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Abstract
An irredundant base of a group 𝐺 acting faithfully on
a finite set Γ is a sequence of points in Γ that produces
a strictly descending chain of pointwise stabiliser sub-
groups in𝐺, terminating at the trivial subgroup. Suppose
that 𝐺 is S𝑛 or A𝑛 acting primitively on Γ, and that the
point stabiliser is primitive in its natural action on 𝑛
points. We prove that the maximum size of an irredun-
dant base of𝐺 is𝑂

(√
𝑛
)
, and inmost cases𝑂

(
(log 𝑛)2

)
.

We also show that these bounds are best possible.
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1 INTRODUCTION

Let 𝐺 be a finite group that acts faithfully and transitively on a set Γ with point stabiliser 𝐻. A
sequence (𝛾1, … , 𝛾𝑙) of points of Γ is an irredundant base for the action of 𝐺 on Γ if

𝐺 > 𝐺𝛾1 > 𝐺𝛾1,𝛾2 > ⋯ > 𝐺𝛾1,…,𝛾𝑙 = 1. (1)

Let b(𝐺,𝐻) and I(𝐺,𝐻) denote the minimum and the maximum sizes of an irredundant base in
Γ for 𝐺 respectively.
Recently, Gill and Liebeck showed in [7] that if 𝐺 is an almost simple group of Lie type of rank

𝑟 over the field 𝔽𝑝𝑓 of characteristic 𝑝 and 𝐺 is acting primitively, then

I(𝐺,𝐻) ⩽ 177𝑟8 + Ω(𝑓),

where Ω(𝑓) is the number of prime factors of 𝑓, counted with multiplicity.
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2 RONEY-DOUGAL and WU

Suppose now that 𝐺 is the symmetric group S𝑛 or the alternating group A𝑛. An upper bound
for I(𝐺,𝐻) is the maximum length of a strictly descending chain of subgroups in 𝐺, known as the
length, 𝓁(𝐺), of 𝐺. Define 𝜀(𝐺) ∶= 𝓁(𝐺∕ soc𝐺). Cameron, Solomon, and Turull proved in [4] that

𝓁(𝐺) =
⌊
3𝑛 − 3

2

⌋
− 𝑏𝑛 + 𝜀(𝐺),

where 𝑏𝑛 denotes the number of 1s in the binary representation of 𝑛. For 𝑛 ⩾ 2, this gives

𝓁(𝐺) ⩽
3

2
𝑛 − 3 + 𝜀(𝐺). (2)

This type of upper bound is best possible for such 𝐺 in general, in that for the natural action of
S𝑛 or A𝑛 on 𝑛 points, the maximum irredundant base size is 𝑛 − 2 + 𝜀(𝐺). A recent paper [8] by
Gill and Lodà determined the exact values of I(𝐺,𝐻) when 𝐻 is maximal and intransitive in its
natural action on 𝑛 points, and in each case I(𝐺,𝐻) ⩾ 𝑛 − 3 + 𝜀(𝐺).
In this article, we present improved upper bounds for I(𝐺,𝐻) in the case where𝐻 is primitive.

Note that whenever we refer to the ‘primitivity’ of a subgroup of 𝐺, we do so with respect to the
natural action of 𝐺 on 𝑛 points. We say that a primitive subgroup 𝐻 of 𝐺 is large if there are
integers 𝑚 and 𝑘 such that 𝐻 is (S𝑚 ≀ S𝑘) ∩ 𝐺 in product action on 𝑛 = 𝑚𝑘 points or there are
integers 𝑚 and 𝑟 such that 𝐻 is S𝑚 ∩𝐺 acting on the 𝑟-subsets of a set of size 𝑚, i.e. on 𝑛 =

(𝑚
𝑟

)
points. Logarithms are taken to the base 2.

Theorem 1. Suppose 𝐺 is S𝑛 or A𝑛 (𝑛 ⩾ 7) and𝐻 ≠ A𝑛 is a primitive maximal subgroup of 𝐺.

(i) Either I(𝐺,𝐻) < (log 𝑛)2 + log 𝑛 + 1, or𝐻 is large and I(𝐺,𝐻) < 3
√
𝑛 − 1.

(ii) There are infinitely many such 𝐺 and𝐻 for which I(𝐺,𝐻) ⩾
√
𝑛.

(iii) There are infinitely many such 𝐺 and𝐻 for which

I(𝐺,𝐻) > (log 𝑛)2 ∕(2(log 3)2) + log 𝑛∕(2 log 3)

and𝐻 is not large.

We also state our upper bounds for I(𝐺,𝐻) in terms of 𝑡 ∶= |𝐺 ∶ 𝐻|. It is easy to show
that I(𝐺,𝐻) ⩽ b(𝐺,𝐻) log 𝑡. Burness, Guralnick, and Saxl showed in [3] that with finitely many
(known) exceptions, in fact b(𝐺,𝐻) = 2, in which case it follows that

I(𝐺,𝐻) ⩽ 2 log 𝑡.

Similar 𝑂(log 𝑡) upper bounds on the maximum irredundant base size were recently shown to
hold for all non-large-base primitive groups of degree 𝑡 [9, 10], raising the question of whether
such bounds are best possible in our case. Using Theorem 1, we shall obtain better bounds in
terms of 𝑡.

Corollary 2.

(i) There exist constants 𝑐1, 𝑐2 ∈ ℝ>0 such that, if 𝐺 is S𝑛 or A𝑛 (𝑛 ⩾ 7) and 𝐻 ≠ A𝑛 is a primi-
tive maximal subgroup of 𝐺 of index 𝑡, then either I(𝐺,𝐻) < 𝑐1(log log 𝑡)2, or 𝐻 is large and
I(𝐺,𝐻) < 𝑐2 (log 𝑡∕ log log 𝑡)

1∕2.
(ii) There is a constant 𝑐3 ∈ ℝ>0 and infinitely many such 𝐺 and 𝐻 for which I(𝐺,𝐻) >

𝑐3 (log 𝑡∕ log log 𝑡)
1∕2.
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IRREDUNDANT BASES FOR THE SYMMETRIC GROUP 3

(iii) There is a constant 𝑐4 ∈ ℝ>0 and infinitely many such 𝐺 and 𝐻 for which I(𝐺,𝐻) >

𝑐4(log log 𝑡)
2 and𝐻 is not large.

Remark 3. Wemay take 𝑐1 = 3.5, 𝑐2 = 6.1, 𝑐3 = 1, 𝑐4 = 0.097. If we assume 𝑛 > 100, then 𝑐1 = 1.2
and 𝑐2 = 4.4 suffice.

A sequence  of points in Γ is independent if no proper subsequence ′ satisfies 𝐺(′) = 𝐺().
The maximum size of an independent sequence for the action of 𝐺 on Γ is denoted H(𝐺,𝐻). It
can be shown that b(𝐺,𝐻) ⩽ H(𝐺,𝐻) ⩽ I(𝐺,𝐻). Another closely related property of the action is
the relational complexity, denoted RC(𝐺,𝐻), a concept which originally arose in model theory.
Cherlin, Martin, and Saracino defined RC(𝐺,𝐻) in [5] under the name ‘arity’ and showed that
RC(𝐺,𝐻) ⩽ H(𝐺,𝐻) + 1.

Corollary 4. Suppose𝐺 is S𝑛 orA𝑛 (𝑛 ⩾ 7) and𝐻 ≠ A𝑛 is a primitivemaximal subgroup of𝐺. Then
either RC(𝐺,𝐻) < (log 𝑛)2 + log 𝑛 + 2, or𝐻 is large and RC(𝐺,𝐻) < 3

√
𝑛.

