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Abstract

Sputum smear microscopy is used for diagnosis and treatment monitoring of
pulmonary tuberculosis (TB). Automation of image analysis can make this technique
less laborious and more consistent. This research employs artificial intelligence to
improve automation of Mycobacterium tuberculosis (Mtb) cell detection, bacterial
load quantification, and phenotyping from fluorescence microscopy images.
I first introduce a non-learning, computer vision (CV) approach for bacteria detection,
employing ridge-based approach using the Hessian matrix to detect ridges of Mtb
bacteria, complemented by geometric analysis. The effectiveness of this approach is
assessed through a custom metric using the Hu moment vector. Results demonstrate
lower performance relative to literature metrics, motivating the need for deep learning
(DL) to capture bacterial morphology.
Subsequently, I develop an automated pipeline for detection, classification, and
counting of bacteria using DL techniques. Firstly, Cycle-GANs transfer labels from
labelled to unlabeled fields of view (FOVs). Pre-trained DL models are used for
subsequent classification and regression tasks. An ablation study confirms pipeline
efficacy, with a count error within 5%.
For downstream analysis, microscopy slides are divided into tiles, each of which
is sequentially cropped and magnified. A subsequent filtering stage eliminates
non-salient FOVs by applying pre-trained DL models along with a novel method
that employs dual convolutional neural network (CNN)-based encoders for feature
extraction: one encoder is dedicated to learning bacterial appearance, and the other
focuses on bacterial shape, which both precede into a bottleneck of a smaller CNN
classifier network. The proposed model outperforms others in accuracy, yields no
false positives, and excels across decision thresholds.
Mtb cell lipid content and length may be related to antibiotic tolerance, underscoring
the need to locate bacteria within paired FOV images stained with distinct cell
identification and lipid detection, and to measure bacterial dimensions. I employ a
proposed UNet-like model for precise bacterial localization. By combining CNNs
and feature descriptors, my method automates reporting of both lipid content and
cell length. Application of the approaches described here may assist clinical TB care
and therapeutics research.
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1Chapter One

Prologue

This thesis establishes on an interdisciplinary nexus at the confluence of computer science
and medicine, aiming to advance the domain of tuberculosis (TB) diagnosis and treatment
monitoring through the innovative application of automated image analysis and machine learning
methodologies. The menace of TB remains a global health challenge, with the diagnosis and
monitoring processes being critical yet intricate components in the fight against the disease. The
goal of this research is to harness the capabilities of fluorescence microscopy, combined with
the analytical power of machine learning, to develop an automated system capable of accurately
diagnosing TB and monitoring treatment efficacy.

The objectives outlined herein focus on the design, development, and validation of machine
learning algorithms tailored for the analysis of fluorescence microscopy images. These objectives
are twofold: first, to achieve a level of diagnostic accuracy that meets or exceeds current standards;
and second, to provide a means of monitoring treatment progress, thereby offering a potentially
transformative tool for healthcare professionals. In pursuit of these objectives, this work has
yielded several publications, detailing the methodologies employed, the datasets curated, and the
experimental results obtained, thereby contributing to the body of knowledge in both the medical
and computer science communities.

Motivation for this study stems from the critical need to improve TB diagnostic and monitoring
tools to accelerate treatment initiation, enhance patient outcomes, and reduce transmission. The
integration of machine learning with fluorescence microscopy represents a novel approach in this
regard, offering the promise of greater efficiency, accuracy, and accessibility in TB healthcare
services.

Before delving into the technical intricacies of this research, it is imperative to establish a
foundation accessible to readers across disciplines. Chapter 1 will therefore provide the necessary
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medical background on TB, its global impact, and the role of diagnostics and treatment monitoring
in managing the disease. This introductory chapter ensures that readers, regardless of their
primary field of study, possess a sufficient understanding of the medical context, enabling a
comprehensive grasp of the subsequent chapters that detail the research’s technical aspects.

In summary, this thesis presents a cohesive exploration of the potential of machine learning
in revolutionizing TB diagnosis and treatment monitoring through automated image analysis
of fluorescence microscopy images. By laying out the goals, objectives, and motivations, this
prologue sets the stage for a detailed exposition of interdisciplinary research aimed at bridging
the gap between technological innovation and medical application.

1.1 Using artificial intelligence to improve TB control

Sections 2.1 to 2.3 of Chapter 2 will advocate that innovative approaches to diagnosis and
treatment are required to regain lost ground in efforts to meet international TB control targets.
Sections 2.6 and 2.7 have illustrated the strengths and limitations of existing tools, emphasising
elements where slow manual procedures are a bottleneck to progress. In recent decades, the field
of artificial intelligence (AI) has expanded rapidly. Computer-based machine and deep learning
(DL) algorithms are being developed to perform many activities previously done by humans
including medical diagnostics [101, 271] and biomedical research on infectious diseases [252].
Within the sphere of TB, there has been progress in using AI methods (some researchers in the
field also refer to it as Tuberculosis - artificial intelligence (TB-AI)) tools to screen new compound
databases and model structure-activity relationships of novel chemical entities during drug
discovery [250]. Advanced image analysis tools have also been developed for computer assisted
interpretation of radiological tests (CXRs and CT scans) in presumptive TB patients [40, 127]
but progress in automating sputum smear microscopy lags further behind.

1.1.1 The rationale for computer-based automaton of TB microscopy

Slower progress in automation of TB microscopy could reflect several factors. The complexity of
resolving this issue arises in part from the challenges associated with segmenting and tracking
Mtb cells, which often exhibit irregular shapes and tend to aggregate, as noted by Chung et
al. [39]. A more comprehensive discussion in relation to these factors will be presented later
throughout all the chapters of this thesis. There may also be an underlying assumption that smear
microscopy is soon to be replaced for primary TB diagnosis by newer molecular methods, which
disincentivises scientific effort to improve it. However, I contend that further investigation of AI
approaches to sputum smear microscopy is important for three reasons. Firstly, microscopy is still
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widely used and there are practical obstacles to the implementation of replacement techniques
in many settings as outlined in Section 2.6. Secondly, microscopy still has a role, not yet
supplanted by any other method, in treatment monitoring, as outlined in Section 2.7.2. Thirdly,
and perhaps most importantly, microscopy may have specific research value in understanding
heterogeneity in TB treatment response at the level of individual cell morphology [39, 239] as
will be outlined in Section 2.7.3. There is no replacement technology for that function in the
foreseeable future. There are clear examples where detailed microscopy-based study of single
cells have led to important advances in our understanding of crucial questions in pathogens which
cause human infection. Multicolour fluorescence microscopy has contributed to elucidation of
the developmental morphologies of the malaria parasite Plasmodium falciparum [10]. High
content confocal microscopy imaging has been successfully performed to help identify factors
which influence disease severity in infections caused by M abscessus, an organism in the same
bacterial family as Mtb [23]. These results illustrate potential applications for similar tools in TB.

There are significant barriers to efficiently using microscopy for clinical case management and
clinical research on Mtb without automation. These principally relate to the time investment,
operator-dependency, and subjectivity. Skilled diagnostic TB microscopists can only manage
a maximal workload of 20-25 specimens per day [185]. Obtaining and analysing images for
academic evaluation of single cells is even more challenging; the laboratory practitioner must
stain and examine the slide, detect relevant FOVs at the correct magnification, and take digital
photographs of them for subsequent use. Digital images of complete microscopy slides feature
resolutions that extend into the hundreds of thousands of pixels and result in files with considerable
sizes, approximately 19 gigabytes (GB). However, the vast majority of these images encompass
FOVs that are devoid of bacteria. As a result, microscopists often find themselves expending
considerable time scouring for and capturing fewer than 50–150 selected salient FOVs. These
cropped images usually adopt dimensions of 2000 × 1000 pixels. Some slides from clinical
samples are especially challenging because AFB might have odd appearances and non-bacterial
artefacts inside the sputum matrix can mimic Mtb. Overall, therefore there is a strong case
to develop AI approaches to TB microscopy which will improve consistency and objectivity
of results, and increase throughput for clinical diagnosis, treatment monitoring and academic
research.

1.2 Aims and objectives of the work described in this thesis

The primary objective of the research detailed in Chapters 3– 7 involves innovating and
developing methods for advancing the automation of TB microscopy through AI techniques.
Specific objectives in pursuit of this aim were to:
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• Review the literature on existing knowledge within the field as well as its limitations. This
is the basis of Chapter 3, elements of which have already progressed to peer-reviewed
publication [266].

• Examine FOVs previously imaged from a clinical dataset of TB microscopy images, using
geometry-based and deep learning approaches, in order to automate detection and counting of
Mtb bacteria. This is the basis of Chapter 4 and 5, elements of which have already progressed
to peer-reviewed publication [265]

• Develop a method to extract and classify salient FOVs from whole microscopy slides
containing Mtb bacteria, in order to automate the process of cropping areas of interest from
the sample. This is the basis of Chapter 6, elements of which have already progressed to
peer-reviewed publication [263].

• Develop a method to automate examination of Mtb bacteria within cropped FOVs on images
from a clinical dataset of TB microscopy images, in order to report cell length and lipid
content. This is the basis of Chapter 7, elements of which have already been presented as a
conference paper [264], and progressed to a peer-reviewed publication [262].



2Chapter Two

Biomedical background

Chapter Abstract – This Chapter provides background information on the clinical and
microbiological problem which the work of this thesis seeks to address. It describes the
epidemiology, pathophysiology, clinical characteristics, current diagnostic tests, and treatment
of TB. It pays particular attention to the benefits and drawbacks of microscopy as a diagnostic
tool, in order to outline the potential advantages of using artificial intelligence to automate this
procedure within the framework of this field of work.

2.1 Historical overview

The disease tuberculosis (TB) has afflicted humankind for millennia [64]. It remains one of
the top ten causes of death worldwide, causing approximately 5000 fatalities each day. The
bacterium, Mycobacterium tuberculosis (Mtb), is the main micro-organism which causes clinical
TB in humans and was first identified by Robert Koch in 1882 [54]. At that time up 25% of all
deaths in Europe were attributed to the disease [121]. Throughout history, TB has been strongly
linked to poverty and adverse social circumstances. Deaths from TB in industrialised countries
decreased in the first half of the 20th Century, largely due to improvements in housing, nutrition,
and personal income [244]. Advances in drug development between the 1940s and the 1980s
culminated in establishment of curative antibiotic combination regimens. For a brief period,
global TB control looked achievable. However, in the early 1990s, the collapse of Public Health
infrastructure in former Soviet states heralded a new epidemic of Multidrug-resistant tuberculosis
(MDR-TB) TB in Eastern Europe [231]. Around the same time, the Human Immunodeficiency
Virus (HIV) pandemic spurred an upsurge in all forms of TB worldwide, particularly in southern
Africa [46]. In 1994, the World Health Organisation (WHO) declared that TB was a “global
emergency” [160]. This prompted a series of strategic public health initiatives.

5
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In 2000, Target 6c of the United Nations Millennium Development Goals (MDG) set out to
reverse the rising incidence and reduce deaths from TB by 50% by 2015 [236]. These goals
were attained, so a new “End TB strategy” was unveiled with the ambitious vision of ending the
worldwide TB epidemic by 2030 [162]. In 2016, the global rate of decline in people falling sick
with TB was 1.5% per year. Considerable investment, and progress in research and innovation to
improve TB diagnosis and treatment, was always going to be necessary to accelerate progress
and achieve these new goals (see Figure 2.1) [162]. Unfortunately, the unexpected onset of the
Coronavirus-19 (Covid-19) pandemic derailed many planned activities and reversed many of
the successes of recent years [59]. There is an urgent need to regain public health and scientific
momentum now.

Figure 2.1: Research and innovation requirements of “End TB Strategy”

2.2 Current global epidemiology of TB

An unusual feature of TB is that most people who become infected with the causative organism do
not become ill. This phenomenon is called Latent Tuberculosis Infection (LTBI) and is estimated
to affect 23% of the world’s population (1.7 billion individuals) [102]. 5-10% of people with
LTBI progress to suffer from active TB disease over the course of their lives. Approximately 10
million people fall ill with TB disease every year; this figure has remained relatively constant for
20 years, but the estimated burden rose by 4.5% from 10.1 million to 10.6 million between 2020
and 2021 [165]. From 2005 to 2019, global mortality from TB decreased from 1.7 million to 1.2
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million deaths per year [161, 163]. However, this trend reversed in 2020 (1.3 million deaths in
HIV-negative, and 214,000 deaths in HIV positive people respectively) and 2021 (1.4 million
deaths in HIV-negative and 187,000 deaths in HIV-positive people respectively) [165, 164].
These recent data provide a stark illustration of the damaging effect of Covid-19 on TB control.
The worldwide burden of TB does not fall evenly. Most people who develop active disease live
in WHO regions of South-East Asia (45%), Africa (23%) and the Western Pacific (18%). In
2021, 30 high burden countries accounted for 87% of incident TB cases globally, and 8 countries
accounted for more than two-thirds of the total (see Figure 2.2): India (28%), Indonesia (9.2%),
China (7.4%), the Phillipines (70%), Pakistan (5.8%), Nigeria (4.4%), Bangladesh (3.6%), and
the Demographic Republic of the Congo (2.9%) [165].

Figure 2.2: TB incidence in 2021; countries with at least 100 000 incident cases

When reviewing these epidemiology data, it should be remembered that the figures are estimates
based on mathematical modelling of surveillance studies. Of the estimated 10 million new
incident TB cases each year only 6-7 million are actually detected and notified to healthcare
authorities [191]. Closing this detection gap is essential and requires improvements to public
health strategies and the technical tools used for TB diagnosis. Whilst TB is generally considered
to be an antibiotic-curable bacterial infection, the last decade has seen growing concern about
antimicrobial resistance. At least 500,000 people/year with active TB (5% of the total number of
new TB cases) are now believed to be infected with Mtb strains which have developed genetic
mutations conferring resistance to rifampicin, the most important first-line drug used in current
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treatment combinations [165]. A growing number of complex resistance patterns, involving Mtb
strains which cannot be treated with other important drugs, have further resulted in categorisation
of ‘multi-drug’ or ‘extensively-drug’ resistant TB. International surveillance is ongoing to monitor
the emergence of drug-resistance, which is considered a major threat to long-term TB control.

2.3 TB control: current priorities and goals

As described in Section 2.1, WHO is currently attempting to deliver a strategy to end the global
TB epidemic [162]. Specific indicators of this are to achieve:

• 95% reduction by 2035 in the number of TB deaths compared with 2015

• 90% reduction by 2023 in new TB cases compared with 2015

• Zero TB-affected families facing catastrophic costs due to TB by 2035.

To be on target for these goals, the first milestone planned for a 35% drop in new TB cases
between 2015 and 2020. However, the net decline over that period was only 5.9% [165].
Although Covid-19 is implicated in missing this milestone, it was not the only factor because
progress was behind schedule even in the period from 2015 to 2019. Wherever possible, the
most effective biomedical tool to curtail infectious disease epidemics is vaccination. For TB,
the only currently available vaccine is Bacillus Calmette-Guérin (BCG), which has existed for
over 80 years and is only partially effective. About 20% of those who receive the vaccination are
protected against contracting infection, while advancement of disease after acquiring infection is
halted in 60%. Duration of protection varies by population and geographical setting but some
benefit typically seems to persist for 15 to 20 years [216]. Recent research into development of
better vaccines has identified promising candidates [223] but it will be some time until these are
ready for widespread use. Given the limitations of the currently available vaccine, TB control
presently relies heavily on a ‘detect and treat disease’ approach. Prompt initiation and successful
completion of effective drug therapy not only cures individual patients, restoring their quality of
life and reducing mortality rates, but it prevents onward Mtb transmission and reduces the risk
that antibiotic-resistant strains of bacteria will emerge [217]. The commonest antibiotic treatment
regimen for TB takes 6 months to complete [167]. Optimal deployment of a ‘detect and treat’
strategy for TB control requires better diagnostic tools, and advances in drug development to
shorten treatment duration. Improving awareness amongst communities, public and private health
care providers, politicians, and funding bodies is also pivotal to securing adequate long-term
resources for sustained TB control.
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2.4 Transmission of TB

Although Mtb is the main causative organism, several other genetically related mycobacteria can
also lead to TB. Collectively these are referred to as the Mycobacterium tuberculosis complex
(MTC) and other members include: M africanum, M bovis, M canetti and M microti [106].
As most of these organisms are >99% genetically identical to Mtb, they are regarded as
microbiological synonyms [186]. The commonest anatomical site of human disease is the lungs
(pulmonary TB), and the principal route of transmission is by respiratory droplets or aerosols.
When a person with active pulmonary TB coughs or sneezes they expel infectious particles
0.5–5.0𝜇𝑚 in diameter into the air [230, 275, 235]. A single cough can release up to 40,000
particles, each one of which may transmit the disease because inhalation of fewer than 10 bacteria
may be sufficient to establish a new focus on infection [155]. Most newly infected individuals are
between 15 and 54 years old, the age group with greatest likelihood of sustained, frequent contact
with others. Living in overcrowded, under-ventilated environments also increases transmission,
explaining why the highest densities of TB cases occur in settings of urban poverty [213].

Patients who expel higher bacterial concentrations when they cough are more likely to transmit
TB to others [168], so diagnostic tests which measure bacterial load in expectorated sputum may
be more useful when considering transmission risk than those which only describe ‘positive’ or
‘negative’ Mtb detection.

2.5 TB pathogenesis and clinical disease

In most cases, inhaled Mtb bacteria travel through the respiratory tract to reach immune cells
called alveolar macrophages in the lungs [41]. These macrophages engulf the bacteria and
recruit other immune cells including monocytes, dendritic cells and T and B lymphocytes to
form pathological lesions called granulomas [229]. In individuals with strongly functioning
immune systems, these granulomata may contain the infection without causing any symptoms of
illness at all, creating the phenomenon of LTBI which was outlined in Section 2.2. People with
LTBI usually do not know that they have encountered Mtb and cannot transmit the disease to
others. 90-95% of the time they never become unwell from TB. However, in 5-10% of people the
immunological balance in these granulomata is disrupted, containment of LTBI infection is lost,
and active TB disease follows. This is more likely in scenarios where the person’s immune system
is weakened by extremes of age, co-existent other illnesses (most notably HIV infection, but also
other chronic health problems like diabetes mellitus or cancer), or use of immune-suppressant
medications (e.g., corticosteroids or biological therapies for rheumatological and connective
tissue disease). As active TB disease develops, host cells within granulomata break down and
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a liquid ‘caseous’ core forms within the pathological lesions. Mtb bacteria start to replicate
more intensely and can spread, both to adjacent lung tissue and to other parts of the body [229].
Figure 2.3 [172] provides a diagrammatic illustration of the pathogenesis of LTBI and active TB
infection described above

((a))

((b))

Figure 2.3: (a) Latent TB infection (LTBI): Mtb cells enter the respiratory tract and are engulfed by
alveolar macrophages which interact with other immune cells in the lung to form granulomas, the hallmark
pathological lesion of TB. (b) Active TB disease: When immunological control of LTBI breaks down,
Mtb starts to replicate, and granulomas can break down releasing bacteria into other parts of the lung and
elsewhere in the body.

In 85% of cases, this process is mainly limited to the respiratory tract and causes the symptoms
and signs of pulmonary TB. Increased inflammation around caseous granulomata damages
healthy tissue and large holes known as cavities can form in the lungs. Patients develop a
productive cough (sometimes containing blood), alongside breathlessness and chest pain which
can progress to respiratory failure and death if not appropriately treated. Constitutional symptoms
of fever, night-sweats, exhaustion, and weight-loss are also well described. In 15% of cases, the
same inflammatory process of active TB occurs in other parts of the body. This is known as
extrapulmonary TB, and the associated clinical features are determined by anatomical location.
For example, if the central nervous system is affected meningitis or paralysis can develop which
carries a high mortality rate. Other sites of extrapulmonary TB include peripheral lymph nodes,
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the bone and spine, gastrointestinal and genitourinary systems, and the external lining of the
heart (known as the pericardium).

2.6 TB diagnosis

Whilst the clinical consequences of active TB can be dramatic, Mtb is a slowly replicating bacteria
(doubling time of ∼20 hours, compared to ∼20 minutes for other pathogenic bacteria such as
Escherichia coli) and the disease tends to progress slowly, getting worse over weeks rather than
days. This should provide opportunities to diagnose the illness and provide treatment before it
becomes severe. Early diagnosis also help prevent transmission [81, 69]. However, as described
in Section 2.2, the diagnosis of TB can be difficult, partly because existing tools are sub-optimal.
Research to improve them is urgently required.

The specific diagnostic methods used for active TB depend on the clinical presentation and site
of disease so are different for each patient. In general, they comprise microbiological techniques
(which seek to identify and characterise the infecting bacteria) and radiological techniques (using
radiographs and computed tomography (CT) scans to identify typical patterns of tissue damage
in affected organs). Chest radiographs (CXRs) from patients with pulmonary TB are shown in
Figure 2.4 to exemplify the role of this tool and to underline the pathological processes in the
lungs outlined in Section 2.5.

As 85% of active TB cases are pulmonary and the dataset used for most of the work described in
this thesis comprises microscopy images obtained from sputum, this remainder of this section
will focus on microbiological approaches for the diagnosis of pulmonary TB. An important
advantage of microbiological methods is that the only way to really know that Mtb is present, is
to directly detect it, and microbiology tools are the only means to do that. These tools can be
subdivided into the traditional approaches of smear microscopy and mycobacterial culture, and
more recently adopted modern molecular techniques.

2.6.1 Smear microscopy

Traditionally, sputum smear microscopy has been the predominant approach for diagnosing
pulmonary TB. It remains the most frequently used method in many Low and Middle Income
Countries (LMICs) [172]. Smear microscopy has several benefits, including the low cost of the
laboratory equipment required and the fact that the test can often be done in primary healthcare
clinics or mobile laboratories close to the patient, providing results in a short amount of time
(ideally on the same day as sample collection).
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((a))

((b))

Figure 2.4: Anonymised CXRs images provided by Dr D Sloan (consent for use in place: the number
on the bottom of panel of (a) is not a patient identifier). (a) extensive inflammation in both lung fields:
‘normal’ lung tissue is ‘black’ on CXRs, so all fluffy white shadowing, indicated by red arrows is diseased
lung. (b) cavitation occurs when a large section of lung tissue is completely destroyed and only a ‘hole’
remains, indicated within the red circle. Cavities contain very large numbers of bacteria.
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The principle underpinning microscopy-based diagnosis of TB is that mycobacteria cells,
including Mtb, have very thick, waxy, lipid-rich cell walls which take up specific dyes and
then resist decolouration with dilute acid rinse. The result is that dye is concentrated in
short rod like structures, approximately 0.2-0.5×1.0-7 𝜇𝑚 in size, called Acid-Fast Bacteria
(AFB) [230, 275, 235]. Bacterial species with less complex cell walls cannot retain the same
dyes so when appropriately stained biological samples are viewed down a microscope, the AFB
are selectively identifiable. Two main staining procedures are used for AFB identification: the
Ziehl-Neelsen method which requires a light microscope and the Auramine O method which
requires a fluorescence microscope [275].

There are also disadvantages of smear microscopy. Firstly, whilst the financial expense of
equipment for it is low, the cost in terms of staff salaries and time can be high. For example,
in the early 2000s, a district diagnostic laboratory in Malawi observed that 43% of total staff
workload was allocated to TB microscopy. In addition to making TB diagnosis more difficult
and increasing the time between sample collection and results, this also adversely affects the
limited capacity of skilled personnel to do other equally important work (e.g., diagnostic tests for
malaria, cross-matching blood for transfusion and other high priority diseases) [151].

Secondly, the reliability of smear microscopy results is highly dependent on the skill of the
microscopist reading the stained slides. All medical diagnostic procedures based on image analysis
contain an inherent degree of subjectivity, especially when the images are interpreted manually.
Investigators from Vietnam have previously reported that human error can be implicated in mis-
or late diagnosis of TB by microscopy [133]. Some initiatives (e.g., auto-focusing microscopes,
not to be confused with auto-focusing algorithms that we will see later) have been considered to
try and tackle this problem [49]. These issues highlight a question which is motivates this thesis:
could automation of microscopy slide reading and image analysis accelerate, standardise, and
improve the quality of sputum smear microscopy procedure?

Finally, an unavoidable problem with smear microscopy cannot provide all the desired information
about the AFB which are seen. Mtb and other MTC organisms are the most important disease-
causing AFB but they are not the only micro-organisms with these staining characteristics so it is
occasionally possible that a correctly interpreted microscopy slide might still result in the wrong
diagnosis. Drug-susceptible and drug-resistant bacteria are indistinguishable at microscopy, so
additional investigations are necessary to identify the TB patients who cannot be routinely treated
with first-line antibiotics and require more specialist care.
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2.6.1.1 Light microscopy (Ziehl-Neelsen staining)

Standardised protocols for the main TB smear microscopy methods have been published by
international agencies [175]. As all the data within this thesis are derived from electronic images
of smear microscopy of sputum provided by TB patients, key steps of the laboratory methods are
provided here to provide background on the process by which the data were generated.

Prior to smear microscopy by any method, sputum expectorated by presumptive pulmonary TB
patients (anyone who is coughing and for whom TB is a possible diagnosis) is mechanically and
chemically homogenised to ensure that any bacteria present are evenly distributed through the
sample. 10-20𝜇l aliquots are heat-fixed onto glass slides, which immobilises them for staining
and kills most of the infectious material, increasing safety for laboratory workers. Heat-fixed
slides are colourised by flooding with kinyoun carbol fuschin and allowed to dry for 5 minutes
before washing with distilled water. They are then de-colourised with 3% acid-alcohol before
repeat washing with distilled water. Finally, methylene blue counter stain is added, left for 2
minutes, and washed off in the same way. Slides are then left to air-dry and viewed down a light
microscope at ×1000 magnification (usually ×100 from the objective lens and ×10 from the
ocular eyepiece lens). They should be viewed systemically, with three horizontal sweeps across
the length of the slide before being reported (Figure 2.5).

Figure 2.5: 10-20𝜇l homogenised sputum should be smeared onto slides aiming for maximum smear
diameter of 25mm ×15mm and keeping the smear thin for ease of viewing (multiple cell layer thick slides
are hard to read). During microscopy three horizontal sweeps (direction shown by arrows) should be made
of each smear for optimal detection and count of bacteria

If AFB are present, they are visualised as red rods whilst host cell debris in the background
is light blue (Figure 2.6) [275]. For patients in whom pulmonary TB is diagnosed by smear
microscopy the bacterial load of Mtb cells in the sputum can be semi quantified by counting the
cells visible across a representative range of fields of view (FOVs). Standardised systems have
been developed for this by the International Union Against Tuberculosis and Lung Disease, as
shown in Table 2.1 [175]. Grading of the bacterial load in this way can be important, as higher
concentrations of Mtb in sputum are associated both with increased risk of disease transmission
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to other people [168] and increased risk that antibiotic treatment will be unsuccessful [214].

Figure 2.6: AFB are labelled red (shown by white arrows in both images). The amount of cellular debris,
stained blue, is much more in B than A, illustrating the heterogeneity which can occur during the staining
process which can increase difficulty and variability of slide reading.

Table 2.1: (a) At least 5 minutes should be taken to read 100 FOVs before reporting the slide as negative.
(b) A finding of 1-3 bacilli in 100 FOVs does not correlate well with culture positivity. It is recommended
that a new smear be prepared from the same sputum specimen and be re-examined. (c) In practice most
microscopists read a few FOVs and confirm the findings by a quick visual scan of the remaining FOVs

AFB Counts Grading
No AFB in at least 100 microscopy FOVsa 0 or ‘negative’

1-9 AFB in 100 FOVsb ‘Scanty’; record actual number of AFB counted
10-99 AFB in 100 FOVs 1+ or ‘+’

1-10 AFB per field in at least 50 FOVsc 2+ or ‘++’
>10 AFB per field in at least 20 FOVsc 3+ or ‘+++’

2.6.1.2 Fluorescence microscopy (Auramine O staining)

Even though fluorescence microscopy was first developed in 1930, it was not until 2008 that it
was widely used as a diagnostic tool for TB. Sputum smear examination adheres to the same
principles as light microscopy. However, an acid-fast fluorochrome dye (Auramine O) is used
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instead of kinyoun carbol fuschin to colour the slides, a lower concentration of acid-alcohol
(0.5%) is used for decolourisation and 0.5% potassium permanganate is used as a counter-stain. A
fluorescence microscope, with a bright light source, either halogen or light-emitting diode (LED),
and appropriate wavelength filters (Auramine O peak λexcitation>432n𝜇, λemission>499n𝜇) is
used to view the slides at ×200-×400 magnification (usually ×20-×40 from the objective lens
and ×10 from the ocular eyepiece lens). Slides should be viewed with 24 hours of staining, or
the fluorescence can fade. If AFB are present, they are visualised as bright yellow/green rods
against a black background (see Figure 2.7) [175].

Figure 2.7: Typical sputum smear microscopy images using Auramine O staining. Microscopy image
provided by Dr D. Sloan.

Auramine O stained sputum smears viewed by fluorescence microscopy can also be semi
quantitatively graded for bacterial load. Different grading scales are used than for Ziehl-Neelsen,
considering the different magnification ranges used (Table 2.2) [175].

Many studies have shown consistently better performance for fluorescence compared to
conventional light microscopy for TB diagnosis. In a meta-analysis of sensitivity and specificity
for the two techniques compared to a gold standard of mycobacterial culture, light microscopy
with Ziehl-Neelsen staining had diagnostic sensitivity (denoting ability to detect all true positive
samples containing AFB) ranging from 0.34 to 0.94, whilst fluorescence microscopy with
auramine-based staining had sensitivity ranging from 0.52 to 0.97 [214]. The wide ranges serve
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Table 2.2: (a) Confirmation required by another technician, or prepare another slide before reporting this
result

What you see (×200) What you see (×400) What to report
No AFB in one length No AFB in one length No AFB observed
1-4 AFB in one length 1-2 AFB in one length Confirmation requireda

5-49 AFB in one length 3-24 AFB in one length Scanty
3-24 AFB in one field 1-6 AFB in one field 1+ or ‘+’

25-250 AFB in one field 7-60 AFB in one field 2+ or ‘++’
250 AFB in one field 60 AFB in. one field 3+ or ‘+++’

as a reminder of how user-dependent and subjective smear microscopy can be. Even allowing for
this the increase in sensitivity on fluorescence microscopy is notable. The primary reason is that
AFB, such as Mtb, are easier to detect using fluorescence, since the colours increase the contrast
between the bacteria and their surroundings.

Whilst concern has been raised that non-organic artefactual matter in the sputum matrix can
also fluorescence brightly on auramine-stained slides, specificity (denoting ability to avoid false
positive samples where AFB were incorrectly identified) was 0.99 for both light fluorescence
microscopy methods [214]. Following investment and innovation by the Foundation for Innovative
and New Diagnostics (FIND, https://www.finddx.org) and others, easy to maintain LED-
based fluorescence microscopes (e.g., PrimoStarTM iLED) have become more affordable [5].
Consequently, light microscopy is being phased out and replaced with fluorescence tools in many
countries.

In summary, sputum smear microscopy offers diagnostic information rapidly. When performed
correctly, it offers a high specificity for detecting Mtb cells. Although microscopy laboratory
supplies are inexpensive, the process is time-intensive, which impacts laboratory personnel
expenses. The wide ranges of diagnostic sensitivity reflect the complexity and subjectivity of the
procedure.

2.6.2 Mycobacterial culture

Whilst sputum smear microscopy has long been the most commonly used tool for detection
of pulmonary TB, the ability to grow Mtb in mycobacterial culture remains the gold standard
for diagnostic confirmation. Various techniques are available to do this, using both solid and
liquid culture media [175]. Recovery of fewer viable Mtb cells is possible from sputum culture
than smear microscopy, i.e. a starting bacterial load of 102 bacteria/mL can be detected by

https://www.finddx.org
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some culture-based methods compared to 104 bacteria/ml by microscopy [240] and the isolates
obtained can be used for drug susceptibility testing (DST) to confirm the presence or absence of
antibiotic resistance [175], so the advantages are clear.

However, in practical terms there are major challenges to culture-based diagnostics too. Firstly,
as Mtb is a slowly growing bacteria it can take 2-6 weeks to generate a result [139] and clinical
decision-making needs to move faster than that. Secondly, mycobacterial culture grows Mtb
to much higher concentrations than are seen in the clinic, creating considerable health risks
for laboratory workers who are interacting with live micro-organisms. This work can only be
undertaken in a technologically advanced environments such as Biosafety Level 3 laboratory
which are expensive to build and maintain. LMICs are at obvious disadvantage in terms of access
to such facilities [118].

2.6.3 Molecular microbiology tools

To overcome the obstacles of slow turnaround and high cost of mycobacterial culture, in recent
years attention has shifted towards development of molecular tools which can rapidly detect
genetic material, e.g. deoxyribonucleic acid (DNA), of Mtb cells directly in biological samples
without the need to grow the organism. The most prominent example of this approach is the
Xpert® MTB/RIF assay [24]. To use this technique in the diagnosis of pulmonary TB, sputum
collected from presumptive TB patients is transferred into custom-designed cartridges. These
are inserted to a machine which uses polymerase chain reaction (PCR) methods to detect and
selectively amplify any Mtb-specific DNA present. Specific DNA sequences are used to report:
i) whether any Mtb bacteria were present in the sputum, and ii) whether those bacteria were
resistant or susceptible to rifampicin-based TB treatment. Over time, the Xpert® technology has
been refined to improve its performance [32], and to report on drug resistance patterns to anti-TB
drugs other than rifampicin [177].

The Xpert® molecular approach has several advantages over both smear microscopy and
mycobacterial culture, as it is fully automated, produces results very quickly under optimal
conditions, within 90 minutes of a sputum sample being inserted in the machine [24], and can
perform DST in parallel with detection of bacteria. For these reasons, many clinicians and
researchers now advocate replacing microscopy and culture with Xpert®-based tools for front-line
TB diagnosis worldwide [6].

However, there are drawbacks to this approach too. Firstly, it is much more expensive than
sputum smear microscopy; each cartridge for the machine costs $15 compared to the $0.10 cost
of a microscopy slide for every sputum sample [6] which hampers roll-out in LMICs. The test is
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not available in many resource-poor locations. Secondly, small amounts of DNA from dead Mtb
cells are detected in exactly the same way as viable bacteria, meaning that the assay stays positive
long into the course of TB treatment, and cannot be used to monitor treatment response [78];
sputum smear microscopy remains the WHO-endorsed tool for this task [165].

Overall, whilst mycobacterial culture is currently the ‘gold standard’ TB diagnostic test it is too
slow and expensive for front-line use in many locations. Xpert® MTB/RIF and other molecular
tests are much faster and provide detailed read-outs including DST but are unavailable in some
settings and are not recommended to monitor TB treatment response. Therefore, a role remains
for sputum smear microscopy, but the accuracy of this method is subjectively dependent on
operator-performance. Computer-assisted automation of microscopy including image analysis –
particularly if tools could be developed which are implementable in LMICs – may extend and
increase the value of this tool for TB diagnosis (as well as treatment monitoring and prognosis)
and help accelerate overall progress towards achieving the End TB goals.

