
example, it is recommended to aim for a value of around 0.9 for the standard deviation of
the log-likelihood estimates at a central value of the posterior distribution if the proposal
distribution for θ is the perfect proposal p(θ|y1:T ), i.e., the posterior distribution itself (Pitt
et al., 2012). In the case where the parameter posterior distribution can be factorised into
d independent and identically distributed components, this value becomes 1.8 as d → ∞
(Sherlock et al., 2015). As none of these assumptions hold for the seal model, simulation
studies in Sections 3.3.1 and 3.3.2 are dedicated to establishing the optimal number of
particles for the different versions of the seal model.

We also need to be careful when selecting a proposal distribution for the MH algorithm.
While selection of the optimal proposal distribution for standard MH algorithms is a well-
researched topic (see, e.g., Chapter 12 in Gelman et al., 2013), these results cannot be
directly applied to the PMMH algorithm. The basic strategy for tuning the proposal
distribution in a standard MH algorithm is often to aim for a specific acceptance ratio
of the proposed values. It was shown by Gelman et al. (1997) that, under some strong
assumptions, this optimal ratio is 44% for a one-dimensional parameter and converges to
23.4% as the dimension of the parameter space tends to infinity. Under weaker assump-
tions, a popular rule of thumb is often to aim for an acceptance ratio between 0.2 and 0.4
(Chopin and Papaspiliopoulos, 2020, Chapter 15). However, this is not a helpful strategy
for the PMMH, as the acceptance probability is not only affected by the proposal distri-
bution but also by the variance of the likelihood estimate. Often, the chain will reject new
proposals in favour of a parameter value with a particularly high likelihood estimate for
many iterations, even though the newly proposed values have a high posterior density and
would be accepted with a high probability if the likelihoods could be calculated exactly.
Adapting the scale of the proposal distribution is therefore not helpful for increasing the
acceptance ratio because the cause is the high variance of the likelihood estimate rather
than a proposal distribution with a too large variance.

We demonstrate this with the 2-state model. The number of particles is set at 3 to show
the consequence of a likelihood estimate with a high variance. The proposal distribution q
is multivariate normal, where the proposal covariance Σq is proportional to the posterior
covariance Σθ|y obtained from a pilot run, so Σq = hΣθ|y, h > 0. We attempt to tune
h such that the acceptance ratio is close to the recommended 0.234. As can be seen in
Figure 3.2 and Table 3.2, the acceptance rate increases as h decreases but never reaches
the target value of 0.234. Decreasing the scaling factor even further to h = 0.01 resulted
in the chains not converging. Using only the acceptance ratio as a criterion, these results
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Figure 3.2: The acceptance rate and effective sample size per second when running the
PMMH for the 2-state model with N = 3 particles and M = 10, 000 iterations while varying
the scale h of the covariance of the proposal distribution.

might suggest to choose h as low as possible while the chains still converge. However,
Figure 3.2 shows the opposite effect for the effective sample size per runtime. As the
ultimate goal is to create a sample with a high effective sample size, this means that the
acceptance ratio is not a useful measure when constructing an effective PMMH sampler.
For the remainder of this chapter, ESS per runtime will be used as the measure to evaluate
algorithm efficiency.

h Runtime (sec) R̂ Acceptance Rate ESS ESS/sec

0.01 9425.93 6.27 0.11 - -
0.03 8456.20 1.01 0.20 2057.37 0.24
0.10 8244.27 1.00 0.17 5741.19 0.70
0.20 8286.23 1.00 0.14 9339.82 1.13
0.30 7746.05 1.00 0.12 10466.38 1.35
0.40 7563.62 1.00 0.10 10994.95 1.45
0.50 7437.15 1.00 0.09 12816.09 1.72
0.60 7252.47 1.00 0.08 12321.35 1.70
0.70 7077.63 1.00 0.07 11642.44 1.64
0.80 6930.96 1.00 0.06 12390.02 1.79
0.90 6761.22 1.00 0.05 11320.21 1.67
1.00 6434.97 1.00 0.05 11040.03 1.72
1.10 6454.60 1.00 0.04 10560.55 1.64

Table 3.2: Results from running the PMMH for the 2-state model with N = 3 particles and
M = 10, 000 iterations while varying the scale h of the proposal distribution. For h = 0.01,
the chains did not converge.

In addition to the PMMH, Andrieu et al. (2010) also describe a similar alternative called
the particle Gibbs sampler. Here, the algorithm samples iteratively from p(θ|y1:T , x1:T )
and p(x1:T |θ, y1:T ). The algorithm uses SMC to sample from the latter, but requires a
model that enables sampling from the former. As this is not easily possible in the seal
model, this sampler is not further discussed here.

A recently developed modification of the PMMH algorithm is the so called correlated
pseudo-marginal algorithm by Deligiannidis and Doucet (2018). Here, the likelihood ra-
tio in the Markov chain is computed with two correlated likelihood estimates. This is
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achieved by correlating the particles in the particle filter that estimates the likelihood of
the newly proposed value with the ones of the current parameter value. This reduces the
relative variance of the likelihood ratio and improves the mixing of the Markov chain. This
technique has successfully been used in various applications, e.g., Golightly et al. (2019)
and Persson et al. (2022). Applying it here goes beyond the scope of this thesis but is a
promising direction for further research.

3.2.2.4 Likelihood Re-estimation (MCMW)

In the previous section, it became clear that occasional very high likelihood estimates
negatively affect the mixing of the Markov chains. These can occur occasionally due to
the right skew of the distribution of the likelihood estimates, as was seen in, e.g., Figure
2.9 and prevent the acceptance of a newly proposed parameter for many iterations in a
row.

A näıve approach to improve mixing could be to simply re-estimate the likelihood at every
iteration. This algorithm is called Monte Carlo within Metropolis (MCWM) in Andrieu
and Roberts (2009) where a detailed comparison between MCMW and PMMH is given.
While the likelihood re-estimation might improve the mixing of the Markov chains, the
invariant distribution of the Markov chain is then no longer necessarily the posterior dis-
tribution of the parameters. Formally, the Markov chain in the PMMH produces samples
from the extended parameter space which contains both the parameters and the state
particles. The estimate of the posterior distribution is then the result of marginalising
over the particles and only considering the parameter values at each iteration.

To better understand this and the effect of using an unbiased likelihood estimate in place
of the exact likelihood in the PMMH, we study both algorithms and a standard MH
algorithm with a toy example. Inspiration for the construction of L(θ, z) is taken from
Example 16.4 in Chopin and Papaspiliopoulos (2020), p.301, but we substantially extend
the example to show both the effect of introducing an auxiliary variable Z on the mixing
of the chain, and the effect of re-estimating Z. We consider a model with a single data
point y ∼ Ber(θ) and place a discrete prior on θ: P(θ = 0.2) = P(θ = 0.8) = 0.5. Suppose
we observe y = 1. A short calculation shows that the posterior distribution is then

P(θ = 0.2|y = 1) =
P(y = 1|θ = 0.2)P(θ = 0.2)

P(y = 1|θ = 0.2)P(θ = 0.2) + P(y = 1|θ = 0.8)P(θ = 0.8)
= 0.2

P(θ = 0.8|y = 1) = 0.8.

While in this case, the posterior can easily be calculated, we now compare the performance
of a standard MH algorithm with the PMMH and the MCWM by arbitrarily introducing a
random variable Z to replace the likelihood term in the acceptance ratio with an unbiased
estimate. With c ∈ (0, 1], we sample Z ∼ Ber(c) and set the likelihood estimate to

L(θ, z) =

{
if θ = 0.8 : z

cP(y|θ)
if θ = 0.2 : P(y|θ).

The expected value of L(θ, Z) is indeed P(y|θ) for both values of θ. As a proposal distri-
bution for θ, we choose q(θ∗|θ) = 1− θ, and so deterministically always propose the other
possible value of θ. With these simple choices and y = 1, the acceptance probability for
the MH algorithm becomes

αMH(θ, θ∗) = min

(
P(y|θ∗)
P(y|θ)

, 1

)
=

{
1 if θ∗ = 0.8

0.25 if θ∗ = 0.2.
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Running a standard MH algorithm with these settings clearly produces samples from the
correct target distribution, as Figure 3.3a together with the estimation of P(θ = 0.2|y = 1)
as 0.202 confirms.

For the PMMH, the acceptance probability is

αMH ((θ, z), (θ∗, z∗)) = min

(
L(θ∗, z∗)

L(θ, z)
, 1

)
=

{
min (4z∗/c, 1) = z∗ if θ∗ = 0.8

0.25c if θ∗ = 0.2.

The random variable z in the second case can be omitted because θ = 0.8 could only
ever have been accepted as a value in the chain for z = 1. Comparing these acceptance
probabilities with the ones for the MH algorithm above, we see that including the auxiliary
variable z reduces the acceptance probability in both directions by the factor c. It is
immediately clear that, while the pseudo-marginal MH has the same marginal invariant
distribution for θ as the MH algorithm for any c ∈ (0, 1], the mixing of the chain becomes
poorer the smaller we set c. This is also shown in Figure 3.3b.

Lastly, we study the effect of re-estimating the likelihood for both parameters at each
iteration, so using the MCWM algorithm.

αMH (θ, θ∗) = min

(
L(θ∗, z∗)

L(θ, z)
, 1

)

=

min (4z∗/c, 1) = z∗ if θ∗ = 0.8

min (0.25c/z, 1) =

{
0.25c if z = 1

1 if z = 0

}
= 0.25c2 + 1− c if θ∗ = 0.2.

In the second case, for z = 0, we use the convention that dividing by 0 gives ∞ and the
minimum of both values is then 1. In comparison to the PMMH above, the probability to
switching from θ = 0.8 to θ∗ = 0.2 is higher than it should be. For example, with c = 0.1,
the transition probability for switching from 0.8 to 0.2 becomes 0.9025 rather than the
correct 0.025 as in the PMMH. Figure 3.3c shows that while the acceptance rate is much
increased compared to Figure 3.3b (acceptance rate 18.7% vs. 3.5%), this leads to a wrong
estimate of P(θ = 0.2|y = 1) which is here estimated to be 0.903 instead of the correct 0.2.
The lower the value of c and therefore the higher the variance of the unbiased likelihood
estimate Z, the higher is the bias of the estimate of the posterior distribution.

Even though it introduces a bias in the estimation of the posterior distribution, re-
estimation is occasionally done to overcome poor mixing of the PMMH. In Kattwinkel
and Reichert (2017), a compromise to improve mixing while keeping the bias small is
suggested whereby the likelihood is only re-estimated when the Markov chain has not ac-
cepted a new parameter value for 20 iterations. They state that the bias introduced by this
measure is likely to be small since re-estimation only occurred in 0.38% of all iterations.

We tested this approach with the toy example with c = 0.1, increasing the number of
iterations to M = 100, 000. Here, re-estimating only after 20 rejections of the newly
proposed value led to an estimate of P(θ = 0.2|y = 1) = 0.386 where the likelihood was
re-estimated in 2.63% of all iterations (counting only re-estimates when θ = 0.8 since the
likelihood is constant for θ = 0.2). A more extreme case was tested by decreasing c to
0.004, which led to re-estimation in 0.342 % of iterations, similar to the percentage given
in Kattwinkel and Reichert (2017). These settings led to an estimate of P(θ = 0.2|y =
1) = 0.931 rather than the true probability 0.2. This shows that even if re-estimation
occurs rarely, the bias can be significant compared to the PMMH algorithm. We do not
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(a) Standard MH algorithm. Estimating P(θ = 0.2|y = 1) with this sample gives
0.202.

(b) Pseudo-marginal MH algorithm. Estimating P(θ = 0.2|y = 1) with this sample
gives 0.133.

(c) Pseudo-marginal MH with re-estimation of the likelihood. Estimating P(θ =
0.2|y = 1) with this sample gives 0.903.

Figure 3.3: Trace plots for estimating p(θ|y = 1) with three different MCMC methods. The
chains have length M = 1000. The probability of sampling z = 1 is set to c = 0.1. The
correct posterior probability for P(θ = 0.2|y = 1) is 0.2.
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pursue the approach of only occasionally re-estimating further for the seal model but note
that this is an avenue for further research.

3.2.3 SMC2

An algorithm that combines the ideas of the Liu-West algorithm and Particle MCMC is
the so-called SMC2 by Chopin et al. (2013). As in the Liu-West algorithm, Nθ parameter
values are first sampled from the prior and then resampled at every iteration t (or if some
degeneracy criterion is fulfilled, see Section 2.2.6) and moved by a transition kernel to
maintain diversity in the sample. However, in contrast to the Liu-West algorithm, each
parameter value is attached to its own particle filter with Nx particles instead of just one
particle. The resampling weight of a parameter is then not the importance weight of a
single particle but rather the likelihood as estimated by the particle filter associated with
that parameter, similar to particle MCMC algorithms. The second important distinction
is that whenever a parameter is newly sampled from a kernel, the states of the associated
particles are re-generated from the start of the time-series to the current iteration t. This
prevents the bias of the Liu-West algorithm, where states and weights are not updated
together with the parameter. The steps of the SMC2 are given in Algorithm 7, where the
details of each particle filter attached to a parameter θm are omitted. We note that all
techniques mentioned in Chapter 2 can be used for the particle filter associated with each
parameter value. We also only give the algorithm with the PMMH kernel but other choices
are possible (see 18.2.2 in Chopin and Papaspiliopoulos, 2020). This is the recommended
choice and helps reduce the memory cost of the algorithm.

Algorithm 7 SMC2 algorithm

for m← 1, ..., Nθ do
sample θm ∼ p(θ) and set wm ← 1

initialise PF with particles x
(1:Nx,m)
0 and weights w

(1:Nx,m)
0

end for
for t← 1, ..., T do

for m← 1, ..., Nθ do

perform iteration t of the PF, generating particles x
(1:Nx,m)
t and weights wt,θ(x

i,m
t )

(see Algorithm 2)
Compute p̂(yt|yt−1, θm) = 1

Nx

∑Nx
i=1wt,θ(x

i,m
t )

update importance weights wm ← wmp̂(yt|yt−1, θm)
if resampling condition met then

resample parameters θ̃m) with probabilities proportional to {wm}m=1...Nθ

sample θ̃m ∼ q(·|θm) . PMMH kernel
run new PF for θ̃m and compute p̂(y1:t|θ̃m)
calculate MH acceptance probability α (see Algorithms 5 and 6),
With probability α, set θm ← θ̃m (and replace the associated PF)
wm ← 1 . Set weights

end if
end for

end for
return a set of parameter values and weights {θm, wm}m=1...Nθ

As with the PMMH, finding the right balance between the number of parameters Nθ and
the size of each particle filter Nx can be challenging. It is even possible to dynamically
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increase Nx as the algorithm progresses. One reason for this is that, as explained in
Section 2.2.3, the relative variance of the likelihood estimate for each parameter can be
bounded by Cθt/Nx which justifies the linear increase of Nx with t. When and how exactly
this increase is appropriate has not yet been fully answered, although some work on this
question has been done by Chopin et al. (2015). One suggestion in Chopin et al. (2013) is
to double the number of particles Nx when the acceptance rate of the PMMH kernel falls
below a certain threshold, e.g., 10%.

Other than optimising Nx and Nθ, there are many more options to tune this algorithm.
For the PMMH kernel, the type and scale of the proposal distribution can be chosen.
For example, the covariance of the proposal can be adapted to be proportional to the
empirical covariance of the current parameter sample at every time step, similarly to the
distribution in Equation 3.2. The resampling criterion often means monitoring the ESS of
the parameter particles, and setting a threshold, e.g., 0.5Nθ, which triggers the resampling
step.

Assessing the Monte Carlo error of the generated sample is less straightforward than it
is for the PMMH as the target distribution changes throughout the algorithm. At every
iteration t, a weighted sample from p(θ|y1:t) is produced. This means that it is difficult
to assess the quality of the sample, as a large change in the sample at the very last
time step could be due to Monte Carlo variance but also represent a true large difference
between p(θ|y1:(T−1)) and p(θ|y1:T ). Finding a measure for the effective sample size is
equally challenging. Using the formula for the ESS of weighted samples as in Equation 2.4
over-estimates the amount of information in the sample. For example, right after the re-
sampling step, the importance weights of all parameter particles are set to 1. If all proposed
new parameter values were accepted and therefore the parameter sample consisted of Nθ

unique values, the ESS when calculated as in Equation 2.4 was Nθ. However, this number
does not show that many of these parameter particles might be highly correlated, e.g., if
they all originated from the same ancestor parameter particle and had only been moved
through a kernel with a small variance. On the other hand, a very conservative way to
quantify the diversity of the parameter particles measure is to monitor the ancestor particle
of each parameter particle and calculate how many different ancestors are represented in
the final sample. These two approaches give a lower and upper limit of the true ESS but
this does generally not lead to a useful measure.

Another difficulty with this algorithm is the required memory size which is O(NθNx) when
the PMMH kernel is used and can even be TO(NθNx) for other less parsimonious kernels.
One suggestion given in Chapter 18.3 in Chopin and Papaspiliopoulos (2020) is to repeat
runs of the algorithm with a lower number for Nθ. This reduces the memory cost and
allows parallelisation to reduce the overall runtime.

3.3 Empirical Investigations of SMC Methods for Parame-
ter Inference

In this section, we implement some of the methods described above and study different
aspects of them. The four different models first introduced in Section 1.2 are used for this.
As a reminder, these are the 2-state model with 6 parameters, the 7-state model with 6
parameters, the complete seal model without independent estimate of total adult abun-
dance, which has 9 parameters, and the complete seal model with independent estimate,
which has 10 parameters. For the last, we use the real data from 1984 to 2010, whereas
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for the first three, we use simulated data. The goal is to find an algorithm that produces
samples from the posterior distribution for the complete seal model in feasible computing
time.

We initially explore various strategies to adapt the PMMH algorithm for the different
versions of the seal model. First, we study the effect of the choice of proposal distribution
and the size of its variance on the mixing of the chain. We also study how the number
of particles interact with the scale of the proposal distribution. As in Chapter 2, these
computing-intensive explorations are undertaken only with the 2-state model. In the
next step, the findings about the proposal distribution are transferred for the other more
complex models while we adapt the optimal number of particles as necessary. We also
discuss the effect of modifying the PMMH algorithm by re-estimating the likelihood at
each iteration.

Lastly, we illustrate some features of the SMC2 algorithm by applying it to the 2-state
model but also show that this algorithm does not work with the complete seal model.

3.3.1 PMMH: Tuning the Proposal Distribution

Here, we study how the choice of proposal distribution in the MH kernel in combination
with the number of particles affects the mixing of the chain. The key things we explore
are the number of particles N to estimate the likelihood in relation to the number of
MCMC iterations M , the scale of the variance of the proposal distribution, and a possible
transformation of the parameters to improve proposals.

We propose new parameter values jointly with a multivariate normal distribution but do
so first using the untransformed parameters, even though their support is only a subset
of the real line. After studying the effect of the scale of the covariance of this proposal
distribution in combination with the number of particles, we repeat the same analysis
when proposing on the transformed parameter space as in Table 3.1. We use the 2-state
model for these investigations which allows us to study various settings of the algorithm
and their interactions in feasible computing time. The same simulated time series as in
Chapter 2 was used for the observations y1:T .

3.3.1.1 Untransformed parameters

The first choice that needs to be made when running the PMMH is deciding which particle
filter to use for estimating the likelihood for any given parameter vector. For this, we refer
back to the results of the simulation study in Chapter 2 and use the filter that was shown to
produce the likelihood estimates with the lowest variance. This means that we do not use
any adjustment multiplier when resampling the particles or a function to forward-project
the particles other than the model transition density. However, we do adapt the frequency
with which the particles are resampled and only resample when the ESS of the particles
falls below the threshold if 0.8N . As we do not expect these features of the algorithm to
affect the PMMH in different ways depending on the exact version of the model or the
MH algorithm, they will be kept as just described for the remainder of this chapter.

Next, a proposal distribution for the MH kernel needs to be designed. We use a multi-
variate normal distribution where the covariance is proportional to the covariance of the
posterior distribution. The decision to jointly propose all 6 parameters is driven by two
factors. Firstly, evaluating the likelihood of a proposed value is expensive, as a particle
filter needs to be run every time and proposing each parameter separately increases this
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Figure 3.4: The effective sample size per second when running the PMMH for the 2-state
model while varying the number of particles N the scale h of the covariance of the proposal
distribution.

cost by a factor of 6. Secondly, some of the parameters are highly correlated. Using the
covariance from the posterior distribution from a pilot run allows us to use this correlation
when making joint proposals.

To identify optimal combinations of the scaling factor h and the number of particles N
that lead to the highest effective sample size per runtime for the 2-state model, we now
systematically study the effect of varying both these parameters for the 2-state model,
and any interactions between the two. We vary the scaling factor h between 0.01 and
1.1, and the number of particles between 3 and 1000. The number of iterations of the
MCMC is inversely proportional to the number of particles so that the computation time
is similar for each run of the algorithm. As the overhead of the MCMC takes a significant
proportion of the overall runtime for low number of particles, the runtime for N = 3 and
10 particles was substantially higher.

Table C.1 and Figure 3.4 show the results when running the algorithm with these dif-
ferent settings. To assess whether the Markov chain had converged and determining an
appropriate burn-in period, we used a combination of trace plots from two chains and an
estimate of the multivariate potential scale reduction factor R̂ (see Section 3.2.2.1). A high
effective sample size per runtime was achieved with values of h between 0.8 and 1.1 for
all numbers of particles N between 3 and 300, and the two highest values were generated
with the combination of N = 30 and h = 0.8 respectively h = 1.1. Both N = 10 and 30
for the number of particles produce a high effective sample size. There seems to be no
notable interaction between h and N . Setting h to 0.8 is the best choice for all numbers
of particles other than N = 1000, although there the overall effective sample size is so
low that the results need to be cautiously interpreted due to Monte Carlo error. Equally,
when keeping h constant, N = 10 and 30 is the best choice for all studied values of h.
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Figure 3.5: ESS/sec for the 2-state model using the PMMH algorithm with two proposal
distributions. The number of particles N and the covariance scale h of the proposal distribution
were varied. Blue lines represent results with a multivariate normal distribution on the original
parameter scale, while red lines show results after transforming parameters to the real line.
Missing values indicate non-convergence.

3.3.1.2 Transformed parameter values

We now repeat the study above but propose new parameter values on the transformed
scale. That means that we apply a bijective function r : A→ R, θ 7→ r(θ), to the parameter
as specified in Table 3.1. The proposal distribution is then multivariate normal on the
transformed scale:, so

r(θ∗) ∼ N (r(θ), hΣr(θ)|y),

where Σr(θ)|y is the covariance of the transformed posterior distribution, calculated from a
pilot run. This has the advantage that the proposal distribution only generates parameter
values from the support of their prior distribution. The disadvantage is that the proposal
distribution is no longer symmetric on the untransformed scale.

As before, we vary both the scaling factor h and the number of particles N while keeping
the computational effort roughly constant by keeping NM constant. Again, the ESS per
runtime is used to measure the efficiency of the algorithm and trace plots and the potential
scale reduction factor R̂ are used to assess the convergence of the Markov chains for each
setting.

The ESS per runtime was computed for the 2-state model using the PMMH algorithm with
two different proposal distributions. The number of particles (N) and the covariance scale
(h) of the proposal distribution were varied. Blue lines represent results with a multivariate
normal distribution on the original parameter scale, while red lines show results after
transforming parameters to the real line. Missing values indicate non-convergence.

The results in Table C.2 show that the chains failed to converge a lot more frequently
than in the untransformed case. In Figure 3.5, we see that where the chains converged,
the trends are similar when using the transformed proposal distribution compared to using
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(a) Proposals on the untransformed parameter space.

(b) Proposals on the transformed parameter space.

Figure 3.6: Trace plots of the last 25% of iterations from running 2 chains with the PMMH
for the parameter φa, with h = 1 and N = 30.

the untransformed proposal distribution. As before, using N = 10 or 30 particles yields
the highest ESS per runtime for all values of h, and setting the scaling factor h = 1
compared to the values of h = 0.3 or lower is the best choice for all values of N . Again,
there appears to be no interaction between the two variables. Most notably though, using
a proposal on the transformed parameter space shows a clear decrease in the quality of
the sample when compared to proposals on the untransformed space. Comparing the
highest values of ESS per second for h = 1, which was produced with N = 10 particles
in both cases, the untransformed proposal leads to a value that is 3.4 times higher than
with the transformed proposal. The trace plots in Figure 3.6 give some indication for the
reason of the bad performance when proposing on the transformed scale. Because of the
asymmetry of the proposal distribution, the chain often samples values close to the limits
of the support of the prior distribution which leads to poor mixing.

In conclusion, this proposal distribution does not lead to better results than simply propos-
ing values with a multivariate normal distribution, even though in that case, sometimes
parameter values with prior density 0 are proposed. Rejection of these parameter values
is quick as it does not require the evaluation of the likelihood. We acknowledge that many
other possibilities for the proposal distribution exist. However, since the multivariate
normal distribution generates satisfactory results with the right choices of h and N , this
proposal distribution will be kept for the more complex models.

3.3.1.3 Conclusion

To maximise the algorithm’s efficiency for the 2-state model, we propose new parameter
values on the untransformed scale and set h = 0.8 and N = 30. Running the algorithm
with these settings for around 15 minutes already produces a reasonable estimate of the
posterior distribution, which can be seen in Figure 3.7a, even though a longer runtime
would increase the Monte Carlo accuracy. We note the high correlation in Figure 3.7b
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between the two survival parameters φp,max and φa. This is investigated in more detail
in Chapter 5. Moving on to the more complex models, we utilise the these findings and
continue to use a multivariate normal proposal distribution on the untransformed scale of
the parameters.

3.3.2 PMMH: Adapting the Number of Particles For Each Model

In this section, we attempted to generate samples from the posterior distributions of
three increasingly complex models—the 7-state model, the complete seal model, and the
complete seal model with independent estimate—by using the PMMH algorithm. As in
the section above, we explored the relationship between the number of particles N when
estimating the likelihood and the number of iterations M of the MCMC, while keeping
the computation time roughly constant. We learned in Chapter 2 that for a fixed number
of particles N the variance of the likelihood estimate varies greatly between the different
models. As this variance strongly affects the mixing of the Markov chain, the number of
particles needs to be adapted for each individual model. We first did this for the 7-state
model using simulated data, where we estimated all 6 model parameters simultaneously.
Then, we used the complete seal model but excluded the independent estimate of the total
size of the adult population, again using simulated data. Lastly, we ran the algorithm using
the real data and the complete seal model including the independent estimate and any
other modifications (see Section 1.2).

3.3.2.1 7-State Model

To find the ideal algorithm settings for the PMMH algorithm when generating samples
from the posterior distribution for the 7-state model, we used a similar approach as for
the 2-state model. We varied both the number of particles N and the scaling factor h
while adapting the number of iterations of the Markov chain to keep the computation
time relatively constant. For the proposal distribution, a multivariate normal distribution
was used with a covariance proportional to the covariance of the posterior distribution as
calculated in a pilot run.

The results in Figure 3.8 and Table C.3 show similar trends to the results for the 2-state
model. Again, the best choice in terms of achieving the highest ESS per runtime is to
set h = 0.8 although the results are comparable for h = 0.6 and 1.0. For the number of
particles, N = 10 resulted in the highest ESS per runtime for all examined values of h but
the samples produced with N = 3 and N = 30 were close in quality across all values of h.
As before, no interaction between the two factors could be observed. Figure 3.9 shows the
resulting posterior distribution as estimated with the best combination of N and h. The
correlation between φp,max and φa, while still high, is smaller than for the 2-state model.

3.3.2.2 Complete Seal Model Without Independent Estimate

Having found the best settings for the 7-state model in one region, we now extend the
model to all four regions and attempt to produce samples from the posterior distribution
of the complete seal model without the independent estimate (see Section 1.2.4) using
simulated data. Because of the significant increase in computation time for this model, it
is no longer feasible to do a grid search for both the optimal h and N . Instead, we rely
on the results from the previous section and set h = 0.8. Firstly, this was the best value
across all tested numbers of particles for both the 2-state and the 7-state model. Secondly,
varying h slightly only had a small effect on the ESS per runtime. For example, for the

84



(a) Plot of the marginal posterior densities for all 6 parameters. The black vertical line indicates the
true parameter value with which the data was simulated. The black density line indicates the prior
distribution.

(b) Posterior correlation coefficients of the 6 parameters in
the 2-state model.

Figure 3.7: Results generated by running the PMMH for the 2-state model with 2 chains with
M = 100, 000 iterations each. The scaling factor h was set to 0.8 and the number of particles
was N = 30 for estimating the likelihood. The runtime was 945.6s≈ 15.76min, resulting in an
effective sample size of 3932.0.
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Figure 3.8: The effective sample size per second when running the PMMH for the 7-state
model while varying the number of particles N the scale h of the covariance of the proposal
distribution.

7-state model with N = 10 particles, the highest value of ESS/sec was 6.59 for h = 0.8 but
was still 6.28 for h = 0.6 and 6.41 for h = 1.0. We therefore expect that setting h = 0.8 for
the complete seal model without independent estimate is an adequate choice and provides
the same insights as another potentially slightly better value might.

With constant h = 0.8, we vary the numbers of particles while keeping the runtime
relatively constant, which generally means keeping NM constant. However, since the
computational overhead of the MCMC takes a significant proportion of the overall runtime
for low number of particles, the number of iterations M was reduced for N = 3, 10 and
30 particles.

N M h Runtime (sec) R̂ Acceptance Rate ESS ESS/sec

3 1000000 0.80 13233.33 1.33 0.0010 - -
10 750000 0.80 12594.55 1.04 0.0066 396.42 0.031
30 500000 0.80 11891.46 1.01 0.0163 921.66 0.078

100 300000 0.80 13920.59 1.01 0.0410 1389.41 0.100
300 100000 0.80 10718.82 1.04 0.0711 718.83 0.067

Table 3.3: Results from running the PMMH for the complete seal model without independent
estimate with relatively constant runtime, while varying the number of particles N . The
proposal distribution is a multivariate normal distribution on the transformed parameter space
with a covariance h = 0.8 times the posterior covariance. The ESS for N = 3 was not
calculated due to its high R̂ value.

Table 3.3 and Figure 3.10 show that setting the number of particles to N = 100 resulted
in the highest ESS per runtime. For N = 3 the Markov chains did not converge. In
comparison with the 7-state model which models only one region, extending the model to
include all 4 regions led to a large decrease in ESS per runtime: for the 7-state model, the
highest value is 6.59/sec whereas here the highest value is 0.1 ESS/sec, which corresponds
to almost 66 times more computation time to achieve the same ESS. Figure 3.11a shows

86



(a) Density plots of the marginal posterior densities for all 6 parameters. The black vertical line indicates
the true parameter value with which the data were simulated. The black density line indicates the prior
distribution.

