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Dyslexia and developmental language disorders are important learning difficulties. However, their
genetic basis remains poorly understood, and most genetic studies were performed on Europeans.
There is a lack of genome-wide association studies (GWAS) on literacy phenotypes of Chinese as a
native language and English as a second language (ESL) in a Chinese population. In this study, we
conducted GWAS on 34 reading/language-related phenotypes in Hong Kong Chinese bilingual
children (including both twins and singletons; total N = 1046). We performed association tests at the
single-variant, gene, and pathway levels. In addition, we tested genetic overlap of these phenotypes
with other neuropsychiatric disorders, as well as cognitive performance (CP) and educational
attainment (EA) using polygenic risk score (PRS) analysis. Totally 5 independent loci (LD-clumped at
r2 = 0.01; MAF > 0.05) reached genome-wide significance (p < 5e-08; filtered by imputation quality
metric Rsq>0.3 and having at least 2 correlatedSNPs (r2 > 0.5) with p < 1e-3). The loci were associated
with a range of language/literacy traits such as Chinese vocabulary, character and word reading, and
rapid digit naming, as well as English lexical decision. Several SNPs from these loci mapped to genes
that were reported to be associated with EA and other neuropsychiatric phenotypes, such asMANEA
and PLXNC1. In PRS analysis, EA and CP showed the most consistent and significant polygenic
overlap with a variety of language traits, especially English literacy skills. To summarize, this study
revealed the genetic basis of Chinese and English abilities in a group of Chinese bilingual children.
Further studies are warranted to replicate the findings.

Literacy and language skills are important for academic development
in children. Learning difficulties (e.g., dyslexia) are common and may
affect one’s school performance, leading to poorer work attainment
and socioeconomic status, as well as decreased general well-being1.
Multiple cognitive and language skills serve as the foundation for
literacy and language development; these include, for example,
working memory, rapid naming, and vocabulary knowledge2. A wide
range of factors of environmental and genetic origins may also affect
children’s literacy/language skills across different languages. Family,
twin, and adoption studies have provided strong evidence that these
complex cognitive and language traits and academic performance in
young children are heritable3–7 and also highly polygenic8,9. However,
the exact genes/variants involved in these traits are still not well

understood, probably due to the complexity of the phenotypes and
difficulty in gathering sufficient samples.

In recent years, several genome-wide association studies (GWAS) have
been conducted on reading and language phenotypes in European popu-
lations. Several studies have focused on developmental dyslexia (DD) or
high/low reading ability as a binary outcome, adopting a case-control study
method8,10–14. Such study design may enable a larger sample size to be
collected, but also has its shortcomings. Language and literacy skills cover a
broad range of phenotypes, and dyslexia is also a highly heterogenous
condition. The focus on a single binary outcome may limit our under-
standing into the biological mechanisms underlying different domains of
language abilities. Other studies have investigated reading and language
abilities as continuous traits9,14–18. However, one potential limitation is that
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many studies focused on a limited number or domain of phenotypes (e.g.,
rapid naming, word reading).

Given the relatively high heritability of literacy and language skills19,20,
the genetic variants discovered thus far are still far from explaining the full
genetic basis of these complex traits. In addition,most previousGWASwere
conducted in European populations. However, the genetic architecture of
language phenotypes may be different across ancestries, and some of the
variants may be more readily discovered in other populations due to dif-
ferences in allele frequency or LD (linkage disequilibrium) structure.

In addition, to our knowledge, very fewGWAShave been published on
children’s literacy/language skills of Chinese as a native language, or English
as a second language (ESL) within Chinese. Given possible differences in
mechanisms underlyingChinese andEnglish literacy/language phenotypes,
it is essential to specifically study the genetic basis of Chinese literacy/
language phenotypes. In one recent GWAS on dyslexia8, several associated
loci were also replicated in the Chinese Reading Study of reading accuracy
and fluency; yet the primary GWAS was conducted predominantly on
populations of European ancestry.After submissionof thismanuscript (and
after this work was posted as a preprint onMedRxiv21), we also found a new
GWAS on reading abilities in Chinese being published22. However, the
current study covered amuch wider range of phenotypes, and importantly,
we also covered phenotypes related to ESL. Our sample was based on
bilingual children with Cantonese as the native language, as opposed to
children with (presumably) Putonghua as the native language in Wang
et al.22.

In view of the limitations of previous studies, here we conducted
GWAS and related bioinformatics analyses on a comprehensive panel of 34
literacy/language-related phenotypes in a Hong Kong (HK) Chinese
population.Thewide coverage enables a systematic andunbiased analysis of
a variety of phenotypes. Since this is among the first study of Chinese- and
ESL-related phenotypes in a Chinese population, and the genetic bases of
such phenotypes are still largely unknown, it is our objective to explore a
wider range of traits to maximize the chance of discovery, and to provide a
starting point and important reference for future studies.

To summarize, in this study we investigated how genetics is associated
with individual differences in Chinese and English reading and writing.We
performed association tests at the single-variant, gene, and pathway levels,
and employed transcriptome-wide association studies (TWAS) to explore
how genotype-imputed expression changes affect the phenotypes. In
addition, we tested potential associations between these complex cognitive
traits with other neuropsychiatric disorders, as well as cognitive perfor-
mance and educational attainment by polygenic risk score (PRS) analysis.
To the best of our knowledge, this is among the first GWAS conducted on a
comprehensive range of Chinese-language phenotypes together with ESL-
related phenotypes in a Chinese population.

Results
In this study, we recruited 1048 Chinese children aged 5–12 years from
Hong Kong, including 274 MZ twin pairs, 350 DZ twin pairs and 424 sin-
gletons. All children were typically developing with Cantonese as their first
language andEnglish as their second language.We conductedGWASon 34
reading/language-related phenotypes. Association tests were performed at
the single-variant, gene, and pathway levels. In addition, we tested genetic
overlapof these phenotypeswithother language-relatedorneuropsychiatric
traits using polygenic risk score (PRS) analysis.

Single-variant associations
Quantile-quantile plots (QQ-plots) with lambda (λ) were constructed for
each trait with and without rank-based inverse normal transformation
(RINT).We found that theQQ-plotswere very similar formost phenotypes
with or without the transformation, except for four [Backward digit span
(BDS_Total), Chinese Vocabulary - Receptive Vocabulary (CVA_Total),
Chinese digit rapid naming (CDRAN_Mean) and English digit rapid
naming (EDRAN_Mean)] (see Supplementary Fig. 3 and Supplementary
Data 1). For these 4 traits, subsequent analyses were based on the RINT-

transformed values. Based on the updated QQ-plots, all four traits showed
no evidence of inflated false positives after the transformation. Manhattan
plots for all traits are shown in Supplementary Data 2.

In SNP-based analysis, a total of 5 independent loci (LD-clumped at r2

threshold 0.01; MAF threshold = 0.05) reached genome-wide (GW) sig-
nificance (p < 5e-08), filtered by imputation quality score (Rsq) > 0.3 and
having at least 2 correlated SNPs (r2 > 0.5) with p < 1e-3 (Supplementary
Data 3/Table 1). Here the check for correlated significant SNPs was per-
formed to further reduce the risk of false positives, and the check was
performed using the default settings of LD-clumping in PLINK. For the
purpose of replication analysis, we also provided data on GW-significant
SNPs with MAF> 0.01 (Supplementary Data 19); however, given the small
sample size, we recommend that the top SNPs with low MAF should be
viewed very cautiously, and confirmation in independent samples is
required.

The significant loci were associated with a variety of language/literacy
phenotypes such as Chinese vocabulary, character and word reading, and
digit rapid naming, as well as English lexicon decision. Note that one locus
was associated with two (correlated) phenotypes, namely rs4865143 which
was associated with bothCWR_total and CVB_total (r = 0.63). In addition,
we also searched the top-listed genes inGWAS catalog for associations with
other phenotypes (especially neuropsychiatric traits) in previous studies.
Please refer to Supplementary Data 12 for details.

The most significant association was observed for rs6905617
(p = 3.29E-09)with English LexicalDecision (ELD); the SNP is located close
to MANEA (−382.1 kb) and MANEA-AS1 (−364.7 kb). As for Chinese-
related traits, we discovered one significant locus for CCR, CWR, CDRAN,
and CVB respectively (filtered by MAF > 0.05; see Table 1 and Supple-
mentary Data 3.3).

We also calculated the lambda-GC (genomic inflation factor) for each
untransformed trait and there was no evidence of inflation (Supplementary
Data 9; largest lambda-GC = 1.0255, 29/34 traits showed
lambda-GC < 1.02).

Association analyses between genetically predicted expression
and phenotypes
We evaluated the association between genetically regulated expression
(GRex) and phenotypes across multiple brain regions by S-Predixcan. We
used pre-computed weights provided by the authors (available at https://
predictdb.org/), derived from an elastic net regression model with tran-
scriptome reference data fromGTEx(v7). The most significant associations
were observed for DUS3L, which showed significant associations (FDR <
0.05) with EWR_Total in four brain regions including amygdala, caudate
basal, cerebellar hemisphere and putamen (Table 2 and Supplementary
Data 4.1). The top 20 association results from S-PrediXcan are presented in
Table 2 (see also Supplementary Data 4 for the top 100 associations).

Furthermore, we employed S-MulTiXcan to improve power by
combining evidence of differential expression across all brain regions.
We observed 248 significant gene-level associations (with FDR < 0.05)
by this approach and identified the best representative brain region (the
region showing the strongest single-tissue association). The top 20
results are presented in Table 3 and full results in Supplementary Data 5.
We highlight a few findings here. The most significant S-Multixcan
association was observed for gene HSD3B7 with EVA_total (Hydroxy-
Delta-5-SteroidDehydrogenase, 3 Beta- And SteroidDelta- Isomerase 7;
best brain region, Brain_Cortex; FDR-adjusted p = 9.55E-20). HSD3B7
was also associated with other English literacy phenotypes, such as EVB,
EVK, EVD, EDRAN and EWR. For Chinese literacy skills, the most
significant association was observed for gene SEMA6C (Semaphorin 6C;
best brain region, Brain_Cerebellar_Hemisphere; FDR-adjusted
p = 2.77E-12) with CVB_Total.