2.7 TB treatment

As outlined in Section 2.3, once a diagnosis of active TB disease is made, prompt initiation
and successful completion of therapy is important to improve outcomes for individual patients
(lowering mortality) and to assist in disease control by reducing transmission and preventing
development of antibiotic resistance. This section will describe current approaches to TB
treatment. As with Section 2.6, the specific focus will be on the management of pulmonary TB.

2.7.1 Challenges with current anti-TB treatment regimens

Standard WHO treatment for patients with TB is shown in Figure 2.8. Those with drug-susceptible
disease (i.e., without any resistance to first-line antibiotics), require therapy for six months. A
combination of four antibiotics (isoniazid, rifampicin, pyrazinamide, and ethambutol) is used
for the two-month ‘intensive’ phase, followed by the four-month ‘continuation phase’ of two
antibiotics (isoniazid, rifampicin) [165]. Patients with rifampicin-resistant TB, i.e. where the
most important first-line antibiotic cannot be used have to take even longer treatment courses (up
to 20 months) using five or more second line drugs [166].
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Figure 2.8: WHO recommended treatment regimens and monitoring for pulmonary TB

The mean reasons for using multi-drug combination therapy are to kill Mtb cells more effectively
and prevent development of resistance from individual genetic mutations by targeting the bacteria
simultaneously with agents that work via different mechanisms of action. For example, all of the
‘first-line’ drugs work in different but complementary ways, some targeting the bacterial cell wall
and others targeting essential intracellular processes, including the metabolic pathways involved
in synthesis of key proteins required for survival. This is shown in simplified form in Figure 2.9

Irrespective of the antibiotic combinations used, the long duration of TB treatment required is
problematic for several reasons. Firstly, case-holding and supervision of therapy for 6-20 months
requires a robust public health infrastructure which National TB Control Programmes in many
high-burden LMICs do not have. Once patients start to feel better, they may decide to prematurely
discontinue medication [13], particularly if there are financial or practical challenges to repeatedly
visiting clinic. This increases the risk of relapse and development of drug resistance [205].
Secondly, multi-drug antibiotic combinations can cause dangerous side-effects. In first-line
treatment for drug-susceptible TB: rifampicin, isoniazid, and pyrazinamide all potentially damage
the liver [84], isoniazid may harm peripheral nerves [58], pyrazinamide is associated with joint
pain [111], and ethambutol can cause visual problems [224]. Some of the second-line drugs
used for rifampicin-resistant TB have even more complicated side-effect profiles [206]. Some
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Figure 2.9: Main mechanisms of action of first-line anti-TB drugs

anti-TB drugs also interact with essential medications for other diseases (e.g. HIV) which may
increase toxicity or reduce their effectiveness [156, 198]. All of these problems are progressively
exacerbated if treatment has to go on for longer.

2.7.2 The need for careful treatment monitoring

Given that adherence to long-duration TB treatment is difficult, it is important for clinicians
and patients to know that the antibiotics are effectively killing Mtb whilst they are taking it.
Identifying individuals at high risk of treatment failure early allows investigation of the reasons
for poor response and corrective action to be taken more quickly. At present, the microbiological
tools available to monitor the effectiveness of pulmonary TB treatment are the same ones used for
diagnosis: sputum smear microscopy, mycobacterial culture, and Xpert® MTB/RIF. Conversion
from ‘positive’ to ‘negative’ on these tests, or falling bacterial burden, e.g. reduction from a
smear ‘3+’ to ‘2+’ or ‘1+’ grading on Ziehl Neelsen or Auramine O microscopy, may be taken
as evidence that treatment is working, and that long-term cure is likely if the course is finished.
Alternatively, failure to convert to negative or rising bacterial burden may indicate than urgent
changes to patient management are needed.

Both mycobacterial culture and Xpert® MTB/RIF have disadvantages as treatment monitoring
tools. Although culture-based methods can precisely detect the presence or absence of live
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Mtb cells in sputum, the lengthy time required to obtain results delays confirmation of effective
treatment by several weeks post-sample collection. This wastes valuable time and may adversely
affect outcomes. Whilst Xpert® MTB/RIF provides results quickly, degradation of Mtb DNA
from dead bacteria is slow and the test can remain strongly positive for several months [78]
creating unnecessary concern when treatment is progressing well. Although new treatment
monitoring tools are under development [190], at present these problems have motivated ongoing
WHO recommendations on the importance of sputum smear microscopy for monitoring of
pulmonary TB therapy [165]. Therefore, computer-assisted automation of smear microscopy to
improve the speed and objectivity of bacterial load estimation using this method may improve
treatment monitoring as well as diagnosis.

2.7.3 Shortening TB treatment and the problem of non-replicating
persistence

All patients suffering from TB have an undeniable need for therapy that is shorter and less
hazardous. Recent clinical trials suggest that new regimens might reduce the duration of
drug-susceptible and drug-resistant therapy to 4- and 6- months respectively [157, 42, 43, 65].
However, this will only partly relieve the problem. More research is urgently required to develop
shorter TB treatments if the ‘End TB Strategy’ goals are to be reached.

Efforts to shorten TB therapy are more likely to be successful if they are based on a biological
understanding of why current treatment takes so long. An important long-standing hypothesis in
this area, illustrated in Figure 2.10, is that the Mtb organisms which cause TB disease in patients
exist as a range of distinct sub-populations which, even when genetically identical, exhibit different
phenotypic characteristics which cause differential responses to antibiotic exposure [213, 145].
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Figure 2.10: Bacterial killing of different populations of TB bacteria during treatment

Some metabolically active bacterial cells (Population A in Figure 2.10) replicate rapidly; these are
easy to kill during an “early bactericidal phase” of treatment by antibiotics like isoniazid which
disrupt their ability to synthesis new cell wall. However, other bacteria are quiescent and do not
replicate at all for long periods of time. These cells, sometimes referred to as Non-Replicating
Persisters (NRPs) are more antibiotic tolerant and harder to kill because they activate the metabolic
pathways targeted by antibiotics less intensely (Populations B and C in Figure 2.10). Although
some of drugs with intracellular mechanisms of action used in current anti-TB combinations such
as rifampicin and pyrazinamide slowly kill NRPs during a “sterilisation phase” of treatment, a
major priority in TB drug development is to develop medicines which selectively eliminate NRPs
more quickly [272, 146]. Achieving this would be a major milestone in shortening TB treatment.

To help advance discovery and evaluation of drugs which kill NRPs, it is necessary to be able
to distinguish drug tolerant persister Mtb cells from those that are easy to kill. Mycobacterial
culture techniques cannot do this, because they can only measure the total quantity of viable
bacilli. Existing molecular tests cannot do it either because drug-tolerance is a phenotypic rather
than genotypic characteristic; the DNA-based sequences of metabolically active and quiescent
cell populations is identical, but their behaviour is not. However, microscopy is able to look
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at individual bacteria one-by-one and there is some evidence that phenotypically distinct cell
populations with different antibiotic response characteristics have different physical appearances
which can be studied by direct visualisation. Two examples of this are outlined in the following
sections.

2.7.3.1 Does bacterial length affect antibiotic response

Brief examination of sputum smear microscopy images, such as Figure 2.7, illustrate that Mtb
cells vary in morphology: some are very short and straight whilst others are longer and sometimes
curved. Although this variability is well described, the reasons for and implications of it have
not been thoroughly investigated until recently [235]. Careful in vitro work using a microfluidic
culture chamber to observe single cell growth and replication of M smegmatis–a non-pathogenic
organism which is easy to work with, so is used to represent Mtb in some laboratory studies–has
described three unusual and interesting characteristics of mycobacterial growth [39, 7].

Firstly, unlike other rod-shaped bacteria, the mycobacterial cell division cycle is governed by
time and not size, i.e. each ‘mother’ cell divides into two ‘daughter’ cells after a specific time
interval not when the mother cell reaches a specific length. Secondly, mycobacteria lack the
molecular rulers which ensure symmetrical cell division by placing the division septum in the
centre of the cell. Thirdly, mycobacteria lengthen asymmetrically from one pole, with faster
elongation at older growth poles. As shown in Figure 2.11, this creates different types of cells at
each division: one daughter cell inherits the already elongating pole and keeps growing on the
same axis (“accelerator” cells), whilst the other daughter cell must generate a new growth pole
and start to elongate more slowly on the opposite axis (“alternator” cells). By definition, in each
successive generation of bacteria all alternator cells have new growth poles whilst accelerator
cells inherit growth poles of varying ages with differing elongation rates.
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Figure 2.11: Arrows indicate the direction of unipolar growth. GP = growth pole, which preferentially
occurs from the oldest extremity of the cell – the generation (Gen) of origin of each growth pole is show in
subscript. Cells which continue with an existing GP to elongate on the same axis are termed “accelerators”.
Cells which require to set up a new GP to elongate on the opposite axis are called “alternator”. Older GPs
elongate faster than new ones.

These features go some way to explaining heterogeneity in the physical morphology of
mycobacterial cells. Additional microfluidics work has also shown that bacteria of different
sizes have differing antibiotic susceptibility. Longer birth length and mature growth poles
are associated with rifampicin tolerance [184]. Accelerator cells appear proportionately more
susceptible to killing by isoniazid than rifampicin, perhaps because more rapidly elongating cells
need to build more cell wall, i.e. the process specifically targeted by isoniazid, whilst alternator
cells are proportionately more susceptible to killing by rifampicin [7]. Translation of this in
vitro work into investigation of variable cell length in Mtb from clinical sputum samples is just
beginning [131]. Work on patients with multi-drug resistant TB from Vietnam showed, amongst
other things, that increased cell length on Ziehl-Neelsen stained sputum smears was correlated
with more severe disease [243]. A separate study, using a novel fluorescence microscopy method
to analyse Mtb cells from the bloodstream of very ill HIV positive patients with advanced TB
in South Africa, confirmed high inter-patient variability in bacterial cell length from clinical
specimens and showed that mean bacterial length increased by 0.13 log-𝜇m per day of TB
treatment over the first three days [19].

Viewed together, all these findings suggest that cell length could be a useful marker of antibiotic
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tolerance and bacterial persistence. More research is needed to explore this possibility, but
the work of taking detailed measurements from individual bacteria is extremely difficult and
time-consuming, even on specimens from small patient cohorts. For example, the South African
study described above was only able to analyse their bloodstream microscopy data on serial
samples from 10 patients and the investigators from that project specifically noted that their
method was “labour intensive and – as with all manual microscopy – requires subjective calls
when classifying fluorescent objects as bacilli. . . Future goals should include automation and
high throughout adaptatio” [19]. This observation extends the argument that computer-assisted
automation of TB microscopy would be useful; not just for diagnosis and treatment monitoring
but for research into deeper understanding of how different populations of Mtb cells respond to
drug pressure.

2.7.3.2 Does bacterial lipid content affect antibiotic response?

In addition to differences in cell dimensions, it is likely that – if persistence is driven by variability
in metabolic activity – phenotypic differences will be visible inside Mtb bacteria with differing
degrees of antibiotic tolerance. For example, pathogenic mycobacteria often use fatty acids,
which they derive from host cells, e.g. macrophages within the granuloma, as their energy source
during human infection [152]. However, when exposed to physiological stress, e.g. low oxygen or
excessively acidic environments, they can reduce energy consumption and divert these fatty acids
into a biological pathway which deposits large lipid droplets in the cell cytoplasm [53, 14]. In
simple terms, this may be a process similar to hibernation; in a hostile environment the organism
‘shuts down’ non-essential activities and store fuel for later.

Modification of the Auramine O microscopy method outlined in Section 2.6.1.2 allows
discrimination between Lipid rich (LR) mycobacterial cells which are laden with triacylglycerol
droplets and Lipid poor (LP) cells which are not [80, 207, 96]. In brief, after washing
Auramine O from microscopy slides with acid-alcohol but before counter-staining with potassium
permanganate, an additional fluorescence stain is used to label intra-cellular lipids. Typical stains
for this purpose are Nile Red and LipidTOX Red neutral, both of which have longer wavelength
excitation and emission spectra than Auramine O. When dual-stained slides are examined with
a fluorescence microscopy, each FOV is viewed through a filter which identifies yellow/green
Auramine O labelled mycobacteria, then through a separate filter which reports whether red lipid
deposits are contained within them. Figure 2.12 shows discrimination between LR and LP Mtb
cells within the same sputum smear using this technique.
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Figure 2.12: Images provided by Dr Sloan. Sputum smears from pulmonary TB patients stained using
an Auramine O LipidTOX Red method and all images taken from ‘green’ and ‘red’ channel microscopy
filters overlaid. In panels A & B, green Auramine O labelled Mtb cells are all LR, as evidenced by red
fluorescence within them. In panel C, the Mtb cells are LP, as no red fluorescence is observed

There is considerable in vitro evidence that LR Mtb cells exhibit lower metabolic activity and
reduced replication rates than LP cells [53, 80, 57]. As described above these features are
generally believed to be beneficial for antibiotic tolerance. Additionally, the minimum inhibitory
concentration of rifampicin and isoniazid which is required to kill mycobacterial cells has been
shown to be higher for LR mycobacteria, confirming an association between cellular lipid content
and antibiotic tolerance [96, 57].

Similar to the example of cell length, evidence of association between Mtb lipid content and
treatment response from clinical studies is more limited. One study from Malawi reported that a
median of 28% of Mtb cells in pre-treatment sputum samples from drug-susceptible pulmonary
TB patients were LR. On serial sputum sampling over the first 28 days of therapy, the proportion
of LR cells selectively increased over time amongst patients who went on to have unfavourable
outcomes at 6 months [207]. This suggests that microscopically visible lipid content within
Mtb is associated with antibiotic tolerance and linked to treatment failure, but the study was
small; only 40 patients with serial microscopy data out to 28 days. This work has not yet been
replicated, partly because manual assessment of the internal appearance of individual bacilli on
images captured at multiple time-points is user-dependent and extremely laborious. Once again,
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this strengthens the argument for computer-assisted automation of microscopy to facilitate more
robust investigation of relationships between phenotypically different Mtb populations and TB
treatment response.



3Chapter Three

Literature review on
related work

Chapter abstract – This chapter reviews existing literature on AI methods to automate analysis of
TB smear microscopy images. Variability in currently available image datasets and performance
metrics used to evaluate key processes including image classification, regression and segmentation
techniques are described. A comprehensive critique of all previous work using machine learning
(ML) and DL approaches is presented, including an overview of strengths and limitations. Gaps
in existing TB-AI microscopy methods research are highlighted and discussed.

3.1 Chapter introduction

Having outlined the rationale for automating analysis of TB microscopy images in Chapter 2,
it is important to understand current work in the field before conceptualizing new approaches.
This chapter will review the existing literature. Successful evaluation and deployment of any AI
image analysis technique depends on the dataset used for the work. For TB microscopy the data
are libraries of images derived from light / Ziehl-Neelsen (sometimes referred to as ‘brightfield’)
or fluorescence (Auramine O) microscopy. Distinct image sets are often used to ‘train’ and ‘test’
new AI tools. Ideally, various methods ought to be consistently applied to new data and should be
readily accessible for evaluation, accompanied by the standard performance metrics for each tool.

TB-AI for microscopy image analysis may be undertaken for a range of purposes; disease
diagnosis, cell detection, bacterial load quantification (i.e. counting of cells once detected), or
more detailed structural description (phenotyping) of individual bacteria. The effectiveness of
methods designed for each purpose requires evaluation by appropriate metrics. It is important to
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understand what these metrics are and to consider how well they are standardised across existing
methods so that different approaches to the same task can be compared.

Each TB-AI microscopy technique may have a foundation in different sub-fields of AI, often
classical machine learning (ML) or DL. For the effective review and categorization of diverse
methods in existing literature, comprehension of the foundational principles of conventional
ML and DL, as well as their unique characteristics, is essential. ML is a subfield of AI focused
on developing algorithms that allow computer systems to make decisions from data without
explicit programming. ML enables computers to automatically discover patterns and insights
from data rather than rely solely on rules-based instructions. It encompasses a range of methods
including supervised learning (e.g. regression and classification) and unsupervised techniques
(e.g. clustering, ensemble methods, and reinforcement learning.

DL is a subfield of ML that uses multi-layered artificial neural networks to learn data
representations and patterns. The term “deep” refers to the multiple layers in these neural
networks, which are composed of interconnected nodes, analogous to neurons in the human brain.
DL models are trained to automatically construct complex concepts from simpler representations
through transformations across hierarchies of layers. A core advantage of DL is the automatic
learning of hierarchical feature representations directly from the raw data while preserving
spatial information [122, 20]. This contrasts with conventional ML where method input may
require considerable engineering to manually craft predictive features [94]. However, DL models
demand large volumes of training data to unlock their representation learning potential [219].
In practice, data augmentation has reduced the extent of this problem. Generally, conventional
ML remains effective for smaller datasets, but lacks the same feature extraction capacities. The
dependency on data correlates with the complexity of the model; DL can address more complex
tasks such as computer vision (CV) [113]. In contrast, conventional ML methods may be less
suitable for these tasks, as they often lose spatial information. This loss occurs because the input
usually takes the form of a vector, necessitating a prior flattening procedure. Overall, DL offers
automated feature extraction and modeling of immense complexity, at the cost of substantial data
requirements. Generally, conventional ML provides flexibility for small data, but with more
constraints on feature engineering and model complexity.

CV is another subfield of AI focused on the computational interpretation of visual data. Contrasting
with ML, which largely depends on pattern recognition from data, CV lacks a distinct learning
phase. It employs mathematical algorithms that equip computers with the capability to “see”
and execute tasks such as object recognition, image segmentation, and scene understanding. In
practice, and in some published TB-AI microscopy methods, CV techniques are often combined
with classical ML and DL methods as a hybrid strategy [159] to improve the quality of image
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representations and label generation. CV provides effective methods for tasks like low-level
feature extraction. Meanwhile, conventional ML and DL models contribute pattern recognition
and classification capabilities. Using both together can augment the strengths of each, leading to
more robust performance than either alone. Combining ML/DL and CV techniques may provide
a flexible framework for creating accurate representations to feed into downstream analytic tasks.

In this chapter I will review the existing literature on TB-AI microscopy, expanding on the above
topics by addressing the following questions:

• How many datasets of TB microscopy images are available online, and what microscopy were
used to generate them?

• What challenges to development of AI image analysis methods are presented by the level of
variability in currently available TB microscopy image datasets?

• What performance metrics have previously been used to evaluate AI approaches to TB
microscopy image analysis?

• What specific conventional ML and DL techniques, including those which are combined with
CV, have been used for TB microscopy image analysis and how have they performed?

3.2 Methodology for literature review

To maximise the likelihood that all relevant material would be found, a standardised approach
was taken to the literature search for this chapter. Detailed screening was undertaken of several
academic databases. Systematic searches were undertaken in “PubMed”, “Scopus” and “Web
of Science” using a combination of the following terms as keywords: “Tuberculosis” AND
“Microscopy” AND “Automated (including Automation OR Pattern Recognition” OR “Image
Processing” OR “Artificial Intelligence” OR “Deep Learning”. These searches were completed
on 29th January 2023. The literature review initially incorporated more than the aforementioned
keywords (i.e. precise technical terms such as ‘random tree forests’), leading to a subsequent
narrowing of the search criteria to these specific terms to minimize the influx of irrelevant papers.
For instance, including precise terms like CNN or random tree forests in the search parameters
might result in retrieving a significant number of extraneous papers. These papers, while utilizing
the mentioned techniques, focused on different medical tests, such as CXRs. Additionally, the
search did not restrict the date range due to the relatively limited volume of literature in this field.
Indeed, as will be discussed later, earlier works, such as that by Veropoulos et al. [242], have had
a considerable influence on the research presented in subsequent chapters. Scientific publications
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identified from these searches were screened by title, abstract, and full text. Those which were
written in English and described automated analysis of an original dataset of TB microscopy
images were curated on a spreadsheet and duplicates were removed. The additional platforms
“Google Scholar”, “ResearchGate”, “Academia”, and “arXiv” were searched in a similar manner
to identify relevant content within conference abstracts and grey literature documents which are
not well represented in indexed databases. Reference lists and bibliographies from all papers
selected for inclusion were also screened to identify any additional datasets which may have
been missed by this search strategy. Some papers published in the course of experimental work
described later in this thesis (authored by Zachariou et al.) were identified by my search but they
have been excluded from this review, because its purpose is to describe work by other groups
which have formed the background to my thinking.
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Figure 3.1: Methodology used for literature search.

Once all relevant literature containing datasets were identified for inclusion, metadata were
mapped for each, including whether the database used for analysis is openly accessible online.
Supplementary metadata included: the specific microscopy technique employed (brightfield
or fluorescence), the geographical origin of image generation and AI method development
(according to United Nations geoscheme), the purpose of the research (diagnosis / detection of
Mtb cells, quantification, or other), any quantitative performance metrics used, and whether the
dataset for the work is publicly available online. Each published work was categorised according
to whether the main AI approach was conventional ML or DL-based, with a simple discriminator
being that all work which did not use convolutional neural network (CNN) or deep convolutional
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neural network (DCNN) as the core part of their method, were regarded as conventional ML
whilst those that did employ CNN or DCNN were regarded as DL.

3.3 Description of available literature and datasets

Table 3.1 summarises original research work identified from the literature research.

As both light (brightfield) and fluorescence microscopy are used for Mtb bacterium visualisation,
TB-AI research uses datasets of images derived from both methods. As described in Section 2.6.1,
fluorescence microscopy generally offers better performance, but at higher costs. It has only
become widely available in many centres over the last decade. A combination of these factors
may explain why only 7/42 (17%) of all publications listed in Table 3.1 are based on fluorescence-
based methods. Particularly in older methods, many image datasets are based on brightfield
microscopy [137, 71]. 24/42 (57%) of methods used classical ML methods, whilst 18/42 (43%)
used DL techniques, though DL approaches were more frequently used in works reporting after
2018. 36/42 (86%) of studied considered TB-AI microscopy methods as diagnostic tools or for
Mtb detection. 6/42(14%) counted Mtb cells to quantify the sputum bacterial load, and none
considered methods to phenotype individual bacterial cells. From my search, five databases of
sputum smears for TB microscopy are currently accessible online. These are listed in Table 3.2
and are as follows: CDC Public Health Image Library (PHIL) [92], the Kaggle Tuberculosis image
dataset [234], TB_IMAGES_DB_BACILLI V1 [47], Ziehl–Neelsen sputum smear microscopy
image database (ZNSM–iDB) [200], and a dataset collected from brightfield microscopy sputum
smears referred to by the authors as TBDB [233]. Only 5/42 (11%) methods listed in Table 3.1
used one of the openly available datasets described in Table 3.2. All other methods used of
individually owned proprietary datasets. Of course, research based on proprietary datasets is
valuable, but the lack of shared access to the raw image data creates challenges and reduces the
transparency of comparative research between groups and methods.
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Table 3.1: Summary of available literature on TB-AI microscopy.

Paper Year
Microscopy

Type

Region
of

image
generation

Region
of

method
development

Purpose
of

research

AI
method

used

Dataset
online

Veropoulos et al. [242] 1998 Fluorescence N/A Europe Diagnosis ML No
Forero-Vargas et al. [76] 2002 Brightfield N/A Europe Detection ML No

Forero et al. [73] 2003 Fluorescence Europe Europe Detection ML No
Forero et al. [75] 2004 Fluorescence Europe Europe Detection ML No
Forero et al. [74] 2006 Fluorescence Europe Europe Detection ML No

Sadaphal et al. [192] 2008 Brightfield America America Detection ML Yes [92]
Costa et al. [48] 2008 Brightfield America America Detection ML No

Makkapati et al. [137] 2009 Brightfield N/A Asia Detection ML No
Sotaquŕa et al. [212] 2009 Brightfield America America Quantification DL No

Khutalang et al. [115] 2009 Brightfield Africa Africa Detection ML No
Khutalang et al. [116] 2010 Brightfield Africa Africa Detection ML No

Osman et al. [169] 2010 Brightfield Asia Asia Diagnosis ML No
Osman et al. [171] 2010 Brightfield Asia Asia Diagnosis ML No
Osman et al. [170] 2010 Brightfield Asia Asia Diagnosis ML No
Zhai et al. [270] 2010 Brightfield N/A Asia Detection ML No

Nayak et al. [153] 2010 Brightfield Asia Asia Quantification DL No
Chang et al. [34] 2012 Flueorescence Africa America Diagnosis ML No

Costa-Filho et al. [49] 2012 Brightfield America America Detection ML Yes [47]
Santiago-mozos et al. [197] 2014 Fluorescence N/A Europe Diagnosis ML No

Ayas & Ekinci [11] 2014 Brightfield Asia Asia Detection ML No
Costa-Filho et al. [50] 2015 Brightfield America America Detection ML Yes [47]
Govindan et al. [91] 2015 Brightfield America Asia Detection ML Yes (partially) [92]

Ayma & Castañeda [12] 2015 Brightfield America America Detection ML No [92]
Gosh & Nasipuri [83] 2016 Brightfield Asia Asia Diagnosis ML No

Priya et al. [179] 2016 Brightfield Africa Asia Detection ML No
Soans et al. [209] 2016 Brightfield N/A Africa Quantification DL No
López et al. [134] 2017 Brightfield N/A America Detection DL No

Yan & Zhuang [255] 2018 Brightfield Asia Asia Detection ML Yes [47]
Kant & Srivastava [114] 2018 Brightfield N/A Asia Diagnosis DL No

Panicker et al. [174] 2018 Brightfield America Asia Detection DL Yes
Samuel & Kanna [63] 2018 Brightfield Asia Asia Detection DL Yes

Xiong et al. [254] 2018 Brightfield Asia Asia Diagnosis DL No
Mithra & Emmanuel [147] 2018 Brightfield Asia Asia Quantification DL Yes [200]

Díaz-Huerta et al. [60] 2019 Brightfield America America Detection ML No
Ahmed et al. [4] 2019 Brightfield N/A Asia Diagnosis DL No
Hu et al. [103] 2019 Brightfield Asia Asia Diagnosis DL No

El-Melegy et al. [71] 2019 Brightfield Asia Africa Detection DL No
Mithra & Emmanuel [147] 2019 Brightfield Asia Asia Diagnosis DL Yes [200]

Vente et al. [241] 2019 Fluorescence Africa Europe Quantification DL No
Yousefi et al. [257] 2020 Brightfield N/A America Detection ML No
Serr𝑎̃o et al. [199] 2020 Brightfield America America Detection DL No
Swetha et al. [221] 2020 Brightfield N/A Asia Diagnosis DL No
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Table 3.2: Details of currently accessible online sputum smear microscopy image datasets. The last
column provides information about the manner in which the database represents various classes, if
mentioned. Most annotated databases commonly utilise bounding boxes as a method for annotation.
However, the TBDB database does not provide explicit documentation on how labels are constructed.

Image Dataset name URL Content of dataset Image annotation Label type

CDC Public Health Image Library [92] phil.cdc.gov

Microscopy images within general
collection of TB-related images,
25 brightfield slides
15 fluorescence slides

None N/A

Kaggle Tuberculosis Image Dataset [234] kaggle.com/datasets/saife245/tuberculosis-image-datasets 1265 brightfield images Yes Bounding Boxes
TB_IMAGES_DB_BACILLI.V1 [47] Free access can be applied for at tbimages.ufam.edu.br 120 brighfield images Yes Bounding Boxes

ZNSM-iDB [200] drive.google.com/drive/folders/1HPcJzwKi76WwCFYj7dHUgVA31dAyFyTF
9 sets of brightfield images
(50-90 images per set)

Yes Bounding Boxes

TBDB [233] Freely available by contacting the authors 3102 brightfield images Yes Not specified

3.3.1 Challenges with dataset standardisation

Irrespective of the dataset used, a consistent challenge when analysing TB microscopy images is
that the process of sputum smear preparation and image capture is hard to standardise. Figure 3.2
illustrates some key challenges.

Figure 3.2: Challenges to image dataset standardisation

Even when carefully written standard operating procedures (SOP) are meticulously followed,
expectorated sputum is variable in consistency and difficult to homogenise. This affects the
thickness of smears and influences the degree of background material and stain uptake on
microscopy slides (see Figures 2.6 and 2.7). After slide preparation, the process of “reading”
them comprises magnification (typically from ×400 to ×1000) and sequential examination

phil.cdc.gov
kaggle.com/datasets/saife245/tuberculosis-image-datasets
tbimages.ufam.edu.br
drive.google.com/drive/folders/1HPcJzwKi76WwCFYj7dHUgVA31dAyFyTF
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of small FOVs. When researchers are preparing collections of FOVs for automated analysis,
procedures vary. The most common options are i) manual inspection and creation of the image
set [241], ii) auto-focus algorithms [75, 114, 270], or iii) successive cropping of the whole
slide followed by a filtering stage to remove FOVs void of bacteria [103]. Individual FOVs, or
sub-sections of them, are often additionally cropped into even smaller patches, where bacteria are
present. All these methods ultimately utilise FOVs of arbitrary dimensions with no pre-specified
standards for the width and height of each image. Furthermore, each image collection might differ
in terms of spatial dot density, which alters the magnification levels of a bacterium’s physical
size. Researchers in different settings often have different hardware (e.g., different specifications
of digital camera).

This all has implications for downstream biological research based on image interpretation. For
example, Section 2.7.3 previously described the value of measuring the physical size of bacteria
under different physiological or treatment conditions, but this is impossible if image dimension
and magnification are not standardised and recorded. Studies using online accessible image
sets illustrate this problem. Yan et al. [255] evaluated their approach to Mtb cell detection from
Ziehl-Neelsen stained smears on both their own proprietary dataset and the online ZNSM–iDB
dataset [200], with the latter yielding much lower accuracy because dimensions and resolution
vary considerably within the ZNSM–iDB images.

Conventional ML, and DL, are data-driven, and most TB-AI microscopy methods studied to
date suffer from insufficient training data, which substantially impacting performance. The fact
that so few openly available TB smear microscopy datasets exist, with no standardisation in the
methods used to generated them may have contributed to a situation where most publications
use their own dataset both for training and testing of their methods. Such a constraint reduces
the likelihood that a method can be seamlessly applied to a different dataset while achieving
comparable results. Additionally, it renders the replication of results unfeasible if the original
data is absent. Consideration should be given to whether it is possible to establish databases of
microscopy images according to standardised protocols. Although desirable, this may be difficult
to achieve because some of the causes of variability between datasets outlined above are hard to
eliminate.

3.4 Evaluation of performance metrics

Assessing the performance of any new technique is done by performance metrics, so that novel
approaches can be compared to the current state of the art or other experimental methods. In the
literature on TB-AI microscopy, three general approaches are taken, dependent on the aim of the
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work: classification, regression, and segmentation. Common metrics to evaluate each of these
are summarised in Table 3.3. These metrics are mainly used to convey empirical evidence of a
model’s performance on test data, but they also have utility during the learning phase on training
data, serving as a form of cross-validation to verify the model’s learning efficacy.

Table 3.3: Common performance metrics for evaluation of ML/DL tools in TB-AI microscopy

Approach to image analysis Common application Common evaluation metrics

Classification Detecting of objects of interest of
(Y/N) in a slide, FOV or patch

Accuracy
Sensitivity (recall)

Specificity
Precision / Predictive Positive Rate

F-measure

Regression Counting objects of interest in a FOV
Mean average error
Mean squared error

R2

Segmentation
Localising objects in the FOV.

Sometimes precedes
classification or regression.

Sorensen-Dice coefficient
Jaccard index

Hausdorff distance

3.4.1 Classification metrics

For many medical tests, the most important classification metric is the capacity to accurately
differentiate between ‘positive’ and ‘negative’ occurrences. In TB microscopy this may be the
ability to correctly diagnose a patient with pulmonary TB or the ability to correctly detect Mtb
cells on a sputum smear. The approaches to diagnosis and detection are similar, the terms are
often used interchangeably in the literature, and the same performance metrics are used for
both. However, there are differences between these concepts which can influence assessment
of whether a new method is working properly. Figure 3.3 illustrates this explanation in more
detail. Overall, to assist with TB treatment monitoring, high performance metrics for detection
of individual bacteria is desirable.
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Figure 3.3: In analysis A of this image, the correct diagnosis is reached because the sputum artefact is
wrongly ‘detected’ as a bacterium, even though true bacteria are not detected. In analysis B all objects are
correctly detected. Classification based only on ‘diagnosis’ here would over-report performance ‘detection’
for individual objects.

Performance metrics for classification procedures include accuracy, sensitivity (recall), specificity,
and precision which all can be calculated from knowing the true positive (TP), true negative
(TN), false positive (FP) and false negative (FN); their definition is shown in Table 3.4.

Table 3.4: Definitions of elements for performance metrics in model classification

Group Description Diagnosis / detection examples with reference to TB-AI microscopy

TP An event / object of interest is correctly reported
A person with TB is correctly diagnosed with TB;
fluorescence on an FOV is correctly identified as

an Mtb cell

TN The absence of an event / object is correctly reported A person without TB has a negative test;
a FOV containing no TB cells is reported as negative

FP An event / object is reported in error A person without TB is diagnosed with the disease;
an artefact on a slide is incorrectly identified as an Mtb cell

FN An event / object of interest is missed
A person with TB is not diagnosed;

a FOV containing an Mtb cell is
reported as containing background matrix only

Using these elements, the definition of accuracy is:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁 +𝐹𝑁 (3.1)
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Whilst accuracy can be useful, it has shortcomings when assessing diagnostic or detection models
with imbalanced datasets, which is the situation for most medical AI applications. For example,
most FOVs on TB microscopy slides contain background matrix, with Mtb bacteria scattered in a
few locations. A model might report high accuracy solely based on its correct identification of
TNs. However, such a model lacks utility if it consistently fails to accurately detect TPs.

Sensitivity (also known as recall or true positive rate (TPR)) and specificity are also frequently
reported in TB-AI microscopy studies. Sensitivity assesses model performance by reporting the
proportion of positive events over objects that are correctly classified and is defined as:

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁 (3.2)

High sensitivity from TB sputum smear analysis could be interpreted to mean that very few Mtb
cells were missed. Conversely, specificity (also known as true negative rate (TNR)) assesses
model performance by describing the proportion of negative events over objects that are correctly
reported and is defined as:

𝑆𝑝𝑒𝑐𝑖 𝑓 𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 +𝐹𝑃 (3.3)

High specificity from TB sputum smear analysis could be interpreted to mean that very few
artefacts in the sample were mis-reported as Mtb cells.