The maximal subgroups of the symmetric and alternating groups were classified in [1, 11]. In
order to prove statements (i) and (ii) of Theorem 1, we examine two families ofmaximal subgroups
in more detail and determine lower bounds on the maximum irredundant base size, given in the
next two results.

Theorem5. Let𝑝 be an odd prime number and 𝑑 a positive integer such that𝑝𝑑 ⩾ 7 and let 𝑛 = 𝑝𝑑.
Suppose 𝐺 is S𝑛 or A𝑛 and𝐻 is AGL𝑑(𝑝) ∩ 𝐺. If 𝑑 = 1, then

I(𝐺,𝐻) = 1 + Ω(𝑝 − 1) + 𝜀(𝐺).

If 𝑑 ⩾ 2 and 𝑝 = 3, 5, then

𝑑(𝑑 + 1)

2
+ 𝑑 − 1 + 𝜀(𝐺) ⩽ I(𝐺,𝐻) <

𝑑(𝑑 + 1)

2
(1 + log 𝑝) + 𝜀(𝐺).

If 𝑑 ⩾ 2 and 𝑝 ⩾ 7, then

𝑑(𝑑 + 1)

2
+ 𝑑Ω(𝑝 − 1) − 1 + 𝜀(𝐺) ⩽ I(𝐺,𝐻) <

𝑑(𝑑 + 1)

2
(1 + log 𝑝) + 𝜀(𝐺).

Theorem 6. Let 𝑚 ⩾ 5 and 𝑘 ⩾ 2 be integers and let 𝑛 = 𝑚𝑘 . Suppose 𝐺 is S𝑛 or A𝑛 and 𝐻 is
(S𝑚 ≀ S𝑘) ∩ 𝐺 in product action. Then

1 + (𝑚 − 1)(𝑘 − 1) + 𝜀(𝐺) ⩽ I(𝐺,𝐻) ⩽
3

2
𝑚𝑘 −

1

2
𝑘 − 1.

After laying out some preliminary results in Section 2, we shall prove Theorems 5 and 6 in
Sections 3 and 4, respectively, before proving Theorem 1 and Corollary 2 in Section 5.

2 THEMAXIMUM IRREDUNDANT BASE SIZE

In this section, we collect two general lemmas. Let 𝐺 be a finite group acting faithfully and tran-
sitively on a set Γwith point stabiliser𝐻. If (𝛾1, … , 𝛾𝑙) is an irredundant base of 𝐺, then it satisfies
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4 RONEY-DOUGAL and WU

(1). The tail of the chain in (1) is a strictly descending chain of subgroups in𝐺𝛾1 , which is conjugate
to𝐻. Therefore,

I(𝐺,𝐻) ⩽ 𝓁(𝐻) + 1 ⩽ Ω(|𝐻|) + 1.
To obtain a lower bound for I(𝐺,𝐻), one approach is to look for a large explicit irredundant
base. The following lemma says it suffices to find a long chain of subgroups in 𝐺 such that every
subgroup in the chain is a pointwise stabiliser of some subset in Γ.

Lemma 2.1. Let 𝑙 be the largest natural number such that there are subsets Δ0, Δ1, … , Δ𝑙 ⊆ Γ
satisfying

𝐺(Δ0) > 𝐺(Δ1) > ⋯ > 𝐺(Δ𝑙).

Then I(𝐺,𝐻) = 𝑙.

Proof. Since 𝑙 is maximal, we may assume that Δ0 = ∅ and Δ𝑙 = Γ and that Δ𝑖−1 ⊆ Δ𝑖 , replac-
ing Δ𝑖 with Δ1 ∪⋯ ∪ Δ𝑖 if necessary. For each 𝑖 ∈ {1, … , 𝑙}, write Δ𝑖 ⧵ Δ𝑖−1 = {𝛾𝑖,1, … , 𝛾𝑖,𝑚𝑖 }. Then
(𝛾1,1, … , 𝛾1,𝑚1 , 𝛾2,1, … , 𝛾2,𝑚2 , … , 𝛾𝑙,1, … , 𝛾𝑙,𝑚𝑙 ) is a base for𝐺 and every subgroup𝐺(Δ𝑖) appears in the
corresponding chain of point stabilisers. Therefore, by removing all redundant points, we obtain
an irredundant base of size at least 𝑙, so I(𝐺,𝐻) ⩾ 𝑙.
On the other hand, given any irredundant base (𝛾1, … , 𝛾𝑚) of 𝐺, we can take Δ𝑖 ∶= {𝛾1, … , 𝛾𝑖}.

Therefore, I(𝐺,𝐻) = 𝑙. □

Oncewe have an upper or lower bound for I(𝐺,𝐻), we can easily obtain a corresponding bound
for the maximum irredundant base size of various subgroups of 𝐺.

Lemma 2.2. Suppose𝑀 is a subgroup of S𝑛 with𝑀 ≰ A𝑛. Then

I(S𝑛,𝑀) − 1 ⩽ I(A𝑛,𝑀 ∩ A𝑛) ⩽ I(S𝑛,𝑀).

Proof. This follows immediately from [9, Lemma 2.8; 10, Lemma 2.3]. □

3 THE AFFINE CASE

In this section, we prove Theorem 5. The upper bounds will follow easily from examinations of
group orders. Therefore, we focus most of our efforts on the construction of an irredundant base,
leading to the lower bounds.
Let 𝑝 be a prime number and 𝑑 be an integer such that 𝑝𝑑 ⩾ 7 and let 𝑉 be a 𝑑-dimensional

vector space over the field 𝔽𝑝. Let 𝐺 be Sym(𝑉) or Alt(𝑉). Consider the affine group AGL(𝑉), the
group of all invertible affine transformations of 𝑉, and let𝐻 ∶= AGL(𝑉) ∩ 𝐺.

Theorem 3.1 [11]. The subgroup𝐻 is maximal in 𝐺 (with 𝑝𝑑 ⩾ 7) if and only if one of the following
holds:

(i) 𝑑 ⩾ 2 and 𝑝 ⩾ 3;
(ii) 𝐺 = Sym(𝑉), 𝑑 = 1, and 𝑝 ⩾ 7;
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IRREDUNDANT BASES FOR THE SYMMETRIC GROUP 5

(iii) 𝐺 = Alt(𝑉), 𝑑 ⩾ 3, and 𝑝 = 2;
(iv) 𝐺 = Alt(𝑉), 𝑑 = 1, and 𝑝 = 13, 19 or 𝑝 ⩾ 29.

In this section, we only consider the case where 𝑝 is odd. Owing to Lemma 2.2, we shall assume
𝐺 = Sym(𝑉) and 𝐻 = AGL(𝑉) for now. In the light of Lemma 2.1, we introduce a subgroup 𝑇 of
diagonal matrices and look for groups containing 𝑇 that are intersections of 𝐺-conjugates of 𝐻
(Subsection 3.1) and subgroups of 𝑇 that are such intersections (Subsection 3.2), before finally
proving Theorem 5 (Subsection 3.3).

3.1 Subspace stabilisers and the diagonal subgroup

Let 𝑇 be the subgroup of all diagonal matrices in GL(𝑉)with respect to a basis 𝐛1, … , 𝐛𝑑. Let 𝜇 be
a primitive element of 𝔽𝑝. We now find a strictly descending chain of groups from Sym(𝑉) to 𝑇
consisting of intersections of 𝐺-conjugates of𝐻. We treat the cases 𝑑 = 1 and 𝑑 ⩾ 2 separately.

Lemma 3.2. Suppose 𝑑 = 1 and 𝐺 = Sym(𝑉). Then there exists 𝑥 ∈ 𝐺 such that𝐻 ∩𝐻𝑥 = 𝑇.

