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Key Points

Importance: We assessed potentials for fMRI drug-cue-reactivity (FDCR) derived biomarkers
to improve intervention development and clinical care for substance use disorders (SUDs)
and identified key challenges.

Findings: 415 FDCR studies are assessed with a systematic review. Results from 357 studies
could potentially help develop diagnostic, prognostic, susceptibility, severity, monitoring,
predictive or response biomarkers. We also identify substantial heterogeneity in task and
study design that can hinder biomarker development.

Meaning: A sizable literature supports the development of FDCR-derived biomarkers, but
moving forward requires large-scale collaboration, methodological harmonization and
optimization, and clinical and analytical validation.



22

23
24
25
26
27

28
29
30

31
32
33
34

35
36
37
38
39
40
41
42
43
44

45
46
47
48
49

Abstract

Importance: In the last 25 years, fMRI drug cue-reactivity (FDCR) studies have characterized the
neurobiology of drug cue-reactivity. However, no FDCR-derived biomarkers have been approved yet for
treatment development or clinical adoption. Traversing this translational gap requires a systematic
assessment of the FDCR literature evidence and its heterogeneity and an evaluation of possible clinical uses
of FDCR-derived biomarkers.

Objective: We use a systematic review of FDCR studies to summarize the state of the field, assess their
potential for biomarker development, and outline a clear process for biomarker qualification to guide future
research and validation efforts.

Evidence Review: We reviewed every original FDCR investigation published until the end of 2022. Collected
data cover study design, participant characteristics, FDCR task design, and whether each study provided
evidence that might potentially help develop susceptibility, diagnostic, response, prognostic, predictive, or
severity biomarkers for one or more addictive disorders.

Findings: There were 415 FDCR studies published between 1998-2022. Most focus on nicotine (29.6%),
alcohol (29.2%), or cocaine (11.1%), and most utilize visual cues (85.3%). Together, these studies recruited
19,311 participants, including 13,812 individuals with past or current SUDs. Most studies could potentially
support biomarker development, including diagnostic (32.7%), treatment response (32.3%), severity
(19.2%), prognostic (6.9%), predictive (5.7%), monitoring (2.7%), and susceptibility (0.5%) biomarkers. One
hundred and fifty-five interventional studies used FDCR, mostly to investigate pharmacological (43.2%) or
cognitive/behavioral (33.5%) interventions. 141 studies used FDCR as a response measure and 134 (88.7%)
reported significant interventional FDCR alterations. Twenty-five studies used FDCR as an intervention
outcome predictor, with 96% of these studies finding significant associations between FDCR markers and
treatment outcomes.

Conclusions and Relevance: Based on this systematic review and the proposed biomarker development
framework, we outline a pathway for the development and regulatory qualification of FDCR-based
biomarkers of addiction and recovery. Further validation could support the use of FDCR-derived measures,
potentially accelerating treatment development and improving diagnostic, prognostic, and predictive clinical
judgments.
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Introduction

The evaluation of substance use disorders (SUDs) is currently reliant on interviews, self-reported measures,
and biological assays of drug metabolites which mostly reflect substance use and confound the distinction
between markers of substance use and the complex pathophysiology underlying SUDs'. Growing
recognition of this issue has led to recent interest in identifying the neurobiological underpinnings of SUDs?
and translating this knowledge to facilitate the development of novel treatment targets and interventions
and theoretically grounded, empirically sound, and clinically relevant “biomarkers” for patient-tailored
care’. A particularly impactful paradigm in addiction medicine has been fMRI drug cue reactivity (FDCR),
where brain activation patterns during an individual’s exposure to addiction-related sensory stimuli are
measured as a potential marker of underlying neuropathology®. FDCR has consistently shown that SUDs
are associated with remarkable aberrations in the neural circuitry underpinning incentive salience, reward

I>¢. See box 1 for a general

evaluation, interoception, memory, habit formation, and executive contro
overview of biomarkers in psychiatry and addiction medicine, for an introduction to FDCR along with

eFigurel.