(b) Posterior correlation coefficients of the 6 parameters in
the 7-state model.

Figure 3.9: Results generated by running the PMMH for the 7-state model with 2 chains
with M = 300, 000 iterations each. The scaling factor was set to h = 0.8 and the number of
particles was N = 10. The runtime was 1982.53s≈ 33.0min, resulting in an effective sample
size of 13073.27.
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Figure 3.10: Relationship between the number of particles N and ESS per runtime when
sampling from the posterior distribution of the complete seal model without independent
estimate. The proposal distribution is a multivariate normal distribution on the transformed
parameter space with a covariance h = 0.8 times the posterior covariance.

that with an ESS of 1389.41 which was achieved after 3.87h runtime with N = 100, the
density as estimated by the produced sample still exhibits some Monte Carlo variance.
However, the plots also indicate that should more accurate estimates be required, more
precise estimates could probably be produced with a ten times higher runtime. This is
still feasible if only these exact settings are of interest but rules out any more complex
analysis or simulations. For this model, Figure 3.11b shows a few high correlations which
could affect the convergence speed of the Markov chain, in particular between φp,max and
φa and between ρ and the two survival probability parameters.

3.3.2.3 Complete Seal Model With Independent Estimate

After the previous investigations with simulated data using simpler models, we attempt to
generate samples from the complete seal model with independent estimate, using the real
data (see Section 1.2.3). The proposal distribution is a multivariate normal distribution
with a covariance proportional to an estimate of the covariance of the posterior distribu-
tion. This estimate was provided by Calliste Fagard-Jenkin, who worked with fitting the
same model with a similar algorithm using the computing power of graphics processing
units (Fagard-Jenkin, 2024). The scaling factor for the proposal covariance was h = 0.8.
Five different values for the number of particles between N = 3 and N = 30, 000 were used
to estimate the likelihood within the PMMH. Again, we attempted to keep the runtime
roughly constant for the different runs by adapting the number of iterations M .

N M h Runtime (sec) R̂ Acceptance Rate ESS ESS/sec

3 10000000 0.80 174641.06 1.14 0.0002 316.25 0.0018
30 4000000 0.80 107079.94 2.10 0.0002 95.48 0.0009

300 1000000 0.80 97852.61 1.54 0.0013 193.06 0.0020
3000 100000 0.80 92222.71 1.18 0.0090 279.15 0.0030

30000 10000 0.80 162685.43 28.23 0.0256 - -

Table 3.4: Results from running the PMMH for the complete seal model with independent
estimate and with the real data with relatively constant runtime, while varying the number of
particles N . The proposal distribution is a multivariate normal distribution on the transformed
parameter space with a covariance h = 0.8 times the posterior covariance. The ESS for
N = 30000 was not calculated due to its high R̂ value.

The results of the five runs can be seen in Table 3.4. According to the R̂ value, none of the
Markov chains seemed to converge in the given runtime, which varied between 25.6 and
48.5 hours for the different runs. Examining the trace plots confirmed that the mixing of
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(a) Density plots of the marginal posterior densities for all 9 parameters. The black vertical line indicates
the true parameter value with which the data were simulated. The black density line indicates the prior
distribution.

(b) Posterior correlation coefficients of the 9 parameters.

Figure 3.11: Results generated by running the PMMH for the complete seal model without
independent estimate with 2 chains with M = 300, 000 iterations each. The scaling factor was
set to h = 0.8 and the number of particles was N = 100. The runtime was 13920.59s≈ 3.87h,
resulting in an effective sample size of 1389.41.
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Figure 3.12: Relationship between the number of particles N and ESS per runtime when
sampling from the posterior distribution of the complete seal model with independent estimate
using the real data. The proposal distribution is a multivariate normal distribution on the
transformed parameter space with a covariance h = 0.8 times the posterior covariance.

the chains was not fully satisfactory for any of the runs. For N = 30, 000, the chains did
not converge at all and showed no tendency to do so even after M = 10, 000 iterations.
However, we still attempted to find a reasonable burn-in value for the other runs, to gain
insights from analysing the resulting samples. Calculating the ESS per runtime, we see in
Figure 3.12 that the highest value was achieved for N = 3, 000. This also corresponds to
one of the two lowest values of R̂ which makes this the best choice for the value of N even
though the results need to be treated with great caution because of the poor mixing of
the chains. Interestingly, and contrary to the results in the previous sections, using N = 3
led to similar results in terms of R̂. The ESS per runtime was lower but still in the same
order of magnitude.

To understand the reason behind the poor mixing of the Markov chains, we study the
trace and density plots for the two cases that seemed the closest to generating samples
from the posterior distribution, that is, for N = 3 and N = 3000. Figure 3.13 shows
the trace plot and estimated density for the parameter φa, as well as a plot of the log-
likelihood estimates for both cases. Often, the chain remains with one parameter value
for many iterations in a row, rather than accepting the newly proposed value. In the run
with N = 3, the two chains have 19 periods were they do not accept the new parameter
value for more than 100,000 iterations in a row, and one chain even exhibits a period of
1,009,270 iterations with the same parameter value. As a result, the number of unique
parameter values in the two chains was only 3142. For the N = 3000 case, the same
behaviour can be observed, though much less extreme. Here, the longest run with one
parameter value is 6, 247 iterations and there are 34 runs of over 1000 iterations, resulting
in 1451 unique parameter values in the two chains. Looking at the corresponding trace
plots of the log-likelihood estimates, we see that the long runs with the same parameter
value correspond to very high likelihood estimates. In Section 2.3.2.1, we found that the
distribution of the likelihood estimate is often right-skewed. This means that very high
estimates can occasionally occur which lead to a very low acceptance ratio in the MH
acceptance ratio for the newly proposed value in the next iteration. These long runs of
the same parameter value clearly impact the posterior distribution estimate. In the plot
of the estimated posterior density, there are pronounced peaks which correspond to the
parameter values that had extremely long runs. For example, in the N = 3 case the three
parameter values with the longest runs are at the φa values of 0.969, 0.949, and 0.966,
which correspond to the three most pronounced peaks in the density plot. The situation
is similar for N = 3000 though less extreme. The density plots for the other parameters
can be found in Figures C.1 and C.2 in the appendix and show a similar behaviour.
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(a) N = 3 (b) N = 3, 000

Figure 3.13: Trace plots and density plots from the sample generated from the PMMH with
two different values of N , with two chains each. The first plot shows the trace plot of the
parameter for adult survival, φa, and the second shows the log-likelihood estimate at each
iteration. The third plot shows a plot of the estimated posterior density.
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3.3.2.4 Conclusion

In summary, we found the settings in Table 3.5 to produce the highest ESS per run-
time among the tested number of particles N and scaling factors h. While increasing M
increases the ESS linearly after the burn-in period, it also leads to a linear increase in
runtime. This choice therefore depends on the available computing power and desired
effective sample size. We give the value of M in the table that was used to produce the
reported ESS.

Model Data N h M Runtime
(sec)

ESS ESS/sec

2-state simulated 30 0.8 100000 945.56 3931.97 4.16
7-state simulated 10 0.8 300000 1982.53 13073.27 6.59
Complete without
independent estimate

simulated 100 0.8 300000 13920.59 1389.41 0.100

Complete with
independent estimate

real 3000 0.8 100000 92222.71 279.15 0.0030

Table 3.5: Settings that led to the highest observed ESS per runtime for each of the four
models when running a PMMH with a multivariate normal proposal distribution with covariance
hΣθ|y1:T . N stands for the number of particles to estimate the likelihood, h is the scaling factor
of the proposal covariance matrix and M stands for the number of iterations of the MCMC.

3.3.3 PMMH: With Re-estimation

In Section 3.2.2.4, we studied on a toy example how re-estimating the likelihood at every
iteration affects the target distribution of the Markov chain and saw that this is no longer
the posterior distribution. However, it became clear in Section 3.3.2.3 that occasional
high likelihood estimates severely disrupt the mixing of the Markov chains such that
convergence requires an often prohibitively long runtime. It is therefore worth investigating
what the effect of re-estimating the likelihood in the seal model is. This means firstly
confirming whether re-estimating has the hypothesized effect of improving the mixing of
the Markov chain, and secondly quantifying the size of the resulting bias. If re-estimation
leads to a significantly reduced computation time while only introducing a small bias in
the posterior distribution estimate, this technique could provide a useful way of quickly
generating samples from an approximation to the true posterior distribution.

To asses this, we first study how much the estimated posterior distributions for the 2-state
model differ depending on whether likelihood is re-estimated or not, and whether the ESS
per runtime increases. We then study how the mixing improves for the more complex
complete seal model with independent estimate when the likelihood is re-estimated.

3.3.3.1 2-State Model

We use the algorithm settings from Section 3.3.1 and run the PMMH four times, twice
with re-estimating the likelihood at every iteration, and twice without. With this, we are
able to better determine whether a difference in distribution comes only from Monte Carlo
error or whether it is systematic.

Table 3.6 shows the result from the four runs. In all four runs, the chains appeared to have
converged according to the R̂ value, which was confirmed by the trace plots. As expected,
the runtime for the algorithm with re-estimation was higher, since at each iteration two
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Figure 3.14: Plot of the four marginal posterior densities for all 6 parameters, as estimated
by running a PMMH four times. The two red lines show the estimated posterior density when
the likelihood is not re-estimated, the two blue lines show the same when the likelihood is
re-estimated at every iteration. The black vertical line indicates the true parameter value with
which the data were simulated. The black density line indicates the prior distribution.
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Re-estimation Runtime (sec) R̂ Acceptance Rate ESS ESS/sec

TRUE 15197.32 1.00 0.19 39764.26 2.62
TRUE 15019.52 1.00 0.19 41004.55 2.73

FALSE 9509.79 1.00 0.16 39713.58 4.18
FALSE 9524.42 1.00 0.16 38400.20 4.03

Table 3.6: Results from running the PMMH for the 2-state model, comparing the effect of
re-estimating the likelihood term in the MH acceptance rate. The algorithms settings were
the ones that proved the best choices in Section 3.3.1, so h = 0.8, N = 30,M = 1, 000, 000.
Each of the two choices was repeated to determine whether any differences were only due to
Monte Carlo error.

φp φa α χ ρ τ

Re-estimated 99.32 99.44 99.29 99.22 99.27 99.22
Regular PMMH 99.11 99.20 99.17 99.19 99.14 99.23

Comparison 98.22 98.00 97.96 95.52 94.92 95.60

Table 3.7: Percentages of overlapped area of the marginal densities for each parameter,
measuring the shared area for both the two runs with re-estimation, the two runs without
re-estimation, and finally the shared area when these two versions are compared.

likelihood values needed to be estimated rather than just the one of the newly proposed
parameter value. We see that the ESS is indeed higher when the likelihood is re-estimated
but, importantly, this advantage is lost when the runtime is taken into account. Indeed,
when ESS per runtime is used as a criterion, the correct PMMH without re-estimation is
about 1.5 times faster.

In Figure 3.14 the posterior densities as estimated in the four runs are shown. While the
two distribution estimates where the likelihood has been re-estimated are close to the two
unbiased distribution estimates, there is a clear difference. This difference is quantified
in Table 3.7 with the overlapping index by Pastore and Calcagǹı (2019) which estimates
the shared area between two densities. For each parameter, the marginal densities when
estimated with the same technique share at least 99.11% of their area. When the two tech-
niques are compared, the shared area is only between 94.92% and 98.22% which confirms
the differences observed in Figure 3.14.

3.3.3.2 Complete Seal Model With Independent Estimate

We also study the effect of re-estimating the likelihood for the complete seal model with
independent estimate, using the real data. Even though the previous section showed that
re-estimation leads to a bias in the estimate of the posterior distribution, this bias was
relatively small. If we find the same for the complete seal model, while seeing a significant
reduction in computational cost, this approximation could be useful tool.

Since N = 3 and N = 3, 000 led to the most promising results in Section 3.3.2.3, we
assessed the effect of re-estimating for both of these settings. Table 3.8 shows as summary
of the four runs. As with the 2-state model, the runtime increased when the likelihood
was re-estimated. For the N = 3, 000 case, the runtime almost doubled, which reflects the
fact that twice as many likelihood estimates need to be computed when re-estimating. As
expected, the issue with rejecting the newly proposed parameter value disappeared when
re-estimating. The longest run without accepting a proposal was 258 iterations for the
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N = 3 case (compared to 1,009,270 iterations when not re-estimating) and 168 for the
N = 3, 000 case (compared to 6247 before).

N M Re-estimation Runtime (sec) R̂ Acc. Rate ESS ESS/sec

3 10,000,000 TRUE 271,402.60 5.83 0.2504
3 10,000,000 FALSE 174,641.06 1.14 0.0002 316.25 0.0018

3,000 100,000 TRUE 184,087.35 1.01 0.1842 1664.07 0.0090
3,000 100,000 FALSE 92,222.71 1.18 0.0090 279.15 0.0030

Table 3.8: Results from running the PMMH for the complete seal model with independent
estimate, comparing the effect of re-estimating the likelihood term in the MH acceptance rate.
The algorithms settings were the ones that led to the two best results in Section 3.3.2.3, so
h = 0.8, N = 3 and N = 3, 000 with M adapted to ensure comparable computation times.

The R̂ value shows that the run with N = 3 when re-estimating did not converge which
was also confirmed by inspecting the corresponding trace plots. We therefore now focus
only on the N = 3, 000 case. Here, there was a clear improvement in the R̂ value as well
as the trace plots and the two chains clearly converged. The ESS increased almost by a
factor of 6 which, taking the runtime into account, led to an increase in ESS per unit time
by a factor of 3.

φp φa α χNS χIH χOH χOrk ρ τ ω

66.99 73.01 83.76 72.13 68.60 72.16 67.38 72.94 45.09 72.49

Table 3.9: Percentages of overlapped area of the marginal densities for each parameter,
measuring the shared area between the run when the likelihood was re-estimated at every
iteration and the run when this was not done. The number of particles was N = 3, 000.

Having confirmed that the first condition for a useful approximation is fulfilled—namely,
the increase in ESS per runtime and the convergence of chains—we turn our attention to
the second crucial aspect: the size of the bias. We assess whether the obtained sample can
be considered a useful approximation by examining marginal density plots and calculating
the overlapping percentages of these densities. To reduce the Monte Carlo error in this
comparison as much as possible, we used a sample with an 11 times higher number of
iterations, that is, M = 1, 100, 000 for the run with no re-estimation (see Section 3.4). The
results of this comparison can be seen in Table 3.9 and Figure 3.15. While a higher ESS
for the unbiased sample would be desirable to obtain a smoother estimate, it seems highly
probable that not all of the differences between the two density estimates can be attributed
to Monte Carlo error. For example, for the parameter τ , the two algorithms estimate very
different means (118.6 and 148.9). For three of the carrying capacity parameters χ, the
variance of the posterior is over-estimated in the approximation. For ω, we expect no
new information about the parameter from the available data which the unbiased density
estimate confirms, whereas the approximation clearly deviates from the prior.

In conclusion, the bias that is introduced when re-estimating the likelihood in the PMMH
is too great to consider this approach a viable approximation for estimating the posterior.
While the bias was much smaller for the 2-state model, there was no improvement in
ESS per unit time, and the unbiased version of the algorithm already provides very good
results. Re-estimating the likelihood is therefore not a good solution for estimating the
posterior distribution in the seal model.
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Figure 3.15: Plot of the two marginal posterior densities for all 10 parameters, as estimated
by running a PMMH. The red lines shows the estimated posterior densities when the likelihood
is not re-estimated, the blue lines show the same when the likelihood is re-estimated at every
iteration. The black density line indicates the prior distribution.
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Figure 3.16: ESS of the parameter particles through the iterations t of the SMC2. The total
number of parameter particles was Nθ = 30, 000 and a resampling step was triggered when
the ESS fell below 3, 000. The red lines indicate the iterations where resampling ocurred.

3.3.4 SMC2 for the Seal Model

Here, we apply the SMC2 algorithm described in Section 3.2.3 to the 2-state model using
simulated data, and then to the complete seal model with independent estimate using the
real data.

3.3.4.1 2-State Model

To estimate the posterior distribution for the 2-state model, we chose Nx = 100 and
Nθ = 30, 000. This led to a runtime of 14.70 minutes which is comparable to the runtime of
15.76 minutes for generating the samples in Figure 3.7 with the PMMH. As the criterion for
resampling the parameter values, we chose a threshold of an ESS of 0.1Nθ for the parameter
particles, where the ESS was calculated as in Equation 2.4. We had initially chosen an
ESS-threshold of 0.5Nθ following the example in Chopin and Papaspiliopoulos (2020)
which led to a resampling step at almost every iteration and consequently high runtimes
and no insights in how the decrease in ESS evolved through the time series. Therefore, we
decreased the threshold to 0.1Nθ. In the resampling step, the proposal distribution was
a multivariate normal distribution with a covariance matrix of 0.1Σθ|y1:T , where Σθ|y1:T is
the covariance matrix of the posterior distribution calculated from a pilot run. The scale
of the covariance matrix was an ad-hoc choice to move the parameter particles somewhat
but simultaneously benefit from the diversity of the sample. In Figure 3.16, the ESS of
the parameter particles through time can be seen. Even after the parameter particles are
resampled, indicated by the red vertical lines, the ESS does not reach Nθ = 30, 000. This
is because in the PMMH kernel, not all of the proposed parameter values are accepted
and so, even though the weights of all parameter particles are 1, many of these parameter
particles share the same parameter value.

Figure 3.17 shows the evolution of the estimated posterior distribution from p(θ) to
p(θ|y1:T ) in the SMC2. The effect of adding more data on the posterior distribution can
be seen most clearly for the carrying capacity parameter χ. Looking at the simulated data
in Figure 2.7, we see that the population grows almost exponentially until it approaches
carrying capacity at around year t = 30. Only then is significant information about the
carrying capacity contained in the data because the pup survival probability decreases
(see Equation 1.4 and Figure 1.5). This is clearly visible in the plot of its interquartile
range through time, where almost no change from the prior can be observed until t = 30,
when a sudden decrease in interquartile range and change of the median happens.
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Figure 3.17: Inter-quartile range and median of the distributions p(θ|y1:t) through time t for
all six parameters of the 2-state model, as estimated by the SMC2 algorithm. The black dots
represent the inter-quartile range and median of the prior distribution. The vertical red lines
indicate the iterations where a resampling step occurred. The horizontal line indicates the true
parameter value that was used to simulate the data.
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As discussed, assessing the Monte Carlo accuracy of the generated sample is difficult.
We therefore estimated the posterior distribution 12 times with the above settings and
compared the results. The runtime for each of the runs ranged from 11.2 minutes to
26.4 minutes. The large difference originates from the fact that the amount of resampling
steps can differ between runs, and these resampling steps contribute most to the overall
runtime. Figure 3.18 shows the estimated densities for each of the runs. Clearly, there
are some differences between the estimates. The 12 densities have a pairwise overlapping
percentage between 90.3% and 99.3%, with a mean of 95.6%.

Because there is no reliable measure for the effective sample size, we instead compared
these numbers with the overlapping percentages for the posterior densities when estimated
12 times with the PMMH with the settings as in Figure 3.7. The resulting runtimes for the
PMMH ranged from 16.2 to 17.2 minutes. The computational effort for the two algorithms
is therefore comparable. The range and the mean of the pairwise computed overlapping
percentages for each parameter can be seen in Table 3.10. The similarity between two
estimates of the posterior density is much higher for the PMMH, such that the lowest
overlapping percentage for the PMMH is higher than the highest overlapping percentage
for the SMC2 across all parameters. This indicates that the Monte Carlo error in the
output of the SMC2 is higher than for the output PMMH.

φp φa α χ ρ τ

SMC2
lowest 75.49 85.20 78.81 80.40 82.64 86.61
mean 87.99 90.79 87.90 89.58 90.70 92.04

highest 95.09 97.19 95.69 95.46 96.04 96.44

PMMH
lowest 97.90 97.86 97.66 98.04 97.96 97.83
mean 98.41 98.50 98.31 98.44 98.41 98.48

highest 98.85 99.00 98.85 98.89 98.82 98.95

Table 3.10: Range and mean of percentages of overlapped area of the marginal densities for
each parameter from 12 different runs each for the SMC2 and the PMMH algorithm.

3.3.4.2 Complete Seal Model With Independent Estimate

To run the SMC2 for the complete seal model with independent estimate, using the real
data, we chose Nx = 3, 000 particles which corresponds to the best number of particles
determined for the PMMH in Section 3.3.2.3. As for the 2-state model, we chose an
ESS of 0.1Nθ as the resampling threshold for the parameter particles, and the proposal
distribution was again a multivariate normal distribution with a covariance of 0.1 times the
posterior covariance matrix Σθ|y1:T , calculated in a pilot run. An immediate difficulty with
these setting was that the SMC2 requires a lot of computer memory because Nθ particle
filters with Nx particles are run simultaneously. We therefore had to reduce the number of
parameter particles to Nθ = 1, 000. While it might be possible to work around this issue
by saving some of the particles to disk while they are not required, we instead chose to
circumvent this problem by running the SMC2 20 times with the settings described above.
The runtime for a single one of these runs was between 51.8 and 155.6 minutes, resulting
in a total runtime of 40.82 hours.

In Figure 3.19 we show the evolving posterior distribution as t increases and more obser-
vations yt are incorporated. Similarly to the equivalent figure for the 2-state model, the
information gained by adding the later observations can be seen. We also note that for the
time periods where the posterior is undergoing large changes, more resampling steps are
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Figure 3.18: Estimated densities of all six parameters in the 2-state model from 12 runs of the
SMC2 algorithm in blue. The black vertical line shows the parameter values used to simulate
the data. The black density line indicates the prior distribution.
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Figure 3.19: Inter-quartile range and median of the distributions p(θ|y1:t) through time t from
one of the 20 runs for all ten parameters of the 28-state model with independent estimate,
using the real data, as estimated by the SMC2 algorithm. The black dots represent the inter-
quartile range and median of the prior distribution. The vertical red lines indicate the iterations
where a resampling step occurred. The horizontal line indicates the posterior mean estimated
in Thomas et al. (2019).
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(a) Densities of the estimated marginal posterior distri-
bution of φp,max from each of the 20 runs of the SMC2

algorithm. The black vertical line indicates the true pa-
rameter value used for the simulation, the black density
line indicates the prior distribution.

(b) ESS of the parameter particles
through the iterations t of the SMC2 for
the first of the 20 runs. The red lines in-
dicate the iterations where a resampling
ocurred.

Figure 3.20: Results from running the SMC2 20 times for the complete seal model. For
each of the runs the number of parameter particles was Nθ = 1, 000 and the number of state
particles for each parameter was Nx = 3, 000. The resampling step for the parameter particles
was triggered when the ESS fell below 100.

occurring. We also note that the variance at time T = 26 is much smaller than we would
expect. For example, we know from Section 3.4 that the variance of the marginal posterior
distribution for χNS remains large even when all observations are included because the
number of seals in the North Sea does not seem to have reached carrying capacity yet.
Here however, the interquartile range is only 3210, whereas our analysis of the output by
the PMMH showed an interquartile range of 11877.

As discussed above, quantifying the ESS for the SMC2 is difficult. Instead we compare
the output from the 20 separate runs. Figure 3.20a shows the marginal posterior densities
for the parameter φp,max. The results for the other parameters are similar. It is apparent
that the 20 runs have not converged to a common target distribution. Instead it seems
that the variance of the likelihood estimate results in unreliable parameter estimates. This
might be due to the occasional very low ESS of the parameter particles. For example, in
the first run the lowest value for the ESS was 19.40 (see Figure 3.20b). It seems like the
particle diversity cannot be regained after such a low value. Because the algorithm has
not converged we cannot further use these results.

It is possible that better results could be achieved by exploring all possibilities for tuning
this algorithm. For example, the proposal distribution could be adapted and the resam-
pling threshold for the parameters could be changed. We can also study the effect of
increasing the number of particles Nx dynamically throughout the run of the algorithm,
and study in detail the optimal balance between Nx and Nθ (see, e.g., Chopin and Pa-
paspiliopoulos, 2020). However, our results here show severe problems and do not point
towards an obvious solution to address them. We also quickly run into issues with com-
puter memory which prohibits simply scaling up the computational effort of the algorithm.
In addition, any improvements are difficult to diagnose as no good measure of Monte Carlo
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accuracy is available. For these reasons, we did not explore this algorithm further for the
seal model.

3.4 Analysis of Posterior Distribution

From the studies in the previous section, we found that the best choice for the complete
seal model with independent estimate was using the PMMH with N = 3, 000 particles.
To produce a final estimate of the posterior distribution, we increased the number of it-
erations from M = 100, 000 to 10 parallel process running 2 chains with M = 1, 000, 000
iterations each. The initial values of the Markov chains were sampled from posterior sam-
ples obtained in the previous section and hence no burn-in period was set. For inference,
the samples from the 10 processes were combined. The runtime for the 10 processes was
between 266.5 and 283.7 hours, resulting in an overall multivariate ESS of 4798.861. A
summary of the 10 processes is given in Table 3.11.

N M h Runtime (sec) R̂ ESS ESS/sec

3,000 1,000,000 0.8 1,008,101 1.20 455.2 0.00045
3,000 1,000,000 0.8 1,009,357 1.05 540.2 0.00054
3,000 1,000,000 0.8 1,008,960 1.05 789.3 0.00078
3,000 1,000,000 0.8 986,841 1.11 523.8 0.00053
3,000 1,000,000 0.8 1,000,573 1.08 576.2 0.00058
3,000 1,000,000 0.8 1,006,974 1.06 721.0 0.00072
3,000 1,000,000 0.8 1,021,296 1.08 485.2 0.00048
3,000 1,000,000 0.8 986,580 1.05 844.8 0.00086
3,000 1,000,000 0.8 959,564 1.05 967.3 0.00101
3,000 1,000,000 0.8 1,001,565 1.05 571.7 0.00057

Table 3.11: Results from running the PMMH for the complete seal model with independent
estimate and with the real data, using N = 3, 000 particles and 20 chains with M = 1, 000, 000
iterations each. The algorithm settings are as determined in Section 3.3.2.3.

3.4.0.1 Marginal distributions

To analyse the marginal posterior distributions of the 10 parameters, we examine the
marginal densities in Figure 3.21 and the summary statistics in Table 3.12. We also
compare the posterior means and standard deviations with the ones given in Thomas et al.
(2019), where the modified version of the Liu-West algorithm described in Algorithm 4
was used.

We note that for most of the parameters, the prior distribution have a great influence on
the marginal prior distributions. The overlap is larger than 28% for all parameters other
than the three carrying capacities χIH , χOH and χOrk. For α, χNS and ω the overlap
is particularly high. This is unsurprising in the case of χNS as it is apparent from the
observed counts that the population in this region is still growing almost unrestrictedly
and therefore very little information about the carrying capacity can be gained from
the data. For the sex ratio ω, this is also expected. This parameter is necessary to
include the independent estimate of all adult seal (including males) in the model. Only
when the prior on ω is very wide is any learning on it expected but here with a narrow
prior there is no further information about it in the data. For the fecundity α, the
change in the posterior distribution from the prior seems due only to the independent
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Figure 3.21: Density plots of the marginal posterior densities for all 10 parameters, generated
by running the PMMH for the complete seal model with independent estimate with N = 3, 000
particles and 20 chains with M = 1, 000, 000 iterations each. The scaling factor for the
covariance of the proposal distribution was set to h = 0.8. The black density line indicates
the prior distribution. For φp,max, φa and α, the dashed line indicates the theoretical marginal
prior and the solid line indicates the prior induced by the Beverton-Holt density dependence.
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Parameter Prior Posterior Prev. posterior Prior-post. Previous
Mean (SD) Mean (SD) Mean (SD) overlap overlap

φp,max 0.671 (0.179) 0.439 (0.073) 0.48 (0.09) 29.9% 40%
φa 0.919 (0.031) 0.957 (0.011) 0.95 (0.01) 36.6% 35%
α 0.835 (0.092) 0.893 (0.063) 0.90 (0.06) 70.7% 70%

χNS 20,000 (10000) 18,800 (9870) 15,500 (8210) 87.7% 77%
χIH 5,000 (2500) 3,080 (80.5) 3,110 (173) 8.2% 11%
χOH 15,000 (7500) 11,800 (238) 11,700 (535) 8.5% 14%
χOrk 40,000 (20,000) 17,700 (734) 17,800 (1680) 7.0% 9%

ρ 10 (5) 5.78 (0.746) 5.95 (1.73) 28.2% 50%
τ 140 (96.61) 151 (21.4) 112 (34.60) 34.6% 49%
ω 1.70 (0.02) 1.70 (0.019) 1.70 (0.02) 95.1% 99%

Table 3.12: Mean (with standard deviation in parentheses) for the marginal prior and posterior
distributions of the 10 parameters in the complete seal model. For the parameters φp,max, φa
and α, the induced prior was used to calculate the prior summary statistics and overlap per-
centages. The previous posterior statistics are the ones given in Thomas et al. (2019) using
Algorithm 4.

estimate. Comparing the marginal density with the one in Figure 3.11a, we see that
when no independent estimate is included in the model, there is almost no change from
the prior. This points to identifiability issues with this parameter when only the pup
production estimates are used.

Comparing our results with the ones in Thomas et al. (2019), we note that many of the
results are similar, but some differences should be highlighted. The posterior means are
relatively similar except for φp,max, χNS and τ . For the maximum pup survival probability
φp,max, we estimated a lower value of 0.439 whereas in Thomas et al. (2019), the mean
value was 0.48. For the carrying capacity in the North Sea region, Thomas et al. (2019)
estimated a posterior mean of 15500; we calculated a mean estimate of 18800. While these
differences are large, they are still within one standard deviation of the posteriors. This
is not the case for the observation precision τ , where we estimated a much larger mean of
151 with an SD of 21.4 while Thomas et al. (2019) obtained a mean of 112 (with an SD
of 34.60).

When comparing the standard deviations and the prior-posterior overlap, we notice more
differences. For the three carrying capacities χIH , χOH and χOrk, our estimated standard
deviations are less than half those estimated by Thomas et al. (2019). This also leads
to a smaller prior-posterior overlap. A similar phenomenon can be observed with the
shape parameter ρ, where our estimated standard deviation is less than half and the
prior-posterior overlap decreases from 50% to 28.2% compared to the results in Thomas
et al. (2019). For the observation precision, not only is the mean different as discussed
above but the standard deviation is also smaller when the posterior is estimated with the
PMMH, decreasing from 34.6 to 21.4. Again, this leads to a decrease in prior-posterior
overlap from 49% to 34.6%.

