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Abstract 

In their recent synopsis, Loke and Chisholm (2022) present an overview of habitat complexity 

metrics for ecologists. They provide a review and some sound advice. However, we found 

several of their analyses and opinions misleading. This technical note provides a different 

perspective on the complexity metrics assessed.  

 



	

	

Main text 

Ecologists have long grappled with the concept of habitat complexity. Loke & Chisholm (2022, 

hereafter L&C) suggest that there is “no consensus over the definition of complexity or how to 

measure it” (Abstract). While habitat complexity includes multiple components, L&C largely 

focus on structural complexity, and on rugosity and fractal dimension in particular. Contrary to 

L&C, we argue that structural complexity metrics such as these have clear geometric definitions 

and simple, dimensionless mathematical underpinnings. Moreover, as long as ecologists are 

consistent about the method, resolution, and scales, these metrics provide a quantitative approach 

to compare habitats. 

L&C present three arguments against the use of fractal dimension in ecology: 1) natural surfaces 

are not full fractals; 2) methods for estimating fractal dimension are prone to biases; and 3) the 

biological significance of fractal dimension is unclear. First, almost everything in ecology is 

scale-dependent and ecologists are well-aware that measures of fractal dimension of natural 

surfaces change across neighboring scales (Martin-Garin et al. 2007; Plotze et al., 2005, Florindo 

et al. 2012). Rather than being a hindrance, these changes provide useful information about how 

a 3D habitat is perceived by organisms at different scales, and how ecosystem engineers build 

habitat complexity. How an ecologist chooses to summarize a collection of slope estimates when 

calculating fractal dimension will depend upon the question being addressed and the data at 

hand. 

Second, with regard to their argument about estimation biases, L&C present an example that 

conflates 2D (i.e. box-counting) and 3D (i.e. variation) methods for estimating fractal dimension 

(Fig. 5 in L&C). They create a Brownian surface of an approximate fractal dimension to test both 



	

	

methods and conclude the box-counting method is superior. Notably, the box-counting method 

was conducted by extracting the middle contour of this surface as a binary 2D bitmap, thereby 

ignoring the third dimension. This is a misleading comparison, primarily because box counting 

cannot be applied to real world 3D surfaces (L&C’s first argument, above) as results will vary 

depending on the contour selected.  Appropriate comparisons would have been provided using 

cube-counting (the 3D equivalent of box-counting, Zawada et al. 2019) or other existing 

techniques for 3D surfaces (Fukunaga et al. 2019, Florindo et al. 2012, Tricot, 1995, Reichert et 

al. 2017). Regardless of the estimation method, as long as it is consistent (method, resolution, 

and scales), comparisons in space and time are valid. 

Third, L&C question the biological relevance of fractal dimension (page 5; L&C). Yet, in their 

own review, they list several studies that found consistent correlations between fractal dimension 

and species diversity (Table S1.1; L&C). In addition, fractal dimension can be strongly 

associated with the size structure of biological communities—habitats with higher fractal 

dimension have a higher proportion of smaller-sized organisms (Morse et al. 1985; Ackerman 

and Bellwood 2003). Body size distributions are a main determinant of energy flux (Gillooly et 

al. 2001), and have fundamental implications for multiple ecosystem functions (Yvon-Durocher 

& Allen 2012). Hence, dismissing the role of habitat fractal dimension in shaping biological 

communities seems premature. 

In addition to the arguments raised against fractal dimension, L&C go on to suggest that rugosity 

is confounded with area effects and suggest that area alone explains much of any biodiversity 

patterns observed. Rugosity is indeed, per definition, driven by surface area. However, a flat 

surface of a given surface area is fundamentally different from a surface that has the same 

surface area squeezed into a smaller planar area (Torres-Pulliza et al. 2020; Fig. 1). Surfaces with 



	

	

a higher rugosity theoretically can provide more niches and thus host more species and body 

sizes. Future studies should investigate the simultaneous effects of area and rugosity, as alluded 

to by L&C (pg. 12). We present such an analysis here (Fig. 1, Supplementary Methods), which 

shows the number of coral species found in a given area of reef depends significantly on 

rugosity. 

Finally, L&C’s criticism of the geometric constraint presented in Torres-Pulliza et al. (2020) is 

flawed. Regardless of how you calculate rugosity, fractal dimension and height range, the tight 

relationship remains; even when using L&C’s own simulated data (Fig. 2, Supplementary 

Methods). We note that the raw relationship is a surface, and transformations in Eq. 1 in Torres-

Pulliza et al. (2020) act to make it a plane. Although the mathematics behind the geometric 

constraint proposed in Torres-Pulliza et al. (2020) can undoubtedly be improved, the constraint is 

consistent across large geographic scales and habitats (Asbury et al. 2023). It is important to 

recognize and understand constraints among structural complexity metrics when addressing 

ecological questions. They tell us, for example, what metric value combinations are 

geometrically impossible, and so greatly help us make sense of habitat complexity. 

Conclusion 

We advocate encouraging rather than diminishing the use of structural complexity metrics. 