Gene-based tests
We also conducted gene-based analyses using MAGMA, which aggregates
SNP-level associations into a gene-level statistic. The top 20 significant
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results are presented inTable 4 and full results in SupplementaryData 6.We
highlight several genes within the top-10 list here.

The most significant association was observed for KCNC1 (potassium
voltage-gated channel subfamily C member 1) with PureC_total (FDR
corrected p = 1.49E-5). For English-related phenotypes, themost significant
association was identified for gene CATSPERD (cation channel sperm
associated auxiliary subunit delta) with EWR_Total (FDR corrected
p = 2.22E-03); the same gene was also associated with EVB_Total (FDR
corrected p = 4.40E-03). Two genes showed associations with EIS_Total,
namely SLC2A12 (solute carrier family 2 member 12; FDR corrected
p = 2.27E-03) and RSPH1 (radial spoke head component 1; FDR-corrected
p = 2.49E-03).

As forChinese literacy skills,GTF3C1 (general transcription factor IIIC
subunit 1) was associated with CVD_Total (FDR corrected p = 5.90E-04)
and CVK_Total (FDR corrected p = 3.03E-3);MAPK10 (mitogen-activated
protein kinase 10) was associated with CVB_Total (FDR corrected
p = 3.20E-03). As for morphosyntactic skills in Chinese, the genes
SMKR1(small lysine rich protein 1; FDR corrected p = 3.25E-03) and RFX8
(regulatory factor X8; FDR corrected p = 3.25E-03) were associated with
MS_Total.

Quantile-quantile plots (QQ-plots) with lambda-GC (λ) were con-
structed for each trait based on gene-based test results. There is no evidence
of inflated false positives, with most λ < 1 and only two traits having λ > 1
(1.02 and 1.07) (see Supplementary Figs. 4, 5).

Pathway enrichment analysis
To reveal relevant functional pathways,we conducted a self-contained gene-
set analysis in GAUSS, testing 10679 canonical pathway and gene ontology
(GO) gene sets from the MSigDB database. Full results with FDR < 0.2 are
shown in Supplementary Data 7.1 and 7.2. Tables 5, 6 summarize the
pathway and GO analyses results with FDR-corrected p < 0.05. We also
present the top two pathways and GO terms enrichment for every trait in
Supplementary Data 7.3 and 7.4.

In pathway-based enrichment analysis of Chinese comprehension
skills, the strongest association was observed for WO_Total with the
Reactome RNA polymerase III transcription pathway (FDR corrected
p = 1.60E-04). The second most significant association was observed for
EWR_Total with the ‘Deregulation of CDK5 in Alzheimers Disease’ path-
way (BioCarta) (FDR corrected p = 1.62E-03). Other pathways with the top
five included the P2Y receptors (associated with CVK_total) and kinesins
pathways (associated with BDS_total). GAUSS has also identified a collec-
tion of corresponding core genes (CS) for each pathway (Supplementary
Data 7.1).

In gene ontology (GO) enrichment analysis, the most significant
enrichment was observed between CDICT_Total and sphingolipid-
medicates signaling pathway (FDR corrected p = 4.07E-05). Other GO
gene-sets within the top 5 (with respect to lowest p-values) included gly-
cerophospholipid catabolic process, proton-transporting V-type ATPase
complex, alcohol transmembrane transporter activity and divalent inor-
ganic anion homeostasis. They were associated with PureC_total,
CWR_norm, RC_MC and PureC_total, respectively. With regards to
English literacy skills, the GO gene-set ‘ATP hydrolysis coupled cation
transmembrane transport’ (FDR corrected p = 1.31E-02) showed the
strongest association (with EWR_total). GAUSS selected 14 core genes for
the gene set, in which one of them, BLOC1S4, was individually and sig-
nificantly associated with EWR_Total (Supplementary Data 7.2).

PRS analysis with neuropsychiatric phenotypes, cognitive per-
formance (CP), and education attainment (EA)
Here we briefly describe several significant or suggestive findings (with
FDR-corrected p < = 0.1) in PRS analysis. The most consistent PRS asso-
ciations were observed for EA and CP. For example, PRS constructed from
GWAS of EA was significantly associated with 20 out of 34 traits (at
FDR < 0.1 at one or more p thresholds), while PRS of CP was significantly
associated with 16 traits (FDR < 0.1), using the clumping and thresholdingT
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Table 2 | Top 20 S-Predixcan results after correction of multiple testing

Phenotypea Tissue_name Gene Zscore P FDR-adjust Pb

EWR_Total Brain_Amygdala DUS3L 4.81 1.52E-06 4.18E-02

EWR_Total Brain_Caudate_basal_ganglia DUS3L 4.72 2.35E-06 4.18E-02

EWR_Total Brain_Putamen_basal_ganglia DUS3L 4.69 2.76E-06 4.18E-02

EWR_Total Brain_Cerebellar_Hemisphere DUS3L 4.6 4.20E-06 4.77E-02

EWR_Total Brain_Hypothalamus AC005523.3 4.37 1.23E-05 1.12E-01

EMA_Total Brain_Frontal_Cortex_BA9 ZNF585B −4.67 3.07E-06 1.30E-01

CVB_Total Brain_Cerebellum BNIPL 4.58 4.70E-06 2.13E-01

EWR_Total Brain_Frontal_Cortex_BA9 DUS3L 4.13 3.60E-05 2.72E-01

RC_MC Brain_Cortex RP11-508N22.12 −4.52 6.18E-06 2.81E-01

EWR_Total Brain_Nucleus_accumbens_basal_ganglia DUS3L 3.99 6.58E-05 4.27E-01

EDC_Total Brain_Cerebellum GTF3C5 4.41 1.03E-05 4.66E-01

ELD_Total Brain_Cerebellum FAM86B2 −4.37 1.24E-05 5.62E-01

EMA_Total Brain_Cerebellum KIAA0355 4.12 3.80E-05 5.79E-01

EMA_Total Brain_Substantia_nigra CHL1 4.1 4.11E-05 5.79E-01

EMA_Total Brain_Cerebellar_Hemisphere TSEN15 −3.81 1.41E-04 7.48E-01

EMA_Total Brain_Hippocampus HNRNPCP1 −3.84 1.25E-04 7.48E-01

EMA_Total Brain_Nucleus_accumbens_basal_ganglia RP11-521C20.2 −3.92 8.98E-05 7.48E-01

EMA_Total Brain_Putamen_basal_ganglia RASA4 −3.91 9.22E-05 7.48E-01

EMA_Total Brain_Spinal_cord_cervical_c-1 C20orf202 −3.84 1.22E-04 7.48E-01

EVA_Total Brain_Amygdala RP11-178F10.3 −3.94 8.18E-05 8.33E-01
aPlease refer to Table 10 for abbreviations of the phenotype.
bFDR-adjust P: Calculated by the R.program p.adjust using Benjamini-Hochberg procedure (BH).

Table 3 | Top 20 S-Multixcan results after correction of multiple testing

Phenotypea T_i_bestb Gene P_i_bestc FDR.adjust Pd

EVA_Total Brain_Cortex HSD3B7 1.71E-03 9.55E-20

ELD_Total Brain_Hypothalamus RP11-497H16.2 9.72E-06 4.55E-14

EVK_Total Brain_Caudate_basal_ganglia HSD3B7 5.12E-03 3.68E-13

CVB_Total Brain_Cerebellar_Hemisphere SEMA6C 3.77E-04 2.77E-12

CDICT_Total Brain_Caudate_basal_ganglia LINC00638 4.47E-03 6.79E-12

CVA_Total Brain_Nucleus_accumbens_basal_ganglia PIF1 8.76E-03 6.91E-12

EVB_Total Brain_Cortex HSD3B7 1.16E-02 1.69E-11

CWR_Norm Brain_Hypothalamus RP11-497H16.2 4.14E-04 9.80E-11

CWR_Total Brain_Hypothalamus RP11-497H16.2 9.01E-04 1.66E-09

CCR_Total Brain_Hypothalamus RP11-497H16.2 3.53E-05 2.96E-09

EVD_Total Brain_Caudate_basal_ganglia HSD3B7 8.07E-03 7.52E-09

EWR_Total Brain_Cortex HSD3B7 1.40E-02 1.71E-08

ELRAN_Mean Brain_Hypothalamus RP11-497H16.2 1.93E-04 3.30E-08

ELRAN_Mean Brain_Nucleus_accumbens_basal_ganglia BAK1P1 3.91E-03 4.34E-08

EDRAN_Mean Brain_Nucleus_accumbens_basal_ganglia ZNF565 2.00E-02 5.33E-08

EDRAN_Mean Brain_Cortex HSD3B7 2.01E-02 2.34E-07

EDICT_Total Brain_Anterior_cingulate_cortex_BA24 MYO6 3.35E-04 3.77E-07

COM_Score Brain_Cerebellum RBM8A 8.38E-02 4.39E-07

CLD_Total Brain_Caudate_basal_ganglia OXCT2P1 3.87E-04 6.56E-07

ELRAN_Mean Brain_Nucleus_accumbens_basal_ganglia CYP2E1 7.51E-03 6.70E-07
aPlease refer to Table 10 for abbreviations of the phenotype.
bT_i_Best: name of best single-tissue S-Predixcan association.
cP_i_Best: best p-value of single tissue S-Predixcan association.
dFDR-adjust P: FDR-adjusted p-value of the overall p-value output by S-Multixcan. FDR was calculated by the R program p.adjust using the Benjamini-Hochberg procedure (BH).

https://doi.org/10.1038/s41539-024-00229-7 Article

npj Science of Learning |            (2024) 9:26 4



(C+T) approach. Another approach SBayesR also produced similar
results,with25 traits showing significant associationswithPRSofCPand10
traits showing associations with PRS of EA (at FDR < 0.1). All associations
were in the expected direction (i.e., higher EA and CP PRS associated with
better reading/language abilities).