3.4.0.2 Joint distributions

We also examine the joint distributions. Figure 3.22 shows the correlation coefficients,
complemented by scatter plots in Figure C.4 in the appendix. The largest posterior correla-
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Figure 3.22: Posterior correlation coefficients of the 10 parameters of the complete seal
model, generated from running the PMMH with N = 3, 000 particles and 20 chains with
M = 1, 000, 000 iterations each.

tion exists between the two survival probabilities φp,max and φa with a negative correlation
of -0.88. We also note the relatively high correlation that the density dependence shape
parameter ρ has with several of the other parameters, e.g., the three carrying capacities
χIH , χOH and χOrk, and the two survival probabilities φp,max and φa. The shape parame-
ter ρ governs the relationship between the carrying capacity and demographic parameters
and the annual pup survival probability φp,t. Comparing these correlation coefficients with
the ones in Thomas et al. (2019), we see the same large correlation is estimated between
φp,max and φa. For ρ, not all correlations are as strong as they were observed here, for
example with χOH (0.0408 versus -0.28 in our results) and with φa (0.198 versus 0.47 in
our results). This could be related to the differently estimated standard deviations of ρ.
Otherwise, the estimates correlation coefficients are relatively similar.

3.4.0.3 State estimates

To produce samples from the smoothed posterior state distribution p(x0:26|y1:26), we sam-
pled θi for i = 1, ..., 500 from the posterior distribution and then ran bootstrap fil-
ters with nimble with 1000 particles each to generate smoothed state estimates from
p(x0:26|y1:26, θi). We then randomly selected one of the 1000 state trajectories from each
bootstrap filter.

Figure 3.23 show the resulting smoothed posterior state estimates and 95% credible inter-
vals (red solid and dashed lines). The population in the North Sea region is estimated to
be growing nearly exponentially which corresponds to the posterior distribution of χNS .
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(a) Estimate of pup counts in all 4 regions. The white circles show the observed pup counts.

(b) Estimate of total adult count across all 4 regions. The black point and vertical errorbar show the
independent estimate of the total adult population size with 95% credible interval of the estimate.

Figure 3.23: Smoothed posterior state estimates of pup counts in all 4 regions and of total
adult population size, produced by the PMMH. The red dashed lines show the 95% credible
interval and the red solid line shows the mean. The black dashed and solid lines show the
same with the estimates from Thomas et al. (2019).

There is little information about this parameter in the data except that it must be bigger
than the most recent count. Given that according to the prior, χNS is larger than 8267.6
(the posterior mean of the most recent pup numbers in the North Sea region) with prob-
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ability 0.914, the posterior is almost unchanged from the prior. In the other regions, a
carrying capacity seems to have been reached. As discussed in Thomas et al. (2019), the
model cannot capture some of the short-term trends in pup numbers. As an example, the
smoothed posterior mean estimate lies below all observed pup count in Orkney from year
8 to year 20, and similarly for the North Sea from year 17 to 25.

Comparing the results obtained with the PMMH (in red) with the ones obtained with the
Liu-West algorithm in Thomas et al. (2019) (in black), we note that the mean estimates
are similar for both regional pup numbers as well as total adult numbers across time.
However, the width of the credible intervals differ noticeably for the pup estimates in all
but the North Sea region. We suspect a number of reasons for these differences. First, the
standard deviations of the marginal posterior distributions for the three carrying capacity
parameters for the Inner Hebrides, Outer Hebrides and Orkney, as well as the density
dependence shape parameter ρ are about twice as large in Thomas et al. (2019) as they
are in the results obtained with the PMMH (see Table 3.12). These parameters directly
affect the pup survival probability (see Equations 1.4 and 1.5) and might cause the larger
credible intervals. In a preliminary investigation, we also found that decreasing the tuning
parameter λ from 0.99997 to 0.7, thereby increasing the bias, increased the differences
between the credible intervals even further (pers. comm. by Len Thomas).

3.5 Conclusion

This chapter has shown that fitting the complete seal model is a challenging task. Having
studied the PMMH in detail and explored the available options to choose the best settings,
we found the choices that allow the Markov chains to converge and produce samples
from the posterior distribution. Using a relatively large covariance for the random walk
proposals (h = 0.8) in the PMMH kernel was shown to lead to the highest ESS per runtime.
We also found that in many cases, a small number of particles can be chosen which then
allows us to run a larger number of iterations of the Markov chain in the same runtime
as a smaller number of iterations with a larger number of particles. For the 2-state and
7-state models, both N = 10 and N = 30 were good choices. For the complete seal model
without the independent estimate and with simulated data, the optimal number increased
to N = 100. Only when using the complete seal model with independent estimated using
the real data, did the best number of particles increase to N = 3000.

However, to obtain a sufficiently high ESS, the algorithm needs to run for a very long time
(11 days in 10 parallel processes for a multivariate ESS of 4799). We identified the main
reason for this, which is that the Markov chain rejects new proposals for many iterations
in a row, when it has obtained a very high likelihood estimate of the current value of the
chain. While the approximation where the likelihood is re-estimated at every iteration
reduced this behaviour and increased the ESS per runtime by a factor of 3, we found that
the bias of the approximation was too large to be considered useful.

Whether this long runtime is practicable depends on the specific context of the application.
For example, if there is access to a multi-core machine and the algorithm only needs to
be run once, running it is still feasible. This might be the case for the annual or biennial
update of the model inference when new data become available. However, the runtime
prohibits other uses. Systematically studying any changes to the algorithm, model or
data is nearly impossible because observing the effect of a single change requires so much
computing power. The long runtime also means that increasing the complexity of the
model is not possible when using this algorithm. It might for example be desirable to add
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a random effect on one of the demographic parameters or to include new model parameters
that allow movement between the regions.

Further directions of improvement for this algorithm are implementing the correlated par-
ticle filter (Deligiannidis and Doucet, 2018) to reduce the relative variance in the likelihood
ratio. Another direction is to study more options for the proposal distribution, although
as mentioned above, any explorations with the complete seal model are computationally
expensive. For example, we could investigate using block updates only for the most cor-
related parameters, e.g., φp,max and φa, which would allow separate tuning of the scaling
factor h for each parameter or parameter block.

The second algorithm that was studied here is the SMC2 algorithm. We did not find a
way for this algorithm to work for the complete seal model. Even for the 2-state model,
the algorithm provided considerably worse results than the PMMH in the same runtime.
We acknowledge that more options can be explored to improve the outcome but based the
obtained results we do not think that this algorithm is a viable option for the seal model.

Using the PMMH with the settings that were found to produce the best results, we were
able to produce a sample from the posterior distribution with a sufficiently high ESS
(4799). Analysing this posterior distribution and comparing the results with the ones
obtained by Thomas et al. (2019) using a modified Liu-West algorithm, we found that
many of the results were similar. However, there were some significant differences in
particular with the variance of the posterior distribution and the prior-posterior overlap.
In addition, some of the mean estimates showed clear differences. Assessing the ESS of the
output of the modified Liu-West algorithm is difficult and it is therefore hard to diagnose
how much of these differences is due to the bias of the Liu-West algorithm and how much
due to Monte Carlo error in either of the algorithms. However, with a multivariate ESS
of 4799, our results are relatively reliable and the significant differences between the two
algorithms should lead to a re-evalutation of the usage of the Liu-West algorithm in the
future.

In conclusion, with the PMMH we have found a working algorithm for the complete seal
model when enough computing power is available. This allows us to produce unbiased
samples with a sufficiently low Monte Carlo error for any further inference and for com-
parison with other methods. However, for many use cases, a less computationally intensive
approach is necessary. Therefore, in the next chapter, we explore the use of a much faster
approximation.
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Chapter 4

Using the Kalman Filter to
Approximate the Likelihood in
Complex State-Space Models

4.1 Introduction

In the previous two chapters, it has become apparent that fitting the complete seal model is
a challenging task. While the various Sequential Monte Carlo (SMC) methods are designed
to deal with complex non-linear non-Gaussian state space models (SSMs) and target the
exact posterior distribution of the parameters in the complete seal model, they failed to
converge unless an often infeasible amount of computational power was used. Even with
state-of-the-art techniques, these long runtimes are required for reliable estimation. This
chapter pursues a different approach. Instead of a slow algorithm that targets the exact
posterior distribution, we use a much faster algorithm to target an approximation of the
posterior distribution. This algorithm is the Kalman filter, which is fast and deterministic
but not originally designed for these types of models. Instead, it assumes a normal linear
dynamic model (NDLM, see Chapter 4 in West and Harrison, 1997). In this chapter, we
approximate the seal model with an NDLM and utilise the Kalman filter to calculate the
likelihood to this approximated model. We then focus on the development and application
of the Kalman filter within Metropolis-Hastings (KFMH) algorithm, and discuss the ease
of implementation, the speed advantages and the robustness of the approximation. To
understand the strengths and weaknesses of this approximation, the KFMH is first applied
in a simulation study, using the simplified 2-state model described in Section 1.2.6, with
a variety of scenarios each representing a different challenge. Two algorithms that target
the true posterior distribution are used as baselines to assess the performance of the
approximation. After the simulation study, we apply the algorithm to the complete seal
model. Here, estimates are compared with those produced by the PMMH algorithm as
described in Algorithm 6.

In Section 4.2, we introduce the inference methods for this chapter. First, the class
of normal dynamic linear SSMs is defined. A description of the Kalman filter, which
calculates the filtered state distributions and the likelihood for these models, follows.
We then explain how the linearisation of the full seal model was derived and describe
the three parameter estimation algorithms that are compared in the simulation study.
We also discuss various criteria to assess the performance of the linear approximation. In
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Section 4.3, the simulation study is detailed: first, the design of five different scenarios that
represent different challenges in the model fitting process, and then the results. Section
4.4 shows the results obtained in implementing the method on the complete seal model
using real data. In Section 4.5 we briefly describe two ideas to improve the Kalman filter
approximation and summarise the results of initial investigation where these were applied
to the seal model. The results are discussed and set into the wider context in Sections 4.6.

4.2 Inference Methods

4.2.1 Normal Dynamic Linear Models

An important sub-category of SSMs are normal dynamic linear models (NDLMs). This
class of models is categorised by having normally distributed transition and observation
processes with fixed variances and an expected value that is a linear function of the
conditioning variable, e.g., xt−1 in Equation 1.1 and xt in Equation 1.2 (see, e.g., Chopin
and Papaspiliopoulos, 2020). An NDLM can be written as

x0 = c0 + η0

xt|x0:t−1 = Atxt−1 + ct + ηt

yt|x0:t, y1:t−1 = Btxt + dt + εt, (4.1)

where ηt and εt are independent Gaussian random variables with ηt ∼ N(0, Qt) and εt ∼
N(0, Rt). As in the general definition of an SSM, the state xt is independent of states x0:t−2
given the previous state xt−1, and the observation yt is independent of x0:t−1 and y1:t−1,
given the current state xt. We note that while At, Bt, ct, dt, Qt and Rt may be dependent on
t, they are independent of the underlying state xt. This special class of models is extremely
useful, as the filtering distribution p(xt|y1:t) and the observation prediction p(yt|y1:t−1) for
these models are normal distributions and can be calculated exactly with the Kalman
filter as described in the following section. The Kalman filter can also compute the exact
likelihood p(y1:T |θ) which greatly facilitates parameter inference.

4.2.2 Kalman Filter

The Kalman Filter is a deterministic state estimation algorithm that was first developed by
Hungarian-American engineer Rudolf Emil Kálmán (Kalman, 1960). In its early history,
it played an important role for the trajectory estimation for spacecraft navigation in
the Apollo program and has since become a fundamental tool in many fields, including
engineering, finance and robotics (see Grewal and Andrews, 2010 for a historical overview).
The algorithm calculates filtered point estimates (x̂t) and error variances (Pt) for the
states xt in an NDLM, given the observations y1:t, an initial state distribution p(x0), and
parameters θ (Harvey, 1990). Because the model is linear and normal, the distribution
of xt|y1:t is normal as well, and obtaining the mean and variance is therefore sufficient to
know the entire distribution.

The Kalman filter is given in Algorithm 8 for the NDLM defined in Equation 4.1. It
can be divided into two stages—the prediction stage and the updating stage. During
the prediction stage, we make a prediction for xt given the observations y1:t−1, denoted
x̂t|t−1. In the updating stage of the algorithm, the prediction is updated by including
the new observation yt. The estimate for xt given the observations up to yt, denoted x̂t,
is a weighted average between the predicted value x̂t|t−1 and the value suggested by the
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observation yt. How much weight each of these values is given depends on the uncertainty
associated with both values (Harvey, 1990).

At the prediction stage for time t, we calculate a prediction for the state xt and the
observation yt as well as an estimate for the covariance matrix of the prediction error.
This is straightforward in an NDLM:

x̂t|t−1 = E(xt|y1:t−1)
Pt|t−1 = V ar(xt − x̂t|t−1)
ŷt|t−1 = E(yt|y1:t−1). (4.2)

In the updating stage of the algorithm, we calculate a weighted average between the
predicted state x̂t|t−1 and the state indicated by the observation yt. The weight is given
by the Kalman gain matrix Kt which depends on the error covariance matrix of the
predicted observation Ft and the cross covariance matrix between the prediction error for
the state and for the observation. For convenience, we also introduce the variable vt, often
referred to as innovation (Durbin and Koopman, 2012), to describe the difference between
the actual and the predicted observation, yt and ŷt|t−1 respectively:

vt = yt − ŷt|t−1
Ft ' V ar(vt)
Gt ' Cov(xt − x̂t|t−1, vt)
Kt = GtF

−1
t . (4.3)

If Ft is a singular matrix, a pseudoinverse can be used. With the gain matrix Kt, the
updated estimates for the state xt and error covariance matrix can be calculated as follows:

x̂t = x̂t|t−1 +Ktvt

Pt = Pt|t−1 −GtF−1t G′t = Pt|t−1 −KtFtK
′
t.

The formula for x̂t has an intuitive interpretation: if the variance of vt is large, for example
because the measurements are highly inaccurate, very little weight is given to yt. The same
happens if the covariance between the state and the measurement is small. On the other
hand, if the state and the measurement are highly correlated, and the measurement error
variance is small, more weight is given to the measurements. We note that to initialise
the filter at t = 1 the same formulae are used where we set y1:0 := () as the empty tuple.

When the estimate and associated covariance matrix are calculated in this way, x̂t is
the expected value of xt|y1:t, and Pt is the error covariance matrix of the estimation
error xt − x̂t. This process therefore returns the best estimate for the state vector given
the observations in the sense that it is the minimum mean square error estimator. In
particular, it is better than just taking the state suggested by its measurement yt. The
following lemma summarises the properties of this approach.

Lemma 1. If the quantities as given above can be calculated exactly and all errors are
Gaussian, the following properties hold.

1. The conditional distribution of xt|y1:t is multivariate normal with mean x̂t and co-
variance matrix Pt.

2. It follows that x̂t is the minimum mean square estimator for xt given y1:t.
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Proof. See Moore and Anderson (1979), p.23-31.

In addition to the filtered distributions, the Kalman filter also computes the likelihood
lt = p(y1:t|θ) of the observations for fixed parameter values. It is important to note that
unlike the particle filters in Chapter 2, the Kalman filter does not estimate this likelihood
but calculates it exactly. It is therefore straightforward to use it as a building block in
more complex algorithms that require the likelihood of a parameter, e.g., for any MCMC
algorithm that requires an evaluation of the likelihood, like the MH algorithm.

Algorithm 8 Kalman Filter

t← 0 . Initialisation
x̂0 ← E(x0)
P0 ← Var(x0)
l0 ← 0 . Log-likelihood
for t← 1, ..., T do

x̂t|t−1 ← Atx̂t−1 + ct . Prediction
Pt|t−1 ← AtPt−1A

′
t +Qt

ŷt|t−1 ← Btx̂t|t−1 + dt . Aid variables
vt ← yt − ŷt|t−1
Ft ← BtPt|t−1B

′
t +Rt

Gt ← Pt|t−1Z
′
t

Kt ← GtF
−1
t

x̂t ← x̂t|t−1 +Ktvt . Update

Pt ← Pt|t−1 −GtF−1t G′t
lt ← lt−1 − n

2 log 2π − 1
2 log detFt − 1

2v
T
t F
−1
t vt . Log-likelihood

end for
return mean and variance of the distribution of the filtered states, x̂t and Pt;
log-likelihood log(p(y1:T )) = lT

Several extensions of the filter have been proposed to allow for more complicated models
(Lefebvre et al., 2004 gives a brief summary). For example, the extended Kalman filter
(EKF, Gordon et al., 1993) uses Taylor expansion to approximate non-linear functions
within the model and the unscented Kalman filter (UKF, Wan and van der Merwe, 2001)
approximates all model distributions with a discrete distribution. The UKF is briefly
explored as an alternative to the Kalman filter in Section 4.5.1.

4.2.3 Linearisation and Normalisation of the Seal Model

The seal model is neither Gaussian nor linear. However, we can construct an NDLM
that matches the seal model as closely as possible by attempting to match the first two
moments. Since the linearisation process is the same for all four regions, we describe it
only for one region and omit the index r for better readability, which corresponds to the
7-state model described in Section 1.2.5. The steps to linearise the 2-state model, which
is used in the simulation study in Section 4.3, are not described here. They consist of
similar but fewer calculations.

Initialisation Linearising and normalizing the initialisation is done by calculating the
first and second moment of the distribution of x0 conditional on y0 (see Section 1.2.3.5)
and defining a normal distribution with these moments. This is relatively straightforward
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but requires lengthy calculations as the covariance matrix has dimension 7 × 7 with all
non-zero entries. An outline of these calculations can be found in Appendix D.1. The
mean of the initial state is

E(x0) = y0



1
0.5φp,0

0.5φp,0φa
0.5φp,0φ

2
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and the variances are

Var(x0,0) = y20/τ

Var(x1,0) = 0.5φp,0y0 + (0.5φp,0)
2(y20/τ − y0)
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The covariances are given by

Cov(x0,0, x1,0) = 0.5φp,0y
2
0/τ
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This fits into the NDLM framework as defined in Equation 4.1 by setting c0 = E(x0) and
by filling the entries of the covariance matrix Q0 with the covariances calculated above.

In these calculations, we omitted the additional dispersion factor a described in Section
1.2.3. When a dispersion factor is required as in the complete seal model in Section 4.4,
it can be incorporated by setting the expected value of x0,0 to 1

2

(
a+ 1

a

)
y0 instead of y0.

Its variance y20/τ needs to be replaced with 1
3

(
a2 + 1 + 1

a2

)
y2r,0/τ + 1

12

(
a− 1

a

)2
y2r,0, and

the calculations for the other states need to be adjusted accordingly.

Transition Process Linearising and normalizing the transition process is done similarly
to the initialisation by calculating the first and second moment of the distribution xt|xt−1.
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The calculations are given in Appendix D.2. The expected value is

E(xt|xt−1) =



0 0 0 0 0 αφa αφa
0.5φp,t−1 0 0 0 0 0 0

0 φa 0 0 0 0 0
0 0 φa 0 0 0 0
0 0 0 φa 0 0 0
0 0 0 0 φa 0 0
0 0 0 0 0 φa φa


xt−1

and the variances and non-zero covariances are

Var(x0,t|xt−1) = φaα(1− φaα)(x5,t−1 + x6+,t−1)

Var(x1,t|xt−1) = 0.5φp,t−1(1− 0.5φp,t−1)x0,t−1

Var(x2,t|xt−1) = φa(1− φa)x1,t−1
Var(x3,t|xt−1) = φa(1− φa)x2,t−1
Var(x4,t|xt−1) = φa(1− φa)x3,t−1
Var(x5,t|xt−1) = φa(1− φa)x4,t−1

Var(x6+,t|xt−1) = φa(1− φa)(x5,t−1 + x6+,t−1)

Cov(x0,t, x6+,t|xt−1) = αφa(1− φa)(x5,t−1 + x6+,t−1).

All other covariances are 0, as the values are independent given xt−1. Fitting this into
the NDLM framework in Equation 4.1, we set At as the matrix given in the calculation
of the expected value and fill the entries of Qt with the variances and covariances given
above, replacing any value of xt−1 with its expected value. Note that this introduces an
additional approximation to the model: in order for the Kalman filter to produce exact
results, the covariance matrices need to be independent of the state xt. However, since
the linearised model is an approximation in any case, this step can be justified.

Observation Process: Pup Production The observation density of the pup produc-
tion estimate in the original non-linearised seal model (of Sections 1.2.3 to 1.2.6) is

yt|xt ∼ N(x0,t, x
2
0,t/τ). (4.4)

The fixed term in this distribution already fits the NDLM framework given in Equation
4.1, as x0,t is a linear function of xt. The error term of the distribution, however, poses a
challenge. While the expected value of the observation yt|xt can be (and almost always is)
dependent on xt, the variance of yt|xt needs to be independent of xt in general. Otherwise,
it is no longer guaranteed that the model distributions such as p(yt|yt−1) and p(xt|y1:t)
are normal, as is shown in Lemma 3, and the Kalman filter is therefore no longer able to
provide the true filtering distributions. Contrary to the previous paragraph, where the
same problem arose for the process density, here we can alleviate this by integrating out xt
for the calculation of the variance. This correction improves the calculation of the filtering
and prediction densities with the Kalman filter.

To determine how this problem can be solved, and to find a version of the model that works
with the Kalman filter, we need to examine how the Kalman filter uses the distribution
of yt|xt (see Section 4.2.2). The Kalman filter enables exact calculation of the likelihood
p(y1:T ) by using the factorisation in Equation 2.9 and sequentially calculating the factors
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Figure 4.1: Histogram of 10,000 samples of Y where Y |X ∼ N(X,X2) and X ∼ N(0, 1)

p(yt|y1:t−1). It does this by calculating the intermediate density p(xt|y1:t−1) and using this
to integrate out the state xt, so

p(yt|y1:t−1) =

∫
p(yt, xt|y1:t−1)dxt =

∫
g(yt|xt)p(xt|y1:t−1)dxt.

In an NDLM as defined in Equation 4.1, these densities are all normal (for a proof, see
p.165 in Harvey, 1990). The distribution of yt|y1:t−1 is therefore also normal and can
simply be determined by its expected value and variance. Omitting the index t and the
dependence on y1:t−1 for both Y and X, this result is given in the following lemma.

Lemma 2. Let X be a random variable with X ∼ N(µ, σ2X), and Y |X be conditionally
normally distributed with Y |X ∼ N(X,σ2y).

1. The unconditional distribution of Y is normal.

2. The unconditional expected value of Y is E(Y ) = µ.

3. The unconditional variance of Y is Var(Y ) = σ2X + σ2Y .

Proof. See Example 5c on p. 268 in Ross (2011).

Unfortunately, with the observation density as in Equation 4.4, the distribution of yt|y1:t−1
is not normal, even if p(xt|y1:t−1) is. We show this in the following lemma and it can also
be seen in Figure 4.1.

Lemma 3. Let X be a random variable with X ∼ N(µ, σ2), and Y |X be conditionally
normally distributed with Y |X ∼ N(X,X2/τ).

1. The unconditional expected value of Y is E(Y ) = µ.

2. The unconditional variance of Y is Var(Y ) = σ2
(
1 + 1

τ

)
+ µ2

τ .

3. The unconditional distribution of Y is not normal.

Proof. The proof is given in Appendix D.3.

To be able to apply the Kalman filter to the model, we need an observation density
with a variance that is independent of xt given y1:t−1. For ease of notation, we define
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µ := E(x0,t|y1:t−1) and σ2 := Var(x0,t|y1:t−1). Ideally we want to pick a density that will
result in the same unconditional mean and variance as in Lemma 3. This is achieved by
replacing the variance term with the expected value of x2:

Var(yt|xt) = E(x20,t)/τ = (µ2 + σ2)/τ.

This results in the same correct mean as above and in the correct variance too:

Var(yt|y1:t−1) = E(Var(yt|xt, y1:t−1)) + Var(E(yt|xt, y1:t−1))
= E((µ2 + σ2)/τ |y1:t−1) + Var(x0,t|y1:t−1)
= (µ2 + σ2)/τ + σ2.

We therefore linearise and normalise the observation density of the true model1 yt|xt ∼
N(x0,t, x

2
0,t/τ) with

yt|xt ∼ N
(
x0,t,

(
(E(x0,t|y1:t−1))2 + Var(x0,t|y1:t−1)

)
/τ
)

Observation Process: Independent Estimate Approximating the observation den-
sity of the independent estimate of all (male and female) seals aged 1 and above across
all regions in 2008 (t = 24) with a normal distribution is the most straightforward of
the three approximations. As before, we calculate the expected value and variance of the
distribution and replace it with a normal distribution with the same mean and variance.
The observation density of the independent estimate in the non-linearised seal model is

yIE,24 ∼ x1:6+,24 −Ga(κ1, κ2).

The expected value and variance are therefore

E(yIE,24|xt=24) = x1:6+,24 − κ1κ2
Var(yIE,24) = κ1κ

2
2

The problem that arises in the observation density of the pup production estimates is
absent here because the variance of the observation is independent of the state x. The
sum of all adult seals in all regions is a linear combination of the state vector and so
already fits into the NDLM framework. The distribution of the independent estimate in
the NDLM approximation of the model is therefore

yIE,24|x24 = ω
4∑
r=1

6∑
a=1

xa,r,24 − κ1κ2 + εIE,24,

where

εIE,24 ∼ N(0, κ1κ
2
2).

1Throughout this chapter, “true model” refers to any of the models described in Section 1.2 in contrast
to the linearised approximation.
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Figure 4.2: Density plots of y30|y1:29 (generated from 100,000 samples) for fixed parame-
ter values (φp,max = 0.7, φa = 0.9, α = 0.9, χ = 2500, ρ = 6, τ = 100) and 12 different
simulations of y1:29 in the 7-state model (�) and its NDLM approximation (�).

4.2.4 Quality of the NDLM Approximation

The goal of creating an NDLM to approximate the true model is to estimate the posterior
distribution of the parameters. Our main interest therefore lies in how close the posterior
distribution of the parameters, given the NDLM, is to the true posterior distribution of
the parameters, given the true model. This is difficult, as we do not know what the
true posterior distribution is. For fixed parameter values, however, it is much easier to
estimate or calculate the distribution of the states or the observations. We can use these
distributions to gain some initial insights into how close the NDLM is to the true model.
Here, we compare a few distributions of the true seal model in just one region (so the 7-state
model) and its NDLM approximation for fixed parameter values. The first distribution we
compare is yt|y1:t−1. As Equation 2.9 shows, this distribution is particularly important to
calculate the likelihood. For the NDLM, we use the prediction ŷt|t−1 and its variance Ft
provided by the Kalman filter in Algorithm 8. For the true model, we use the bootstrap
filter determined in Chapter 2 with 10,000 particles to generate samples of states from
xt|y1:t−1 and simulate an observation for each of these states. The density plots of the
distribution for 12 different simulations of y30|y1:29 in both models is shown in Figure
4.2. While the densities do not match exactly, they are close. Comparing the differences
in mean and standard deviation between the two distributions for 1000 simulations, we
obtained a 95% confidence interval of (−16.31, 17.28) for the mean and (−5.45, 2.09) for
the standard deviation. There is therefore no evidence for a bias in the mean or the
variance of the NDLM approximation.
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Figure 4.3: Filtered estimates of number of pups xt|y1:t for t = 0, . . . , 30 with fixed param-
eter values (φp,max = 0.7, φa = 0.9, α = 0.9, χ = 2500, ρ = 6, τ = 100) and 12 different
simulations of y1:30 (•) with a bootstrap filter (�) and with a Kalman filter using the NDLM
approximation (�).

Another relevant comparison is the filtered estimates of the number of pups xt given the
observations y1:t. Again, the Kalman filter is used to calculate filtered estimates of xt|y1:t
for the NDLM, and a bootstrap filter with 10,000 particles is used for the true model. The
resulting estimates can be seen in Figure 4.3 for fixed parameters and 12 simulated sets of
observations y1:30. The expected value of the filtered distribution xt|y1:t is estimated with
the Kalman filter and with a bootstrap filter. Again, the estimates are quite close to each
other with no obvious bias of the NDLM estimates. In a further simulation with 1000 sets
of observations y1:30, the differences between estimates of the filtered state computed by
the Kalman filter and a bootstrap filter were calculated. For each timepoint, the central
95% of the differences were calculated. Each of these intervals contain 0, and so the two
estimates do not differ significantly. Figure 4.4 shows boxplots of these 1000 differences
for each time point. We note that the range of differences increases as t increases. This
may be due to the increasing observation error with increasing xt which results in a higher
variance of the filtered estimate under either model.

Lastly, we compare the observation density of the independent estimate of all adult seals
with its normal approximation for a fixed underlying state. As can be seen in Figure
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Figure 4.4: Boxplot of the differences between the filtered estimates of number of pups xt|y1:t
for t = 0, . . . , 30, produced by the Kalman filter (KF) applied to the NDLM approximation
and a particle filter (BF), with fixed parameter values (φp,max = 0.7, φa = 0.9, α = 0.9, χ =
2500, ρ = 6, τ = 100) for 1000 different simulations of y1:30.

4.5, the two distributions are similar but not quite the same. It is clear that the normal
distribution cannot capture the asymmetry of the Gamma distribution but the resulting
difference in the distributions seems to be relatively small. To quantify this difference
we use the distribution-free overlapping index suggested by Pastore and Calcagǹı (2019),
which measures the amount of shared area under the two curves of the densities. For two
probability density functions p1 and p2, this index is

η(p1, p2) =

∫
min (p1(x), p2(x)) dx.

An index of 0 would mean that there is no overlap in the pdfs and an index of 1 would
mean that the pdfs are identical almost everywhere except possibly a subset of measure
zero. For the normal and gamma densities shown in Figure 4.5, the overlap was evaluated
numerically to be 0.929.

4.2.5 Algorithms for Parameter Estimation

We describe here the three different algorithms to estimate the posterior distribution of
the parameters: a Kalman filter within Metropolis-Hastings (KFMH) algorithm, the Par-
ticle Marginal Metropolis-Hastings (PMMH) algorithm (Algorithm 6), and an MCMC
algorithm that uses data augmentation rather than exploiting the sequential nature of
the model. Similarly to the PMMH, the KFMH relies on the Metropolis-Hastings (MH)
algorithm (see Section 3.2.2.1) to perform parameter inference. However, the two algo-
rithms differ in the way in which they compute or estimate the likelihood p(y1:T |θ) which
is required for the MH algorithm. Lastly, we briefly outline how an MCMC algorithm
with data augmentation (MCMC-DA) performs parameter inference for SSMs. While the
MCMC-DA is not expected to perform well for this type of problem, it is still often the
“go-to” solution. We want to show that alternative general algorithms perform better for
SSMs and therefore we include this algorithm to demonstrate our improvements.
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Figure 4.5: Observation density of the independent estimate for fixed xt=24 in the 7-state
model (�) and its NDLM approximation (�).