Habitat complexity provides the potential for ecological patterns and processes to occur; it does 

not determine them. Structural complexity metrics have geometric underpinnings, are well-

defined mathematically, and are more reliable than most ecological metrics. Fractal dimension 

offers an excellent way to approximate how habitat surfaces fill space at different scales, and has 

important ecological implications. Finally, Torres-Pulliza et al. (2020) highlights an important 



	

	

geometric constraint that does not disappear when using different methods for calculating 

complexity metrics, and provides a useful, standardized framework for ecologists to build upon. 
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Figure 1. (A) Predicted coral species richness in relation to surface area and rugosity for reef 

plots of different sizes ranging from 4 to 100 m2 at Lizard Island, Great Barrier Reef. Fractal 

dimension is fixed at D=2.5 (see Supplementary Methods). Dotted and dashed lines show how 

species richness increases with surface area (B) more rapidly on surfaces with higher rugosity 

than (C) flatter surfaces, respectively.  

 



	

	

  

Figure 2. Data from L&C simulated fractal surfaces showing the relationship among rugosity, 

fractal dimension and height range. Rugosity was calculated in two different ways (panel 

columns, respectively): DEM rugosity, in which we use the surfaceArea function (Jenness 2004), 

and height range rugosity, in which we use surface area method from Torres-Pulliza et al. (2020). 

Fractal dimension are the actual values simulated and those estimated using L&C’s intermediate 

box count method (panel rows, respectively). Height range is the distance between the lowest 

and highest point in the defined area. r-square values were estimated by comparing fractal 

dimension data to fractal dimension calculated from the respective plane equation.  

 



	

	

Supplementary Methods 

Species area and rugosity 

Using the coral diversity dataset presented in Torres-Pulliza et al. 2020, we investigated the 

effects of surface area, rugosity, and fractal dimension. The data presented in their manuscript 

includes species richness of Scleractinia corals for 2x2m squares on a reef patch in the Northern 

Great Barrier Reef. For each square, the fractal dimension and rugosity are also provided. 

Torres-Pulliza et al. (2020) showed that both complexity metrics had an effect on richness. We 

built upon their analysis by adding surface area as a dependent variable. We increased the range 

of planar area by grouping the 2x2m patches. Specifically, we then obtained 252 patches of 4 m2 

planar area, 52 patches of 16 m2 planar area, 18 patches of 36 m2, and 7 patches of 64 m2. For all 

the grouped patches larger than 4 m2, we then approximated fractal dimension (D) and rugosity 

(R) by taking the average. We estimated surface area (SA) for all patches by multiplying planar 

area by rugosity. We also calculated the total species richness (S) for each patch. We then 

performed a Bayesian linear regression using Stan and brms (Bürkner 2017):  

log(S) ~ normal(mu, sigma), 

mu = b0 + b1 log(SA) + b2 R + b3 R² + b4 D,  

where b0 is the intercept, b1, b2, b3, and b4 are the fixed effects of log(SA), R, R², and D, 

respectively. mu the average fitted values, sigma the residual error,  S = species richness, SA = 

surface area, R = rugosity, and D = fractal dimension, mu represents the average predicted log-

transformed S, and sigma is the residual error. We used uninformative priors for all fixed effects 

and a weakly informative prior for sigma (i.e. sigma ~ student_t(3, 0, 2.5)). We verified the fit by 

checking Rhat values and the posterior predictive plot. 



	

	

We log-transformed S and SA to respect the theoretical relationship between area and species 

richness. We also allowed a quadratic relationship between species richness and rugosity 

following previous findings (Torres-Pulliza et al. 2020). We found a confident effect for all 

variables. Parameter estimates were -3.72 (95% CI: -5.18 ;-2.27), 2.36 (1.73; 3.01), -0.52 (-0.65; 

-0.39), 0.64 (0.55; 0.72), 1.11 (0.61; 1.60), and 0.57 (0.53; 0.62) for b0, b1, b2, b3, b4, and sigma, 

respectively, and the Bayesian R-squared was 0.53 (0.47; 0.57).   

In conclusion, we demonstrate that rugosity remains an important determinant for coral diversity 

when incorporating surface area in the analysis. Furthermore, we confirm the previously-found 

effect of fractal dimension on coral diversity.  

Geometric plane 

We used methods from Loke et al. (2022) to simulate surfaces with known fractal dimension and 

calculate metrics. Fractal dimension was the actual dimension simulated (Fig. 2A and B) and as 

estimated by L&C’s intermediate box counting method (Fig. 2C and D). Rugosity was estimated 

using two different methods: DEM rugosity, in which we use the surfaceArea function (Jenness 

2004); and height range rugosity, in which we use surface area method from Torres-Pulliza et al. 

(2020). Height range was calculated the same way in all comparisons: the distance between the 

lowest and highest point in the simulate surface. We apply the transformations to rugosity, height 

range, and fractal dimension as per Equation 1 in Torres-Pulliza et al. (2020), which act to make 

the manifold relationship into a plane. We fit a plane model using least squares relative to the 

fractal dimension axis (i.e., the linear regression: F ~ R + H) and present the r2 value to give an 

indication of goodness of fit.  



	

	

In conclusion, we demonstrate that regardless of the method to calculate surface area (for 

rugosity), the three metrics of structural complexity are geometrically constrained, for both 

actual and estimated fractal dimensions.  
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