Box 1. Biomarkers in psychiatry and addiction medicine
(*Refer to the bibliography in online-only materials for items cited in boxes)

The FDA-National Institutes of Health (NIH) Biomarker Working Group defines a “biomarker” as “a
defined characteristic measured as an indicator of normal or pathogenic biological processes, or
biological responses to an exposure or intervention, including therapeutic interventions” [BEST
(Biomarkers, EndpointS, and other Tools) Resource®']. The development of clinically relevant biomarkers
is @ major goal of addiction neuroscience and translational psychiatry. Regulating agencies have shown
increasing interest in validated biomarkers, with the FDA’s biomarker qualification program, among
others, working to provide formal endorsement of biomarkers to facilitate their use in drug development
and regulatory decisions®. Recent reviews and opinions have outlined the potential for an expanding
group of central and peripheral biomarkers of major psychiatric conditions, including genomic,
epigenetic, and transcriptomic biomarkers®, proteomic biomarkers®, inflammatory markers®, non-
inflammatory chemokiness, cardiovascular biomarkers7, hormonal and neurotransmitter profiless,
cognitive and behavioral markers®, biomarkers derived from neuroimaging paradigms'®*!, and multi-
modal biomarkers*?. Several neuroimaging biomarkers are also at varying stages of validation by the FDA
for neurological or psychiatric disorders. These include baseline hippocampal volume assessed by
Magnetic Resonance Imaging (MRI) in Alzheimer's disease and Glx (Glutamine+ Glutamate) measured in
the brain by Magnetic Resonance Spectroscopy (MRS) in depression. Notably, the NIMH “Fast-Fail” trial
initiative supports the use of functional MRI (fMRI) in early-phase drug development to lower the risk of
failure in large clinical trials: in the first implementation of the approach, task-related fMRI revealed that
kappa opioid receptor antagonism can enhance reward-related ventral striatal activation, supporting
larger trials for cross-diagnostic treatment of anhedonia®*.

Commensurate with broader progress in biomarker development across various psychiatric disorders,
different types of brain-based markers with potential for clinical translation have been proposed for
addictive disorders, but their clinical and analytical validation remains limited™. Objective biological
metrics of SUDs are currently limited to measures of substance use - mainly testing for psychoactive
substances or their metabolites in biological samples'®*’ - or measures that reflect the toxic effects of
use'®. Notably, these biomarkers reflect endpoints of substance use and toxicity and are not informed by
the dynamic processes that underlie how drug use behaviors relate to addiction. This limitation hampers
the clinical use of intermediate phenotypes and the development of biomarkers to identify at-risk
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individuals and to mechanistically inform, predict, and monitor interventions®. Relatedly, although the
DSM-5 proposed diagnostic criteria for behavioral addictions (BAs), including gambling disorder and
internet gaming disorder, no biomarkers are included for BAs*®. According to the FDA website (visited
December 15th, 2020), there are no qualified biomarkers or ongoing qualification processes for
biomarkers in addiction medicine/psychiatry 2. The only submitted biomarker qualification proposal -
covering a single nucleotide polymorphism in the delta opioid receptor 1 gene - appears to have been
rejected at an early phase”’.

Theoretical Background on fMRI Drug Cue-Reactivity (FDCR)

A popular paradigm to assess brain function in individuals with SUDs is data acquisition with fMRI during
the administration of a drug cue-reactivity task®. Similar paradigms have been developed to investigate
reactivity to addiction-relevant cues in BAs*>>. These paradigms (referred to collectively as “cue-
reactivity paradigms”) involve the presentation of a variety of conditioned cues, associated with the
availability or use of substances or other similarly desirable experiences to participants who have had
prior experiences with them. The cue-reactivity paradigm rests on the understanding that addictive
disorders involve sensitization to addiction-relevant cues®®, which can trigger behavioral and
physiological responses associated with craving and anticipation?’. Cue-reactivity tasks had been
developed and validated extensively before the advent of fMRI and have been readily modified and
adopted in fMRI research®®?°. Engagement with addiction-relevant cues under fMRI scanning enables the
exploration of the neural mechanisms that are associated with the response to addiction-relevant cues®,
and fMRI drug cue-reactivity (FDCR) has demonstrated that SUDs are associated with aberrations in the
neural circuitry underpinning incentive salience, reward evaluation, interoception, memory, habit
formation, and executive control*>*2,