An interesting observation can be made by comparing conventional ML (n=16) and DL (n=7)
methods from my literature search, and which used sensitivity and specificity metrics to report on
classification models for TB diagnosis and/or Mtb detection. Figure 3.4. shows that sensitivity
and specificity ranges attained by ML methods were variable (sensitivity: 75-100%, specificity:
80-100%) whilst equivalent ranges attained by DL methods were consistently higher (sensitivity:
90-100%, and specificity: 97-100%).
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((a))

((b))

Figure 3.4: Comparative analysis of the sensitivity and specificity attained by works utilising ML and DL
methods. Even though they are fewer in number, DL algorithms routinely score >90 on both sensitivity
and specificity.

Precision (also sometimes referred to as the predictive positive rate (PPR)) measures the fraction
of instances classified as positive that are actually true positives, and is defined as:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃 (3.4)

The PPR can be informative when it is more important to correctly identify positive than negative
objects or events [63, 134]. Interpretation of TB microscopy images arguably falls into this
category because the ability of any approach to find a few positive FOVs amongst many negative
ones on a sputum smear is fundamental to the usefulness of the method. The PPR is frequently
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used alongside receiver operating characteristics (ROC) and area under the ROC curve (AUC)
metrics. These measurements are instrumental in analyzing the trade-off between the TPR
(also known as sensitivity) and the FPR. This is particularly relevant for methods that produce
continuous output variables and necessitate decision thresholds for binary classification. PPR is
defined as:

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁 (3.5)

but can also be expressed as 1− 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦. ROC curves typically display TPR on the y-axis
and FPR on the x-axis and the AUC is a scalar value which summarises the overall performance
of the model at all classification thresholds. The AUC value ranges from 0 to 1, where:

AUC = 0.5 : The model, on average, fails to exhibit superior performance when compared to random
guess.

AUC > 0.5 : The model, on average, outperforms random guessing, with greater AUC values indicating
superior performance.

AUC = 1.0 : The model has perfect discriminatory power, achieving a true positive rate
of 1 and a false positive rate of 0.

The F-measure (or F1-score) combines precision and sensitivity (recall) into a single metric that
reflects the model’s ability to accurately identify positive events or objects (precision) while
also successfully capturing a high proportion of actual positive cases (recall). It is better for
describing model performance than metrics such as accuracy in unbalanced datasets. To merge
two metrics into once score, the F-measure is calculated as the harmonic mean of precision and
recall and defined as:

𝐹 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = (2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗𝑅𝑒𝑐𝑎𝑙𝑙)
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙 (3.6)

3.4.2 Regression metrics

In Chapter 2, the value of counting bacteria in microscopic FOVs was explained: at diagnosis
this information may reflect pulmonary TB severity and prognosis [108], whilst during treatment
the rate of decline in bacterial load in serial sputum samples can help to track treatment response.
Although object counting can be done by classification methods, regression analysis is often
preferred as it is better able to preserve uncertainty in model estimates by predicting real
numbers even when the actual count must be a natural number [241]. Mtb cells have a biological
propensity to clump and counting them when they overlap is difficult so a modelling approach
which describes some of the inherent uncertainty may be advantageous. Figure 3.5 illustrates
this in a simple schematic and the issue will be discussed further in Chapter 5.
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Figure 3.5: Using regression to represent uncertainty in model-based estimates of Mtb counts

Typical metrics used to evaluate regression performance include mean absolute error (MAE),
mean squared error (MSE), and coefficient of determination (𝑅2). Taking the average of all
observations, MAE measures the absolute distance between the observations, e.g. ground truth
bacterial load quantification in TB microscopy images, and regression predictions for the same
measurement. The absolute value of the distances is used to correctly account for negative errors.
MAE is expressed as:

𝑀𝐴𝐸 =
1
𝑛

𝑛∑︁
𝑖=1

���y𝑡𝑟𝑢𝑒𝑖 −y𝑝𝑟𝑒𝑑
𝑖

��� (3.7)

The mean absolute percentage error (MAPE) is a metric that is used to assess the accuracy
of predictions by calculating the absolute percentage error for each data point. This error is
determined by taking the absolute difference between the true value and the predicted value,
and then dividing it by the true value. Subsequently, the formula computes the mean absolute
percentage errors for each individual data point, followed by the multiplication of this average by
a factor of 100 in order to represent the error in a percentage format. The MAPE is an essential
metric for assessing the performance of prediction models, particularly in situations where
datasets are challenging to normalise and have a broad spectrum of numerical values. However,
MAPE can be highly sensitive to outliers, as it assigns equal weight to all errors, regardless of
their magnitude. When extreme values are present, these can disproportionately influence the
MAPE, leading to potentially misleading interpretations of a model’s performance [90]. The
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MAPE is defined as:

𝑀𝐴𝑃𝐸 =
1
𝑛

𝑛∑︁
𝑖=1

�����y𝑡𝑟𝑢𝑒𝑖
−y𝑝𝑟𝑒𝑑

𝑖

y𝑡𝑟𝑢𝑒
𝑖

�����×100 (3.8)

In the case of the MSE, the differences between observations and regression predictions are
squared. This squaring ensures differentiability across all outcomes, making it well-suited for
optimization techniques. Unlike the MAE, which is not differentiable at zero due to its use of
absolute distances, the MSE allows for the calculation of gradients. Gradients are crucial in many
optimization algorithms, as they guide the search for optimal parameter values. In the MSE, the
absolute differences are replaced with squared differences, providing a smooth and differentiable
loss function. MSE is defined as:

𝑀𝑆𝐸 =
1
𝑛

𝑛∑︁
𝑖=1

(
y𝑡𝑟𝑢𝑒𝑖 −y𝑝𝑟𝑒𝑑

𝑖

)2
(3.9)

The key difference between MSE and MAE is how each penalises mistakes when comparing
predicted data to ground truth data. Since the MSE is a squared error, it penalises large errors
more heavily. Consequently, MSE is more sensitive than MAE to outliers. The robustness of
each metric and when it should be used is contingent on the nature of the task.

The root-mean square error (RMSE) is derived from the MSE in a manner analogous to the
relationship between MAE and MAPE. The inclusion of the square root operation in the RMSE
calculation guarantees that the resulting value is expressed in the same units as the original data.
This enhances the interpretability of the RMSE and facilitates its comparison to the scale of the
target variable. RMSE is expressed as:

𝑅𝑀𝑆𝐸 =

√√
1
𝑛

𝑛∑︁
𝑖=1

(y𝑡𝑟𝑢𝑒
𝑖

−y𝑝𝑟𝑒𝑑
𝑖

)2 (3.10)

Finally, 𝑅2 represents the fraction of the variance in the dependent variable that a linear regression
model explains. It is a scale-free score, so irrespective of whether the numbers are low or high,
𝑅2 will always range from 0-1. It indicates the predictor variables’ ability to explain variation in
the response variable, i.e. how well the independent variables explain the dependent variable.
Values closer to one indicate higher predictive ability. 𝑅2 can be expressed as:

𝑅2 = 1−
∑(𝑦𝑖 − 𝑦̂)2∑(𝑦𝑖 − 𝑦̄)2 (3.11)

𝑅2 always increases as more independent predictor variables are added, which may lead to the
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inclusion of redundant variables in the regression model.

3.4.3 Segmentation metrics

Segmentation refers to processes which are sometimes applied to FOVs in TB-AI microscopy to
localise smaller regions of interest (patches containing possible Mtb bacteria) prior to classification
or regression. The classification or regression models are then left with less complexity to manage,
because they are applied to small patches rather than the whole FOV. Similar to classification
tasks, pixel-wise accuracy assesses the extent to which each pixel is accurately assigned to
its correct category. While pixel-wise accuracy is a commonly used metric for evaluating
segmentation tasks, it may not be the most suitable measure in the context of microscopy FOVs,
which often contain a majority of background pixels. A model could achieve a high pixel-wise
accuracy by simply predicting most pixels as background, even if it fails to detect Mtb cells.
Therefore, the model may become biased toward detecting the background rather than the cells of
interest. Alternative metrics, such as the Jaccard index (J) or the Sorensen-dice (SD) coefficient,
may offer a more balanced evaluation of the model’s performance in segmentation tasks.

Explaining these metrics, requires a brief outline of the terms ‘intersection’ and ‘union’, including
how they may be interpreted in the context of TB-AI microscopy. If 𝑆1 and 𝑆2 are the number
of elements in a dataset, i.e. for digital TB-AI images, the pixel values in ground-truth and
model-predicted segments of a FOV, the intersection of the two images (𝑆1 ∩ 𝑆2) is the set of
common elements, i.e. overlapping pixel area, across the two segments, whilst union (𝑆1 ∪ 𝑆2) is
the set of all elements in both segments (i.e., total combined pixel area of 𝑆1 and 𝑆2). The SD
coefficient is defined as:

𝑆𝐷 =
2× |𝑆1 ∩ 𝑆2 |
|𝑆1 | + |𝑆2 |

(3.12)

and represents the number of elements in the intersection of both 𝑆1 and 𝑆2 divided by the total
number of elements in 𝑆1 and 𝑆2 combined. The Jaccard index is expressed directly as the ratio
of intersection over union:

𝐽 (𝑆1, 𝑆2) =
|𝑆1 ∩ 𝑆2 |
|𝑆1 ∪ 𝑆2 |

(3.13)

For both SD and J, higher values (range: 0-1) indicate greater overlap between ground truth and
model-predicted segments. These metrics are related. Given a value for SD, it is possible to
determine the corresponding value of J, and vice versa. Nonetheless, these metrics differ and
fulfill distinct evaluation objectives in the context of image segmentation. In general, J metric
punishes single occurrences of incorrect classification more than the SD, even when both metrics
agree that a single case is incorrect.

Evaluation of the proximity of a bacillus’ perimeter is an alternative performance metric for
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Table 3.5: Table displaying several assessment measures used by each publication. Each metric is
separated by commas inside the metric column, and its associated quantity is listed in the value column.
To be included in this table, publications must i) conduct a segmentation step and ii) give an assessment
measure with an official value.

Paper
Segmentation Evaluation Metrics

Hausdorff distance Jaccard Index SD

Khutlang et al. [115] 0.96 N/A N/A

Soans et al. [209] 0.06 N/A 87%

Diaz-Huerta et al. [60] N/A 96% N/A

Mithra & Sam Emmanuel [148] N/A 95% N/A

segmentation. The Hausdorff distance is a measure that calculates the distance between two
subsets within a metric space. Given model predicted images with highlighted objects of interest
and matching ground truth images, the closer distances between these boundaries reflect closer
similarity. It does so by converting the set of non-empty compact subsets within a metric space
into a metric space of its own. Specifically, when applied to two sets of points, denoted as 𝑆1 and
𝑆2, the Hausdorff distance is defined as follows:

𝐻 (𝑆1, 𝑆2) = 𝑚𝑎𝑥(ℎ(𝑆1, 𝑆2), ℎ(𝑆2, 𝑆1)) (3.14)

where ℎ(𝑆1, 𝑆2):

ℎ(𝑆1, 𝑆2) = 𝑚𝑎𝑥
𝑠1∈𝑆1

𝑚𝑖𝑛
𝑠2∈𝑆2

∥𝑠1 − 𝑠2∥ (3.15)

is the directed Hausdorff distance between 𝑆1 to 𝑆2. The metric requires some underlying norm
to be defined (∥·∥); the L2 (or Euclidean distance) is typically employed. In some cases, the
traditional Hausdorff distance may lead to skewed performance evaluations because it is sensitive
to individual outliers. Furthermore, various methods have employed the Hausdorff distance
for the purpose of image comparison, notably within the scope of the Modified William index
(MWI) [33]. The MWI is a similarity index that combines the Hausdorff distance and the mean
absolute distance between two sets of points or regions in an image. The authors used the
Hausdorff in their work to determine the distance between each predicted structure and the actual
structure in a given set of images [115]. Table 3.5 offers a summary of all the works along with
their choice of segmentation metrics and results.
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3.5 TB-AI microscopy research utilising ML

This section will provide a synopsis of all the research identified from my literature search which
employed conventional ML algorithms in conjunction with CV techniques for classification and
segmentation of TB-AI microscopy datasets. For simplicity, anything that does not adhere to
the framework of deep convolutional neural networks (DCNN) is regarded as classical ML and
included in this section. Approaches are thematically categorised into those which are ‘local
feature extraction’ and those which are ‘extracted pixel distribution’. Table 3.6 shows a summary
of the most common evaluation metrics used by all papers included in this section. The degree of
variability in the metrics chosen exemplifies the absence of an established standard for evaluation
of new methods and underlines the difficulty in comparing research carried out in different
settings.

3.5.1 Local feature extraction approaches

The underpinning local feature extraction ML approaches is to employ an edge or ridge detector
to extract gradient intensities in the spatial domain of an image or a colour space threshold by
determining bacteria pixel values beforehand. The color space threshold approach employs
histograms to perform quantitative analysis on pixel hue bands, thereby identifying the typical
color range where Mtb cells are most likely to be found. This is often the initial stage of
a procedure which eventually aims to convert images into binary masks, fully erasing the
background and leaving likely Mtb as white contours. Thereafter, a shape descriptor is employed
to extract characteristics about the shape of probable bacilli. Subsequently, some researchers opt
to use a classifier while others use heuristic information to make final decisions on whether the
shape identified is Mtb or not.

From my literature search, Veropoulos et al. [242] published the first advance towards automated
TB diagnosis using fluorescence microscopy images. They devised a five-step methodology,
combining CV techniques with a simple neural network as a classifier. First, a Canny edge
detector was employed to detect edges which enhances the images and extracts low-level features.
Pixel linking served as a corrective measure to repair structural distortions induced by noise.
Subsequently, the processed image underwent a transformation from the spatial domain to the
frequency domain using the discrete Fourier transform (DFT). Fourier coefficients were calculated
to serve as shape descriptors for bacteria and these were input into four kinds of classifiers:
𝑘−nearest neighbours, a neural network, kernel-adatron [77], and support vector machine (SVM).
The model that performed most effectively achieved an accuracy of 97.9%. Even though this
work considered bacteria very simply (i.e. singular elongated structures), it demonstrated the
feasibility of Mtb detection using computer-aided image analysis.
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Table 3.6: Performance metrics used to evaluate ML methods in TB-AI microscopy

Paper Accuracy Sensitivity/Recall Specificity

Veropoulos et al. [242] 97.90% 94.10% 99.10%

Forero-Vargas et al. [76] N/A N/A 91.00%

Forero et al. [73] N/A 93.30% 91.68%

Forero et al. [75] N/A 86.66% 99.74%

Forero et al. [74] N/A 94.67% 98.10%

Sadaphal et al. [192] N/A N/A N/A

Costa et al. [48] N/A 76.65% 88.65%

Makkapati et al. [137] N/A N/A N/A

Khutalang et al. [115] 86.85% 99.95% 77.62%

Khutalang et al. [116] 93.47% 90.88% 95.85%

Osman et al. [171] 86.32% N/A N/A

Osman et al. [169] 98.07% 100.00% 96.19%

Osman et al. [170] N/A N/A N/A

Zhai et al. [270] N/A 100.00% 94.00%

Chang et al. [34] N/A 92.30% 88.00%

Santiago-Mozos et al. [197] N/A 73.53% 99.99%

Ayas et al. [11] N/A 75.77% 96.97%

Costa-Filho et al. [51] 91.45% 93.41% 89.50%

Costa-Filho et al. [50] 93.25% 93.75% 88.46%

Govindan et al. [91] N/A 72.89% N/A

Ghosh et al. [83] N/A 93.90% 88.20%

Priya et al. [179] 91.30% 91.59% 88.46%

Aymas & Castañeda [12] 70.52% N/A N/A

Yan et al. [255] N/A 97.46% 93.99%

Díaz-Huerta et al. [60] 98.66% N/A N/A

Yousefi et al. [257] 82.27% 75.99 92.58
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Santiago-Mozos et al. also used the Canny edge detector [112] as their primary approach to
identify bacteria from fluorescence images but included an extra pre-processing step with an
adjustable colour threshold for the green colour component of the image [197]. They used two
successive SVM classifiers: the first discarded incorrectly identified objects from the previous
stage and the second classified these objects based on their appearance. The first classifier
employed a collection of rotation and translation-invariant characteristics of each candidate object
as input. Forero et al. used a similar method, which included a segmentation phase comprised of
a Canny edge detector, morphological operators, and classification of the resulting image [73].
Different bacilli characterisation and the use of clustering approaches for classification were major
variations from earlier approaches. Follow-up work by the same group used a similar strategy,
i.e. low-level feature extraction as input to a classifier, but mathematical autofocus algorithms
were also utilised for image magnification and construction of FOVs [75]. Although the results
either equalled or were slightly inferior to those from their previous work [73] and Veropoulos’
work [242], this research was pioneering in implementing automated FOV generation, a topic
pertinent to Section 3.8 of this chapter. Next, this group published work which performed
low-level feature extraction through adaptive color thresholding and subsequently classification
through clustering algorithms [74]. This time they used Gaussian mixture models since they were
able to create the distribution of class features. FOVs for this dataset were prepared manually.

Using Ziehl-Neelsen stained images viewed by light microscopy, Costa et al. used a colour
threshold-based segmentation stage, in which the authors were able to isolate bacteria from an
image background [48]. For their proposed bacilli segmentation method they employed the use
of Red minus Green (R-G) images from red-green-blue (RGB) format images and determined
a threshold value that distinguished objects of interest from the background. Classification is
conducted manually in this case, relying on heuristic features specifically crafted by the authors
rather than employing ML classifiers. Makkapati et al. also used colour thresholding of light
microscopy images as their principal segmentation technique [137]. Their proposed approach
was to select the hue range 𝑥0 −360◦ on the HSV color space, where 𝑥 is an adaptable number
dependent on the input image. No classification technique was used, only a filtering stage utilising
heuristic knowledge of bacterial morphology. The authors reported no performance metrics.
In both of these works, the absence of an automated classifier had a harmful impact on the
results in comparison to earlier methods [242, 73, 75, 74]. Two approaches for segmenting TB
images using chromatic information were shown by Forero-Vargas et al. in work that did not
include a classifier [76]. The first technique was based on the information contained in each
distinct chromatic histogram and the fuzzy segmentation of colour images. The second was a
straightforward colour filtering comparison of the inverse of the yellow-stained bacteria (blue
channel) with the product of the other two chromatic channels.
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Osman and colleagues published three similar methods [169, 171, 170]. The approach employs
𝑘−means clustering on the green component of the RGB color model and the 𝑅𝑦 component
of the C-Y color model to isolate tuberculosis bacilli from the background, which remains red
despite the decolorization process [171]. Subsequently, a 5×5 median filter and region growing
techniques were applied to remove small regions and noise. Although no evaluation metrics
were provided, visual results indicated that some background still surrounded the bacteria in
images. Secondly, using their segmentation technique to expand on their prior paper, the resulting
segmented image was clustered into background and non-background regions [169]. After
calculating the moments of the second and third order, a set of seven Hu invariant moments
was extracted. These features were fed into a genetic algorithm neural network (GA-NN) for
classification. Here, the authors reported 88.54% accuracy, but no sensitivity or specificity, for
correctly classifying bacteria. In their third article, they used the same segmentation method as
in the first, but this time employed the geometrical characteristics of Zernike moments [170].
Additionally, a hybrid multi layered perceptron (HMLP) was used for their final classification
stage, which includes an extra connection to a layer beyond the immediately subsequent one. For
the segmentation stage, the algorithm employed a dual-stage technique that utilizes both the HSV
and CIE 𝐿 ∗𝑎 ∗𝑏∗ color spaces, the latter having an adaptive threshold on the L component [270].
To classify the tuberculosis bacilli, three shape descriptors – area, compactness, and roughness –
were used as feature extraction input to a decision tree for classification.

Remaining within the scope of colour space transformation, Costa-Filho et al. took a three-step
approach [49]. Initially, they created a scalar selection from the following colour spaces: RGB,
HSI, YCbCr, and Lab. The components and removal of components of these colour spaces
were employed for pixel classification in the segmentation step. Then, a feedforward neural
network pixel classifier with selected features as inputs was used to separate bacilli pixels from
background. In the third stage, geometric properties, particularly eccentricity, and a newly
proposed colour-based property, colour ratio, were employed for noise filtering. Using their
technique from the first step, these authors released a second paper with the addition of three filters
that use RGB space components: rule-based, geometric, and size filters [50]. The combination
was then utilised as an input for an SVM and Neural network (NN). In this work, the authors
improved their sensitivity results from 91.5% to 96.80%. Yan et al. retrieved a channel from
Lab space and then extracted the edges (bacterial structures) using a gradient threshold [255].
In addition, aspect ratio, circularity, and area were employed to eliminate incorrectly detected
structures.

Using just the RGB space, they defined conditions on each different component of the space that
best meet the criteria for distinguishing bacteria from the background in a binary image [83].
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To eliminate false contours (i.e. candidate regions of interest that were not bacteria) the shape,
colour, and granularity features of the predicted contours were computed. Consequently, they
used a fuzzy classifier in conjunction with the previously calculated characteristics to determine
if a particular contour belongs to the class of bacteria or not. Priya et al. employed an active
contour technique for their segmentation, which may be described as the application of energy
forces and restrictions to separate the pixels of interest for further processing and analysis [179].
Following the segmentation of the image, the contours of the regions of interest were described
using 15 Fourier descriptors (FD). The most significant of these descriptors were identified
through the application of fuzzy entropy metrics. These FD were input to the SVM learning
algorithm of a support vector neural network (SVNN)).

Yousefi et al. proposed a statistical model to detect Mtb bacilli based on their form and colour in
Ziehl-Neelsen stained light microscope images [257]. These basic statistical models were used
as a universal library for rebuilding any bacillus with different background colours and could
overcome the challenges associated with geometric feature extraction techniques. Based on the
extracted eigenvalues from the statistical models matrices, the authors used several approaches
to classify individual bacilli and overlapping bacilli from the rest of the image. The 𝑘−NN
classifier performed best amongst the evaluated classifiers, with an average accuracy of 82.7%
for overlapping bacilli detection. In addition, the accuracy of their method for detecting single
occurrences of bacteria from artefacts and background was 99.1%.

3.5.2 Extracted pixel distribution approaches

This section focuses on publications that aimed to develop probabilistic inference over an prior
extracted distribution using some type of stochastic-based methodologies. In the literature, both
unsupervised (such as 𝑘−means) and supervised (such as naive Bayes classifier) methods were
used.

Govindan et al. provided an example of unsupervised learning-based segmentation on Ziehl-
Neelsen stained light microscopy images which utilised 𝑘−means clustering in conjunction with
decorrelation stretching (of color bands in an RGB image) to identify areas of interest [91].
Dilating and eroding morphological operators were required to close broken edges in the final
segmented images. FDs, eccentricity, and compactness were the feature types utilised to
extract contour information. Finally, the candidate contours were classified using an SVM
model. Alternatively, Ayas and Ekinci deployed a Random Forest (RF) approach, which is a
supervised learning method, to classify each pixel as a possible bacilli area based on local colour
distributions [11]. Their method labelled each pixel as either a prospective Mtb bacilli pixel
or not. Then, each pixel group was rotated, scaled, and centred inside a bounding box before
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being classified using the RF learning algorithm trained on an image set with manually labelled
Mtb-containing patches.

Sadaphal et al. employed Bayesian segmentation based on a priori knowledge of bacterial
colour [192]. After the application of morphological operations, a set of shape criteria including
axis length, eccentricity and area evaluated whether predicted objects of interest belonged to the
bacteria class, were probable bacteria, or were not bacteria. A similar method was described by
Khutlang et al. in which brightfield microscopy images were partitioned into background and
bacterial by two naive Bayes pixel classifiers [115]. Extraction of geometrically transformation-
invariant features and optimization by feature subset selection and Fisher transformation were
performed on the resulting binary images. The authors compared the outcomes of two object
classifiers, NNs and SVMs. Accuracy, sensitivity, and specificity were all reported to be more
than 95%. The same group published a second work with a similar two-step approach, but this
time segmentation was accomplished using a mixture of Gaussian classifiers [116]. This method
worked better for both segmentation and classification. In their second work, overall sensitivity
increased by over 2%, while both accuracy and specificity were reduced by more than 4%.

Within this realm, Chang et al. used a white top-hat transform and template matching with a
Gaussian kernel to binarize images into black background and white regions of interest [34].
Diluting and eroding morphological operators were utilised to close fractured contours. Binarized
images were then used for feature extraction using Hu’s moments, geometric and photometric
features, and histogram of gradients (HOG). Finally, these features were used to classify whether
each candidate contour belonged to the bacterial class using SVM. Diaz-Huerta et al. also used
a Bayesian classifier based on a Gaussian mixture model [60]. Their work consisted only of
segmentation, correctly distinguishing bacteria from the background.

A final paper, by Ayma et al., included adaptive signal processing approaches, namely the least
mean squares and reduced rank with eigendecomposition algorithms, both of which contain
learning parameters for optimization during training [12]. Similar to Diaz-Huerta et al. work,
this work focussed on segmentation only. Although the authors reported competitive results, a
total of 650 images were captured, but only 80 were utilised owing to noise, focus, and stain
difficulties. One can argue that the reasons for this dataset reduction are the same ones that inspire
automated TB-AI microscopy to help overcome some difficulties in manually examining sputum
smears. Section 1.1.1 explains that manual reading of microscopy slides is prone to subjectivity
of evaluation due to variability of staining and image generation methods. If only high-quality,
noise-free images are used for TB-AI assessment the ability of automation to overcome this issue
cannot be assessed and selection bias may occur, limiting comparison with ‘real world’ studies
based on more representative image datasets [73, 74, 114, 153, 241].
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3.6 Research utilising DL

This section will present publications with a primary focus on DL methods, including the use of
convolutional neural network (CNN) or deep convolutional neural network (DCNN).

CNNs represent a subclass of neural network architectures designed specifically for processing
grid-structured data, serving both as feature extractors and classifiers, although these roles are
not mutually exclusive. To analyze how a local image region responds to abrupt changes in pixel
values, individual kernels or receptive units carry out sequential convolutions across the image.
Generally, DL approaches TB diagnosis and Mtb detection in two ways. In the first approach an
end-to-end customised DCNN architecture is designed for each task. In the second, two-step,
approach a separate image processing technique is used for low level feature extraction, e.g.
image binarization, contour extraction of objects, or noise removal, and these features are then
fed to another CNN technique, either custom or generic. These approaches are not mutually
exclusive, and some methods incorporate a combination of both. Table 3.7 summaries result
from common evaluation metrics used by all DL papers included in this section.

Table 3.7: Performance metrics used to evaluate DL methods in TB-AI microscopy

Paper Accuracy Sensitivity/Recall Specificity
Lopez et al. [134] N/A N/A N/A

Kant & Srivastava [114] 99.80% 83.78% N/A
Panicker et al. [174] N/A 97.13% N/A

Samuel & Kanna [63] 95.05% N/A N/A
Xiong et al. [254] N/A 97.94% 83.65%
Ahmed et al. [4] 96.07% N/A N/A
Hu et al. [103] 98.40% 98.00% 98.4%

El-Melegy et al. [71] N/A 98.4% N/A
Mithra & Emmanuel [148] 97.55% 97.86% 98.23%

Serao et al. [199] 99.67% 99.98% 99.34%
Swetha et al. [263] N/A 94.7% 99.00%

3.6.1 Custom-made CNN architectures

Like traditional ML approaches, most existing DL work utilize as input pre-cropped FOVs, or
tiny patches, from microscopy slides which contain Mtb bacteria (or not). For example, Lopez et
al. proposed a technique for automated classification of brightfield smear microscopy patches
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employing RGB, R-G, and greyscale patch versions as inputs to a CNN [134]. Xiong et al. also
described a method using a CNN which was pre-trained on CIFAR-10 (an open-access dataset
of 60000 of 32 ×32 pixel images, https://www.cs.toronto.edu/~kriz/cifar.html) in
order that it could then assess pre-cropped patches from TB microscopy slides of the same
size [254]. To improve results, bootstrap training was implemented. Although the authors did not
include any further architectural information, the results were promising, with 97.94% sensitivity
and 83.65% specificity.

Another method that used manually cropped positive (bacteria containing) and negative patches
(void of bacteria) was described by Serrao et al. [199]. Each patch binarisation involved the
segmentation of background from foreground (Mtb containing) regions. Groups of 100 patches
were then combined into a 400 × 400 pixel mosaic images. 5000 of these mosaic images were
inputs for three CNNs. Results from a range of performance metrics were reported, namely
sensitivity of 99.98% and specificity of 99.34% for CNN-1.

All the methods listed so far this section so far have a key restriction in that they were not
fully automated, as they focussed on manually cropped patches. Kant & Srivastava also used
a patchwise classifier to categorise whether particular patches from TB microscopy images
included bacteria or not [114]. However, instead of manually cropping, they used an autofocus
method to construct 20 × 20 pixel patches from the whole slide. The CNN used to classify these
patches was composed of five convolutional layers and no linear layers. Efforts to automate
cropping of regions of interest (either FOVs or smaller patches) from whole TB microscopy
slides will be discussed further in Section 3.8.

3.6.2 Gradient-based approaches

The literature includes works that employ a multi-stage approach, initially utilizing gradient-based
CV algorithms for image segmentation. This preliminary step offers advantages such as effective
noise reduction and computational efficiency, for subsequent processing through CNN. Panicker
et al., for instance, utilised the fast nonlocal means method to denoise images from a publicly
available FOV dataset, followed by Otsu’s threshold to binarize the images into background
and foreground [174]. The authors then fed these images into a CNN with five layers and
one linear layer for pixel classification. Although their methodology surpassed similar earlier
efforts, it was incapable of classifying bacteria with unusual Mtb shapes, i.e. anything other
than elongated rods. In the work of Mithra el al. , the channel area thresholding channel area
thresholding (CAT) technique was proposed for bacterial image segmentation of FOV images
from the publicly available ZNSM–iDB dataset [148]. Intensity-based local bacilli characteristics
were derived utilising a location-oriented histogram and a speeded up robust feature (SURF)

https://www.cs.toronto.edu/~kriz/cifar.html
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algorithm extraction. Deep belief neural networks were used to classify the bacilli items following
segmentation stage. In a similar paper, Swetha et al. pre-processed brightfield sputum images by
noise reduction and intensity modulation prior to a segmentation method which used CAT in
addition to extracted features such as HOG and SURF [221]. Classification was performed using
a CNN classifier, which classified the input image as mild, moderate, or severe depending on
the number of pixels classified belonging to the bacteria class. Although the authors reported
sensitivity of 94.7% and specificity of 99.0% for their method, they provided no more information
on the architecture of the employed model.

Samuel and Kanna described a method which attempted to automate analysis of whole microscopy
slides, without manual cropping [63]. A motorised microscopy stage pre-selected FOVs from the
slide. The FOVs were then used to train a DCNN (customised InceptionV3 [222] model) with
transfer learning to derive bacteria inference feature maps. Finally feature maps were employed as
training data for an SVM to determine whether FOVs from the ZNSM–iDB dataset included Mtb
cells. Hu et al. , published a method providing a classification approach for complete slides [103].
Considering that high resolution digital images of microscopy slides are often several GB in size,
the authors developed a dataset creation technique based on non-overlapping subgraph partition.
Pre-trained models namely ResNet [98], InceptionV3 [222], and DenseNet [104] with transfer
learning were employed to evaluate the performance of their approach. InceptionV3 fared the
best, with an error rate of less than 5% when reading a slide for diagnosis. However, when more
than one bacillus was present, the subgraph partitioning method sometimes resulted in incorrect
bacterial counts.

3.6.3 Employing existing models for Mtb bacteria feature extraction

Methods also leverage pre-trained CNN as foundational elements for feature extraction, either
with or without transfer learning. This technique may enhance the discriminative power of
traditional ML classifiers, such as SVM, by utilizing the set of feature representations learned by
these deep networks. For instance, Ahmed et al. presented a method in which they categorised
numerous bacteria associated with a variety of diseases [4]. They used InceptionV3 with transfer
learning and discarded all fully connected layers, thereby functioning as a feature encoder. Later,
the collected features from InceptionV3 were flattened and fed into an SVM classifier. El-Melgey
et al. presented a work using Faster Region-based convolutional neural networks (Faster-RCNN)
to swiftly localise bacteria using ground truth bounding boxes [71]. However, due to the high
likelihood of false positives, the authors introduced a second step to determine whether the
projected bounded boxes actually belong to the bacterium class. The comparative evaluations
were limited to using bounding boxes that could fit only a single bacterium, constraining the
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analysis to isolated bacteria detection rather than clusters. This represents a limitation of their
method, given the biological tendency of Mtb cells to clump together.

3.7 Research on Mtb bacteria load quantification

For Mtb quantification, some authors manually segmented microscopy images and counted the
bacteria present. For example, Sotaquirá et al. converted sputum smear images into YCbCr
and Lab colour spaces which they subsequently evaluated for their relative difference [212].
Quantification of bacteria was done by computation of the mean size of bacilli, accounting for
image resolution and the pixel count of the segmented image. Aside from qualitative and visual
results, the authors provided no evaluation metrics. Moreover, the heuristic information at the
core of their method was dependent on image dimensions and, as explained in Section 3.3.1, it
cannot be assumed that all datasets include images with the same dimensions. Finally, a major
limitation of this work was that manual enumeration of bacteria undermined the objective of
automating the process.

Nayak et al. proposed a technique that employed colour segmentation and colour space
transformation [153]. They described a five-step process: i) colour-based segmentation, ii)
connected component labelling, iii) size thresholding on the resulting contours, iv) proximity
grouping, and v) size constraints. The contours produced by this process were used determine
how many bacteria were present. In line with the focus on utilizing pre-trained models for
feature extraction, Soans et al. proposed a method that segments images and manually counts
detected objects of interest using the HSI color model [209]. Given the now segmented image, a
knowledge-database was constructed and passed to a decision tree classifier to determine which
HSI (Hue, Saturation, Intensity) component values corresponded to the bacterium class. Lastly,
proximity groupings and size constraints were used to eliminate false negative objects. Similarly,
by thresholding hue range, a hue colour component-based approach was utilised to segment
bacilli, and morphological characterisation was employed to determine whether or not bacilli
were valid [176]. Through thresholding the area, perimeter, and contour characterizations, other
artefacts were eliminated. Using area, perimeter, and shape characteristics, clumps of bacilli
were detected. Manual counting occurred followed segmentation of bacilli and bacilli clusters.

Mirtha et al. proposed a quantification method comprised of three steps: i) segmentation, ii)
feature extraction, and iii) classification [147]. The input sputum smear microscopic image
was first subjected to a colour space transformation, followed by thresholding to generate the
segmented image. Length, density, area, and histogram characteristics were collected for fuzzy
and hyco-entropy-based decision tree (FHDT) based classification, which classified contours as
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low-bacilli, non-bacilli, and overlapping bacilli. An entropy function, in this case, hyco-entropy-
based decision tree (HEDT) of was created for optimum feature selection as input to a decision tree
model. The HEDT algorithm’s key contribution lies in its ability to simultaneously manage both
continuous and discrete variables during the decision tree construction process. Conventional
decision trees operate based on information gain, a method well suited for categorical variables
but can be unreliable for continuous ones due to their nature of creating discrete partitions
of the feature space [196]. The HEDT approach addresses this limitation by incorporating
entropy-based techniques specifically designed for handling continuous variables. In addition, a
fuzzy classifier is used for classification analysis in order to determine the number of overlapping
bacilli. Perhaps the most relevant contribution of this study is that it was the first to automate
bacilli counting, compared to previous research that accomplished this step manually.