Interestingly, these associations appeared to be more consistent across
English reading/literacy phenotypes compared to Chinese phenotypes. We
aggregated the p-values from SBayesR analysis of EA and CP across all
Chinese- and English-related traits respectively (p-value aggregation per-
formed using Simes/ACAT tests). PRS of EA was significantly associated
with English-related phenotypes (Simes p = 3.34e-4; ACAT p = 1.90e-4) but
not with Chinese-related phenotypes (Simes p = 3.55e-1; ACAT p = 1.45e-
1).As forPRSofCP, itwas significantly associatedwithbothEnglish-related
(Simes p = 5.43e-4; ACAT p = 3.08e-4) and Chinese-related phenotypes
(Simesp = 3.03e-3;ACATp = 1.92e-3), yet the level of statistical significance
was stronger for English-related traits.

As for other neuropsychiatric traits, using SbayesR, PRS of ASD was
significantly associated with various language phenotypes, such as reading
comprehension (RC), English vocabulary, English word reading and dic-
tation, and several other traits. The C+ T approach mainly showed asso-
ciations with RC. Higher ASD PRS were associated with better reading
abilities. PRSof other psychiatric disorders didnot showconsistent evidence
of association with most language phenotypes, although there were a few
results with FDR < 0.1.

We present in Fig. 1 the results of PRS analysis at the best pthres cutoff;
Fig. 2 shows the results from SBayesR. The full results for the (C+T)
approach across all pthres can be found in Supplementary Data 8, while the
results for SBayesR are reported in Supplementary Data 15.

Testing for genetic overlapwith other GWASondyslexia/reading
abilities
SNP-set and gene-set analysis based on top SNPs/genes reported
from Doust et al.8 and Wang et al.22. For the SNP-based analysis, the

identified susceptibility SNPs for CVB_Total showed significant overlap
with those identified for dyslexia in an independent GWAS8. There is also
some evidence for overlap for CWR_Norm. Based on another smaller
study byWang et al.22, significant overlap were observed for CVB_Total,
CVK_Total, ELS_Total, EMA_Total (Table 7). Full results are presented
in Supplementary Data 13. The above analysis results were consistent
across the Simes and ACAT tests.

In a similar manner, we also performed gene-set analysis based on the
top genes identified in Doust et al.8 and Wang et al.22. Significant results
(using Simes test) are presented in Table 8 and full results in Supplementary
Data 14. Here we mainly report the results from the Simes test, as ACAT
produced similar findings. As shown in Supplementary Data 14, based on
top genes from the dyslexia GWAS8, significant gene-set analysis results
were observed across multiple reading/language phenotypes. A total of 10
phenotypes were significant (p < 0.05) across at least 2 p-value thresholds,
and 6 phenotypes showed significant aggregate p-value (the p-value
aggregating evidence from multiple p thresholds using Simes test). These
phenotypes include CVB_Total, CVD_Total, CVK_Total, CDICT_Total,
CCR_Total and MS_Total. ACAT tests showed concordant results but
seemed to be more powerful, with 11 phenotypes having significant
aggregate p-values. For the top genes identified from the other Chinese
GWAS22, we also observed significant results for various phenotypes (6with
Simes test and 8 with ACAT), suggesting an overlap of genetic signals.

Testing for genetic dependenceusing full GWASsummary statistics
fromGenLang. The results are presented in Table 9 and Supplementary
Data 16.We observed that multiple Chinese and ESL-related phenotypes
showed genetic overlap with the reading/language traits from the Gen-
Lang study9, as evidenced by theHoeffding’s test of independence. Out of
the 170 pairs (34 traits from HK sample x 5 traits from ref. 9) of reading/
language phenotypes, 42 achieved nominal significance (p < 0.05) in the
test for genetic dependence, while 22 achieved FDR-adjusted p-values <
0.1 (mostlywith ‘word reading’ from theGenLang sample). The top pairs

Table 4 | Top 20 gene-based results (Magma) after correction of multiple testing

phenotypea Description Gene CHR ZSTAT P FDR.adjust Pb

PureC_Total potassium voltage-gated channel subfamily C member 1 KCNC1 11 6.03 8.18E-10 1.49E-05

CVD_Total general transcription factor IIIC subunit 1 GTF3C1 16 5.41 3.24E-08 5.90E-04

EWR_Total cation channel sperm associated auxiliary subunit delta CATSPERD 19 5.16 1.22E-07 2.22E-03

EIS_Total solute carrier family 2 member 12 SLC2A12 6 5.16 1.25E-07 2.27E-03

EIS_Total radial spoke head component 1 RSPH1 21 5.01 2.74E-07 2.49E-03

CVB_Total mitogen-activated protein kinase 10 MAPK10 4 5.09 1.76E-07 3.20E-03

MS_Total regulatory factor X8 RFX8 2 4.96 3.57E-07 3.25E-03

MS_Total small lysine rich protein 1 SMKR1 7 5.05 2.24E-07 3.25E-03

CVK_Total general transcription factor IIIC subunit 1 GTF3C1 16 5.09 1.81E-07 3.30E-03

EVB_Total cation channel sperm associated auxiliary subunit delta CATSPERD 19 5.03 2.42E-07 4.40E-03

CVB_Total BCL2 interacting protein like BNIPL 1 4.86 5.87E-07 5.34E-03

EVB_Total cilia and flagella associated protein 65 CFAP65 2 4.84 6.46E-07 5.89E-03

BDS_Total transmembrane serine protease 13 TMPRSS13 11 4.96 3.48E-07 6.33E-03

EVK_Total cilia and flagella associated protein 65 CFAP65 2 4.83 6.95E-07 1.27E-02

EWR_Total caveolae associated protein 2 CAVIN2 2 4.46 4.19E-06 1.39E-02

EWR_Total Morf4 family associated protein 1 like 1 MRFAP1L1 4 4.49 3.57E-06 1.39E-02

EWR_Total biogenesis of lysosomal organelles complex 1 subunit 4 BLOC1S4 4 4.44 4.57E-06 1.39E-02

EWR_Total proline rich 22 PRR22 19 4.54 2.81E-06 1.39E-02

EWR_Total dihydrouridine synthase 3 like DUS3L 19 4.57 2.43E-06 1.39E-02

EDRAN_Mean ankyrin repeat domain 50 ANKRD50 4 4.80 7.76E-07 1.41E-02
aPlease refer to Table 10 for abbreviations of the phenotype.
bFDR-adjust P: Calculated by the R.program p.adjust using Benjamini-Hochberg procedure (BH).
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Table 5 | Significant gene ontology (GO) enrichment results (by GAUSS) after correction of multiple testing (FDR < 0.05)