4.2.5.1 KFMH

To generate samples from the posterior distribution of the NDLM approximation, we
use the KFMH algorithm. In that algorithm, the MH algorithm is used as described in
Section 3.2.2.1. Any required likelihood of a parameter value is calculated by running the
Kalman filter with that parameter value. This is possible because we are only applying
this algorithm to the NDLM and so have the Kalman filter readily available for likelihood
calculation. As the Kalman filter is deterministic and consists mostly of a sequence of
matrix multiplications, one iteration of the resulting chain is relatively fast. For a fixed
total computer time, therefore, compared with other methods that take longer to evaluate
the likelihood, more MCMC samples can be generated.

The algorithm was implemented in nimble, where we relied on the following observation:
to calculate the likelihood for the MCMC algorithm, the states x0:T do not need to be
modelled explicitly. Instead, only the likelihoods p(yt|yt−1, θ) are necessary. With the
Kalman filter, these distributions can be calculated and are

yt|yt−1 ∼ N (ŷt|t−1|Ft), (4.5)

with ŷt|t−1 and Ft calculated as specified in Algorithm 8. Instead of first writing the entire
model in the nimble language and then writing a Kalman filter implementation to interact
with nimble’s MCMC engine, we integrated the states out already in the model definition.
The only variables (in addition to the parameters θ) in the model as written for nimble

are then the observations y1:T whose distribution can be given exactly using the Kalman
filter with Equation 4.5. With this trick, we can invoke nimble’s MCMC engine on this
model. The implementation of the Kalman filter for the 2-state model in nimble can be
found in a Github repository (Empacher, 2023).

4.2.5.2 PMMH

The second algorithm used here to generate samples from the posterior distribution of the
true model is the PMMH. As discussed extensively in Chapter 3, this algorithm takes a
long time to converge when applied to the true model. However, for the simpler 2-state
model, it does provide an unbiased estimate of the true posterior distribution in feasible
computation time. It is therefore a useful tool to assess the performance of the KFMH for
the simpler model and we can use it as a basis for comparison.
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The specific settings of this algorithms are as described in Section 3.3.1.3.

4.2.5.3 Data Augmentation

To highlight the advantage of using an algorithm that utilises the sequential structure of
the model, we contrast the performance of the two sequential algorithms above with an
MCMC algorithm that uses data augmentation (MCMC-DA) to generate estimates from
the posterior distribution (see Section 3.2.2.1).

Here, we used nimble to create and execute this algorithm and relied on its default con-
figuration to generate samples from p(x0:T , θ|y1:T ) (de Valpine et al., 2022). This means
that all parameters but τ were sampled independently from a Metropolis-Hastings adap-
tive random-walk sampler with a univariate normal proposal distribution. Since there is
a conjugate relationship between the prior distribution of τ and its dependants y1:T , a
Gibbs sampler was assigned to this parameter and the discrete states x1:T were generated
with a slice sampler Neal (2003), both done automatically done by nimble.

The tuning of the MCMC algorithm for all three algorithms, KFMH, PMMH and MCMC-
DA, for example adapting the variance of the random walk proposal distribution, was left
up to nimble. This was done to ensure a fair comparison between the three algorithms.

4.2.6 Assessment of Performance

In comparing the performance of the three algorithms, there are two aspects to consider.
The first is Monte Carlo accuracy of each of the algorithms, i.e., how long the algorithms
take to converge to their respective target distribution and how efficient the algorithms
are once converged. The second is the crucial aspect of whether the KFMH applied to
the NDLM approximation provides posterior estimates that are close to the true posterior
distribution.

We use the potential scale reduction factor R̂ (see Section 3.2.2.1) to assess whether
convergence has been achieved. We report the upper limit of a 95% confidence interval
for R̂ for the parameter with the largest such value. In addition, we examined trace plots
to determine whether convergence had been achieved.

The Monte Carlo accuracy of the three algorithms once converged was assessed using the
effective sample size (ESS, see Equation 3.4). The computation time of the algorithms
was incorporated by measuring their computational efficiency, defined as effective sample
size per unit time. As the ESS was computed individually for each parameter, we used
the lowest of the values to compare convergence speed. In Section 4.4, we instead use the
multivariate ESS (Vats et al., 2019) for better comparability with Chapter 3.

To compare the posterior distributions of the approximated NDLM and the true model, we
relied on density plots and summary statistics of the posterior. While the approximation
provides a biased estimate of the true posterior distribution, a great reduction in Monte
Carlo error compared to the unbiased algorithms can justify the use of the approximation
if the bias is not too great.
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4.3 Simulation Study

4.3.1 Simulation Scenarios

To assess the performance of the KFMH, we examined the closeness of the estimate of
the posterior of the NDLM to the estimate of the true posterior under different circum-
stances. These highlight various challenges that might also appear in real applications,
for example having a true parameter value that is close to the edge of the support of the
prior distribution, uninformative data or a mis-specified model.

To explore these aspects, we performed parameter inference in five different scenarios.
The first was a baseline scenario where no additional challenges were included. The other
four scenarios varied just one aspect each to see how each of those aspects changed the
behaviour of the approximation. The scenarios were studied on the 2-state model (see Sec-
tion 1.2), as only a relatively simple model allowed us to estimate the posterior distribution
in feasible computation time to explore different scenarios.

Scenario 0: Baseline In this scenario, we simulated T = 50 observations. The initial
observation was y0 = 200 and the parameters used for the simulation were φp,max =
0.48, φa = 0.9, α = 0.8, χ = 2500, ρ = 6, τ = 100. The resulting time series showed
both the exponential growth at the start of the population development, and the effect
of the density dependent pup survival as the population reaches carrying capacity. The
observations were unbiased and informative with a coefficient of variation of 10%. The
parameters were not close to the edge of the support of the prior distribution.

Scenario 1: Uninformative Data This scenario used only the first T = 10 observa-
tions. This means that only the exponential growth section of the population trajectory
was observed, before density dependence started to have an effect. There was therefore
very little information about the carrying capacity in the data.

Scenario 2: Edge of Parameter Support Here, the adult survival to simulate the
data was set to φa = 0.965. As before (see Table 1.1), the prior was a shifted and scaled
beta distribution with support from 0.8 to 0.97 and the true value was therefore only
marginally lower than the upper limit of the prior.

Scenario 3: Mis-specified Model In this scenario, the data were simulated from a
different model but the algorithms were used to fit the same model as in the baseline
scenario. The model to simulate the date was similar to the baseline model but changed
in four respects. First, a random effect on the fecundity α was introduced by adding a
normally distributed error with a standard deviation of 0.5 to the logit of α. Second, the
observation precision was assumed to be known as τ = 400 even though the data were
simulated with τ = 100. Third, 20% of the observations were outliers, with a much higher
coefficient of variation of 50% instead of 10%. Last, there was a slight linear decline in
adult survival from 0.9 to 0.81 throughout the time series.

Scenario 4: Estimating Only One Parameter All parameters but φa were assumed
known, so only the posterior distribution of this parameter was estimated.
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Figure 4.6: Simulated trajectories of pup numbers (�) and annual observations (�) in Sce-
narios 0 through 3. The values in Scenario 4 (estimating only one parameter) were simulated
in the same way as in Scenario 0 (baseline) and are not shown here.
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4.3.2 Set-Up

For each of the five scenarios, we simulated five replicate sets of observations y1:T . Only
the plots for the first of the five replicates of the simulation are shown in the results (Figure
4.6) but the range of values of all five replicates are given in the tables detailing runtimes
and performance. For each of the five simulated datasets, the posterior distribution of the
parameters was estimated with the three algorithms described in Section 4.2.5: a standard
MCMC algorithm, the PMMH algorithm, and the KFMH algorithm applied to the NDLM
approximation of the true model. As there was no reason to expect multimodality or other
complicating factors, only two chains were run for each algorithm.

To estimate the posterior distributions in each scenario, two chains each with 1,000,000
iterations plus an initial burn-in of 10,000 iterations were run for the MCMC and the
KFMH algorithms. As each iteration in the PMMH is much more computationally ex-
pensive, the number of iterations was reduced by a factor of 50. Each chain was therefore
run for only 20,000 iterations plus a burn-in of 200 iterations. The bootstrap filter within
each iteration of the PMMH was run with 1000 particles. These values were chosen to
keep the runtimes of the algorithms within the same order of magnitude. In some cases,
it was necessary to change the burn-in period of the PMMH algorithm after examining
some initial diagnostic plots.

4.3.3 Results

4.3.3.1 Scenario 0: Baseline

Table 4.1 shows that mixing in the MCMC-DA algorithm was relatively poor as indicated
by the ESS values. The low ESS produced by that algorithm is also visible in the density
plots in Figure 4.7 which exhibit an unevenness that points to a high Monte Carlo error.
While the same issue is noticeable for the PMMH algorithm, it is much less pronounced
as can be seen both by the smoother density plots in Figure 4.7 and by the much higher
ESS. The KFMH algorithm suffers none of these problems. Mixing is fast and the ESS per
runtime is more than 100 times greater than for the other two algorithms. It is interesting
to note that the slowest mixing parameter was different across the three algorithms: for
the MCMC-DA algorithm, α had the lowest ESS, for the PMMH algorithm it was ρ and
τ (in different replicates) and for the KFMH algorithm it was φp,max.

To compare the posterior distribution of the approximated NDLM to the true posterior
distribution, we rely here mostly on the estimated posterior by the PMMH, as it showed
a higher ESS and therefore introduced less Monte Carlo error into the estimate. Figure
4.7 shows that the posterior distributions of the PMMH and KFMH algorithm are quite
similar. While there are some differences that appear to be systematic, for example a
very slight shift to the right for τ , these differences are smaller than the Monte Carlo
error in, e.g., the estimated posterior distribution for φa. The correlation structure of the
posterior distribution is shown in Figure 4.8. It appears to be very similar across all three
algorithms. The other replicates showed a similar behaviour to the first one concerning
the closeness of the approximation.

4.3.3.2 Scenario 1: Uninformative Data

All three algorithms performed much better in terms of convergence speed and ESS than
in Scenario 0 (see Table 4.2). This is likely because there is very little information in the
data and therefore the likelihood component of the algorithms is less important compared
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Figure 4.7: Scenario 0: posterior distributions of all six parameters for simulated observations
in Scenario 0 (baseline) with the 2-state model, estimated by the Particle Marginal Metropolis-
Hastings algorithm (PMMH), a MCMC with data augmentation (MCMC) algorithm and the
KFMH algorithm. The parameter used for the simulation is indicated by the black vertical
line, and the prior distribution is drawn as a black curve.

Figure 4.8: Scenario 0: correlations between the parameters in the posterior distributions in
Scenario 0 (baseline) with the 2-state model, as estimated by (from left to right) the MCMC-
DA algorithm, the PMMH algorithm and the KFMH algorithm.

127



Algorithm MCMC-DA PMMH KFMH

Max. upper limit

of 95% CI of R̂

1.03 (1.03-2.01) 1.23 (1.03-1.23) 1.02 (1-1.03)

MCMC iterations
(after adjusted burn-in)

2,000,000 24,000 (24,000-30,000) 2,000,000

Min. ESS 66.29
(65.28-75.00)

477.59
(457.22-681.06)

2,188.64
(2,188.64-3,206.27)

Runtime (in sec) 1,322.93
(1,208.23-1,322.93)

1,863.21
(1,764.07-1,863.21)

607.51
(556.35-652.14)

Min. ESS/sec 0.050
(0.027− 0.059)

0.263
(0.259− 0.370)

3.60
(3.40− 4.93)

Min. ESS/iteration 3.31× 10−5

(1.76× 10−5-3.75× 10−5)
2.04× 10−2

(1.66× 10−2-2.62× 10−2)
1.09× 10−3

(1.09× 10−3-1.60× 10−3)

Table 4.1: Scenario 0: measures to assess the convergence speed of the three algorithms in
Scenario 0 (baseline) with the 2-state model. For each entry, first the value in replicate 1 is
given and then the range of values across all 5 replicates.

to the prior. For some parameters (such as ρ) the algorithms were therefore almost only
sampling from the prior. Still the KFMH algorithm was more than 50 times faster than the
other two algorithms. The posterior densities and correlation structure were very similar
to each other across all three algorithms. This is unsurprising as the likelihood only forms
a small component of the posterior density compared to the prior. We expected there to
be particularly little information about the carrying capacity, given the way that the data
were simulated (see Section 4.3 and Figure 4.6). While the posterior distribution of the
carrying capacity shape parameter ρ fulfilled this expectation, the posterior distribution of
χ did not. This might be because the starting value of the simulated population trajectory
was chosen too high and that the approaching carrying capacity was already noticeable
in the declining pup survival probability. Figure 4.6 shows that the pup numbers seem
to grow linearly and not exponentially as they would without density dependence. We
note that there was still much more variance in the posterior distribution compared to the
posterior distribution of χ in Scenario 0 (baseline). Again, the other replicates showed
similar behaviours to this one.

4.3.3.3 Scenario 2: Edge of Parameter Support

In this scenario, the Markov chains produced by the MCMC-DA had high values for
some of the five replicates (see Table 4.3), indicating the difficulty of this algorithm with
convergence. The unevenness of the density plot in Figure 4.11 confirms this. Both the
PMMH algorithm and the KFMH seemed to converge and seemed largely unaffected by
the challenging parameter location. The density plots show that there was relatively little
information about the parameters in the data but a pull towards the right edge of the
parameter support can be seen for the parameter α. The correlation structure looks very
similar across all three algorithms (see Figure 4.12).

4.3.3.4 Scenario 3: Mis-specified Model

In this scenario, the observations used to fit the model were simulated with a different
model. In practice this means that no parameter vector fit particularly well. It is still
important to be able to fit the model to the data. Only then can diagnostic tools be applied
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Figure 4.9: Scenario 1:Posterior distributions of all six parameters for simulated observations
in Scenario 1 (uninformative data) with the 2-state model, estimated by the Particle Marginal
Metropolis-Hastings algorithm (PMMH), an MCMC with data augmentation algorithm and
the KFMH algorithm. The parameter used for the simulation is indicated by the black vertical
line, and the prior distribution is drawn as a black curve.

Figure 4.10: Scenario 1: correlations between the parameters in the posterior distributions in
Scenario 1 (uninformative data) with the 2-state model, as estimated by (from left to right) an
MCMC with data augmentation algorithm, the PMMH algorithm and the KFMH algorithm.
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Algorithm MCMC-DA PMMH KFMH

Max. upper limit

of 95% CI of R̂

1.01 (1-1.04) 1.01 (1.01-1.04) 1 (1-1)

MCMC iterations
(after adjusted burn-in)

2,000,000 34000 (34000-36000) 2,000,000

Min. ESS 721.45
(721.45-923.20)

987.73
(987.73-1158.62)

19357.70
(18749.04-30454.16)

Runtime (in sec) 265.60
(262.75-271.96)

372.18
(370.84-378.00)

123.30
(121.63-126.25)

Min. ESS/sec 2.72
(2.72-3.39)

2.65
(2.65-3.12)

156.77
(126.25-208.07)

Min. ESS/iteration 3.61× 10−4

(3.61× 10−4-4.61× 10−4)
2.90× 10−2

(2.90× 10−2-3.36× 10−2)
9.68× 10−3

(9.37× 10−3-1.52× 10−2)

Table 4.2: Scenario 1: measures to assess the convergence speed of the three algorithms
in Scenario 1 (uninformative data) with the 2-state model. For each entry, first the value
in replicate 1 is given and then the range of values across all 5 replicates. The estimated
multivariate potential scale reduction factor is denoted by R̂ and the effective sample size by
ESS.

Figure 4.11: Scenario 2: posterior distributions of all six parameters for simulated obser-
vations in Scenario 2 (edge of parameter support) with the 2-state model, estimated by the
Particle Marginal Metropolis-Hastings algorithm (PMMH), an MCMC with data augmentation
algorithm and the KFMH algorithm. The parameter used for the simulation is indicated by
the black vertical line, and the prior distribution is drawn as a black curve.
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Figure 4.12: Scenario 2: correlations between the parameters in the posterior distributions
in Scenario 2 (edge of parameter support) with the 2-state model, as estimated by (from left
to right) an MCMC with data augmentation algorithm, the PMMH algorithm and the KFMH
algorithm.

Algorithm MCMC-DA PMMH KFMH

Max. upper limit

of 95% CI of R̂

1.09(1.09−1.27) 1.02 (1.02−1.15) 1 (1−1)

Sample Size 2,000,000 40,000 2,000,000

Min. ESS 53.93
(53.93−60.60)

556.91
(556.91−735.99)

8909.04
(8909.04−12124.60)

Runtime (in sec) 1328.91
(1328.91−1392.97)

1773.02
(1773.02−1791.42)

726.93
(718.36−726.93)

Min. ESS/sec 0.041
(0.041− 0.044)

0.314
0.314− 0.411

12.26
(12.26−16.88)

Min. ESS/iteration 2.70× 10−5

(2.70× 10−5 − 3.03× 10−5)
1.39× 10−2

(1.39× 10−2 − 1.84× 10−2)
4.45× 10−3

(4.45× 10−3 − 6.06× 10−3)

Table 4.3: Scenario 2: measures to assess the convergence speed of the three algorithms
in Scenario 2 (edge of parameter support) with the 2-state model. For each entry, first the
value in replicate 1 is given and then the range of values across all 5 replicates. The estimated
multivariate potential scale reduction factor is denoted by R̂ and the effective sample size by
ESS.
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Figure 4.13: Scenario 3: posterior distributions of all five parameters for simulated observa-
tions in Scenario 3 (mis-specified model) with the 2-state model, estimated by an MCMC with
data augmentation algorithm and the KFMH algorithm. The density plot from the PMMH
algorithm is not included, because this algorithm never converged. The prior distribution is
drawn as a black curve. There is no vertical line to indicate the true parameter value, as the
data were simulated from a different model.

to assess the model fit. Here, the PMMH algorithm did not converge at all, as indicated by
the very low ESS of 7.23 in Table 4.4, and also by the number of unique values in the chains
which was only 38 across all 40,000 iterations. While the algorithm performed better in
some of the other replicates, this improvement was not enough to produce any meaningful
output for the posterior estimate. The MCMC-DA algorithm performed better with an
ESS of 376.94, as did the KFMH algorithm with an ESS of 1900.33. This algorithm
outperformed the MCMC-DA algorithm by a factor of 10 in terms of ESS per unit time.
It is noticeable that the range of ESS for the KFMH algorithm was very large. This might
stem from differences between the specific sets of simulated observations. Some of these
sets might be easier to explain with the mis-specified model and therefore simplify the
fitting process. In Figure 4.13, the estimated posterior distributions of the MCMC-DA
and the KFMH algorithm are compared. It is clear that the estimates are very different.
The correlation structure as shown in Figure 4.14 was similar between the two algorithms,
although the correlation between φp,max and φa was even stronger for the KFMH algorithm
and that algorithm also estimated a higher correlation between some of the parameters
(e.g., ρ and φa) where the MCMC-DA algorithm estimated almost none. The other four
replicates showed similar results.

4.3.3.5 Scenario 4: Estimating Only One Parameter

The inference task here was much easier compared to the other scenarios. This was
reflected clearly in the increased ESS for all three algorithms as seen in Table 4.5. The
R̂-value also indicated that convergence was not problematic in this scenario. The Kalman
filter was much faster than the other two algorithms in terms of ESS per unit time, by a
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Figure 4.14: Scenario 3: correlations between the parameters in the posterior distributions in
Scenario 3 (mis-specified model) with the 2-state model, as estimated by (from left to right)
an MCMC with data augmentation and the KFMH algorithm. The areas of the circles are
proportional to the absolute value of corresponding correlation coefficients.

Algorithm MCMC-DA PMMH KFMH

Max. upper limit

of 95% CI of R̂

1.08 (1.01−1.29) 946 (946−1686417) 1 (1−1)

MCMC iterations
(after adjusted burn-in)

2,000,000 (not always con-
verged)

40,000 (never converged) 2,000,000

Min. ESS 376.94
(267.76−376.94)

7.23
(7.23−45.66)

1900.33
(1900.33−34185.11)

Runtime (in sec) 1324.74
(1324.50−1334.76)

2061.52
(1994.17−2097.91)

511.04
(500.86−541.05)

Min. ESS/sec 0.285
(0.201− 0.285)

0.004
(0.004− 0.023)

3.72
(3.72−68.25)

Min. ESS/iteration 1.88× 10−4

(1.34× 10−4-1.88× 10−4)
7.18× 10−5

(7.18× 10−5-1.14× 10−3)
9.50× 10−4

(9.50× 10−4 − 1.71× 10−2)

Table 4.4: Scenario 3: measures to assess the convergence speed of the three algorithms
in Scenario 3 (mis-specified model) with the 2-state model. For each entry, first the value
in replicate 1 is given and then the range of values across all 5 replicates. The estimated
multivariate potential scale reduction factor is denoted by R̂ and the effective sample size by
ESS.
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Figure 4.15: Scenario 4: posterior distributions of the parameter φa for simulated observations
in Scenario 4 (estimating only one parameter) with the 2-state model, estimated by an MCMC
with data augmentation algorithm and the KFMH algorithm. The prior distribution is drawn
as a black curve and the true value used to simulate the observation is indicated with a black
vertical line.

factor of 855. The density plot in Figure 4.15 shows that the estimated posterior density
was very similar for the three algorithms. In this case, the data were very informative about
the parameter φa relative to the prior, as can be seen by the low variance in the posterior
estimate and the almost horizontal black line that indicates the prior. This means that
here, contrary to, e.g., Scenario 1 (uninformative data), the likelihood formed an important
part of the posterior distribution. This points to the fact that the approximation of the
likelihood with the Kalman filter is very close to the true value.

Algorithm MCMC-DA PMMH KFMH

Upper limit

of 95% CI of R̂

1 (1−1) 1.01 (1−1.01) 1 (1−1)

MCMC iterations
(after adjusted burn-in)

2,000,000 4000 2,000,000

ESS 5474.21
(4382.30 −7873.83)

8344.70
(8344.70−8557.13)

452997.40
(452997.40−455635.58)

Runtime (in sec) 1064.91
(1061.88−1073.16)

1910.01
(1910.01−1945.28)

103.48
(102.06−115.16)

ESS/sec 5.14
(4.13−7.40)

4.37
(4.37−4.43)

4395.50
(3949.15−4443.93)

ESS/iteration 2.74× 10−3

(2.19× 10−3 − 3.94× 10−3)
2.09× 10−1

(2.09× 10−1-2.14× 10−1)
2.27× 10−1

(2.26× 10−1 − 2.28× 10−1)

Table 4.5: Scenario 4: measures to assess the convergence speed of the three algorithms in
Scenario 4 (estimating only one parameter) with the 2-state model. For each entry, first the
value in replicate 1 is given and then the range of values across all 5 replicates if there was
some variation. The estimated multivariate potential scale reduction factor is denoted by R̂
and the effective sample size by ESS.
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4.4 Application to Real Data

4.4.1 Methods

We applied the KFMH algorithm to the real data and the complete seal model. To be able
to determine the impact of the independent estimate on the closeness of the approximation
and the convergence speed, we estimated the posterior distribution both with and without
the independent estimate of all adult seals, yIE . The MCMC-DA that was used for
comparison in the simulation study in Section 4.3 did not converge at all when applied to
the real data in the full seal model and is therefore omitted here. The estimates produces
by the KFMH algorithm were compared with those produced by the PMMH algorithm
as described in Algorithm 6. When the independent estimate was included, we used the
settins and estimates from Chapter 3.4. When the independent sample was excluded,
the factorised version of the particle filter as described in Chapter 2.5 was used. Here,
the settings that were determined to be optimal in Chapter 6 were used to produce the
parameter estimates. In addition, we compared the results with those obtained with the
modified Liu-West algorithm described in Section 3.2.1.1.

4.4.2 Results

4.4.2.1 Complete Seal Model Without Independent Estimate

Algorithm PMMH KFMH

Max. upper limit of 95% CI
of R̂

1.06 1

MCMC iterations 4,000,000 2,000,000

ESS 4554.9 608835.5

Runtime (in hours) 425.9 16.6

ESS/sec 0.002971038 10.17655

ESS/iteration 1.14× 10−3 3.04× 101

Table 4.6: Without yIE : measures to assess the convergence speed of the KFMH algorithm
and the PMMH algorithm applied to the complete seal model without independent estimate.
The estimated multivariate potential scale reduction factor is denoted by R̂ and the multivariate
effective sample size by ESS.

In Table 4.6, we can see that both algorithms converged. The overall computing time for
the PMMH algorithm was much higher than for the KFMH. The KFMH algorithm had a
high ESS, and in particular also had a higher ESS per iteration than the PMMH algorithm,
even though a single iteration with the PMMH is much more computationally expensive.
Similarly, the ESS per time was much higher for the KFMH than for the PMMH, namely
more than 3400 times higher. The runtime for the KFMH algorithm was quite long at
16.6 hours. However, as the ESS was also very high, the algorithm could easily be run
with fewer iterations, depending on how large of an ESS is required in any given situation.
Assuming a linear relationship between time and ESS, the algorithm would produce an
ESS of 1000 in about half an hour. The Liu-West algorithm is omitted from Table 4.6
because it does not rely on MCMC and so the equivalent diagnostics are not available;
there is also no readily available measure of effective sample size (see Section 3.2.1.1).
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Figure 4.16: Without yIE : posterior distributions of all nine parameters for simulated obser-
vations in the complete seal model without the independent estimate, estimated by the KFMH
algorithm and the PMMH algorithm. The prior distribution is drawn as a black curve. The
black vertical lines indicate the posterior mean that was obtained by Thomas et al. (2019)
with the Liu-West algorithm.
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Parameter PMMH KFMH Liu-West

Maximum pup survival φp,max 0.550 (0.138) 0.591 (0.145) 0.638 (0.155)

Adult survival φa 0.948 (0.0170) 0.946 (0.0177) 0.938 (0.0196)

Fecundity α 0.822 (0.0947) 0.824 (0.0935) 0.825 (0.0919)

DD shape ρ 5.49 (0.741) 5.07 (0.871) 5.22 (1.5)

NS carrying cap. χNS 19100 (9470) 16100 (9740) 15900 (7870)

IH carrying cap. χIH 3100 (81.2) 3120 (110) 3140 (180)

OH carrying cap. χOH 11800 (243) 11800 (341) 11900 (552)

Ork carrying cap. χOrk 17900 (749) 17800 (937) 18700 (2590)

Observation precision τ 155 (22.0) 156 (22.4) 110 (32.1)

Table 4.7: Without yIE : mean and standard deviation of the posterior distributions for the
complete seal model without the independent estimate, as estimated by the PMMH algorithm
and the KFMH algorithm.

The density plots in Figure 4.16 and the posterior means and standard deviations in
Table 4.7 show that the marginal posterior density estimates of most of the parameters
were quite close to each other. The relatively low ESS produced by the PMMH algorithm
is visible in the unevenness of the density estimate. Even so, the estimates appear to
be very similar for most of the parameters, in particular for φp,max, φa and α. With
the carrying capacity parameters, there are slight differences visible. In the case of χIH ,
χOH and χOrk the Kalman filter overestimated the variance of the posterior distributions,
whereas it underestimated the mean for χNS . The posterior distribution for the North Sea
carrying capacity parameter χNS has a distinctly right-skewed shape even when estimated
with the PMMH algorithm. The spike towards the lower end of the distribution was even
more pronounced in the estimate provided by the KFMH algorithm. There is very little
information about carrying capacity in the observations for the North Sea as the population
appears to be growing close to exponentially and seems not yet affected by any density
dependence. It is therefore intriguing where the information, especially about the lower
limit of the distribution, comes from. It might be that the observed pup numbers in the
North Sea region, reaching 8119 in the last year, exclude carrying capacity values below a
certain threshold. Another parameter with noteable difference in posterior estimates was
ρ, where the KFMH estimate showed a negative bias.

Table 4.7 also gives the mean and standard deviation of the posterior estimate given in
Thomas et al. (2019). There, the Liu-West algorithm (Liu and West, 2001) was used for
estimating the posterior distribution (see Section 3.2.1.1). Similar to the Kalman filter al-
gorithm, this algorithm does not target the true posterior but contains a bias. The mean
parameter values computed by this algorithm are also shown in Figure 4.16 as a black
vertical line. Comparing the mean values and standard deviations of the three algorithms,
we note that the Kalman filter was usually closer to the true posterior distribution as esti-
mated by the PMMH algorithm. The correlation structure in the posterior distributions,
as seen in Figure 4.17, was very similar between the two algorithms.
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Figure 4.17: Without yIE : correlations between the parameters in the posterior distributions
in the complete seal model without the independent estimate, as estimated by the KFMH
algorithm and the PMMH algorithm.

Algorithm PMMH KFMH

Max. upper limit of 95% CI
of R̂

see Table 3.11 1

MCMC iterations 20,000,000 20,000,000 (thinned by fac-
tor 10)

ESS 4801.642 1238435

Runtime (in hours) 2775 64

ESS/sec 4.81× 10−4 5.37

ESS/iteration 2.40× 10−4 6.19× 10−2

Table 4.8: With yIE : measures to assess the convergence speed of the KFMH algorithm and
the PMMH algorithm applied to the complete seal model with independent estimate. The
estimated multivariate potential scale reduction factor is denoted by R̂ and the mutlivariate
effective sample size by ESS.
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Figure 4.18: With yIE : posterior distributions of all ten parameters in the complete seal
model using the real data with the independent estimate, estimated by the KFMH algorithm
and the PMMH algorithm. The prior distribution is drawn as a black curve. The black vertical
lines indicate the posterior mean that was obtained by Thomas et al. (2019) with the Liu-West
algorithm.
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Parameter PMMH KFMH Liu-West

Maximum pup survival φp,max 0.439(0.073) 0.415 (0.0436) 0.478 (0.0895)

Adult survival φa 0.957(0.011) 0.965 (0.00467) 0.952 (0.0129)

Fecundity α 0.893(0.063) 0.871 (0.0638) 0.896 (0.0627)

DD shape ρ 5.78(0.746) 6.17 (0.920) 5.95 (1.73)

NS carrying cap. χNS 18,800(9870) 17,900 (10,000) 15,500 (8200)

IH carrying cap. χIH 3,080(80.5) 3070 (112) 3110 (173)

OH carrying cap. χOH 11,800(238) 11700 (372) 11700 (534)

Ork carrying cap. χOrk 17,700(734) 17200 (856) 17800 (1670)

Observation precision τ 151(21.4) 133 (19.7) 111 (34.6)

Sex ratio ω 1.70(0.019) 1.70 (0.0194) 1.7 (0.0192)

Table 4.9: With yIE : mean and standard deviation of the posterior distributions for the
complete seal model with the independent estimate, as estimated by the PMMH algorithm,
the KFMH algorithm, and the Liu-West algorithm (Thomas et al., 2019).