In one of the most recent publications on the subject, Vente et al. proposed a complicated approach
for the localisation of bacteria, utilising edge detection, Fourier analysis, and morphological
operators, and then calculating the bacterial count in areas of interest using simple regression [241].
The authors reported a 6.5% error in the test set.

My own work on automated bacterial counting will be described in Chapter 5.

3.8 Research on automated FOV acquisition

A recurrent theme in this review is that most ‘automated’ approaches to TB microscopy require a
computer-based model system to be fed with images that are already cropped, either as FOVs
or much smaller patches. As a substantial time-consuming component of image analysis is
finding FOVs of interest, TB-AI will be most useful if it is able to automate the entire process
of microscopy. The few authors to date who have attempted this have deployed one of three
strategies: 1) using a microscope with an auto-focus function to select FOVs of interest (via a
mathematical algorithm based on colour or image intensity) then applying ML or DL tools to the
chosen FOVs, 2) developing an end-to-end model in which an entire slide image is fed into a
model which constructs and analyses patches of interest using DL, or 3) simply partitioning a
full slide image into smaller sections which are read one-by-one by DL methods, i.e. a filtering
stage whereby non-salient FOVs are excluded.

As described in Section 3.5.1, Forero et al. used the first strategy in one of the earliest attempts
to completely automate analysis of Auramine O stained fluorescence microscopy slides in TB
diagnosis [75]. Autofocus of the microscope was accomplished by a two-pass algorithm that
determined whether a specific area was void of bacterial content before bringing the image into
focus [141]. The initial run of the algorithm analysed slides at three 𝑧− 𝑎𝑥𝑖𝑠 points to assess if
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there was sufficient variance to signal the presence of salient content in the field. As Mtb bacteria
occupy extremely small areas of any image, i.e. most is taken up by background, the experiments
by these authors demonstrated that a narrow scanning window (256 × 256 pixels) is required
for accurate FOV localization. Four auto-focusing methods were assessed and two (wave and
auto-correlation based approaches) produced promising results.

A more recent attempt to make use of autofocus functions is that of Zhai et al. [270]. Their
work used light rather than fluorescent microscopy images and employed a row-wise scanning
strategy followed by three different autofocus measurements: the sum of gray-level differences,
the Laplacian, and the Tenengrad function with the Sobel operator. The Sobel operator performed
best but the reported accuracy of their overall method was much lower than that of methods
which worked on manually cropped FOVs [174, 192, 242]. Kant and Srivastava’s used the
second strategy to processes entire slides in a bottom-up manner, by aggregating information
extracted from small patches [114]. They used a five-layer patch-wise classifier to load each tile
from a microscopic slide and a 20×20 pixel window which moved through tiles of the slide to
assess the presence of bacteria. Although they reported 99.8% accuracy, this is misleading for
reasons described in Section 3.4.1. The majority of the area on a microscopy slide is occupied
by background, resulting in high accuracy owing to accurate background classification, i.e. in
effect, FN errors are deprioritized). When sensitivity and specificity were considered, rates of
83.8% and 67.6% respectively were comparable to or worse than other classification methods
discussed in this chapter. Slightly disappointing performance metrics from Forero et al. [75],
Zhai et al. [270] and Kant [114] illustrate an important point. Whilst it is desirable to develop
TB-AI microscopy methods which perform automatic selection and detailed analysis of FOVs or
patches from whole microscope slides this is an inherently more difficult task than developing
models which automate FOV analysis alone.

The third strategy, of simply partitioning large slide images into small sections, which are read
one-by-one was used by Hu et al. [103] and is also the basis of my own work on whole slide
analysis to be discussed in Chapter 6.

3.9 Research on phenotypic characterisation of bacteria

My literature review did not identify any existing studies seeking to automate measurement of
phenotypic characteristics of Mtb cells. From broader reading on related work, several papers
do describe AI-based morphological phenotyping in the context of other bacterial infections,
providing proof-of-principle for this strategy. This work will be discussed in detail in Chapter 7,
alongside my own experimental approach.
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3.10 Discussion

Efforts to automate the analysis of sputum smear microscopy images have gradually advanced over
a period over more than twenty years. This chapter has described progress in TB-AI microscopy
using traditional ML methods in Section 3.5, DL methods in Section 3.6, and techniques for
bacterial quantification in Section 3.7.

However, several obstacles remain to be addressed including a need to standardise image sets
and performance metrics for experimental work. Even meticulous slide preparation for smear
microscopy can generate images of variable quality with unpredictable artefact and background
staining in the sputum matrix. TB-AI work which selects only high-quality images for analysis
may report high performance results which would not be replicated in a ‘real-world’ setting. The
decision-making process involved in reading stained sputum smears is inherently challenging.
If two experienced microscopists were asked to carefully apply manual labels to Mtb cells in
a series of smears, there would almost certainly be some differences in their labelling. When
the same images are read by a computer-assisted system these challenges will remain, and any
method of image analysis will always be limited by the standardised quality of the data input.
However, TB-AI analysis should, at least, apply the same uniform approach to the reading of
‘difficult’ slides. Development of clear guidelines for creation of image datasets to be used for
TB-AI work would be beneficial. Whilst it may be difficult for laboratories around the world to
settle on completely unified approaches using identical equipment, closer agreement on essential
characteristics of datasets for AI work would remove some of the current variability. Ideally,
open-source, standardised and annotated template datasets could be developed across research
centres which would save time and resources when developing new methods. WHO, or other
international bodies may help to coordinate this effort. ‘Training’ and ‘test’ combinations of
standardised and individually created ‘proprietary’ image collections could also be used to study
the robustness of new tools, bearing in mind prior experience that methods do not always translate
well between datasets [255].

Establishment of standard performance metrics to evaluate new TB-AI microscopy methods
would enable researchers to evaluate the effectiveness of their methods across multiple image sets,
reducing the need to adjust model parameters and simplifying method comparison. Consensus
agreement between groups active in this field, perhaps supported by WHO guidelines, may also
be useful here. In this chapter, I have compiled the predominant evaluation metrics utilised for
classification, regression, and segmentation. My work shows clear disparity amongst reported
metrics for various approaches to the same problem and this hampers researchers’ ability to
ascertain the effectiveness of each.
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I have observed that conventional ML techniques exhibit a broad spectrum of sensitivity/recall
and specificity scores. The successful integration of ML and heuristic knowledge, specifically
incorporation of anticipated cell geometric features into the algorithm, is a contributing factor
to some methods which show higher sensitivity. However, this approach also presents a
challenge as the same factor that enhances the method’s ability to detect Mtb bacteria, also
increases its susceptibility to FP, adversely impacting specificity [270, 116]. Methods that
incorporated a preliminary segmentation stage or a hybrid approach, commonly by leveraging
CNNs as feature extraction mechanisms and subsequently feeding these feature maps into another
classification/regression algorithm like SVMs, consistently attain superior results [103, 199]. In
addition, akin to conventional ML methodologies, DL techniques frequently employ amalgamated
shape descriptors. These descriptors are generated either through an auxiliary CNN or through
image processing algorithms such as HOG, SURF, or CAT [221, 147]. In general, detection of
Mtb bacteria relies on appearance and shape regardless of whether the approach employs ML or
deep learning techniques.

Although the role of sputum smear microscopy in TB treatment monitoring would be enhanced
by TB-AI tools to report changes in bacterial load, current literature on Mtb bacterial load
quantification on microscopy images is too sparse to draw conclusions on the most appropriate
methods for this. A few works have utilised a pipeline approach to completely automate of the
quantification process, which may involve a segmentation stage. However, their performance
remains insufficiently good for clinical use. Similarly, selection of cropped FOVs for analysis
from whole slides predominantly remains a manual process and greater effort to automate this is
necessary.

An area which requires attention in TB-AI microscopy is the deficiency in explainable artificial
intelligence (XAI) techniques. Despite receiving considerable attention for multiple healthcare
applications [44], DL algorithms are only slowly being implemented in clinical practice [56].
This is primarily due to the need for the enhanced transparency and interpretability of ML
models, particularly in critical applications such as disease diagnosis and treatment. XAI methods
strive to enhance transparency and interpretability in the decision-making mechanisms of AI
models, often favouring simpler and more comprehensible representations over intricate ones.
XAI models should provide justifications for their decisions by emphasising relevant features
or patterns in the input data that influence outcomes. This is crucial for establishing a model’s
trustworthiness [56]. Within the realm of TB research, XAI techniques could be employed to add
understanding of the decision-making mechanisms used by models for Mtb cell identification
and classification. Integration of microscopy and XAI techniques have been explored in related
biomedical applications including detection of leukaemia and babesia [3, 68], creating a precedent



3.10. DISCUSSION 61

for future research in the field of TB-AI to incorporate these advantages as well.

Overall, prior progress on TB-AI microscopy using ML and DL tools provides a useful backdrop
and incentive to the experimental work which I will now describe in Chapters 4-7.





4Chapter Four

Geometry-based features
for Mycobacterium

detection

Chapter abstract – A critical aspect of any algorithm created to automate analysis of medical
images is accurate object detection: in this case, Mtb bacteria on sputum smears. Many Mtb
cells exhibit a consistent morphology characterised by a straight, thin, and elongated form.
However, there are exceptions. Clumping or intersection of multiple bacteria can generate
unusual structures, e.g. a cross or a crescent shape, and inconsistent uptake or retention of
microscopy dyes can alter cell appearance. In practice, a large number of arbitrary bacterial forms
are possible. This chapter employs non-learning CV techniques to acquire information about
the structure of Mtb cells and detect their presence in FOVs from Auramine O stained slides.
A Hessian-based ridge detector with a suppression effect and threshold segmentation is used
to detect the thin outlines of bacilli-like objects, then a succession of geometric characteristics
are used to classify these as Mtb or not. A performance metric comprised of Hu moments was
used in addition to standard metrics (Jaccard index and SD coefficient) to evaluate the method on
two FOVs test sets. Whilst overall performance of this approach compared unfavourably with
published methods for the same task, the proposed method included development of an image
enhancement technique which will be used in subsequent thesis chapters.

4.1 Chapter introduction

Medical images were added to AI research for the first time in 1970s, an era when AI was
trying to demonstrate its usefulness [225]. Early efforts were founded on rule-based, brute-force
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search algorithms, often known as expert systems [195]. In the 1980s, ML was introduced
for diagnostic imaging [225]. Several ML approaches including SVM, Multi-layer perceptron
(MLP), and k-means classifiers were used. However, limitations of hardware at that time, such
as computational power and memory, thwarted the potential of these ML approaches to solve
complex image analysis problems. This was a rate-limiting issue for genuine advancements in
AI to study medical images. In parallel, there were efforts to automate TB microscopy using
the microscope itself rather than the images; e.g. autofocusing algorithms to automatically
concentrate on regions of interest within FOVs [49].

More recently, progress in ML/DL has yielded renewed interest in TB-AI microscopy [142,
211, 218], but most approaches retain heavy hardware requirements, such as large graphical
processing unit (GPU) memory, due to the vast calculations needed to complete the work.
Consequently, the viability of this strategy is challenged by those who feel that the cost of the
activity is excessive for sustainable implementation [238]. This criticism is particularly pertinent
in the context of techniques intended to tackle a disease like TB which is mainly prevalent in
LMICs. The increased computational and resource demands of DL means that researchers
should not automatically resort to its use even if it typically yields superior results; in some
cases less computationally intense CV approaches may be able to address some problems more
efficiently [159].

There are differences between the overall underlying principles of CV and DL methods. CV
techniques such as the scale invariant feature transform (SIFT) algorithm [136], basic colour
thresholding, and pixel counting algorithms are not created for specific tasks or designed
using specific datasets. Their structure and implementation remains consistent across various
applications, but the resulting outcomes may vary [159]. In contrast, DL models use training data
during development. The iterative nature of their learning processes endeavour to capture features
that optimally align with characteristics of the training data [159]. The success of a network’s
output is predicated on it being trained on data which are representative of all the input that it
will subsequently receive. Whilst the ability to refine DL model parameters using training data
can improve performance, it also creates the risk of model overfitting, a widely recognised and
substantial hurdle within the domain of ML [88]. For example, if a model for TB-AI microscopy
is too carefully trained on a single image set, this can constrains its capacity for generalisation to
new images generated in a different setting under different conditions. In contrast, non-learning
CV techniques which do not incorporate a data-driven learning process offer a more consistent
approach, yielding predictable outcomes, without the concern of overfitting.

Training datasets for supervised ML and DL models is laborious to assemble; for classification
and segmentation approaches to TB-AI microscopy, Mtb cells within a dataset of images
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must be manually annotated by an expert microscopist before use in model training. As
large training datasets are often necessary, the process of annotation can be prohibitively time
consuming, discouraging use of DL for many clinical applications [247]. Work with non-learning
CV algorithms can begin without the need for supervised learning and renders annotations
unnecessary at that stage. Of course, evaluating the performance of any method (CV or DL)
eventually necessitates a comparison with ground-truth labels, meaning that annotated images
are ultimately required. However, the need for ground truth data in both learning and testing
phases of supervised ML/DL methods demands that a higher quantity of labels are available, and
that they are accessible much earlier in the experimental process.

These observations have relevance to the chronological workplan of this thesis. The early
phase of this project coincided directly with the onset of the Covid-19 pandemic, when the
clinical supervisor needed for dataset annotation was assigned to emergency hospital-based
duties, delaying the availability of a formal image training set for several months. This potential
obstacle created a research opportunity to explore CV-based approaches to TB-AI microscopy
and evaluation of the resulting methods was completed once annotated ground truth images were
available.

This chapter sets out with two main goals:

• To establish whether automated Mtb detection can be done using only non-learning
CV techniques, without requiring supervised ML or large annotated datasets for model
development.

• If the first goal is achieved, to assess whether regions of interest for bacterial detection can be
used to estimate the total number of bacteria in a given FOV, providing an introduction to
bacterial load estimation. This is considered important, given the lack of data on methods for
Mtb load quantification revealed in Chapter 3.

Overall, in this chapter, I aim to establish whether non-learning CV methods can reliably detect
and count Mtb cells without extensive training from ground truth labels, leveraging the inherent
interpretability and visualization capabilities of classical image processing.

4.2 Methodology

Here I will provide some background on the principles and mathematical tools underpinning my
proposed method for this chapter, before describing the proposed method directly.
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4.2.1 Segmentation in digital image processing

As described in Sections 3.5 to 3.7, before classifying or counting bacteria, many of the
more effective TB-AI microscopy methods from prior work began with a segmentation
stage. Segmentation involves subdividing images into smaller sections which are easier to
interpret, because elements of interest are brought to the fore and everything else is excluded
as background [18, 201]. This requires examination of differences or similarities between
neighbouring pixels in each image according to predefined properties, e.g. colour or intensity.
Most segmentation techniques are either boundary based (dependent on finding sudden changes
in pixel properties which represent edges or ridges) or region-based (reliant on finding groups
of pixels with common properties across part of an image, e.g, using clustering [261] or
thresholding).

Mtb bacilli are mostly straight, thin, and elongated in shape so edge-based segmentation to
identify the cell perimeter is useful. However, in cases of noisy images, such as those with
dye spillage or background artefacts on a microscopy slide, the literature suggests employing
region-based segmentation as a more effective approach [259]. The method developed in this
chapter will include elements of both approaches. During edge detection, neighbouring pixels
with similar predefined properties are linked together to form a contour. The objective of edge
detection is to identify significant transitions in image intensity, which often correspond to object
boundaries or other important structural elements in the image [201, 136, 31]. A sudden and
significant change in the intensity values of neighbouring pixels can indicate the existence of
an edge. Variation in intensity between adjacent pixels is not limited to a specific direction and
the directional change that exhibits the greatest magnitude is given as a vector, i.e. the image
gradient [31].

The definition of an edge in image processing is a localised and significant variation in intensity
or colour, such as a traverse of contrasting dark and light values that demarcate a transition
between different regions or objects. In contrast, ridges are thinner lines in comparison to edges
and have pixel intensities or color values that are either darker or lighter than those of their
adjacent pixels. Edges are often spotted using a first order derivative operator, such as the Laplace
operator used in the Canny edge detector [31]. Calculations for locating ridges, on the other
hand, need second order derivatives, which indicate how much the gradient changes [178, 38].
The difference between an edge and a ridge can be visualised in Figure 4.1 [1]. The gradient is a
fundamental concept in the domain of edge and ridge detection, as it quantifies the magnitude
and direction of the rate of change of intensity or other image attributes.
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((a)) ((b)) ((c))

Figure 4.1: Figure (a) shows an arbitrary patch from a greyscale image belonging to a thin line. In this
case the background is bright while the lines are darker. Figure (b) shows the same patch with the same
line represented as an edge. Lastly, figure (c) has the original line represented as a ridge.

4.2.2 Computing image gradients

A two-dimensional matrix may be used to represent a binary or greyscale image. Each 𝑥 and
𝑦 point in the matrix represents the pixel’s intensity value. Binary format images have pixels
values typically 0 or 1 while greyscale images range from 0 to 255, low to high — dark to bright.
As mentioned earlier, in order to differentiate the background from an object within an image
using boundary-based segmentation, it is necessary to locate edges or ridges at specific locations.
The mathematical functions commonly used for this will now be described.

The derivative of a function measures the function’s rate of change in relation to its independent
variable. The partial derivative of a multivariable function quantifies the rate at which the
function changes with respect to each individual independent variable. Quantifying each partial
derivative is done by measuring the extent to which the value of a function changes when each
independent variable is altered, while holding all other variables constant. Symbols such as 𝜕 are
commonly employed to represent partial derivatives, which are utilised to calculate of the gradient
of a multivariable function. The gradient is a vector composed of the partial derivatives of a
function with respect to each independent variable. This gradient pertains to both the direction
and magnitude of the steepest ascent or descent of the function. The gradient of an N-variable
function at each point is an N-D vector with components obtained by the N-direction derivatives,
in this case a 2-variable function, 𝑓 (𝑥, 𝑦) [201, 87], given by:

∇ 𝑓 =
[
𝜕 𝑓

𝜕𝑥
𝜕 𝑓

𝜕𝑦

]
(4.1)

In the physical world, where light intensity exhibits continuous variation throughout a given
scene, it is plausible to conceptualise images as continuous functions. However, in digital image
processing and representation, it is generally accepted to define images as discrete signals. In
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order to perform image processing on a computer, it is necessary to sample the image at discrete
positions along both the horizontal and vertical axes. The process involves partitioning the
continuous image into a matrix of individual pixels. Each pixel serves as a discrete sample of
the intensity at a particular location, typically achieved by employing a two-dimensional matrix.
Consequently, image derivatives can be approximated by finite differences. Some finite difference
techniques are forward, backward, or central and the choice depends on the specific application
and the desired accuracy of the derivative approximation. To determine the potential variation in
intensity between pixels, consider the image function 𝑓 (𝑥, 𝑦) where 𝑥 and 𝑦 denote the spatial
coordinates of the pixels under consideration, while 𝑖 and 𝑗 are indices which represent discrete
positions within the image:

𝑥 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛⇒ 𝑓 ′(𝑥, 𝑦) ≈ 𝑓 (𝑥𝑖+ℎ,𝑦 𝑗 )− 𝑓 (𝑥𝑖−ℎ,𝑦 𝑗 )
2ℎ

𝑦 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛⇒ 𝑓 ′(𝑥, 𝑦) ≈ 𝑓 (𝑥𝑖 ,𝑦 𝑗+𝑘)− 𝑓 (𝑥𝑖 ,𝑦 𝑗+𝑘)
2𝑘

(4.2)

ℎ and 𝑘 are the step sizes to define the interval between the points at which the function values
are sampled to estimate the derivative; smaller h or k would allow more precise estimation but
requires more computational effort while larger h or k would lead to less accurate approximation
but less computational effort. Utilizing small convolution filters of size 2×2 or 3×3, such as the
Sobel [210], Roberts [228], and Prewitt [178] operators, it is also possible to calculate image
derivatives. Using these filters is more precise and can also filter (or smooth) an image and
sharpen its edges simultaneously. The output of convolving filters (also known as kernels) over
an image is sometimes referred to as a feature map; notably, the core functionality of CNNs
involves kernels traversing over an image to produce what are commonly termed as receptive
fields. For instance, given an image 𝐼 and the Sobel kernel 𝐾 , its first-order derivatives may be
calculated as follows:

𝑥 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛⇒ 𝑓 ′(𝑥) ≈ 𝐼 ∗𝐾𝑆𝑜𝑏𝑒𝑙

𝑦 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛⇒ 𝑓 ′(𝑦) ≈ 𝐼 ∗𝐾𝑆𝑜𝑏𝑒𝑙𝑇
(4.3)

A wider kernel will often provide a better approximation of the derivative, with derivatives of
Gaussian functions serving as an example of such filters [29]. For specific applications that
require the removal of high-frequency noise, the image undergoes pre-processing via blurring
prior to the convolution operation, which in turn emphasizes edges or ridges with strong intensity.
For example, within TB microscopy datasets, dye spilling will induce a shift in pixel intensity,
from a dark background to a lighter shade. As a low pass filter, the Gaussian filter has the added
feature of including this behaviour within the convolution.
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4.2.2.1 Hessian matrix, eigendecomposition and principal curvature

The Hessian matrix is a square matrix of second-order partial derivatives and second-order cross
partial derivatives of a scalar-valued function. It may be used to characterise the local curvature
of a function with several variables, i.e. critical points. Its mathematical properties (second
partial derivatives), along with observations of bacillary structure, considerably support the
adoption of a Hessian-based ridge detector for segmentation of TB-AI images [55]. Notably, the
eigendecomposition of the Hessian matrix allows for a differentiation between different kinds of
local image behaviour, leading to a straightforward process of distinguishing between blob-like
structures, uniform regions, and elongated structures which may be bacilli. In particular, consider
the Hessian matrix with the size of 2×2 pixels, at the scale 𝜎 and the image locus 𝑃:

𝐻 =

[
𝐿𝑥𝑥 (𝑃, 𝜎) 𝐿𝑥𝑦 (𝑃, 𝜎)
𝐿𝑦𝑥 (𝑃, 𝜎) 𝐿𝑦𝑦 (𝑃, 𝜎)

]
(4.4)

where 𝐿𝑥𝑥 (𝑃,𝜎) is the convolution of the second-order derivative of a Gaussian 𝜕2

𝜕2𝑥
𝑔(𝑃,𝜎)

with the second derivative of an input image at point 𝑃, likewise for 𝐿𝑥𝑦 while 𝐿𝑦𝑦 are the cross
partial (first-order) derivatives [189, 38]. The scale of the Hessian is governed by the value
of 𝜎; the smaller its value the finer, (i.e. more local) the scale, and conversely, the greater its
value, the coarser (i.e. more global) the scale. The determination of the value of this parameter
can be seen as a trade-off emerging from the observation that Mtb cells in fluorescence images
can be distinguished from the remainder of the image content both by their characteristic shape
and apparent brightness. In some instances, the shape is less informative, e.g. clumping or
overlap of bacilli may distort or mask their individual shape leaving brightness as the primary
cue, whilst in other instances, the bacteria do not exhibit the expected brightness, e.g. if there is
poor fluorescence dye uptake or loss of acid-fastness by individual cells, so the shape becomes
the most useful cue. Both aspects of appearance need to be considered for maximum robustness,
which affects the choice of 𝜎. Figure 4.2 offers a visualisation of the effect applied on the image
by 𝜎 given a range of values.
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((a))

((b))

((c))

((d))

((e))

Figure 4.2: : Figures (a)-(e) show different values for the 𝜎 parameter in the Gaussian kernel and their
effect on a TB-AI microscopy FOV. The 𝜎 values used were odd numbers in the range of 1-9, showing
their effect from (a) to (e) respectively. While smaller numbers (1 in (a) and 3 in (b)) did not obtain
meaningful geometric information for bacteria, larger numbers (7 in (d) and 9 in (e)) obtained excessive
information: because the image’s smoothing impact was greater than it should have been, non-bacterial
objects, such as artefacts, were emphasised, resulting in an increase in total image noise.
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4.2.3 Proposed method

In the proposed method, Hessian matrices are computed for all image loci in the dataset, then used
to extract the pseudo-likelihood of each pixel being incident on an Mtb bacterium. Recall that
the Hessian is informative regarding the nature of local appearance variation in an image [119].
Specifically, since bacilli form elongated structures, loci that demonstrate large change in one
principal direction (perpendicular to a bacterium) and minimal change in the other (along a
bacterium) may be easily detected using the respective Hessian matrix eigenvalues [82]. To
create an enhanced image (in the context of the end goal), each pixel in the original image is
replaced with the value of the higher magnitude value and lower magnitude value of the Hessian
eigenvalue computed at the locus, referred to as 𝜆1 and 𝜆2 respectively; see Figure 4.3. After an
iterative experimental process of manual trial and error on a small set of typical images from the
Image Test Set 1 (see section for details of image sets 4.3.2) the value of 𝜎 was chosen at 5 (this
may be compared with the approach to 𝜎 choice in related work [38, 70, 189]).

4.2.3.1 Segmenting images based on the eigenvalue ratio

Eigenvalues of the computed Hessian matrix play a crucial role in various image detection and
processing applications. They provide information about the curvature of image intensity levels at
each pixel and can be used to determine if a pixel belongs to the sought-after object in the image.
However, their use is contextual and application dependent. For example, if both eigenvalues of
the Hessian matrix at a particular place are strong positive values, this indicates that the surface
is concave at that point and suggests the existence of a dark blob [189]. Instead of manually
analysing the eigenvalues, and in order to approach the task in an unsupervised manner (i.e. no
annotation labels required on the images), the ratio between the two eigenvalues (𝜆2 ÷𝜆1) is
calculated. When both eigenvalues at a pixel have similar scalar value, their division yields a low
number, signifying that the pixel primarily represents the background. If the result of the ratio
between the eigenvalues is very close to 0, it indicates that the pixel in question belongs to the
background. Conversely, if the ratio is large, this suggests the presence of a structural element of
interest.

The eigenvalue ratio from preliminary sample of images from Image Set 1 has a wide range, from
5.8e−8 to 1.0e+8. The wide range of values in the ratio matrix renders it unsuitable for direct
detection tasks; further processing is essential to mitigate the excessive noise commonly induced
by division operations. It is unclear at which point the ratio starts to represent detection of useful
structures and using a colourmap to create an image from this matrix yields a black image filled
with scattered white dots. Therefore, a suppression effect should be applied to the ratio matrix,
setting at an appropriate threshold value to remove high but very infrequent ratios which distort
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((a))

((b)) ((c))

Figure 4.3: (a) Example of the typical fluorescence microscopic image used, and (b, c) the corresponding
output using the eigenvalues in higher-magnitude (𝜆1) and lower-magnitude (𝜆2) respectively in conjunction
with a greyscale colourmap to display their matrix values as an image.

interpretation of the entire image. If the ratio value is more than the threshold value, then it
should be suppressed to the threshold.

To choose an appropriate threshold value for the suppression effect, histograms of 100 images
from Image Set 1 are used to determine which values of the ratio matrix have consistently low
frequency: consistently high frequencies are expected for background information (or information
close to the background), whereas ratios reflecting a structure arise less often, and noise least
frequently. These histograms are built using 12000 bins of width 30, which is sufficient to display
the frequency shift and has the same range as the ratios. Figure 4.4 shows typical histograms
from three images. From this figure, the frequency of observed ratios drops very quickly after
the fourth bin (so ratios >480 are not shown). Setting the suppression threshold value within bins
0-30 and 30-60 removes too much information from the image, whilst setting a threshold >90
retains excessive noise. The key dynamic range in all histograms is the third bin, so the threshold
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is set at 75, the midpoint of that bin.

((a))

((b))

((c))

Figure 4.4: (a)-(c) are three examples of eigenvalue ratio histograms from individual images in the Test
1 dataset. All exhibit an abrupt shifts until the third bin, between the numbers 60 and 90 followed by
consistently low frequencies for all input ratios. The suppression threshold is set at 75 (the mid-point of
that bin).
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Table 4.1: Case Number 1 relates to objects that exhibit clear visibility with distinct pixel intensity and
sharpness, consistent with stained Mtb cells. Case Number 2 relates to objects with diminished pixel
intensity and reduced clarity, but which remain distinguishable from the background as possible Mtb cells.
Case Number 3 relates case, is for objects with inconsistent pixel intensity in specific areas of their shape
(perhaps due to variable fluorescent dye update) but which, overall, have features that are still compatible
with Mtb cell morphology. Visual examples can be seen in Appendix A.2

Eigenvalue 𝜆1 Eigenvalue 𝜆2

Case Number Type Range Type Range
1 High -ve (−1.0𝑒−10,−2.1𝑒−10) Low -ve (−2.5𝑒−10,−5.0𝑒−10)
2 Low -ve (−1.5𝑒−10, ; −6.9𝑒−11) High -ve (−7.0𝑒−10,−1.2𝑒−11)
3 Low +ve (1.0𝑒−10,8.9𝑒−11) Low -ve (−2.5𝑒−10,−5.0𝑒−10)

4.2.3.2 Threshold-based segmentation

The application of this suppression effect results in a binarized image that allows for the detection
of Mtb cells, however numerous artefacts are also present. It facilitates the creation of a segmented
image with potential bacilli and a range of artefacts with varying morphology and dimensions. To
minimise these artefacts, threshold segmentation is used, which is perhaps one of the most widely
used segmentation techniques [261]. It is a straightforward technique that splits a greyscale image
data according on the pixel value of each target [261]. There are two approaches to threshold
segmentation: setting a global target for the entire image set, or a local target with numerous
threshold values for parts of the data with distinct requirements for each [261]. For this task, a
global threshold is employed to satisfy a universal requirement for all images. Similar to the work
of Rudzki [189], both eigenvalues are examined and considered to generate three criteria that
indicate the presence of possible bacteria. At this stage, the objective is not to definitely detect and
classify objects as Mtb cells, but rather to focus on specifically identifying and isolating elements
whose geometry requires more careful examination, while excluding all other components of the
images. For this step, any point that does not meet the requirements indicated in Table 4.1 is
assigned a value of 0 in the ratio matrix, i.e. it becomes background and is ignored.

In some instances, the region inside an Auramine O stained Mtb cell is not of uniform brightness.
Therefore, when the above approaches to image processing are employed, the apparent shape
of certain bacteria is altered. Hysteresis is used to enhance individual pixels in order to build
the complete shape of the bacterium. Hysteresis is a technique utilized in procedures like the
Canny edge detector, in which two thresholds, one low and one high in value, are employed
for the purpose of distinguishing between weak and strong edges in an image [31]. Each pixel
whose intensity value exceeds the low threshold but does not reach the high threshold is utilized
to verify whether a neighbouring pixel satisfies the high criterion within an 8-connectivity
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neighbourhood [31]. If the condition is met, the pixel with low intensity is enhanced; if the
condition is not met, it is considered to be unrelated to an edge or ridge, and therefore excluded.
In this work the low value is set to 0.1 and the high value to 2.

The hysteresis mechanism does not guarantee restoration of the contours to their exact original
form, i.e., the shape of a bacterium, and relying solely on hysteresis often proves inadequate
to connect all the contour pixels. Similar threshold segmentation approaches employed for TB
bacteria have encountered similar obstacles in previous methods [76]. These challenges stem
from the operator proficiency and unpredictable dye uptake during the preparation process of
microscope slides. To address this limitation, the application of dilation and erosion techniques
was deemed essential. These fundamental morphological operations systematically enlarge the
boundaries of foreground pixel regions (objects), thereby mitigating the identified constraint.
Both image dilation and erosion are applied using a square kernel (20×20 in this case). Again,
the kernel’s size is dependent on the application. However, smaller kernels may compromise the
intended effect, as they are less effective in reconstructing contour boundaries.

4.2.3.3 Geometry based reduction of false positive detections

Whilst reinforcing the ridges and repairing the damaged links within likely bacterial objects is
useful, this process has the same effect on the remaining artefacts with an unwanted consequence
of increasing the possibility that they will be mistaken for bacteria.

To characterise the appearance of bacteria more precisely, a set of geometric features are compiled.
As bacteria commonly exhibit an elongated morphology without complicated additional structures,
one approach would be to determine whether a particular object had a rod-like form. However,
this criterion is often insufficient in cases where bacteria are clumped or overlap one another.
Consequently, attempting to determine whether contours form a “rod” shape by calculating the
slope of the line connecting two points using the arctan function (inverse tangent) is ineffective.
Another approach, encompasses a array of shapes with a broader spectrum of geometric criteria,
including perimeter, area, and form related to possible bacillary shapes. For every contour
detected within an image, critical points that outline the boundary of the object are recorded.
Subsequently, the arc length and area of each distinct object are computed using the contour
outlines. This computation involves evaluating the distances between successive contour points,
and follows a process akin to the shoelace formula [30] to accurately determine the area.

The Douglas-Peucker [67] algorithm is utilized to determine the approximate form of the contour.
This algorithm simplifies the contour by iteratively identifying points that significantly deviate
from a straight-line approximation. The degree of deviation is gauged by the epsilon (𝜖) parameter,
which is typically set to a fraction of the arc length (e.g. × 0.1). The choice of 𝜖 determines
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the level of simplification. A smaller 𝜖 will result in a more accurate approximation but may
retain more points, while a larger 𝜖 will yield a more aggressive simplification with fewer points.
Points exceeding this threshold are considered substantial deviations and are preserved in the
simplified representation, while those falling within the threshold are gradually eliminated to
achieve a reduced yet visually accurate approximation. This strategy allows the contour to be
efficiently represented with fewer points, proving beneficial for scenarios where data size and
computational complexity are critical factors. Subsequently, four distinct criteria for bacteria
classification are compiled as shown in Table 4.2, in order to eliminate artefacts from the final
segmented binary image.

Table 4.2: Geometric characteristics of objects classified as Mtb cells in final binarised image

Case number Description

1 Area between 100 and 2050 (in pixels)

2 Perimeter between 70 and 800 (in pixels)

3 Length of approximate shape between 9 and 20

4 Number of contour points above 55

4.3 Results

This section describes an empirical evaluation of the proposed method using real-world TB
fluorescence microscopy data. The datasets used in this chapter are also used for experimental
work in Chapters 5– 7. Their acquisition and structure are explained first, followed by a series of
statistical analyses and comparisons between expected and predicted segmented images.

4.3.1 Environmental setup and quality control

The implementation of the proposed method was performed using Pytorch, as were all experiments
presented in this thesis that require heavy use of the GPU component. The GPU used for all DL
experimental setups was Nvidia GeForce GTX TITAN X. Significant libraries and frameworks
employed include skimage, Pytorch, sklearn, and scipy. The experiments in subsequent chapters
predominantly feature CNN developed from the ground up utilizing Pytorch’s comprehensive
features. Furthermore, ML techniques were executed using the sklearn library.