If variations in FDCR signal are associated with the existence and severity of addiction-related processes,
the development of FDCR-derived biomarkers could aid in diagnostic classification and sub-grouping,
assessing disease severity, identifying at-risk individuals, understanding the neural mechanisms involved
in effective interventions, targeting disrupted neural function with novel interventions, early evaluation
of new interventions based on surrogate endpoints such as target-engagement, and monitoring
treatment effectiveness'**?*. More recent avenues of research have combined cue-reactivity with other
paradigms during fMRI acquisition®’ and investigated the interaction of FDCR and genomic’®,
epigenetic®®, metabolic®®, physiological**, developmental®, behavioral*?, cognitive®™’, personality* and
psychiatric®®*® correlates of SUDs. Considering the multi-faceted and multi-causal nature of these
disorders and their frequent co-occurrence with other mental and physical health conditions, such
studies establish the etiological importance of FDCR in SUDs and lead to better characterizations of
addictive processes, ultimately enabling the development of multi-domain biomarkers>>>? For example,
neuro-genetics studies have shown that the A118G single nucleotide polymorphism of the mu opioid
receptor (OPRM1) gene may result in higher levels of FDCR®® (Ray et al., 2014) and also impact the clinical
response to naltrexone (a p-opioid antagonist medication)>*.

The road to FDCR-derived biomarkers

In the third decade of FDCR research, with consistently observed correlations between FDCR and
important clinical outcomes’®, biomarkers derived from FDCR paradigms could inform intervention
development or clinical care of people with SUDs. Given the expense and technical difficulty of qualifying
biomarkers for use in regulatory decision-making, for example to support the approval of specific
interventions, frameworks have been developed to facilitate the validation of biomarkers. According to the
biomarker validation frameworks developed by organizations such as the European Medicines Agency
(EMA)® and the FDA', an initial step in developing FDCR-derived biomarkers with regulatory approval
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would be the specification of precise “contexts of use” (COU). Different methods and standards of
validation might be required, for example, for an FDCR-derived biomarker developed to classify individuals
with SUDs into different subtypes compared to one used to predict individual responses to a specific
intervention. Just as crucially, the methodological details of any FDCR-derived biomarker would need to be
carefully considered and clearly specified since they may influence the FDCR signal and the interpretation
of the biomarker™*2.

In the next stage, the defined biomarker will need to be characterized and validated within the COU. A
principal step is “analytical” validation, establishing appropriate accuracy, repeatability, and reproducibility
of the biomarker within the proposed COU™. Demonstrating “clinical” validity requires elucidating the
etiological link of an FDCR biomarker to SUD symptoms and establishing that the biomarker appropriately
measures a clinical feature of a disease, disease outcome, or treatment outcome™®, Finally, the practical
use of FDCR-derived biomarkers in clinical or drug development contexts requires demonstration of cost-
effectiveness. These validation steps require a combination of systematic reviews and meta- and mega-
analyses, expert consensus, and new studies to address potential evidentiary gaps. An overview of the
overall FDCR biomarker development framework is provided in Figure 1.

Moving towards the development of clinically relevant FDCR-derived biomarkers necessitates taking stock
of the current state and evolution of FDCR as a research field. While many useful systematic reviews and

meta-analyses of cue-reactivity fMRI studies are available”**™

, these efforts have largely focused on
estimating neuroimaging effect sizes rather than systematically investigating the methodological
characteristics of FDCR studies and the potential of FDCR for biomarker development. We present a
systematic review and synthesis of the FDCR literature, covering basic study design features, studied
substances and behaviors, and methodological parameters, to outline the degree of methodological
heterogeneity and to identify outstanding gaps in the evidence. We then provide a systematic assessment
of the potential of FDCR studies for biomarker development under the NIH framework in translational
addiction science and discuss exemplar FDCR indices. We finally highlight a set of concrete actions and
future directions in the translation of FDCR-derived biomarkers from the bench to the bedside, based on

the outlined biomarker development framework and the systematic review.

Methods and Results

Detailed methods and results of the systematic review sections are presented in the online-only materials
(eMethods and eResults sections) and the search terms and syntax can be found in eTables 1 and 2. The
methods and results are organized according to the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) checklist and the protocol for this systematic review was pre-registered®®. While
we refer to fMRI “drug” cue-reactivity (including alcohol) throughout the manuscript, BA studies focusing
on gambling and gaming were not excluded as they constitute a small portion of the cue-reactivity
literature and involve cue-reactivity paradigms similar to drug cue-reactivity studies. Separate analyses of
substance and behavioral addictions can be found in eFigure 10.