4.4.2.2 Complete Seal Model With Independent Estimate yIE

As can be seen in Table 4.8, both algorithms converged. The KFMH was run for 20,000,000
iterations, taking around 64 hours, as a precaution. However, such a long runtime does
not seem to be necessary. Assuming a linear relationship between runtime and ESS, an
ESS of 1000 would already be achieved after 15 minutes. Surprisingly, while the algorithm
was faster per iteration in the model without the independent estimate, including the
independent estimates increased the ESS per unit time. This points to the fact that the
independent estimate simplified the fitting task. As in the previous section, the KFMH
was much faster than the PMMH when measured as ESS per time.

The posterior distributions as seen in Figure 4.18, Table 4.9 and Figure 4.19 show that
the differences between the two estimated posterior distributions were greater here than
when the independent estimate was not included. The parameters φp,max, φa and α
in particular exhibit a much greater difference in posterior distribution than previously,
where these were the distributions that seemed the most similar. For φp,max and φa,
the variance of the distributions was underestimated by the KFMH algorithm. A clear
difference can also be seen in the estimated posterior distribution of τ , where the KFMH
shows a negative bias. This could be due to the non-normal distribution of the observation
when conditioned on the previous observations, as shown in Figure 4.1. The correlation
structure was also different between the two algorithms. The PMMH algorithm estimated
a stronger negative correlation between φp,max and φa, whereas the KFMH algorithm
estimated a stronger negative correlation between φp,max and α. Comparing the Kalman
filter summary statistics with those estimated by the Liu-West algorithm, the advantage
of the Kalman filter was less clear than in the previous section. Across all parameters,
the KFMH algorithm seemed to be slightly closer on average to the posterior distribution
estimated by the PMMH algorithm but this was not a clear-cut picture. A possible reason
for this might be that the gamma distribution of the independent estimate is not well
matched at higher moments by the normal distribution.
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Figure 4.19: With yIE : correlations between the parameters in the posterior distributions in
the complete seal model with the independent estimate, as estimated by the KFMH algorithm
and the PMMH algorithm.

4.5 Improving the Linear Approximation

We explored two ideas for improving the approximation of the posterior distribution ob-
tained with the Kalman filter. Firstly, we attempted to improve the likelihood estimate
by replacing the Kalman filter with the unscented Kalman filter (UKF, Wan and van der
Merwe, 2001) which allows non-linear and non-Gaussian models. Secondly, we aimed to
transform the approximated posterior to the true posterior by using the more general the-
ory of SMC samplers (Del Moral et al., 2006). Neither of these approaches was successful
and therefore only a brief summary of the ideas and results are given here.

4.5.1 Improving the Approximated Likelihood Estimate: The Unscented
Kalman Filter

While the Kalman filter only allows linear and Gaussian process and measurement equa-
tions, the unscented Kalman filter is an alternative for more complex models. It calculates
approximations of the expected values and covariance matrices used in the Kalman filter
using so-called sigma points. We note that the extended Kalman filter is another popular
extension of the Kalman filter that improves the linear approximation by using the Taylor
expansion (see Harvey, 1990). In the MSc thesis of this author (Empacher, 2017), the
extended Kalman filter was compared with the UKF using similar models but performed
considerably worse than the UKF. It was therefore not explored in this thesis.

We first briefly outline the algorithm of the UKF as given in Wan and van der Merwe
(2001). Then, we describe how the seal model needs to be transformed to fit the require-
ments of the algorithm and discuss some of the difficulties with this process. Lastly, some
of the results of our initial exploration of this methods are given.
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4.5.1.1 Algorithm

The UKF relies on specifying the transition and observation processes of an SSM slightly
differently than in Equations 1.1 and 1.2. Instead of specifying them as probability density
functions they need to be written as deterministic functions of both the state and a random
noise variable that is independent of the state. We therefore have

yt = gt(xt, ηt)

xt = ft(xt−1, εt), (4.6)

where ηt and εt are random variables independent of the states x1:T with variance-covariance
matrices Pεt and Pηt . The functions g and f are deterministic.

We augment the state vector with the random noise variables, leading to the augmented
state vector

xat :=

xtεt
ηt

 .

The distribution of the state vector xat |y1:t is then approximated through a discrete prob-
ability distribution defined by 2L + 1 sigma points with associated probability weights,
where L is the length of the augmented state vector xat . The sigma points and weights
are chosen such that the distribution has the same first and second moment as the true
distribution. This is done by taking the augmented state estimate and the augmented
covariance matrix

x̂at :=

 x̂t
E(εt)
E(ηt)


P at :=

Pt 0 0
0 Pεt 0
0 0 Pηt

 ,

where x̂t is the estimate of xat |y1:t and Pt the covariance matrix of the estimate. We cal-
culate the Cholesky decomposition (Anderson, 1958) of the augmented covariance matrix,

which we write as
√
P at
′√
P at = P at . Here,

√
P at denotes the upper triangular matrix of

the decomposition. The sigma points are calculated by adding a multiple of the rows of√
P at to the point estimate x̂at , so

X0,t = x̂at ,

Xi,t = x̂at +
√

(L+ κ)P at i
, i = 1, ..., L,

Xi,t = x̂at −
√

(L+ κ)P at i
, i = L+ 1, ..., 2L,

where the subscript i denotes the i-th row of the matrix, and κ is a tuning parameter
with κ > −L. This creates a collection of sigma points X0:2L,t regularly dispersed around
the augmented filtered point estimate. The sigma points are associated with probability
weights, which are defined as

W0 =
κ

κ+ L

Wi =
1

2(κ+ L)
i = 1, ..., 2L.
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For this new discrete distribution defined by the sigma points with their probability
weights, the expected value of the new state vector xt+1|t can be calculated exactly, simply
by applying the transition process function to each of the sigma points and calculating the
weighted mean of the resulting values. This weighted mean is then taken as the prediction
for the new state vector x̂t+1|t. Similarly, the covariance matrix of the predicted state and
the predicted observation ŷt+1|t can be calculated. We omit here the details of selecting the
sigma points and instead refer to Wan and van der Merwe (2001) but note that depending
on the choice of a tuning parameter κ it is possible to approximate the higher moments of
the distribution. With the predicted state vector x̂t+1|t and covariance matrix Pt+1|t and
the discrete approximation of the the distribution of xt+1|y1:t, the updating step can be
calculated similarly as for the basic Kalman filter in Algorithm 8.

4.5.1.2 Applying the UKF to the Seal Model

When we compare the model specifications for the UKF algorithm in Equation 4.6 and
the model specifications in Equations 1.1 and 1.2, two discrepancies become apparent.
First, the UKF requires the transition and observation processes to be specified as deter-
ministic functions that take random variables as arguments. However, the transition and
observation processes in an SSM are specified as probability density functions. Second,
the random variables used in the UKF should have infinite support as the sigma points
are generated by adding a multiple of the error’s standard deviation, dependent on the
tuning parameter κ, to its expected value. This only works reliably if the random vari-
able has support Rn. We present here a partial solution to this problem that allows the
specification of pdfs with certain conditions to fit the requirements of the UKF.

Let xt ∼ p(·|xt−1) where p(·|xt−1) is any pdf. We are now looking for a random vari-
able εt that is independent of xt−1 and a deterministic function f(xt−1, εt) such that
xt = f(xt−1, εt). We would also prefer εt to have support Rn and ideally to be normally
distributed, as most is known about the performance of the UKF in this case (see Julier
and Uhlmann, 2004).

In the one-dimensional case, we suggest the following approach. Set εt ∼ N(0, 1). We
denote with Fd the cumulative distribution function of distribution d and with Qd its
quantile function which is F−1d in the continuous case and Qd(q) = inf{x ∈ R : q ≤ F (x)}
else. We set

xt = f(xt−1, εt) = Qp(·|xt−1)

(
FN(0,1)(εt)

)
.

Since FN(0,1)(εt) ∼ Unif(0, 1), this randomly selects a quantile of the distribution p(·|xt−1).
The same approach can be used in the multidimensional case, if the probability distribution
can be written as a concatenation of several one-dimensional distributions. We then simply
generate a normally distributed random variable for each required sub-distribution. This
is sufficient for the models used here (see Section 1.2).

A difficulty that we have not been able to solve yet is that the requirement for infinite
and continuous support applies not only to the errors εt and ηt but also to the states xt.
The choice of κ can sometimes help to circumvent this problem by dispersing the sigma
points close enough around the mean such that no negative values are selected. This was
successful for the 2-state and 7-state model but not for the complete seal model.
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Figure 4.20: Marginal posterior distributions of all six parameters for simulated observations in
Scenario 0 (baseline), estimated by the unscented Kalman filter (UKF) and compared with the
estimated posterior distributions by the PMMH, the MCMC-DA and the KFMH algorithm.
The parameter used for the simulation is indicated by the black vertical line, and the prior
distribution is drawn as a black curve.

Algorithm MCMC-DA PMMH KFMH UKF

Max. upper limit

of 95% CI of R̂

1.07 1 1 1.01

Sample Size 2,000,000 400,000 2,000,000 2,000,000

Min. ESS 443.66 7971.67 19196.71 938.08

Min.
ESS/iteration

2.22 × 10−4 1.99 × 10−2 9.60 × 10−3 4.69 × 10−4

Table 4.10: Measures to assess the convergence speed of the UKF in Scenario 0 (baseline),
compared to the MCMC-DA, PMMH and Kalman filter. The estimated multivariate potential
scale reduction factor is denoted by R̂ and the effective sample size by ESS.

4.5.1.3 Results

In initial investigations, we attempted to estimate the posterior distribution of the 2-state
model in Scenario 0 (see Section 4.3.1) with the UKF and compare the result to the other
three methods (Kalman filter, MCMC-DA and PMMH). In Table 4.10, we see that the
mixing of the UKF is almost as slow as with an MCMC-DA algorithm when the ESS per
iteration is considered. Figure 4.20 shows that while the UKF approximation seems to
work well for the parameters χ, ρ and τ , it is not at all close to the marginal posterior
distributions from the other three methods for φp,max, φa and α. It might be possible to
achieve a better approximation by choosing a different value for the tuning parameter κ.
However, this is not a feasible approach, as achieving a better tuning parameter amounts
to guessing if no true posterior is available to compare the results. Additionally, we are
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heavily restricted in the choice of κ by having to select it such that no negative values of
the states are generated in any of the sigma points, as discussed in the previous section.
In addition to these concerns, we found that the runtime of the UKF per iteration is
around 100 times as long as the runtime of the Kalman filter. Since this great increase in
computation time is not in any way balanced by an increase in performance, we did not
further investigate this approach.

4.5.2 Improving the approximated posterior with an SMC sampler

The second attempt to improve the approximation with the Kalman filter was to use the
posterior distribution estimated by the KFMH and use an importance sampling scheme
to correct any bias. The idea is that the approximated posterior is much closer to the true
posterior than the prior is. It might therefore serve as a useful proposal distribution in an
importance sampling algorithm.

We first used a standard importance sampling procedure, where the KFMH approximation
of the posterior was used as the proposal distribution and a particle filter as determined
optimal in Chapter 2 to calculate the importance weight. With this procedure, we found
that in many cases the two distributions were already so close to each other that the
Monte Carlo error introduced by importance sampling negated any positive effect in the
reduction of the bias.

In a few cases with the 7-state model (not shown here), the difference between the KFMH
approximation and the true posterior distribution was slightly larger. In these cases the
importance sampling approach failed because for some areas of the true posterior with
positive density the KFMH posterior contained very few or no samples. This led to a
few sampled points with very high importance weights in the tails of the distribution and
sometimes no points at all where the true posterior should have positive density.

We therefore proceeded to the more sophisticated technique of the SMC sampler, developed
in Del Moral et al. (2006). This is a framework for algorithms that can track a sequence of
related probability distributions and uses many of the ideas of standard SMC methods. It
avoids some of the problems with standard importance sampling, such as a lack of support
of the proposal distribution in important areas of the target distribution. The idea is to
design a sequence of distributions γk, k = 0, ...,K to smoothly transition from a proposal
distribution—in our case the KFMH posterior—to a target distribution—in our case the
true posterior—in a few steps. The general algorithm is given in Algorithm 9.

A popular strategy to design the intermediate distribution is likelihood tempering, so
γk(θ) ∝ p(y|θ)τkp(θ) and τk some sequence of exponents from 0 to 1, e.g., τk = k/K. We
used a modified version of this with

γk(θ) ∝ p(y|θ)τkp(θ)pNDLM (y|θ)1−τk ,

where the weight of the Kalman filter likelihood pNDLM was gradually reduced.

This procedure worked well for one unknown and biased parameter. However it still
resulted in more Monte Carlo error and a much longer runtime than if the parameter had
been estimated directly with a PMMH algorithm. For the higher-dimensional cases where
the KFMH is much faster than a PMMH, the Monte Carlo error of the SMC sampler was
too high to be able to detect any reduction of the bias. While there are many tuning choices
when using an SMC sampler—like the sequence of intermediate distributions, the MCMC
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Algorithm 9 SMC Sampler

for i← 1, ..., N do . Initialisation

Sample θ
(i)
0 from γ0

Set weights w
(i)
0 = 1/N

end for
for k ← 1, ...,K do

for i← 1, ..., N do

Set weights w
(i)
k = w

(i)
k−1

γk(θ
(i)
k−1)

γk−1(θ
(i)
k−1)

end for
if ESS too low then

Resample and set w
(i)
k = 1/N for all i = 1, ..., N

end if
Sample θ

(i)
k from MCMC kernel with stationary distribution γk

end for
return weighted sample {(θik, wik)}k=1,...,N from γK

kernel and the number of particles—we were not able to find settings that produced a
visible improvement of the bias in feasible computation time.

4.6 Discussion and Conclusion

The KFMH algorithm applied to the NDLM approximation of the true model performed in
general quite well. It easily outperformed both an MCMC with data augmentation and the
PMMH algorithm in terms of speed. In many but not all cases, the approximated posterior
distributions were very close to the true posterior distribution. A particular strength of
the algorithm is that it is very robust to challenging fitting problems as demonstrated
with the results for Scenario 2 (edge of parameter support) and 3 (mis-specified model).
As was demonstrated in Chapter 3 in Section 3.4, it is possible to develop methods that
generate samples from the true posterior distribution. However, these methods require
often unfeasibly long runtimes or bespoke algorithms with specific hardware which cannot
easily be generalised. The benefit of the KFMH algorithm is that it is relatively easy to
implement and fast to run. In cases where extensive computing time or fitting expertise
is not available, it provides an inviting alternative. There might also be cases where an
exact solution is less important than a fast one. For example, the KFMH algorithm could
be employed in a model selection process where many alternatives need to compared. In
many practical applications, the survey set-up might introduce more uncertainty into any
estimates than the small bias in the Kalman filter. Apart from practical considerations, the
approximated posterior distribution generated by the KFMH algorithm might be useful as
an intermediate step to get to the exact distribution. The algorithm very quickly provides
a rough estimate of the location of the posterior distribution. This might help focus the
effort of computationally more expensive methods such as SMC methods on the important
areas of the posterior distribution. However, in the two approaches considered here with
the UKF and the SMC sampler, we were not able to further improve the approximation.
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Chapter 5

Effect of process and observation
errors on inference in a nonlinear
non-normal SSM

5.1 Introduction

While the other chapters of this thesis focus on the methods for producing samples from
the posterior distribution of the parameters and the filtering or smoothing distributions
of the states, here we investigate some of the aspects of the posterior distribution of both
the states and the parameters. In particular, we noticed a curious phenomenon when
analysing the posterior distribution of the 2-state model. We would usually expect the
posterior distribution to move closer towards the true parameter value, starting from the
prior distribution. In Gelman et al. (2013), this is described as the posterior reaching a
compromise between the given data and the prior distribution. However, as seen in Figure
5.1 and Table 5.1, the mean of the marginal posterior distribution (blue vertical line)
moves further away from the prior mean than the true value for three of the parameters,
i.e., φa, τ and χ, rather than staying between the prior mean and the true value. We
also notice that there seems to be very little learning about some of the parameters when
looking at the marginal posterior distributions, especially φa and α, where the variance is
larger than that of the induced prior distribution.

φp,max φa α χ ρ τ

Prior 0.643 (0.184) 0.900 (0.0423) 0.831 (0.0928) 3200 (1600) 10 (5) 140 (96.6)
Posterior 0.507 (0.121) 0.892 (0.0425) 0.804 (0.0943) 2426 (64.6) 9.20 (4.23) 89.1 (18.5)

True value 0.480 0.900 0.800 2500 6.00 100

Table 5.1: Means (with standard deviations in parentheses) of the posterior and induced prior
distributions of the 2-state model, as well as the true parameter values used to simulate the
data.

We note that the sample used here was produced by applying the PMMH (particle
marginal Metropolis-Hastings) algorithm with the settings as in Table 3.5 to the same
simulated data used there and running 24 chains with 2 million iterations each, leading
to an ESS of 90100.07. This phenomenon is therefore unlikely to be due to Monte Carlo
error but rather a real feature of the posterior distribution.
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Figure 5.1: Posterior (blue) and induced prior (black) densities for the 2-state model. The
true parameter values used to simulate the data are indicated by the vertical red line (�),
the prior means by a vertical line in black (�), and the posterior means by a vertical line in
blue (�). For φa, the red line indicating the true parameter value is hidden behind the black
vertical line.

When communicating our results, we often report the mean parameter values as summary
statistics. It is therefore important to find out if this measure is appropriate compared to
the true parameter value or biased in any way and if the observed behaviour of the mean
moving beyond the true value is systematic. We also want to explore if more and better
data might help to better be able to recover the true parameter value and reduce the
variance in the posterior distribution. Studying this is a difficult task with the complete
model because fitting is so computationally expensive. We therefore use only the 2-state
model, albeit with some extensions, for these explorations in this chapter.

First, we discuss convergence properties of the posterior distribution. Even though these
only hold in the limit as the number of i.i.d. data points n → ∞, they can still help
our understanding when an application with a finite sample size is considered. We also
discuss the results of Auger-Méthé et al. (2016) where similar behaviours were observed
when analysing the posterior distribution of a linear Gaussian SSM.

Next, we define the model and data we are using to study this behaviour of the posterior
distribution. The starting point is the 2-state model as introduced in Section 1.2.6. How-
ever, we increase the length of the observed time series and include further observations
about both age classes. We also vary the size of the observation error to explore its effect
on the bias and variance of the posterior distribution. Lastly, a random effect is introduced

148



into the transition process to increase its variance and compare the effect to the changes
produced by varying the observation error.

The effect of these four changes to the model are explored in two simulation studies. In the
first, the observation error is varied while the information in the data remains otherwise
unchanged. We find that even with a very low observation error and observations of both
age classes, some estimation problems remain. In the second study, we simulate many
time series and estimate the posterior distribution for each of these and for varying sizes
of random effect variance. This reveals the systematic trends in the estimation of the
posterior mean and other summary statistics.

5.2 Methods

5.2.1 Previous Results

We begin by citing some of the relevant convergence theorems in Bayesian statistics and
discussing their relevance to the observed issue when estimating parameters in the seal
model. We discuss posterior variance, properties of different point estimators and the
notion of posterior consistency in general. Then we lay the foundation for the remaining
chapter by discussing the effect of having more or “better” data in the case of the seal
model, and summarising the work in Auger-Méthé et al. (2016) for NDLMs, which we
emulate for the non-linear non-Gaussian case.

First, we look at the variance of the posterior distribution. We note that the law of total
variance (e.g., Proposition 5.2 in Ross, 2011) states that, under some mild conditions,

Var(θ) = E(Var(θ|y)) + Var(E(θ|y)).

In particular, this means that from a Bayesian perspective, the variance of the posterior
distribution p(θ|y) is on average smaller than that of the prior distribution. This matches
our intuition that having more data available should lead to less uncertainty about the
distribution of a parameter. However, this is only true in the expectation, and for some
data y, as seen for φa and α in the motivating example in Table 5.1, the variance can
increase.

Second, we look at point estimates θ̂(y) for the parameter θ. While unbiasedness, i.e.,

E
(
θ̂(Y )|θ

)
= θ for any θ ∈ Θ with the expectation taken with respect to the data

Y ∼ p(y|θ), might seem like an appealing property for an estimator, insisting on this can
lead to bad estimators, as discussed in, e.g., Bickel and Blackwell (1967) and Reich and
Ghosh (2019), and the trade off between variance and bias needs to be considered. Using
the mean of the posterior distribution θ̂(y) = E(θ|y) as a point estimate for θ is common
and is the Bayes rule estimator under squared error loss (Reich and Ghosh, 2019), i.e., it
minimizes the posterior mean square error Eθ((θ̂(y)− θ)2). Other common estimators are
the median, which minimises the absolute loss Eθ(|θ̂(y)− θ|), and the mode.

Another aspect we might be interested in is the behaviour of the posterior distribution as
more and more data are used to estimate it. For independent and identically distributed
data y = (y1, ..., yn), the following theorem can be established (see Appendix B in Gelman
et al., 2013 for a proof).

Theorem 2. If θ is defined on a compact set and A is a neighborhood of θ0 with nonzero
prior probability, then P(θ ∈ A) → 1 as n → ∞, where θ0 is the unique value of θ that
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minimizes the Kullback-Leibler divergence KL(θ) of the distribution p(yi|θ) relative to the
true distribution f(yi)

KL(θ) = E

(
log

(
f(yi)

p(yi|θ)

))
.

In particular, this means that if the true distribution of yi is of the form in the model, i.e.,
f(yi) = p(yi|θ0) for some value θ0 (and the minimizing value of KL(θ) is unique) then the
posterior distribution converges to a point mass at the true parameter. This is the case
here, where data are simulated from the model with a known true parameter value.

In the seal model, it is unrealistic to obtain n i.i.d. copies of the data. This would mean
observing n copies of seal populations under the exact same conditions and recording a
time series of observations y1:T for each of them. A more realistic way to obtain more data
is to increase the number of observations by increasing the length of the time series T and
by making observations on more components of the state vector xt, e.g., by recording an
estimated count for each age class. This way, the data are of course not independent and
identically distributed but could still lead to less uncertainty in the posterior distribution.

Moving from general Bayesian statistics to the special case of parameter estimation in
SSMs, we refer to the work in Auger-Méthé et al. (2016). The model and estimation
framework there is different from our work, but they observe similar behaviour in their
estimators. The model under consideration in that paper is linear and Gaussian which
simplifies the estimation process considerably (see Chapter 4). In contrast to the work
in this thesis, they work within a frequentist framework and therefore use the maximum
likelihood estimator (MLE) to check for the size of the bias. While it is unsurprising
that the MLE is biased, it has the property of consistency and so converges in probability
to the true parameter value θ0 as the number of i.i.d. data points tends to infinity (see
Section 6 in Chernoff, 1972). As argued above, it is unrealistic to obtain observations of
multiple i.i.d. time series. Instead, they studied how the ratio of observation error to
variance in the transition process affects the size of the bias of the MLE. The study found
that with decreasing process stochasticity and constant observation error the bias in the
parameter estimates increased. This also affected the quality of the state estimates. This
was measured by calculating the root mean square error (RMSE) of the state estimates

RMSE(x̂1:T ) =

√√√√ 1

T

T∑
t=1

(x̂t − xt)2,

where xt is the true state and x̂t is the mean of the smoothed state estimates at time
t, and comparing this value when the states were estimated using the MLE with when
the true parameter values were used. Using the MLE led on average to a much higher
error than using the true parameter value. While the error decreased when the process
stochasticity was decreased, the discrepancy between using the true parameter value and
the MLE grew for these cases.

Through a simulation study, we aim to determine whether the same issues arise in a
Bayesian context using the more complex non-linear and non-Gaussian seal model.

5.2.2 Changes to the Model

We want to explore the behaviour of the posterior distribution and any point estimates
derived from it when more and better data are available. We also want to determine
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whether the estimation problems described in Auger-Méthé et al. (2016) are present in
our model when the ratio of observation error to process stochasticity is decreased. Since
it is unreasonable to assume obtaining many i.i.d. copies of the observed time series, we
look for an alternative that is closer to reality.

5.2.2.1 Changing T and Observation Vector Length

As in the motivating example, we use the 2-state seal model to simulate data and to
estimate the posterior distribution. We first reduce the complexity of the estimation
problem by reducing the number of unknown parameters from six to four. In practice,
it is common to assume the observation precision τ to be known, e.g., by externally
estimating it. It was also shown in Knape (2008) that estimating this parameter when the
strength of density dependence and the process error variance are unknown can lead to
identifiability issues. Next, we assume that the density dependence shape parameter ρ is
known to simplify estimation of the remaining parameters. This enables us to better focus
on the effect of changing the error ratios of the model. Additionally, the length of the time
series is increased to T = 60 which might help with the estimation of the parameters. The
last step to increase the quality of the data is to include observations of the number of
adults in every year. This requires some decisions about how to model these observations.
In the complete seal model, the observations of the number of adult seals are modelled
with a shifted Gamma distribution (see Section 1.2.3.4):

κ0,24 ∼ xadults,24 −Ga(κ1,24, κ2,24),

where κ0,24 is treated as the observation, and the shape parameter κ1,24 and scale param-
eter κ2,24 are treated as known parameters.

When extending this to the entire time series and simulating adult observations κ0,1:T ,
we need to decide what the shape and scale parameters should be for each time point.
The uncertainty in the pup observations is modelled by using a constant CV c for the
observation error. We adopt the same choice for the adult observations, which means that
the variance of the observations is

κ1,tκ
2
2,t = (cx2,t)

2.

This still leaves some freedom for choosing κ1,t and κ2,t. Here, we decide to use the
same shape parameter κ1 as in the complete seal model for all time points, and adapting
the scale parameter to achieve the correct variance. This leads to a relatively symmetric
distribution (see Figure 4.5 for a comparison with the normal distribution). We note that,
as discussed in Section 1.2.3.4, the change of the mean κ1,tκ2,t of the Gamma distribution
is irrelevant, as this mean is known and simply results in a (known) shift of the observation
κ0,t.

Using adult observations as described in addition to the pup observation, we have a com-
prehensive data set comprising information about all components of the state in every
year for a much longer time series.

5.2.2.2 Changing Observation Variance

Similar to Auger-Méthé et al. (2016), we want to explore the effect of changing the obser-
vation variance to process stochasticity ratio and test whether their theory that a higher
ratio leads to a larger bias is true for our model. In the seal model the transition process
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consists of several binomial distributions. These have a variance of p(1 − p)n where p
is the success probability and n is the number of trials. This variance can therefore not
be altered without changing the success probability or the number of seals. We discuss
possibilities to vary the process stochasticity in the next section, but first focus on the
observation error instead. If it is indeed the ratio between the two variances that affects
the size of the bias, varying only the observation error should allow us to observe the same
effects.

Changing the precision parameter τ for the pup observations is straightforward and does
not affect any other part of the model while having the same effect of changing the ratio of
observation to process error. We therefore use observations with a CV of c = 0.1, c = 0.01
and c = 0.005, corresponding to τ = 100, 10, 000 and 40, 000. We note that using an even
higher precision was not possible because the estimation algorithm no longer converged.

For the adult observations, the shape parameter κ1 is kept constant across all time points
and choices of CV. Any change of the CV is therefore reflected in a change of the scale
parameter κ2,t which is calculated by

κ2,t =
cx2,t√
κ1
.

Varying only the observation error rather than the process stochasticity allows us to use
the same states x1:T for all three cases which makes the results between the different obser-
vation errors more comparable. We want to further increase comparability by eliminating
the difference between the three simulated observation time series as much as possible
from the simulated data. To achieve this, we simulated observations from the model only
for the time series with τ = 100. For the other two time series, “quantile matching” was
used. This means that each observed value was shrunk down towards the true state value
such that the cumulative distribution function of the observation density Fc was the same
for all three observation time series across all time points t:

Fc=0.1(yt(c = 0.1)|xt) = Fc=0.01(yt(c = 0.01)|xt) = Fc=0.005(yt(c = 0.005)|xt),

where yt(c = 0.1) refers to the observation at time t with a CV of 10%. The resulting
states and (shifted) observations can be seen in Figure 5.2.

Figure 5.2: Simulated pup and adult numbers (� line) with circles for the observations with
a CV of 10% (�), 1% (�) and 0.5% (�)
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5.2.2.3 Changing Process Stochasticity

While changing the process error in the seal model cannot be done by simply altering
a variance parameter, the model can be adapted slightly to allow for more flexibility in
the process error. One possibility for this is to include a random effect on one of the
demographic parameters. Here, we choose the fecundity parameter α to vary across time.
This is a sensible choice from a biological perspective becayse grey seals are capital breeders
and rely on acquired fat stores accumulated through the year before a breeding attempt.
Poor environmental conditions in a year can lead to decreased resource availability and
a resulting lower population fecundity (Smout et al., 2020). It was even expressed in
Thomas and Harwood (2003) that being able to add such a random effect would be
desirable because it might more accurately reflect the true seal population dynamics and
fit the data better.

There are a few options to implement this random effect. A standard choice is letting α
vary according to a normal distribution, that is, α ∼ N (µα, σ

2
α). The advantages of the

normal distributions are its intuitive interpretation and the clear separate parametrisa-
tion of variance and mean. It is also symmetric around the mean which makes it easy
to construct the new values of αt around the existing value of α by adding normally dis-
tributed errors to it. However, the normal distribution does not restrict αt to be between
0 and 1 and is therefore not a good choice, as αt is the success probability in a binomial
distribution. While a logit-normal distribution, i.e., logit(α) ∼ N (µα, σ

2
α), solves this do-

main issue, it loses the intuitive interpretation of the parameters. It does not even allow
the analytic calculation of mean and variance, making it difficult to calibrate the distri-
bution to have the original fecundity parameter α as its mean. A more natural choice
for the distribution of a probability is the Beta distribution Beta(a, b) which is naturally
restricted to values between 0 and 1. In the implementation, it even allows us to integrate
over αt and draw the new number of pups directly from a Beta-binomial distribution, so
x1,t ∼ BetaBin(x2,t−1, a, b). We note that in the seal model the prior of α restricts it to lie
between 0.6 and 1. While we could reflect this in the random effect by choosing a shifted
and scaled Beta distribution, this would add two further parameters to the model and
break the connection to the Beta-binomial distribution. Instead, we can place priors on
the Beta distribution shape parameters a and b such that αt lies between these two values
with a high probability. For example, when simulating values for α with priors

a ∼ Ga(40, 0.1)

b ∼ Ga(40, 0.4)

we found that 99.9946% of values lie between 0.6 and 1. For the simulation of the time
series, we set a and b such that the mean value of α is 0.8 which corresponds to the fixed
value used in the 2-state model. To increases the stochasticity of the process, we varied
only the variance of the distribution and calculated a and b accordingly. In Figure 5.3,
we show the distribution of α when a = 400 and b = 100, which results in a mean value
of 0.8 of α with a standard deviation of 0.0179. It also results in a relatively symmetric
distribution of α with a skewness of -0.134. The figure also compares the distribution of α
when it is sampled from the (induced) prior and when it is sampled from Beta(a, b) with
fixed and random a and b.