GeneSet Pvalue Phenotype FDR adjust Pa

GO_SPHINGOLIPID_MEDIATED_SIGNALING_PATHWAY 6.88E-09 CDICT_Total 4.07E-05

GO_GLYCEROPHOSPHOLIPID_CATABOLIC_PROCESS 6.40E-08 PureC_Total 3.78E-04

GO_PROTON_TRANSPORTING_V_TYPE_ATPASE_COMPLEX 1.20E-07 CWR_Norm 7.13E-04

GO_ALCOHOL_TRANSMEMBRANE_TRANSPORTER_ACTIVITY 2.38E-07 RC_MC 1.41E-03

GO_DIVALENT_INORGANIC_ANION_HOMEOSTASIS 5.74E-07 PureC_Total 1.70E-03

GO_CELLULAR_ANION_HOMEOSTASIS 2.25E-06 PureC_Total 4.44E-03

GO_BIOACTIVE_LIPID_RECEPTOR_ACTIVITY 2.13E-06 CDICT_Total 6.29E-03

GO_ATP_HYDROLYSIS_COUPLED_TRANSMEMBRANE_TRANSPORT 2.22E-06 EWR_Total 1.31E-02

GO_LYMPHANGIOGENESIS 7.35E-06 CDICT_Total 1.45E-02

GO_ORGANIC_HYDROXY_COMPOUND_TRANSMEMBRANE_TRANSPORTER_ACTIVITY 4.90E-06 RC_MC 1.45E-02

GO_POSITIVE_REGULATION_OF_VASODILATION 2.00E-05 PureC_Total 1.48E-02

GO_POSITIVE_REGULATION_OF_B_CELL_DIFFERENTIATION 2.00E-05 PureC_Total 1.48E-02

GO_POSITIVE_REGULATION_OF_BLOOD_CIRCULATION 2.00E-05 PureC_Total 1.48E-02

GO_NEURON_PROJECTION_GUIDANCE 2.00E-05 PureC_Total 1.48E-02

GO_POLYSACCHARIDE_BINDING 2.00E-05 PureC_Total 1.48E-02

GO_MONOVALENT_INORGANIC_ANION_HOMEOSTASIS 3.00E-05 PureC_Total 1.97E-02

GO_REGULATION_OF_MITOCHONDRIAL_FISSION 1.53E-05 CDICT_Total 2.27E-02

GO_RESPONSE_TO_NERVE_GROWTH_FACTOR 1.08E-05 EWR_Total 2.43E-02

GO_PROTON_TRANSPORTING_TWO_SECTOR_ATPASE_COMPLEX_CATALYTIC_DOMAIN 1.64E-05 EWR_Total 2.43E-02

GO_PROTON_TRANSPORTING_V_TYPE_ATPASE_COMPLEX 1.35E-05 EWR_Total 2.43E-02

GO_LIGAND_GATED_CHANNEL_ACTIVITY 4.14E-06 EDRAN_Mean 2.45E-02

GO_HYDROGEN_TRANSPORT 3.00E-05 EWR_Total 2.96E-02

GO_VACUOLAR_PROTON_TRANSPORTING_V_TYPE_ATPASE_COMPLEX 3.00E-05 EWR_Total 2.96E-02

GO_RNA_CAP_BINDING_COMPLEX 5.34E-06 CDC_Total 3.16E-02

GO_POSITIVE_REGULATION_OF_MITOCHONDRIAL_FISSION 3.00E-05 CDICT_Total 3.29E-02

GO_DIOL_METABOLIC_PROCESS 4.00E-05 CDICT_Total 3.29E-02

GO_LYMPH_VESSEL_MORPHOGENESIS 5.00E-05 CDICT_Total 3.29E-02

GO_LYMPH_VESSEL_DEVELOPMENT 5.00E-05 CDICT_Total 3.29E-02

GO_VENOUS_BLOOD_VESSEL_DEVELOPMENT 4.00E-05 CDICT_Total 3.29E-02

GO_G_PROTEIN_COUPLED_PURINERGIC_NUCLEOTIDE_RECEPTOR_SIGNALING_PATHWAY 5.61E-06 CVK_Total 3.32E-02

GO_ORGANIC_HYDROXY_COMPOUND_TRANSPORT 5.00E-05 RC_MC 3.70E-02

GO_NERVE_DEVELOPMENT 5.00E-05 RC_MC 3.70E-02

GO_BLOOD_VESSEL_REMODELING 2.09E-05 RC_MC 3.70E-02

GO_KINETOCHORE 5.00E-05 RC_MC 3.70E-02

GO_CONDENSED_CHROMOSOME_CENTROMERIC_REGION 5.00E-05 RC_MC 3.70E-02

GO_CONDENSED_NUCLEAR_CHROMOSOME_CENTROMERIC_REGION 5.00E-05 RC_MC 3.70E-02

GO_DETECTION_OF_LIGHT_STIMULUS 6.00E-05 RC_MC 3.94E-02

GO_STEROID_BINDING 7.00E-05 PureC_Total 4.14E-02

GO_G_PROTEIN_COUPLED_PURINERGIC_NUCLEOTIDE_RECEPTOR_SIGNALING_PATHWAY 7.58E-06 CVD_Total 4.48E-02

GO_WNT_SIGNALING_PATHWAY_CALCIUM_MODULATING_PATHWAY 2.31E-05 CCR_Total 4.56E-02

GO_LOCOMOTORY_EXPLORATION_BEHAVIOR 2.00E-05 CCR_Total 4.56E-02

GO_RNA_CAP_BINDING_COMPLEX 2.00E-05 CCR_Total 4.56E-02

GO_LIPASE_ACTIVATOR_ACTIVITY 8.00E-05 CDICT_Total 4.73E-02

GO_DRUG_TRANSPORTER_ACTIVITY 8.07E-06 CVA_Total 4.78E-02

GO_POSITIVE_REGULATION_OF_B_CELL_ACTIVATION 9.00E-05 PureC_Total 4.84E-02

Please refer to Table 10 for abbreviations of the phenotypes. Full descriptions of each gene-set can be found by looking up the pathway names at https://www.gsea-msigdb.org/gsea/msigdb/.
aFDR-adjust P: Calculated by the R.program p.adjust using Benjamini-Hochberg procedure (BH).
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of traits showing themost significant genetic dependence wereDS_Total,
EIS_Total and CVA_Total with ‘word reading’ of the GenLang sample.

As a further exploratory analysis, we also evaluated the correlations of
the effect sizes of top SNPs from HK and GenLang samples. In general, we
did not find significant correlations that pass multiple testing corrections,
but the SNPeffect sizes forCCR_total showedapositive Pearson correlation
with spelling (Supplementary Data 18). The lack of significant correlations
for example could be due to our limited sample size, and/or heterogeneity
across studies. On the other hand, we note that the above is a preliminary
measure of the correlation of genetic signals (Supplementary Notes), and
more rigorous methods such as LDSC shall be attempted to assess genetic
correlation in future studies with larger sample sizes.

Polygenic risk score analysis. Based on PRS constructed from the
GWAS by Eising et al.9, we found that PRS of ‘non-word reading’ was
significantly and positively associated (at FDR < 0.05) with multiple
reading/language phenotypes of our study, especially those related to
Chinese language (e.g. Chinese word reading (CWR), discourse skills,
morphosyntax, reading comprehension and word order). Please refer to
Supplementary Data 17 and Fig. 3 for the detailed results. We also
observed significant and positive associations of the PRS of ‘spelling’with
English vocabulary knowledge. Significant results were primarily
observed with the clumping and thresholding approach. SBayesR in
general did not return significant findings (Supplementary Fig. 6),
however, we observed several associations of language phenotypes from
the HK sample with ‘non-word reading’, with FDR < 0.2.

We did not find significant results survivingmultiple testingwhenPRS
was constructed from the dyslexia GWAS8. However, the directions of
effects are consistent with prior expectations. At a p-value thres1hold of
1.31e-6, a total of 25 (out of 34) traits showed concordant directions of effect
(i.e. higher dyslexia PRS associated with poorer reading abilities; p = 0.0045,
one-sided binomial test); at a p-threshold of 5e-8, 29/34 traits showed
concordant directions of effect; p = 1.928e-5).

As for PRS analysis based on the GWAS from Wang et al.22, in
general there are few significant results after FDR correction. We
note that the sample size of the above GWAS is relatively modest
(N = 2284), and since only SNPs with p < 1e-5 are available, there are
few SNPs (<10) left for PRS construction after standard LD-
clumping. As such, this analysis is considered exploratory, and the
results should be interpreted with the above limitations in mind. To
highlight one notable finding, PRS constructed from morphological
awareness (MA) measure from Wang et al. showed some evidence of
association with English MA in our sample (p = 0.0018), with the

same direction of expected effect. The full results are presented in
Supplementary Data 11.

Discussion
In this study, we attempted to uncover the genetic basis of a comprehensive
range of cognitive, literacy, and language-related phenotypes of Chinese (as
a native language) and English (as a second language). To gain insights into
the genetic architecture of the above phenotypes, we carried out a GWAS
within a group of HongKong children. To the best of our knowledge, this is
among thefirst GWAS to explore the genetic basis of a comprehensive set of
literacy- and language-related traits in both Chinese and English in a Chi-
nese population. Compared to the previous GWAS on language traits (see
introduction), this study also covers the widest range of phenotypes,
enabling a finer resolution into the genetic architecture of language abilities.

One distinct feature of this study is that we selected the subjects drawn
from a large longitudinal project in Hong Kong, a city with a unique lin-
guistic background due to its geographical location and political history23.
As such, our study is among the first to assess the genetics of language and
literacy skills of bilingual (Chinese and English) children systematically.

Here we highlight several genes associated with literacy/language
phenotypes based on our SNP- or gene-based analysis. For English literacy
skills, the most significant association was observed for a SNP close to
MANEA and MANEA-AS1 (rs6905617) with English lexical decision.
Interestingly, by a search of the GWAS catalog, we found that a variant in
MANEA showed tentative association with general cognitive ability in a
previous GWAS (p = 5e-6)24 ; genetic variants inMANEA-AS1may also be
associatedwithbehavioral inhibition25.Another geneof interest inPLXNC1;
variants in this gene have been reported to be associated (at p < 1e-5) with
multiple neuropsychiatric phenotypes such as major depression26, Lewy
body dementia27, brain shape (segment 15 and 79)28 and neuroticism29. We
also briefly highlight a few genes with corresponding SNPs having FDR <
0.1 (and MAF > 0.05) in GWAS analysis (see Supplementary Data 3.2). A
block of variants in STXBP6 were associated with CVB_total. Syntaxin-
bindingprotein6 (STXBP6) is an essential componentof the SNAPreceptor
(SNARE) complex andplays an important role in synaptic transmissionand
neuronal vesicle trafficking; mutations of genes encoding the SNARE pro-
teins are associated with various neurological disorders30,31. Common var-
iants in STXBP6were reported to be linked to cortical surface area32 and rate
of cognitive decline inAlzheimer’s disease33. Variants inNRXN3 (Neurexin-
3)were also associatedwithCVB_total in our study.Of note, variants in this
gene were found to be associated with word reading18 and education
attainment34 in recent GWAS. Neurexin-3 plays crucial roles in synapse
development and functions and neurotransmission35. Another gene of

Table 6 | Significant Pathway enrichment results (GAUSS) after correction of multiple testing (FDR < 0.05)

GeneSet Pvalue Phenotype FDR adjust Pa

REACTOME_RNA_POL_III_TRANSCRIPTION 3.36E-08 WO_Total 1.60E-04

BIOCARTA_P35ALZHEIMERS_PATHWAY 3.41E-07 EWR_Total 1.62E-03

REACTOME_P2Y_RECEPTORS 3.94E-07 CVK_Total 1.88E-03

REACTOME_KINESINS 7.07E-07 BDS_Total 3.37E-03

STOSSI_RESPONSE_TO_ESTRADIOL 3.04E-06 RC_MC 1.45E-02

IGLESIAS_E2F_TARGETS_DN 4.29E-06 CWR_Norm 2.04E-02

REACTOME_P2Y_RECEPTORS 5.25E-06 CVD_Total 2.50E-02

PID_S1P_META_PATHWAY 9.02E-06 CDICT_Total 3.88E-02

GOLUB_ALL_VS_AML_DN 1.63E-05 CDICT_Total 3.88E-02

BIOCARTA_AKAPCENTROSOME_PATHWAY 2.00E-05 CCR_Total 4.76E-02

BANDRES_RESPONSE_TO_CARMUSTIN_MGMT_48HR_UP 2.00E-05 CCR_Total 4.76E-02

LIM_MAMMARY_LUMINAL_PROGENITOR_UP 2.00E-05 EWR_Total 4.76E-02

Please refer to Table 10 for abbreviations of the phenotypes. Full descriptions of each gene-set can be found by looking up the pathway names at https://www.gsea-msigdb.org/gsea/msigdb/.
aFDR-adjust P: Calculated by the R.program p.adjust using Benjamini-Hochberg procedure (BH).
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interest isMAP1B, which was associated with BDS_total. SNPs in this gene
were linked to educational attainment34 and brain morphology36.