For quality assurance during experiment execution, each segment of the experiment was
maintained in separate files for enhanced modularity and fault tolerance, facilitating easier bug
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detection. Furthermore, each input image and its corresponding ground truth were assigned
matching index numbers to ensure accurate pairings, thereby bolstering validation efforts.

4.3.2 Dataset acquisition

Two datasets of images were used.

Image Set 1 comprised microscopy images obtained from a clinical cohort study in Tanzania which
was completed between February 2017 and March 2018. Details of clinical and microbiological
aspects of that research have been published separately [149]. In brief, 46 adults (40 new and 6
previously treated), aged ≥ 18 year with sputum smear-positive pulmonary TB were recruited
at clinical facilities affiliated to NIMR-Mbeya Medical Research Centre (NIMR-MMRC) and
followed up until the end of a 6-month course of standard TB treatment, between February 2017
and March 2018. Smears on microscopy slides were prepared from sputum samples collected
pre-treatment and after 2 weeks, 2 months and 5-6 months of therapy. These were stained
according to standard Auramine O LipidTox Red (LTR) protocols and viewed at ×1000 using
an oil immersion lens of a Leica DM5500 microscope with a DFC 300G camera attachment.
Paired FOVs containing Mtb were photographed at manual microscopy, using an N3 filter cube
(excitation and emission spectra of 546/12 and 600/40nm) to assess Auramine O staining and a
TX2 filter cube to assess LTR staining (excitation and emission spectra of 560/40 and 645/75nm).
The full microbiology Standard Operating Procedure for microscopy is included as Appendix A.1.
A total of 230 slides were examined, and an average of 30 pairs of Auramine O and LTR FOV
images were generated for each AFB-positive slide. As the work of this chapter is focussed on
bacterial detection than lipid-based cell phenotyping, only Auramine O stained FOVs were used
at this point.

500 Auramine O stained FOVs were selected at random across all timepoints of sample collection.
In order to allow create a ground truth for evaluation of the segmentation method developed in
Section 4.2.3, these were annotated by a microscopist who carefully drew around the perimeter
of each Mtb cell. 300 of the annotated FOVs were used for performance evalulation. Although
annotated images were not required (or available) during the period of method development
for this chapter, a sub-set of images was informally used for some steps in iterative method
optimisation (e.g, setting the 𝜎 value and the suppression effect for eigenvalue ratios based on
individual image histograms).

Image Set 2 was derived from a separate sputum sample set [2]. Two positive sputum smears
from a previous clinical trial of TB therapy were stained using the same Auramine O LTR
protocol as shown in Appendix A.1, but the work was done in a different laboratory by a different
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microbiologist [2]. Instead of field-by-field manual microscopy to photograph relevant FOVs,
the whole slides were imaged using a Zeiss Axioscan Z1 scanner with Zeiss Zen 3.1 software.
Optical magnification of 40 was used, supplemented by digital zoom on the scanner. Whilst
the main deployment of these images was for work to be described in Chapter 6, 150 FOVs
containing AFBs were annotated and used as a second evaluation dataset in this chapter.

4.3.3 Evaluation of image similarity and shape characterisation

As the majority of a FOV or a slide is background, pixel-wise classification accuracy may
lead to misleading performance evaluation and is inappropriate for the reasons discussed in
Section 3.4.3. Recall, high pixel-wise accuracy can be attained by correctly categorizing the
abundant background regions, even if the model falls short in accurately detecting the more
significant foreground bacteria. In the context of Mtb detection, accurate classification of
background pixels is less relevant than the precise localization of bacteria. Therefore, it is
preferable to quantify the similarity in form between the contours of pairs of binary images.

Within Image Sets 1 and 2, annotated ground-truth binarised FOVs were paired with their
corresponding model-predicted binarised images. As described in Section 4.1, CV-based
techniques for image segmentation do not require a training dataset for the model learning phase,
so annotated ground truth images were only available for performance evaluation.

Two approaches were taken for performance evaluation. Firstly, Hu moments (or Hu moment
invariants) were used. These are a collection of seven values derived from image transformation
invariant central moments [105]. The first six moments are invariant under translation, scaling,
rotation, and reflection [105]. At the seventh order, the sign changes for image reflection [105]. In
essence, Hu moments extract higher-level features from the image, enabling robust and distinctive
characterization of shapes and pattern based on properties such as area, centroid, and spatial
distribution of intensity. If a given pair of contours have the same form in both ground truth
and predicted images, they should exhibit a low distance value between their Hu moments,
regardless of the image size and magnification levels. Binary images, based on the contours of
bacteria delineated within each ground truth and predicted FOV were used to compute raw image
moments before calculating the seven dimensional vector of the Hu moments. In computing
the distance (Δ) between feature vectors, the 𝐿1 norm or absolute error is used as the distance
function. The overall procedure is described as:

Δ(𝑃,𝐺) =
6∑︁
𝑖=0

��𝐻𝑃
𝑖 −𝐻𝐺𝑖

�� (4.5)
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Table 4.3: Performance evaluation metrics for CV algorithm across two image sets

Metric Image Set 1 Image Set 2
Mean 22.04 20.09
Standard deviation 0.81 2.85
25th percentile 21.60 18.00
75th percentile 22.90 22.81
𝐿1 norm 6609.15 3014.25
𝐿∞ norm 23.82 24.94
Jaccard index 73% 69%
SD 81% 78%

where 𝐻𝑃
𝑖

is the Hu moment vector from the predicted contour and likewise 𝐻𝐺
𝑖

from the ground
truth contour. Note that the last value of the vector is ignored as it is simply the sign change
for image reflection and therefore not applicable in this case. Table 4.3 displays the aggregate
data findings for the two test sets and Figure 4.5 summarizes results. Overall, for bacillary
shapes which are generally not very complicated the 𝐿1 and 𝐿∞ measurements do not suggest
satisfactory performance of the method in detecting Mtb cells.
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((a))

((b))

((c))

Figure 4.5: Examples (a-c) illustrating the performance of the suggested method on a succession of
original — predicted — ground truth. Note that the predicted image is the end result after the original
image has passed through all of the proposed method’s components.

The second approach to performance evaluation utilised the Jaccard Index and SD. These metrics
served a dual purpose in this context. Firstly, they addressed the need for standardized evaluation
metrics, as discussed in Chapter 3. Secondly, whilst the inclusion of Hu moments sought to
gauge the algorithm’s ability to accurately describe the shape of a bacilli, the Jaccard Index and
SD fulfilled the role of assessing how effectively the algorithm localizes bacilli at their precise
locations. Results are also shown in Table 4.3. For both image sets, results were worse than prior
methods reporting the same standard segmentation metrics, as described in Chapter 3.

The overall results offer further interesting insights. Specifically, the Jaccard Index and SD exhibit
higher values for Image Test 1, indicating that the FOVs in this set are comparatively easier to
interpret and to locate bacteria within. Conversely, the metrics related to shape characterisation
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(Hu moments) perform better in Image Set 2, suggesting that while it may be more challenging
to detect bacteria in this set, the bacilli tend to exhibit simpler, less clumped and easier to outline
shapes.

4.3.4 Estimation of bacterial number per FOV

Although the second aim of this chapter was to estimate the number of cells in each FOV,
performance of the method developed so far was deemed unsatisfactory to proceed with this step.
Instead, different approaches to bacterial detection were investigated, using DL, and these will be
discussed in Chapter 5.

4.4 Discussion

This chapter demonstrated the feasibility of geometry-based Mtb detection through the exclusive
use of CV methods. Initial assessment of the results suggests unsatisfactory performance
in bacterial detection in comparison to other methods from the literature. However, similar
approaches (i.e. where the presence of a classifier or learning from training data during model
development is absent) have sometimes reported better results using datasets comprised of
selected image patches containing individual bacteria [76, 137]. As mentioned in Chapter 3,
this practice can introduce a selection bias to the research, so that reported results might not
accurately reflect (and may favourably over-claim) how a given technique would perform in
real-world assessment of unselected TB microscopy images. My CV-based method was assessed
on two real-world microscopy image sets without systematic pre-selection of FOVs, so I am
confident that the results comprehensively describe its performance and limitations.

More in-depth analysis reveals valuable insights and contributes to further interpretation of my
data. A narrow standard deviation around the mean value of Δ (see Equation 4.5) for both image
sets indicates consistency of bacterial shape. However, Image Set 2 exhibits a higher degree of
shape variability. This pattern of variation in bacillary shapes raises the possibility that the same
method could exhibit strong performance in some aspects of bacillary detection in some datasets
but weaker performance in others. For instance, it is a well known fact that the appearances of
TB microscopy slides can be highly variable, and even experienced manual microscopists may
find it challenging to objectively assess certain FOVs; the effectiveness of the same approach
may not be consistent across all instances. Similarly, the results of automated image analysis in
this chapter suggest that localisation of bacteria in Image Test Set 1 might have been easier than
in Test Set 2 (higher Jaccard Index and SD coefficient) but that shape characterisation might have
been easier in Test Set 2 (lower 𝐿1 and 𝐿∞ norm). As previously described in Section 3.3.1, some
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of the qualitative heterogeneity in slide and microscopy image appearance might be minimised by
consistency of laboratory procedures but some of the complexity is driven by inherently complex
shapes of Mtb cells which cannot be easily controlled.

Although development of geometry-based CV approaches to bacterial detection could begin
without annotated training data, use of manual selection criteria for of Mtb detection criteria
ultimately highlighted a key limitation compared to DL approaches. With DL, model parameters
are automatically fine-tuned through data-driven optimisation to best fit the characteristics of the
dataset. In contrast, manual tuning relies on human evaluation to handpick parameter values, like
the bacteria shape criteria in Table 4.2. This process is limited by the restricted ability of the
human mind to comprehensively analyse the full dataset at once to deduce optimal data-specific
parameters. DL models can learn a wider range of specialised parameters more efficiently by
mining insights across the entire training data during the learning phase. While manual tuning
was sufficient for reasonable detection, the lack of fine-grained parameter optimization likely
constrained the performance compared to a DL approach. This underscores the potential benefits
of incorporating DL for specialized parameter tuning and this approach will be pursued in
Chapter 5.

Nevertheless, an important contribution of this chapter to the overall objective of the thesis is
that a method of image enhancement was developed which can also be applied to DL techniques.
While the utilisation of the ratio of the two eigenvalues may not produce outcomes as favorable as
those observed in similar Mtb detection approaches, both eigenvalues can be employed to create
an enhanced image. This approach serves to reduce noise and effectively smooth the background,
thereby accentuating potential objects (bacteria) within the image. More specifically, to create
an enhanced image, each pixel in the original image is replaced with the absolute value of the
lower-magnitude value of the Hessian eigenvalue computed at the locus. Additionally, it does
not affect the morphology of bacteria as the eigenvalue of higher magnitude one does as seen
in Figure 4.3. The image enhancement technique developed in this chapter is advanced as a
pre-processing step on all images used for training and testing of TB-AI microscopy methods
later in the thesis.



5Chapter Five

Tuberculosis Bacteria
Detection and Counting

in Fluorescence
Microscopy Images Using

a Multi-Stage Deep
Learning Pipeline

Chapter Abstract – This chapter utilises the image enhancement technique from Chapter 4
and introduces an autonomous pipeline that uses a new DL-based technique to swiftly detect
Mtb organisms in sputum samples and estimate the bacillary load. The input of fluorescence
microscopy FOVs into a series of networks produces a final count of present bacteria more
rapidly and consistently than manual analysis by healthcare. The pipeline consists of four steps:
annotation using Cycle-GANs, extraction of salient image patches, classification of the extracted
patches, and regression to determine the final bacteria count. Each step of the pipeline is assessed
empirically, and a unified assessment is performed using previously unseen data that were labelled
with ground-truth values by a microscopist. It is shown that the pipeline can produce the bacterial
count for an image sample with an inaccuracy of less than 5% without human involvement.
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5.1 Chapter introduction

Chapters 2 and 3 have articulated the potential benefits of, and prior research towards, automation
of fluorescence microscopy for clinical monitoring and academic study of TB treatment response.
Presently, lack of satisfactory tools for these tasks impairs timely TB diagnosis and delays
identification of patients who are at risk of treatment failure [194]. Declining sputum bacterial
load once therapy is underway is the most reliable indicator of antibiotic efficacy in pulmonary
TB, but mycobacterial culture is difficult to standardise for this purpose and not all viable Mtb
bacilli are identified [78]. New molecular microbiology assays for rapid TB diagnosis (e.g.
Xpert® MTB/RIF) are based on identification of mycobacterial DNA which degrades very slowly
and is an unsatisfactory biomarker for monitoring the elimination rate of Mtb cells. Efforts are
ongoing to develop better molecular tests for TB treatment monitoring but these are not yet ready
for widespread use [78].

Section 2.6.1.2 described semi quantitative grading schemes which are used to report the sputum
bacterial load. Sputum smear microscopy findings can be reported as “negative”, “scanty”, “1+”,
“2+”, or “3+” [128, 95]. This can be helpful for pre-treatment prognostic assessment, as patients
with higher bacterial are at greater risk of unfavourable outcomes [108]. Once treatment has
started, changes in bacillary load may be noticed as early as 3 days [78]. Therefore, laboratory
microscopists may wish to count individual Mtb bacteria on sputum smears of samples taken at
the time of diagnosis and at regular intervals throughout treatment. Counting Mtb bacteria is
subjective and time-consuming, exactly like the process of smear microscopy for TB diagnosis.
Bacteria are viewed in isolation and usually easy to count, however they often aggregate and
create a wide range of appearances. At that moment, the microscopist must make a subjective
judgment on whether bacteria are present and how many there are (e.g. whether there are two
bacteria with a crescent form or two straight bacteria with a smaller one jammed beside them).

Several of the obstacles associated with manual quantification of bacillary load on microscopy
slides may be mitigated by AI tools. Chapter 4 sought to do this using a purely CV and
geometry-based approach. This was unsuccessful, but the work unearthed a technique for image
enhancement and standardisation. Chapter 5 will combine this image enhancement technique
with DL tools to create a hybrid method for Mtb classification and quantification. Specific aims
of this chapter are to:

• Implement a rapid method for extracting a new representation of microscopic slides, which
enhances the differentiation of bacteria from their background.

• Describe a novel method for the detection of salient regions (those which contain Mtb cells)
within microscopy images, which uses cycle-consistent generative adversarial networks



5.2. IMAGE PROCESSING-BASED ENHANCED REPRESENTATION EXTRACTION 85

(Cycle-GANs) to create FOVs with bounding box annotations.

• Introduce a transfer learning-trained convolutional neural network-based refinement of the
bacillary detection procedure from the previous step.

• Propose a CNN based method for counting bacteria, including those with variable and atypical
appearance, in image patches, using regression as a means of increasing the robustness of the
count.

5.2 Image processing-based enhanced representation
extraction

Whilst the results of Chapter 4 did not demonstrate sufficient ability of geometry-based CV
tools to segment, classify or quantify FOV cells in fluorescence microscopy FOVs, the work
described in that chapter was an important step in developing an approach to refine and standardise
unprocessed images datasets. Previously enticing CV techniques that take into consideration both
eigenvalues of a Hessian matrix, such as the use of the 𝜆2/𝜆1 ratio of the two eigenvalues, were
unsatisfactory for bacillary localisation due to the extremely wide dynamic range and the noise
that they introduced to image interpretation. However, as described in Chapter 4, when each
pixel in the original image is replaced with the absolute lower magnitude Hessian eigenvalue
(𝜆2) calculated at the locus, an enhanced image is generated. Before employing and evaluating
conventional ML and DL tools for bacterial detection, this technique is applied to every image
for all experimental work in the remainder of this thesis.

5.3 Generative adversarial networks: A brief introduction

Generative adversarial networks (GANs) constitute a semi-supervised approach to generative
modeling that leverages DL algorithms. Specifically, GANs consist of two CNNs: the first
undergoes unsupervised training to generate synthetic data, while the second receives supervised
training to distinguish original data from generated one. In their default configuration they
comprise of two MLP models that are simultaneously trained until convergence. The models are
referred to as the Generator (G) and the Discriminator (D). The Generator extracts a random noise
vector as input and aims to generate samples that are indistinguishable from real data [248, 89].
The objective of the D is to aid in the learning of G by attentively examining data provided by
G [248]. Therefore, it is basically the discriminator’s responsibility to determine if the provided
data is derived from real data or synthesized by G [248, 89]. The two models are competitors
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in a MinMax game with antagonistic goals who are attempting to fool one another. One of
the main advantages of employing GANs for this kind of cross-domain translation include the
absence of need for Markov style sampling [143]. Another attractive feature of GANs is the
absence of a heuristic function (such as pixel autonomous mean-square error) for representation
learning [182]. As an MLP, the model uses back propagation to calculate gradients without
requiring any assumptions during learning [89].

Formally, in a standard GANs, 𝐺 generates a distribution known as the latent space, denoted
by 𝐺 (𝑧). While a Gaussian noise distribution is commonly used, alternative multivariate
distributions may also be considered as candidates [129]. Latent space is a random distribution
sample in hidden space that groups data points that are closer together [120]. The latent space in
a GAN can be conceptualized as a mathematical domain where the generator model synthesizes
new data instances, adhering to the statistical properties it has gleaned from the training data.
The formulation of the two models is 𝐺 (𝑧, 𝜃𝐺), where 𝜃𝐺 provides the generator’s parameters.
The discriminator, on the other hand, accepts input from either real data or generated images,
whose output can be described by 𝐷 (𝐺 (𝑧, 𝜃𝐺), 𝜃𝐷), yielding a binary decision as to whether
input is from 𝑝𝑑𝑎𝑡𝑎 or 𝑝𝐺 [248, 89]. Model evaluation is based on the following metric:

𝐿𝐺𝐴𝑁 (𝐷,𝐺) = 𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎 [𝑙𝑜𝑔𝐷 (𝑥)] +𝐸𝑧 ∼ 𝑝𝑧 [𝑙𝑜𝑔(1−𝐷 (𝐺 (𝑧)))] (5.1)

In the above equation( 5.1), as described in the literature, the MinMax is formally shown [248].
The first term evaluates the logarithmic probability that the input comes from real data. Hence,
the second term evaluates that the input data comes from the generator (synthesised, latent
space). It is important to note that the letter 𝐸 stands for equilibrium which is a constant
solution to differential equations, an optimisation technique for MLPs. 𝐷′𝑠 target is to maximise
𝐿𝐺𝐴𝑁 , naturally evaluating 𝐷 (𝑥) −→ 1 and 𝐷 (𝐺 (𝑧)) −→ 0. The adversarial objective of 𝐺 is to
minimise 𝐿𝐺𝐴𝑁 by evaluating the second term to 𝐷 (𝐺 (𝑧)) :

𝑚𝑖𝑛
𝐷
𝑚𝑎𝑥
𝐺

𝐿𝐺𝐴𝑁 (𝐷,𝐺) (5.2)

In practise, the MinMax game will often fail to get the model to equilibrium, as shown in
equation 5.2 [248, 89]. Indeed 𝑙𝑜𝑔(1−𝐷 (𝐺 (𝑧)) swiftly diminishes because of poor quality
outputs from early learning of𝐺. Certainly, one does not have any control over what modes of data
are being created in a typical GANs frequently leading to unstable output as well [89, 182]. They
are also constrained in that the combined architecture of 𝐷 and 𝐺 must be fully differentiable,
requiring non-discrete values [100]. Therefore, in a default GANs, modifications can be
implemented to refine the evaluation criteria for 𝐺, focusing on the quality of generated data
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rather than solely on its ability to deceive 𝐷. Changing this aim leads in the suggested separation
and expansion of equation 5.2 with the objective of 𝐺 remaining the same:

𝑚𝑎𝑥
𝐺

𝐿𝐺𝐴𝑁 (𝐺) (5.3)

while the objective of 𝐷 is also to maximise its performance:

𝑚𝑎𝑥
𝐷

𝐿𝐺𝐴𝑁 (𝐷,𝐺) (5.4)

5.3.1 Transforming GANs to Cycle-GANs

The methodology is proposed by Zhu et al. [273]. As implied by its name, the Cycle-GAN
variant exhibits cyclical behaviour. To do this, two Generators and two Discriminators are used.
Since generators will attempt to map each other’s domain, we need two domains. The two
domains responsible for this task must be distinct from each other; in this work I define a Labelled
domain and an Unlabelled domain (more will be explained later). As described in the original
paper [273], assume we have a Generator G that translates images from the Labelled domain (L)
to the Unlabelled domain (U). Consequently, Generator G attempts to generate realistic images
for the U domain utilising input images from the L domain. The same holds true for the second
Generator, F, i.e. from L domain to the U domain. This behavior is modelled as:

𝐺 : 𝐿 ↦→𝑈

𝐹 :𝑈 ↦→ 𝐿
(5.5)

As described in section 5.3, the two Discriminators are tasked with determining whether given
images are synthetic or genuine, as is the case in default GANs. Each Discriminator evaluates
identical images from the same domain. Both Generators and Discriminators are trained using
the adversarial loss described in the preceding equation 5.1. Both adversarial loss equations are
as follows:

𝐿𝐺𝐴𝑁 (𝐺,𝐷𝑈 , 𝐿,𝑈) = 𝐸𝑢∼𝑝𝑑𝑎𝑡𝑎 (𝑢) [𝑙𝑜𝑔𝐷𝑈 (𝑢)]
+𝐸𝑙∼𝑝𝑑𝑎𝑡𝑎 (𝑙) [𝑙𝑜𝑔(1−𝐷 (𝐺 (𝑙)))]

𝐿𝐺𝐴𝑁 (𝐹,𝐷𝐿 ,𝑈, 𝐿) = 𝐸𝑙∼𝑝𝑑𝑎𝑡𝑎 (𝑙) [𝑙𝑜𝑔𝐷𝐿 (𝑙)]
+𝐸𝑢∼𝑝𝑑𝑎𝑡𝑎 (𝑢) [𝑙𝑜𝑔(1−𝐷 (𝐺 (𝑢)))]

(5.6)

Both adversarial loss equations, as shown in Equation 5.6, are adaptations from Zhu et al., modified
to represent the domains specific to this work, as opposed to their original representation [273].
So far, it seems that two default GANs are being trained with two unique domains simultaneously.
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While this may appear to be the case, the unique feature of a Cycle-GANs is that both Generators
are also utilised to “unmap” the output of the other. In fact, this is referred to as the cycle-
consistency loss, which is computed by inverting the outputs of each generator [273]. To
accomplish this behaviour, the authors changed each generator to additionally accept the output
of the other as input (as illustrated in 5.5) [273]. Formal description of the retrograde nature is as
follows:

𝐺 : 𝐹 (𝐿) ≈𝑈
𝐹 : 𝐺 (𝑈) ≈ 𝐿

(5.7)

As mentioned, cycle consistency loss is another form of regularisation to prevent Generators
mapping the same input to multiple outputs of the target domain. The full cycle of Generators
(forward 5.5 and backward 5.7) is given by 𝑙 ↦→𝐺 (𝑙) ↦→𝐺 (𝐹 (𝑙)) ≈ 𝑙 and 𝑢 ↦→ 𝐹 (𝑢) ↦→ 𝐹 (𝐺 (𝑢)) ≈
𝑢 respectively[273]. Combining the two backward behaviours into one loss is formally expressed
as:

𝐿𝐶𝑦𝑐𝑙𝑒 (𝐺,𝐹) = 𝐸𝑙∼𝑝𝑑𝑎𝑡𝑎 (𝑙) [ (𝐹 (𝐺 (𝑙)) − 𝑙)2 ]
+𝐸𝑢∼𝑝𝑑𝑎𝑡𝑎 (𝑢) [ (𝐺 (𝐹 (𝑢)) −𝑢)2 ]

(5.8)

While equivalent to adversarial loss in that they both aim to achieve equilibrium, the means by
which they do so varies. In this instance, the concern lies in how well the inverse output matches
the real output. Therefore, the primary purpose of cycle loss is to rebuild images as closely as
possible to the originals [273].

There is one more loss to consider, although it is supplementary rather than crucial to the overall
Cycle-GANs loss. The result is a regularisation of the colour identity mappings of the synthesised
images [273]. Without this loss, as shown by the findings of the same paper, the network’s
behaviour regarding the colour of the synthesised images is unregulated. Identity loss is defined
formally as:

𝐿 𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦 (𝐺,𝐹) = 𝐸𝑢∼𝑝𝑑𝑎𝑡𝑎 (𝑢) [ ∥𝐺 (𝑢) −𝑢∥1 ]
+𝐸𝑙∼𝑝𝑑𝑎𝑡𝑎 (𝑙) [ ∥𝐹 (𝑙) − 𝑙∥1 ]

(5.9)

Although both 𝐿𝐶𝑦𝑐𝑙𝑒 and 𝐿 𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦 compute pixel-to-pixel distance error, the former utilises the
L2 loss function (MSE) whilst the latter employs the L1 loss function (MAE). The rationale for
this modification is that it functions more consistently throughout training and produces higher
quality results [273]. Lastly, the overall loss of Cycle-GANs is formally given as:

𝐿 (𝐺,𝐹,𝐷𝐿 , 𝐷𝑈) = 𝐿𝐺𝐴𝑁 (𝐺,𝐷𝑈 , 𝐿,𝑈)
+ 𝐿𝐺𝐴𝑁 (𝐹,𝐷𝐿 ,𝑈, 𝐿)
+𝜆𝐿𝐶𝑦𝑐𝑙𝑒 (𝐺,𝐹)
+ 𝐿 𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦 (𝐺,𝐹)

(5.10)
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where the hyperparameter 𝜆 controls the relative importance of the cycle consistency loss and its
value is determined through empirical testing and is task-dependent. In both this chapter and the
original work by Zhu et al., the hyperparameter 𝜆 is assigned the value of 10 [273].

5.4 Proposed method

This section explains the key steps of the proposed algorithm in detail, namely i) semantic
segmentation of the slide, ii) salient image patch extraction, and iii) regression-based inference
of the bacterial count from the extracted patches.

5.4.1 Object detection using Cycle-GANs

The primary factor for the development of Cycle-GANs was its capability for image-to-image
translation. In contrast, the objective of this application is to train Cycle-GANs to transfer
labels from labelled (L domain) images to unlabelled ones (U domain). The L domain, which
consists of microscopic fields specifically labelled by an expert with regions of interest, and the
U domain, which consists of microscopic fields without labels. Certainly, the opposite behaviour
will also occur as well, but this is of no importance for this context of work. Additionally,
the Cycle-GANs cyclical nature is maintained largely for regularisation and improved overall
performance. Ultimately, synthetically created labelled images are utilised to assess the entire
performance.

Following experimental results reported in previous work [273], my method initially used input
image patches with the size of 256 × 256 pixels but additionally re-scale them to 384 × 384 pixels
using bicubic interpolation [8], which was found to effect an improvement in performance. I also
introduce alterations to the network architecture by including three further residual blocks as a
means of improving the detection of bacteria with lower brightness. This larger input size can
also reduce information loss during the encoding and decoding processes, while generating more
robust and spatially rich feature maps, albeit at a higher computational cost. It also improves
synthetic image quality by capturing finer-grained features and expanding the receptive field,
thereby providing a more comprehensive context for each pixel.

As regards the discriminators, which classify overlapping patches, I adopt an architecture similar
to that of the PatchGAN [109, 123, 125]. However, evidence shows that the relatively large patch
size (70×70 pixels) used by most previous work is unsuitable for the context of tasks in which
the generators are trying characteristics that are more granular and nuanced in appearance [267].
Hence, I use much smaller 30×30 pixel patches herein instead. Additionally, to further increase
the sensitivity and robustness of the model, I introduce a change to the usual number of strides at
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different layers. In particular, as a means of facilitating the learning in the proximity of the image
border, I introduce a reflection pad of size 3. Table 5.1 summarizes the key changes.

Table 5.1: Key parameters of the five-layer discriminators used in the present work. Changes from the
usual values used in previous work are shown without highlighting, whereas this task-specific alterations
are shown using bold font. In this task, the transition from 2×2 to 3×3 kernels was motivated by the
necessity for finer-grained feature extraction. Bacteria, as the objects of interest, require a more detailed
spatial understanding, and the 3× 3 kernels with a centered pixel offer a more suitable framework for
capturing intricate patterns and details in the images.

Layer Kernel Size Strides Padding

Layer 1 3 × 3 2 3
Layer 2 3 × 3 1 1
Layer 3 3 × 3 1 1
Layer 4 3 × 3 3 1
Layer 5 3 × 3 2 1

5.4.1.1 Training the Cycle-GANs

Here, I summarise the key settings pertaining to the training of the cycle-GAN. To start with,
considering the complexity of the learning task at hand, the number of epochs used to train the
cycle-GAN was set to 300, which is a considerably higher number than that used in most previous
work [273]. Another crucial aspect of training which needs to be correctly determined to facilitate
successful cycle-GAN learning concerns the learning rates of the generators and discriminators.
In particular, a sense of competitive equilibrium has to be maintained between the two kinds of
sub-network. If the discriminators are considerably more effective, the network will overfit and
the generators’ learning will never converge. Similarly, if generators are more effective, mode
collapse is likely, and the desired state of the overall network may never be achieved. Other
works that employ cycle-GANs for highly specialised tasks have shown the benefit of differing
learning rates for the two sub-networks [267, 79]. Similarly, the learning rate of the generators
was set to 0.0006 and that of the discriminators to 0.0002. These considerations led me to effect
a reduction in the (linear) learning rate after 50 epochs—significantly earlier than most other
work [273]. I also adopt the use of AdaBelief, a new optimizer which has shown to converge as
quickly as adaptive optimizers (such as Adam [117]) and to generalize better than Stochastic
Gradient Descent (SGD) [187] in complex architectures such as GANs [274]; see Figure 5.1.
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((a)) ((b))

((c))

Figure 5.1: Comparison of training losses observed with the use of different optimizers. Note that the
adopted AdaBelief effects the smoothest learning behaviour. (a) Adam; (b) SGD; (c) AdaBelief.

Finally, to maximize the robustness and the generalizability of the learning process, I perform
synthetic data augmentation. In particular, I increase the amount of training data by approximately
50% by adding images randomly rotated by ±25◦ and reflected about the vertical or the horizontal
axis [260]. This kind of augmentation is particularly suitable for TB microscopy image analysis
because, unlike in the case of natural images wherein there is an inherent asymmetry in directions
(e.g., the horizontal and vertical directions are objectively defined and cannot be swapped one for
another), in the microscopy slides of interest here, all directions are interchangeable and in that
sense equivalent.
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5.4.2 Extracting salient patches from synthetically labelled images

Considering that the images based on the enhanced representation described in Section 4.4 are
greyscale and the superimposed bounding box red, the localization of the former is a rather
straightforward task; see Figure 5.2. I start by simple colour thresholding, localizing pixels with
the red channel value between 150 and 215 (within the range of 0–255), and the green and blue
channel values between 90 and 160. The subsequent application of morphological dilation and
erosion ensures that the extracted salient structures, which correspond to bounding box contours,
are properly closed, thus suppressing the effects of noise.
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((a)) ((b))

((c)) ((d))

Figure 5.2: Examples of (a,c) complex and cluttered original input images and (b,d) the corresponding
output images generated using the proposed cycle-GAN, showing synthetically superimposed bounding
boxes around the bacterial content of interest.

To further increase the robustness of my approach, I follow the aforementioned low-level
processing with a more semantic, domain knowledge-driven refinement. More specifically,
guided by the understanding of Mtb cell dimensions in slides, I impose certain constraints on the
extracted bounding boxes. Using the Douglas–Peucker algorithm [67], a polygonal approximation
of imperfectly extracted and possibly overlapping bounded boxes is computed, and any candidate
object with a perimeter outside the range of 60–450 pixels is rejected. Finally, I extract patches
of interest using minimal bounding boxes enveloping the convex hulls of all connected salient
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structures; see Figure 5.3.

((a)) ((b))

((c))

Figure 5.3: Examples of (a–c) with minimal bounding boxes drawn based on the criteria described. Note
that certain structures generated from noise continue to incorrectly meet the aforementioned requirements,
often near the image boundary evidenced by (b, c). This further influences the need for an intermediate
classification stage.

5.4.3 Classifying cropped patches

Until this point, the aim of the method is to extract as many patches that were of sufficiently
bacteria-like objects by using a rather coarse criterion that facilitates fast processing. For this
reason, the acceptance level is set favouring sensitivity to capture all FOV, which means that
some false positives will also be selected. The goal of the next phase is then to determine whether
a selected bacterium patch is a true positive by using more nuanced local appearance. This
is challenging because of varied atypical and overlapping bacillary appearances, as described
in Chapter 4. In order to address this variability, I pursued an DL approach whereby the
discrimination between bacterial and non-bacterial patches was formulated as a classification
problem, which was solved using a CNN.
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To this end, I apply and compare several of state-of-the-art models, namely the ResNet family [98],
the DenseNet family [104], and the SqueezeNet1_1 family [107]. Each model’s first convolutional
layer is replaced with one that consisted of one input channel, kernel 3×3, stride 1, and three 3×3
padding. The alterations are motivated by the fact that the slide representation was monochrome
(that is, single channel) and the objects of interest are thin, elongated structures that frequently
appeared near the image boundary. Every model’s last linear layer is replaced with a single-output
linear layer. The linear layer’s output weights are then fed into the sigmoid function. Finally,
binary cross entropy is employed as the loss function, and the models are pre-trained on ImageNet.

Precisely 5194 patch images are used for training, with a balanced split between positive and
negative examples. Positive examples are extracted using the method explained in Section 5.4.2,
whereas negative ones are selected by randomly sampling from the FOVs and accepting those
patches which did not overlap with any of the positive ones. Specifically 770 images are used for
validation. A three-pixel-wide frame is constructed on a randomly chosen positive image (which
was known to contain bacteria) to approximate the boundary box formed from the projected
labels and to prevent overfitting on the training data. The learning rate is set to 0.0001, with a
circular scheduler that had a step size equal to five times the size of the dataset (which in turn is
dependent on the batch size) [208]. The base learning rate and the upper learning rate are set
to 0.0001 and 0.0002, respectively. Stochastic gradient descent is used as the optimizer since
it has been demonstrated to generalize better than Adam [117] in related image classification
problems [274]. The model is trained for 100 epochs, with a 0.03 loss and accuracy tolerance,
resulting in the termination of training following 20 epochs of no improvement.

5.4.4 Counting bacteria

In the final stage of my algorithm, I use regression to infer the number of bacteria present in
an input image patch. As I will explain in more detail in the next section, I compare a number
of different architectures and modify them all by replacing their last linear layer with a single
output layer. The MSE loss function is used for training, and Adam [45, 274] is used as the
optimizer, with a circular scheduler having the lower and upper boundaries of 0.0001 and 0.00015,
respectively; the step size used is equal to twice the size of the dataset. Because patches with more
than three bacteria are exceedingly uncommon, I use a relatively low batch size that resulted in a
model update following every few examples, thus avoiding the dominance of patches containing
a single or two bacteria. Therefore, the batch size is set to 22, or about 5% of the dataset size, in
order to maximize the generalizability of the learning.