For the simulation study, we selected four different standard deviation values for the
random effect on α and calculated a and b such that the mean of Beta(a, b) was 0.8 and
the standard deviation as selected (see Table 5.2). In addition, we compared the results
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Figure 5.3: Distributions of α in different model formulations. � shows the prior density in
the seal model α ∼ 0.6 + 0.4Beta(2, 1.5), � shows the prior induced by the Beverton-Holt
density dependence. � shows the distribution of α as a random effect, with α ∼ Beta(a, b)
with priors a ∼ Ga(40, 0.1) and b ∼ Ga(40, 0.4). � shows the distribution of α as a random
effect α ∼ Beta(a, b) when the shape parameters are fixed to a = 400 and b = 100.

SD(α) a b

0 - -
0.01 1279.2 319.8
0.03 141.4 35.4
0.10 12.0 3.0
0.20 2.4 0.6

Table 5.2: Parameter values of a and b for a Gamma distribution for α, with mean 0.8 and
varying standard deviation.

from the four different standard deviations with results from simulations where there was
no random effect on α. Figure 5.4 shows the distribution of α ∼ Beta(a, b) when a and b
are set as in Table 5.2. The observation CV was fixed and set to 10% across all simulations
here.

Figure 5.4: Density of the distribution of the random effect on α when α ∼ Beta(a, b) with
a and b as in Table 5.7.
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For the parameter estimation, we assumed a and b (and α for the simulations with no
random effect) to be known. Only the three parameters φp,max, φa and χ were estimated.
As a and b vary across the simulations, fixing these to the true value allows a better
comparison between the posterior estimates of the other three parameters.

Lastly, we need to consider how the pup survival probability is affected by replacing a fixed
α with a random effect. As described in Equations 1.4 and 1.5, the pup survival probability
φp,t in year t is a function of the current number of pups and all model parameters but
τ . We therefore need to decide how to model this probability when αt varies in each
year. Updating φp,t each year based not only on the current number of pups but also on
the current value for αt does not work because the formula for the Beverton-Holt density
dependence does not allow some combinations of αt, φp,max and φa. When sampling
parameter values from the prior in the seal model, we can pre-select valid combinations,
resulting in the induced priors discussed in Section 1.2.3.6. This is no longer possible
when placing a random effect on α. We therefore fix the value that is used to calculate the
annual pup survival probability to the mean of α ∼ Beta(a, b) given the shape parameters
a and b. The resulting state trajectories for two different distributions for α (in blue and
green) can be seen in Figure 5.5, compared with a trajectory without a random effect (in
red).

Figure 5.5: Simulated trajectories of pup and adult numbers with and without (�) a random
effect on the fecundity α. For the two simulations with a random effect, the parameters of
the Beta distribution for α were chosen such that the mean of α was 0.8, and the standard
deviation was 0.03 (�) or 0.2 (�).

Rather than varying both the observation error and the process error at the same time,
we studied the effect of these two changes separately. Fitting the model for very low
observation errors requires a lot of computation power, as it does for very high variances of
the random effect. We therefore set up two different simulation studies for the two sources
of error but note that combining these and studying interaction effects is a possible route
for further research.

5.2.3 Diagnostic Tools

5.2.3.1 Changing Observation Variance

We first confirmed that the Markov chains had converged, using the tools described in
Section 3.2.2.1. To analyse the resulting posterior distributions, we considered three as-
pects. First, the marginal distributions of the parameters were examined. Here, we relied
on density plots and compared means and standard deviations with the true parameter
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value. We also calculated the percentage of overlapped area between some of the distribu-
tions (Pastore and Calcagǹı, 2019). The position of the true parameter value within the
three posterior distributions (representing the three levels of observation error examined)
was quantified by evaluating the empirical cumulative distribution function at the true
parameter value. This is equivalent to calculating the proportion of sampled values that
are smaller than the true value:

F̂ (θi) =
1

M

M∑
m=1

1
θ
(m)
i <θi

.

Here, θi is the i-th component of the true parameter value, and θ
(m)
i is the i-th component

of the m-th sampled value from the posterior distribution.

Second, the joint distributions of all parameter component pairs was examined. We used
scatter plots and the Pearson correlation coefficient to study the multivariate distribution
of the parameters. To assess how far away the true parameter value θ was from the
estimated posterior distribution, we calculated the Mahalanobis distance (Mahalanobis,
1936) between these. This is defined as

dM (θ,Q) =
√

(θ − µ)Σ−1(θ − µ),

where Q is the distribution in question with mean µ and covariance matrix Σ.

Finally, the posterior state estimates were considered. Often, parameter estimation is only
a necessary intermediate step for making state inference. It is therefore important to know
whether difficulties in recovering the true parameter value with a point estimate affects the
quality of the state estimates. To sample from the smoothed posterior state distribution
p(x0:T |y1:T ), we first sampled θi for i = 1, ..., 100 from the posterior distribution. We
then ran a bootstrap filter for each sampled parameter value θi to generate smoothed
state estimates from p(x0:T |y1:T , θi) with 1000 particles and randomly selected one of the
1000 state trajectories for each of the parameter values. The high number of particles
was necessary for two reasons. First, as discussed in Section 2.2.2, a particle filter is an
importance sampling method and therefore only asymptotically unbiased. Using a high
number of particles reduces this bias. Second, here the näıve method of sampling from
the smoothed distribution was used, where we saved the entire state trajectory for each
particle and then sampled from these trajectories. This can lead to particle degeneracy for
the early time points but can be mitigated by using enough particles. More sophisticated
methods are available for sampling smoothed state estimates, as briefly discussed in Section
2.2.8, but we found that here the basic approach produced satisfactory results.

Similar to Auger-Méthé et al. (2016) with the RMSE, we assessed the quality of the state
estimates by calculating a measure to quantify the error of the estimated state values
compared to the true simulated values. To transfer the idea of the RMSE to the 2-state
model, we considered two things. First, the state xt consists of a pup count and an
adult count of potentially different orders of magnitude. Second, using a constant CV
leads to the observation error increasing as the states increase. This means that simply
summing the unscaled squared errors disproportionally attaches importance to the larger
errors towards the end of the time series. We therefore scaled the errors by dividing each
difference x̂age,t − xage,t by the true state xage,t. This also means that errors for pup and
adults could be compared on the same scale. The error measure is then a scaled root mean
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square error

SRMSE(x̂1:T ) =

√√√√ 1

T

T∑
t=1

((
x̂1,t − x1,t

x1,t

)2

+

(
x̂2,t − x2,t

x2,t

)2
)
.

5.2.3.2 Changing Process Stochasticity

We examined the marginal posterior distributions, the joint posterior distributions and
the posterior state estimates with the same tools as described in the previous paragraph.
However, when examining the effect of varying the process stochasticity on the posterior
distribution, we could no longer use the same underlying time series of states, as this
changes when the variance of the random effect changes. It was therefore no longer
possible to see any trends by only examining one posterior distribution for each of the
selected variances, as any differences could be due to the different states and observations.
Therefore, we simulated states and observations 50 times for each of the selected variances
and present summaries of these 50 runs. This allows us to see if any estimation problem
are systematic. Additionally, the results from one randomly selected simulation for each
variance value are shown to illustrate some features of the posterior distributions.

5.3 Results

5.3.1 Changing Observation Variance

5.3.1.1 Marginal Distributions of Parameters

We first confirmed that the samples produced by the PMMH algorithm have low enough
Monte Carlo error to be reliable for further analysis. Table 5.3 summarizes the diagnostics
of the MCMC. The chains seemed to have converged according to the R̂-value and exam-
ination of the trace plots (not shown). The ESS was large enough that further analysis is
feasible.

CV M R̂ ESS

10% 2,000,000 1.00 120174.61
1% 2,000,000 1.00 71451.42
0.5% 2,000,000 1.00 35426.74

Table 5.3: Summaries from running the PMMH for the 2-state model with four unknown
parameters with three different observation CVs.

Examining the marginal densities of the four unknown parameters with their means and
standard deviations, we see in Table 5.4 and Figure 5.6 that there were clear differences
between the three observation variances. The marginal densities for α and χ were very
similar when comparing the posterior distributions for CV=1% with CV=0.5% (over-
lapped area 98.23% respectively 99.01%) but still showed a clear difference for the other
two parameters (88.42% overlap for φp,max and 87.82% overlap for φa).

Even with the lowest CV of 0.5%, there was still a lot of uncertainty for some of the
parameters. For all four parameters the variance of the marginal posterior distributions
was lower than in the motivating example with only T = 26 observations of pup counts
and 6 unknown parameters. For three of the four parameters, the standard deviation was
decreased by about a factor of 2—from 0.121 to 0.065 for φp,max, from 0.0425 to 0.0263
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CV φp,max φa α χ

Prior 0.643 (0.184) 0.900 (0.0423) 0.831 (0.0928) 3200 (1600)
10% 0.544 (0.095) 0.876 (0.0385) 0.808 (0.0142) 2499 (41.5)
1% 0.562 (0.075) 0.867 (0.0302) 0.796 (0.0102) 2463 (33.7)
0.5% 0.580 (0.065) 0.859 (0.0263) 0.796 (0.0101) 2462 (33.5)
True value 0.480 0.900 0.800 2500

Table 5.4: Means (with standard deviations in parentheses) of the prior distribution of the
2-state model, as well as the the posterior distributions estimated using observations with three
different CVs and the true parameter values used to simulate the data.

Figure 5.6: Marginal posterior distributions and means (vertical lines) for the 2-state model,
estimated using observations with three different CVs. The marginal prior distributions and
means are indicated in black. The true value used to simulate the data is shown as the vertical
black dashed line (hidden behind the red vertical line for χ).

for φa, and from 64.6 to 33.5 for χ. However, for the fecundity α the change was much
more dramatic. In the motivating example, the posterior distribution was relatively close
to the prior with an overlapped area of 88.17% whereas in the simulation here, it was only
17.40%. This is unsurprising given that there were precise observations about both the
pup and adult number in every year and the ratio of newborn pups to adults could easily
be calculated with only a small observation error.

When looking for trends as the observation variance decreases, we note that the standard
deviations of all four marginal distributions decreased. We also note that the mean of
the distribution moved in one consistent direction for each parameter as the observation
variance decreased. For all four parameters, this direction was away from the true value.
For α and χ the mean even moved beyond the true parameter value for the two smaller
observation variances, when the mean for a CV of 10% was in between the prior mean
and the true value or very close to the true value. We also note that for those parameters,
there was very little difference in marginal posterior distribution between the two smaller
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observation variances. This could indicate that even with better data, some uncertainty
about the parameters remains due to the nature of the data and the model. However, we
also note in Table 5.5 that the true value lay within the range of plausible values for each
of the marginal distributions.

φp,max φa α χ

Prior 0.21 0.47 0.38 0.38
CV = 10% 0.27 0.71 0.29 0.51
CV = 1% 0.15 0.85 0.66 0.87
CV = 0.5% 0.06 0.94 0.67 0.87

Table 5.5: Empirical cumulative distribution function of the marginal prior and three posterior
distributions, evaluated at the true parameter value.

In summary, even with a long time series with very precise observations of both adult
and pup counts, there remained a lot of uncertainty for some of the parameters, namely
φp,max and φa. It also seems that for the two parameters where the posterior distribution
indicated a much greater learning, almost no improvement could be achieved by reducing
the CV from 1% to 0.5%. Importantly, decreasing the CV did not lead to a better point
estimate of the true parameter value—indeed the posterior means moved away from the
true value as CV decreased.

5.3.1.2 Joint Distributions of Parameters

As there was seemingly little learning about some of the parameters when examining only
the marginal distributions, even with very precise observations about both age classes, we
then analysed the joint distributions of the parameter pairs.

In Figure 5.7 we note that for all combinations the parameter space was greatly reduced
from the prior distribution, even when only a CV of 10% was used. Rows 2 to 6 of the
figure show scatter plots where the parameters α or χ are part of the joint distributions.
These are the two parameters where the variance of the marginal posterior distributions
was already greatly reduced, and the reduction in posterior space seems largely due to
their contribution and not φa or φp,max. In the first row, we see the joint distribution of
φp,max and φa, where even for a CV of 0.5% a large uncertainty remained in the marginal
posterior distributions. In the scatter plot of the samples from the joint distribution,
we note that the two-dimensional parameter space was decreased significantly. Here, the
points of the sample are highly correlated and lie on a straight line.

Again, we observed that a reduction in CV did not lead to a better point estimate of the
true parameter value. However, it is also apparent that even when the joint parameter
space was considered, the true value still lay within the area of plausible values of the
posterior distribution. We quantified this by calculating the Mahalanobis distance between
the true parameter value and the three posterior distributions. This was 1.25 for a CV of
10%, 2.10 for a CV of 1%, and 2.45 for a CV of 0.5%.

As indicated by the scatter plots in Figure 5.7 and confirmed by the correlation coefficients
in Figure 5.8, there was a strong correlation between φp,max and φa, as well as between
α and χ. For the first of these pairs, this strong correlation was apparent for all three
of the observation variances. However, for the second pair α and χ, the strength of the
correlation increased as the observation CV decreased, with a particularly sharp increase
from 0.55 to 0.92 when the CV decreased from 10% to 1%.
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Figure 5.7: Samples from the prior and posterior distributions for the 2-state model, estimated
using observations with three different CVs. The mean of each joint distribution is indicated
with a black circle, other than for the prior of χ, which is outside the plot limits. The true
value used to simulate the data is shown as a black cross. For the parameter χ, the axis limits
were restricted to focus on the joint posterior distributions, resulting in an omission of some
of the sampled values from the prior distribution.

160



Figure 5.8: Pearson correlation coefficient between the four parameters for the prior distribu-
tion and the posterior distributions estimated using observations with three different CVs.

The strong correlation between φp,max and φa in combination with their wide marginal
posterior distributions indicates parameter identifiability issues. This means that even
given precise observations of both age classes, it might be impossible to learn the true value
of these parameters without further information about abundance after a sub-process such
as pup survival.

5.3.1.3 State Estimates

Figure 5.9 shows adult and pup trajectories sampled from the smoothed posterior distri-
butions for the three different CVs. Even though the true parameter values could not
be recovered even with observations with a CV of 0.5%, it seems that it was possible to
recover the true state values. We also note that the small change in parameter estimates
from a CV of 1% to a CV of 0.5% still led to a visible reduction in variance of the smoothed
state estimates, while also reducing the scaled root mean square error seen in Table 5.6.

CV=10% CV=1% CV=0.5%

Posterior distribution 0.0419 0.0183 0.0152
True parameter value 0.0679 0.0188 0.0154

Table 5.6: Scaled root mean squared error (SRMSE) of the state estimates compared to
the true state values. The SRMSE was calculated for all three posterior distributions, as well
as when the true parameter value is assumed to be known and the three different sets of
observations are used.

We also assessed the quality of the smoothed posterior state estimates by comparing
them with the smoothed state estimates when the true parameter value is known and the
observations with the different CVs are used. The resulting estimated state trajectories
can be seen in the Appendix in Figure E.1. Table 5.6 compares the SRMSE for these two
scenarios. For all three CVs the SRMSE was larger when the true parameter value was
used. Comparing the estimated state trajectories in Figures 5.9 and E.1, we note that this
seems due to the state estimates being much closer to the observations—and therefore
sometimes further away from the true state value—when the true parameter is known,
than when it is not. This is confirmed in Figure 5.10 where the standard deviations of the
state estimates across time are shown. We note that the difference in standard deviation
was much larger for the larger CV and decreased as the CV decreases.

161



Figure 5.9: Smoothed posterior state estimates of both pups and adults for the three different
observation variances. The white circles show the observed pup and adult counts. In the second
row, both axis limits are reduced to better illustrate the reduction in variance of the pup state
estimates as the CV decreases.

Figure 5.10: Standard deviations of the smoothed state estimates across time. The standard
deviations are shown for both the adult and pup estimates and for all three observation CVs.
The solid line shows the standard deviations when the parameters are sampled from the pos-
terior distributions, and the dashed line shows it when the parameter is fixed to the true value.
Note the change in y-axis scale between the three plots.
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In conclusion, there did not appear to be any bias in the state estimates. Even though
some of the marginal posterior parameter distributions were very wide, and the joint
distributions revealed issues with parameter identifiability, the state estimates were not
affected by these issues. On the contrary, they did not appear to exhibit any bias and
showed a decrease in variance as the CV decreased.

5.3.2 Changing Process Stochasticity

SD(α) a b N M h ESS R̂ Runtime (sec) ESS/sec

0 - - 30 100000 0.8 3279.72 1.00 262.18 12.509
0.01 1279.2 319.8 30 100000 0.8 5607.05 1.00 274.19 20.449
0.03 141.4 35.4 100 100000 0.6 6808.53 1.00 848.96 8.020
0.10 12.0 3.0 300 100000 0.4 8035.41 1.00 2652.20 3.030
0.20 2.4 0.6 300 100000 0.1 1223.13 1.02 3104.30 0.394

Table 5.7: Details from fitting the 2-state model with a random effect on α with varying
variance. ESS, R̂, and runtime are given for one randomly selected run each.

For each of the selected standard deviations, 50 posterior distributions were estimated
with a PMMH with the settings detailed in Table 5.7.

5.3.2.1 Marginal Distributions of Parameters

First, we examine the marginal distributions of the three unknown parameters for one
randomly selected run each. Figure 5.11 shows the marginal densities for the 5 different
standard deviations and for the prior distribution. For calculation of the induced prior,
α was fixed to 0.8, as this is the value that was used to calculate the annual pup survival
probability for the Beverton-Holt density dependence. We note that this induced prior
for φp,max and φa was much closer to the theoretical prior distribution when α was fixed
to 0.8 as opposed to when α was distributed according to its prior distribution (compare
with Figure 1.6).

We also note that the marginal posterior distributions varied greatly between the five
different simulations. This confirms that comparing results between the five different
random effect variances is only feasible when many simulations are considered, as any
difference between two single posterior distributions can be due to the different underlying
states and observations.

Figure 5.12 shows boxplots of the means of the marginal posterior distributions from
50 different simulations, for each of the 5 random effect variances. We note that the
distributions of the posterior means were similar for the 5 different variances. For φp,max,
the posterior means tended to lie between the true value and the prior mean—between
60% and 84% of the means lay within this range.

For χ, the mean values were dispersed around the true parameter value. The medians of
the mean values were close to the true value, ranging from 2496 to 2506. As seen before
(e.g., in Figure 3.7a), there was a lot of information about χ in the data compared to the
relatively wide prior and it was therefore unsurprising that the prior mean had such little
effect on the posterior means.

For φa, a shift of the posterior mean away from the true value and prior mean could be
observed for all five standard deviations values. Between 62% (for SD = 0.1) and 84%
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Figure 5.11: Marginal posterior distributions for the 2-state model, using simulated state
values with 5 different standard deviations for the random effect on α. The marginal prior
distribution is indicated in black. The induced marginal prior distributions for φp,max and φa
are indicated in yellow. The true value used to simulate the data is shown as the vertical solid
black line.

Figure 5.12: Boxplots of posterior means from 50 simulations for each of the 5 values for the
random effect standard deviation. The black dashed line indicates the true parameter value
used to simulate the data, the black solid line indicates the mean of the prior distribution.

(for no random effect) of posterior means were lower than the true value. This shift was
more pronounced when the variance of the random effect was lower. However, the main
issue was that the estimation of this parameter remained difficult across all random effect
variances.

While the posterior means were occasionally further away from the prior mean than the
true value, this did not appear to be a systematic behaviour for the most part. Rather,
the mean was centred around the true value for χ, where the data were highly informative,
and lay on average between the true value and the prior mean for φp,max, where the prior
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was more important compared to the only weakly informative data. For φa, the posterior
mean was not centred around the true value and the prior mean. This could be due to
identifiability issues with this parameter. There was no clear trend in the distributions
of the posterior means when the standard deviation of the random effect was changed.
Even with a large random effect on α, the estimated marginal posterior distributions of
the three unknown parameters seemed unaffected.

5.3.2.2 Joint Distributions of Parameters

Next, the joint distributions were examined. In Figure 5.13, the results from one randomly
selected run each are shown. We see that there was a very strong negative correlation
between φp,max and φa across all standard deviations. Again, the different underlying
states made it difficult to identify any trends when the random effect size was changed.

Figure 5.13: Samples from the prior and posterior distributions for the 2-state model, using
simulated state values with 5 different standard deviations for the random effect on α. The
mean of each joint distribution is indicated with a black circle. The true value used to simulate
the data is shown as a black cross. For the parameter χ, the axis limits were restricted to focus
on the joint posterior distributions, resulting in an omission of some of the sampled values from
the prior distribution.

In Figure 5.14, boxplots of the correlation coefficients between each of the three parameter
pairs from 50 different simulations for each random effect standard deviation are shown.
Contrary to the marginal distributions, a clear trend can be seen when the standard
deviation of the random effect on α was increased. The standard deviation of the 50
observed correlation coefficients was similar for the three lower values for the random effect
standard deviation but increased with the two larger values. There also appeared to be a
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Figure 5.14: Boxplots of the posterior correlation coefficients ρ using 50 simulations each,
for each of the 5 different standard deviations for the random effect on α and for each of the
three parameter pairs.

shift in the mean of these correlation coefficients. For the pair (φp,max, φa), it decreased
from 0.994 for the model with no random effect to 0.976 for the model with a random effect
standard deviation of 0.2. For the pairs (φp,max, χ) and (φa, χ), these changes were from
-0.239 to 0.183 and from 0.226 to -0.246 respectively. The mean correlation coefficient
even moved across 0 for the pairs (φp,max, χ) and (φa, χ) as the random effect standard
deviation changed.

5.3.2.3 State Estimates

To sample from the smoothing distribution of the posterior states, we sampled 100 pa-
rameter vectors from each posterior distribution, ran a particle filter with 1000 particles
for each of them and selected one smoothed state trajectory for each of the parameter
vectors. Figure 5.15 shows the distribution of the smoothed posterior state estimates for
one randomly selected simulation for each of the five values of random effect standard
deviation. It seems that even when the standard deviation of the random effect was large,
that the estimates could track the true state trajectory relatively well due to the many
observations of both the adult and pup numbers.

This was confirmed when the results from all 50 simulations were analysed. Figure 5.16
shows boxplots of the scaled RMSEs from the smoothed posterior state estimates, and
compares these with the scaled RMSEs when the true parameter value was known. While
the median SRMSE was lower for the true parameter value across all 5 random effect
standard deviations, the difference was not large. In fact, the median SRMSE of the
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Figure 5.15: Smoothed posterior state estimates of both pups and adults, using simulated
state values with 5 different standard deviations for the random effect on α. The white circles
show the observed pup and adult counts and the black lines indicate the true counts.

posterior smoothed state estimates lay within the interquartile range of the SRMSEs
when the true parameter value was known, and in 2 out of 5 cases, the largest observed
SRMSE was produced when the true parameter value was used.

As in the previous section where the observation variance was varied, the estimation
difficulties of the marginal parameter distributions did not translate to a difficulty in
estimating the posterior states. Even though some non-idenfiability issues appeared to
affect the estimation of φp,max and φa, the posterior state estimates were almost as close
to the truth as when the true parameter value was used.

5.4 Conclusion

We found that even with very good data consisting of a long time series observations
of both age classes with a small error, estimation of the posterior distribution remained
difficult for some of the parameters in this model. In particular the two survival proba-
bilities φp,max and φa suffered from identifiability issues. When the joint distribution of
these two parameters was examined, we noted the very high correlation of between -0.95
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Figure 5.16: Boxplots (�) of the scaled RMSEs of the smoothed posterior state estimates
from 50 simulations with 5 different random effect standard deviations. The boxplots in blue
(� show the scaled RMSEs when the same observations are used but parameters are fixed to
the true values.)

and -0.99 depending on the exact model. In the future, a re-parameterisation of the seal
model could be considered to alleviate these identifiability issues and to reflect the strong
relationship between these two parameters. For example, one might consider having a
parameter for adult survival and calculating maximum pup survival as a function of adult
survival. Other remedies might be to obtain data on an intermediate life stage, e.g., abun-
dance of age 1 animals in a 7-state model to obtain a better estimate of φp,max, though
this is likely not feasible (see Buckland et al., 2004, p. 164, on the importance of collecting
data on relevant life stages), or adapting the survey effort to a more suitable observation
model (Knape et al., 2011).

Returning to the motivating question of a possible bias when the posterior mean is esti-
mated, we found that this estimate can indeed sometimes be further away from the true
parameter value when the observation variance is reduced. It is important to consider this
when communicating results. We could not confirm a systematic bias when the process
stochasticity is increased. While the median of estimated posterior means of the param-
eter φa is significantly smaller than the true value and prior mean for all random effect
sizes, there was no clear relationship of this behaviour with the random effect size. This
might also be due to the identifiability issues of this parameter.

Considering the issues with the estimation of the posterior distribution of the parameters,
it is remarkable that the posterior state estimation produces very precise estimates with
errors only marginally larger than when the true fixed parameter is used. From a practical
perspective this is very important. Often, estimating the parameters is only a necessary
intermediate step for the final goal of estimating the states. Here, we can be be confident
that the state estimates are unbiased, and that they improve as the observations get closer
to the truth. However, it is important to clearly communicate the identifiability issues
and how this affects the estimates. While it seems that the model and collected data
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are adequate when only an estimate of the states is required, we cannot produce precise
posterior estimates of the parameters.

In future research, we would like to explore the combination of a random effect in the
process equations with a changing observation variance and study a possible interaction
between the two features. With a lot of computational power, it could also be feasible to
repeat the observation variance simulation study to discover more general trends rather
than only analysing the results from one time series. This chapter has also highlighted
the identifiability issues of some of the parameters in this model even when great data are
available. A next step is therefore to analyse these identifiability issues and to identify
and implement methods for addressing these challenges.
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Chapter 6

Factorising the Likelihood

6.1 Introduction

In this chapter, we return to the idea of factorising the likelihood first presented in Section
2.5. There, we investigated the effect of utilising the independence of the four regions when
the independent estimate is omitted. This showed promising results. In particular, for
achieving the same variance of the log-likelihood estimates produced by a particle filter, the
factorised formulation required around 10 times fewer particles than the joint formulation.

However, transferring this idea to the complete seal model with independent estimate
requires some modifications. Through this independent estimate, which is an estimate of
the total number of adult seals, the regions are no longer independent from each other.
In this chapter, we describe in Section 6.2.1 two formulations for how the independent
estimate can be included in the likelihood term. Using these formulations, we lay out three
methods that allow elements of the factorisation idea to be used even for the complete
seal model with independent estimate (Section 6.2.2). In Section 6.2.3, we describe the
methods used for measuring a potential gain in efficiency when the first of the three options
is implemented. Section 6.3 describes the results that were obtained when the likelihood
and the posterior distribution were estimated with the factorised formulation compared
to a joint formulation.

6.2 Methods

6.2.1 Factorisation of the Independent Estimate

In Chapter 2, we derived in Equation 2.15 that the likelihood for the complete seal model
without independent estimate can be estimated separately for each region and then mul-
tiplied for an estimate of the total likelihood, and one factor of the likelihood at time t
is

p(yt,r=1:4|y1:t−1,r=1:4) =

4∏
r=1

p(yt,r|y1:t−1,r) ≈
4∏
r=1

1

N

N∑
i=1

w
(i)
t,r .

The unbiasedness of the estimate is preserved due to the independence of the regions (see
Section 2.5). It is possible to preserve this idea of factorising the likelihood for parts of the
likelihood estimation algorithm even when including the independent estimate. Before
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describing the options for this, we show how the likelihood can be rewritten when the
independent estimate is part of the data.

Including the independent estimate yIE,24 in the state space model in addition to the
annual pup production estimates allows two different formulations of the marginal density
related to the inclusion of yIE,24, which we label embedded formulation and appended
formulation, that affect implementation of the algorithm. We denote the year to which
the independent estimate is assigned with t∗ and use yIE,24, yIE and yIE,t∗ somewhat
interchangeably depending on the context. As a reminder, the observation density of the
independent estimate is

yIE,24|x24 ∼ xadults,24 −Ga(κ1, κ2)

where xadults,24 denotes the total number of all seals (male and female) aged 1 and above
in all regions and can be directly calculated from the state vector x24 using the sex ratio
parameter ω, i.e.,

xadults,24 = ω
4∑
r=1

6∑
a=1

xa,r,t=24,

see also Equation 1.6.

The embedded formulation augments the observation in year t∗, which is the formulation
that has been used so far throughout this thesis:

p(y1:T , yIE) =

(
t∗−1∏
t=1

p(yt|y1:t−1)

)
p(yt∗ , yIE |y1:t∗−1)

(
T∏

t=t∗+1

p(yt|y1:t−1, yIE)

)
. (6.1)

In a particle filter this means the importance weight of a particle i is p(yt∗ , yIE |xit∗) =
p(yt∗ |xit∗)p(yIE |xit∗). Importantly, and independently of the choice of algorithm, this means
that from time t∗ onwards the state estimates for the four regions are no longer indepen-
dent. From an implementation point of view this means that the updating and predicting
equations no longer factorise into four separate parts but need to be considered jointly.

The appended formulation considers the independent estimate only at the end, after all
standard observations y1:T have been looked at:

p(y1:T , yIE) =

(
T∏
t=1

p(yt|y1:t−1)

)
p(yIE |y1:T ) (6.2)

This means that the likelihood of the independent estimate is calculated given all other
observations, including the ones for later times t > t∗. In the implementation of the
various algorithms this means that the smoothed states need to be used in the evaluation
of this factor. In a particle filter, this means averaging over all smoothed particles xit∗ at
time t∗, so 1/N

∑
p(yIE |xit∗).

6.2.2 Incorporating the Independent Estimate in a Factorised Formula-
tion

We present here three options for incorporating the independent estimate as a shared data
point while still benefiting from some of the advantages of the factorised formulation. The
first option incorporates the independent estimate into the likelihood estimate produced by
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a bootstrap filter using the embedded formulation, the second option incorporates it using
the appended formulation, as described in the previous section. This likelihood estimate
can then be used as part of a PMMH algorithm. The third option is to initially disregard
the independent estimate when the posterior distribution is estimated and only to include
it in a second step with an adjustment of the initially estimated posterior distribution,
again using the appended formulation.

Option 1 For the first option of factorising while including the shared data point, we
use the embedded formulation of the likelihood as written in Equation 6.1. The first of
the factors in that equation can be estimated as follows,

t∗−1∏
t=1

p(yt|y1:t−1) =

4∏
r=1

t∗−1∏
t=1

p(yt,r|y1:t−1,r)

≈
4∏
r=1

t∗−1∏
t=1

1

N

N∑
i=1

w
(i)
t,r .