The final database includes 415 studies, from 19 countries (eFigures 2 and 3) and will be continually
updated, according to a registered protocol, to provide an up-to-date repository of FDCR studies and
facilitate future investigations. Our results indicate a growing interest in the FDCR paradigm, with 307 of
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the 415 FDCR studies in our database published in the last ten years of the systematic review (eFigure 4).
We will first consider the methodological aspects of reviewed studies.

Methodological heterogeneity and biomarker specification

A central element of an FDCR experiment is the selection of cues used to elicit neural reactivity, with a
wide array of options available: while 85.3% of reviewed studies used visual cues, others used a variety of
auditory, semantic, gustatory, olfactory or tactile reminders of drugs or drug use, alone or in various
combinations (Figure 2 and eFigure 5). The impact of cue sensory modality in FDCR remains under-
explored, but cues in different sensory modalities likely induce markedly different neural activations?® and
multi-sensory cues or delivering drug cues together with other rewarding stimuli may improve ecological
validity and FDCR signal *>*2.

Basic task-design elements also vary considerably between studies (Figure 2). Sixty-two percent of studies
used blocked designs, which are popular since repeated presentations of drug-relevant stimuli may
constitute more robust exposure and subsequent activation. However, event-related designs may be
better able to optimally characterize the shape of the BOLD response to drug cues'!, and more
sophisticated mixed designs could model interactions between cue exposure and context. Furthermore,
FDCR has been combined with other task modalities to probe the interaction of cue exposure and different
cognitive processes (52 studies). Such combined paradigms are attempted to increase ecological validity
since drug cue-reactivity engages with multiple neurocognitive processes. For example, FDCR during
response inhibition was able to predict tobacco abstinence®.

Methodological parameters should ideally be chosen based on evidence from meta- and mega-analyses or
at least empirical results, with alternative sources such as structured expert opinion used to address
knowledge gaps'’. Such choices also involve trade-offs: for example, simple visual FDCR paradigms may be
selected since they are relatively inexpensive and already widely used®®, while complex interactional
designs and multisensory stimuli with greater ecological validity may be technically challenging and more
difficult to standardize between studies®. On the other hand, multisensory stimuli may improve signal-to-
noise ratio to increase reliability at the same scanning duration?®. Overall, since methodological
heterogeneity between studies can hamper the comparison of findings*” and complicate meta-analyses for
biomarker development?®, it is important to promote standardized best practices and methodological
harmonization to the extent that is practical. Appropriate reporting and explanation of key methodological
elements and harmonized reporting standards is essential regardless of what choices are made, for
example using the COBIDAS guideline” and the recently developed ENIGMA-ACRI reporting checklist''.

Participant characteristics

There is evidence that participant characteristics substantially impact the FDCR signal, highlighting the
importance of specifying target populations for FDCR biomarkers and ensuring the diversity of populations
used to develop such biomarkers. Overall, 19,311 individuals participated in FDCR studies from 1998-2022,
including 12,950 (67.1%) men and 5,130 (26.5%) women, with the sex of 1231 participants (6.4%) not
explicitly specified (eFigure 6 The fact that only 26.5% of participants in FDCR studies have been women
raises questions about the generalizability of findings and potential biomarkers informed by this literature,

since men and women may have markedly distinct neural activation patterns during drug cue exposure®®>!
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While outside the scope of the present review, other demographic factors such as age, socio-economic
status and social determinants of health, medical and psychiatric comorbidities, and cultural background
likely impact the FDCR signal as well''.

Future studies would benefit from complex multivariate modelling techniques which can disambiguate the
influence of various participant characteristics and other methodological choices and investigate complex
FDCR patterns. Further, the median sample size of FDCR studies in our database is only 37, which may be
too small to discover replicable FDCR markers®%. Larger samples as well as meta- and mega-analyses are
important for developing valid and generalizable biomarkers. This systematic review aims to provide a
comprehensive overview of the entire FDCR field, and the broad inclusion criteria for study participants
included studies of individuals who met SUD diagnostic criteria and those who used substances without
meeting such criteria, and did not exclude studies of participants with various comorbidities. These and the
methodological heterogeneities reported in this systematic review prevent us from performing a meta-
analysis across studies, but future meta- and mega-analyses of clusters of studies in the database are
possible and facilitated by our ongoing effort to catalog and share FDCR studies™.