96
CHAPTER 5. TUBERCULOSIS BACTERIA DETECTION AND COUNTING IN FLUORESCENCE MICROSCOPY IMAGES

USING A MULTI-STAGE DEEP LEARNING PIPELINE

5.5 Experimental evaluation

In this section, I describe an empirical assessment of the proposed algorithm using real-world
data. I begin with a description of the data used and follow up with an ablation study of the
different stages of the pipeline.

5.5.1 Dataset

For all experiments in this chapter, Auramine O stained FOVs from Image Test Set 1 (described
in Section 4.3.2) were used.

500 FOVs were selected across all time points of sample collection to ensure that the automated
detection and counting networks for FOV bacteria presented here would not be confounded by
any changes in bacillary morphology during TB treatment. These images were reviewed within
an annotation tool for image labelling by a microscopist who had not previously seen these data
and was not involved in development of the DL algorithm. Rectangular bounding boxes were
superimposed around bacteria within each image to tag areas of interest which contained one or
more FOV cells as well as the number of cells present. Overlapping boxes were merged; see
Figure 5.4. All FOVs were enhanced using the technique mentioned in Sections 4.4 and 5.2
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((a))

((b))

Figure 5.4: Examples (a, b) of bounding boxes created by a trained microscopist around areas of interest.
Red arrows illustrate the union of two boxes that overlap.

5.5.2 Results

To facilitate an in-depth, nuanced understanding of each stage in the proposed pipeline I
performed an ablation study, that is I evaluated each stage of my algorithm in turn and discussed
its contribution to the overall performance [154].

5.5.2.1 Semantic segmentation using Cycle-GANs

To gain insight into the performance of the semantic segmentation, I examined the overlap
between ground truth segmentation and that achieved using my automatic method. In other
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words, I was interested in quantifying the degree of coincidence between two binary images, each
comprising regions of interest and the remaining image content, as illustrated in Figure 5.5.

((a)) ((b))

((c)) ((d))

Figure 5.5: Examples of (a, c) ground truth and (b, d) the corresponding predicted salient FOV regions
containing possible MTB cells shown as binary images.

I started by looking at the standard metrics for this kind of assessment, namely the Jaccard
index [21] and the SD coefficient [93]. On the test set, I found these to be 89% and 94%,
respectively, suggesting highly effective performance. Considering that, in this thesis Cycle-
GANs is the exclusive model able to process RGB images due to its three-channel input
configuration (intended to reproduce red bounding boxes even though the enhanced images are
greyscale), it was suitable for empirical scrutiny to ascertain whether the image enhancement
technique indeed increases the detection of Mtb bacteria. Hence, I conducted training for
Cycle-GANs using Auramine O FOVs while keeping the settings identical to those used for
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training on the enhanced images to facilitate fair comparison. In this case the results were
87% and 93%. Overall, after examining the data manually, I found that the deviation from
perfect performance was due to boundary effects, which is the slight misalignment of the exact
boundaries between the ground truth and the predicted regions of interest rather than an entirely
mistaken focus. Moreover, Cycle-GANs sometimes has a tendency to inaccurately translate
bacteria-like objects in the generated images (along with bounding boxes), particularly in relation
to the contrast of the the background; see Appendix B.1 for more details.

To test the observation, I next introduced a custom performance metric, designed specifically
for the task at hand. In particular, I devised a way of deeming each detected salient region as
correct or not, allowing me to quantify the number of false positive and false negative patches,
as well as the distance (error) between each true positive and the corresponding ground truth.
To do this, I computed the centroid of each predicted salient region, and if possible, coupled
it with the centroid of a ground truth salient region. To determine the pairing, the Euclidean
distance between each predicted centroid and all ground truth centroids was calculated, and the
nearest one was selected as the correct one. A distance threshold of 5 pixels was also used to
reject the coupling of centroids that were excessively far apart. Unpaired predicted regions were
considered as false positives in the model prediction. Similarly, unpaired ground truth centroids
were considered as false negatives in the model prediction.

Out of 294 ground truth centroids, 3 were not paired, and out of 331 labelled predictions, 40
were not paired. The 𝐿1, 𝐿2, and 𝐿∞ distances between paired centroids were found to be
310.49, 18.82, and 1.89 pixels, respectively. As the typical length of a single bacillus ranges from
40 to 140 pixels, these numbers corroborated the previous observation that the segmentation
was successful, and that the errors suggested by the Jaccard index were mostly due to small
misalignments between the predicted and ground truth salient regions. Such errors had little
effect on the performance of the entire pipeline as they did not change the actual bacterial count
in the patches passed for further processing.

5.5.2.2 Deep learning-based patch classification

Turning attention to the analysis of the second stage of my algorithm, I assessed the more
nuanced, DL-based classification of candidate patches as bacteria-containing candidate patches
and those void of bacterial content. Using the baseline model, I compared a wide range of
different architectures, namely ResNet [98], DenseNet [104], and SqueezNet [107] using standard
performance evaluation metrics for classification, all modified as per Section 5.4.3. Following
training and validation, I evaluated only the model on the test set that performed best during the
validation.
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Table 5.2: Validation accuracy achieved by different models. Bold font is used to highlight the best
performance according to different criteria (columns).

Model Accuracy Precision Recall F1-Score

ResNet18 97.28% 0.974 0.949 0.961
ResNet34 99.35% 0.970 0.951 0.960
ResNet50 99.74% 0.990 0.967 0.960
ResNet101 99.61% 0.983 0.958 0.970
ResNet152 99.48% 0.980 0.954 0.967
DenseNet121 95.20% 0.952 0.928 0.939
DenseNet169 88.41% 0.900 0.849 0.874
SqueezeNet 99.38% 0.980 0.958 0.969

During training, all models reached 100% accuracy; see Figure 5.6. Greater differentiation
was observed during validation, with ResNet50 achieving the highest accuracy of 99.74%, see
Table 5.2. Other ResNet models also performed well, as did SqueezeNet, with the exception
of the shallowest ResNet18. Both DenseNet models were less successful, and interestingly, the
deeper DenseNet169 in particular. Overrall deeper models performed worse, with the validation
accuracy decreasing together with the network depth.
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((a))

((b))

Figure 5.6: (a) Training and (b) validation accuracy across epochs of the compared models based
on different modified architectures. Interestingly, deeper models performed worse, with the validation
accuracy decreasing together with the network depth.

Having been identified as the best performing model during validation, I henceforth adopted
ResNet50 as the classifier to evaluate the test set. In summary, I found that the proposed
ML-based filtering increased the overall specificity of the pipeline in the discrimination between
bacteria-containing patches and those void of bacteria, from 89% attained at the previous, coarse
filtering stage, up to 97%. Similarly, sensitivity was increased to 99%, which, exceeded the
performance of previously published works [73, 75, 114, 270, 83, 257].
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5.5.2.3 Bacterial counting

The final stage of my algorithmic pipeline concerns the counting of bacteria in the salient patches
correctly identified in preceding stages. Recall from Section 3.4.2 that regression analysis can be
valuable for this task because it predicts real numbers (which may be fractions), even although the
actual count can only possibly be an integer. The decision to apply regression here was motivated
by the desire to retain information about the uncertainty involved in inferring the bacterial count.
Thus, the predicted pseudo-count of 1.05 can be interpreted as more confidently corresponding
to a single bacterium than, say, 1.48 (whereas 1.51 would tilt the decision towards the count of 2).
My approach also allows for the cancellation of uncorrelated errors across the slide, as observed
in previous research [241].

A summary of my experimental results is shown in Table 5.3. The best performance was obtained
using the simplest and shallowest model, namely ResNet18. Its error of less than 5% is a
significant improvement on all previous work, and attains a new state of the art [212, 147, 241].
The visualizations shown in Figure 5.7 provide further insight into the learning achieved using
ResNet18. Both the activation maps and the ultimate count predictions confirm that the network
is correctly capturing salient content and appropriately utilizing it to form the ultimate prediction.

Interestingly, note that all models in Table 5.3 overestimate the bacterial count (the aforementioned
ResNet18 the least so). To understand why this is the case, in addition to the ultimate assessment
criterion, which is the accuracy of the final count, I include in the table three additional metrics
computed during training, namely the MSE, the MAE, and the coefficient of determination (R2).
Indeed, an examination of the last of these suggests that overly flexible models, which are very
deep models with higher numbers of free parameters, overfit during training.
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Figure 5.7: GradCAM visualization of trained ResNet18’s last layer response to different types of input.
Shown are (a) an input patch containing three unusually shaped clumped bacteria and (b) the corresponding
bottleneck layer activations, which show the highest responses around the most salient content; (c) a
background patch and (d) the corresponding bottleneck layer activations, which are nearly non-existent.
As expected, the patch in (a) results in the regression prediction for the bacterial count of 2.847, and the
patch in (c) for a count of 0.0256.

Table 5.3: Performance statistics on unseen test data (second column), and training statistics (columns
3–5). Observe that the more flexible, deeper models tend to overfit and thus perform less well on novel
data. This is demonstrated by the training R2 metric, which is low for these models.

Test Training
Model Count (Ground Truth = 377) MSE MAE Variance lost(1-R2)

ResNet18 394 0.0054 0.0345 0.006439
ResNet34 407 0.0444 0.0457 0.006506
ResNet50 414 0.0457 0.0425 0.006523
ResNet101 431 0.0253 0.0236 0.000656
ResNet152 496 0.0231 0.0201 0.000095
DenseNet121 575 0.0104 0.0603 0.000345
DenseNet169 667 0.0086 0.0406 0.000356
SqueezeNet1_1 404 0.0082 0.0227 0.006571

5.6 Discussion

This chapter has demonstrated how a novel multi-stage DL pipeline approach can detect bacteria
with a range of morphologies, unlike previous methods which assumed a much more uniform
appearance [75, 114, 212, 147], while also exhibiting greater robustness in challenging conditions,
owing to the probabilistic nature of the inference at its crux.
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I suggest conducting further experiments to explore the potential of the proposed image
enhancement technique. This should involve incorporating additional datasets, including those
captured through brightfield microscopy, in order to assess the technique’s ability to standardize
and enhance the detection of Mtb bacteria across different dye types and microscopy methods.
Although the first observations from Section 5.5.2.1 do not provide conclusive evidence however
they indicate significant visual improvement in several samples. Firstly, the novelty of the
proposed approach lies in its demonstration that the color of the FOV has no bearing on the
localization of Mtb bacteria. Paradoxically, this was not the case in this chapter, as Cycle-GANs
were trained on RGB images to retain the red color of the bounding boxes. Secondly, building
upon the previous point, it opens the possibility that a single model can accept input FOVs
from various dyes or even different microscopy types. Lastly, it represents the initial stride
towards the standardization and improvement of FOVs for TB-AI, as it ensures that the same
type of image is used by various comparable methods (although numerous challenges remain in
dataset standardization). In the context of image improvement, the proposed approach has a more
pronounced impact on lower-quality FOVs, i.e. FOVs with greater noise and poorer background
contrast, compared to higher-quality ones.

As evidenced by the experiments of the classification and regression stages of the pipeline, the
utilization of CNN generic models, particularly those of greater depth, tends to lead to the
phenomenon of overfitting in the results. Indeed, I observed a trend where the extent of overfitting
decreases as the model’s depth is reduced. This phenomenon is reflected in the remarkably low
values of the MSE and MAE metrics, as well as the very high value of the 𝑅2. In predictive
modeling, encountering a situation where the number of model parameters exceeds the data
points and this can increase the risk of overfitting [110]. From a conceptual perspective, each
model parameters (or weights), serves as a control point. When the number of control points
exceeds the number of observations, the model has the potential to perfectly fit the training
dataset[22]. However, this inclination toward overfitting becomes apparent when the model
performs exceptionally well on the training data but falters on new, unseen data. Moreover,
the observed results within this chapter underscores that the number of features characterizing
bacterial detection is considerably fewer than models parameters. This observation underscores
the significant role of custom architecture in DL models, a topic that will be elaborated upon in
the following chapter.

The findings drawn from this chapter hold promise for both clinical and academic applications of
the proposed method. By minimising the need for extensive human involvement, automation of
Mtb cell classification and quantification can be achieved. This approach can save time and add
objectivity to interpretation of fluorescence microscopy results and has potential to be developed



5.6. DISCUSSION 105

further for monitoring of patient response to programmatic and experimental TB therapies, as
outlined in Chapter 2. However, a current constraint to the current technique is that it starts with
examination of pre-selected fluorescence microscopy FOVs which still require laborious manual
microscopy of full slides to assemble. The need to ‘pick’ the FOVs for automated analysis also
remains to be vulnerable to the risk of (even unconscious) selection bias in preparing the dataset.
Future work, in Chapter 6, will consider how automation of whole microscope slide images could
be undertaken to try and manage that problem.





6Chapter Six

Extracting and
Classifying Salient
Fields of View From

Microscopy Slides of
Tuberculosis Bacteria

Chapter Abstract – After preparing and staining sputum smears, it is a subjective and time-
consuming process for laboratory microscopists to view slides and capture FOV images for the
types of bacterial detection and quantification analyses described in this thesis. The objective of
this chapter is to demonstrate a method which can capture Whole Slide Images (WSIs), then
crop salient FOVs from them for further processing. Auramine O LTR stained slides are used
for this because of the ultimate combined academic goal to detect Mtb cells and describe their
lipid content. The method developed uses the same image enhancement tool as earlier chapters,
which also converts each FOV to greyscale in order that cell detection models do not need further
training to distinguish bacteria stained with different coloured dyes. A bespoke model consisting
of two encoders and one classifier is created to detect Mtb bacilli. Using data from the Image Set
2, the proposed method is shown to outperform 12 existing methods for FOV classification on
the two key metrics, achieving i) an approximately 10% lower overall error rate than the next best
model and ii) 100% specificity (with the next best model achieving the specificity of 93%).
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6.1 Chapter introduction

Chapter 5 describes a successful approach to automated classification and quantification of Mtb
cells on sputum smear microscopy FOV images. However, the process of manually creating these
FOVs for analysis, in itself, is time-consuming and subjective. Once the sputum smear is fixed
and stained (according to the process described in Appendix A.1), a microscopist must scan
the whole slide at either ×400 or ×1000 magnification using a green channel filter to identify
Auramine O stained bacilli. Paired digital photographs must then be taken (capturing both green
and red channel images if intracellular lipid assessment is to be done) of every FOV containing
one or more possible bacterial cell. In addition to requiring pain-staking attention to detail
(which slows the procedure down to such an extent that the value of AI for image interpretation
is reduced), any errors or sub-conscious bias in slide-reading by the microscopist will influence
the image-set obtained and compromise all subsequent analyses.

If TB-AI microscopy is to be useful, there is an obvious need to automate the process of FOV
selection from microscope slides, decreasing (or eliminating) human involvement and reducing
the amount of time required to execute this phase. This problem was previously identified in
Section 3.8. Ideally, the first step in slide ‘screening’ should achieve a balance between sensitivity
and specificity so that all FOVs containing objects which are ‘potential bacilli’ are retained
for more detailed evaluation. Selection of some false positive FOVs is acceptable if it avoids
discarding false negative fields (in which bacteria are present but missed) but advancing too many
false positive fields through initial screening reduces the value of this procedure in reducing
the volume of downstream work. As noted in Section 3.8, some researchers have investigated
autofocusing algorithms, for initial slide screening in pulmonary TB diagnosis. In general, this
approach has not been successful. The full range of variable morphology and colour intensity
of Mtb cells under fluorescence microscopy is difficult to capture on autofocus algorithms, so
bacteria can be missed.

An alternative approach, if the relevant equipment is available, is to take a whole slide image (WSI)
of stained sputum smears which can then be sub-divided into smaller sections for assessment by
DL tools. This method has been considered for other WSI AI applications [62], but has rarely
been used in TB-AI research. A challenge is that WSI image dimensions are large, ranging
from 15-20GB in total size. Considerable computational power and memory is required to
handle such images, including training of DL tools to analyse them. Class imbalance training
is also a challenge: as previously described, the majority of TB microscopy slides consist of
background, which can cause AI classifiers to be skewed towards negative classification and,
thus, not generalise effectively, as shown in the work of Kant and Srivastava [114].
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The objective of this chapter is to develop:

• A technique that crops WSIs from sputum smears of TB patients into FOV of similar size.

• A filtering step that eliminates non-salient FOVs, retaining only those containing potential
Mtb cells in the final image dataset.

6.2 Division of WSIs into FOVs

Two digital microscopy WSIs for the work of this chapter came from Image Set 2, as described
in Section 4.3.2. To recap, Auramine O LTR stained whole slides were photographed using a
Zeiss Axioscan Z1 scanner with Zeiss Zen 3.1 software. Optical magnification of 40 was used,
supplemented by digital zoom on the scanner. WSIs were too large (≈ 19GB) for Zeiss Zen 3.1
to handle, so the software divided each slide into 2700 tiles. These were further cropped into
200×400 pixel patches which were anisotropically scaled by a factor of 4.83 in the 𝑥 direction
and 3.24 in the 𝑦 direction to match the FOV size manually produced by a microscopist in Image
Set 1.

As described above, to obtain paired Auramine O and LTR images, manual microscopy requires
physical capture of two separate digital photographs of each FOV viewed through different filter
cubes. The process for WSIs via the Axioscanner is slightly different. A single digital whole slide
scan is obtained, but two images are produced for each FOV by adjusting RGB colour channels
afterwards. Setting the blue and red channels to 0 (by suppressing, not erasing them) leaves
information in the green channel intact for Auramine O stained AFB detection. Suppressing the
blue and green channels to 0, leaves information in the red channel intact for visualisation of
lipids.

6.3 DL for FOV classification

The end goal is to classify cropped FOVs as positive or negative for Mtb bacteria. By filtering out
FOVs which definitely do not contain objects of interest, the subsequent burden of work required
to be done by a microscopist or AI method is reduced.

6.3.1 Proposed model

Evidence from previous work on non-automatic sputum smear microscopy analysis, suggests that
for the detection of Mtb bacteria the use of both pixel intensity and shape information is superior
to the use of either of the two in isolation [242, 75, 212]. Herein I introduce custom-designed
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networks that reflect this finding by employing two encoders to generate two separate feature
maps. One of these is trained on the discrimination enhanced representation of FOVs introduced
in Chapter 4 and explained further in Chapter 5, while the other is trained on the binary images
(also known as binary masks) corresponding to each FOVs, which distinguish between the objects
of interest (bacteria) and the uninteresting content (background and artefacts); see Figure 6.1.
The encoder outputs are concatenated to generate the input matrix for another smaller network
(16×32×512 pixels); see Figure 6.2. The weights of the two encoders are frozen, and no gradient
computation is done during the training of the smaller network. As a result, the smaller network
makes an effort to infer the probability distribution from the two encoders which independently
infer pixel intensity and shape. To train the two encoders, a further layer with adaptive max
pooling and a linear layer leading to a single output unit with a sigmoid activation function are
added. The same environmental and hyper-parameters as previously employed are utilized to
train the two encoders and the smaller network.
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((a)) ((b))

((c)) ((d))

Figure 6.1: Examples of (a,c) FOVs along with their corresponding (b, d) binary mask counterparts.
Even though there are discernible forms in (b), when combined with the relevant intensities derived as
feature maps from (a), the network learns that these shapes are not bacteria.
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Figure 6.2: Diagram of information flow through the architecture proposed in the present chapter:
following an encoding process, information passes through a convolutional network, leading to the eventual
inference of the bacterial presence in a FOV.

6.3.2 Comparison of proposed and existing models

I compare my proposed method with a number of state of the art models from the VGG
family [202], the ResNet family [98] (including Wide-Resnet [268]), the Densenet family [104],
and InceptionV3 [222]. All models were pre-trained using the ImageNet dataset, which contains
1000 target classes and three input channels. Regardless of their initial configuration, each
model’s first convolutional layer was replaced with one that comprises a single input channel,
kernel of size 3×3, stride value of 1, and padding of size 3×3. The alterations are motivated
by the fact that the slide representation is monochrome (i.e. single channel) and the objects of
interest are thin, elongated structures that frequently appear near the image boundary.

When transfer learning is used, the weights of the initial layer are summed to create a single
matrix, which may have a negative effect on early training accuracy, but the benefit of not having
to start training from scratch exceeds the impact on accuracy. The last modification is to the
final linear layer, which is replaced with one that retains the same input features but has only
one output node (in InceptionV3, this change is applied to its auxiliary classifier). The output
weights of the last linear layer are passed through the sigmoid function.
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6.3.2.1 Hyper-parameter learning

To ensure a fair comparison, all models, including the proposed one, are trained using the same
set of hyper-parameters. To begin, the batch size is chosen to be 16 in order to achieve a balance
between generalization, accuracy, and computing speed. Adam optimizer with the values of the
𝛽 parameters (that is, the initial decay rates used when estimating the first and second moments
of the gradient) equal to 0.50 and 0.99 is used. For the training process, following evidence
from prior research [208], the base and maximum learning rates are set to 0.00001 and 0.0004,
respectively, and the learning scheduler used is the novel circular scheduler with a step size equal
to five times the size of the dataset (which varies according to batch size). Finally, binary cross
entropy is used as the loss function; see Figure 6.3.

Figure 6.3: With the exception of VGG family, all models converge around the 65th epoch and exhibit the
same overall learning behaviour. The poor performance of the VGG family suggests that the present task
requires greater architectural sophistication than that achieved by merely stacking convolutional layers.

6.4 Evaluation

To assess performance of the FOV cropping and filter/classification method described in this
chapter, the models introduced in Section 6.3 were evaluated by a series of metrics. As indicated
in Chapter 3, consensus on standard classification metrics for this type of research is lacking;
hence, I have chosen those which I deemed most suitable and explained my observations.
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6.4.1 Data

The training dataset for the experimental work in this chapter, came from Image Set 1, which is
described in Section 4.3.2. Around 800 positive FOVs were randomly chosen from Image Set 1
and 800 negative ones from Image Set 2. Moreover, 77 positive FOVs from Image Set 2 were
incorporated into the training to enhance the models’ adaptability to slides prepared differently.
Figure 6.4 provides an illustration of FOV from the two sets. The reason behind this off choice is
the fact that Image Set 1 does not contain any WSIs therefore no negative FOVs are present. To
verify that the automated image analysis method being developed is not affected by changes in
the morphology of Mtb cells during TB therapy, images were picked across all time periods of
sample collection. These images were re-examined by a microscopist who had not seen them
before and each FOV was categorised as positive (containing possible Mtb cells) or negative (not
containing possible Mtb cells).

Evaluation of the method was done using 130 FOVs from Image Set 2, after performing the slide
cropping procedures described in Section 6.2. A balanced sample of positive and negative FOVs
was used. All FOVs were enhanced using the technique described in Chapters 4 and 5. Green
and red channel FOVs were both used, even though microbiologists primarily use Auramine
O staining in the green channel for bacterial detection: this is because red channel images,
overall, are harder to evaluate with more difficulty to detect bacteria and worse background noise.
Incorporation of the more difficult FOVs increase greater variability to the images examined by
the network.
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((a)) ((b))

Figure 6.4: Examples of various FOVs with LTR-red staining and their corresponding image enhancement
representations. The first FOV (a) comes from Image Set 1 and the second (b) from Image Set 2. The
difference in quality of the two FOVs is evident in their staining process, while the hardware and dyes
employed are identical. On the second FOV (b), the bacteria are scarcely discernible (marked with blue
circles), but the image enhancement representation approach rectifies this issue.

6.4.2 Results

73 of the 130 FOV images in my test set were classified as positive (containing possible Mtb
cells) and 57 were classified as negative by manual microscopy. Binary masks corresponding to
all 130 FOVs, developed in collaboration with a microscopist, were treated as the ground truth for
application of performance metrics. In order to facilitate a comprehensive comparison between
models [237], I assessed performance using this ground truth labelling as the gold standard, using
a number of metrics, namely overall accuracy, recall (sensitivity) and specificity accompanied by
precision, ROC, and AUC.
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Figure 6.5: Comparison of ROC curves and the areas under the curves, both show that the proposed
solution performs better on this test set from the current state of the art. For the sake of clarity, each model
family is illustrated using the average performance of its evaluated models.

A summary of my experimental results is shown in Table 6.1. To start with, consider the overall
performance metric in the form of the classification error (in the rightmost column of the table)
and observe that the proposed method achieved the best performance of all 13 methods compared.
The error rate of the next best model, namely ResNet50, is more than 11% greater. InceptionV3
and the best DenseNet family model, DenseNet201, performed next best (23% higher error
rate than the proposed model). While there is significant variation between different specific
models within all families, generally speaking ResNet performed better than DenseNet, and VGG
networks fared the worst (45–101% higher error rate than the proposed model).
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Table 6.1: Summary of results. All VGG models were trained using batch normalization (BN). The best
performing model with respect to each statistic is shown in bold.

Model name True +ve False +ve True -ve False -ve Sensitivity Specificity Error rate
VGG11 (w/ BN) 68 5 49 8 89.47% 90.74% 0.100
VGG13 (w/ BN) 67 6 47 10 87.01% 88.68% 0.123
VGG16 (w/ BN) 67 6 46 11 85.90% 88.46% 0.131
VGG19 (w/ BN) 63 10 50 7 90.00% 83.33% 0.131
ResNet18 65 8 51 6 91.55% 86.44% 0.108
ResNet34 66 7 51 6 91.67% 87.93% 0.100
ResNet50 67 6 52 5 93.06% 89.66% 0.085
ResNet50-Wide 68 5 49 8 89.47% 90.74% 0.100
DenseNet121 66 7 51 6 91.67% 87.93% 0.100
DenseNet169 67 6 45 12 84.81% 88.24% 0.139
DenseNet201 68 5 51 6 91.89% 91.07% 0.085
InceptionV3 68 5 52 5 93.15% 91.23% 0.077
Proposed 73 0 48 9 89.02% 100.00% 0.069

More detailed insight into the behaviour of different models can be gained by examining the
specific error types (in columns 3 and 5 of Table 6.1; also see Figure 6.5). My proposed method
performed best in terms of the false positive error rate – indeed, it made no incorrect positive
calls at all. Other methods (e.g., DenseNet201, ResNet50, ResNet50-Wide, and VGG1) all had
7% false positive rates. On the other hand, my proposed method was not superior in terms of
the false negative rate. In the context of this metric InceptionV3 and ResNet50 performed best,
achieving the error rate of approximately 9%. Here it is important to consider the different effects
of false positive (type I) and false negative (type II) errors on the task at hand [132]. A low
type I error rate is useful as only salient FOVs (containing Mtb cells) are left in the dataset and
large amounts of irrelevant information are removed, minimising bottlenecks for downstream
analyses. On the other hand, type II errors, may result in FOVs containing some bacilli being
missed. The incomplete detection of Mtb cells may be less consequential if sufficient information
can be obtained from the identified cells. This may be less important if necessary information
about Mtb cells can be gleaned from those which are identified, without every cell being detected
but it may still be problematic if there are not many bacilli on the smear (so missing even a few
could distort the data) or if the bacilli which are missed represent a cellular sub-population with
a specific morphology which would have been important to see. Excessive type II errors may
also adversely affect quantitative microscopy as they will result in systemic under-estimation of
bacterial load. As illustrated by the results in Table 6.1. Type II errors do not represent a major
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challenge in this chapter, as most of the methods compared did not produce a high number of
false negative results.

Overall, for different downstream clinical or research purposes differing levels of Type I and Type
II can be acceptable. For each purpose, the choice about the model output might be modified to
shift between positive and negative classifications. In other words, the model output without a
sigmoid function constitutes a logistic regression, which in turn produces a probability. A logistic
regression model that yields a value of close to 1 (e.g. 0.997) for a given FOV predicts that it is
very likely to be positive. In contrast, an alternative FOV with a prediction score of close to 0 (e.g.
0.001) according to the same logistic regression model is very likely to be negative. Classifying
an FOV becomes more ambiguous when its prediction score is 0.501, or any value proximate
to the decision boundary. In order to map a logistic regression result to a binary category, it
is necessary to determine a classification threshold (also known as the decision threshold). A
value over the threshold is positive, whereas a number below the threshold is negative in this
context. The output value of a sigmoid function falls within the interval [0,1], with the value 0.5
frequently serving as the classification boundary, however the specific threshold is subject to
task-dependent adjustments.

Two methods can be adopted to manage results that are proximal to the decision boundary.
Changing the class weights is a common technique used to develop models with a focus on
minimising FN rate [204]. This was first developed as a solution for imbalanced data sets, to
compensate for the under-representation of a certain class. Consequently, the most common
threshold value (0.5) is maintained, but the logistic regression probability calculation differs owing
to the weights applied to each class. For three reasons, I did not employ class weight balance
throughout my training. Firstly, since the training dataset is balanced, adjusting class weights
might not yield the intended benefit of facilitating decisions for ambiguous FOVs. Secondly,
adjusting class weights introduces an extra hyperparameter to optimize, thereby increasing
the model complexity. Class weights can sometimes make the optimization landscape more
challenging, leading to slower or less stable convergence [88]. Finally, the difficulty with this
strategy is that any improvement in accuracy may be accompanied by a significant decrease in
sensitivity (recall) [204]. Some of the FOVs in both the training and test sets were subjectively
assigned to each class by microscopists, who were uncertain of their objective classification.
Consequently, favoring one class through weight adjustment could negatively affect model
performance in this context. The efficacy of such weight modifications relies on accurate class
specification, whereas in this case their allocation is sometimes subjective.

Changing the decision threshold is a common technique used to reduce instances of FN and
FP. In order to decrease FN, the threshold value can be lowered since doing so will compel the
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model to predict fewer inputs as false, hence lowering the number of FN instances. Increasing
the threshold value similarly reduces the amount of FP. I used a decision error trade-off (DET)
graph to determine which threshold values should be evaluated [138]. A DET graph plots the FN
rate vs the FP rate for binary classification algorithms [138]. Figure 6.6 shows a comparison
of calculated DET graphs between my proposed model and the model with the second-best
performance, InceptionV3. As the proposed model predicted no FPs, the approach taken was to
compare models by minimising their FNs. In other words, the threshold is set lower than 0.5,
which allows FPs to rise while decreasing FNs. I then compute the precision, recall, and F1-score
for each threshold value to determine the effect of the trade-off between the two models; see
Table 6.2. The proposed model exhibits a less significant decline in performance upon adjustment
of the decision boundary than the model with the second-highest performance does.
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((a))

((b))

Figure 6.6: DET graphs of InceptionV3 (a) and proposed model (b). Graph (a) covers a larger region
than graph (b), indicating that the predicted effect of the trade-off will be greater.
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Table 6.2: Summary of results with different threshold values. The F-1 score comparing the two models
indicates that altering the threshold boundary for InceptionV3 incurs a bigger penalty than for the proposed
model. In other words, for every reduction in FN, InceptionV3 pays a larger rise in FP numbers than the
proposed model. Therefore, the proposed model is well tuned and offers flexibility in error type balancing
(type I and type II)

Threshold value
Precision Recall F1-score Precision Recall F1-score

InceptionV3 Proposed

0.5 0.94 0.92 0.93 1 0.89 0.94

0.2 0.95 0.87 0.91 1 0.91 0.95

0.01 0.97 0.84 0.90 0.94 0.94 0.94

6.5 Discussion

The work described in this chapter shows that use of WSI of TB microscopy slides, stained using
the dual Auramine O LTR technique, is possible. The WSI which is generated can be cropped
into FOVs, which in turn are suitable for assessment using DL tools to filter those which contain
possible Mtb cells from the much larger number of fields which contain only background.

My proposed method for FOV classification learns from coarsely labelled images and their
corresponding binary masks and outperforms other generic CNNs based on standard performance
metrics. Furthermore, the proposed model offers an additional advantage, as demonstrated by
decision threshold trade-off analysis. Different applications of automated smear microscopy may
require different performance characteristics, e.g. a clinician aiming to simply classify whether
an entire smear microscopy slide is “positive” or “negative” is likely to be more tolerant of Type
II error (false negative cell detection) than a researcher wishing to accurately count the bacterial
load or describe subtle changes in diverse bacterial populations within a sample. With my model,
the penalty for decreasing Type II error, at the expense of higher Type I error was smaller than the
second best competitor model. This gives clinical and academic microbiologists greater latitude
to adapt my method for satisfactory completion of their intended task.

The potential value of this approach is that automated pre-selection of Mtb-containing FOVs
could accelerate creation of suitable image sets for advancement into the DL cell counting or
phenotyping models described in Chapters 5 and 7. However, there are some limitations. The slide
scanner and associated software and computing power required to generate WSIs is expensive,
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probably limiting its use to well-resourced research laboratories in the first instance. The FOV
classification method introduced in this chapter is also dependent on shape characterisation, a
fundamental aspect of which involves generating feature maps from manually created binary
mask counterparts of the input images, both for training and testing. This need for human labour
to do this still conflicts with the primary objective of this thesis chapter, which is to automate as
much of the smear microscopy process as possible as much as possible. In Chapter 7 I will partly
address this limitation by revisiting a different approach to bacterial detection through semantic
segmentation. The ultimate goal is not only to detect bacteria but also to automate the creation
of essential binary masks, as required by methods like the one proposed in this chapter.

So far, in this thesis I have demonstrated the ability of AI tools to enhance sputum smear
microscopy images, to detect and quantify Mtb bacilli in pre-selected FOVs and to filter those
FOVs out of large dimension WSIs. However, it will be recalled from Section 2.7 that an
important TB therapeutic research goal is still to investigate and monitor treatment response by
studying changes in the size and lipid content of Mtb bacteria in different growth conditions
and under drug pressure [7, 207]. The next, and final, chapter of my thesis will focus on the
development of TB-AI microscopy methods to achieve this.



7Chapter Seven

Estimating Phenotypic
Characteristics of

Tuberculosis Bacteria

Chapter Abstract– In Chapter 1, the possible importance of intracellular lipid content and
cell dimensions as phenotypic characteristics of Mtb bacilli was explained. Here, I seek to
automate the process of examining sputum smear microscopy FOVs in order to determine those
characteristics at the individual cell level and facilitate further research into their importance. I
propose a UNet-based model to rapidly localise potential bacteria inside a FOV. I introduce a
novel method that uses Fourier descriptors to exclude contours that do not belong to the class of
bacteria, hence minimising detection of false positive objects. Finally, I propose my own feature
extractor in conjunction with feature descriptors as a means of extracting a representation into a
support vector multi-regressor in order to estimate the length and width of each bacterium. Using
Image Set 1 the proposed method i) outperformed previous methods for the bacterial detection
task by almost 8% (SD coefficient) and ii) estimated the cell length and width with a root mean
square error of less than 0.01%.