Proof. Since 𝑉 is one-dimensional, GL(𝑉) = 𝑇 is generated by the scalar multiplication𝑚𝜇 by 𝜇.
Let 𝐮 ∈ 𝑉 ⧵ {𝟎} and let 𝑡𝐮 be the translation by 𝐮. Then𝐻 = ⟨𝑡𝐮⟩⋊ ⟨

𝑚𝜇
⟩
is the normaliser of ⟨𝑡𝐮⟩

in 𝐺 and ⟨𝑡𝐮⟩ is a characteristic subgroup of𝐻. Hence𝐻 is self-normalising in 𝐺. Define (in cycle
notation)

𝑥 ∶= (𝐮 𝜇−1𝐮)(𝜇𝐮 𝜇−2𝐮)⋯ (𝜇
𝑝−3

2 𝐮 𝜇−
𝑝−1

2 𝐮) ∈ 𝐺.

Then 𝑥 ∉ 𝐻 and so 𝑥 does not normalise 𝐻. But 𝑥 normalises
⟨
𝑚𝜇

⟩
, as𝑚𝜇𝑥 = 𝑚𝜇−1. Therefore,

𝑇 =
⟨
𝑚𝜇

⟩
⩽ 𝐻 ∩ 𝐻𝑥 < 𝐻.

Since the index |𝐻 ∶ 𝑇| = 𝑝 is prime, 𝐻 ∩𝐻𝑥 = 𝑇. □

The following two lemmas concern the case 𝑑 ⩾ 2. An affine subspace of 𝑉 is a subset of the
form 𝐯 +𝑊, where 𝐯 ∈ 𝑉 and𝑊 is a vector subspace of 𝑉. The (affine) dimension of 𝐯 +𝑊 is
the linear dimension of𝑊. For an affine transformation ℎ = g𝑡𝐮 with g ∈ GL(𝑉) and 𝑡𝐮 denoting
the translation by some 𝐮 ∈ 𝑉, if f ix(ℎ) is non-empty, then f ix(ℎ) is an affine subspace of𝑉, since
f ix(ℎ) = 𝐯 + ker(g − id𝑉) for any 𝐯 ∈ f ix(ℎ).

Lemma 3.3. Suppose 𝑑 ⩾ 2, 𝑝 ⩾ 3, and 𝐺 = Sym(𝑉). Let𝑊 be a proper, non-trivial subspace of 𝑉
and let 𝐾 < GL(𝑉) be the setwise stabiliser of𝑊. Then there exists 𝑥 ∈ 𝐺 such that𝐻 ∩𝐻𝑥 = 𝐾.

Proof. Let 𝜆 ∈ 𝔽×𝑝 ⧵ {1} and define 𝑥 ∈ Sym(𝑉) by setting

𝐯𝑥 ∶=

{
𝜆𝐯, if 𝐯 ∈ 𝑊,
𝐯, otherwise.

We first show that 𝐾 = C𝐻(𝑥) and then that𝐻 ∩𝐻𝑥 = C𝐻(𝑥).
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6 RONEY-DOUGAL and WU

Firstly, let g ∈ 𝐾. For all 𝐯 ∈ 𝑊, we calculate that 𝐯g𝑥 = (𝜆−1𝐯)g𝑥 = (𝜆−1𝐯g )𝑥 = 𝐯g . For all
𝐯 ∈ 𝑉 ⧵𝑊, we see that 𝐯g𝑥 = 𝐯g𝑥 = 𝐯g . Hence g𝑥 = g , and so 𝐾 ⩽ C𝐻(𝑥). Now, let ℎ be an ele-
ment of C𝐻(𝑥) and write ℎ = g𝑡𝐮 with g ∈ GL(𝑉) and 𝐮 ∈ 𝑉, so that ℎ−1 = 𝑡−𝐮g−1. Suppose for
a contradiction that there exists 𝐯 ∈ 𝑊 ⧵ {𝟎} with 𝜆𝐯g + 𝐮 ∉ 𝑊. Then

𝐯 = 𝐯𝑥ℎ𝑥
−1ℎ−1 = (𝜆𝐯)ℎ𝑥

−1ℎ−1 = (𝜆𝐯g + 𝐮)𝑥
−1ℎ−1 = (𝜆𝐯g + 𝐮)ℎ

−1
= 𝜆𝐯.

Since 𝜆 ≠ 1, this is a contradiction and so for all 𝐯 ∈ 𝑊,

𝐯 = (𝜆𝐯g + 𝐮)𝑥
−1ℎ−1 = (𝐯g + 𝜆−1𝐮)ℎ

−1
= 𝐯 + (𝜆−1 − 1)𝐮g−1 .

Hence 𝐮 = 𝟎 and 𝐯g ∈ 𝑊. Therefore, ℎ = g𝑡𝟎 stabilises𝑊, whence ℎ ∈ 𝐾. Thus, C𝐻(𝑥) = 𝐾.
Since C𝐻(𝑥) ⩽ 𝐻 ∩ 𝐻𝑥, it remains to show that 𝐻 ∩𝐻𝑥 ⩽ C𝐻(𝑥). Suppose otherwise. Then

there is some ℎ ∈ 𝐻 ∩ 𝐻𝑥 such that ℎ′ ∶= 𝑥ℎ𝑥−1ℎ−1 ≠ 1. The set f ix(ℎ′) is either empty or an
affine subspace of dimension at most 𝑑 − 1. Moreover, for any 𝐯 ∈ 𝑉, if 𝐯 ∉ (𝑊 ⧵ {𝟎}) ∪ 𝑊ℎ−1 ,
then 𝑥 fixes both 𝐯 and 𝐯ℎ, and 𝐯ℎ′ = 𝐯ℎ𝑥−1ℎ−1 = 𝐯ℎℎ−1 = 𝐯, when 𝐯 ∈ f ix(ℎ′). Therefore,

𝑉 = (𝑊 ⧵ {𝟎}) ∪𝑊ℎ−1 ∪ f ix(ℎ′).

Then

𝑝𝑑 = |𝑉| ⩽ ||𝑊 ⧵ {𝟎}|| + |||𝑊ℎ−1 ||| + ||f ix(ℎ′)|| ⩽ (𝑝𝑑−1 − 1) + 𝑝𝑑−1 + 𝑝𝑑−1 = 3𝑝𝑑−1 − 1.
This is a contradiction as 𝑝 ⩾ 3, and so𝐻 ∩𝐻𝑥 = C𝐻(𝑥) = 𝐾. □

We now construct a long chain of subgroups of 𝐺 by intersecting subspace stabilisers.

Lemma 3.4. Suppose 𝑑 ⩾ 2 and𝐺 = Sym(𝑉). Let 𝑙1 ∶= 𝑑(𝑑 + 1)∕2 − 1. Then there exist stabilisers
𝐾1,… , 𝐾𝑙1 in GL(𝑉) of linear subspaces such that

𝐺 > 𝐻 > 𝐾1 > 𝐾1 ∩ 𝐾2 >⋯ >

𝑙1⋂
𝑖=1

𝐾𝑖 = 𝑇. (3)

Proof. Let  ∶= {(𝑖, 𝑗) ∣ 𝑖, 𝑗 ∈ {1, … , 𝑑}, 𝑖 ⩽ 𝑗} ⧵ {(1, 𝑑)} be ordered lexicographically. Note that|| = 𝑙1. For each (𝑖, 𝑗) ∈ , let 𝐾𝑖,𝑗 be the stabiliser in GL(𝑉) of ⟨𝐛𝑖, 𝐛𝑖+1, … , 𝐛𝑗⟩ and define
𝑖,𝑗 ∶= {(𝑘, 𝑙) ∈  ∣ (𝑘, 𝑙) ⩽ (𝑖, 𝑗)}. Since 𝑇 ⩽ 𝐾𝑖,𝑗 for all 𝑖, 𝑗, we see that

𝑇 ⩽
⋂
(𝑖,𝑗)∈

𝐾𝑖,𝑗 ⩽

𝑑⋂
𝑖=1

𝐾𝑖,𝑖 = 𝑇.

