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Abstract
Monsoon depressions (MDs) are synoptic-scale storms that occur during the
summer phase of the global monsoon cycle and whose dynamical mech-
anisms remain incompletely understood. To gain insight into the dynam-
ics governing the large-scale structure of MDs, we formulate an idealised
moist-thermal quasi-geostrophic model that includes distinct thermal and mois-
ture fields in simple forms. A linear-stability analysis of the model, with
basic states corresponding to typical monsoon conditions, shows three dis-
tinct mode classifications: thermal-Rossby modes, heavy precipitating modes,
and a moist-thermal mode. In the linearised model, the presence of a back-
ground precipitation gradient strengthens thermal-Rossby modes by coupling
the dynamics to latent heating. The separation of heavy precipitating modes
from fast-propagating thermal-Rossby modes is further examined with numeri-
cal experiments of large-amplitude MDs. Wind-induced evaporation is found to
amplify large-amplitude MDs in conditions analogous to those over the north-
ern Bay of Bengal. An energetic analysis shows the pathways by which the
MDs derive energy from the background state. A further series of experiments
through a continuum of meridional temperature gradients demonstrates the
sensitivity of large-scale MD dynamics to the background state and suggests a
possible mechanism to explain variations in the propagation direction of MDs.
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1 INTRODUCTION

The term “monsoon depression” (MD) is used to refer
to a broad class of synoptic-scale, low-pressure systems
that form and propagate during the summer phase of the
monsoon cycle (Hunt et al., 2016; Shukla, 1977). MDs are
frequently observed in the Indian Ocean, West Pacific, and
across the global monsoon, and contribute a large fraction
of summertime precipitation in those regions (Hurley &
Boos, 2015). Whether in response to a warming climate

or natural variability (Cohen & Boos, 2014; Vishnu
et al., 2018, 2020), changes in MDs—such as in
their precipitation intensity and genesis frequency
(Kitoh et al., 2013; Krishnamurti et al., 2013; Rastogi
et al., 2018)—present significant societal challenges in
monsoon regions. As such, it is important to build funda-
mental understanding of the dynamics of MDs and their
response to evolving background conditions.

MDs are particularly prevalent in the south Asian
monsoon region and importantly deliver substantial
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summer rainfall over a region of habitation and food
production for a large proportion of the global population
(Hurley & Boos, 2015). Whether South Asian MDs spon-
taneously form in situ Lindzen et al. (1983) or are seeded
by westward-propagating disturbances originating from
West Pacific tropical storms (Krishnamurti et al., 1977),
it is understood that MDs intensify in the moist, con-
vectively unstable air over the Bay of Bengal (Adames
& Ming, 2018b; Clark et al., 2020; Cohen & Boos, 2016;
Diaz & Boos, 2019a, 2019b) at a latitude of approximately
20◦N (Hurley & Boos, 2015; Krishnamurti et al., 1977).
MDs in this region develop in the tropical–subtropical
boundary, a warm, moist region, with non-negligible
Coriolis forces and significant meridional temperature
gradients (Zhang & Fueglistaler, 2020), before propagat-
ing westnorthwestward over the South Asian continent
(Chen et al., 2005; Krishnamurti et al., 1977; Lindzen
et al., 1983). MDs have a typical outer diameter of 2000 km
and deliver a precipitation maximum of approximately
20 mm⋅day−1 across an area of roughly 1000 km in diame-
ter (Hunt et al., 2016; Hurley & Boos, 2015). As an example,
Figure 1 shows a Hovmöller diagram along 20◦N and
a snapshot of a 2006 MD. The disturbance propagated
westward with phase speed 5-6◦W/day—corresponding
with Krishnamurti et al. (1977)—amplified into an MD
over the warm surface waters of the Bay of Bengal
and made landfall over South Asia during the follow-
ing days at a slower propagation speed—consistent with
Boos et al. (2015).

Summer conditions over the northern Bay of Bengal
are baroclinic, with vertical wind shear and tropospheric
temperatures that typically increase with latitude (Krish-
namurti et al., 2013; Shukla, 1977). It is well observed
that MDs deliver precipitation westsouthwest of their
centre (Chen et al., 2005; Hurley & Boos, 2015; Rao &
Rajamani, 1970) and that both the horizontal and vertical
structures of thermal and moist-convective processes
are significant in shaping the dynamics of MDs (Clark
et al., 2020; Diaz & Boos, 2019a; Krishnakumar et al., 1992;
Krishnamurti et al., 2013).

Early models have shown success in capturing key
characteristics of MDs. In particular, numerical experi-
ments have shown how MD propagation can be modelled
by moisture convergence driving a mass overturning that
in turn generates vorticity westnorthwest of the vortex
centre (Goswami, 1987). Additionally, models have shown
how amplification of small-amplitude disturbances by
barotropic instability can organise rainfall on length
scales comparable to MDs (Lindzen et al., 1983). More
recently, single-layer shallow-water models have been
used to understand the role of different barotropic growth
mechanisms in quasi-linear waves and large-amplitude
MD-like disturbances (Adames & Ming, 2018a; Suhas &

F I G U R E 1 (a) Hovmöller diagram along 20◦N beginning on
June 25, 2006, showing hourly European Centre for Medium-Range
Weather Forecasts Reanalysis v5 (Hersbach et al., 2020) relative
humidity at 500 hPa (shading) and 500 hPa geopotential height
(labelled contours); (b) July 1, 2006, daily-mean 500 hPa wind
vectors (quivers) and relative humidity (shading) showing a
depression over the northern Bay of Bengal. Green lines have been
added to (a) to indicate 6◦W/day (solid), which is a typical phase
speed for a tropical disturbance propagating and amplifying into a
depression from Krishnamurti et al. (1977); and 3◦W/day (dashed),
which represents the upper end of the revised 2–3 m⋅s−1 westward
propagation speed for Bay of Bengal monsoon depressions from Boos
et al. (2015). [Colour figure can be viewed at wileyonlinelibrary.com]

Boos, 2023). Adames and Ming (2018a) used a linearised
framework to demonstrate intensification of monsoonal
low-pressure systems by moisture–vortex instability
under the condition of similarly westward-propagating
dry-Rossby and moist modes. By varying meridional wind
shear and moisture gradients, Suhas and Boos (2023)
demonstrated a barotropic growth of vortex circulation
depending on positive meridional wind shear, and an
organisation of precipitation west of MD-like perturba-
tions under positive meridional moisture gradients. We
expand upon previous investigations into MDs using
idealised modelling by introducing an energetic analysis
to gain insight into the role of evaporative feedbacks in MD
amplification. Additionally, we investigate the sensitivity
of MD-like disturbances to the background temperature
gradient. This experiment provides a mechanism for the
inhibition of MDs during winter conditions as well as an
insight into propagation changes under different climate
conditions.
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CHAUDHRI et al. 3

Using a multilayered model, Krishnakumar et al.
(1992) found westward-propagating modes with a wave-
length of approximately 2500 km, reminiscent of MDs, and
further found that ageostrophic effects were needed to
explain the development of features consistent with obser-
vations. More recently, Diaz and Boos (2019b) demon-
strated a mechanism for barotropic energy transfer from
a meridional and vertically sheared background state that
couples latent heating into a dry Rossby-like mode to
generate growth. They also showed that wind-induced
surface heat exchange provides a mechanism for addi-
tional MD growth (Diaz & Boos, 2019b). Though Cohen
and Boos (2016) have ruled out baroclinic instabili-
ties as the growth mechanism for Bay of Bengal MDs,
moist-baroclinic models have been shown to capture key
aspects of MDs (Clark et al., 2020; Diaz & Boos, 2019a,
2019b). Additional motivation to explore the mechanics of
MD-like disturbances in a solely barotropic model follows
from the results of Adames (2021), who demonstrated the
importance of moist-vortex instability versus baroclinic
instability in MD growth.

To avoid some of the complexity inherent in multi-
layer models and aid physical interpretation of the results,
we consider here the idealised set-up of a single-layer,
moist-thermal, quasi-geostrophic model. Though simple,
our model succeeds in reproducing some of the key
features of MDs (e.g., propagation direction and speed)
and retains the nonlinear effects of horizontal advection
and wind-dependent evaporation, along with the feed-
back between dynamics and diabatic heating. In this ide-
alised approach, we combine linear stability analysis with
numerical experiments to investigate MD-like variabil-
ity in a simple framework. As well as providing infor-
mation about the free modes of the system, the linear
analysis also provides (by comparison with the fully non-
linear equations) information about the importance of
nonlinear interactions for the development of MDs. Our
study focuses on several questions: How effectively can
a single-layer quasi-geostrophic model support MD-like
dynamics? By classifying modes, can Rossby-like waves
provide insights into MD dynamics? And in such a model,
what is the importance of background conditions in deter-
mining the dynamics of large-scale MD-like perturba-
tions?