7.1 Chapter introduction

As outlined in Chapter 2, one of the most compelling arguments for the continued use of smear
microscopy in the context of TB treatment monitoring and therapeutics research is its capacity
to investigate changes occurring within individual Mtb cells throughout the course of therapy.
Recall from Section 2.7.2 recent microbiological research suggest that the physical morphology
of each organism offers phenotypic information on its physiological behaviour in relation to
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antibiotic susceptibility. For example, some Mtb cells accumulate nonpolar lipids intracellularly,
allowing them to be classed as LR rather than LP [97, 53, 80, 96, 57]. In vitro data suggest
that LR bacteria are antibiotic tolerant (less easy to kill by the first-line drugs used to treat
TB) [96, 57] and may play a role in poor patient outcomes (treatment failure or post-treatment
relapse) [207]. The Auramine O LTR staining method, which is used in both Image Sets analyzed
throughout this thesis, allows discrimination between LR and LP cells [80, 207].

Additionally, in vitro microscopy has previously demonstrated that Mtb cells grow asymmetrically,
creating variation in cell length over time [39, 7]. Cells of different sizes with different growth
poles have variable susceptibility to individual antibiotics [7, 184]. Preliminary clinical data
suggest that the median length of persistent Mtb cells may be associated with worse disease
severity and increases after antibiotic exposure [243, 19].

To understand whether phenotypic changes in Mtb bacilli, e.g. variable intracellular lipid content
or cell dimensions, really are useful characteristics for the study of TB treatment response, larger
scale laboratory and clinical studies are required. However, (as repeatedly observed in this thesis)
smear microscopy is time-intensive and subjective which makes this work difficult to perform
at scale [185]. Each slide must be examined in discrete FOV that are inspected sequentially.
This process is tiring which can introduce errors [185]. Some slides are challenging to evaluate
because AFB might have odd appearances or because non-bacterial components (artefacts) inside
the sputum matrix mimic Mtb cells. These problems have been noted in previous chapters
in relation to classifying or counting bacteria but are even more challenging when additional
properties of individual cells must be evaluated one by one. Application of contemporary DL
techniques may help tackle the issue of cell phenotyping [241]. Recent studies have demonstrated
significant accomplishments in the realm of automated diagnosis, treatment monitoring, and
the potential prevention of other medical conditions (e.g., cardiovascular and gynaecological
pathology) [256, 220].

In this chapter I aim to advance ML-based approaches to phenotyping Mtb cells from fluorescence
microscopy images by developing methods to:

• Locate Mtb cells within given FOVs on Auramine O and LTR stained fluorescence microscopy
images, with performance evaluation by two established metrics (Jaccard index and SD
coefficient).

• Co-localise the same Mtb cells on paired Auramine O and LTR stained images of an FOVs, in
order to assess the proportion of LR bacteria.

• Estimate the length and width of Mtb cells in FOV patches from sputum smears collected at 0,
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2 and 6 months of therapy.

7.2 Related work

Whilst prior research on automation of smear microscopy for TB diagnosis was extensively
reviewed in Chapter 3, I was unable to find any other work that sought to studying morphological
phenotypes of Mtb cells in the context of treatment response. However, some previous literature
describes use of DL tools for phenotypic evaluation of other cell types in order to understand the
pathophysiology of infectious diseases and bacterial response to antibiotics.

In the realm of mycobacteria, Bao et al. used using light microscopy and convolutional
neural networks (CNN) to classify morphological alterations of macrophages infected with
Mycobacterium marinum, a surrogate model for Mtb and a pathogenic bacterial species in its
own right, to show the role of the essential virulence factor EsxA [17]. Whilst this work focussed
on identification phenotypic changes in host cells rather than bacteria and did not fall under the
purview of treatment monitoring, it still demonstrates the capacity of automated image analysis
to detect changes in cell appearance of individual cells which enhance our understanding of
bacterial pathophysiology.

In the domain of antibiotic response, Yu et al. assessed susceptibility of Escherichia coli bacteria
in urine to five relevant antibiotics using DL video microscopy [258]. Conventional procedures
for antimicrobial susceptibility testing can take several days and delay clinical decision making,
but these authors described a technique that used a 7 layer CNN to evaluate footage of freely
moving bacterial cells in real time. Inhibition (or not) by antibiotics was reported by learning
several phenotypic characteristics of the cell without requiring the definition and quantification of
each characteristic. Antibiotic susceptibility was reported with mean accuracy of 91.8% within
30 minutes. Similarly, Zahir et al. used high throughput screening and DL to describe phenotypic
‘bulging’ in E. coli which is associated with resistance and tolerance to 𝛽-lactam antibiotics [269].

7.3 Proposed method

The methods proposed in this paper consists of three stages: i) bacterial detection from microscopy
FOVs, ii) paired detection of bacterial locations from two images of each FOV (one captured to
show Auramine O staining of Mtb cells, and one captured to show LTR staining of intracellular
lipid; collectively these allow inference of the proportion of LR bacteria in the FOV), and finally
iii) estimation of individual bacterial dimensions (length and width) from cropped patches of
FOVs containing one or more Mtb cell. Segmentation techniques are used for stage i) and ii),
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and regression is used for stage iii). These methods are designed and evaluated separately, with
distinct objectives and evaluation criteria. Although I describe them to operate independently,
they could be used sequentially with a future goal of pipeline integration.

The initial stage involves revisiting the method of semantic segmentation, employing a modified
version of the widely recognized UNet [188] architecture, while the regression component utilizes
a specialized CNN.

7.3.1 UNet: segmentation-based CNN

As explained previously, CNNs leverage convolutional layers to extract hierarchical features
from images. A UNet model builds on these CNN principles to create an encoder-decoder
segmentation architecture [188].

The encoder portion of UNet uses repeated blocks of convolution, activation, and max pooling
layers, similarly to a typical CNN. This encodes the input image into high-level feature
representations while downsampling spatially. The decoder pathway then upsamples these
features back to the original input resolution using transpose convolutions. A key difference
from a CNN is the introduction of skip connections that concatenate encoder features with the
upsampled decoder features. These skips provide the decoder with both contextual information
from the encoder (information recall) as well as fine-grained localization from the upsampled
features.

Finally, the decoded features are fed into a convolution layer to generate a pixel-wise probability
map for semantic segmentation. So UNet leverages a CNN encoder to analyze contextual features,
but adds a decoding path with skip connections to localize and precisely segment input images
in an end-to-end manner. The model is trained via backpropagation just like ordinary CNNs.
This architecture remains popular for segmentation tasks, especially in medical imaging where
precision is critical.

In summary, UNet extends CNNs into an efficient encoder-decoder structure specialized for precise
pixel-level segmentation while retaining automated feature extraction capabilities. Figure 7.1
provides a visual example of the UNet architecture.
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Figure 7.1: Flow of information of the UNet architecture.

7.3.2 Bacteria detection

As described in Section 2.7.3.2, lipid content within Mtb cells is calculated as the proportion
of total bacteria detected in an FOV stained with Auramine O (green channel) which are also
detected in the same FOV stained with LTR (red channel) at the same location. As each FOV is
represented as two RGB images, I set the red and blue channels to 0 to make bacteria visible in
the green channel only. Similarly, I set the green and blue channels to 0 makes bacteria visible
in the red channel only. If a bacterium is localised in the green channel and co-localised at the
same spot in the red channel, it is LR. If the bacterium is localised in the green channel without
co-localisation in the red channel, it is LP. If no bacterium is localised in the green channel,
any object identified at that spot in the red channel is discarded as artefact. This is because
Auramine O is a gold standard microscopy stain for Mtb, whilst LTR stains lipid irrespective
of whether it is within bacteria of interest. For example, when examining paired images of an
FOV, if 5 bacterial locations are found in the green channel, 3 are co-localised in the red channel
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only, 5 Mtb cells have been identified in total, 3 (60% lipid content) of which are LR and the
other 2 are LP. Any other objects resembling bacteria in the red channel are also discarded, as
microbiologists typically address this task in a unidirectional manner rather than bidirectionally,
i.e. first detect bacteria in the green channel and then the red one.

The key component in this analysis is not the actual colour intensity, but rather the intensity of
the object in contrast to the image background when the other two channels of an RGB image
are set to a value of 0, i.e. suppressed. I convert each FOV to greyscale in order to avoid the
need for extra training for each coloured FOV and also to reduce complexity when moving
from three dimensions to one. In addition, to make FOVs less susceptible to noise, I use the
image enhancement technique described in Chapters 4- 6. Figure 7.2 presents an example of the
pre-processing procedure, as well as featuring segmentation ground truths.
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((a)) ((b))

Figure 7.2: Examples of paired images from the same FOV from Image Set 1. In the top row (a) all colour
channels except green suppressed and (b) all colour channels except red suppressed. In the second row, all
images are converted to grayscale using the proposed image enhancement technique. In the bottom row,
manual ground-truth labelling of cells in the two images is shown; the two separate fluorescence labels
visible on the same FOV display different information, necessitating a different ground truth label. At this
phase, I train the model to detect as many Mtb-shaped objects as possible in both green and red channel
images, even although objects which are only detected in the red image are ultimately discarded.
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The first objective is to binarize the FOV, which means that the resulting image has a black
background and the objects of interest (bacteria) are white areas. I adapt and apply UNet [188]
since it is an effective choice for learning to collect important information about objects of
interest and generate a binarised image. I replace the first layer of the UNet with one that has
input channels of one rather than three and output channels of 32 rather than 64 as required by
the original implementation. Therefore, the input and output channels of subsequent layers are
adjusted to align with the original UNet implementation, whereby the number of channels in each
layer is doubled compared to the previous layer. Consequently, the proposed network architecture
exhibits a reduction in the number of channels at the bottleneck level from 1024 to 512. Kernel
sizes and padding for the convolutional layers are not changed. In addition, the max pooling
layers in the model have a stride of 1, as opposed to the original UNet that used stride of 2, while
the kernel size remains the same. These modifications of the layers are driven by the fact that
bacteria do not have complicated shapes. As the form of a bacterium is relatively simple, the first
layer requires less deductive reasoning; therefore, higher channel layers may cause the model to
overfit on the training data and acquire extraneous features. As this is supervised learning, each
FOV used to train the network has previously been examined by an experienced microscopist
who has manually highlighted bacterial outlines in each FOV, which is then converted into a
binary image and used as ground truth for both the UNet and the proposed network training.

7.3.2.1 Training of segmentation networks

The training is carried out in an end-to-end fashion; there is no use of transfer learning. Due to
the fact that there is no transfer learning, I train the network for over 1000 epochs. Similar to the
approach taken in Chapter 5 during the training of the Cycle-GAN, I opt to use AdaBelief [274]
for training the UNet in this context as well.

A circular scheduler with a step size equal to five times the size of the dataset (which in turn
is dependent on the batch size) is used in conjunction with a learning rate of 0.0001, which is
the default setting [208]. Both the base learning rate and the upper learning rate are set to their
respective default values of 0.00001 and 0.0004. I use Dice loss [126] (also known as F1-score)
as the loss function to train the model. To increase the robustness and generalizability of the
learning process, I augment real data with synthetic data. To achieve this I synthesise images
randomly rotated by ±25◦ and mirrored around the vertical or horizontal axis; this increases the
quantity of training data by roughly 50% [260]. Note that this type of enhancement is particularly
well suited to the task at hand because, unlike natural images, in which there is an inherent
asymmetry in directions (e.g., the horizontal and vertical directions are objectively defined and
cannot be swapped), in the microscopy slides of interest, all directions are interchangeable and
therefore equivalent. Furthermore, input images are resized to 256×256 pixels using bicubic
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interpolation [8].

7.3.2.2 Minimizing false positives with bacterial morphological features

Existing literature, and some results from Chapters 4 to 6, describe that detection of bacteria
using gradient-based methods alone is not always successful [174, 137]. Specificity can be
compromised by false positive misinterpretation of artefacts as bacteria, on the basis of similar
colour intensity. To reduce detection of these false positives, my method includes heuristic
morphological characteristics (area, perimeter, number of edges, and Fourier descriptors).
Utilizing the Douglas-Peucker technique [67], I determine the contour’s area, perimeter, and
approximate shape, employing the same approach as detailed in Chapter 4. Essential parameters
for a detected shape to be identified as a bacterium are: the area must be between 80 and 1200
pixels, the perimeter must be between 40 and 300 pixels, and the approximate form must have
between 9 and 20 edges.

In the last step of this process, I calculate the elliptic Fourier descriptors for each contour of
the ground truth labels using the 20th harmonic. The application of the 20th harmonic for
representation yields proximate coefficients that capture well the morphology of a majority
of the designated bacteria specimens chosen at random; see Figure 7.3. Higher numbers of
harmonic result in an overfitted outline of the current contour. Once each Fourier descriptor
for every contour has been computed, the resulting matrix has the dimensions 𝑛×20×4, where
n is the total number of contours. The last dimension, 4, reflects the coefficients returned, of
the Fourier series representation of the contour. The final 20×4 matrix is created by averaging
the Fourier descriptors from all calculated contours. Furthermore, the Fourier descriptors of
each predicted contour are calculated. These descriptors are then used in the calculation of the
Euclidean distance between the average descriptors derived from the ground truth labels. To
be considered a valid bacterial shape, the Euclidean difference between the predicted contour
Fourier descriptors and the average descriptors must be between 14 and 18 pixels.



132 CHAPTER 7. ESTIMATING PHENOTYPIC CHARACTERISTICS OF TUBERCULOSIS BACTERIA

Figure 7.3: Several plots depicting the impact of the harmonic value. Lower numerical values generate a
shape that is relatively generic, whereas higher numerical values endeavour to achieve an exceedingly
precise match with the shape.

7.3.3 Estimating cell length and width

For the last step of this process, any bacterium/contour in the green channel images that fits the
requirements given in Section 7.3.2.2 is utilised as the test set. Firstly, a microscopist manually
crops patches containing one or more bacteria that overlap and annotates the cells with straight
lines down their entire length. Multiple straight lines are needed for bacteria with curved or
angular forms. Since the cell width across all cells is very similar (typically 5-6 pixels), width
is averaged per patch, thus a patch with three cells is represented by a scalar for its width.
Furthermore, I observe that the maximum number of bacteria per patch is four (n.b. for my
dataset), the size of the vector acting as the ground truth label during training is five. If a patch
contains two bacteria, for example, the first entry is the average width, the second entry is the sum
of the lengths of the first bacterium, and the third entry is the sum of the lengths of the second
bacterium. The remaining entries are all 0. Evidently, an additional benefit of this approach is its
ability to count the number of bacteria present in a patch, similarly to previous work [241] and
Chapter 5.

I utilise these labels to train a second CNN model, using regression, i.e. the final linear output
layer does not contain a sigmoid activation. The trained model is stored and later deployed as a
pre-trained model with its linear output layer removed, transforming it into a feature extraction
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encoder of 128 sized vector. Additionally, several feature descriptors are applied to extract a
supplementary 128 sized vector of features from the input patches. These are: RootSIFT [9],
Multiple Kernel local descriptors [150], HardNet [144], HardNet8 [180], HyNet [227], TFeat [15],
SOSNet [227], Histogram of Oriented Gradients1 [52]and Local Binary Patterns [158, 72]. The
two vectors, one from the CNN and the other from the feature descriptor are then concatenated,
creating a 256-dimensional feature vector. This vector serves as input to a multi-output support
vector regressor (MSVR) [16] aiming to predict the same 5-dimensional ground truth. Figure 7.4
shows an overview of the method’s information flow.

Figure 7.4: Following an encoding procedure from both the CNN and the feature descriptor, the MSVR
outputs the final predictions. Since 1×1 convolutional filters may be used to modify the dimensionality
of the filter space while maintaining linear activation of pixel values, the kernel size of all CNN layers
is set to 1. This is due to the small dimensions of the input images; thus, I want to capture bacterial
characteristics without losing spatial information.

7.3.3.1 Training setup

As with the training for segmentation, no transfer learning is performed in this instance, and
the model is trained from scratch for 1,000 epochs. For the optimiser I use Adam for its
straightforward implementation, being computationally efficient, and low memory requirements.
The hyper-parameters 𝛽1 and 𝛽2 are set to 0.5 and 0.999 respectively, the learning rate to 0.001,
and the cosine annealing learning rate scheduler employed [135]. This scheduler decreases the
learning rate every 20 iterations until it reaches 0.0001 before initiating over again. Finally, the

1Given that input patch size is 80×80 pixels, to output a 128-d vector, orientation bins is set to 8, pixels per cell
is set to 20×20 and cells per block is set 1.
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loss function used is the Least Absolute Deviation (L1), since the dataset contains many outliers
which are emphasised by squared differences. Considering that I have 1000 patches available for
training in this stage (80% for training and 20% for testing), no data augmentation is performed.
Like the previous CNN, the input patches are made square before being scaled to 80×80 pixels
using bicubic interpolation. Following grid search hyperparameter learning, the following are
used: a radial basis function (RBF) kernel, 𝐶 = 1, 𝜖 = 0.001 and 𝛾 = 0.01. Figure 7.5 presents a
graphical summary.
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Figure 7.5: The diagram presented illustrates the proposed approach. The first method involves the
training of the UNet model and the proposed network. Afterwards, bacterial patches are manually cropped
from ground truth labels in the green channel that were employed in the segmentation method. The
decision stage involves determining whether it is necessary to pre-train the CNN model for the final stage,
or alternatively, to utilise the same CNN along with a regression layer to make predictions on the vector
representing cell length and width. If pre-training is not needed, the features extracted from the pre-trained
CNN are combined with the output of a feature descriptor. This concatenated feature representation is then
fed into a MSVR, which produces a prediction vector that resembles the output of the CNN’s regression
layer.
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7.4 Results

In this section, I will describe an empirical assessment of the proposed algorithm using data from
Image Set 1. I will start by providing a description of the data used and then proceed to evaluate
each method separately, taking into consideration the specific context of each.

7.4.1 Dataset

In all experiments conducted in this chapter, Auramine O and LTR FOV from Image Test Set
1, as detailed in Section 4.3.2, were employed. A selection of 500 FOVs pairs, spanning all
time points of sample collection in the original clinical study, was made to ensure that the
automated detection network for Mtb bacteria, remained unaffected by potential alterations in
bacillary morphology during the course of TB treatment. To create ground truth images for
the segmentation analysis, a microscopist who was independent of the original project which
generated these images re-examined them, labelling objects of interest in both the green and red
channel images. Importantly, in contrast to the labeling approach employed in Chapter 5, the
annotation procedure involved outlining different bacteria rather than using bounding boxes; for
visual reference, see Figure 7.2.

7.4.2 Semantic segmentation of bacteria detection

As explained in Section 7.3.2, bacterial detection and estimation of lipid content must be
done in combination. Therefore, evaluating the performance of these tasks should be done
together. However, distinct techniques are required to assess the separate processes of semantic
segmentation on green and red channel images of an FOV, and distance-based evaluation of
whether the same objects have been localised on both images. For example, although being a
true positive in terms of detection, for the lipid content it cannot be deemed accurate. This is also
the primary reason why these two stages of this work require two distinct assessment techniques.
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((a))

((b))

((c))

Figure 7.6: (a) and (b) are separate examples of Auramine O stained FOVs, the prediction image from the
segmentation model and labels applied by a microscopist to corresponding ground truth images. (c) is an
example of a different LTR stained FOV (not paired with (a) or (b)). The prediction in (c) has localised
three false positives objects, which are likely due to noise or artefacts and are subsequently rejected using
the morphology-based approach.

The performance metrics used in the assessment of semantic segmentation are the SD [93]
and Jaccard index [21]. When only Auramine O (green channel) stained FOVs are included,
these are 97.00% and 96.06% respectively for the test set. The value of the Jaccard and SD
coefficient index exceeds that achieved by earlier efforts [60, 147, 209]. All works employ the
same evaluation metrics, which facilitates direct comparison with this method. However, when
LTR (red channel) stained images are included, the percentages decrease to 92.03% and 85.84%,
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respectively. As seen in Figure 7.6, LTR stained FOVs often result in false positives, which
motivated the subsequent use of morphology characterisation. Appendix C.1 contains further
illustrative comparisons between the segmented Auramine O and LTR FOVs. A comprehensive
comparison of the outcomes from the two models (UNet and proposed), appears in Table 7.1.
Following the application of morphological criteria and Fourier descriptors to the FOVs of both
dyes, the final percentages are 95.47% and 91.33%. Considering that it is very difficult to match
precise bacterial outlines by manual or automated labelling, it unrealistic to anticipate that the
form of the predicted contour would precisely match the shape outline of the ground-truth contour.
Therefore, even if the model accurately predicted a contour, the errors in the reference used as
the ground truth itself may penalise it slightly.

Table 7.1: A comparison of segmentation results between the original UNet and the proposed network.
In the training phase, a composite of both stained FOVs was used, whereas in the testing phase, both
models were initially evaluated using only green and then both types of FOVs. The LTR dye stained more
artefact, making it more difficult to detect Mtb cells on the red images precisely. Although the original
UNet performed better in training, the proposed network performed better on unseen test data.

Models Training Test
Dice coefficient Jaccard index Dice Coefficient Jaccard index

UNet (Baseline)
Green FOVs

99.53% 99.07%
96.10% 92.49%

UNet (Baseline)
All FOVs

91.29% 83.97%

Proposed network
Green FOVs

99.04% 98.11%
97.00% 96.06%

Proposed network
All FOVs

92.03% 85.24%

7.4.3 Distance-based evaluation

Having assessed green and red channel image segmentation for all FOVs separately, I evaluated
the ability of the network to detect the same bacteria in both images of each FOVs at the
same location. I utilise the 𝐿1, 𝐿2, and 𝐿∞ norms in a manner similar to that described in
Section 5.5.2.1. Instead of comparing ground truth contours to predicted contours, contours from
the green FOV and the red FOV were compared in this chapter. Essentially, I am attempting to
correlate the centroids of bacteria in the green FOV with the centroid of bacteria in the red FOV.
The pairing was determined by the minimum Euclidean distance between the centroid positions,
with a threshold of 15 if an apparent bacterium in one image could not be matched with a partner
in the other. If no suitable contour is obtained in the red FOV, the contour from the green FOV is
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discarded, since it is deemed irrelevant. The combined distances constitute a vector which is
subsequently used for the norms calculation. Additionally, I provide the counts of paired contours
from each category, namely, green and red ground truth FOVs, along with their corresponding
predicted counterparts. The 𝐿1, 𝐿2, and 𝐿∞ norms for the ground truth FOVs measured at
1010.77, 49.17, and 8.54 pixels, respectively, with a total of 572 pairs. Equivalent values for the
predicted FOVs, were 1067.7, 56.12, and 9.85 pixels, with 577 pairs. The close proximity of
the norms between the two sets of FOV pairings indicates that my technique accurately predicts
and pairs images of the same bacteria co-stained with Mtb and intracellular lipid detection dyes.
Notably, the 𝐿∞ norm, representing the maximum absolute distance, has a difference of less than
2 pixels, and the total of all distances is within 70 pixels of each other. Considering that the
average length of a bacterium can range from 20 to 100 pixels, these numbers suggest that the
predicted pairings closely align with the ground truth ones.

7.4.4 Bacterial length and width

As described in Section 7.3.3, I use regression to estimate the individual length and average
width of bacteria. Therefore, I applied regression evaluation metrics, comprising of RMSE,
MAPE, and MAE. The rationale for incorporating both MAPE and MAE lies in the dissimilar
nature of the scaling of length and width. As depicted in Figure 7.7, it is evident that the scaling
of length (≈ 20−100 pixels) and width (≈ 4−9 pixels) differs significantly, thereby an error in
length would not have an equivalent effect as an error in width. This figure also indicates that
MAE is a more suitable loss function than MSE for this dataset because the outliers, represented
by the two tails of the distribution, exhibit a smaller deviation from 0% error, while the majority
of errors occur on the average samples. This is due to the fact that the outliers, represented by the
two tails of the distribution, exhibit a smaller deviation from 0% error, while the majority of
errors occur on the average samples.

Altogether, all model combinations performed well, with the CNN + HOG combination
consistently performing best according to all the criteria. Figure 7.8 shows two examples of cell
dimensions measurements using the best model. Table 7.2 summarizes all training and test set
metrics. Two additional plots depicted in Figure 7.9 and 7.10, derived from the test set, provide
supplementary evidence that the model has exhibited noteworthy performance and has acquired
the ability to extrapolate to novel data.
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((a))

((b))

Figure 7.7: Plots (a, b) length and width samples vs their respective percentage error rate. Due to the
large number of samples in both the training set and the test set, the graph is simplified by averaging
identical samples with 0.01% error difference.
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((a))

((b))

Figure 7.8: Examples of patches to illustrate the labelling procedure for cell dimensions, and show
examples of ground truth and prediction distances. The length of bacteria are shown by the blue straight
lines while width is depicted in green straight lines. When the length of a curved or angular bacterium
requires several blue lines for full coverage, its total length is calculated as the sum of all the blue lines
within it. Distances written next to individual cells in blue are ground truth lengths in pixels, while those
in red are predicted lengths. The width value is the average of all green lines in each patch and is written
in the bottom left corner of each image.
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Table 7.2: Performance evaluation metrics for both training and test sets, including all model and shape
characteristics. The quantitative results demonstrate that this approach has learnt and generalised the
problem. The CNN model utilised throughout the evaluation phase was the pretrained model specifically
designed for this purpose.

Training Test
RMSE MAPE MAE RMSE MAPE MAE

CNN 1.9840 0.0213 0.5366 2.4746 0.1111 1.7442
CNN & HOG 0.0161 0.0046 0.0212 0.0815 0.0112 0.1004
CNN & SIFT 0.6727 0.0350 0.6753 0.8357 0.0533 1.0778
CNN & MKD 0.5374 0.0290 0.5469 0.6915 0.0431 0.8732
CNN & HardNet 0.4651 0.0246 0.4646 0.5307 0.0339 0.6628
CNN & HardNet 8 0.7747 0.0393 0.7599 0.9575 0.0615 1.2421
CNN & HyNet 0.5034 0.0263 0.5162 0.6476 0.0402 0.8076
CNN & TFeat 0.1322 0.0077 0.1572 0.1563 0.0096 0.2068
CNN & SOSNet 0.4718 0.0256 0.4948 0.6248 0.0394 0.8007
CNN & LBPs 0.7684 0.0396 0.7624 0.9737 0.0626 1.2495
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Figure 7.9: The histogram of residuals plot depicts a concentration of residuals around 0, indicating that
the model’s residuals are predominantly distributed in close proximity to the origin. Patches consisting
of 3 or 4 cells are infrequent. As a result, the third length is typically 0, which aligns with the model’s
accurate prediction. For clarity, the fourth length is not displayed.
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Figure 7.10: Residual plot indicates a dispersion of residuals that is close to zero. An additional
observation provides further evidence for the selection of MAE as a more appropriate loss function, given
that the outliers in the test set exhibit a proximity to zero that exceeds that of the average sample.

7.5 Discussion

The majority of ML and DL research on automating sputum smear microscopy has focussed on its
long-established role as a frontline diagnostic test for pulmonary TB as discussed in Section 3.10.
As molecular tools, such as Xpert® MTB/RIF, replace this function, a key contribution of
microscopy may become its ability to report on phenotypic characteristics of individual Mtb cells
for treatment monitoring and to improve our biological understanding of therapeutic response.
The work I have descrtibed here is the first demonstration of AI approaches for this application.

I have developed a novel semantic segmentation method for detecting Mtb bacteria in fluorescence
microscopy FOV which demonstrates superior performance compared to the technique described
in Chapter 5 as well as other comparable methods in the field [209, 60, 115, 148]. Additionally,
my method is robust for use with multiple fluorescence stains so that paired images of the same
FOV can be used to report on bacterial detection and the presence of important intracellular
structures such as lipid content. Although the ultimate objective is to estimate the proportion
of LR Mtb cells within a given FOV, the method described in this chapter does not follow that
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activity through to provision of a final microbiological result. Presently, the method accurately
detects the location of Mtb bacteria within dual-stained FOVs and pairs these localized locations
based on a specified threshold distance. This is the essential tool for the LR proportion to
be determined. Chapter 8 will illustrate the potential of this approach by showing results of
pilot experimental work conducted through my AI techniques which demonstrate changing
intracellular lipid phenotypes in a sub-population of TB patients during treatment .

Finally, a novel contribution of my work is that the models accurately predicted the dimensions
(length and width) of cells in original ground truth images, which does improve the ability of
clinical researchers and microbiologists to investigate the relevance of heterogenous bacterial
appearances in biological samples. Pilot experimental work in Chapter 8 will also show how my
approach could be applied in practice.

The existing limitation of my approach to predicting cell dimensions is its presumption that the
number of bacteria in a given patch is unlikely to exceed four. While I do not claim this to be
impossible, the probability of such an occurrence is considered (based on observations from both
datasets used in this thesis) extremely low. The current design of the technique discussed in this
chapter is operates under the assumption of a maximum of four bacteria and may result in either
an excessively high length estimation for one bacterium or an attempt to distribute uniformly
along the length of all bacteria. In either case, this may lead to inaccuracies in the results.

Next steps for this work will include: i) interdisciplinary collaboration between Infectious Disease
and Computer Science researchers to deploy these tools on bigger microscopy image sets to assess
their real-world application, and ii) optimisation of methods for automated reading of whole
slides, so that the manual labour required to identify FOVs and patches before DL techniques can
be used is also eliminated; in effect this work would combine the progress described Chapter 6
and 7.

Overall, the information compiled in this chapter has shown that microscopy based treatment
monitoring and Mtb cell phenotyping research is important, and that automated DL techniques
make these tasks possible.
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General Discussion

Chapter Abstract – The concluding chapter of this thesis offers an overall summary of the work.
Initially, I reflect on the most important results and contributions of my research, explaining
in detail how each element contributed to advance the understanding of some major questions
identified in Chapter 3. In addition, I describe the limits of my work and the ways in which they
may be improved. In conclusion, I provide proposals for future research in the field.

8.1 Chapter introduction

Microscopy dates back to the 17th century, when Dutch scientist Antonie Von Leeuwenhoek
discovered microbial life forms using a rudimentary light microscope, a discovery that would spark
a revolution in science [251]. Oskar Heimstaedt built and used the first functional fluorescent
microscope in 1911. Although fluorescence microscopy was pioneered during the last century, it
remains widely deployed in clinical microbiology and has been the mainstay of pulmonary TB
diagnosis until recently. However, several centres throughout the world are now shifting their
focus away from smear microscopy and toward molecular tools (such as the Xpert® MTB/RIF
test) for TB diagnosis [140]. This has led some scientists to question the research and financial
cost of automating an older technology like microscopy with tools from the past decade, DL.
As described in Chapters 1 and 2, the largest burden and majority of TB-AI research occurs
in LMICs, and the expense of deploying expensive computer-based technologies, and training
personnel to use AI methods may prove problematic. On the other hand, once deployed AI
methods can be extremely labour-saving and there are some potential applications of fluorescence
microscopy (particularly in the field of TB treatment monitoring and therapeutics research) which
cannot be easily replaced by other methods. Whilst this thesis does not argue for wholesale
resurgence of microscopy as the primary diagnostic tool for TB worldwide, I advocate that it
still has an important and irreplaceable function. Since microscopic examination of Mtb cells
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remains critical as a research tool, work on the development of improved automated tools for
standardising and expediting image analysis remains important.

From that starting point, the research described in this thesis has sought to determine whether AI
approaches may aid detection, quantification and characterisation of Mtb cells from fluorescence
microscopy images. Chapter 3 reviewed progress in this field prior to my work, and highlighted
some unanswered questions. Chapters 4 to 7 have described original research to advance methods
to fill some of the identified gaps. In this final chapter I will:

• Review essential findings and their contributions to the research field from each successive
chapter, restating the most significant outcomes of my work.

• Consider future directions, which could build on the work I have done so far, including
limitations of my TB-AI approaches and ongoing challenges.

• Conclude by outlining my proposals for future action.

8.2 Chapter contributions

Before delving into detailed discussion of each chapter contribution, I will first present a summary
of the key points that represent the primary contributions of this thesis. While these points are
not exhaustive, they encapsulate the core achievements:

• A technique for image enhancement designed to standardize datasets, enhance the visibility
of bacteria, and support the learning process for detecting Mtb cells across various staining
methods.

• A novel architecture created to exclude FOVs devoid of bacteria, applied subsequent to slide
segmentation.

• A method that sets a new standard for accuracy in detecting Mtb cells using dual stains within
a single training cycle, where the use of dual-stained FOVs enables the estimation of lipid
content.

• The introduction of a unique architecture paired with feature descriptors serving as feature
extractors, which are then utilized by a MSVR to estimate the dimensions of cell length and
width.

In Chapter 3, I reviewed efforts to automate analysis of sputum smear microscopy images, which
have gradually advanced over a period of more than twenty years. Progress has been made but
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several obstacles remain to be addressed. A significant limitation is the absence of comparative
analyses between the different TB-AI methodologies that have been described. Most research
groups work on their own proprietary image-sets, which vary because of qualitative differences
in sample preparation, microscopy protocols and imaging techniques. These image sets are rarely
shared on-line alongside published manuscripts. I curated those which are currently publicly
available, encompassing relevant extracted data along with any supplementary annotations. The
absence of standardisation in existing datasets is important because the influence of the data
used on the reported efficacy of methods has been observed to be substantial. Methods which
work well on one set of images (often the set that CV algorithms have been designed with, or
ML/DL methods have been trained on) often perform less well on unseen data. If researchers
were willing to share the image sets which they used in open-access online repositories it would
be possible for groups to develop techniques on one image set, then evaluate them on alternative
independent data to assess generalisability. This may also help address the ever-present danger of
model-overfitting.

On a related theme, it would be beneficial to standardise benchmarks for evaluation of each
category of TB-AI microscopy activity (classification, regression, and segmentation), so that work
done by different researchers can be compared using the same metrics, even if those researchers
also choose to employ their own additional metrics. Encouraging diverse research teams in
different settings worldwide to think and act in similar ways is challenging. However, there is
precedent for development of a ‘minimum standards’ approach to presenting and analysing data
in other aspects of infectious research; including pharmacogenetic studies [35], and outcome
reporting for clinical trials of new TB treatments (included within the Core Outcome Measures in
Effectiveness Trials initiative, https://www.comet-initiative.org) [26, 28, 27]. A similar
strategy could be advocated here.

Notwithstanding these challenges, ML and DL techniques within the TB-AI microscopy field
have achieved notable successes and each approach possesses its own strengths. It has been
demonstrated that the detection of Mtb bacteria necessitates reliance on pixel intensity and shape,
regardless of whether the approach employs ML or DL techniques. Most prior work focusses
purely on identifying Mtb cells, rather than counting them or describing their detailed phenotypes.
Most image sets used for existing work comprise pre-selected FOVs rather than WSIs, meaning
that manual microscopy work is still required to crop the slide into manageable images. My
work has investigated under-studied topics by tackling bacterial quantification in Chapter 5, WSI
analysis in Chapter 6, and cell phenotyping in Chapter 7.

One limitation of the work presented in Chapter 3 pertains to its exclusive focus on microscopy.
Other contributions in the field of TB-AI that involve the analysis of CT scans or chest radiographs

https://www.comet-initiative.org
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from patients with pulmonary TB were excluded. Some of these approaches may have potentially
made valuable contributions to the analysis of microscopy images. For instance, a method
utilised for CT scans could potentially be adapted and applied to microscopy images, albeit with
modifications to account for the unique characteristics of different image types.