Hence equality holds, proving the final equality in (3).
We now show that, for all (𝑖, 𝑗) ∈ ,⋂

(𝑘,𝑙)∈(𝑖,𝑗)⧵{(𝑖,𝑗)}

𝐾𝑘,𝑙 >
⋂

(𝑘,𝑙)∈(𝑖,𝑗)

𝐾𝑘,𝑙.
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IRREDUNDANT BASES FOR THE SYMMETRIC GROUP 7

For 1 ⩽ 𝑗 < 𝑑, let g1,𝑗 be the linear map that sends 𝐛𝑗 to 𝐛𝑗 + 𝐛𝑗+1 and fixes 𝐛𝑘 for 𝑘 ≠ 𝑗. Then g1,𝑗
stabilises ⟨𝐛1⟩ , … ,⟨𝐛𝑗−1⟩ and any sum of these subspaces, but not

⟨
𝐛1, … , 𝐛𝑗

⟩
. Hence g1,𝑗 ∈ 𝐾1,𝑙

for all 𝑙 < 𝑗 but g1,𝑗 ∉ 𝐾1,𝑗 . For 2 ⩽ 𝑖 ⩽ 𝑗 ⩽ 𝑑, let g𝑖,𝑗 be the linear map that sends 𝐛𝑗 to 𝐛𝑖−1 + 𝐛𝑗
and fixes 𝐛𝑘 for 𝑘 ≠ 𝑗. Then g𝑖,𝑗 stabilises ⟨𝐛1⟩ , … ,⟨𝐛𝑗−1⟩ ,⟨𝐛𝑗, 𝐛𝑖−1⟩ ,⟨𝐛𝑗+1⟩ , … , ⟨𝐛𝑑⟩ and any
sum of these subspaces, but not

⟨
𝐛𝑖, … , 𝐛𝑗

⟩
. Hence g𝑖,𝑗 ∈ 𝐾𝑘,𝑙 for all (𝑘, 𝑙) < (𝑖, 𝑗) but g𝑖,𝑗 ∉ 𝐾𝑖,𝑗 .

Therefore, the 𝐾𝑖,𝑗s, ordered lexicographically by the subscripts, are as required. □

We have now found the initial segment of an irredundant base of Sym(𝑉). The next subsection
extends this to a base.

3.2 Subgroups of the diagonal subgroup

We now show that, with certain constraints on 𝑝, every subgroup of 𝑇 is an intersection of 𝐺-
conjugates of 𝑇, and hence, by Lemma 3.4, an intersection of 𝐺-conjugates of 𝐻. We first prove a
useful result about subgroups of the symmetric group generated by a 𝑘-cycle.

Lemma 3.5. Let 𝑠 ∈ S𝑚 be a cycle of length 𝑘 < 𝑚 and let 𝑎 be a divisor of 𝑘. Suppose that (𝑘, 𝑎) ≠
(4, 2). Then there exists 𝑥 ∈ S𝑚 such that

⟨𝑠⟩ ∩ ⟨𝑠⟩𝑥 = ⟨𝑠𝑎⟩.
Proof. Without loss of generality, assume 𝑠 = (1 2 ⋯ 𝑘) and 𝑎 > 1. If 𝑎 = 𝑘, then take 𝑥 ∶= (1 𝑚),
so that ⟨𝑠⟩ ∩ ⟨𝑠⟩𝑥 = 1, as 𝑚 ∉ supp(𝑠𝑖) and 𝑚 ∈ supp((𝑠𝑖)𝑥) for all 1 ⩽ 𝑖 < 𝑘. Hence we may
assume 𝑎 < 𝑘 and 𝑘 ≠ 4. We find that

𝑠𝑎 = (1 𝑎 + 1 ⋯ 𝑘 − 𝑎 + 1)(2 𝑎 + 2 ⋯ 𝑘 − 𝑎 + 2)⋯ (𝑎 2𝑎 ⋯ 𝑘).

Let

𝑥 ∶= (1 2 ⋯ 𝑎)(𝑎 + 1 𝑎 + 2 ⋯ 2𝑎)⋯ (𝑘 − 𝑎 + 1 𝑘 − 𝑎 + 2 ⋯ 𝑘).

Then (𝑠𝑎)𝑥 = 𝑠𝑎. Hence ⟨𝑠𝑎⟩ = ⟨𝑠𝑎⟩𝑥 ⩽ ⟨𝑠⟩ ∩ ⟨𝑠⟩𝑥.
To prove that equality holds, suppose ⟨𝑠𝑎⟩ < ⟨𝑠⟩ ∩ ⟨𝑠⟩𝑥. Then there exists 𝑏 ∈ {1, … , 𝑎 − 1} such

that (𝑠𝑏)𝑥 = 𝑠𝑐 for some 𝑐 not divisible by 𝑎. Computing

1𝑠
𝑐
= 1𝑥

−1𝑠𝑏𝑥 = 𝑎𝑠
𝑏𝑥 = (𝑎 + 𝑏)𝑥 = 𝑎 + 𝑏 + 1 = 1𝑠

𝑎+𝑏
.

Therefore,

2𝑠
𝑐
= 2𝑠

𝑎+𝑏
=

{
𝑎 + 𝑏 + 2, if 𝑏 ≠ 𝑎 − 1 or 𝑘 > 2𝑎,
1, if 𝑏 = 𝑎 − 1 and 𝑘 = 2𝑎.

(4)

On the other hand,

2𝑥
−1𝑠𝑏𝑥 = 1𝑠

𝑏𝑥 = (𝑏 + 1)𝑥 =

{
𝑏 + 2, if 𝑏 ≠ 𝑎 − 1,

1, if 𝑏 = 𝑎 − 1.
(5)
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8 RONEY-DOUGAL and WU

Comparing (4) and (5), we see that 𝑏 = 𝑎 − 1 and 𝑘 = 2𝑎. In particular, 𝑎 ≠ 2 by the assumption
that 𝑘 ≠ 4. It follows that 𝑎𝑠𝑐 = 𝑎𝑠𝑎+𝑏 = 𝑎 − 1, whereas

𝑎𝑥
−1𝑠𝑏𝑥 = (𝑎 − 1)𝑠

𝑏𝑥 = (2𝑎 − 2)𝑥 = 2𝑎 − 1,

a contradiction. The result follows. □

Recall from Subsection 3.1 the subgroup 𝑇 ofGL(𝑉) and the primitive element 𝜇 of 𝔽𝑝. For each
𝑖 ∈ {1, … , 𝑑}, let g𝑖 ∈ GL(𝑉) send 𝐛𝑖 to 𝜇𝐛𝑖 and fix 𝐛𝑗 for 𝑗 ≠ 𝑖. Then 𝑇 = ⟨g1, … , g𝑑⟩.
Lemma 3.6. Suppose 𝑑 ⩾ 1, 𝑝 ⩾ 3, and 𝐺 = Sym(𝑉). Let 𝑖 ∈ {1, … , 𝑑} and let 𝑎 be a divisor of
(𝑝 − 1) with (𝑝, 𝑎) ≠ (5, 2). Then there exists 𝑥 ∈ 𝐺 such that

𝑇 ∩ 𝑇𝑥 =
⟨
g1, … , g𝑖−1, g𝑖

𝑎, g𝑖+1, … , g𝑑
⟩
.