Contexts of use of FDCR biomarkers

Another principal consideration when developing an FDCR biomarker is its context of use. First, it should
be clear for what SUD(s) the biomarker is developed. This choice hinges on considering both the burden of
a disorder and the extent of the FDCR literature on that disorder. To provide two promising examples,
nicotine and alcohol use disorders are both major contributors to morbidity and mortality worldwide>*?
and have been extensively investigated with FDCR paradigms, comprising 29.6% and 29.2% of our
database, respectively (eFigure 4). Then, the COU specification should clarify whether the FDCR-derived
biomarker is to be used for diagnostic or prognostic purposes, to select or assess interventions, or as an
intervention target (see Table 1 and eFigure 7 for the biomarker taxonomy and examples). This choice

should guide the design and interpretation of the biomarker and ultimately its validation.

Studies with relevant evidence for developing “diagnostic” biomarkers constitute the largest category in
our review with 143 examples, of which 93.7% have reported significant findings (Figure 3). These studies
have mostly investigated differences in FDCR between individuals with SUDs and healthy controls, though
some have assessed differences between clinically-relevant SUD subtypes. The diagnostic studies in our
database have all essentially conducted statistical comparisons of the FDCR signal between participant
groups defined a priori, though in principle, researchers could start from the other end, i.e., with data-
driven identification of “neurotypes” using the fMRI data. While these provide insights into the neural
correlates of SUDs, the diagnosis of SUDs currently relies on relatively inexpensive clinical interviews and
drug tests and it is unlikely that FDCR-derived biomarkers would find clinical use in identifying SUDs.
Another non-interventional context of use is susceptibility assessment, where there have been promising
results for example in assessing adolescent susceptibility to SUDs based on FDCR in reward-related
regionsﬁ'34
constitute prognostic evaluation and monitoring of individuals diagnosed with SUDs: there is evidence that

. The other two, and likely most promising non-interventional COUs for FDCR biomarkers,

baseline nucleus accumbens drug cue-reactivity, for example, can statistically predict relapse better than
conventional clinical measures®. These latter classes of FDCR biomarkers could add to the limited
repertoire of tools available to meaningfully predict the course of SUDs and monitor their progression, but
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their development requires expensive longitudinal studies. Only 21.2% of studies in our database include
more than one timepoint (Figure 2).

Using FDCR biomarkers to develop, select, implement, or monitor the impact of interventions may be more
cost-effective. There are 155 interventional studies in our database, most using FDCR in the context of
pharmacological (43.2%; most commonly naltrexone in 10 studies) or cognitive/behavioral (33.5%)
interventions. These studies form a sizable evidence-base to support the development of multiple types of
interventional biomarkers for some SUDs, particularly alcohol and nicotine use disorders which constitute
34.4% and 32.4% of the 155 interventional studies in our database, respectively (Figure 4). Individuals with
SUDs are highly heterogeneous in their responses to different treatments®®, Partly since different
interventions target distinct mechanisms of disease which vary between individuals. “Predictive” FDCR
biomarkers could reflect underlying neural pathology and may predict treatment response could guide
treatment planning and reduce poor outcomes: For example, higher ventral striatal FDCR may predict
greater efficacy of naltrexone than acamprosate for alcohol use disorder, possibly since ventral striatal
FDCR may reflect reward-related craving and naltrexone has craving-suppressing effects®’. Our review
indicates that the “predictive” biomarker category is under-investigated, however, with only 25 relevant
studies. Much more common are “response” biomarker studies, where post-intervention FDCR or
intervention-induced changes in FDCR are thought to reflect an intervention’s neurophysiological effect.
There are 141 supporting pieces of evidence for response biomarker development across the 155
interventional studies in our review and growing evidence demonstrates the sensitivity of FDCR signals to

i i i i 40,41 124
detect intervention effects in the striatum>®>° o 43

44,45

. . . 4
, amygdala , prefrontal cortical regions***, insula® and

cingulate cortices - all regions widely implicated in SUDs. Given the importance of interventional FDCR

studies, a more detailed breakdown of intervention types is presented in eFigure 8.