The remainder of the paper the organised as follows.
In Section 2, we outline the derivation of our model from
the shallow- water equations. In Section 3, the magnitudes
of the moist-thermodynamic parameters in the model are
assigned based on a series of simple arguments relating the
idealised equations to tropical tropospheric time-scales.
In Section 4, we conduct a linear stability analysis of the
model, and in Section 5 we examine numerical experi-
ments using the fully nonlinear equations. In Section 6,

the sensitivities of the model dynamics to a range of lin-
ear background states are explored, before we conclude in
Section 7 with a discussion.

2 A MOIST-THERMAL
QUASI- GEOSTROPHIC MODEL

2.1 Quasi-geostrophic equations

Our model is based on a simplification of the moist,
thermal shallow-water equations derived by Zerroukat
and Allen (2015) and is related to the thermal quasi-
geostrophic model of Warneford and Dellar (2013), except
that we also include idealised moist processes, using
explicit temperature and specific humidity fields. Similar
shallow-water models incorporating the effects of
moisture have been studied in other contexts by Zhao
et al. (2021) and Kurganov et al. (2021). As already dis-
cussed herein, our aim is to obtain a model that retains the
dominant dynamical and physical processes, including
nonlinear advection and the moist-thermal interactions
of evaporation, condensation, and latent heat release.
We simplify the shallow-water model of Zerroukat and
Allen (2015) further by making the quasi-geostrophic
approximation for low Rossby-number flows. We also
simplify the moist processes by letting condensation equal
precipitation and instantaneously removing condensed
water from the system, thus ignoring details of cloud
physics and re-evaporation of falling precipitation. We
do, however, allow for the possibility that surface fluxes
depend on surface wind speed by using a simple model of
wind-induced evaporation.

The moist, thermal shallow-water equations can be
written, following Zerroukat and Allen (2015), as

D
Dt

u − fv + ghx = Sx
, (1a)

D
Dt

v + fu + ghy = Sy
, (1b)

D
Dt

h + h(∇ ⋅ u) = 0, (1c)

D
Dt
𝜃 = LP − R, (1d)

D
Dt

r = E − P, (1e)

Sa = g
(
𝜃ha +

1
2

h𝜃a

)
, a ∈ {x, y}, (1f)

where derivatives are denoted by subscripts. Here, (u, v)
is the horizontal velocity vector, h = H + h′ is the layer
thickness with average thickness H and a perturbation
h′∕H ≪ 1, 𝜃 is a dimensionless temperature perturbation,
and r is a dimensionless specific humidity. One difference
between this model and the formulation of the thermal
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quasi-geostrophic model in Warneford and Dellar (2013) is
that the thermal field here represents a perturbation about
an arbitrary reference temperature, with 𝜃 ≪ 1, rather
than a buoyancy field. Other variables on the left-hand
sides are standard; in particular, f is the Coriolis parameter,
and g is the acceleration due to gravity.

The terms on the right-hand sides of
Equations (1a)–(1f) represent various sources and sinks: Sx

and Sy are the zonal and meridional momentum sources
due to the interaction of pressure and temperature gradi-
ents, an approximation of the buoyancy source term from
the primitive equations; E is the moisture source due to
surface evaporation; P is the moisture sink due to precip-
itation; LP is the temperature source due to latent heat
release, where L is the latent heat of vaporisation; and R is
a temperature relaxation term. The forms for E, P, and R
are defined in Section 3.

We provide, next, an informal derivation of our
quasi-geostrophic approximation; a rigorous derivation via
asymptotic expansion can be found in Warneford and
Dellar (2013) for the dry equations in terms of a buoyancy
or reduced gravity variable in place of our temperature
perturbation. Kurganov et al. (2020) also derive the
equations in terms of buoyancy.

First, the balance equation (Charney, 1955) is recov-
ered from the leading order terms of the divergence of
the momentum equations, Equations (1a) and (1b), after
neglecting D∕Dt terms. Using h′∕H ≪ 1 and 𝜃 ≪ 1, this
reduces to

−f0 ̂k ⋅ ∇ × u + g∇2h = 1
2

gH∇2
𝜃. (2)

As in Charney (1955), we introduce a quasi-geostrophic
streamfunction 𝜓 , with (u, v) = (−𝜓y, 𝜓x), that satisfies

gh′ = f0𝜓 +
1
2

gH𝜃. (3)

Next, we retain the dominant terms in the Taylor expan-
sion for the full shallow-water potential vorticity (PV),

Q ≡
f + ∇2

𝜓

H + h′
≈ 1

H

(
f + ∇2

𝜓 −
f0

H
h′
)
, (4)

to obtain the quasi-geostrophic PV in our model:

q = f + (∇2 − L−2
D )𝜓 −

1
2

f0𝜃, (5)

where LD =
√

gH∕f0 is the deformation radius. Note that
the difference in sign in the last term from the equiv-
alent expressions in Warneford and Dellar (2013) and
Kurganov et al. (2020) results from the use of temperature
in place of buoyancy, which are related via b = g(1 − 𝜃).

The two formulations are identical, and since our focus is
on the atmosphere we follow the notation of Zerroukat and
Allen (2015).

An evolution equation for q is obtained by taking the
curl of Equations (1a) and (1b):

D
Dt
(f + 𝜁) − (∇ ⋅ u)(f + 𝜁) = Sy

x − Sx
y

= −1
2

g(hx𝜃y − hy𝜃x), (6)

where 𝜁 = ∇2
𝜓 is the relative vorticity. Using

Equation (1c) to eliminate ∇ ⋅ u and using Equation (3)
to write h′ in terms of 𝜓 and 𝜃, we then obtain to leading
order

D
Dt
(f + 𝜁 − L−2

D 𝜓 − 1
2

f0𝜃) = −
1
2

f0(𝜓x𝜃y − 𝜓y𝜃x). (7)

The full equations of our model are therefore

D
Dt

q = −1
2

f0u ⋅ ∇𝜃, (8a)

D
Dt
𝜃 = LP − R, (8b)

D
Dt

r = E − P. (8c)

2.2 Moist-thermal formulations

We now derive expressions for the moist-thermal func-
tions E, P, and R based on simple moist-thermodynamic
considerations. A key quantity that will be used in their
definition is the saturation mixing ratio rsat that deter-
mines the amount of water vapour a parcel of air at
a given temperature can hold. At the simplest level of
approximation we take rsat to vary linearly with 𝜃, a
simplification of the exponential fit given by Zerroukat
and Allen (2015) (eq. A.9) that holds to a reasonable
extent over the relatively narrow range of temperatures
considered here.

Absorbing the constant of proportionality into our
(arbitrary) scaling for temperature, we have simply

rsat = 𝜃. (9)

Note that we have chosen not to include separate fields
for liquid water and water vapour. Separate fields, as
used in Zerroukat and Allen (2015) and Rostami and
Zeitlin (2022), would allow excess humidity to be con-
densed to a liquid phase forming clouds, which feedback
on the dynamics via both latent heating and radiative
effects. In the spirit of creating a minimal model, however,
we choose to limit the number of dynamical variables and
sources of nonlinearity and retain a single water field.

 1477870x, 0, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4723 by N
H

S E
ducation for Scotland N

E
S, E

dinburgh C
entral O

ffice, W
iley O

nline L
ibrary on [01/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



CHAUDHRI et al. 5

For simplicity, we let precipitation take the form of a
relaxation on excess moisture, r − rsat = r − 𝜃, with

P = 𝛾(r − 𝜃)(r − 𝜃), (10)

where 𝛾 is a constant modulating the precipitation rate and
 is the Heaviside step function. The evaporation term E
is defined by a prescribed spatial function, SE(x, y), which
may be interpreted as a moisture availability term that can
be modulated by a wind-dependent coefficient to simulate
wind-induced evaporation. We also prescribe an equilib-
rium temperature profile, 𝜃e = 𝜃e(x, y), and let R take the
form of a Newtonian relaxation toward 𝜃e:

R = 𝜈(𝜃 − 𝜃e), (11)

where 𝜈 is the dry relaxation rate.
In Section 3, we use a series of simple arguments to

determine how the strengths of the moist-thermal pro-
cesses may be associated with typical tropical time-scales.