Proof. Up to a change of basis, 𝑖 = 1. The map g1 ∈ GL(𝑉) < 𝐺 has a cycle 𝑠 =

(𝐛1 𝜇𝐛1 𝜇
2𝐛1 ⋯ 𝜇𝑝−2𝐛1). Treating 𝑠 as a permutation on the subspace ⟨𝐛1⟩, we see that, for all

𝐮 ∈ ⟨𝐛1⟩ and𝐰 ∈ ⟨𝐛2, … , 𝐛𝑑⟩ (if 𝑑 = 1, then consider𝐰 = 𝟎),

(𝐮 + 𝐰)g1 = 𝐮g1 + 𝐰 = 𝐮𝑠 + 𝐰.

By Lemma 3.5, since 𝑠 is a (𝑝 − 1)-cycle and (𝑝 − 1, 𝑎) ≠ (4, 2), there exists 𝑥 ∈ Sym(⟨𝐛1⟩) such
that ⟨𝑠⟩ ∩ ⟨𝑠⟩𝑥 = ⟨𝑠𝑎⟩. Define �̃� ∈ 𝐺 by setting

(𝐮 + 𝐰)�̃� ∶= 𝐮𝑥 +𝐰

for all 𝐮 ∈ ⟨𝐛1⟩ and 𝐰 ∈ ⟨𝐛2, … , 𝐛𝑑⟩. Let g be any element of 𝑇 and write g = g𝑐
1
g ′ with 𝑐 ∈

{1, … , 𝑝 − 1} and g ′ ∈ ⟨g2, … , g𝑑⟩. Then, with 𝐮 and𝐰 as above,

(𝐮 + 𝐰)g = 𝐮g𝑐
1 + 𝐰g′ = 𝐮𝑠

𝑐
+ 𝐰g′

and similarly

(𝐮 + 𝐰)g
�̃�
= 𝐮(𝑠

𝑐)𝑥 + 𝐰g′ .

Hence g �̃� ∈ 𝑇 if and only if (𝑠𝑐)𝑥 ∈ ⟨𝑠⟩, which holds if and only if 𝑎 ∣ 𝑐. Therefore, 𝑇 ∩ 𝑇�̃� =⟨
g𝑎
1
, g2, … , g𝑑

⟩
, as required. □

Lemma 3.7. Suppose 𝑑 ⩾ 1, 𝑝 ⩾ 3, and 𝐺 = Sym(𝑉). Let 𝑙2 ∶= 𝑑 if 𝑝 = 3, 5, and 𝑙2 ∶= 𝑑Ω(𝑝 − 1)
otherwise. Then there are subsets 𝑌1,… , 𝑌𝑙2 ⊆ 𝐺 such that

𝑇 >
⋂
𝑥∈𝑌1

𝑇𝑥 >
⋂
𝑥∈𝑌2

𝑇𝑥 >⋯ >
⋂
𝑥∈𝑌𝑙2

𝑇𝑥 = 1.

Proof. First, suppose 𝑝 = 3 or 𝑝 = 5. For all 𝑖 ∈ {1, … , 𝑑}, by Lemma 3.6, there exists 𝑦𝑖 ∈ 𝐺 such
that

𝑇 ∩ 𝑇𝑦𝑖 =
⟨
g1, … , g𝑖−1, g𝑖+1, … , g𝑑

⟩
;
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IRREDUNDANT BASES FOR THE SYMMETRIC GROUP 9

setting 𝑌𝑖 ∶= {𝑦1, … , 𝑦𝑖} gives ⋂
𝑥∈𝑌𝑖

𝑇𝑥 =
⟨
g𝑖+1, … , g𝑑

⟩
.

Therefore, 𝑌1,… , 𝑌𝑑 are as required.
Now, suppose 𝑝 ⩾ 7. Let 𝑎1, … , 𝑎Ω(𝑝−1) be a sequence of factors of (𝑝 − 1) such that 𝑎𝑖 ∣ 𝑎𝑖+1 for

all 𝑖. Let  ∶= {1, … , 𝑑} × {1, … ,Ω(𝑝 − 1)} be ordered lexicographically. For each pair (𝑖, 𝑗) ∈ , by
Lemma 3.6, there exists 𝑦𝑖,𝑗 ∈ 𝐺 such that

𝑇 ∩ 𝑇𝑦𝑖,𝑗 =
⟨
g1, … , g𝑖−1, g𝑖

𝑎𝑗 , g𝑖+1, … , g𝑑
⟩
;

setting 𝑌𝑖,𝑗 ∶= {𝑦𝑖′,𝑗′ ∣ (𝑖′, 𝑗′) ∈ , (𝑖′, 𝑗′) < (𝑖, 𝑗)} gives⋂
𝑥∈𝑌𝑖,𝑗

𝑇𝑥 =
⟨
g𝑖
𝑎𝑗 , g𝑖+1, … , g𝑑

⟩
.

Therefore, the 𝑌𝑖,𝑗s, ordered lexicographically by the subscripts, are as required. □

This completes our preparations for the proof of Theorem 5.

3.3 Proof of Theorem 5

Recall the assumption that𝐺 is S𝑝𝑑 orA𝑝𝑑 (𝑝 is an odd prime and 𝑝𝑑 ⩾ 7), which we identify here
with Sym(𝑉) or Alt(𝑉), and𝐻 = AGL𝑑(𝑝) ∩ 𝐺, which we identify with AGL(𝑉) ∩ 𝐺.

Proof of Theorem 5. First, suppose 𝑑 ⩾ 2, 𝑝 ⩾ 3, and 𝐺 = Sym(𝑉). Let 𝐾1,… , 𝐾𝑙1 be as in
Lemma 3.4. For each 𝑖 ∈ {1, … , 𝑙1}, by Lemma 3.3, there exists 𝑥𝑖 ∈ 𝐺 such that 𝐻 ∩𝐻𝑥𝑖 = 𝐾𝑖 .
Define 𝑋𝑖 ∶= {1} ∪ {𝑥𝑗 ∣ 1 ⩽ 𝑗 < 𝑖} ⊆ 𝐺 for all such 𝑖. Then by Lemma 3.4,

𝐺 > 𝐻 =
⋂
𝑥∈𝑋1

𝐻𝑥 >
⋂
𝑥∈𝑋2

𝐻𝑥 > ⋯ >
⋂

𝑥∈𝑋𝑙1+1

𝐻𝑥 = 𝑇. (6)

Let 𝑌1,… , 𝑌𝑙2 ⊆ 𝐺 be as in Lemma 3.7. For each 𝑖 ∈ {1, … , 𝑙2}, let 𝑍𝑖 ∶= {𝑥𝑦 ∣ 𝑥 ∈ 𝑋𝑙1+1, 𝑦 ∈ 𝑌𝑖},
so that

⋂
𝑧∈𝑍𝑖

𝐻𝑧 =
⋂
𝑦∈𝑌𝑖

⎛⎜⎜⎝
⋂

𝑥∈𝑋𝑙1+1

𝐻𝑥
⎞⎟⎟⎠
𝑦

=
⋂
𝑦∈𝑌𝑖

𝑇𝑦.