Finally, an FDCR biomarker could be validated as a “surrogate endpoint” if it can be shown that FDCR
causally mediates the therapeutic impact of an intervention on clinical outcomes™. Particularly salient
examples from drug development are the use of blood pressure reduction to assess the effectiveness of
anti-hypertensive medication, or the reduction of hemoglobin A1C as a surrogate marker for the
effectiveness of diabetes treatments'®. Surrogate FDCR endpoints would accelerate drug development as a
candidate therapeutic could be approved based on its immediate impact on the FDCR signal without the
need to measure clinical outcomes over much longer time spans. Such FDCR markers may at least serve in
the rapid screening of candidate therapeutics, for example in the context of aforementioned “FAST-FAIL”
trials. Relatedly, FDCR markers that are linked to clinically relevant outcomes such as craving may provide
direct and personalized targets for direct intervention. Ten studies in our database used neurofeedback
where participants learned to directly reduce their cue-reactivity in regions where they showed high FDCR,
such as the striatum®® or highly reactive cortical areas”’. Our review includes only twelve neuromodulation
studies that used FDCR. However, none used FDCR for target selection directly, which is possible in
principle since the modulation of FDCR signal by brain stimulation has been shown to predict craving
reduction after stimulation®®. Indeed, one retrospective analysis (published shortly after the period of
coverage of this systematic review) suggests that TMS might be more clinically effective in treating alcohol
use disorder if the TMS-induced electric field overlaps with an individual’s endogenous alcohol cue-
reactivity map49.
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Validation of FDCR biomarkers

Specified FDCR biomarkers need validation for regulatory approval®**. “Clinical validation” requires
demonstrating etiological links between the FDCR signal and an SUD. Our reviewed studies have
investigated relationships between cue-exposure-associated neural activation patterns and other facets of
SUDs, and this converging evidence helps buttress the clinical validity of FDCR by showing that it is linked
to self-reported measures of craving (128 studies, see eFigure 5) and behaviors such as attentional bias and

reward responsiveness®”>*

, physiological responses such as increased skin conductance during drug cue
1753 thought

to be involved in addiction. For example, neuro-genetic studies suggest that the A118G single nucleotide

exposure®?, and polymorphisms in genes related to glutamate, opioid, and dopamine signaling

polymorphism of the mu opioid receptor (OPRM1) gene and the 9R allele of the dopamine transporter

gene (DAT1) may result in higher levels of FDCR>***

, and a large clinical experiment showed subsequently
that both alleles interact to influence both FDCR and its reduction following naltrexone administration in
alcohol-dependent individuals®®. This body of literature can be leveraged, together with future FDCR
investigations using robust longitudinal designs and extensive phenotypic and clinical profiling to establish

the clinical validity of an FDCR biomarker.

Next, “analytical validation” requires establishing that an FDCR biomarker has appropriate accuracy and
reliability within the proposed context of use®®. While some recent evidence supports the reproducibility®’
and predictive accuracy’® of certain FDCR patterns, many fMRI tasks suffer from low test-retest
reliability"®®® and recent findings point to a similar challenge for FDCR®. This highlights the need to
systematically improve FDCR measurement and identify signal patterns optimal for biomarker
development. Further, moving from group-level effects to biomarkers for individual-level decision-making
requires the definition of normative signal ranges across contexts and groups: for example, some FDCR
studies define “high FDCR” individuals as those whose FDCR value is greater than the median of study
participants®®. Such studies support further investigation to systematically establish a normative range to

determine which individuals have abnormally high or low regional FDCR.

One way to establish normative FDCR bounds and design FDCR biomarkers with optimal analytic properties
would be meta- and mega-analysis across previous studies, exemplified by a meta-analysis which
demonstrated that short-duration cues in event-related designs may induce more reliable FDCR than
longer cue presentations in blocked designs®®. However, meta-analyses of previous studies should account
for publication bias, flexible reporting and interpretation of results, and the fact that published findings
may be the result of post-hoc, exploratory investigation. The very low rate of non-significant results in our
database (Figure 3 and eFigure 9) is likely in part driven by these factors, which affect neuroscience
research more broadly®*. More insight into the analytic properties of various FDCR-derived measures
would also enable appropriate task design: for example, without estimates of effect size and power
analysis it’s unclear whether the median FDCR task duration of 720 seconds in our database is sufficient
given usual repetition times.