For the second factor, we introduce the state xt∗ and write

p(yt∗ , yIE |y1:t∗−1) =

∫
p(yt∗ , yIE , xt∗ |y1:t∗−1)dxt∗

=

∫
p(yt∗ |xt∗)p(yIE |xt∗)p(xt∗ |y1:t∗−1)dxt∗

From a bootstrap filter we obtain a (potentially weighted) sample from the distribution in
the last factor of the integrand p(xt∗ |y1:t∗−1). This applies regardless of whether the sample
of the states xt∗ |y1:t∗−1 was obtained using the joint formulation or from the factorised
formulation. There, we use

p(xt∗ |y1:t∗−1) = p(xt∗,1, xt∗,2, xt∗,3, xt∗,4|y1:t∗−1)

=
4∏
r=1

p(xt∗,r|y1:t∗−1,r),

and obtain a sample from each of the four distributions on the right-hand side from four
separate bootstrap filters. These can be combined into a sample from the left-hand side
distribution by combining randomly chosen particles from each of the four bootstrap fil-
ters into a joint particle, where the importance weight is the product of the four weights

assigned to each of the particles, so w
(i)
t∗−1 =

∏4
r=1w

(i)
t∗−1,r . Using these newly created par-

ticles and weights, a bootstrap filter for the joint formulation can be set up, starting with

the observation yt∗ , yIE , and updating the weights with w
(i)
t∗ = w

(i)
t∗−1g(yIE |x(i)t∗ )g(yt∗ |x(i)t∗ ).

This bootstrap filter can then be run until time T to obtain estimates for the factors in
the last term in Equation 6.1. We note that even though the observations yt∗+1:T no
longer contain a shared data point, the particles cannot be separated into the factorised
formulation. They are samples from the filtering distribution p(xt|y1:t, yIE) and through
their dependence on yIE no longer independent.

The advantage of this approach is that no additional calculations are necessary to obtain
the required samples and weights. The existing bootstrap filter framework can be used
with only a slight modification to produce a likelihood estimate. In the case of the seal
model, where the shared data point is introduced at time t = 24 out of a total number
of observations T = 26, the factorised structure can be used for almost the entire time
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series. However, this also illustrates the drawback of this option as a general method for
models that consist of sections that are independent other than one shared data point. If
this shared data point occurs towards the start of the time series, the factorised structure
can only be used for a few iterations before that time point. If several shared data points
need to be incorporated, the expected benefit of this option depends on the time point
at which the first if the shared time points appear. After that, the number of shared
time points does not affect the ability to factorise the model. The different sections cease
to be independent after the introduction of the first shared data point and so the joint
formulation has to be used regardless of whether more shared data points are introduced.
This is relevant for the seal model because two further independent estimates of total
adult seal counts have been undertaken since 2010, the year of the last observations used
in this thesis.

Option 2 The second option is based on the appended formulation as in Equation 6.2,
thus the independent estimate yIE is only included after all standard observations y1:T
have been incorporated. We can obtain an estimate of the first term using the factorised
form since the four regions are independent when yIE is omitted. For the second term in
Equation 6.2 we integrate over xt∗ and obtain

p(yIE |y1:T ) =

∫
p(yIE , xt∗ |y1:T )dxt∗

=

∫
p(yIE |xt∗)p(xt∗ |y1:T )dxt∗

≈
N∑
i=1

p(yIE |x(i)t∗ ), x
(i)
t∗ ∼ p(xt∗ |y1:T ).

The last approximation is a Monte Carlo estimate of the integral, where x
(i)
t∗ is sampled

from the smoothing distribution p(xt∗ |y1:T ). This sample is produced by a bootstrap filter
if the ancestor particles of each resampled particle are saved, as in Algorithm 1 (Gordon
et al., 1993). As discussed in Section 2.2.8, this sample can suffer from particle degeneracy
resulting in high Monte Carlo error if t∗ is much smaller than T . For the complete seal
model, this is not an issue, since the time point of the independent estimate is close to
the end of the time series. The estimate of the smoothed distribution at that time point
produced by the bootstrap filter is thus not expected to suffer from particle degeneracy
and does not require any further calculations besides the bootstrap filter that was run
to obtain the estimate for p(y1:T ). We note that this is how the independent estimate is
incorporated in Thomas et al. (2019), although there the initial weighted sample of the
posterior distribution without independent estimate is obtained with a modified Liu-West
algorithm (Algorithm 4). Generalising this option for shared data points at earlier time
points is still possible. The large Monte Carlo variance of the estimate of p(yIE |y1:T )
could be combated by using a more sophisticated smoothing algorithm (see Section 2.2.8).
While this requires an additional step to obtain an estimate of p(yIE |y1:T ), the factorised
structure can be used for the entire time series regardless of how early in the time series
the shared data point appears. In addition, multiple shared data points after the first
appearance of such a point can easily be incorporated since obtaining a sample from
p(xt∗ |y1:T ) usually yields samples from p(xt|y1:T ) for all t > t∗.

Option 3 The third option is to estimate the posterior distribution in two steps. First,
we apply an algorithm such as the PMMH to estimate the posterior distribution with-
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out the independent estimate where the factorised formulation can be used throughout.
In a second step, we use importance sampling to incorporate the independent estimate.
The posterior without independent estimate is used as the proposal distribution, and the
importance weight can be calculated with

p(θ|yIE , y1:T )

p(θ|y1:T )
=
p(θ)p(yIE , y1:T |θ)
p(θ)p(y1:T |θ)

=
p(yIE |y1:T , θ)p(y1:T |θ)

p(y1:T |θ)
= p(yIE |y1:T , θ)

An estimate of the last term p(yIE |y1:T , θ) can be obtained through a smoothing algorithm
(see Section 2.2.8). Since the values of θ are drawn from a sample where a bootstrap
filter was run for each value, an implementation can be considered where this estimate
is generated and saved as the bootstrap filter is run. If standard importance sampling
is not feasible due to large difference between the target and the proposal distribution,
a more sophisticated importance sampling technique such as the SMC sampler could be
considered (see Section 4.5.2).

In the remainder of this chapter we demonstrate application of the approach described
in Option 1 and leave demonstrations of the other two options as future research. This
option is straightforward to implement, requires no additional smoothing algorithm and
leads to an unbiased likelihood estimate.

6.2.3 Assessing Gain in Efficiency

To assess the benefits of exploiting the factorised structure when using SMC methods, we
examined both the likelihood estimates and the output from the PMMH algorithm using
the factorised formulation.

For the likelihood estimate, we used the same methods as in Chapter 2 to compare the
factorised formulation with the joint formulation. We estimated the likelihood at four
different values in the parameter space: the prior mean θ1, the posterior mean θ4 deter-
mined in Thomas et al. (2019), and two values in between these. The first was the mean,
so θ2 = (θ1 + θ4)/2 and the second was shifted further towards the posterior mean with
θ3 = (θ1 + 3θ4)/4. The parameter values can be seen in Table 6.1. For both the joint and
the factorised formulation we used the settings for the particle filter that were determined
optimal in Chapter 2 and varied the number of particles from 3 to 100,000. For each num-
ber of particles, the likelihood was estimated 100 times. Then, the CV of the likelihood
and the variance of the log-likelihood estimates were compared between the joint and the
factorised formulation across all numbers of particles. We also recorded the runtimes of
the two formulations to evaluate the effect of modifying the likelihood estimation.

For the posterior distribution, we ran the PMMH with the optimal settings determined in
Chapter 3 but varied the number of particles and the number of iterations while keeping
the computational effort relatively constant. Using the effective sample size per time as
the criterion, we then compared the output of the PMMH using the joint formulation for
the likelihood estimate with the same when the factorised formulation is used. For the
joint formulation, we used the results from the run detailed in Section 3.3.2.3. We used the
same settings for the algorithm here but tested only a subset of the range of the number
of particles, since we were able to utilise the results from Chapter 3 to limit the search for
the optimal number of particles.
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θ1 θ2 θ3 θ4
Prior mean Posterior mean

φp,max 0.62 0.55 0.52 0.48
φa 0.90 0.93 0.94 0.95
α 0.83 0.86 0.88 0.90

χNS 20000 17750 16625 15500
χIH 5000 4055 3582 3110
χOH 15000 13350 12525 11700
χOrk 40000 28900 23350 17800

ρ 10.00 7.97 6.96 5.95
τ 140 126 119 112
ω 1.70 1.70 1.70 1.70

Table 6.1: Parameter vectors used for the likelihood estimation

6.3 Results

6.3.1 Likelihood Estimation

Factorised Joint

N CV Var(log-L) CV Var(log-L)

3 8.40 2718.19 5.80 3289.02
10 7.88 228.56 8.99 1369.14
30 5.58 21.76 7.86 744.02

100 2.55 4.81 8.32 320.53
300 1.75 1.70 6.07 101.71

1000 0.85 0.69 5.01 23.58
3000 0.55 0.29 2.88 6.62

10000 0.38 0.13 2.50 2.51
30000 0.29 0.07 0.85 0.80

100000 0.23 0.04 0.54 0.22

log-L -807.11 -806.33

Table 6.2: Measures of variation of 100 likelihood estimates computed by a particle filter
with varying numbers of particles N . The likelihood was estimated with a particle filter at
the posterior mean (θ4 in Table 6.2), using the factorised and the joint formulation. The
first column gives the CV of the likelihood estimates, the second column the variance of the
log-likelihood estimates. The bottom row gives the log of the mean of 100 likelihood estimates
as calculated with N = 30, 000 particles.

The runtimes between the two formulations were similar. For small numbers of particles,
the joint formulation was slower. This advantage of the factorised formulation was visible
for all number of particles between 3 and 1000, where the joint formulation was slower by
a factor of between 1.15 and 2.65, although no trend was visible in relation to the number
of particles. For N between 3000 and 100,000, the joint formulation was faster and took
between 0.56 to 0.85 of the time of the factorised formulation. This could be due to issues
with computer memory.

For all four tested parameter vectors, the variability of the likelihood estimates decreased
as the number of particle increased for both formulations, as can be seen in Table 6.2 and
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Figure 6.1: Boxplots of 100 likelihood estimates of four different parameter values (see Table
6.1) in the complete seal model with independent estimate for varying numbers of particles N
and for the two different model formulations.
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(a) CV of the likelihood estimates.

(b) Variance of the log-likelihood estimates.

Figure 6.2: Measures of variation of 100 likelihood estimates of four different parameter
values (see Table 6.1, Parameters 1 to 4 correspond to θ1 to θ4) in the complete seal model
with independent estimate for varying numbers of particles N and for the two different model
formulations. The first figure shows the CV of the likelihood estimates, the second figure the
variance of the log-likelihood estimates. The black horizontal line shows the limit of 2 for the
variance of the log-likelihood estimates.
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Figure 6.3: Relationship between the number of particles N and ESS per runtime when using
the PMMH to generate samples from the posterior distribution of the complete seal model
with independent estimate, comparing the joint formulation (blue line) with the factorised
formulation (red line). The proposal distribution is a multivariate normal distribution on the
transformed parameter space with a covariance h = 0.8 times the posterior covariance.

Figures 6.1 and 6.2. Table 6.2 shows the CV of the likelihood and the variance of the
log-likelihood only for the estimates at the posterior mean (θ4 in Table 6.1). The tables
for the other three parameter vectors can be found in the appendix in Tables F.1, F.2 and
F.3. The variance of the log-likelihood was lower for the factorised formulation than for
the joint formulation for almost all numbers of particles and parameters. For example for
the posterior mean (Parameter 4), the threshold of a variance of less than 2 was passed
with 300 particles for the factorised formulation but only with 30,000 particles for the joint
formulation. In general, the factorised formulation needed about 30 times fewer particles
to obtain a similar variability of the likelihood estimates.

We note that Figures 6.1 and 6.2 reveal large differences between the four parameters.
Their mean likelihood value and the variability of the estimates differed greatly. For the
prior mean (Parameter 1 in Figure 6.2), the CV seemed to be affected by a particularly
high likelihood estimate for N = 3000 particles. Nevertheless, the factorised formulation
showed an advantage even for the parameters with high-variance estimates.

6.3.2 Posterior Distribution

N M Runtime (sec) ESS ESS/sec R̂

30 4000000 122631.04 577.59 0.0047 1.09
100 2000000 105500.60 1456.30 0.0138 1.03
300 1000000 114815.45 1795.14 0.0156 1.02

1000 300000 100374.46 1241.47 0.0124 1.01
3000 100000 107275.54 652.34 0.0061 1.03

Table 6.3: Results from running the PMMH for the complete seal model with independent
estimate, using the factorised formulation for the likelihood estimation. The algorithms settings
were the ones that led to the two best results in Section 3.3.2.3. The number of particles N
for the likelihood estimation was varied between N = 3 and N = 3, 000 with the number of
iterations M of the Markov chain adapted to ensure comparable computation times.
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The PMMH algorithm appeared to have converged for all tested numbers of particles,
as can be seen from the R̂ value in Table 6.3 and which was confirmed by inspecting
traceplots of the two chains. Figure 6.3 and Table 6.3 show that the effective sample size
per second was highest for N = 300 particles. We also note that the effective sample size
per second was higher for the factorised formulation than for the joint formulation across
all tested numbers of particles. The best value for the joint formulation was achieved
with N = 3000. Comparing the two best values for both formulations, we see that the
factorised formulation generated a 5.17 times higher ESS than the joint formulation in the
same time.

6.4 Discussion and Conclusion

In this chapter, we built on the findings in Section 2.5, where we found that estimating
the likelihood separately for the four independent regions and then combining the four
values resulted in a much lower variance of the likelihood estimates. We first described
three options for including the independent estimate, which leads to dependence between
the four regions, in the likelihood estimation while retaining some of the benefits of the
factorised formulation. One of these options was implemented where the likelihood was
estimated in separate particle filters until the time point of the independent estimate and
then combined for the remaining iterations.

We found that there is a large benefit to using the factorised structure of the likelihood
even in the modified version when the shared data point of the independent estimate yIE
is incorporated using the embedded formulation. For the likelihood estimation at the
posterior mean, we found that about 30 times fewer particles were necessary to achieve
a similar variability of the likelihood estimates compared with the joint formulation. For
parameter estimation, we measured the gain in efficiency by calculating the effective sample
size per second and found that the factorised formulation produced a more than 5 times
higher ESS per second compared to the joint formulation, when the best results for each
of the formulations were compared.

In light of these results, the factorised formulation should be implemented instead of the
joint formulation going forward, both for parameter and for likelihood estimation.

In further research, we aim to implement the other two options and compare the perfor-
mance of the three. We also want to generalise this idea by exploring the advantage of
using the factorisation when the data contains more than just one data point that com-
bines the otherwise independent regions. We suspect that the benefit of using a factorised
formulation might depend on time points at which the shared data points occur, and in-
vestigating this relationship is a further direction of research. In case of the UK grey seals,
two more recent estimates of total adult seal population have been undertaken since 2010.
Incorporating these into the factorised formulation is a first step.
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Chapter 7

Concluding Remarks and Further
Research

The aim of this thesis was to explore methods for inference for Bayesian non-linear and
non-Gaussian state space models, using the case study of the UK grey seal population
dynamics model. We conclude with a summary of the key findings and an outlook to
future research.

7.1 Summary

Chapters 2 and 3 were dedicated to SMC methods for likelihood estimation and parameter
inference. We found that the distribution of likelihood estimates derived with a bootstrap
filter can be heavily right-skewed and can exhibit a large variance, in particular at parame-
ter values with a low true likelihood value. While small improvements could be achieved by
adjusting the resampling frequency of the particles in a bootstrap filter, a clear decrease
was only possible by increasing the computational power, i.e., the number of particles,
devoted to the estimation procedure.

For parameter inference with the PMMH algorithm, we found that the optimal number
of particles increased with the complexity of the model. For the 2- and the 7-state model,
the highest ESS per runtime was achieved by estimating the likelihood with 30 and 10
particles, respectively. However, for the complete seal model using the real data, 3000
particles per likelihood estimate were necessary optimise the ESS per runtime. Even with
this large number of particles, occasional high likelihood estimates led to poor mixing due
to long runs of unchanging parameter values in the Markov chain, requiring a runtime
of approximately 11 days in 10 parallel processes to achieve an ESS of 4799. This high
runtime is in many cases infeasible and decreases the usefulness of the algorithm for many
applications.

While re-estimation of the likelihood each time an acceptance probability is calculated
seems like a possible solution to the problem of high likelihood estimates, we showed that
re-estimating at every iteration of the Markov chain leads to a clear bias. Re-estimating
less frequently might reduce this bias and is sometimes done in the literature, but we
showed on a toy example that even rare re-estimations can heavily bias the resulting
estimate of the posterior distribution estimate.

180



Other options for parameter inference were briefly explored but showed no promise for the
UK grey seal model. Among these were the SMC2 algorithm and the Liu-West algorithm
with improved initial samples.

A deterministic alternative to SMC methods is the Kalman filter which calculates the
exact likelihood for linear and Gaussian SSMs. We investigated in Chapter 4 the appro-
priateness of this algorithm when applied to an NDLM approximation of the UK grey seal
model. To obtain a sample of the approximated posterior distribution, we used the like-
lihood obtained with the Kalman filter within a Metropolis-Hastings algorithm (KFMH).
We found that in many cases, the approximated posterior distribution was close to the true
posterior distribution while greatly reducing the computational cost. For the complete seal
model using the real data, the multivariate ESS per runtime of the KFMH algorithm was
5.37 ESS/sec, while it was 0.0030 ESS/sec when the PMMH was used. However, there
remained a clear difference between the KFMH approximation and the true posterior dis-
tribution. We also note that implementing the Kalman filter required lengthy calculations
to derive the NDLM approximation of the true model. Whether the approximation is use-
ful therefore depends on the application. We suggest using the KFMH when the posterior
distribution needs to be estimated several times, e.g., for model selection.

In Chapter 5, we used the PMMH to examine the effect of observation error variance and
process stochasticity on the posterior distribution. We found that challenges with param-
eter inference are likely due to the identifiability issues of the two parameters φp,max and
φa. These issues could not be resolved by increasing the observation accuracy, increasing
the length of the observation time series or by adding observations of another age class.
We also investigated whether increasing the variation in the underlying state process with
a random effect affected parameter inference. Marginal posterior parameter distributions
showed no clear change but the estimated correlation coefficients between the parameters
showed a larger variance when calculated for many simulations. State estimation was
unaffected by the identifiability issues and had a lower error when observation accuracy
was increased. Even when a large random effect was placed on one of the parameters, the
estimated mean smoothed states had a similar error as when the true parameter values
were used for the estimation.

Finally, we explored in Chapter 6 the idea of factorising the likelihood into four distinct
components to reduce the computational effort. By estimating the four components sepa-
rately for the first 23 of the 26 observed years and only combining them for the independent
estimate in year 24 and the last two pup production estimates, we were able to reduce the
computational effort for estimating the parameter posterior distribution by a factor of 5.

7.2 Potential Future Research

Based on the results in this thesis, we identify areas that may be of interest for future
research.

Within the area of SMC metods, there are some avenues for further improvements that
have not fully been explored yet. A promising algorithm is the correlated pseudo-marginal
algorithm of Deligiannidis and Doucet (2018) where the likelihood estimates within a
PMMH algorithm for two successive parameter values are made dependent on one another.
This has been shown to decrease the likelihood estimate variance by guiding the state
particles towards higher likelihood areas given the observations and the parameter value.
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While we are cautious about re-estimating the likelihood in the PMMH algorithm due to
the introduced bias, further research could highlight cases in which this bias is outweighed
by a large reduction in Monte Carlo variance. Since long runs without acceptance of a new
parameter value were prevalent when the PMMH was applied to the complete seal model
and led to a low effective sample size, investigating this approach further is warranted.

For the SMC2 algorithm, more settings could be trialled to explore the usefulness of
this algorithm for the seal model. One factor to be investigated is the balance between
the state particles assigned to each parameter for likelihood estimation, and the number
of parameter particles. Other factors are increasing the number of state particles for
each parameter particle as the number of iterations increases, and tuning the proposal
distribution for the parameter particles.

While initial attempts to improve the Kalman filter approximation of the posterior dis-
tribution were not successful, this could be further investigated by using other techniques
such as the extended Kalman filter. In addition, it would be helpful to simplify or auto-
mate the process of linearising and normalising the model. This would facilitate the use of
this approximation for fast inference when exact posterior distributions are not required.

A technique that was outside of the scope of this thesis is using the Laplace approximation
to estimate the likelihood. This would allow the use of existing software such as the R

package TMB (Kristensen et al., 2016).

Building on the results in Chapter 5, it is of interest to further investigate the identifiability
issues with some of the model parameters. These could be analytically assessed, e.g.,
using the methods developed by Cole and McCrea (2016). Potential solutions to these
identifiability issues might be a re-parametrisation of the model, fixing the observation
error variance to an externally estimated value using the pup production model of Russell
et al. (2019), and—in the long term—collecting more data on intermediate life stages of
the population, such as on pups after their survival process.

Finally, it seems promising to expand the idea of exploiting the factorised model structure
even when a shared data point is available to improve likelihood estimation with SMC
methods. In Chapter 6, only one of three theoretical options was investigated. Investi-
gating all three options might lead to an even greater decrease in computation time. The
factorisation technique could also be explored under different conditions, such as varying
the time point of the shared data point or including more such data points. This might
lead to a general strategy in the larger context of combining two sources of data that
impose different dependency structures on the underlying states.

7.3 Concluding Remarks

In the immediate future, we hope to use the results in Chapter 3 combined with the
factorising approach of Chapter 6 for future inference of the UK grey seal model. For
further development of the model, we point to the Kalman filter as a robust and fast
inference method. We hope that illustrating the various methods in this thesis is not
only helpful for the further work with the UK grey seal population model but also for
challenging inference problems for state space models in ecology and other areas.
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Appendix A

Chapter 1

A.1 Data

Year North Sea Inner Hebrides Outer Hebrides Orkney
1984 1325 1332 7594 4741
1985 1711 1190 8165 5199
1986 1834 1711 8455 5796
1987 1867 2002 8777 6389
1988 1474 1960 8689 5948
1989 1922 1956 9275 6773
1990 2278 2032 9801 6982
1991 2375 2411 10617 8653
1992 2436 2816 12215 9854
1993 2710 2923 11915 11034
1994 2652 2719 12054 11851
1995 2757 3050 12713 12670
1996 2938 3117 13176 14531
1997 3698 3076 11946 14395
1998 3989 3087 12434 16625
1999 3380 2787 11759 15720
2000 4303 3223 13472 16546
2001 4134 3032 12427 18196
2002 4520 3096 11248 17952
2003 4870 3386 12741 18652
2004 5015 3385 12319 19123
2005 5232 3427 12397 18126
2006 5484 3470 11719 19332
2007 5771 3118 11342 19184
2008 6501 3317 12279 17813
2009 7360 - 11887 18548
2010 8119 3108 11831 18582

Table A.1: Regional pup production estimates from 1984 to 2010. In 2009, there is a missing
value for the Inner Hebrides due to too few aerial surveys in that region. The data was provided
by the Sea Mammal Research Unit, University of St Andrews, and is published in Table S1 in
Thomas et al. (2019).
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Year Shift parameter κ0 Shape parameter κ1 Scale parameter κ2
2008 59167.84 12.96 2719.38

Table A.2: Parameters of the shifted Gamma distribution used in Thomas et al. (2019) to
model the uncertainty in the independent estimate derived by Russell et al. (2016).

A.2 Proofs

A.2.1 Carrying Capacity

Proof. We proof the relationship between the pup carrying capacity χr and the parameter
βr in the Beverton-Holt function

φp,r,t =
φpmax

1 + (βrx0,r,t−1)ρ
, (A.1)

which is

χr =
1

βr

(
0.5αφpmaxφ

5
a

1− φa
− 1

)1/ρ

(A.2)

as stated in Equation 1.5. When the population is in equilibrium and random variability
is ignored (treating probabilities as exact rates), there should be a stable age structure
where the number of newborn pups each year is exactly the pup carrying capacity χr:

χr = x0,r,t = αx6,r,t (A.3)

If this is the number of newborn pups every year, then the rest of the population structure
is as follows, where we use the properties of a geometric series on the last line:

x0,r,t = χr,

x1,r,t = 0.5χrφp,r,t,

x2,r,t = 0.5χrφp,r,tφa,

x3,r,t = 0.5χrφp,r,tφ
2
a,

...

x6,r,t = 0.5χrφp,r,t(φ
5
a + φ6a + . . . ) = 0.5χrφp,r,tφ

5
a

( ∞∑
k=0

φka

)
= 0.5χrφp,r,t

φ5a
1− φa

.(A.4)

When substituting Equation A.4 for the value of x6,r,t in Equation A.3 and use the
Beverton-Holt function A.1 to derive φp,r,t, we obtain

χr
α

= 0.5χr
φpmax

1 + βrx0,r,t−1

φ5a
1− φa

.

Solving for χr leads to Equation A.2.

A.2.2 Overdispersion of x0

In Thomas et al. (2019), the prior for the number of pups in each region in year 0, xa=0,r,t=0

is derived from the observation in year 0, y0. The observation density is effectively reversed
but then the data are further dispersed to ensure that all likely values are included in the
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prior. While unlikely values are easily excluded in the algorithms used here later on, it is
harder to add new values (and impossible in some of the algorithms).

The initial pup numbers are sampled as follows, where a ≥ 1 is the dispersion factor.
This factor has been chosen as a = 1.3 which was found by trial and error as described in
Thomas et al. (2019).

x∗a=0,t=0 ∼ N (y0, y
2
0/τ)

xa=0,t=0 ∼ Unif(
x∗a=0,t=0

a
, ax∗a=0,t=0)

This dispersion factor influences the mean and variance of xa=0,r,t=0. The following calcu-
lations show this influence. For better readability, the subscript a = 0, r, t = 0 is dropped
in the following calculations.

E(X) = E(E(X|X∗)) =

∫
|E(X|x∗)p(x∗)dx∗ =

∫∫
xp(x|x∗)p(x∗)dxdx∗

=

∫
p(x∗)

∫ ax∗

x∗
a

x
x∗

a − ax∗
dxdx∗

=

∫
1

2
p(x∗)

1
x∗

a − ax∗

(
(ax∗)2 −

(
x∗

a

)2
)
dx∗

=
1

2

(
a+

1

a

)∫
p(x∗)x∗dx∗ =

1

2

(
a+

1

a

)
µ

E(X2) =

∫
p(x∗)

∫ ax∗

x∗
a

x2

x∗

a − ax∗
dxdx∗

=

∫
1

3
p(x∗)

1
x∗

a − ax∗

(
(ax∗)3 −

(
x∗

a

)3
)
dx∗

=
1

3

(
a2 + 1 +

1

a2

)∫
p(x∗)(x∗)2dx∗

=
1

3

(
a2 + 1 +

1

a2

)
(σ2 + µ2)

Var(X) = E(X2)− (E(X))2

=
1

3

(
a2 + 1 +

1

a2

)
(σ2 + µ2)−

(
1

2

(
a+

1

a

)
µ

)2

=
1

3

(
a2 + 1 +

1

a2

)
σ2 +

1

12

(
a− 1

a

)2

µ2

Setting a to a value other than 1 increases the mean and variance of the prior distribution
of x0,pups, as

1

2

(
a+

1

a

)
=

1

2a

(
a2 + 1

)
=

1

2a

(
a2 − 2a+ 1 + 2a

)
=

1

2a

(
(a− 1)2 + 2a

)
≥ 1,
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and (
a− 1

a

)2

≥ 0
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Appendix B

Chapter 2

B.1 Results for 2-State Model—Second Dataset

True parameter False parameter 1 False parameter 2

N CV(L) Var(logL) CV(L) Var(log-L) CV(L) Var(log-L)

1 3.93E+00 1.50E+04 9.12E+00 4.59E+04 1.00E+01 1.73E+06
3 2.87E+00 1.72E+02 6.40E+00 6.86E+02 1.00E+01 4.48E+04

10 1.41E+00 4.12E+00 5.96E+00 2.87E+01 1.00E+01 3.14E+03
30 8.55E-01 7.83E-01 1.92E+00 3.51E+00 8.70E+00 5.65E+02

100 3.87E-01 1.40E-01 8.48E-01 7.68E-01 1.00E+01 1.74E+02
300 2.21E-01 5.12E-02 4.73E-01 2.03E-01 7.54E+00 7.60E+01

1000 1.23E-01 1.64E-02 3.22E-01 1.05E-01 5.05E+00 3.54E+01
3000 7.66E-02 5.83E-03 1.69E-01 2.86E-02 4.89E+00 2.33E+01

10000 3.84E-02 1.46E-03 1.04E-01 1.05E-02 6.61E+00 1.43E+01
30000 2.39E-02 5.76E-04 6.17E-02 3.68E-03 6.27E+00 6.21E+00

log-L -331.3 -388.3 -384.8

Table B.1: Measures of variation of 100 likelihood estimates computed by a standard boot-
strap filter with varying numbers of particles N for the 2-state model. The likelihood was
estimated at the true parameter value and at two false parameter values (defined in Table
2.1). The first column gives the CV of the likelihood estimates, the second column the
variance of the log-likelihood estimates. The bottom row gives the log of the mean of 100
likelihood estimates as calculated with N = 30, 000 particles.
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Figure B.1: Measures of variation of 100 likelihood estimates computed by a standard boot-
strap filter with varying numbers of particles N at three different parameter values. The first
figure shows the CV of the likelihood estimates, the second figure the variance of the log-
likelihood estimates. The black horizontal line shows the limit of 2 for the variance of the
log-likelihood estimates

(a) True parameter value (b) False parameter value 1 (c) False parameter value 2

Figure B.2: Boxplots of 100 likelihood estimates for varying numbers of particles N at three
different parameter values.
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Figure B.3: Measures of variation of 1000 likelihood estimates computed by a bootstrap
filter with varying ESS threshold for resampling. False parameter 2 is not included in the plot
because the values are too large and show no discernible trends. The first figure shows the
CV of the likelihood estimates, the second figure the variance of the log-likelihood estimates.
The black horizontal line shows the limit of 2 for the variance of the log-likelihood estimates.

(a) True parameter value (b) False parameter value 1 (c) False parameter value 2

Figure B.4: Boxplots of 1000 log-likelihood estimates comparing a bootstrap filter (BF) and
an auxiliary particle filter (APF) using the expected value in the adjustment multiplier, for
three different parameter values.
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Figure B.5: Measures of variation of 1000 likelihood estimates computed by an auxiliary
particle filter using tempered weights with varying exponents in the resampling step. The
first figure shows the CV of the likelihood estimates, the second figure the variance of the
log-likelihood estimates. The black horizontal line shows the limit of 2 for the variance of the
log-likelihood estimates.

(a) True parameter value (b) False parameter value 1 (c) False parameter value 2

Figure B.6: Boxplots of 1000 log-likelihood estimates computed by an auxiliary particle filter
using tempered weights with varying exponents in the resampling step, for three different
parameter values.