Then Lemma 3.7 gives

𝑇 >
⋂
𝑧∈𝑍1

𝐻𝑥 >
⋂
𝑧∈𝑍2

𝐻𝑥 > ⋯ >
⋂
𝑧∈𝑍𝑙2

𝐻𝑥 = 1. (7)

Concatenating the chains (6) and (7), we obtain a chain of length 𝑙1 + 𝑙2 + 1.
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10 RONEY-DOUGAL and WU

Now, suppose 𝑑 ⩾ 2, 𝑝 ⩾ 3, and𝐺 is Sym(𝑉) orAlt(𝑉). By Lemmas 2.1 and 2.2, sinceAGL(𝑉) ≰
Alt(𝑉), the lower bounds in the theorem hold. For the upper bound on I(𝐺,𝐻), simply compute

I(𝐺,𝐻) ⩽ 1 + Ω(|𝐻|) ⩽ Ω(𝑝𝑑(𝑝𝑑 − 1)(𝑝𝑑 − 𝑝)⋯ (𝑝𝑑 − 𝑝𝑑−1)) + 𝜀(𝐺)

<
𝑑(𝑑 + 1)

2
+ log((𝑝𝑑 − 1)(𝑝𝑑−1 − 1)⋯ (𝑝 − 1)) + 𝜀(𝐺)

<
𝑑(𝑑 + 1)

2
(1 + log 𝑝) + 𝜀(𝐺).

Finally, suppose 𝑑 = 1 and 𝑝 ⩾ 7. Using Lemma 3.7, we obtain the chain (7) again. Concate-
nating the chain 𝐺 > 𝐻 > 𝑇 with (7) and applying Lemmas 2.1 and 2.2, we see that I(𝐺,𝐻) ⩾
1 + Ω(𝑝 − 1) + 𝜀(𝐺). In fact, equality holds, as I(𝐺,𝐻) ⩽ 1 + Ω(|𝐻|) = 1 + Ω(𝑝 − 1) + 𝜀(𝐺). □

4 THE PRODUCT ACTION CASE

In this section, we prove Theorem 6. Once again, most work goes into the explicit construction of
an irredundant base in order to prove the lower bounds, while the upper bounds will be obtained
easily from the length of S𝑛.
Throughout this section, let 𝑚 ⩾ 5 and 𝑘 ⩾ 2 be integers, and let 𝐺 be S𝑚𝑘 or A𝑚𝑘 . Let 𝑀 ∶=

S𝑚 ≀ S𝑘 act in product action on Δ ∶= {(𝑎1, … , 𝑎𝑘) ∣ 𝑎1, … , 𝑎𝑘 ∈ {1, … ,𝑚}} and identify 𝑀 with a
subgroup of S𝑚𝑘 .

Theorem 4.1 [11]. The group𝑀 ∩ 𝐺 is a maximal subgroup of 𝐺 if and only if one of the following
holds:

(i) 𝑚 ≡ 1 (mod 2);
(ii) 𝐺 = S𝑚𝑘 ,𝑚 ≡ 2 (mod 4), and 𝑘 = 2;
(iii) 𝐺 = A𝑚𝑘 ,𝑚 ≡ 0 (mod 4), and 𝑘 = 2;
(iv) 𝐺 = A𝑚𝑘 ,𝑚 ≡ 0 (mod 2), and 𝑘 ⩾ 3.

The strategy to proving the lower bound in Theorem 6 is once again to find suitable two-point
stabilisers from which a long chain of subgroups can be built.
For each pair of points 𝛼, 𝛽 ∈ Δ, let 𝑑(𝛼, 𝛽) denote the Hamming distance between 𝛼 and 𝛽,

namely the number of coordinates that differ.

Lemma 4.2. Let 𝑥 ∈ 𝑀. Then for all 𝛼, 𝛽 ∈ Δ,

𝑑(𝛼𝑥, 𝛽𝑥) = 𝑑(𝛼, 𝛽).

Proof. Write 𝑥 as (𝑣1, … , 𝑣𝑘)𝑤 with 𝑣1, … , 𝑣𝑘 ∈ S𝑚 and 𝑤 ∈ S𝑘. Let 𝛼 = (𝑎1, … , 𝑎𝑘) and 𝛽 =
(𝑏1, … , 𝑏𝑘). Write 𝛼𝑥 = (𝑎′

1
, … , 𝑎′

𝑘
) and 𝛽𝑥 = (𝑏′

1
, … , 𝑏′

𝑘
). Then for each 𝑖 ∈ {1, … , 𝑘},

𝑎𝑖 = 𝑏𝑖 ⟺ 𝑎𝑖
𝑣𝑖 = 𝑏𝑖

𝑣𝑖 ⟺ 𝑎′𝑖𝑤 = 𝑏
′
𝑖𝑤 .

Since 𝑤 is a permutation of {1, … , 𝑘}, the result holds. □
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IRREDUNDANT BASES FOR THE SYMMETRIC GROUP 11

Define 𝑢 ∈ S𝑚 to be (1 2 ⋯ 𝑚) if𝑚 is odd, and (1 2 ⋯ 𝑚 − 1) if𝑚 is even, so that 𝑢 is an even
permutation. Let 𝑈 ∶= ⟨𝑢⟩ ⩽ S𝑚 and note that CS𝑚(𝑢) = 𝑈. The group 𝑈 will play a central role
in the next lemma.

Lemma 4.3. Let 𝑖 ∈ {2, … , 𝑘} and 𝑟 ∈ {1, … ,𝑚}. Let 𝑇𝑟 be the stabiliser of 𝑟 in S𝑚 and let𝑊𝑖 be the
pointwise stabiliser of 1 and 𝑖 in S𝑘 . Then there exists 𝑥𝑖,𝑟 ∈ A𝑚𝑘 such that

𝑀 ∩𝑀𝑥𝑖,𝑟 =
(
𝑈 × (S𝑚)

𝑖−2 × 𝑇𝑟 × (S𝑚)
𝑘−𝑖

)
⋊𝑊𝑖.

Proof. Without loss of generality, assume 𝑖 = 2. Define 𝑥 = 𝑥2,𝑟 ∈ Sym(Δ) by

(𝑎1, 𝑎2, … , 𝑎𝑘)
𝑥 =

{
(𝑎1

𝑢, 𝑎2, … , 𝑎𝑘) if 𝑎2 = 𝑟,
(𝑎1, 𝑎2, … , 𝑎𝑘) otherwise.

The permutation 𝑥 is a product of𝑚𝑘−2 disjoint |𝑢|-cycles and is therefore even.
Let 𝐾 ∶=

(
𝑈 × 𝑇𝑟 × (S𝑚)

𝑘−2
)
⋊𝑊2. We show first that 𝐾 ⩽ 𝑀 ∩𝑀𝑥. Let ℎ = (𝑣1, … , 𝑣𝑚)𝑤−1

be an element of 𝐾. Then 𝑣1 ∈ 𝑈, 𝑣2 fixes 𝑟, and 𝑤 fixes 1 and 2. Therefore, for all 𝛼 =
(𝑎1, 𝑎2, … , 𝑎𝑘) ∈ Δ, if 𝑎2 = 𝑟, then

𝛼ℎ𝑥 = (𝑎1
𝑣1 , 𝑎2, 𝑎3𝑤

𝑣3𝑤 , … , 𝑎𝑘𝑤
𝑣𝑘𝑤 )𝑥 = (𝑎1

𝑣1𝑢, 𝑎2, 𝑎3𝑤
𝑣3𝑤 , … , 𝑎𝑘𝑤

𝑣𝑘𝑤 )

= (𝑎1
𝑢𝑣1 , 𝑎2, 𝑎3𝑤

𝑣3𝑤 , … , 𝑎𝑘𝑤
𝑣𝑘𝑤 ) = (𝑎1

𝑢, 𝑎2, 𝑎3, … , 𝑎𝑘)
ℎ = 𝛼𝑥ℎ;

and if 𝑎2 ≠ 𝑟, then

𝛼ℎ𝑥 = (𝑎1
𝑣1 , 𝑎2

𝑣2 , 𝑎3𝑤
𝑣3𝑤 , … , 𝑎𝑘𝑤

𝑣𝑘𝑤 )𝑥 = (𝑎1
𝑣1 , 𝑎2

𝑣2 , 𝑎3𝑤
𝑣3𝑤 , … , 𝑎𝑘𝑤

𝑣𝑘𝑤 )

= (𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑘)
ℎ = 𝛼𝑥ℎ.