Several gene-based tests reached a significant level after FDRcorrection
for reading and spellingmeasures.Themost significant gene fromMAGMA
was KCNC1, which encodes a subunit of the KV3 voltage-gated K+ chan-
nels. Mutations in this gene were associated with a range of neurological
disorders including epilepsy and also intellectual disability and cognitive
decline in some patients37–39. In terms of Chinese literacy skills, the most
significant association signal was observed for gene GTF3C1 (General
Transcription Factor lllC Subunit 1) with CVD_Total. GTF3C1 has been
widely investigated on its interactive connections to other genes; for
example, it is involved in networks pathologically related to neurodegen-
eration and Alzheimer’s disease40–42. GTF3C1 is also involved in regulation
of rearrangement of neuronal nuclear architecture following neuronal
excitation43. Of note, the nuclear architecture plays an important role in
neural development and function44. CHL1 was another gene implicated
from S-PrediXcan analysis, and variants in this gene were reported to show
association with education attainment45 and mathematics abilities45.

In addition, our results showed that SLC2A12 was associated with
English comprehension skills. SLC2A12 encodes GLUT12, a glucose
transporter. It has been reported that amyloid-beta increases GLUT12
protein expression in the brain in mouse models, implicating an important
role of this transporter in Alzheimer disease46 and cognitive functioning.

We discovered that several language/literacy phenotypes were asso-
ciated with PRS of psychiatric disorders, cognitive performance and edu-
cational attainment. Our results were consistent with previous studies that
have demonstrated shared genetic factors among childhood intelligence,
educational attainment, and literacy skills.

For example, Luciano et al. (2017)47 showed that PRS of word reading,
general reading and spelling, as well as non-word repetition, were positively
associated with educational attainment (college/university degree versus
none), income and verbal-numerical cognitive test results. Moreover, in a
GWAS by Price et al.14, substantial genetic overlap was found betweenword
reading and number of years of education (R2 = 0.07, P = 4.91 × 10−48) and
intelligence score (R2 = 0.18, P = 7.25 × 10−181) in a population-based sam-
ple. In a recent study by Gialluisi et al.48, risk of developmental dyslexia was

Fig. 1 | Results of polygenic risk score (PRS) analysis on the 34 language-related
phenotypes analyzed in this study, with PRS constructed from external GWAS
data of different neuropsychiatric disorders/traits (training set). The following
neuropsychiatric disorders/traits were included: attention deficit hyperactivity dis-
order (ADHD), autism spectrum disorders (ASD), Education attainment (EA),
cognitive performance (CP), schizophrenia (SCZ), bipolar disorder (BP) and major

depressive disorder (MDD). In the heatmap, for each PRS analysis, we select the
result with the lowest FDR-adjusted p-value (p.adjust), and show the regression
coefficient in the graph. The PRS represent the average risk allele score per non-
missing SNP. PT: the optimal p-value threshold at which the most significant
association was observed.
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significantly associated with PRS of EA and intelligence. In addition, in
another large-scale GWAS on dyslexia8, negative genetic correlation of
dyslexia with intelligence and education attainment was reported. Com-
bined with our current findings, these results provide evidence to support a
partially shared genetic etiology among literacy skills, cognitive measures,
and educational outcomes. On the other hand, it is interesting to note that
the polygenic scores of EA and CP appeared more strongly associated with
English language phenotypes (English as a second language) than their
Chinese counterparts, which is a novel finding to our knowledge. The above
finding also suggests theremay be differencesunderlying the genetic basis of
Chinese and English literacy skills.

Another interesting finding was that ASD PRS was associated with
reading/language-related phenotypes, with higher PRS associated with
better reading/language abilities. Notably, several genetic studies on ASD
have observed positive genetic correlation or positive PRS associations
between ASD and CP or EA49–51. However, a recent study49 also showed
significant heterogeneity of polygenic associations across ASD subtypes.
RegardingEA, in the above study, PRSof EAwas significantly andpositively
associated with childhood autism and Asperger’s syndrome, but not for
atypical autism, or the group of unspecified/other pervasive developmental

disorders (PDD). Similar pattern of associations was observed for PRS of
intelligence. In another study52, it was found that language problems related
to ASD was positively associated with dyslexia, however, ASD-related
inflexibility was associated with a reduced odds of dyslexia. Here we
observed a positive association of ASDPRSwith language traits, whichmay
warrant further studies in independent samples, ideally with more refined
PRSof differentASDsubtypes or symptomdomains.However,wenote that
the significant associations are primarily observedusing SBayesRbutnot the
conventional C+ T approach, and our sample size is modest, as such the
findings may need to be further replicated in other studies.

Here we have performed genetic overlap/replication and PRS
analyses based on several other relevant GWAS on dyslexia and
language phenotypes, namely Doust et al.8, Wang et al.22 and Eising
et al.9. As detailed above, we observed some evidence of genetic
overlap between these datasets and our HK sample. Most significant
findings of genetic overlap by PRS were observed with the study by
Eising et al.9. However, there was weaker evidence of genetic overlap
with the other two samples, and not all reading/language phenotypes
showed significant PRS associations. We highlight possible reasons
for discrepancies in genetic findings below.

Fig. 2 | Results of polygenic risk score (PRS) analysis using SBayesR on the 34
language-related phenotypes analyzed in this study, with PRS constructed from
external GWAS data of different neuropsychiatric disorders/traits (training set).

Note that SBayesR assumes a mixture model on the SNP effect sizes, and does not
require choosing p-value thresholds. Please also refer to the legend of Fig. 1.
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Firstly, for the analysis with the dyslexia GWAS, a major limitation is
that only the 10,000 top SNPs were available (highest p ~ 1.31e-6 after LD-
clumping). As language and literacy phenotypes are complex traits which
are likely highly polygenic, inclusion of a smaller number of SNPs might

limit the power to detect associations. As a reference, for PRS analyses of EA
and CP, the most significant associations were in general observed at more
relaxed p-value cutoffs (>0.001).

Secondly, since the dyslexia GWAS is mainly based on a European
population8, differences in genetic findings could be attributed to ethnic
differences. Another study by Eising et al.9 is also primarily based on Eur-
opean samples. It is increasingly recognized that PRS constructed from one
ethnic group often have poorer performance in other ethnicities. The
deterioration in performance may even occur across ethnic subgroups
within the same ancestry (e.g. European ancestry)53. Differences in other
environmental or genetic backgroundsmay also affect effect sizes of genetic
variants. A recent study also revealed that even within the UK-Biobank
sample, prediction accuracy varies for various traits depending on socio-
economic status, age and sex of the subjects54. Differences in the background
of subjects may be present across the current and other studies.

In addition, while dyslexia was the target phenotype in the above-cited
GWAS8, we focused on a variety of literacy and language-related pheno-
types. Also, we focused on Chinese language phenotypes and phenotypes
associated with ESL, as compared to dyslexia in a mostly European and
English-speakingpopulation.Thedifferences inphenotypesmay contribute
to different variants/genes being detected. Moreover, the 23andMe sample8

largely depends on self-reported diagnosis of dyslexia, whichmay be subject
to error and heterogeneity.

We also highlight a few other differences between our current study
and Eising et al.9 (GenLang study). Eising et al.9 focused on five English
reading phenotypes and discovered a GW-significant loci for word reading,
while in this study we observed significant signals mainly for Chinese-
related phenotypes (and English Lexical decision, which was not directly
studied in Eising et al.). Also, the GenLang study is a meta-analysis which
may be more heterogeneous (e.g. phenotypic heterogeneity across different

Table 7 | Testing for genetic overlapwithDoust et al. andWang
et al. on reading/language phenotypes, based on SNP-based
test statistics

(1) GWAS by Doust et al.

Phenotype P < 5e-08 P < 5e-06 P < 1-06

CVB_Total 3.11E-04 6.58E-04 6.46E-04

CWR_Norm 3.62E-02 7.66E-02 7.52E-02

(2) GWAS by Wang et al.

Phenotype P < 5e-06 P < 1e-05

CVB_Total 2.51E-02 5.01E-02

CVK_Total 2.12E-02 4.23E-02

EIS_Total 8.10E-03 1.62E-02

EMA_Total 2.98E-02 2.83E-02

The above is based on the Simes test. Only traits showing significant results are shown above. Full
results (including results from Simes and ACAT tests) are presented in Supplementary Data 13.
For SNP-set analysis based on the GWAS by Wang et al., since the number of SNPs with available
data is small, we aggregated the top SNPs across all eight phenotypes studied by Wang et al.
For details of the statistical test, please refer to the main text. Briefly, for SNP-set analysis, we first
identified top SNPs (defined by p-values smaller than predefined cutoffs) from two independent
GWAS datasets on dyslexia and reading abilities. Then we extracted the same SNP-set from our
data, and performed the Simes test and ACAT test to examine whether the SNP-set as a whole was
significantly associated with our studied traits.

Table 8 | Testing for genetic overlapwith Doust al. andWang et al. on reading/language phenotypes, based on gene-based test
statistics

(1) GWAS by Doust et al.