In Chapter 4, I explained that development of ML/DL methods for TB-AI microscopy require
large carefully annotated training sets of images from the outset. Re-deployment of clinical
and microbiology staff from the School of Medicine to front-line Covid-19 pandemic response
duties during the early period of this PhD meant that image annotation was delayed, so I took
the opportunity to explore the viability of Mtb detection solely using conventional CV methods.
Specifically, investigation was undertaken of whether semantic segmentation is achievable
utilising a FOV, a ridge-based detector, and geometry-based features. Without the automated
learning component of ML/DL, this approach required input of heuristic knowledge of bacterial
morphology by the model developer. When a CNN slides across an image to execute convolution
between the image and its filters, for instance, the filter weights (also known as trainable
parameters) are dynamically adjusted to learn the task at hand. The same cannot be true for image
derivatives, such as the Gaussian filter used to generate image derivatives in CV work. When
executing through the full dataset, the weights of such filters remain unchanged. Although the
typical rod-like morphology of Mtb is consistently defined, many practical examples demonstrate
that these cells may adopt a large number of, often unpredictable, shapes. The concept that
employing a ridge-based detector, computing the second-order derivatives of an image using the
Hessian matrix and a Gaussian filter, and then analysing its eigenvalues will provide satisfactory
detection of all bacilli was refuted. Detection of bacteria is not easily accessible by only obtaining
the image derivatives, which are dependent on pixel intensities, i.e. colour, as was shown in
the literature and confirmed in Chapter 4. Although the findings of this chapter indicated that
CV algorithms alone were insufficient for bacillary detection, an image enhancement technique
based. lower value Hessian eigenvalues when images are converted to greyscale was seen to be
beneficial in separating signal from noise and was carried forward to the work of subsequent
chapters.

Chapter 5 sought to address the question,“can an automated image analysis pipeline provide
an accurate estimate of bacterial load, incorporating all Mtb bacillary morphologies?” An
ablation study to evaluate the method developed in this chapter revealed that each pipeline module
performed relatively well for its assigned purpose and contributed to strong overall performance.
The initial step of the pipeline, segmentation, was comparable to, but did not improve upon,
other efforts of the same kind. This step was created with a higher emphasis on sensitivity than
specificity in order than all possible objects of interest in each FOV image advanced to the next
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stage, or else they’d be excluded from further analysis (running the risk that some true positive
bacteria would be overlooked). The classification step was then responsible for excluding false
positive objects, improving the pipeline’s specificity. However, one of the drawbacks of the
segmentation step is that Cycle-GANs often fail to generate symmetrically rectangular bounding
boxes around bacteria. This effect necessitates additional processing prior to classification or
overlap metrics such as the Jaccard index are detrimentally affected. The final stage of the
pipeline, autonomous bacterial quantification by regression, has acquired a new state of the art in
the field. A key finding of this chapter is that generic models are too complex for this task; thus,
for best results, it is essential to create task-specific model architecture. Moreover, each phase
of the pipeline may function as a standalone component so long as its input requirements are
satisfied.

Attempts to detect and quantify Mtb cells in Chapters 4 and 5 still start from the manually
pre-selected FOVs of Image Set 1. The process of generating these FOVs remains laborious and
subjective so it is essential to automate this step if TB-AI microscopy is really to advance as a
treatment monitoring and research tool. Creation of new automated methods for standardising
and accelerating whole slide image processing in order to remove human participation from
FOV selection is the objective of Chapter 6. In this chapter, I described a novel solution based
on a newly designed DL-based architecture tailored specifically for the task, which learns from
coarsely labelled FOV images and the corresponding binary masks, and then classifies novel FOV
images as containing or not containing bacteria. Contrary to Chapter 5, the method in this chapter
was initially focussed on achieving high specificity so that no false positive FOVs advanced
to future evaluation. Initial findings were promising, since my suggested model surpassed all
generic models on accuracy, and detected no FPs at all, the model’s inability to account for all
true positive objects might be cause for caution. As described in Chapter 6, the sensitivity and
specificity parameters of my model can be amended, according to desired output, by tuning the
decision threshold to minimise FNs whilst increasing FPs. The cost of the trade-off to do this
with my model was lower than that of the second best model, emphasising that the proposed
model is more adaptable than others.

Finally, Chapter 7 examines the viability of TB-AI microscopy in relation to detection of Mtb cell
phenotypes which might influence response to therapy and may change during treatment. From
my literature review in Chapter 3, no one has undertaken such a work previously, i.e. automated
treatment monitoring inference by the use of microscopy for TB. Using a custom-built CNN
as a pre-trained encoder in combination with feature descriptors, I was able to obtain highly
promising results in the area of semantic segmentation for Mtb bacteria and intracellular lipid
detection, and cell length/width estimation. An important contribution of this chapter is that it
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enables microbiology researchers to investigate the impact of drug-tolerant Mtb bacteria further,
they may do so without spending excessive hours on subjective cell-by-cell microscopy. The
proposed method has advanced the state of the art in Mtb bacteria semantic segmentation in
compared to prior publications. In addition, it is capable of producing very accurate estimates
of cell length in both training and test sets, highlighting the generalisability of the model. The
proposed method may also be used for bacterial load assessment, as it may indirectly infer the
number of bacteria present in the patch based on the number of lengths calculated, because each
cell has one length unit. Comparison of the performance of this model with other methods to
estimate cell dimensions is not possible since no other work in TB treatment monitoring has
attempted that specific task. One of the limitations of this chapter is the innovative use of FOVs
for Auramine O and LTR stains within the same dataset. Employing LTR stained FOVs needs
more improvement in appropriately detecting Mtb bacteria, since both evaluation metrics were
adversely affected by the use of these FOVs.

8.3 Future work

I conclude the thesis with a summary of the components of this topic that I believe should be take
into consideration for future research. Before moving further with future work, it is necessary to
emphasise where microscopy is presently most relevant to TB-AI research.

Based on the presented data and findings, I propose the following topics for extending research in
TB-AI microscopy:

• Improving image segmentation for bacterial detection using crowd counting or Vision
Transformers.

• Improving the accuracy of bacterial load estimation by progressively minimizing the percentage
error through the use of density maps.

• Improving the computational efficiency of FOV acquisition by employing a hybrid method
that combines clustering algorithms with shape-based classification to isolate salient FOVs.

8.3.1 Improving Mtb bacterial detection

Improving the accuracy of bacterial detection is essential, as the efficacy of all subsequent
downstream research activities depends on the reliable detection of bacteria to realize the full
potential of automated methods and integrated pipelines. As an illustration, it becomes evident
that optimizing the segmentation stage within the Chapter 5 pipeline could potentially yield
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improvements in the performance of both classification and regression stages. To improve
achievement of this aforementioned task, I suggest the following methodological approaches:

• Mtb bacterial detection with crowd counting.

• Vision transformers for semantic segmentation.

8.3.1.1 Mtb bacterial detection with crowd counting

Due to its practical use in surveillance systems, crowd counting is an important problem in
CV. The standard architecture of crowd counting algorithms consists of two phases, namely
global regression and density estimation [246]. The latter approach, which involves predicting a
density map that is subsequently summed to obtain the final count, typically exhibits superior
performance compared to the former, which estimates the final count directly from the image.
This advantage arises because the latter method leverages additional spatial information through
the density map. Although crowd counting approaches were created with crowd surveillance
in mind, they may be used to any task involving densely populated, homogeneous objects of
interest in an image [249, 245, 124, 36, 181]. For the labels of this task, it is essential to generate
ground-truth density maps based on crowd images (density map synthesis). In these maps, the
object of interest can be represented as specific image locus [124] which serve as focal points for
object counting or segmentation. Density map estimation is the process of designing DL models
to predict a density map from an input image. Most research efforts have concentrated on the
task of density map estimation [246]. However, such a task (as with most ML/DL problems) is
limited by the creation of annotated datasets, in this instance the compilation of adequate and
accurate density maps. The hand-crafted techniques employed for generating density maps may
not be ideally suited for end-to-end training with the specific network or dataset in use. Indeed,
in this scenario, it must be determined whether the image locus represents a single bacterium. In
addition, it must be determined if the crowd count will be used for segmentation or to estimate
the number of bacteria. The former may accept a single image locus for several bacteria that
overlap (i.e. bacterial contiguous location), but the latter will presume one locus per bacterium,
even in the case of clumped bacteria. In this instance, if the crowd counting approach will only
be used to segment the image into tiny patches based on regions of interest, then the number of
clumped bacteria is immaterial, since they will be handed down for further processing, i.e. a
model appropriate to that task. In addition to the density map, the training component of this
method needs a standard encoder–decoder model, such as the convolutional layers of the VGG as
the encoder as was done in some works [130, 203].
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8.3.1.2 Vision transformers for semantic segmentation

Despite the widespread adoption of the Transformer architecture for natural language processing
(NLP) applications, its utilization in CV is rapidly expanding. Rather than being confined to roles
where it works in conjunction with CNNs or replaces specific components of CNNs, Transformers
now serve as the core architecture for various standalone CV tasks [66]. Considering that semantic
segmentation is a subfield of vision, it has the possibility to employ a Vision Transformer (ViT)
to generate a binary masked image in which bacteria are labelled in white and everything else
is labelled in black. In contrast to convolution-based approaches, this methodology enables
modelling of global context at the first layer and throughout the network, while in a CNN this
occurs gradually and intermediately as the image traverses the network. Strudel et al. [215]employ
the recently introduced ViT and extends it for semantic segmentation by relying on the output
embeddings corresponding to image patches and obtaining class labels from these embeddings
using a point-wise linear decoder or a mask transformer decoder [37]. The extensions of a linear
decoder or a mask transformer decoder hence enables the ViT to upsample (rebuild) a binary
version of the input image.

ViTs typically necessitate a higher number of trainable parameters compared to CNNs due to the
inherent complexity of their architecture. While CNNs employ convolutional, pooling, and fully
connected layers to efficiently share parameters across the image, ViTs rely on self-attention
mechanisms for feature extraction. The flexibility offered by self-attention comes at the expense
of additional parameters [66, 232]. Furthermore, ViTs often require higher resolution inputs than
CNNs to effectively capture fine-grained information, contributing to an increase in computational
requirements rather than the number of parameters. Although ViTs excel in various CV tasks,
especially with large datasets, they are not well-suited for tasks involving small patches, as
discussed in Chapters 5 and 7.

Regarding training time, ViTs generally require longer durations compared to CNNs due to their
computational complexity. The self-attention mechanism involves numerous computations across
the entire image, which can be both memory-intensive and time-consuming. Techniques such as
knowledge-distillation (KD) [99] or pre-training on extensive datasets like ImageNet can mitigate
this by reducing the number of parameters and thereby improving training efficiency. Overall, the
training time for a ViT is influenced by multiple factors, including its architecture, input image
size, and the implementation of optimization techniques such as knowledge-distillation (KD) or
pre-training. Overall, the training time for a ViT can depend on a variety of factors, including the
specific architecture, input image size, and the availability of pre-trained models or the use of
distillation techniques.
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While it may require more training time than a CNN, the potential benefits of using a ViT, such
as improved performance on certain tasks, may justify the additional computational cost. Sagar
proposed a hybrid ViT architecture for biomedical image segmentation that resembles a UNet
architecture (described in Chapter 7) because its architecture has a U shape [193]. The input
image is divided 16× 16 pixel patches which are then fed into the embedding layer as well
three 1× 1, 3× 3, and 5× 5 feature maps are generated for each patch. After they have been
concatenated and vectorized, they are fed into 3 encoder transformer blocks that lead to 3 decoder
transformer blocks with UNet-like skip connections before being linearly projected to produce
the segmented image [193].

8.3.2 Improving bacterial load estimation

As initially described in Chapter 3, the literature on bacterial load estimation of Mtb is very
limited, with three out of five publications offering an end-to-end automated approach.

8.3.2.1 Cell counting with the use of density maps

As stated in Section 8.3.1.1, density maps may also be used for cell counting, a technique used
to estimate the number of cells in a microscope image. To generate a density map, the image
must first be segmented so that individual cells can be detected. This is possible using the
techniques presented in Chapters 5 and 7. Other potential solutions may be Fast and Faster
R-CNNs [183, 85].

After detecting the cells, their centroids are computed and indicated on the image. Mtb bacteria
density maps may still need human annotation due to the possibility of clumped bacteria, even
after automated segmentation. A grid of square or circular sections is then superimposed on the
image. The zones should be small enough to correctly record the cell density, yet big enough
to reduce the influence of noise [253]. The number of cells in each area can then determined
by measuring the intensity of the pixels in that region’s density map. The total number of
cells in the image may then be calculated by adding the number of cells in each grid area and
multiplying by the inverse of the proportion of the image covered by the grid [253]. Density map
cell counting is a potent and extensively used technique for estimating cell density in microscopy
images. It may be used to compare the density of cells in various sections of an image or between
images. However, this approach may not be very accurate when bacteria are clustered or when
the image includes noise (artefacts). One approach for mitigating this problem involves dataset
augmentation through the generation of synthetic images by overlaying outliers from the dataset,
with the objective of producing new input and corresponding density maps.
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8.3.2.2 Task–specific model architecture

As shown in Chapters 6 and 7, generic models are often too complex for the datasets of this
project, as my proposed methods of these chapters performed better than the generic ones
under identical environmental setup and conditions. Specifically, despite being augmented, the
dataset is still substantially smaller than the number of parameters of the generic models used,
as observed by the results in Chapter 5. Moreover, the combination of the positive outcome
presented in Chapters 6 and 7 and the negative findings presented in Chapter 4 provides additional
confirmation that Mtb cell detection favours a two-step approach, i.e. object selection based on
both appearance and shape characterisation. Thus, the evidence supports the promising potential
of custom-designed architectures for bacterial load assessment.

8.3.3 Improving computational efficiency of FOV acquisition

As mentioned, the most useful function of sputum smear microscopy is not to simply classify
entire slides as ‘TB positive’ or ‘TB negative’, but to extract relevant FOVs for more detailed
subsequent analysis (e.g. counting the number of cells in them or describing those individual cells
in detail). Clinical samples, particularly of non-sterile specimens like sputum often comprise
complex mixtures of cell populations, and identifying and characterizing microorganisms can
prove difficult, particularly when they are sparsely distributed [86]. Focusing on specific regions
of interest allows researchers to direct their attention towards microorganisms of particular
relevance for their investigations. Moreover, this practice reduces the volume of data to be
processed and the computational burden of analysing extensive and intricate datasets [61, 99].
The ideal methodology for TB-AI research would directly take a microscopy slide as input
and produce comprehensive outputs, including cell count, phenotypic characteristics, and lipid
content. However, currently, no such all-encompassing method exists in the field.

Therefore, evidence indicates that for effective downstream TB-AI analysis, it is necessary (thus
far) to crop and magnify the slides. As seen from existing literature, the prevalent approaches to
achieve this involve either employing auto-focus algorithms or resorting to sequential cropping
methods. Although the latter has a lower risk of false negatives, it is computationally demanding
since the entire slide must be cropped. To minimise superfluous cropping and magnification, a
hybrid approach that combines these two techniques could be adopted. Each tile of the slide
is loaded and pre-processed with image filters essentially creating a ridge/edge-based detector
similar to that described in Chapter 4. Since the tile is now binarised, clustering techniques
can be applied to classify the latent distribution based on shape characterisation as shown in
Chapter 6.
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8.4 Potential application of new methods for treatment
monitoring and detection of bacterial phenotypes

Arguably the most compelling arguments for ongoing sputum smear microscopy lies in its
capacity to monitor the progress of TB treatment and to report on how the composition of Mtb
cell phenotypes changes during antibiotic exposure. My work on automation of these activities
are central to the conclusions drawn from this thesis, and to the potential direction of future
work. To illustrate how my methods may be applied, I performed pilot work on sputum smear
microscopy images collected serially from the first 15 patients in Image Set 1 at 0, 2, 4 and 6
months. Even for 15 patients, these experiments required detailed evaluation of 914 bacteria.
This work would require a prohibitive amount of time to conduct manually at larger scale.

The simple hypothesis to be tested is that Mtb cells increase in length and lipid content as TB
treatment progresses. To reprise and expand the background relevance of this hypothesis, recall
from Section 2.7 that mycobacteria have unusual growth characteristics. They do not divide
symmetrically with a division septum at the centre of their cells. and they elongate unevenly
by adding peptidoglycans at their poles [39, 7, 226]. Longer cells may be more rifampicin
tolerant [184] and associated with more severe clinical disease [243], and the bacilli seen at
microscopy may incrementally lengthen after antibiotic exposure [19]. Additionally, LR Mtb cells
may be more antibiotic tolerant, and their emergence could be associated with worse outcomes in
pulmonary TB treatment [207, 96, 57].

Using my approaches from Chapter 7, the Infectious Diseases Group in the School of Medicine
and Orange Jellyfish Computer Science Laboratory at the University of St Andrews charted
changes in cell length and the proportion of LR cells in over time for 15 Tanzanian patients
(see Figures 8.1 and 8.2 respectively). The median cell length increased from 2.74 to 4.11𝜇m
between 0 and 6 months and fitting a linear mixed effects model to available data from these
patients suggests an increase in cell length in Mtb cells visible at smear microscopy of 0.3𝜇m per
month of treatment. To achieve full automation of the lipid content estimation method described
in Chapter 7, the procedure commences with the detection of bacilli in the Auramine O FOV. If a
corresponding bacilli is identified in the LTR FOV, a green centroid is marked on the Auramine
O FOV. Conversely, if a match is not found, a red centroid is annotated on the detected bacillus in
the Auramine O FOV. The aggregate of green centroids represents the count of LR cells, while
the total of red centroids corresponds to the count of LP cells. The median proportion of LR
cells increased from 0.67 to 1.00 between 0 and 6 months, and fitting a linear mixed effects
model to the available data suggests an increase in LR cell proportion of 0.05 per month of
treatment. Within these general summary statistics, considerable heterogeneity can be seen in
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the phenotypes of Mtb cells observed in different patients at baseline and in trajectories over time.
Overall, therefore these preliminary data appear to support the microbiological hypothesis being
tested: more importantly, they show that the tools developed in this thesis could be used to test it.
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Figure 8.1: (a): Boxplot of cell length at 0, 2, 4 and 6 months of treatment. The DL model estimated cell
length in pixels, which is converted to 𝜇m by dividing by 15. A statistically significant difference in cell
length between the time-points is illustrated by ther Kruskall-Wallis test. (b): Individual plots of changes
in cell length for each of 15 patients studies. (c): A spaghetti plot of individual patient data super-imposed
on one another
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Figure 8.2: (a) Boxplot of LR Mtb cell proportion at 0, 2, 4 and 6 months of treatment. A statistically
significant difference in cell length between the time-points is illustrated by ther Kruskall-Wallis test. (b):
Individual plots of changes in LR Mtb cell proportion for each of 15 patients studies. (c): A spaghetti plot
of individual patient data super-imposed on one another.
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These data should be viewed with caution; they are preliminary observations from a small number
of patients and in-depth analysis of them would be inappropriate. Additionally, the sampling
timepoints of 0, 2, 4 and 6 months may need to be refined for future studies as very different
numbers of cells are visible for assessment at such widely spaced intervals (∼40 cells/patient at
month 0 but <10 cells/patient by month 6). Nevertheless, my objective here is not to present data
or results, but simply to showcase in principle the type of work that could be accomplisjed in a
shorter period of time using automated rather than manual methods.

Further analysis using these tools, on bigger datasets could interrogate patient or microbiological
factors associated with variable phenotypes at baseline and the importance of changes over
time, e.g. does the rate of elongation in cells at microscopy of an individual patient, or does
the rate of increase in LR proportion in early TB treatment really have any impact on outcome.
Limitations of time prevented such work in my thesis, and I would not seek to undertake it
independently in any case as I would need to collaborate with clinicians and microbiologists
with deeper understanding of TB. However, the design and conduct of studies to answer these
questions would be a natural progression from my work.

8.4.1 Simplifying automated microscopy for clinicians and microbiologists

The work of this thesis has described the computer science basis of DL tools for TB-AI microscopy,
particularly in relation of knowledge gaps which were identified in Chapter 3. However, the
downstream application of these tools will ultimately be for clinicians and microbiologists rather
than computer scientists. For my methods to be implementable by those who need to use them,
further engineering of a pipeline approach will be necessary. Ideally, sputum smears could be
prepared and digitally imaged on a slide scanner to provide raw data for streamlined automation
of classification of FOVs of interest, then regression analysis of cell length and segmentation
of individual bacilli for LR proportion analysis. This would require additional refinement of
my tools, and software engineering which is considerably beyond the scope of my thesis could
be an ultimate outcome of the research. Making such computationally intense tools available
for use in the LMICs where TB is high prevalence would be a further enormous challenge, but
even developing methods which could be applied to sputum smears transported to translational
research laboratories would be valuable.

8.5 Conclusion

Overall, the process of TB diagnosis from sputum samples is changing worldwide, with less
reliance on microscopy in many centres and increasing focus on rapid molecular tools such as
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Xpert® MTB/RIF. In the medical context, microscopy, whether brightfield or fluorescence, is
unlikely to remain the standard-of -care tool for tuberculosis diagnosis in most settings [25, 238,
173]. However, smear microscopy still plays an important role in assessing disease severity and
monitoring therapy, and there is considerable precedent and research interest in microscopy-based
tools for single cell phenotyping to better understand TB treatment response. Therefore, AI work
to automate smear microscopy image analysis remains of value.

My thesis has illustrated key gaps in our existing knowledge, and in our approach to research in
this field. I have also advanced the field by showing that original TB-AI microscopy methods,
particularly using custom-designed DL models can be applied to: count Mtb cells on fluorescence
microscopy FOVs, select FOVs of interest from WSIs and estimate cell length and lipid content
on appropriately stained clinical samples. If progressed further by interdisciplinary teams of
clinicians, microbiologists and computer scientists TB-AI microscopy could still contribute
meaningfully to the ongoing global fight to control TB.
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AAppendix A

Chapter 3

A.1 Staining and microscopy procedures

A.1.1 Preparation of staining dyes

A.1.1.1 HCS LipidTOX™ Red neutral lipid stain

HCS LipidTOX™ Red Neutral Lipid Stain (Thermo Fisher Scientific, US) is diluted in a ratio of
1:500 using sterile Phosphate buffer solution (PBS). For example, 2 𝜇L of the dye is mixed with
998 𝜇L of PBS. Then, 500 𝜇L of the 1:500 LTR solution is applied to a smear for each slide.

A.1.1.2 Auramine O staining solution

Ready-made Auramine O solution (Sigma-Aldrich, UK) is used. 100 𝜇L of the solution to cover
the smear is applied for each slide.

A.1.1.3 Potassium permanganate

To prepare a 0.1% solution, one should dissolve 0.1 g of potassium permanganate powder
(Sigma-Aldrich, UK) into 100 mL of sterile distilled water. This solution should be stored at
room temperature. For each slide smear, 500 𝜇L of the solution should be used.

A.1.2 Preparation of sputum smears

• A total of 100 𝜇L of the NALC-NaOH decontaminated sputum pellet should be applied to
each slide.

• The smears require air drying for 30 minutes at room temperature.
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• Slide fixation should occur on a hotplate set at 80°C for a duration of 20 minutes.

• The slides need to be fixed with a 20.9% (w/v) formalin solution overnight, followed by air
drying the next day to remove excess formalin.

• Heat and formalin fixed slides should be stored in a slide box at room temperature (20-23°C)
until required for Auramine/LTR staining and microscopy.

A.1.3 Auramine and LipidTox Red staining procedure

• The formalin-fixed slides should be covered with 100 𝜇L of Auramine O solution and allowed
to incubate for 15 minutes at room temperature, shielded from light.

• The slides ought to be washed twice with 1 mL of distilled water and then decolorized with
500 𝜇L of 0.5% acid alcohol for 1 minute.

• A subsequent washing of the slides should occur twice with 1 mL of distilled water.

• The slides should then be covered with 500 𝜇L of LTR for 20 minutes at room temperature,
with protection from light using aluminum foil.

• A second washing should be performed twice with 1 mL of distilled water.

• The slides require coverage with 500 𝜇L of 0.5% potassium permanganate solution for 45
seconds to bleach the non-specific background, followed by two washes with 1 mL of distilled
water.

• Smears should then be mounted with 30 𝜇L of PBS and covered with a coverslip.

• Transparent nail polish may be applied at the edges of the coverslip to secure it in place during
microscopic examination.

A.1.4 Fluorescence microscopy

• The stained slides should be covered with aluminum foil to shield them from light before
examination using a Leica DM5500 microscope (Leica).

• An examination should be conducted using a 100× oil immersion objective lens, with the
immersion oil being specific to Leica microscopy (Leica immersion oil, ISO8036).
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• Image capture is to be performed using the Leica camera DFC 3000 G.

• The systematic scanning of slides should encompass three clean sweeps.

• Each FOV that contains potential Mtb cells must be examined using two filter cubes:

• An N3 filter cube, with excitation and emission spectra of 546/12 and 600/40nm, should
be used to observe Auramine O stained Mtb cells.

• A TX2 filter cube, with excitation and emission spectra of 560/40 and 645/75nm, should
be used to observe intracellular lipids.

A.2 Chapter 3 segmentation cases examples

Included below are visual illustrations representing the three distinct scenarios outlined in
Table 4.1. The initial section will showcase images falling within the first scenario, characterized
by clearly defined bacteria. Following sections will present examples from the second and
third scenarios, respectively. Moreover, the figures are presented in a triad format, consisting
of the original image, the predicted image, and the labelled image. This arrangement provides
supplementary proof of the method’s performance.

A.2.1 Case 1 images

The subsequent figures serve to illustrate examples from case 1 and demonstrate the method’s
approach to handling such instances. The bacteria responsible for the images depicted in this
section have been encircled in red.
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((a))

((b))

((c))

Figure A.1: Case number 1 relates to objects that exhibit clear visibility with distinct pixel intensity and
sharpness, consistent with stained Mtb cells
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((a))

((b))

((c))

Figure A.2: Case number 1 relates to objects that exhibit clear visibility with distinct pixel intensity and
sharpness, consistent with stained Mtb cells
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((a))

((b))

((c))

Figure A.3: Case number 1 relates to objects that exhibit clear visibility with distinct pixel intensity and
sharpness, consistent with stained Mtb cells
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A.2.2 Case 2 images

The subsequent figures serve to illustrate examples from case 2 and demonstrate the method’s
approach to handling such instances. The bacteria responsible for the images depicted in this
section have been encircled in red.

((a)) ((b))

((c))

Figure A.4: Case number 2 relates to objects with diminished pixel intensity and reduced clarity, but
which remain distinguishable from the background as possible Mtb cells.



198 APPENDIX A. CHAPTER 3

((a))

((b))

((c))

Figure A.5: Case number 2 relates to objects with diminished pixel intensity and reduced clarity, but
which remain distinguishable from the background as possible Mtb cells.
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((a))

((b))

((c))

Figure A.6: Case number 2 relates to objects with diminished pixel intensity and reduced clarity, but
which remain distinguishable from the background as possible Mtb cells.
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A.2.3 Case 3 images

The subsequent figures serve to illustrate examples from case 3 and demonstrate the method’s
approach to handling such instances. The bacteria responsible for the images depicted in this
section have been encircled in red.

((a)) ((b))

((c))

Figure A.7: Case number 3 relates case, is for objects with inconsistent pixel intensity in specific areas of
their shape (perhaps due to variable fluorescent dye update) but which, overall, have features that are still
compatible with Mtb cell morphology
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((a))

((b))

((c))

Figure A.8: Case number 3 relates case, is for objects with inconsistent pixel intensity in specific areas of
their shape (perhaps due to variable fluorescent dye update) but which, overall, have features that are still
compatible with Mtb cell morphology
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((a))

((b))

((c))

Figure A.9: Case number 3 relates case, is for objects with inconsistent pixel intensity in specific areas of
their shape (perhaps due to variable fluorescent dye update) but which, overall, have features that are still
compatible with Mtb cell morphology
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Chapter 4

B.1 Cycle-GANs synthetic images

In this section, I present the outcomes of the Cycle-GANs, which occasionally misinterpret
pixel fluctuations as bacteria, leading to inaccuracies in the translation of bacteria-like objects,
including their bounding boxes. Each subsequent figure follows the format of a real (unlabeled
image), a synthesized image, and a ground truth image.
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((a)) ((b))

((c))

Figure B.1: Case number 1 of synthetic images. Incorrectly synthesised bacteria-like objects are circled
in blue.
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((a))

((b))

((c))

Figure B.2: Case number 2 of synthetic images. Incorrectly synthesised bacteria-like objects are circled
in blue.
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((a))

((b))

((c))

Figure B.3: Case number 3 of synthetic images. Incorrectly synthesised bacteria-like objects are circled
in blue.
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((a))

((b))

((c))

Figure B.4: Case number 4 of synthetic images. Incorrectly synthesised bacteria-like objects are circled
in blue.
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((a))

((b))

((c))

Figure B.5: Case number 5 of synthetic images. Incorrectly synthesised bacteria-like objects are circled
in blue.
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((a))

((b))

((c))

Figure B.6: Case number 6 of synthetic images. Incorrectly synthesised bacteria-like objects are circled
in blue.
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((a))

((b))

((c))

Figure B.7: Case number 7 of synthetic images. Incorrectly synthesised bacteria-like objects are circled
in blue.
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Chapter 6

C.1 Proposed model for semantic segmentation

In this appendix section, I provide additional results from the model introduced in Chapter 6,
pertaining to the semantic segmentation phase. I have organized the exemplar cases into two
subsections: Auramine O FOVs and LTR FOVs.

C.1.1 Auramine O segmented FOVs

Below follow examples of segmented Auramine O FOVs.

Figure C.1: Case number 1 of segmented images of Auramine O FOVs
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Figure C.2: Case number 2 of segmented images of Auramine O FOVs

Figure C.3: Case number 3 of segmented images of Auramine O FOVs

Figure C.4: Case number 4 of segmented images of Auramine O FOVs

Figure C.5: Case number 5 of segmented images of Auramine O FOVs
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C.1.2 LTR segmented FOVs

Below follow examples of segmented LTR FOVs.

Figure C.6: Case number 1 of segmented images of LTR FOVs

Figure C.7: Case number 2 of segmented images of LTR FOVs

Figure C.8: Case number 3 of segmented images of LTR FOVs
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Figure C.9: Case number 4 of segmented images of LTR FOVs

Figure C.10: Case number 5 of segmented images of LTR FOVs


	Contents
	List of Figures
	List of Tables
	Abbreviations
	Prologue
	Using artificial intelligence to improve TB control
	The rationale for computer-based automaton of TB microscopy

	Aims and objectives of the work described in this thesis

	Biomedical background
	Historical overview
	Current global epidemiology of TB
	TB control: current priorities and goals
	Transmission of TB
	TB pathogenesis and clinical disease
	TB diagnosis
	Smear microscopy
	Light microscopy (Ziehl-Neelsen staining)
	Fluorescence microscopy (Auramine O staining)

	Mycobacterial culture
	Molecular microbiology tools

	TB treatment
	Challenges with current anti-TB treatment regimens
	The need for careful treatment monitoring
	Shortening TB treatment and the problem of non-replicating persistence
	Does bacterial length affect antibiotic response
	Does bacterial lipid content affect antibiotic response?



	Literature review on related work
	Chapter introduction
	Methodology for literature review
	Description of available literature and datasets
	Challenges with dataset standardisation

	Evaluation of performance metrics
	Classification metrics
	Regression metrics
	Segmentation metrics

	TB-AI microscopy research utilising ML
	Local feature extraction approaches
	Extracted pixel distribution approaches

	Research utilising DL
	Custom-made CNN architectures
	Gradient-based approaches
	Employing existing models for Mtb bacteria feature extraction

	Research on Mtb bacteria load quantification
	Research on automated FOV acquisition
	Research on phenotypic characterisation of bacteria
	Discussion

	Geometry-based features for Mycobacterium detection
	Chapter introduction
	Methodology
	Segmentation in digital image processing
	Computing image gradients
	Hessian matrix, eigendecomposition and principal curvature

	Proposed method
	Segmenting images based on the eigenvalue ratio
	Threshold-based segmentation
	Geometry based reduction of false positive detections


	Results
	Environmental setup and quality control
	Dataset acquisition
	Evaluation of image similarity and shape characterisation
	Estimation of bacterial number per FOV

	Discussion

	Tuberculosis Bacteria Detection and Counting in Fluorescence Microscopy Images Using a Multi-Stage Deep Learning Pipeline
	Chapter introduction
	Image processing-based enhanced representation extraction
	Generative adversarial networks: A brief introduction
	Transforming GANs to Cycle-GANs

	Proposed method
	Object detection using Cycle-GANs
	Training the Cycle-GANs

	Extracting salient patches from synthetically labelled images
	Classifying cropped patches
	Counting bacteria

	Experimental evaluation
	Dataset
	Results
	Semantic segmentation using Cycle-GANs
	Deep learning-based patch classification
	Bacterial counting


	Discussion

	Extracting and Classifying Salient Fields of View From Microscopy Slides of Tuberculosis Bacteria
	Chapter introduction
	Division of WSIs into FOVs
	DL for FOV classification
	Proposed model
	Comparison of proposed and existing models
	Hyper-parameter learning


	Evaluation
	Data
	Results

	Discussion

	Estimating Phenotypic Characteristics of Tuberculosis Bacteria
	Chapter introduction
	Related work
	Proposed method
	UNet: segmentation-based CNN
	Bacteria detection
	Training of segmentation networks
	Minimizing false positives with bacterial morphological features

	Estimating cell length and width
	Training setup


	Results
	Dataset
	Semantic segmentation of bacteria detection
	Distance-based evaluation
	Bacterial length and width

	Discussion

	General Discussion
	Chapter introduction
	Chapter contributions
	Future work
	Improving Mtb bacterial detection
	Mtb bacterial detection with crowd counting
	Vision transformers for semantic segmentation

	Improving bacterial load estimation
	Cell counting with the use of density maps
	Task–specific model architecture

	Improving computational efficiency of FOV acquisition

	Potential application of new methods for treatment monitoring and detection of bacterial phenotypes
	Simplifying automated microscopy for clinicians and microbiologists

	Conclusion

	References
	Chapter 3
	Staining and microscopy procedures
	Preparation of staining dyes
	HCS LipidTOX™ Red neutral lipid stain
	Auramine O staining solution
	Potassium permanganate

	Preparation of sputum smears
	Auramine and LipidTox Red staining procedure
	Fluorescence microscopy

	Chapter 3 segmentation cases examples
	Case 1 images
	Case 2 images
	Case 3 images


	Chapter 4
	Cycle-GANs synthetic images

	Chapter 6
	Proposed model for semantic segmentation
	Auramine O segmented FOVs
	LTR segmented FOVs