Therefore, 𝑥 and ℎ commute. Since ℎ is arbitrary, 𝐾 = 𝐾 ∩ 𝐾𝑥 ⩽ 𝑀 ∩𝑀𝑥.
Let 𝐵 be the base group (S𝑚)𝑘 of 𝑀. Since 𝐾 ⩽ 𝑀 ∩𝑀𝑥, we find that 𝐵 ∩ 𝐾 ⩽ 𝐵 ∩𝑀𝑥. We

now show that 𝐵 ∩𝑀𝑥 ⩽ 𝐵 ∩ 𝐾, so let ℎ1 = (𝑣1, … , 𝑣𝑘) ∈ 𝐵 ∩𝑀𝑥. Then ℎ1
𝑥−1 ∈ 𝑀. We show

that 𝑣1 ∈ 𝑈 and 𝑣2 fixes 𝑟, so that ℎ1 ∈ 𝐾. By letting g1 ∶= (1, 1, 𝑣3, … , 𝑣𝑘) ∈ 𝐾 and replacing
ℎ1 with g−1

1
ℎ1, we may assume 𝑣3 = ⋯ = 𝑣𝑘 = 1. Let ℎ2 ∶= 𝑥ℎ1𝑥−1ℎ−11 = ℎ1

𝑥−1ℎ−1
1
∈ 𝑀, and let

𝛼 ∶= (𝑎, 𝑏, 𝑐, … , 𝑐) and 𝛽 ∶= (𝑎, 𝑟, 𝑐, … , 𝑐) be elements of Δ with 𝑎 ≠ 𝑚 and 𝑏 ∉ {𝑟, 𝑟𝑣
−1
2 }. Then 𝛼

and 𝛼ℎ1 are both fixed by 𝑥, and so 𝛼ℎ2 = 𝛼. On the other hand,

𝛽ℎ2 =

{
(𝑎𝑢𝑣1𝑢

−1𝑣−1
1 , 𝑟, 𝑐, … , 𝑐), if 𝑟𝑣2 = 𝑟,

(𝑎𝑢, 𝑟, 𝑐, … , 𝑐), otherwise.

Since 𝑑(𝛼ℎ2 , 𝛽ℎ2) = 𝑑(𝛼, 𝛽) = 1 by Lemma 4.2 and 𝑎𝑢 ≠ 𝑎, it must be the case that 𝑟𝑣2 = 𝑟 and
𝑎𝑢𝑣1𝑢

−1𝑣−1
1 = 𝑎. Therefore, 𝑣2 ∈ 𝑇𝑟 and, as 𝑎 is arbitrary in {1, … ,𝑚 − 1}, we deduce that 𝑣1 ∈

CS𝑚(𝑢) = 𝑈 and hence ℎ1 ∈ 𝐾. Thus, 𝐵 ∩𝑀𝑥 ⩽ 𝐵 ∩ 𝐾 and so 𝐵 ∩𝑀𝑥 = 𝐵 ∩ 𝐾.
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12 RONEY-DOUGAL and WU

To show that𝑀 ∩𝑀𝑥 ⩽ 𝐾, let ℎ3 ∈ 𝑀 ∩𝑀𝑥. Now, 𝐵 ⊴𝑀 and so 𝐵 ∩ 𝐾 = 𝐵 ∩𝑀𝑥 ⊴𝑀 ∩𝑀𝑥.
Therefore,

ℎ3 ∈ N𝑀(𝐵 ∩ 𝐾) =
(
NS𝑚(𝑈) × 𝑇𝑟 × (S𝑚)

𝑘−2
)
⋊𝑊2.

The equality uses the fact thatNS𝑚(𝑈) ≠ 𝑇𝑟 (as𝑚 ⩾ 5). Through left multiplication by an element
of 𝐾, we may assume ℎ3 ∈ NS𝑚(𝑈) × (1S𝑚)

𝑘−1. Then ℎ3 ∈ 𝐵 ∩𝑀𝑥 ⩽ 𝐾. Since ℎ3 is arbitrary, the
intersection𝑀 ∩𝑀𝑥 ⩽ 𝐾. Therefore, 𝐾 = 𝑀 ∩𝑀𝑥, as required. □

We are now ready to prove the main result for the product action case. Recall the assumption
that 𝐺 is S𝑚𝑘 or A𝑚𝑘 and𝐻 = 𝑀 ∩ 𝐺.

Proof of Theorem 6. Firstly, suppose that 𝐻 = 𝑀. Let  ∶= {2, … , 𝑘} × {1, … ,𝑚 − 1}, ordered
lexicographically. For each (𝑖, 𝑟) ∈ , let 𝑥𝑖,𝑟 ∈ A𝑚𝑘 ⩽ 𝐺 be as in Lemma 4.3, and define

𝑋𝑖,𝑟 ∶= {1} ∪ {𝑥𝑖′,𝑟′ ∣ (𝑖
′, 𝑟′) ∈ , (𝑖′, 𝑟′) ⩽ (𝑖, 𝑟)} ⊆ 𝐺.

Then for all (𝑖, 𝑟) ∈ ,

𝐵 ∩
⋂
𝑥∈𝑋𝑖,𝑟

𝑀𝑥 = 𝑈 × (1S𝑚)
𝑖−2 × (S𝑚)1,…,𝑟 × (S𝑚)

𝑘−𝑖.

Hence, for all (𝑖, 𝑟), (𝑗, 𝑠) ∈  with (𝑖, 𝑟) < (𝑗, 𝑠),
⋂
𝑥∈𝑋𝑖,𝑟

𝑀𝑥 >
⋂
𝑥∈𝑋𝑗,𝑠

𝑀𝑥. This results in the
following chain of stabiliser subgroups, of length (𝑚 − 1)(𝑘 − 1) + 2:

𝐺 > 𝑀 >
⋂
𝑥∈𝑋2,1

𝑀𝑥 >⋯ >
⋂

𝑥∈𝑋2,𝑚−1

𝑀𝑥 >
⋂
𝑥∈𝑋3,1

𝑀𝑥 > ⋯ >
⋂

𝑥∈𝑋𝑘,𝑚−1

𝑀𝑥 > 1.

Therefore, by Lemma 2.1, I(𝐺,𝐻) = I(𝐺,𝑀) ⩾ (𝑚 − 1)(𝑘 − 1) + 2.
Now, if 𝐻 ≠ 𝑀, then 𝐺 = A𝑚𝑘 , and I(𝐺,𝐻) ⩾ I(S𝑚𝑘 ,𝑀) − 1 ⩾ (𝑚 − 1)(𝑘 − 1) + 1 by

Lemma 2.2.
Finally, for the upper bound on I(𝐺,𝐻), we use (2) and [4, Lemma 2.1] to compute

I(𝐺,𝐻) ⩽ 1 + 𝓁(𝐻) ⩽ 1 + 𝓁(𝑀) ⩽ 1 + 𝑘 𝓁(S𝑚) + 𝓁(S𝑘)

⩽ 1 + 𝑘
(
3

2
𝑚 − 2

)
+
(
3

2
𝑘 − 2

)
⩽
3

2
𝑚𝑘 −

1

2
𝑘 − 1. □

5 PROOF OF THEOREM 1

In this final section, we zoom out for the general case and prove Theorem 1 by considering the
order of𝐻 and assembling results from previous sections.
Recall that 𝐺 is S𝑛 or A𝑛 (𝑛 ⩾ 7) and 𝐻 ≠ A𝑛 is a primitive maximal subgroup of 𝐺. Maróti

proved in [12] several useful upper bounds on the order of a primitive subgroup of the symmetric
group.
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IRREDUNDANT BASES FOR THE SYMMETRIC GROUP 13

Lemma 5.1.