Phenotype P < 0.05 P < 0.01 P < 0.001 P < 1e-04 P < 1e-05 P < 1e-06 Aggregate_P

CCR_Total 8.73E-02 4.18E-02 2.98E-02 1.47E-02 8.63E-03 2.74E-02 4.40E-02

CDICT_Total 1.88E-02 9.01E-03 6.69E-02 4.56E-02 2.68E-02 1.73E-02 3.76E-02

CVB_Total 6.60E-04 3.16E-04 1.97E-01 9.68E-02 5.70E-02 3.67E-02 1.90E-03

CVD_Total 1.22E-04 1.12E-01 4.76E-02 4.54E-01 4.39E-01 2.83E-01 7.31E-04

CVK_Total 6.81E-04 7.73E-02 6.58E-02 6.15E-01 7.24E-01 4.66E-01 4.09E-03

DS_Total 2.03E-01 1.94E-01 8.26E-02 4.06E-02 2.39E-02 1.54E-02 7.18E-02

EVB_Total 2.69E-02 1.29E-02 5.78E-01 2.84E-01 2.23E-01 1.56E-01 7.73E-02

MS_Total 8.41E-04 4.03E-04 5.66E-01 4.00E-01 2.42E-01 1.56E-01 2.42E-03

PairC_Total 6.51E-02 3.12E-02 2.65E-02 1.41E-01 1.20E-01 7.74E-02 9.36E-02

WO_Total 4.49E-02 2.15E-02 1.45E-01 4.23E-01 2.73E-01 3.05E-01 1.29E-01

(2) GWAS by Wang et al.

Phenotype P < 1e-05

CLD_Total 4.89E-03

CVK_Total 8.15E-03

EMA_Total 8.44E-03

CVB_Total 1.26E-02

MS_Total 1.52E-02

RC_OE 4.75E-02

The above is based on the Simes test. Only traits showing significant results across at least two p-value thresholds (for the first study) and or at p < 1e-5 (for the second study) are shown. Full results
(including results from Simes and ACAT tests) are presented in Supplementary Data 14.
For gene-set analysis based on the GWAS by Wang et al., since the number of genes with available data is small, we aggregated the top genes across all eight phenotypes studied by Wang et al.
For details of the statistical test, please refer to themain text. Briefly, we first extracted top genes from the external datasets with (gene-based) p-values smaller than predefined cutoffs, then extracted the
same set of genes from our sample. We then tested whether the gene-set (as a whole) was significantly associated with the studied phenotypes. This replication analysis was conducted under various p-
value cutoffs (p = 0.05, 1e-2, 1e-3, 1e-4, 1e-5 and1e-6) (for theDoust et al. study). For the otherGWAS, only one thresholdwasused, asonly the summarygene-basedstatisticswithp < 1e-5were available.
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sub-samples) than a single study, and the age rangewas also wider (up to 18
years old). On the other hand, compared to the large meta-analysis by
GenLang, althoughwe identified several novel loci, we consider ourfindings
more preliminary and tentative given the limit of sample size. We cannot
exclude the possibility of some false positives and independent replications
are needed.

As for another GWAS on reading traits in Chinese22, the power to
detect significant PRS associationsmay be limited due to themodest sample
size, and that only limited number of top SNPs are available for modeling.
Other reasons stated above, such as heterogeneity of the study sample and
phenotypes studied, may also play a role.

There are several strengths of our study. First, to the best of our
knowledge, this is among the first GWAS to investigate the genetic
basis of a wide range of both Chinese and English literacy- and
language-related skills in a Chinese population. Importantly, as
reading and language comprehension are highly complex traits, here
we performed detailed phenotyping to decipher the genetic basis of
various different domains of these skills. On the other hand, previous
studies largely followed another research strategy by focusing on a
limited range of language phenotypes or binary outcomes. While it is
also possible to only focus on a few selected phenotypes (e.g., those
with higher heritability, or by other criteria), such choice of pheno-
types may inevitably be arbitrary, and one may still discover variants

of biological importance for a trait with lower heritability. In addi-
tion, the SNP-based heritability, or the extent to which common
variants contribute to a trait, is unknown for most phenotypes stu-
died here. To enable a more comprehensive and unbiased examina-
tion of the genetic architecture of language/literacy-related traits, we
have included a wide range of phenotypes in the current study. We
also employed the FDR approach to account for multiple testing.

To gain deeper insights into the biological basis of the studied traits, we
not only performed standard SNP-based tests but also gene-based
(MAGMA, S-PrediXcan, S-MulTiXcan) and pathway-based analysis
(GAUSS). This ‘multi-level’ approach helps to bridge the gap between SNP
associations andbiologicalmechanisms, thus enhancingourknowledge and
understanding of reading and language. In addition to studying the asso-
ciations between phenotypes and genetic factors, we performed PRS ana-
lysis to study the overlap of included phenotypes with other
neuropsychiatric traits, which could provide insight into the genetic archi-
tecture of language-related traits.

Our study also has a few limitations. Our study is based on a Hong
KongChinese sample (underabilingual environment). It remainsuncertain
whether the genetic findings from the current study can be generalized to
other populations. Further studies in other populations with different
genetic and language backgrounds may be warranted. In a similar vein, the
GWAS summary statistics of CP, EA and other psychiatric disorders were
primarily derived from Europeans (due to lack of relevant data from Chi-
nese populations), whichmay attenuate the genetic overlapwith the studied
phenotypes in our Chinese sample. Nevertheless, several studies (on other
complex traits) have shown that genetic variants and PRS from Europeans
may still be transferrable to Chinese55,56, albeit with possibly weaker pre-
dictive power. Besides, here we employed the 1000-Genomes as the refer-
ence for imputation, following the findings from Lin et al.57 that satisfactory
imputation performance in Chinese could be achieved using this panel. In
Lin et al.’s report, the mean imputation r2 in two Chinese cohorts were at or
above ~0.7 for SNPs having MAF > 1%, and were even better for higher
MAF. At the time of this analysis, most established imputation servers (e.g.
Michigan Imputation Server) does not contain Chinese-specific reference
panels. Note that we also reported the imputation quality score (r2) for all
reported variants for easy reference and have removed variants with low
imputation quality (r2 < 0.3).

In this study, we performed extensive and deep phenotyping
covering most domains of Chinese and English literacy- and
language-related skills. This GWAS covers the widest range of lan-
guage phenotypes to date. However, as a compromise, our sample
size is relatively modest and statistical power may be insufficient to
detect variants of small effects. In addition, given that we only per-
formed genetic analysis in a single sample and a number of pheno-
types were probably studied for the first time (e.g. most phenotypes
on Chinese language/literacy), we emphasize that further replications
in other samples are required. The modest sample size may also
contribute to negative heritability estimates by LDSC; future studies
of SNP-based heritability using larger samples are warranted. In
addition, this study focused on the contribution of common variants;
rare variant association was not our focus and further sequencing
studies may be warranted. In addition, while we have performed
further gene-based and pathway-based bioinformatics analyses, the
findings are based on statistical associations and will require further
experimental validations.

In summary, we conducted one of the first GWAS on a comprehensive
range of phenotypes on both Chinese and English abilities in a HK Chinese
(Cantonese-speaking)population.Wediscovereda fewnovel genetic loci that
may underlie these traits, and revealed genes and pathways that may be
associated, althoughwe stress that further replications arewarrantedowing to
the modest sample size. We believe our work will be an important starting
point and reference for further studies into the biological and genetic basis of
language abilities, and ultimately such knowledge will be useful for the
development of better treatment for childrenwith specific readingdisabilities.

Table 9 | Testing for genetic dependence with the GenLang
sample (Eising et al.), using full GWAS summary statistics and
the Hoeffding’s test of independence (results with FDR
adjusted p < 0.1 are shown)

Trait A Trait B Scaled
statistic

p-value FDR-
adjusted p

BDS_Total Word Reading 1.663 2.04E-02 4.63E-02

CDC_Total Spelling 2.696 4.24E-03 8.75E-02

CLD_Total Word Reading 2.406 6.55E-03 2.02E-02

CVA_Total Word Reading 5.853 4.31E-05 4.88E-04

CVB_Total Word Reading 2.247 8.34E-03 2.36E-02

CVK_Total Word Reading 1.852 1.53E-02 3.70E-02

CWR_Total Word Reading 1.122 4.84E-02 8.65E-02

DS_Total Word Reading 6.382 2.03E-05 4.47E-04

EDRAN_Mean Word Reading 1.216 4.15E-02 7.85E-02

EIS_Total Word Reading 6.199 2.63E-05 4.47E-04

ELD_Total Word Reading 4.428 3.33E-04 2.83E-03

ELRAN_Mean Word Reading 2.665 4.44E-03 1.68E-02

ELRAN_Mean Spelling 2.566 5.14E-03 8.75E-02

EVA_Total Word Reading 1.228 4.07E-02 7.85E-02

EVD_Total Word Reading 2.975 2.79E-03 1.36E-02

EWR_Total Word Reading 2.137 9.85E-03 2.58E-02

MS_Total Word Reading 3.298 1.74E-03 9.84E-03

PureC_Total Word Reading 1.038 5.55E-02 9.43E-02

RC_MC Word Reading 2.774 3.77E-03 1.60E-02

RC_OE Word Reading 2.433 6.29E-03 2.02E-02

RC_Total Word Reading 3.786 8.48E-04 5.77E-03

WO_Total Word Reading 1.460 2.81E-02 5.98E-02

WO_Total Phoneme
awareness

2.967 2.83E-03 9.62E-02

Trait A comes from the Hong Kong sample, while trait B is from the study by Eising et al. Scaled
statistic: the test statistic rescaled for a standard null distribution (please refer to the R package
“independence” for details). FDR adjusted-p < 0.05 are in bold and those between 0.05 and 0.1 are
in italics. FDR adjustment was performed with stratification by trait B.
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Methods
Participants and phenotypes studied
The participants were Hong Kong Chinese-English bilingual twins and
singletons, recruited through kindergarten and primary schools in Hong
Kong.All childrenwere typically developingwithCantonese as theirmother
language and English as their second language. The participants’ ages
ranged between 5 to 12 years old at the time of assessment. A total of 1048
childrenwere recruited for this study, including274MZsubjects (137pairs),
350 DZ subjects (175 pairs) and 424 singletons. Zygosity determination on

twin pairs was based on the genotyped small tandem repeat (STR) markers
using Quantitative Fluorescence Polymerase Chain Reaction (QF-PCR)58.
Singleton children were selected from the same schools as those twin pairs.
Parental written informed consent for all the participants was obtained
before testing. Children completed a series of cognitive and literacy-related
tasks in Chinese and English either in a laboratory setting, their school, or
their home by trained research assistants.