3 MODEL PARAMETERS

3.1 Equilibrium states

We first consider simple steady-state equilibria, 𝜃 and r,
of the system in Equations (8a)–(8c) with u = v = 0. The
corresponding steady-state PV is q = 𝛽y − 1

2
f0𝜃. Equilib-

ria correspond to balances between sources and sinks in
the thermal and specific humidity equations, given respec-
tively by

R = LP and P = E. (12)

Recall here that both E and 𝜃

e are prescribed forc-
ing functions, with E possibly also depending on wind
speed as described earlier herein. We consider first
the case of non-zero E. Because of the Heaviside in
Equation (10), nonzero E cannot be balanced in the
steady-state unless r ≥ 𝜃, in which case the atmosphere
is supersaturated everywhere and always precipitating. In
this case, Equation (12) may be solved to give

𝜃 = LE
𝜈

+ 𝜃e
, (13)

r = LE
𝜈

+ 𝜃e + E∕𝛾. (14)

A second case may be considered in which E = 0 every-
where. In this case, r ≤ 𝜃, P = 0, and the balance is given
simply by R = 0; that is,

𝜃 = 𝜃e
.

Simple forms for E and 𝜃

e are obtained by considering
typical summer and winter conditions over the Bay of

F I G U R E 2 Zonally averaged (75–95◦E) meridional profiles
of December–February (DJF; blue) and June–August (JJA; red)
potential temperature (solid), saturation specific humidity (dashed),
and specific humidity (dotted) at 500 hPa. All data are from
European Centre for Medium-Range Weather Forecasts Reanalysis
v5 and have been averaged from 2000 to 2019. [Colour figure can be
viewed at wileyonlinelibrary.com]

Bengal and adjacent continent, in the region
75–95◦E. Meridional profiles of June–August and
December–February potential temperature, specific
humidity, and saturation specific humidity at 500h Pa are
shown in Figure 2. Around 20◦N the specific humidity
and potential temperature depend approximately lin-
early on latitude outside the tropical troposphere where
weak temperature gradients generally prevail (Sobel &
Bretherton, 2000). Suhas and Boos (2023) demonstrated
growth in a two-dimensional shallow-water model by
barotropic instability on a background state with merid-
ional wind shear, and Adames and Ming (2018a) found
moisture–vortex instability on a background with a
meridional specific humidity gradient, both inspired by
conditions over the Bay of Bengal and South Asia. Here,
in contrast, we choose to focus on the role of meridional
temperature gradients (rather than humidity gradients)
in the growth of MD-like disturbances. Additionally, we
analyse the role of a precipitation gradient in a linearised
version of our model.

We therefore take our basic state to satisfy

𝜃y = 𝛼, (15)
ry = 0, (16)

where 𝛼 is a constant—small and positive in summer,
larger and negative in winter—implying a background
precipitation gradient Py = −𝛾𝛼. This choice then imposes
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6 CHAUDHRI et al.

a constraint on the possible forcing functions, E and 𝜃

e.
From Equation (13) it follows that we must have, for
the case E ≠ 0, and without mean-state wind-induced
evaporation,

Ey = −𝛼𝛾, (17)

𝜃

e
y = 𝛼

(
𝛾L
𝜈

+ 1
)
. (18)

In the non-precipitating case with E = 0 and r ≤ 𝜃, we
have simply

𝜃

e
y = 𝛼.

Note that the corresponding steady-state PV gradient is
qy = 𝛽 +

1
2

f0𝜃y. Thus, the difference between summer and
winter equilibrium temperature states can be expected to
lead to a difference in the Rossby wave propagation speeds.
As shown later, however, nonlinearity plays an important
role in modifying this simple dependence.

3.2 Moist-thermal time-scales

To set the moist thermal parameters—𝜈, 𝛾 , and L—we
consider the moist-thermal equations in the absence of
advection:

𝜃t = L𝛾(r − 𝜃)(r − 𝜃) − 𝜈(𝜃 − 𝜃e), (19a)
rt = E − 𝛾(r − 𝜃)(r − 𝜃). (19b)

For a state r = r + r′, 𝜃 = 𝜃 + 𝜃′, where r ≥ 𝜃, we have

𝜃

′
t = L𝛾(r′ − 𝜃′) − 𝜈𝜃′, (20)

r′t = −𝛾(r
′ − 𝜃′), (21)

which can be used to infer values for 𝜈, 𝛾 , and L so that
relaxation rates correspond to typical tropical time-scales.
As suggested by Cronin and Emanuel (2013), there are
three distinct time-scales in the tropical troposphere: a dry
radiative cooling time-scale at fixed specific humidity, 𝜏dry,
relevant when r < 𝜃; a moist radiative cooling time-scale
at fixed relative humidity, 𝜏moist = 100 days, relevant when
r > 𝜃 and substantially longer than 𝜏dry as a given temper-
ature change is associated with a substantially larger moist
enthalpy change compared with the fixed-specific humid-
ity case; and a much shorter precipitation time-scale,
𝜏precip, based on convective relaxation.

From Equation (20), we identify 𝜈

−1 with 𝜏dry,
which we take equal to 20 days, which is comparable
to the time-scale of radiative cooling from Tompkins
and Craig (1998). Subtracting Equation (21) from
Equation (20) and neglecting the slower dry radiative
time-scale term gives

(𝜃′ − r′)t = −𝛾(L + 1)(𝜃′ − r′). (22)

We therefore identify [𝛾(L + 1)]−1 with 𝜏precip, which we
take here to be 0.25 days, chosen so as to represent the
fast process of relaxation of excess water and convective
precipitation. Finally, adding Equation (20) and L times
Equation (21), and using the constraint that 𝜃′ − r′ relaxes
to zero on a much shorter time-scale than either 𝜏dry or
𝜏moist, gives

(1 + L)𝜃′t = −𝜈𝜃, (23)

from which we identify (1 + L)∕𝜈 with 𝜏moist, taken here
to be 100 days.

We thus obtain the parameter values

𝜈 = 1
20

day−1; 𝛾 = 4
5

day−1; L = 4.

3.3 Wind-induced evaporation

We also define a bulk evaporation term as the product of
a prescribed evaporation rate SE, and a term that depends
on wind speed (e.g., Penman & Keen, 1948),

E = SE
√

c2
WIu2 + G, (24)

where G is a gust term allowing for water to be evaporated
at zero wind speed. To compare with observations, we will
consider G = 1, but in simulations where wind-induced
evaporation is included, to avoid domain-wide precipitat-
ing basic states, we specify a gust term of zero (G = 0).

The parameter cWI is used to scale the strength of
wind-induced evaporation. To estimate an approximate
magnitude for cWI, we consider the average precipitation
rates during the summer monsoon season, P, and dur-
ing an active MD, PMD. Assuming SE equals the summer
mean precipitation in the monsoon region (i.e., taking
E = SE and neglecting convergence of water vapour into
the region by the winds),

P = SE
, (25)

and during an MD (again neglecting convergence of water
vapour),

PMD = SE
√

c2
WIu

2
MD + 1, (26)

where uMD is a characteristic wind speed. Therefore,

cWI =
1

uMD

√
P2

MD

P
2 − 1. (27)

We use precipitation data from the European Cen-
tre for Medium-Range Weather Forecasts Reanalysis v5
Hersbach et al. (2020) (Figure 3) to estimate a lower
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CHAUDHRI et al. 7

F I G U R E 3 Climatological June–August (JJA) precipitation
(2000–2019) over South Asia from European Centre for
Medium-Range Weather Forecasts Reanalysis v5. During the
summer monsoon season there is heavy rainfall along the Western
Ghats and eastern Bay of Bengal. The Gangeatic Plain, of interest
for the study of monsoon depressions, receives an average
precipitation of 5–11 mm⋅day−1 during JJA. [Colour figure can be
viewed at wileyonlinelibrary.com]

bound on cWI. We take P = 8 mm⋅day−1 as a typical
June–August seasonal-average precipitation rate that will
also include precipitation delivered by MDs. We also
take uMD = 1000 km ⋅ day−1 ≈ 12 m⋅s−1 as a characteris-
tic maximum wind speed in MDs Hurley and Boos (2015);
Hunt et al. (2016) and PMD = 20 mm⋅day−1 as a typical
MD precipitation rate Hurley and Boos (2015). From these
values, we calculate a lower bound on cWI of

cWI = 2.3 days ∕1000 km. (28)

3.4 Scaling of the dynamical
and temperature fields

We take the background Coriolis parameter
f0 = 2Ω sin 20◦N, where Ω = 2𝜋∕day. The gradient 𝛽 is
defined by 𝛽 = df∕a d𝜙 evaluated at 𝜙 = 𝜙0, where a is
the planetary radius. The northward distance from 𝜙0 is
y = a(𝜙 − 𝜙0). The only other parameter of dynamical
importance is the deformation radius LD, which we take
to be 1000 km. For ease of the numerical implementation,
and in the results presented herein, we scale all lengths in
terms of LD.