(i) |𝐻| < 50𝑛√𝑛.
(ii) At least one of the following holds:

(a) 𝐻 = 𝑆𝑚 ∩ 𝐺 acting on 𝑟-subsets of {1, … ,𝑚} with 𝑛 =
(𝑚
𝑟

)
for some integers𝑚, 𝑟 with𝑚 >

2𝑟 ⩾ 4;
(b) 𝐻 = (S𝑚 ≀ S𝑘) ∩ 𝐺 with 𝑛 = 𝑚𝑘 for some𝑚 ⩾ 5 and 𝑘 ⩾ 2;
(c) |𝐻| < 𝑛1+⌊log 𝑛⌋; and
(d) 𝐻 is one of the Mathieu groups𝑀11,𝑀12,𝑀23,𝑀24 acting 4-transitively.

Proof. Part (i) follows immediately from [12, Corollary 1.1]. Part (ii) follows from [12, Theorem 1.1]
and the description of the maximal subgroups of S𝑛 and A𝑛 in [11]. □

Equipped with these results as well as Theorems 5 and 6, we are ready to prove Theorem 1.

Proof of Theorem 1. If 𝐻 is as in case (a) of Lemma 5.1(ii), then 𝑛 =
(𝑚
𝑟

)
⩾
(𝑚
2

)
= 𝑚(𝑚−1)

2
. Hence

𝑚 < 2
√
𝑛 and, by (2),

I(𝐺,𝐻) ⩽ 1 + 𝓁(𝐻) ⩽ 1 + 𝓁(𝑆𝑚) < 3
√
𝑛 − 1.

If 𝐻 is as in case (b) of Lemma 5.1(ii), then 𝑛 = 𝑚𝑘. By Theorem 6, I(𝐺,𝐻) ⩽ 3

2
𝑚𝑘 − 1

2
𝑘 − 1. If

𝑘 = 2, then

I(𝐺,𝐻) ⩽ 3𝑚 − 2 < 3
√
𝑛 − 1.

If 𝑘 ⩾ 3, then

I(𝐺,𝐻) <
3

2
𝑚
log 𝑛

log𝑚
⩽
3

2
3
√
𝑛
log 𝑛

log 5
< 3

√
𝑛 − 1.

If𝐻 is as in case (c) of Lemma 5.1(ii), then

I(𝐺,𝐻) ⩽ 1 + 𝓁(𝐻) ⩽ 1 + log |𝐻| < 1 + log (𝑛1+log 𝑛) = (log 𝑛)2 + log 𝑛 + 1.
Using the lists ofmaximal subgroups in [6], one can check that 𝓁(𝑀11) = 7, 𝓁(𝑀12) = 8, 𝓁(𝑀23) =

11, and 𝓁(𝑀24) = 14. It is thus easy to verify that I(𝐺,𝐻) ⩽ 1 + 𝓁(𝐻) < (log 𝑛)2 in case (d) of
Lemma 5.1(ii). Therefore, part (i) of the theorem holds.
We now prove parts (ii) and (iii). By Theorem 3.1, if 𝑛 = 3𝑑 for some integer 𝑑 ⩾ 2, then 𝐻 =

AGL𝑑(3) ∩ 𝐺 is a maximal subgroup of 𝐺. Theorem 5 now gives

I(𝐺,𝐻) >
𝑑2

2
+
𝑑

2
=
(log 𝑛)2

2(log 3)2
+
log 𝑛

2 log 3
,

as required.
By Theorem 4.1, if 𝑛 = 𝑚2 for some odd integer 𝑚 ⩾ 5, then 𝐻 = (S𝑚 ≀ S2) ∩ 𝐺 is a maximal

subgroup of 𝐺. Theorem 6 now gives I(𝐺,𝐻) ⩾ 𝑚 =
√
𝑛, as required. □

Finally, we prove an additional lemma.
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14 RONEY-DOUGAL and WU

Lemma 5.2. Let 𝑡 be the index of𝐻 in 𝐺. There exist constants 𝑐5, 𝑐6, 𝑐7, 𝑐8 ∈ ℝ>0 such that

(i) 𝑐5 log 𝑡∕ log log 𝑡 < 𝑛 < 𝑐6 log 𝑡∕ log log 𝑡; 𝑎𝑛𝑑
(ii) 𝑐7 log log 𝑡 < log 𝑛 < 𝑐8 log log 𝑡.

Proof. It suffices to prove that such constants exist for 𝑛 sufficiently large, so we may assume
𝑛 > 100. We first note that log 𝑡 < log |𝐺| ⩽ 𝑛 log 𝑛, from which we obtain

log log 𝑡 < log 𝑛 + log log 𝑛 < log 𝑛 + (log 𝑛)
log log 100

log 100
< 1.412 log 𝑛.

Hence we may take 𝑐7 = 1∕1.412 > 0.708 for 𝑛 > 100. By Lemma 5.1(i),

log 𝑡 = log |𝐺 ∶ 𝐻| = log |𝐺| − log |𝐻| > log 𝑛!
2
− log

(
50𝑛

√
𝑛
)

> (𝑛 log 𝑛 − 𝑛 log 𝑒 − 1) −
(√

𝑛 log 𝑛 + log 50
)
= 𝑛 log 𝑛 − 𝑛 log 𝑒 −

√
𝑛 log 𝑛 − log 100

>𝑛 log 𝑛 − 𝑛(log 𝑒)
log 𝑛

log 100
−
√
𝑛(log 𝑛)

√
𝑛√
100

− (log 100)
𝑛 log 𝑛

100 log 100

> 0.672 𝑛 log 𝑛,

where the second inequality follows from Stirling’s approximation and the last inequality follows
from the fact that log 𝑒∕ log 100 < 0.218. We deduce further that log log 𝑡 > log 𝑛 and hence take
𝑐8 = 1 for 𝑛 > 100.
Finally, log 𝑡∕ log log 𝑡 < 𝑛 log 𝑛∕ log 𝑛 = 𝑛 and log 𝑡∕ log log 𝑡 > 0.672 𝑛 log 𝑛∕1.412 log 𝑛 =

0.672 𝑛∕1.412. Therefore, for 𝑛 > 100, we may take 𝑐5 = 1, 𝑐6 = 1.412∕0.672 < 2.11. □

Corollary 2 now follows by combining Theorem 1 and Lemma 5.2.

Remark 5.3. Verifying all cases with 7 ⩽ 𝑛 ⩽ 100 by enumerating primitive maximal subgroups
of S𝑛 and A𝑛 in Magma [2], we may take 𝑐5 = 1, 𝑐6 = 4.03, 𝑐7 = 0.70, and 𝑐8 = 1.53 in the state-
ment of Lemma 5.2. With these values of the constants and those in the proof of Lemma 5.2,
it is straightforward to obtain the values of the constants 𝑐2, 𝑐3, 𝑐4 given in Remark 3. For the
values of 𝑐1, we use in addition the fact that, for any 𝑛0, if 𝑛 ⩾ 𝑛0, then (log 𝑛)2 + (log 𝑛) + 1 =
(log 𝑛)2

(
1 + 1∕ log 𝑛 + 1∕(log 𝑛)2

)
< 𝑐2

8

(
1 + 1∕ log 𝑛0 + 1∕(log 𝑛0)

2
)
(log log 𝑡)2.
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