For details of the tasks and phenotypes, please refer to the Supple-
mentary Notes. Briefly, a total of 34 phenotypes were included (Table 10),

Fig. 3 | Results of polygenic risk score (PRS) analysis on the 34 language-related
phenotypes analyzed in this study, with PRS constructed from external GWAS
data of reading and language-related traits from Eising et al. The following traits
were included: word reading, nonword reading, spelling, phoneme awareness, and
nonword repetition. In the heatmap, for each PRS analysis, we select the result with

the lowest FDR-adjusted p-value (p.adjust), and show the regression coefficient in
the graph. The PRS represent the average risk allele score per non-missing SNP. PT:
the optimal p-value threshold at which the most significant association was
observed.
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covering a wide range of literacy- and language-related skills. All tasks were
finished in a given order that had been predetermined. Except the three
measures on rapid automatized naming (RAN), a higher score indicates
better literacy skills. A correlation matrix of all phenotypes is presented in
Supplementary Fig. 1.

Genotype quality control (QC) and imputation
Three groups of subjects, including monozygotic (MZ) twins, dizygotic
twins (DZ), and singletons, were genotyped. Based on previous studies59,
reducing theMZ pairs to singletons leads to a loss of statistical power. It has
also been shown that including both MZ twins in the genetic analysis does
not lead to an inflationof type I error (when relatedness is accounted for) but
can improve power59. We therefore followed ref. 59 and included both MZ
twins in ourGWAS.Monozygosity was confirmed byQF-PCR as described
above, and only onemember of eachMZpairwas genotyped. The otherMZ
twin was assumed to share identical genotypes. We employed the Human
Infinium OmniZhongHua-8 v1.3 Beadchip from Illumina for genotyping.

Quality control (QC) was performed by PLINK-1.9 on each dataset
separately before merging. We removed those SNPs which deviated from
Hardy–Weinberg equilibrium (HWE, P < 1E-5), with Minor Allele Fre-
quency (MAF) < 1%, missingness per individual (MIND) > 10%, and
missingness per marker (GENO) > 10%. After QC, 911178 SNPs and 1046
individuals were kept for further analysis, including 274 MZ subjects (59
male pairs, 78 female pairs), 349DZ subjects (39male pairs, 37 female pairs,
1 member of a female pair and 98 opposite-sex pairs), as well as 423 sin-
gletons (218 males, 205 females).

Following QC, variant-level imputation was performed by the
Michigan Imputation Server based on “Mininac”60. The imputation was
based on the reference panel 1000 Genomes (1000 G) Phase 3 v5, as pre-
vious studies reported satisfactory performance of imputation in Chinese
based on the 1000 Gpanel57. The imputeddata were converted into a binary
dosage file by the program “DosageConverter” (https://genome.sph.umich.
edu/wiki/DosageConvertor). Imputed variants with INFO score (R-
squared) > 0.3 (12,475,316 SNPs) were retained.

Genome-wide association study (GWAS)
GWAS of all phenotypes was conducted through a univariate linear mixed
model in GEMMA (http://github.com/genetic-statistics/GEMMA). We
included age and sex as fixed-effects covariates. The genetic relationship
matrix (GRM) was included as a random effect to account for relatedness
between subjects. This approach also controls for population stratification.
We tested for the association of allelic dosages with phenotypes. An MAF
threshold of 0.05 was employed for the SNP-based analysis. We considered
p < 5e-8 as the genome-wide significance threshold.

Althoughmultiple phenotypeswere studied, our primary objectivewas
to explore and prioritize genetic variants for further studies, and a further
Bonferroni correction to penalize the number of phenotypes tested may be
too conservative for this purpose. Instead, we employed the false discovery
rate (FDR) approach to control for multiple testing. FDR controls the
expected proportion of false positives among the findings declared to be
significant. This approach has been argued to be a more reasonable meth-
odology as it ‘adaptively’ considers the data instead of imposing a direct
penalty for the number of hypotheses tested, and the FDRapproachhas also
been widely used in genomic studies61.

FDR was calculated separately for each trait, for all SNP- and gene-
based analyses (see below). It is worth noting that FDR control is generally
still attained when we stratify the hypotheses62, because FDR controls the
proportion (instead of the number) of false positives. For details, please refer
to62. As such, the results can be considered to have accounted for multiple
testing, in the sense that the false discovery rate (FDR) is controlled despite
the presence of multiple phenotypes.

To identify independent significant risk loci, we employed PLINK-1.9
to perform LD-clumping with r2 = 0.01 and distance = 1000 kb, using 1000
Genomes East Asian sample as reference. SNP-to-Genemapping was done
using Bioconductor package ‘biomaRt’(version 2.48.2) on R-4.0.3.

The histograms and summary table of all phenotypes are shown
in Supplementary Fig. 2 and Supplementary Data 10. We note that
some of the phenotypes were normally distributed though some were
not. Nevertheless, in large sample sizes with few covariates, violation
of the normality assumption usually does not affect the validity of
results63. There is no clear consensus on whether transformations
(such as the rank-based inverse normal transformation, RINT)
should be performed on (non-normal) phenotypes in GWAS. For
example, Beasley et al.64 reported that RINT does not necessarily
control type I error and may lead to reduced statistical power, while
another study65 showed improved performance of the RINT
approach. Intuitively, the untransformed approach keeps the original
value of the phenotype and does not lead to loss of information, and
is more interpretable. Here we performed analysis on both RINT-
transformed65 and non-transformed phenotypes for all traits under
study. As described below, on inspection of the QQ-plots, most traits
have very similar distributions of p-values, except for four

Table 10 | Overview of phenotypes included in the study

Variable Variable Label

BDS_Total Backward Digit Span

CCR_Total Chinese Character Reading

CDC_Total Chinese Delayed Copying

CDICT_Total Chinese Dictation

CDRAN_Mean Chinese Digit Rapid Naming

CLD_Total Chinese Lexical Decision

COM_Score Chinese 1min Word Reading Adjusted Total Score

COM_Norm Chinese 1min Word Reading Scaled Score

CVA_Total Chinese Vocabulary - Receptive Vocabulary (10 items)

CVB_Total Chinese Vocabulary - Expressive Vocabulary (12 items)

CVD_Total Chinese Vocabulary - Vocabulary Definition (26 items)

CVK_Total Chinese Vocabulary Knowledge (48 items; sum of CVA, CVB
and CVK)

CWR_Total Chinese Word Reading Raw Score

CWR_Norm Chinese Word Reading Scaled Score

DS_Total Chinese Discourse Skills

EDC_Total English Delayed Copying

EDICT_Total English Dictation

EDRAN_Mean English Digit Rapid Naming

EIS_Total English Invented Spelling

ELD_Total English Lexical Decision

ELRAN_Mean English Letter Rapid Naming

EMA_Total English Morphological Awareness - Written Test

EVA_Total English Vocabulary - Receptive Vocabulary (15 items)

EVB_Total English Vocabulary - Expressive Vocabulary (15 items)

EVD_Total English Vocabulary - Vocabulary Definition (15 items)

EVK_Total English Vocabulary Knowledge (45 items; sum of EVA, EVB
and EVK)

EWR_Total English Word Reading Total Score

MS_Total Morphosyntax in Chinese

PairC_Total Pair Cancellation

PureC_Total Pure Copying of Unfamiliar Scripts

RC_MC Chinese Reading Comprehension - Multiple Choice

RC_OE Chinese Reading Comprehension - Open End

RC_Total Chinese Reading Comprehension - Total

WO_Total Chinese Word Order
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phenotypes. We primarily present our results of the non-transformed
phenotypes except for the latter four which were RINT-transformed.

Gene-based analysis with MAGMA
Gene-based analysis has been considered more powerful than SNP-based
analysis performed in GWAS66. We utilized MAGMA (Multi-marker
Analysis of GenoMic Annotation) v1.06 to conduct gene-based association
tests with GWAS summary statistics of our phenotypes13. Briefly,MAGMA
considers the aggregate effects of all variants in each gene to produce a gene-
based test statistic. We employed the FDR procedure67 to control for mul-
tiple testing. In our gene-based study and the following analyses, resultswith
FDR < = 0.05 are regarded as significant, while those with
0.05 < = FDR < = 0.2 are considered suggestive associations.

Pathway analysis with GAUSS
We subsequently performed pathway enrichment tests with a powerful
subset-based gene-set analysis method called GAUSS (Gene-set analysis
Association Using Spare Signal)68, based on gene-based association results
obtainedbyMAGMA.Weutilized two collections of gene-sets derived from
the Molecular Signature Database (MsigDB v6.2)69. The first is a collection
of curated pathways (C2)which include canonical pathways such asKEGG,
BioCarta, REACTOME, as well as chemical and genetic perturbations; the
other is gene-ontology (GO) gene-sets (C5), which include biological pro-
cesses, molecular processes, and cellular processes. Please refer to https://
www.gsea-msigdb.org/gsea/msigdb/collections.jsp for details. If a sig-
nificant association with a pathway is found, GAUSS also identifies the core
subset (CS) of genes within the pathway that is driving the association.