Following Zerroukat and Allen (2015), we define
our dimensionless temperature by 𝜃 = T∕300 K. Figure 2
shows potential temperature gradients near 20◦N of

(10∕1000 km), corresponding to a dimensionless 𝜃y of
(0.03). To explore the dependence of the dynamics on
background gradients more generally, we consider 𝜃e

y in
the extended range [−0.5, 0.5].

4 LINEAR ANALYSIS

We conduct a linear analysis of the model equations
to determine stable and unstable modes and how these
modes may contribute to the genesis of a larger amplitude
anomaly. First, we linearise the formulations of precipita-
tion and evaporation to

P = 𝛾(r − 𝜃), (29a)
E = SE

, (29b)

where the Heaviside function and the dependence of E on
wind speed have been dropped, and 𝜃e and SE are linear
functions of x, y. As a result of Equation (29a), any change
in temperature 𝜃 also changes specific humidity r, and
the linearised model experiences a non-physical “reverse
precipitation” moisture source for 𝜃 > r.

We expand the model equations for a small perturba-
tion A′ = (𝜓 ′, 𝜃′, r′) from a background state, A = (𝜓, 𝜃, r),
that is a function of y only. The background meridional
velocity is V = 𝜓x = 0, and we define the background
zonal velocity as U = −𝜓y. The basic state must satisfy

L𝛾(r − 𝜃) − 𝜈(𝜃 − 𝜃e) = 0, (30a)

SE − 𝛾(r − 𝜃) = 0, (30b)

which can be solved to give

𝜃 = 𝜈−1LSE + 𝜃e
, (31a)

r = (𝛾−1 + 𝜈−1L)SE + 𝜃e
. (31b)

The equations for the perturbation fields are then

(∇2 − L−2
D )𝜓

′
t = −𝛽𝜓

′
x +

f0

2
𝜃

′
t , (32a)

𝜃

′
t = −U𝜃′x − 𝜃y𝜓

′
x + L𝛾(r′ − 𝜃′) − 𝜈𝜃′, (32b)

r′t = −Ur′x − ry𝜓
′
x − 𝛾(r′ − 𝜃′), (32c)

and by posing wave solutions of the form
𝜓

′ = �̃� ei(kxx+kyy−𝜔t), and so on, these reduce to the
algebraic system

− (k2
x + k2

y + L−2
D )𝜔�̃� =

(
𝛽 +

f0

2
𝜃y

)
kx�̃�

+
f0

2
[Ukx − i(𝛾L + 𝜈)] ̃𝜃 + i

f0

2
𝛾Lr̃, (33a)

𝜔
̃
𝜃 = 𝜃ykx�̃� + [Ukx − i(𝛾L + 𝜈)] ̃𝜃 + i𝛾Lr̃, (33b)

𝜔r̃ = rykx�̃� + i𝛾 ̃𝜃 + [Ukx − i𝛾]r̃. (33c)
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8 CHAUDHRI et al.

A similar linearisation, but without the distinct
temperature field, was considered by Monteiro and
Sukhatme (2016).

At this point it is helpful to introduce the short-
hand notation ̃

𝛽 = 𝛽 + 1
2

f0𝜃y and 𝜅

2 = k2
x + k2

y + L−2
D .

Equations (33a)–(33c) can then be written in terms of 𝜔,
giving the matrix equation

𝜔

⎛
⎜⎜⎜⎝

�̃�

̃
𝜃

r̃

⎞
⎟⎟⎟⎠
= M

⎛
⎜⎜⎜⎝

�̃�

̃
𝜃

r̃

⎞
⎟⎟⎟⎠
, (34)

where

M =
⎡
⎢⎢⎢⎣

−
̃
𝛽kx
𝜅

2
f0
2
−Ukx+i(𝛾L+𝜈)

𝜅
2

f0
2
−i𝛾L
𝜅

2

𝜃ykx Ukx − i(𝛾L + 𝜈) i𝛾L
rykx i𝛾 Ukx − i𝛾

⎤
⎥⎥⎥⎦
. (35)

Solving det M = 0 gives three eigenvalues 𝜔; that is, the
dispersion relation between frequency and wave number
for each free mode of the system. The eigenvalues may be
complex and modes with Im(𝜔) > 0 are unstable, grow-
ing modes, which will eventually dominate the dynamics.
The zonal phase speed of each mode is uphase = Re(𝜔)∕kx.
The complex frequency 𝜔 depends on the background
state through 𝜃y and ry. For cases where 𝜃y = ry = 0 the
moist-thermodynamics are decoupled from PV and the
dispersion relation simplifies to that for dry Rossby waves:

𝜔Rossby = −
𝛽kx

k2
x + k2

y + L−2
D
. (36)

We further categorise the linear modes according
to their moist-thermal structure by considering the

eigenvector associated with each eigenvalue. Normalising
with respect to �̃� , the eigenvectors may be written

⎛
⎜⎜⎜⎝

�̃�

̃
𝜃

r̃

⎞
⎟⎟⎟⎠
=
⎛
⎜⎜⎜⎝

1
A
𝜃

ei𝜙
𝜃

Ar ei𝜙r

⎞
⎟⎟⎟⎠
, (37)

where A
𝜃

and Ar are real amplitudes of the thermal and
moisture fields relative to the streamfunction field, and
𝜙
𝜃

and 𝜙r are real phase differences between the ther-
mal and moisture fields and the streamfunction field. The
associated precipitation is

̃P = r̃ − ̃
𝜃 = AP ei𝜙P

, (38)

where AP and 𝜙P can be expressed in terms of A
𝜃
,Ar, 𝜙𝜃 ,

and 𝜙r.
Physically, the phase relationship between �̃� i and ̃Pi

indicates where precipitation maxima occur relative to
streamfunction maxima: 𝜙P = 𝜋 corresponds to fields out
of phase, where a precipitation maximum is located at a
minimum of 𝜓 , or a locally cyclonic vorticity anomaly;
𝜙 = 𝜋∕2 corresponds to precipitation maxima located
between cyclonic and anticyclonic anomalies, where the
flow in the y direction is strongest.

Figure 4 shows the eigenvalue and eigenvector depen-
dence on kx for non-precipitating background states with
a positive meridional temperature gradient (summer
conditions). Linear modes are either neutrally stable
or decaying. A thermal-Rossby wave (mode-1) has zero
precipitation but does depend on background gradients
through ̃

𝛽, with faster westward propagation under more
positive meridional temperature gradients. The precipitat-
ing modes (modes-2 and -3) are stationary. The strongest

(a) (b) (c)

(d) (e) (f)

F I G U R E 4 Eigenvalue and
precipitation component of eigenvector
solutions under background conditions
of positive meridional temperature
gradient and relative humidity,
ky = 1∕1000 km, LD = 1000 km, for
kx ∈ [−5, 5]. Solutions are organised by
eigenvalue–eigenvector pairs sorted for
−Im(𝜔) by column: mode-1 (a, d),
mode-2 (b e), and mode-3 (c, f). Solid
(dotted) lines are used for solutions
plotted against the left-hand
(right-hand) axes, with singular
solutions indicated by a cross (dot). In
this case the thermal-Rossby mode
(mode-1) does not organise
precipitation.
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CHAUDHRI et al. 9

F I G U R E 5 As Figure 4, except
for background conditions with a
negative meridional temperature
gradient.

(a) (b) (c)

(d) (e) (f)

precipitating mode (mode-3) decays rapidly, with a precipi-
tation rate that increases with wave number. An additional
neutrally stable mode (mode-2) has precipitation maxima
located between streamfunction maxima and minima
(𝜙P ≈ 𝜋∕2) and the precipitation strength increases lin-
early with kx. None of these modes show a dependence
of the growth rate on the wave number, and so the lin-
ear dynamics does not indicate any mechanism for scale
selection. The corresponding case of negative temperature
gradient is shown in Figure 5. Though there are some
quantitative changes the qualitative pattern is similar.

Further insight into the relationship between flow and
precipitation perturbations can be obtained by neglecting
radiative cooling, which acts on longer time-scales than
both precipitation and advection in typical MD-like flows.