199



True parameter False parameter 1 False parameter 2

ESS CV(L) Var(log-L) CV(L) Var(log-L) CV(L) Var(log-L)

0 1.30E+00 7.32E-01 4.30E+00 7.69E+00 3.16E+01 1.31E+04
0.1 5.08E-01 2.53E-01 9.97E-01 8.20E-01 3.15E+01 4.90E+02
0.2 4.22E-01 1.79E-01 8.21E-01 5.65E-01 3.16E+01 3.35E+02
0.3 3.86E-01 1.51E-01 7.54E-01 5.05E-01 3.04E+01 2.56E+02
0.4 3.72E-01 1.41E-01 7.31E-01 4.89E-01 3.09E+01 2.64E+02
0.5 3.82E-01 1.39E-01 7.90E-01 5.18E-01 1.69E+01 2.49E+02
0.6 4.30E-01 2.00E-01 9.79E-01 6.38E-01 3.16E+01 2.05E+02
0.7 4.03E-01 1.86E-01 1.03E+00 7.19E-01 2.47E+01 1.89E+02
0.8 4.35E-01 1.82E-01 8.82E-01 8.14E-01 2.40E+01 1.92E+02
0.9 4.43E-01 2.10E-01 1.23E+00 8.79E-01 2.03E+01 1.89E+02

1 5.17E-01 2.83E-01 1.40E+00 1.21E+00 2.05E+01 2.16E+02

Table B.2: Measures of variation of 1000 likelihood estimates computed by a bootstrap filter
with varying ESS threshold for resampling. The likelihood was estimated at the true parameter
value and at two false parameter values for the 2-state model. The first column gives the CV
of the likelihood estimates, the second column the variance of the log-likelihood estimates.

True parameter False parameter 1 False parameter 2

Alg CV(L) Var(logL) CV(L) Var(log-L) CV(L) Var(log-L)

BF 3.47E-01 1.14E-01 1.09E+00 8.26E-01 2.49E+01 1.91E+02
APF 3.89E-01 1.56E-01 1.06E+00 7.93E-01 3.09E+01 1.98E+02

Table B.3: Measures of variation of 1000 likelihood estimates of three different parameter
values in the 2-state model computed by a bootstrap filter (BF) and by an auxiliary particle filter
(APF) using the expected value in the adjustment multiplier. The likelihood was estimated at
the true parameter value and at two false parameter values. The first column gives the CV of
the likelihood estimates, the second column the variance of the log-likelihood estimates.

True parameter False parameter 1 False parameter 2

Alg CV(L) Var(logL) CV(L) Var(log-L) CV(L) Var(log-L)

2 3.99E+00 1.57E+02 9.61E+00 6.16E+02 3.16E+01 4.48E+04√
2 8.49E-01 1.78E+00 1.84E+00 5.72E+00 1.96E+01 4.86E+02
1 3.56E-01 1.32E-01 9.00E-01 6.23E-01 3.11E+01 1.93E+02√

2/2 3.94E-01 1.68E-01 9.79E-01 9.19E-01 2.17E+01 2.66E+02
0.5 4.66E-01 2.38E-01 1.25E+00 1.34E+00 3.16E+01 3.94E+02√
2/4 6.02E-01 3.76E-01 2.14E+00 2.32E+00 2.85E+01 5.82E+02
0.25 8.74E-01 6.81E-01 2.69E+00 3.95E+00 3.15E+01 8.72E+02√
2/8 1.59E+00 1.13E+00 3.27E+00 6.49E+00 3.16E+01 1.27E+03

0.125 2.30E+00 1.89E+00 1.62E+01 9.02E+00 3.16E+01 1.99E+03√
2/16 4.51E+00 2.83E+00 5.15E+00 1.40E+01 3.16E+01 2.53E+03

0.0625 1.20E+01 4.04E+00 1.65E+01 2.33E+01

Table B.4: Measures of variation of 1000 likelihood estimates computed by an auxiliary particle
filter using tempered weights with varying exponents in the resampling step. The likelihood
was estimated for the 2-state model at the true parameter value and at two false parameter
values. The first column gives the CV of the likelihood estimates, the second column the
variance of the log-likelihood estimates.
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B.2 Results for 7-State Model—Second Dataset

True parameter False parameter 1 False parameter 2

N CV(L) Var(logL) CV(L) Var(log-L) CV(L) Var(log-L)

3 1.41E+00 3.45E+01 8.42E+00 5.19E+03 9.10E+00 8.81E+02
10 7.43E-01 2.06E+00 9.99E+00 1.34E+03 6.02E+00 1.63E+02
30 4.78E-01 3.37E-01 9.99E+00 5.74E+02 3.29E+00 3.68E+01

100 2.79E-01 9.11E-02 9.66E+00 1.74E+02 4.50E+00 1.06E+01
300 1.55E-01 2.51E-02 5.83E+00 8.40E+01 2.26E+00 4.85E+00

1000 8.39E-02 7.11E-03 5.20E+00 3.47E+01 9.81E-01 1.19E+00
3000 4.75E-02 2.28E-03 3.71E+00 1.67E+01 6.83E-01 4.39E-01

10000 2.73E-02 7.42E-04 3.65E+00 6.66E+00 3.95E-01 1.36E-01
30000 1.54E-02 2.36E-04 1.89E+00 3.60E+00 2.11E-01 4.90E-02

log-L -184.14 -224.23 -201.62

Table B.5: Measures of variation of 100 likelihood estimates computed by a standard boot-
strap filter with varying numbers of particles N for the 7-state model. The likelihood was
estimated at the true parameter value and at two false parameter values. The first column
gives the CV of the likelihood estimates, the second column the variance of the log-likelihood
estimates. The bottom row gives the log of the mean of 100 likelihood estimates as calculated
with N = 30, 000 particles.
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Figure B.7: Measures of variation of 100 likelihood estimates of the 7-state model computed
by a standard bootstrap filter with varying numbers of particles N . The first figure gives the
CV of the likelihood estimates, the second figure the variance of the log-likelihood estimates.
The black horizontal line shows the limit of 2 for the variance of the log-likelihood estimates.

(a) True parameter value (b) False parameter value 1 (c) False parameter value 2

Figure B.8: Boxplots of 100 likelihood estimates of the 7-state model for varying numbers of
particles N at three different parameter values.
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Appendix C

Chapter 3: Additional Results

N M h Runtime (sec) R̂ Acceptance Rate ESS ESS/sec

3 1000000 0.01 9425.93 6.27 0.11
10 300000 0.01 2901.30 1.02 0.44 479.41 0.17
30 100000 0.01 1212.29 1.09 0.62 276.25 0.23

100 30000 0.01 580.72 1.03 0.71 85.87 0.15
300 10000 0.01 379.82 1.48 0.69

1000 3000 0.01 320.86 5.89 0.60
3 1000000 0.03 8456.20 1.01 0.20 2057.37 0.24

10 300000 0.03 2874.81 1.00 0.44 1426.07 0.50
30 100000 0.03 1217.68 1.02 0.57 618.41 0.51

100 30000 0.03 581.85 1.06 0.66 232.97 0.40
300 10000 0.03 380.68 1.18 0.67 69.58 0.18

1000 3000 0.03 323.10 1.34 0.68 38.06 0.12
3 1000000 0.10 8244.27 1.00 0.17 5741.19 0.70

10 300000 0.10 2769.90 1.00 0.36 4004.37 1.45
30 100000 0.10 1162.71 1.00 0.47 1584.92 1.36

100 30000 0.10 556.82 1.05 0.53 577.67 1.04
300 10000 0.10 365.33 1.07 0.53 176.00 0.48

1000 3000 0.10 294.24 1.14 0.43 31.94 0.11
3 1000000 0.20 8286.23 1.00 0.14 9339.82 1.13

10 300000 0.20 2713.19 1.01 0.29 5802.01 2.14
30 100000 0.20 1137.09 1.00 0.38 2507.89 2.21

100 30000 0.20 532.15 1.01 0.41 870.25 1.64
300 10000 0.20 347.34 1.02 0.40 257.93 0.74

1000 3000 0.20 252.36 15.33 0.22
3 1000000 0.30 7746.05 1.00 0.12 10466.38 1.35

10 300000 0.30 2589.46 1.00 0.24 7235.05 2.79
30 100000 0.30 1092.89 1.00 0.31 3304.82 3.02

100 30000 0.30 522.67 1.01 0.34 1105.74 2.12
300 10000 0.30 335.23 1.06 0.33 323.21 0.96

1000 3000 0.30 282.34 1.14 0.33 86.34 0.31
3 1000000 0.40 7563.62 1.00 0.10 10994.95 1.45

10 300000 0.40 2564.40 1.00 0.21 8185.71 3.19
30 100000 0.40 1068.12 1.00 0.26 3198.63 2.99
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100 30000 0.40 512.12 1.03 0.29 1039.75 2.03
300 10000 0.40 341.18 1.04 0.30 388.99 1.14

1000 3000 0.40 287.42 1.12 0.31 182.74 0.64
3 1000000 0.50 7437.15 1.00 0.09 12816.09 1.72

10 300000 0.50 2499.31 1.00 0.18 8905.01 3.56
30 100000 0.50 1036.60 1.01 0.23 3429.98 3.31

100 30000 0.50 488.31 1.01 0.25 1161.37 2.38
300 10000 0.50 320.62 1.05 0.26 360.88 1.13

1000 3000 0.50 229.33 2.32 0.15
3 1000000 0.60 7252.47 1.00 0.08 12321.35 1.70

10 300000 0.60 2433.61 1.00 0.16 8330.98 3.42
30 100000 0.60 1015.42 1.00 0.20 3582.34 3.53

100 30000 0.60 474.52 1.01 0.22 1164.87 2.45
300 10000 0.60 305.66 1.02 0.21 364.50 1.19

1000 3000 0.60 262.11 1.07 0.22 96.00 0.37
3 1000000 0.70 7077.63 1.00 0.07 11642.44 1.64

10 300000 0.70 2344.39 1.00 0.14 8253.93 3.52
30 100000 0.70 976.85 1.01 0.18 3615.28 3.70

100 30000 0.70 462.27 1.00 0.19 1177.31 2.55
300 10000 0.70 302.99 1.02 0.20 382.76 1.26

1000 3000 0.70 211.17 1.60 0.13
3 1000000 0.80 6930.96 1.00 0.06 12390.02 1.79

10 300000 0.80 2293.46 1.00 0.12 8891.20 3.88
30 100000 0.80 945.56 1.00 0.16 3931.97 4.16

100 30000 0.80 446.26 1.03 0.18 1245.63 2.79
300 10000 0.80 292.95 1.02 0.17 497.39 1.70

1000 3000 0.80 224.36 1.04 0.16 98.60 0.44
3 1000000 0.90 6761.22 1.00 0.05 11320.21 1.67

10 300000 0.90 2261.19 1.00 0.11 8563.88 3.79
30 100000 0.90 934.92 1.01 0.14 3581.33 3.83

100 30000 0.90 438.06 1.01 0.16 1145.60 2.62
300 10000 0.90 280.56 1.03 0.15 395.30 1.41

1000 3000 0.90 224.43 1.08 0.16 125.23 0.56
3 1000000 1.00 6434.97 1.00 0.05 11040.03 1.72

10 300000 1.00 2132.95 1.00 0.10 8641.48 4.05
30 100000 1.00 881.54 1.00 0.13 3352.41 3.80

100 30000 1.00 417.99 1.01 0.14 1133.77 2.71
300 10000 1.00 271.34 1.04 0.14 381.40 1.41

1000 3000 1.00 223.78 1.07 0.15 113.72 0.51
3 1000000 1.10 6454.60 1.00 0.04 10560.55 1.64

10 300000 1.10 2159.33 1.00 0.09 8323.76 3.85
30 100000 1.10 885.84 1.00 0.12 3718.65 4.20

100 30000 1.10 409.13 1.01 0.13 1108.84 2.71
300 10000 1.10 258.26 1.01 0.12 312.04 1.21

1000 3000 1.10 214.64 1.06 0.11 100.23 0.47

Table C.1: Results from running the PMMH for the 2-state model with constant NM , while
varying the number of particles N and the scaling factor h. The proposal distribution is a
multivariate normal distribution with a covariance proportional to the posterior covariance.
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Figure C.1: Density plots of the marginal posterior densities for all 10 parameters, generated
by running the PMMH for the complete seal model with independent estimate with N = 3
particles and 2 chains with M = 10, 000, 000 iterations each. The scaling factor for the
covariance of the proposal distribution swas set to h = 0.8. The black density line indicates
the prior distribution.
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Figure C.2: Density plots of the marginal posterior densities for all 10 parameters, generated
by running the PMMH for the complete seal model with independent estimate with N = 3, 000
particles and 2 chains with M = 100, 000 iterations each. The scaling factor for the covariance
of the proposal distribution was set to h = 0.8. The black density line indicates the prior
distribution.
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(a) N = 3 (b) N = 3, 000

Figure C.3: Posterior correlation coefficients of the 10 parameters of the complete seal model,
as generated by running the PMMH with two different number of particles N .
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N M h Runtime (sec) R̂ Acceptance Rate ESS ESS/sec

3 1000000 0.01 8928.07 1.24 0.23
10 300000 0.01 3037.19 1.14 0.46
30 100000 0.01 1282.26 1.22 0.61

100 30000 0.01 601.47 2.19 0.71
300 10000 0.01 396.95 1.62 0.73

1000 3000 0.01 339.13 8.09 0.70
3 1000000 0.03 8850.93 1.13 0.20 1080.34 0.12

10 300000 0.03 2961.13 1.07 0.41 694.38 0.23
30 100000 0.03 1271.99 1.24 0.52

100 30000 0.03 595.52 1.40 0.60
300 10000 0.03 391.39 1.59 0.59

1000 3000 0.03 324.12 1.74 0.69
3 1000000 0.10 8678.99 1.03 0.15 2472.80 0.28

10 300000 0.10 2931.93 1.01 0.28
30 100000 0.10 1242.64 1.06 0.39 762.80 0.61

100 30000 0.10 592.67 1.11 0.42
300 10000 0.10 385.01 1.16 0.47

1000 3000 0.10 328.85 2.23 0.45
3 1000000 0.30 8805.31 1.01 0.09 3831.56 0.44

10 300000 0.30 2924.14 1.02 0.19 2797.38 0.96
30 100000 0.30 1230.70 1.01 0.25 1131.36 0.92

100 30000 0.30 591.68 1.22 0.26
300 10000 0.30 385.89 1.04 0.27 146.52 0.38

1000 3000 0.30 325.32 1.48 0.30
3 1000000 1.00 9137.21 1.02 0.04 4701.82 0.51

10 300000 1.00 3006.60 1.02 0.08 3559.77 1.18
30 100000 1.00 1260.39 1.01 0.10 1446.06 1.15

100 30000 1.00 607.10 1.07 0.11 463.60 0.76
300 10000 1.00 392.78 1.03 0.12

1000 3000 1.00 331.78 1.24 0.12

Table C.2: Results from running the PMMH for the 2-state model with constant NM ,
while varying the number of particles N and the scaling factor h. The proposal distribution
is a multivariate normal distribution on the transformed parameter space with a covariance
proportional to the (transformed) posterior covariance.
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N M h Runtime (sec) R̂ Acceptance Rate ESS ESS/sec

3 1000000 0.20 7064.55 1.00 0.29 19087.30 2.70
10 300000 0.20 2380.41 1.00 0.41 8689.39 3.65
30 100000 0.20 1034.95 1.00 0.46 3398.81 3.28

100 30000 0.20 536.82 1.01 0.49 943.83 1.76
300 10000 0.20 381.17 1.03 0.47 198.85 0.52

1000 3000 0.20 345.41 1.09 0.47 81.03 0.23
3 1000000 0.40 6253.14 1.00 0.22 27623.02 4.42

10 300000 0.40 2217.55 1.00 0.30 12175.10 5.49
30 100000 0.40 961.31 1.01 0.34

100 30000 0.40 506.42 1.01 0.35 1171.81 2.31
300 10000 0.40 366.93 1.01 0.36 410.58 1.12

1000 3000 0.40 319.56 1.11 0.35 126.18 0.39
3 1000000 0.60 6023.85 1.00 0.17 28327.91 4.70

10 300000 0.60 2069.02 1.00 0.24 12998.41 6.28
30 100000 0.60 904.20 1.01 0.26 4427.07 4.90

100 30000 0.60 467.45 1.01 0.27 1373.90 2.94
300 10000 0.60 332.71 1.00 0.25 275.91 0.83

1000 3000 0.60 284.53 5.04 0.21
3 1000000 0.80 5738.07 1.00 0.14 30304.94 5.28

10 300000 0.80 1982.53 1.00 0.19 13073.27 6.59
30 100000 0.80 859.98 1.00 0.21 5017.22 5.83

100 30000 0.80 448.45 1.01 0.22 1479.16 3.30
300 10000 0.80 311.54 1.01 0.21 373.91 1.20

1000 3000 0.80 274.99 1.06 0.21 138.27 0.50
3 1000000 1.00 5433.13 1.00 0.11 25475.19 4.69

10 300000 1.00 1884.84 1.00 0.15 12087.62 6.41
30 100000 1.00 815.88 1.00 0.17 5104.45 6.26

100 30000 1.00 409.90 1.01 0.16 916.16 2.24
300 10000 1.00 274.96 1.03 0.15 401.44 1.46

1000 3000 1.00 225.92 16.51 0.11

Table C.3: Results from running the PMMH for the 7-state model with constant NM , while
varying the number of particles N and the scaling factor h. The proposal distribution is a
multivariate normal distribution with a covariance proportional to the posterior covariance.
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Figure C.4: Scatter plots and joint densities of the posterior distribution for the complete seal
model using the real data, generated by running the PMMH for the complete seal model with
independent estimate with N = 3, 000 particles and 20 chains with M = 1, 000, 000 iterations
each.
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Appendix D

Chapter 4

D.1 First and second moments of X0 in the seal model

To calculate the NDLM approximation of the seal model as described in Section 1.2,
the first two moments of the distributions are required. The initial distribution of x0
for only one region (and without the dispersion factor a) is x0,0 ∼ N (y0, y

2
0/τ), x0,1 ∼

Bin(x0,0, 0.5φp,0), x0,a=2,...,5 ∼ Bin(x0,a−1, φa), x0,6 ∼ Negbin(x0,0, α) + x0,0. The initial
pup survival probability φp,0 is calculated using the observed number of pups y0 and can
therefore be treated as a constant. For these calculations, we omit the time index, since
all states here are at time t = 0. All calculations of expected values, variances, and
covariances are conditional on y0.

E(x0) = y

E(x1) = 0.5φp E(x0,0) = 0.5φpy

E(x2) = φa E(x1) = 0.5φpφay

E(x3) = φa E(x2) = 0.5φpφ
2
ay

E(x4) = φa E(x3) = 0.5φpφ
3
ay

E(x5) = φa E(x4) = 0.5φpφ
4
ay

E(x6) =
1− α
α

y + E(x0) =
1− α
α

y + y =
y

α

To calculate the covariance matrix, we compute every individual covariance Cov (xi,0, xj,0)
with i, j = 0, ..., 6. As an aid variable, we use σ2 = y20/τ . Using the law of total variance
(e.g., Proposition 5.2 in Ross, 2011) and Var(x0) = Var(y) = σ2, we obtain

Var(x1) = E (Var(x1|x0)) + Var (E(x1|x0))
= E (0.5φp(1− 0.5φp)x0) + Var (0.5φpx0)

= 0.5φp(1− 0.5φp)y + (0.5φp)
2σ2

= 0.5φpy + (0.5φp)
2(σ2 − y).
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Similar calculations give the variances of x2 to x5. For x6, it is

Var(x6) = E (Var(x6|x0)) + Var (E(x6|x0))

= E

(
1− α
α2

x0

)
+ Var

(
x0 +

1− α
α

x0

)
=

1− α
α2

y + σ2/α2.

To calculate the off-diagonal entries of the covariance matrix, we use Cov(xi, xj) =
E(xixj)− E(xi) E(xj). With

E(x0x1) =

∫∫
p(x1|x0)p(x0)x0x1dx0dx1

=

∫
x0p(x0)

(∫
x1p(x1|x0)dx1

)
dx0.

=

∫
p(x0)0.5φpx

2
0dx0

= 0.5φp(y
2 + σ2),

we then obtain

Cov(x0, x1) = 0.5φp(y
2 + σ2)− 0.5φpy

2

= 0.5φpσ
2.

For Cov(x1, x2), it is

E(x1x2) =

∫∫
p(x2|x1)p(x1)x2x1dx1dx2

=

∫
p(x1)φax

2
1dx1

= φa(Varx1 + (E(x1))
2)

⇒ Cov(x1, x2) = φa Varx1 + φa(E(x1))
2 − φa(E(x1))

2

= 0.5φaφpy + φa(0.5φp)
2(σ2 − y).

Again, the calculations for Cov(xi, xi+1) for i ∈ {2, 3, 4} are similar and straightforward.
For Cov(x5, x6), the dependency on x0 needs to be considered:

E(x5x6) =

∫∫∫
p(x0, x5, x6)x5x6dx0dx5dx6

=

∫∫∫
p(x5|x0, x6)p(x6|x0)p(x0)x5x6dx0dx5dx6

=

∫
p(x0)(

1

α
x0)0.5φpφ

4
ax0dx0

=
1

α
0.5φpφ

4
a(y

2 + σ2).

With the techniques used here, all entries of the covariance matrix can be calculated
correspondingly. Since no approximation occurs at this step, this is the exact covariance
matrix Cov(x0) and therefore positive semi-definite.
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D.2 First and second moments of Xt|Xt−1 in the seal model

We start by assuming that xt−1 is normally distributed with mean E(xt−1) = µ and
variance Var(xt−1) = Σ. We also use the following lemma that describes the relationship
of two binomially distributed variables.

Lemma 4. Let Y |X ∼ Bin(X, p1) and X ∼ Bin(n, p2). Then

1. Y ∼ Bin(n, p1p2)

2. Cov(Y,X) = np1p2(1− p2)

Proof. 1. We show this by calculating that the probability of Y = y is
(
n
y

)
(p1p2)

y(1−
p1p2)

n−y which is the same as for a binomially distributed random variable with n
trials and success probability p1p2. We use an index shift on line 3, namely u = x−y,
and the binomial formula on line 5, (x+ y)n =

∑n
k=0

(
n
k

)
xkyn−k.

P(Y = y) =

n∑
x=0

P(Y = y,X = x) =

n∑
x=0

P(Y = y|X = x)P(X = x)

=
n∑
x=y

x!

y!(x− y)!
py1(1− p1)x−y

n!

x!(n− x)!
px2(1− p2)n−x

= py1p
y
2

n!

y!(n− y)!

n−y∑
u=0

(n− y)!

u!(n− y − u)!
(1− p1)upu2(1− p2)n−y−u

= (p1p2)
y

(
n

y

) n−y∑
u=0

(
n− y
u

)
(p2 − p1p2)u(1− p2)n−y−u

= (p1p2)
y

(
n

y

)
(1− p2 + p2 − p1p2)n−y

2. Using a property of the conditional expectation to calculate E(XY ), we get

E(XY ) = E(E(XY |X)) = E(X E(Y |X)) = E(p1X
2) = p1

(
Var(X) + (E(X))2

)
= p1

(
np2(1− p2) + (np2)

2
)

= np1p2 − np1p22 + n2p1p
2
2

Cov(X,Y ) = E(XY )− E(X) E(Y ) = np1p2 − np1p22 + n2p1p
2
2 − n2p1p22

= np1p2(1− p2)
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First moments

xt,0|xt−1 ∼ Bin(xt,6+, α)|xt−1 ∼ Bin(Bin(xt−1,6+, φa) + Bin(xt−1,5, φa), α)

= Bin(xt−1,6+ + xt−1,5, αφa)

E(xt,0|xt−1) = αφa(xt−1,6+ + xt−1,5)

xt,1|xt−1 ∼ Bin(xt−1,0, 0.5φp,t)

E(xt,1|xt−1) = 0.5φp,txt−1,0

xt,2|xt−1 ∼ Bin(xt−1,1, φa)

E(xt,2|xt−1) = φaxt−1,1

xt,3|xt−1 ∼ Bin(xt−1,2, φa)

E(xt,3|xt−1) = φaxt−1,2

xt,4|xt−1 ∼ Bin(xt−1,3, φa)

E(xt,4|xt−1) = φaxt−1,3

xt,5|xt−1 ∼ Bin(xt−1,4, φa)

E(xt,5|xt−1) = φaxt−1,4

xt,6+|xt−1 ∼ Bin(xt−1,5, φa) + Bin(xt−1,6+, φa)

E(xt,6+|xt−1) = φa (xt−1,5 + xt−1,6+)

Second moments

Var(xt,0|xt−1) = αφa(1− αφa)(xt−1,6+ + xt−1,5)

Var(x1,t|xt−1) = 0.5φp,t−1(1− 0.5φp,t−1)x0,t−1

Var(x2,t|xt−1) = φa(1− φa)x1,t−1
Var(x3,t|xt−1) = φa(1− φa)x2,t−1
Var(x4,t|xt−1) = φa(1− φa)x3,t−1
Var(x5,t|xt−1) = φa(1− φa)x4,t−1

Var(x6+,t|xt−1) = φa(1− φa)(x5,t−1 + x6+,t−1)

Cov(x0,t, x6+,t|xt−1) = αφa(1− φa)(x5,t−1 + x6+,t−1).

All other covariances are 0, as the values are independent given xt−1.

D.3 Distribution of Y when Y |X ∼ N(X,X2/τ) and X ∼
N(µ, σ2)

Lemma 5. Let X be a random variable with X ∼ N(µ, σ2), and Y be conditionally
normally distributed with Y |X ∼ N(X,X2/τ) for X 6= 0 and Y = 0 for X = 0.

1. The unconditional expected value of Y is E(Y ) = µ.

2. The unconditional variance of Y is Var(Y ) = σ2
(
1 + 1

τ

)
+ µ2

τ .

3. The unconditional distribution of Y is not normal.

Proof. 1. Using the properties of the conditional expectation (see for example p. 333
in Ross, 2011), we can calculate the unconditional expected value of Y with

E(Y ) = E(E(Y |X)) = E(X) = µ.
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2. Using the law of total variance, we calculate

Var(Y ) = E(Var(Y |X)) + Var(E(Y |X)) = E(X2/τ) + Var(X) =

=
(
µ2 + σ2

)
/τ + σ2 = µ2/τ + σ2(1 + 1/τ).

3. We show this for the simplified case with τ = 1, µ = 0 and σ2 = 1 by calculating the
fourth moment of Y , so E(Y 4). With these parameter choices, and using the first
and second part of this lemma, Y has mean 0 and variance 2. The random variable
X has standard normal distribution, so mean µ = 0 and variance σ2 = 1. Its fourth
central moment is

E(X4) = µ4 + 6µ2σ2 + 3σ4 = 3,

using a standard formula for the fourth moment of normally distributed random
variables (Papoulis and Pillai, 2002). For Y , we use the properties of the conditional
expectation for the first equality and the same standard formula as above for the
second equality, and obtain

E(Y 4) = E(E(Y 4|X)) = E(X4 + 6X2 ·X2 + 3X4) = 10 E(X4)

= 30.

However, if Y were normally distributed, the formula for the fourth central moment
above would yield

E(Y 4) = E(Y )4 + 6 E(Y )2 Var(Y )2 + 3 Var(Y )4 = 3 · 24 = 48.

Since the two numbers are not the same, Y is not normally distributed.
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Appendix E

Chapter 5: Additional Results

Figure E.1: Smoothed posterior state estimates of both pups and adults when the true
parameter value is used in combination with adult and pup observations with a varying CV.
The white circles show the observed pup and adult counts. In the second row, both axis limits
are reduced to better illustrate the reduction in variance of the pup state estimates as the CV
decreases.
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Appendix F

Chapter 6: Additional Results

Factorised Joint

N CV Var of log-LH CV Var of log-LH

3 343368.06 548082.79
10 Inf 36330.58 325170.27
30 10.00 8980.12 Inf 127031.70

100 9.93 4530.79 Inf 55479.05
300 9.87 2252.07 Inf 33073.51

1000 9.92 1188.08 10.00 15265.25
3000 10.00 816.68 8.26 9237.57

10000 10.00 623.22 10.00 5810.34
30000 10.00 333.67 10.00 4180.68

100000 9.75 225.60 9.34 1936.37
log-L -1194.2 -1379.0

Table F.1: Measures of variation of 100 likelihood estimates computed by a particle filter
with varying numbers of particles N . The likelihood was estimated with a particle filter at the
prior mean (Parameter 1 in Table 6.1), using the factorised and the joint formulation. The
first column gives the CV of the likelihood estimates, the second column the variance of the
log-likelihood estimates. The bottom row gives the log of the mean of 100 likelihood estimates
as calculated with N = 100, 000 particles.
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Factorised Joint

N CV Var of log-LH CV Var of log-LH

3 9.93 20601.45 10.00 57692.10
10 10.00 1736.32 8.60 18481.01
30 9.90 332.65 8.47 13264.31

100 10.00 138.12 7.88 3399.35
300 9.01 93.25 10.00 1342.59

1000 9.70 61.48 9.70 451.61
3000 6.44 33.63 10.00 184.85

10000 9.29 28.46 7.51 61.19
30000 5.49 16.56 7.04 49.54
1e+05 3.25 13.77 5.41 27.22
log-L -895.80 -902.01

Table F.2: Measures of variation of 100 likelihood estimates computed by a particle filter
with varying numbers of particles N . The likelihood was estimated with a particle filter at
Parameter 2 in Table 6.1, using the factorised and the joint formulation. The first column
gives the CV of the likelihood estimates, the second column the variance of the log-likelihood
estimates. The bottom row gives the log of the mean of 100 likelihood estimates as calculated
with N = 100, 000 particles.

Factorised Joint

N CV Var of log-LH CV Var of log-LH

3 9.66 3528.54 9.44 10529.58
10 5.54 369.05 8.20 3005.43
30 5.78 52.26 9.59 1492.40

100 4.83 23.61 8.91 393.46
300 4.84 7.89 4.05 162.59

1000 1.59 3.45 4.13 46.35
3000 1.14 1.43 3.79 11.09

10000 0.68 0.59 2.99 3.91
30000 0.50 0.20 1.64 1.55

100000 0.27 0.07 0.75 0.56
log-L -847.32 -845.93

Table F.3: Measures of variation of 100 likelihood estimates computed by a particle filter
with varying numbers of particles N . The likelihood was estimated with a particle filter at
Parameter 3 in Table 6.1, using the factorised and the joint formulation. The first column
gives the CV of the likelihood estimates, the second column the variance of the log-likelihood
estimates. The bottom row gives the log of the mean of 100 likelihood estimates as calculated
with N = 100, 000 particles.
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