Transcriptome-wide association studies with S-Predixcan &
S-Multixcan
We also employed other approaches to compute gene-based association
results. MAGMA is a widely used approach, but it does not consider the
functional impact of SNPs (e.g., impact on expression). S-PrediXcan is
another gene-based analysis approach which imputes gene expression
changes in relevant tissues due to genetic variations, using reference eQTL
datasets such as the GTEx. This approach is also known as transcriptome-
wide association study (TWAS)70. Here we considered 13 brain regions,
including the amygdala, anterior cingulate cortex (BA24), caudate basal
ganglia, cerebellar hemisphere, cerebellum, cortex, frontal cortex (BA9),
hippocampus, hypothalamus, nucleus accumbens (basal ganglia), putamen
(basal ganglia), spinal cord (cervical c-1) and substantia nigra. For S-Pre-
diXcan, FDR correction was performed separately for each trait across all
brain regions.

To increase statistical power to identify candidate genes, we also
integrated the joint effects of expression changes across multiple tissues in a
secondary analysis by ‘S-MultiXcan’71. S-MultiXcan combines evidence
across tissues using multiple regression (fitting predicted expression as
independent variables), which also takes into account the correlation
structure.

Polygenic risk score analysis
To evaluate genetic overlap of the studied phenotypes with other
neuropsychiatric traits, we performed a PRS analysis. PRS aggregates
the joint effect of multiple genetic variants, weighted by the effect size
from GWAS summary statistics data. PRS were generated by PLINK
1.9 across 11 P-value thresholds (pthres) = {1e-06, 1e-05, 1e-04,
0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5,0.05} (multiple testing corrected by
FDR, stratified by each exposure-outcome pair)72, LD-clumped at
r2 = 0.1 within a distance of 1000 kb.

We constructed PRS for various neuropsychiatric disorders/traits,
including educational attainment (EA; N = 1,131,881)45, cognitive perfor-
mance (CP;N = 257,841; derived fromscores of verbal-numerical reasoning
from the UK Biobank and neuropsychological test results from the
COGENT Consortium, details described in45), autism spectrum disorders
(ASD; N = 46,350)49, attention deficit hyperactivity disorder (ADHD;

N = 225,534)73, schizophrenia (SCZ; N = 320,404)74, bipolar disorder (BP;
N = 413,466)75, and major depressive disorder (MDD; N = 194,548)76.

GWAS summary statistics were downloaded from the Social Science
Genetic Association Consortium (SSGAC) (https://www.thessgac.org/),
Psychiatric Genomics Consortium (PGC) (https://www.med.unc.edu/pgc)
and The Integrative Psychiatric Research project (iPSYCH) (https://ipsych.
au.dk/downloads/).

We employed linearmixedmodels in GEMMA to test for associations
between PRS and phenotypes. The model was adjusted for age and sex as
fixed effects. GRM was fit as a random effect, accounting for both related-
ness and population stratification77.

In addition to the clumping and p-value thresholding (C+T)
approach, we also employed SBayesR78 for PRS analysis. Briefly, this
approach assumes a mixture model of the coefficients and performs
Bayesian posterior inference to estimate the effect sizes of SNPs. The
approach does not require selection of particular p-value thresholds. We
followed the default settings of SBayesR and assumed a four-component
mixture model for the coefficients (for details please refer to the original
paper78).

We also tested for genetic overlap of ourfindingswith otherGWASon
dyslexia or reading abilities, as detailed below.

Genetic overlap with findings from two related GWAS (Doust
et al.8 and Wang et al.22), based on the top SNPs/genes reported
We performed SNP-set and gene-set analysis based on the top SNPs/genes
reported from two relevant external studies (one on dyslexia byDoust et al.8

and the other on language/reading abilities in Chinese by Wang et al.22), to
examine genetic overlap between the external GWAS and our HK study.
Note that full GWAS summary statistics are not available from these two
studies, so we focused on the top SNPs and genes reported.

Briefly, for SNP-set analysis, we first identified top SNPs (defined by
p-values smaller than predefined cutoffs) from two independent GWAS
datasets on dyslexia and reading abilities8,22. Then we extracted the same
SNP-set from our data, and performed the Simes test79 and the aggregated
Cauchy association test (ACAT)80 to examine whether the SNP-set as a
wholewas significantly associatedwith our studied traits. In otherwords,we
tested for overlap in genetic signals across the external andHKdatasets. The
Simes andACAT tests are established statisticalmethods for testing variant-
set or gene-sets/pathways80–82, and are valid under dependent
hypothesis tests.

Using the same analytic approach, we also performed gene-set analysis
to examine genetic overlap across the external and local datasets. Similar to
before, we first extracted top genes from the external datasets with (gene-
based) p-values smaller than a predefined cutoff, then extracted the same set
of genes from our sample, and tested whether the gene-set (as a whole) was
significantly associated with the studied phenotypes. This replication ana-
lysis was conducted under various p-value cutoffs (p = 0.05, 1e-2, 1e-3, 1e-4,
1e-5 and 1e-6).

Besides, we also performed PRS analysis based on the above two
externalGWAS. The analytic strategies follow those described above, except
that SBayesR was not used for PRS analysis due to the limited number of
SNPs available. For Doust et al.8, summary statistics of the top 10,000 SNPs
(corresponding to a p-value threshold of ~1.31e-6 after LD-clumping) were
publicly available; for the otherGWASbyWang et al.22, summary data from
the top SNPs (p < 1e-5) were available. Our replication analyses were
therefore restricted to the SNPs with available summary statistics.

Genetic overlap/dependence with the GenLang study, using full
GWAS summary statistics
As for another study conducted by theGenLangConsortium (Eising et al.9),
full summary statistics are available, hence enabling analysis to examine
genetic overlap across different traits using whole-genome data. LD score
regression (LDSC) is the standard approach for genetic correlation analysis,
yet it has been reported that the method cannot reliably estimate genetic
correlation for small or modest sample sizes83. It has been observed that for
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an (effective) sample size < 5000, unreliable and negative heritabilitymay be
reported. Here we tried LDSC on our sample, however, the heritability
estimate for each reading/language trait was negative, corroborating with
previous reports.Wenote that such negative estimates are inconsistent with
previous twins/family studies that reported a significant heritable
component5,84 of reading/language abilities. In addition, if a trait has nega-
tive heritability, genetic correlation with any other trait cannot be reliably
estimated. We therefore turned to alternative approaches.

Inspired by a recent study85, here we employed theHoeffding’s test86 to
evaluate genetic dependence across phenotypes. We used the term ‘genetic
dependence’ here to distinguish it from the standard ‘genetic correlation’
measure by LDSC. Following the above study85, Hoeffding’s test of inde-
pendence is one of the methods that may serve as an alternative to LDSC
under modest sample sizes, with satisfactory control of type I errors.
Hoeffding’s test is a well-established non-parametric test based on exam-
ining the marginal and joint distributions of the two input variables (say X
andY)86,87. It is a non-parametric test based on the ranks ofX andY only.No
assumptions are made on the distributions of X and Y, other than that they
are continuous variables.

We followed a similar testing procedure as described in the previous
study85. For each reading/language trait studied in the HK sample, we first
performedLD-clumping based onGWAS results fromourHK sample, and
then extracted the same set of SNPs from Eising et al.9. Clumping was
performed by plink (v1.9) by setting the physical distance threshold as
10,000 kb, and r2 threshold as 0.2. Five traits (word reading, non-word
reading, spelling, phenome awareness, non-word repetition) were included
from Eising et al.9.

We then performed the Hoeffding’s test (using the R package
‘independence’86 and p-values as input) for the phenotypes studied in our
HK sample against the above 5 traits. We also performed PRS analysis
following the approach described above.

Correlation analysis of the effect sizes of top SNPs in HK and
external samples
As a further exploratory analysis, we also evaluated the effect size correla-
tions of the top associated SNPs (with p < 1e-5) from HK and GenLang
samples9. Both Pearson and Spearman correlations were tested. We note
that such correlations should be considered preliminary or crude measures
of the true correlation of genetic signals, andmore rigorousmethods such as
LDSC should be used to assess genetic correlation in future studies with
larger sample sizes.

Compared to standard approaches like LDSC, we note that there are
several limitations of this approach. Firstly, unlike LDSC, LD between
variants is not accounted for. Secondly, the observed effect sizes are usually
not equal to the true effect sizes88–90, and this was not accounted for in this
approach. Since existing studies mostly focus on LDSC or other similar
(advanced) methods, the performance of simpler approaches such as
directly computing correlations among significant SNPs remains to be
studied. Taken together, we consider this as an exploratory/preliminary
analysis (and as an alternative to LDSC since the latter cannot be
performed).

Ethics approval
This study has received ethics approval from The Joint Chinese University
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Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
GWAS summary statistics of other neuropsychiatric disorders/traits were
downloaded from the Social Science Genetic Association Consortium
(SSGAC) (https://www.thessgac.org/), Psychiatric Genomics Consortium

(PGC) (https://www.med.unc.edu/pgc) and The Integrative Psychiatric
Research project (iPSYCH) (https://ipsych.au.dk/downloads/). Data of the
top 10,000 associated SNPs from the GWAS on dyslexia was downloaded
fromhttps://doi.org/10.7488/ds/3465.Data ofGWASon reading/language-
related traits from Eising et al. were downloaded from https://www.ebi.ac.
uk/gwas/publications/35998220.

Summary statistics of the most significant SNPs, genes and pathways
(across all phenotypes) of the current study are available in supplementary
tables. For further summary data supporting the findings of this study,
please kindly make a request to the corresponding author. Individual-level
data are not available due to confidentiality concerns.
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