By defining the precipitation anomaly

P′ = 𝛾(r′ − 𝜃′), (39)

we can combine Equations (32c) and (32b) into a single
equation for P′, and 𝜃′t in Equation (32a) can be eliminated
by Equation (32b). For the special case of no background
flow, U = 0, this results in the coupled system in the two
fields 𝜓 ′ and P′:

(∇2 − L−2
D )𝜓

′
t = − ̃𝛽𝜓

′
x +

f0

2
LP′, (40)

P′t = −Py𝜓
′
x − 𝛾(L + 1)P′. (41)

Proceeding with a wave solution as before then leads to
the matrix problem

𝜔

(
�̃�

̃P

)
=

[
−

̃
𝛽kx
𝜅

2 −i f0
2

L
𝜅

2

Pykx −i𝛾(L + 1)

](
�̃�

̃P

)
. (42)

When Py = 0, the eigenvalue problem gives two
distinct linear modes. The first is a thermal-Rossby
mode, with dispersion relation 𝜔 = 𝜔R = − ̃𝛽kx∕𝜅2 as
before, for which the eigenvector has ̃P = 0. The second
mode is a non-propagating precipitating mode with
𝜔 = 𝜔P = −i𝛾(L + 1) that decays as excess humidity is
relaxed out of the system. The eigenvector for this second
mode has

̃P
�̃�

= 𝜅

2
𝛾(L + 1) + i ̃𝛽kx

f0L∕2
. (43)

Figure 6 shows the dependence of 𝜔 and mode struc-
ture on the background temperature gradient for the case
Py = 0. The Rossby wave mode propagates west at a speed
dependent on 𝜃y, through ̃

𝛽 as before. The other, precipi-
tating, mode is stationary, with amplitude and phase that
depend only weakly on 𝜃y, being dominated by the term
involving 𝜅2. The decay time for the precipitating mode
is 1∕[𝛾(L + 1)]. This mode is essentially the same precipi-
tating mode as the stronger of the two precipitating cases
described earlier (mode-3 in Figures 4c,f and 5c,f).

To find𝜔when Py ≠ 0, we can rewrite Equation (44) in
the form

𝜔

(
�̃�

̃P

)
=

[
𝜔R −i f0

2
L
𝜅

2

Pykx 𝜔P

](
�̃�

̃P

)
, (44)

where 𝜔R and 𝜔P are the two eigenvalues obtained when
Py = 0. The eigenvalues are given by the roots of

𝜔

2 − (𝜔R + 𝜔P)𝜔 + 𝜔R𝜔P + i
f0

2
LPykx

𝜅
2 = 0. (45)

Adames and Ming (2018a) have previously found a
dispersion relation that similarly describes dry Rossby
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10 CHAUDHRI et al.

(a) (b)

(c) (d)

F I G U R E 6 Eigenvalues (a, b)
and eigenvectors (c, d) for the
thermal-Rossby (mode-1) and
precipitating (mode-2) solutions of
Equation (44) for fixed wave number
and Py = 0.

(a) (b)

(c) (d)

F I G U R E 7 Eigenvalues (a, b),
and eigenvectors (c, d), for the
thermal-Rossby (mode-1) and
precipitating (mode-2) solutions of
Equation (44) for fixed wave number
and 𝜃y = 0.

modes and precipitating modes, and which couples
moisture–vortex instability to monsoonal disturbances in
an idealised model. Here, we specifically identify the role

of a background precipitation gradient in coupling moist
and dry-thermal dynamics in the linearised version of our
model. As Py is varied, the solutions of Equation (45)
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CHAUDHRI et al. 11

vary from the decoupled Rossby-like and precipitating
modes to modes with dispersion relations that combine
𝜔R and 𝜔P. Additionally, the wave number enters the
imaginary part of the dispersion relation, suggesting a
possible scale selection by instability. This can be seen
in Figure 7, which shows the dependence of eigenvalues
and eigenvectors on background precipitation gradient for
the case 𝜃y = 0.

The phase difference implies that the Rossby-like
mode organises precipitation where the flow is down the
background precipitation gradient. The Rossby-like mode
amplifies for all Py, drawing energy from the latent heat-
ing associated with precipitation. The dipole of positive to
negative P′ across a propagating positive vorticity anomaly
acts as a dipole of diabatic energy transfer. From the
time-derivative of Equation (5), this couples vorticity gen-
eration west (and dissipation east) of the anomaly, aiding
the westward propagation. When Py > 0 the modes prop-
agate in opposite directions. There is a range of negative
Py where both modes have Re(𝜔) < 0, implying westward
propagation of both modes.

5 NUMERICAL RESULTS

We next explore the fully nonlinear dynamics of the model
by solving the model equations numerically. Following
a brief outline of the numerical method (Section 5.1),
we first consider (in Section 5.2) the extent to which
small-amplitude disturbances are described by the linear
analysis carried out in Section 4, then nonlinear precipi-
tation with the Heaviside dependence in Equation (10) is
reinstated. We then (in Section 5.3) illustrate the behaviour
of finite-amplitude disturbances and the effects of non-
linear advection. Finally (in Section 5.4), we consider the
energy transfers within the system that sustain the growth
of perturbations.

5.1 Numerical implementation

The model equations (Equations 8a–8c) were
time-integrated in a periodic channel of size 12LD × 6LD
(with LD = 1000 km; see Section 3.4), with a free slip
boundary condition at the channel walls (y = 0, 6). The
large spatial domain is chosen to reduce the influence of
the lateral and periodic boundary conditions. The numer-
ical method used is a standard pseudo-spectral method,
in which the Fourier modes are integrated forward in
time using a fourth-order Runga–Kutta scheme, whereas
the nonlinear terms are calculated in physical space. The
spectral modes are fully dealiased by truncating with a
two-thirds rule. A weak, scale-selective hyperdiffusion
of the form ∇4 is included on all prognostic fields for

numerical stability, preventing the build up of enstro-
phy and moisture/temperature variance at the smallest
scales, while having practically no effect on the large-scale
dynamics. A grid of 256 × 128 points was found to be suf-
ficient to resolve the relatively large-scale flow features of
interest.

5.2 Comparison with linear stability
analysis

To compare the numerical experiments with the linear
analysis, we use the same background temperature and
moisture gradients, setting 𝜃

e
y = 0.5 (summer-like) or

𝜃

e
y = −0.5 (winter-like), and then initialise the model with
𝜃y = ry = 𝜃e

y . To this background state we then introduce
a perturbation via the PV. When single (kx, ky) modes are
perturbed the resulting wave motions follow closely the
predictions of the linear analysis.

To illustrate more general evolution, we consider per-
turbations comprising a range of wave numbers and define
the initial perturbation PV to be

q′(x, y) = a sin
(
𝜋y
3

) 20∑
n=1

cos
(

nx + 10𝜋
pn

)
, (46)

where pn are the first 20 prime numbers used for phase
shifting so as not to incidentally overrepresent lower wave
numbers, and a is a small amplitude set to a = 0.01 for
comparison with the linear stability analysis.

Figure 8a shows a Hovmöller plot for a
small-amplitude perturbation on a background tempera-
ture gradient of 𝜃e

y = 0.5 along the line y = 1.5, where the
perturbation is initially largest. Though the perturbations
remain small in amplitude, so that the nonlinear advec-
tion term remains negligible, nonlinearity is nonetheless
present in the precipitation field. These examples support
the predictions from the linear stability analysis. There are
low-wave-number Rossby modes with fast westward prop-
agation, whereas stationary precipitation anomalies grow
rapidly across a range of scales in the x-direction set by the
initial perturbation. As in Figure 4, the faster propagating,
neutrally stable, thermal-Rossby modes are decoupled
from a set of near-stationary strongly precipitating modes.
Figure 8b shows the same initial perturbation but with
𝜃

e
y = −0.5. The non-precipitating Rossby wave modes

propagate more slowly since negative 𝜃y reduces the effec-
tive ̃

𝛽. At this latitude there is a fast drain of moisture due
to precipitation triggered by flow down the background
specific humidity gradient, where the perturbed fields
have r − 𝜃 > 0. This results in flow up the background spe-
cific humidity gradient where r − 𝜃 < 0; in the linearised
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12 CHAUDHRI et al.

(a) (b)
e e F I G U R E 8 Hovmöller plots of

small-amplitude perturbations on
temperature gradients of (a) 𝜃e

y = 0.5
and (b) 𝜃e

y = −0.5 at y = 𝜋∕4 in domain
coordinates. The background gradient
in (a) supports westward-propagating
linear waves that are decayed in (b).
The growth of stationary precipitating
modes is evident in (b). Contours show
the streamfunction, and colours
indicate the precipitation rate. [Colour
figure can be viewed at
wileyonlinelibrary.com]

equations this humidity deficit would be a moisture
source. There are slower propagating non-precipitating
modes on this winter-like background state, as suggested
by the thermal-Rossby wave dispersion relation:

𝜔 = −
̃
𝛽kx

𝜅
2 . (47)

On a background of constant relative humidity, with
a specific humidity gradient, the moist-thermal fields
in regions of precipitation will relax to RH = 1 (r = 𝜃)
through loss of specific humidity (reduction in r). The
Heaviside term in the precipitation equation introduces
nonlinearity into the moisture and temperature equations.

For linear background moisture and temperature
fields, precipitation may be triggered when flow is directed
down a specific humidity (r) gradient: r is conserved fol-
lowing the flow, whereas 𝜃 relaxes towards a lower value
of 𝜃e, resulting in r > 𝜃, triggering precipitation. Owing to
latent heat release the 𝜃 relaxation rate is subdued on the
longer moist time-scale 𝜏moist, compared with the faster
time-scale 𝜏dry. The reduction in time-scales due to latent
heat release leads to a weaker temperature gradient in pre-
cipitating regions than would occur in non-precipitating
regions, where the final 𝜃 is closer to 𝜃e.

The results of linear-stability analysis and these exper-
iments with small-amplitude perturbations show a decou-
pling between stationary but amplifying precipitation and
“dry linear Rossby modes” that, in our range of parame-
ter space, have westward propagation favoured by 𝜃e

y > 0.
From these results, we are motivated to conduct numerical
experiments for large-amplitude disturbances to examine
moist-thermal effects on the dynamics where an MD-like
perturbation is sufficiently strong that the nonlinear

advection of the moisture and temperature fields organis-
ing evaporation and precipitation are leading terms.

5.3 MD-like perturbations

We next consider the evolution of a larger amplitude dis-
turbance, which we base loosely on the composite MD
structures constructed by Hunt et al. (2016). Specifically,
we define a PV anomaly comprising a Gaussian vortex of
the form

qv =
Umax e1∕2

Rmax
(2 + R2

maxL−2
D ) e−(x2+y2)∕(2×0.112)

, (48)

where Rmax and Umax are suitable constants chosen to
produce the desired structure of the initial perturbation.
Here, we take Rmax = 0.5 and Umax = 1, corresponding in
dimensional units of approximately 500 km and 12 m⋅s−1

respectively. The actual maximum velocity of the vortex is
close, though not exactly equal, to Umax, and the vortex is
similar to the approximate Gaussian structure of the com-
posite MD constructed by Hunt et al. (2016). The radial
decay of the Gaussian is sufficiently rapid that the per-
turbation PV near the domain edges is weak, although
during the time evolution propagation of the disturbance
will eventually bring it closer to the boundaries, with pos-
sible interaction effects. The key independent constants
used in the formulation of the full model are summarised
in Table 1.

The experiments using this perturbation are firmly
in the nonlinear regime (Figure 9), and the wind speeds
associated with the perturbation are on the order of
(LDdays−1). Although the maximum Rossby number for
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CHAUDHRI et al. 13

T A B L E 1 Summary of key independent constants used in the full model.

Constant Description

f0 = 4.3 day−1 Coriolis parameter at 20◦N

𝛽 = 1.9/1000 km⋅day−1 Meridional gradient of f at 20◦N

LD = 1000 km Rossby radius of deformation

𝜏moist = 100 days Time-scale of radiative cooling at a constant relative humidity

𝜏dry = 20 days Time-scale of radiative cooling at a constant specific humidity

𝜏precip = 0.25 days Time-scale of relaxation of excess humidity as precipitation

SE ∈ {0, 0.1} day−1 Potential evaporation rate

cWI = 2.3 days/1000 km Coefficient scaling wind-induced evaporation

Umax = 12 m⋅s−1 Approximate maximum wind speed of initialised prototype monsoon depression

Rmax = 500 km Radius from vortex centre to highest wind speed of initialised prototype monsoon depression

F I G U R E 9 Snapshots after 1 day
of experiments with Gaussian
perturbations on background
conditions with relative humidity of 1
and 𝜃e

y = 0 (a, d), 𝜃e
y = 0.5 (b, e), and

𝜃

e
y = −0.5 (c, f). Panels (a)–(c) omit

wind-induced evaporation, and panels
(d)–(f) include wind-induced
evaporation (with SE = 0.1). The
streamfunction 𝜓 (black contours) is
plotted in intervals of 25 × 103 km2

⋅day−1, with labels in units of
103 km2⋅day−1. The precipitation rate is
shown with shading. Note the different
precipitation colour scales for
experiments without and with
wind-induced evaporation. Red dots
track minima in the streamfunction
over 2 days in intervals of 0.1 days, and
red cross-hairs indicate local
streamfunction minima in each
snapshot. [Colour figure can be viewed
at wileyonlinelibrary.com]

(a)

(b)

(c)

(d)

(e)

(f)

E

e

E

e

e e

e e

the flow approaches 0.5, we expect the quasi-geostrophic
model to remain a reasonable approximation to the full
dynamics for much of the evolution. Background thermal
gradients vary as ∇𝜃 ∼ (L−1

D ), so to a first approximation
we expect the magnitude of the advective term in the PV
equation, Equation (8a), to scale as

||||
D
Dt

q
|||| ∼

f0

2
Umax∇𝜃 ≈ 1 day−2

. (49)

Advection by the Gaussian anomaly also leads to changes
in the moist-thermal background states on a time-scale

𝜏adv ∼
Rmax

Umax
= 0.5 days, (50)

which is 40 times shorter than 𝜏dry. There can also be
a significant change to the moisture source term due to
wind-induced evaporation since cWIUmaxSE ≈ 2.3SE.
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14 CHAUDHRI et al.

Figure 9 shows snapshots of streamfunction and
precipitation after 1 day for a series of experiments with
different background conditions. The experiments have
𝜃

e
y = 0.0, 0.5, −0.5, with each background gradient run

with and without wind-induced evaporation. In the exper-
iment with 𝜃

e
y = 0 and no wind-induced evaporation

(Figure 9a), there is no interaction between the dynam-
ics and the moisture or temperature fields, so this run
effectively isolates the nonlinear dynamics due to the
advection of PVy. Low-amplitude domain-scale modes
propagate westward away from the large-amplitude
depression core. This propagation follows the Rossby
wave equation, Equation (36), with faster westward prop-
agation at smaller wave numbers. After approximately
2 days, a local streamfunction minimum becomes sepa-
rated from the core and propagates westward with phase
speed of around 2 day−1. However, the large-amplitude
perturbation at the core propagates northwestward by
beta-drift due to the advection and wrapping of the back-
ground vorticity gradient by the substantial wind speeds
of the vortex (Lam & Dritschel, 2001; Mohebalhojeh &
Dritschel, 2001). Indeed, adiabatic beta-drift has been
identified as a propagation mechanism for MDs by Boos
et al. (2015). Here, by varying the background conditions,
we illustrate how this mechanism can be modulated by
the various moist-thermal effects.

Including wind-induced evaporation, with 𝜃e
y = 0, cou-

ples precipitation to the wind speed. Initially, this forms
a band of precipitation, and raised temperatures, follow-
ing the radially symmetric winds around the core; but as
longer modes radiate faster westward, contours of stream-
function gather on the eastern flank of the depression
and separate on the western flank (Figure 9d). There-
fore, precipitation intensifies on the eastern flank and
extends in lobes north and south of the depression core.
Though the propagation path is similar to the case with-
out wind-induced evaporation (cf. Figure 9a), the pertur-
bation deepens with this precipitation and draws energy
from latent heating following Equation (8a), which can be
written in the form

D
Dt
(∇2 − L−2

D )𝜓 = −𝛽v + 1
2

f0𝜃t, (51)

showing that a monotonically increasing 𝜃 field leads to
increases in q, and hence decreases in the streamfunction.

The nonlinear dynamics are further modulated by
the inclusion of a background temperature gradient. For
𝜃

e
y = 0.5, the low-amplitude domain-scale modes propa-

gate faster (Figure 9b,e), consistent with the higher effec-
tive ̃

𝛽 in the dispersion relations derived in Section 4. The
propagation of the depression core is westnorthwestward
over the first day, but tracks northnorthwestward over the
second day (red dots in Figure 9b). This is attributed to

distortion of the initial disturbance and interference due to
periodicity of the domain and interaction with propagating
domain-scale modes.

With background temperature gradients, but still with-
out wind-induced evaporation (e.g., Figure 9b), precipi-
tation is triggered by advection of specific humidity that
condenses as it flows down 𝜃e gradients. This precipitation
is organised in a lobe extending out of the southwestern
quadrant, with maximum amplitude of approximately 2 ×
10−3 day−1 after the first day of the experiment. Though
precipitation is generated in this model without moisture
convergence or convection, precipitation organised in the
southwestern quadrant is reminiscent of that observed in
MDs in the Bay of Bengal (Hunt et al., 2016; Hurley &
Boos, 2015). Higher temperatures induced by this pre-
cipitation may contribute to westward propagation in a
manner similar to the moist vortex instability described
in Adames and Ming (2018a). With wind-induced evap-
oration (Figure 9e), precipitation is again organised with
the faster wind speeds on the eastern flank of the depres-
sion core. This occurs as thermal-Rossby modes with lower
wave number propagate westward faster than those with
higher wave number, causing a sharper gradient in stream-
function on the eastern flank of the vortex. The result-
ing wind-induced evaporation contributes to precipitation
rates that are an order of magnitude greater than those
without wind-induced evaporation for this choice of SE

and cWI.
In contrast, on a background gradient of 𝜃e

y = −0.5
(Figure 9c), the propagation of thermal-Rossby waves is
slowed and there is little radiation of large-scale modes
away from the depression core. This helps maintain
a coherent perturbation. Without wind-induced evapo-
ration, precipitation is organised on the eastern flank
of the disturbance, still down specific humidity gra-
dients. This coherence means that, when including
wind-induced evaporation (Figure 9f), the disturbance
shows the strongest amplification on this particular back-
ground gradient.

Despite the importance of nonlinear dynamics where
the perturbation is strongest, these cases reveal certain
dynamical similarities to the small-amplitude exper-
iments. Like in the earlier Hovmöller diagrams for
small-amplitude perturbations (see Figure 8), Figure 10
shows that for the large-amplitude perturbation with a
background gradient of 𝜃e

y = 0.5 there are fast-propagating
domain-scale linear-like thermal-Rossby waves that radi-
ate from the depression core, whereas the mode with
heavy precipitation propagates more slowly westward,
organised at a smaller scale by stronger wind speeds. The
vortex interaction with temperature gradients drives faster
westward-propagating dry waves, with the precipitating
core propagating westward at around 500 km⋅day−1.

 1477870x, 0, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4723 by N
H

S E
ducation for Scotland N

E
S, E

dinburgh C
entral O

ffice, W
iley O

nline L
ibrary on [01/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



CHAUDHRI et al. 15

F I G U R E 10 Hovmöller plot of a large-amplitude
perturbation on a background state with 𝜃e

y = 0.5. Contours indicate
the streamfunction and colours show the precipitation rate. [Colour
figure can be viewed at wileyonlinelibrary.com]

Notwithstanding these similarities to the linear
dynamics, nonlinear effects are significant, especially
local to the strong-amplitude vortex centre. On a flat
background temperature, 𝜃e

y = 0, without wind-induced
evaporation (Figure 9a), the vortex produced by the
initial Gaussian perturbation suffers strong attenua-
tion as fast-westward-propagating (≈3000 km⋅day−1),
domain-scale (12,000 km) Rossby-waves radiate from a
slower propagating, smaller diameter core of fast winds.
This core propagates northwestward with nonlinear
beta-drift. A background temperature gradient reduces
the northward component of propagation and enhances
the westward component, and a negative background
gradient prevents westward propagation altogether. This
sensitivity to the background condition is discussed in
results across a continuum of 𝜃e

y in Section 6.

5.4 Energetic analysis

The role of wind-induced evaporation in influencing
MD-like perturbations can be further examined in terms
of the zonal-mean energy budget. Energy in the sys-
tem can reside in the form of kinetic energy, available
potential energy (related to streamfunction, or layer
thickness in the parent shallow-water model), and
moist-thermal enthalpy. Figure 11 shows the leading

terms in the energy budget for an integration of the
Gaussian anomaly with 𝜃

e
y = 0.5. Zonal-mean kinetic

energy, 1
2
⟨|∇𝜓|2⟩x, is greatest either side of the initial per-

turbation (Figure 11a). The presence of the vortex flattens
local temperature gradients in the zonal mean. In this
configuration, reduced temperatures north of the vortex
act as an energy source of diabatic heating from radia-
tive disequilibrium, whereas enhanced temperatures lose
energy south of the vortex centre. This diabatic transfer
contributes to higher wind speeds north of the depres-
sion centre. The inclusion of wind-induced evaporation
couples evaporation to higher wind speeds, enhancing
the diabatic transfer of energy to the flow and creating a
positive feedback between heating and the flow.

Available potential energy (see Figure 11b) is
defined as

Δ𝜃(Δh)2 = Δ𝜃(1 + Δ𝜃 + f −1
0 L−2

D 𝜓)2, (52)

where Δ𝜃 = 𝜃 − 𝜃e. Contributions to Δ𝜃 include both adi-
abatic effects associated with the advection of the back-
ground 𝜃 by the flow (Figure 11d) and the diabatic effects
of latent heating (Figure 11c) and radiative relaxation.
These effects are concentrated in the centre of the vortex
anomaly.

It is also instructive to consider the transfer of enstro-
phy between different components of the flow. Potential
enstrophy integrated over the domain is defined as

 =
∫ ∫

domain

(
q +

f0

2
𝜃

)2

dx dy, (53)

and the rate of change in time can be written

t =
∫ ∫

domain

2
(

q +
f0

2
𝜃

)
𝜕

𝜕t

(
q +

f0

2
𝜃

)
dx dy, (54a)

= f0
∫ ∫

domain

(
q +

f0

2
𝜃

)
(−∇𝜃 ⋅ u + LP − R) dx dy, (54b)

= Adv
t +Precip

t +Rad
t , (54c)

where −u ⋅ ∇𝜃 is the local advection of the temper-
ature field and LP − R is the enthalpy change from
moist-thermodynamic processes. The strengths of the
different terms again provide information about the
transfers between different energetic components dur-
ing the flow evolution. Enthalpy changes are driven
by radiative relaxation, and in evaporating regimes
the enthalpy increases as additional precipitating mois-
ture is added. The decomposed enstrophy production
components, {Adv

t ,
Precip
t ,

Rad
t }, are plotted in Figure 12

for cases with and without wind-induced evaporation,
where Adv

t has been calculated as a residual.
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(a)

(b)

(c)

(d)

F I G U R E 11 Zonal-average
energetic quantities in a numerical
experiment of a large-amplitude
perturbation on a 𝜃e

y = 0.5 background
gradient. Shading shows the value
without wind-induced evaporation, and
contours indicate the additional
anomaly with wind-induced
evaporation (SE = 0.1). The quantities
plotted are (a) kinetic energy density,
(b) available potential energy due to the
layer-thickness, (c) latent heating of
condensation, and (d) thermal
anomaly. Radiative heating of areas of
dynamically driven negative thermal
anomaly contribute to kinetic energy.
Wind-induced evaporation contributes
across these energetic quantities,
centred on the vortex latitude. [Colour
figure can be viewed at
wileyonlinelibrary.com]
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(a) (b)
F I G U R E 12 Contributions to
the rate of change of enstrophy in
experiments with three background
temperature gradients (see legend) and
(a) without evaporation and (b) with
wind-induced (WI) evaporation.
[Colour figure can be viewed at
wileyonlinelibrary.com]

Without evaporation, where 𝜃e
y ≠ 0 there is an diabatic

increase in enstrophy through the condensation of water.
With wind-induced evaporation, the enstrophy growth
due to precipitation outpaces the diabatic cooling where
𝜃 > 𝜃

e. The residual term describes how enstrophy is gen-
erated through the coupling of the flow with temperature
gradients; there are periodic interference patterns due to
cross-domain propagation of fast Rossby waves, and these
are fastest for more positive 𝜃e

y .
The production of enstrophy is dominated by Adv

t ,
reflecting the contribution due to the adiabatic extraction
of energy from the background state. Depending on the 𝜃e

y
background state, Rad

t may be a source or sink of enstro-
phy through diabatic transfers. Without wind-induced
evaporation (see Figure 12a), diabatic processes are driven

by radiative relaxation, with r ≲ 𝜃 due to the fast relaxation
of excess moisture. With wind-induced evaporation (see
Figure 12b), substantial precipitation rates are achieved
that diabatically contribute enstrophy faster than the sink
due to radiative relaxation. On the other hand, the increase
in Adv

t is much larger than that without wind-induced
evaporation, amplifying directly in response to the inter-
action of higher wind speeds with anomalous temperature
generation.

Figure 13 shows the accumulation over time of enstro-
phy in the system in the presence of wind-induced evapo-
ration. The enstrophy amplification due to wind-induced
evaporation is well approximated by an exponential
function and is, therefore, proportional to the enstro-
phy itself. Following a spin-up period of approximately
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CHAUDHRI et al. 17

e e e

F I G U R E 13 Logarithm of normalised anomalous enstrophy
versus time for 10-day integrations with wind-induced evaporation
(SE = 0.1) and three background temperature gradients
(𝜃e

y ∈ {−0.5, 0, 0.5}∕(1000 km)). The red line is a linear
least-squares fit to the 𝜃e

y = 0 data (excluding days 1 and 2). The
wind-induced anomalous growth in enstrophy is approximately
exponential, with an e-folding time-scale of 1∕(0.80 ± 0.03) days.
[Colour figure can be viewed at wileyonlinelibrary.com]

2 days, large-amplitude perturbations in experiments with
negative, neutral, and positive background temperature
gradients (𝜃e

y = −0.5, 0, 0.5) all demonstrate a similar expo-
nential growth in enstrophy, with an e-folding time-scale
of 𝜏WI = 1.25 ± 0.05 days. This time-scale decreases for an
increased coefficient of wind-induced evaporation (not
shown). Though in reality friction would curtail this
growth, friction is not included in the model. The reader
should note that hyperdiffusion in our model is set to be
as weak as possible for the model to run for the length of
these experiments and affects small-scale vorticity gradi-
ents, so has negligible effect on the large-scale organisation
that enstrophy measures. The results shown in Figure 13
highlight the importance, in this idealised set-up, of
wind-induced evaporation for energising large-amplitude
perturbations. These results correspond with observa-
tions that the potential evaporation rate limits the genesis
of South Asian MDs (Karmakar et al., 2021), which
have a stratiform precipitation structure characteristic of
maritime storms (Houze et al., 2011).

6 SENSITIVITY TO THE
BACKGROUND STATE

In this section, motivated by the changing climate (e.g.,
Arias et al., 2021), we used our idealised model to explore

the sensitivity of propagation of MD-like perturbations to
different background conditions. We compare the propa-
gation of large-amplitude perturbations in 4-day numer-
ical experiments over a range of 𝜃e

y ∈ [−1.5, 1.5] in 0.1
intervals. Zonal and meridional components of the propa-
gation velocity are computed by tracking the vortex centre
as the local minimum in𝜓 at times when a coherent vortex
exists—see streamfunction tracking of observed depres-
sions in Vishnu et al. (2020). The zonal and meridional
propagation speeds, uvortex and vvortex respectively, are plot-
ted in Figure 14a, alongside the heading calculated using
these speeds (Figure 14b).

There is a clear dependence of propagation heading on
the background temperature gradient (Figure 14a,b). For
𝜃

e
y < −1 there is a strong sensitivity to 𝜃e

y , and in partic-
ular a sharp westward change in heading with increas-
ing temperature gradient. For 𝜃e

y > 0 and encompassing
a summer-like 𝜃e

y = 0.5 background state, heading varies
linearly with a sensitivity −24.4 ± 1.4◦ per unit change in
𝜃

e
y . For higher positive values of 𝜃e

y there is a regime of
fast westward propagation, with heading approaching due
west (not shown). However, those experiments have only
a short period before the initial vortex loses coherence due
to interference with the periodic domain.

For experiments with wind-induced evaporation, there
is a weaker sensitivity of propagation heading around
𝜃

e
y = 0 (Figure 15a). We attribute this effect to a shield-

ing of the vortex from the background gradient by a
strong thermal anomaly driven by precipitation associ-
ated with wind-induced evaporation by the fast winds
around the vortex centre. In this regime, the highest
wind speeds are associated with the greatest shielding
by the thermal anomaly. This reduces the sensitivity of
propagation to changes in 𝜃e

y in this intermediate regime
(Figure 15b).

In these idealised experiments there is a quantifiable
sensitivity of vortex propagation to the background state.
In particular, we have focused on a background temper-
ature gradient 𝜃e

y , which tends to favour more westward
propagation for more positive 𝜃e

y . Around 𝜃e
y = 0 the prop-

agation of the vortex is broadly consistent with beta-drift.
However, for large positive 𝜃

e
y , the propagation is bet-

ter understood as being dominated by thermal-Rossby
waves that, consistent with the linear-stability analysis in
Section 4, do not effectively organise precipitation. As a
result, these fast westward-propagating modes are more
weakly affected by wind-induced evaporation.

7 SUMMARY

We have described a novel formulation by which moist
dynamics are incorporated into a single-layer thermal
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(a) (b)
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F I G U R E 14 (a) Meridional
versus zonal components of the
propagation velocity of the vortex
centre—that is, the location of
min(𝜓)—where a coherent vortex
exists, for large-amplitude perturbation
experiments, without wind-induced
evaporation, across a range of
background temperature gradients
(𝜃e

y ∈ [−1.5, 1.5]) (colours). Velocity
components are estimated as linear fits
of the x- and y-coordinates of the vortex
centre versus time. (b) Vortex
propagation heading for each
experiment shown in (a), where
heading is defined as the angular
anomaly relative to pure northward
propagation. For example, a
northeastward-propagating vortex has a
heading of 45◦ and a
northwestward-propagating vortex has
a heading of −45◦. For the intermediate
regime, 𝜃e

y ∈ [−0.1, 1.1], a linear fit with
inverse variance weighting (red line)
highlights the sensitivity of propagation
heading to the background temperature
gradient. [Colour figure can be viewed
at wileyonlinelibrary.com]

(a) (b)
E E

e
e

e

vo
rt

ex

vortex

F I G U R E 15 As Figure 14, except
for experiments with wind-induced
evaporation. [Colour figure can be
viewed at wileyonlinelibrary.com]

quasi-geostrophic model, with distinct PV, tempera-
ture, and specific humidity fields. The strengths of the
moist-thermodynamic parameters have been scaled based
on known time-scales of the processes they aim to repro-
duce, and background states have been set based on lin-
ear approximations of atmospheric reanalysis data in the
South Asian monsoon region. The idealised model consti-
tutes a relatively simple and interpretable tool for investi-
gating prototype MDs.

A linear analysis of our model reveals a set of dis-
tinct modes that describe fast-propagating thermal-Rossby
modes and stationery, amplifying, precipitating modes.
These precipitating modes are shown to organise into

small-amplitude perturbations according to the sign of the
background specific humidity gradient and the time-scale
of excess moisture relaxation. The linearised model also
demonstrates how the presence of a background precipi-
tation gradient amplifies small-amplitude thermal-Rossby
modes by coupling the dynamics to latent heating.

Numerical experiments further demonstrate how
background conditions influence the dynamics of
large-amplitude, MD-like disturbances. Using these exper-
iments with nonlinear dynamics, we demonstrate the
pathways of diabatic and adiabatic energy transfer into
the disturbances and how these pathways are modified
by a wind-induced evaporation feedback. In addition, a
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series of numerical experiments testing the sensitivity of
propagation to a range of background conditions shows a
clear sensitivity of heading (i.e., propagation direction) to
the imposed meridional temperature gradient. In particu-
lar, positive temperature gradients favour more westward
propagation and negative gradients favour more eastward
propagation. The model is consistent with the observa-
tions showing that MDs, which are characterised by strong
westward propagation, occur only during the summer
phase of the monsoon, when the meridional temperature
gradient is positive. In contrast, the presence of negative
meridional temperature gradients—corresponding with
non-summer months in South Asia—inhibits westward
propagation of MDs according to our model.

The inclusion of wind-induced evaporation in the
model amplifies the rate of transfer of diabatic energy
into kinetic energy and modifies the moisture structure
of propagating disturbances. We further show that with-
out wind-induced evaporation the model allows distur-
bances to derive energy through advective reorganisation
of temperature to a state away from radiative equilib-
rium. The inclusion of wind-induced evaporation also
increases the total enstrophy of disturbances through dia-
batic heating of condensing excess water, a process that
is faster than diabatic cooling due to radiative relax-
ation. Therefore, a key finding is that wind-induced evap-
oration is an important mechanism for intensification
in our model, which may offer some explanation for
why deep MDs preferentially form over ocean (Karmakar
et al., 2021), where we expect stronger surface evap-
oration feedbacks. For experiments with wind-induced
evaporation on weak background temperature gradients,
a shielding effect due to local diabatic heating counters
the sensitivity of propagation to the background state. In
this regime, beta-drift provides a good explanation for
the propagation path. Such mechanisms based on nonlin-
ear horizontal advection may provide a credible descrip-
tion of the large-scale dynamics of MDs, consistent with
Boos et al. (2015).

Our model is highly idealised yet provides a sim-
ple conceptual framework for exploring the dynamics of
MD-like disturbances and for testing their sensitivities to
a range of climate states and parameters. A comparison
between our idealised model and MDs simulated across
a hierarchy of more comprehensive models is a priority
for future work and would help to further fundamental
understanding of these high-impact weather events in a
changing climate.
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