Finally, practical use of FDCR-derived biomarkers in clinical or drug development contexts requires that
their cost-effectiveness be demonstrated. Given the costs of fMRI and potential harms of false negative or
positive results, FDCR-derived biomarkers should be capable of feasibly and meaningfully complementing
indicators that are often less expensive to measure, such as self-reported addiction severity or behavioral
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phenotypes. This requires explicit cost-benefit modeling in future FDCR biomarker development studies
and attempts to make FDCR more cost-effective by optimizing study designs for sample sizes, scanning
procedures, and scan durations. It is also important to select biomarker types likely to offer the greatest
utility. For example, diagnostic biomarker development may be foundational but unlikely to offer clinical
utility outweighing the costs, and the gold standard of diagnosis will likely remain clinical interviewing.
FDCR biomarkers may be much more cost-effective for prognosis, treatment selection, and intervention
development, for which alternative markers are less available.

We discuss two particularly promising FDCR markers in Box 2, one reflecting global cue-related brain
activity and the other local activation. Both examples demonstrate how validating evidence can converge
across contexts of use.

Box 2. Local and global FDCR: Two exemplar cases

(*Refer to the bibliography in online-only materials for items cited in boxes)

We highlight two examples of promising FDCR signals across contexts of use. A robust FDCR biomarker
would likely be useful across multiple contexts of use and would also be supported by converging
avenues of validating evidence. A promising regional marker is striatal FDCR, which meets several
important characteristics of a putative neural biomarker in alcohol use disorder (AUD). In a diagnostic
context, several studies have reported significant differences in striatal FDCR between individuals with
and without AUD**®®" and a ventral to dorsal striatum FDCR shift with more compulsive alcohol use”.
There is support for the prognostic potential of striatal FDCR, with several studies demonstrating
significant associations with subsequent alcohol use and relapse in AUD*®*®' and increases in relapse
prediction accuracy of machine-learning models, over and above clinical variables®. In addition,
converging evidence indicates that striatal FDCR is sensitive to behavioral AUD treatments such as cue-
exposure therapy or drugs such as naltrexone >>®or nalmefene® illustrating that longitudinal
assessment of striatal FDCR can monitor treatment effects. Further, acquiring striatal FDCR before
treatment predicts naltrexone treatment response, such that individuals with high striatal FDCR
benefited more from naltrexone®, supporting the predictive potential of striatal FDCR. This finding was
replicated in an independent sample®® and could be expanded to positive (i.e., higher response to
alcohol cues) versus negative (i.e., higher response to neutral cues) FDCR in striatal regions>, indicating
that absolute levels of striatal FDCR can be used to predict treatment efficacy across datasets.

With the advent of machine learning techniques capable of discovering robust patterns of activity
distributed across the brain, it is possible to develop FDCR biomarkers that reflect neural processes
involved in FDCR beyond a single region. This would be in line with the growing understanding that
neural processes are often undergirded by distributed brain networks ®, and that multivariate brainwide
association studies may require smaller samples to discover brain-behavior relationships®®. There have
been a few attempts to date to use FDCR to create and validate a whole-brain-based biomarker in
SUDs®. In a recent example, machine learning on FDCR data from individuals with alcohol, cocaine, and
tobacco use disorders identified a multivariate whole-brain marker that reliably associated drug craving,
accurately classified individuals with SUDs from healthy controls, detected responses to interventions,
and mediated the effects of intrinsic visual craving features on craving ratings °. While additional
validation is required and ongoing as the authors note, current evidence supports the clinical and
analytical validity of this multivariate marker as a diagnostic and response biomarker.
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Conclusion

A growing number of biomarkers are widely used in biomedical research and clinical practice, but their role
remains mostly limited in addiction medicine and psychiatry more broadly®®. This paper provides an
overview of fMRI drug cue-reactivity (FDCR) research, a promising paradigm for biomarker development
for addictive disorders. FDCR biomarkers could classify patients, have prognostic value, improve treatment
selection, and facilitate intervention development and personalized care. While the field faces numerous
challenges — from methodological heterogeneity and small sample sizes to a lack of systematic biomarker
development and validation efforts — under-utilized resources to overcome them exist. Ultimately,
however, biomarker specification and validation efforts will likely require moving beyond traditional single-
site studies and may involve mega-analyses using infrastructure developed by initiatives such as the
Enhanced Neurolmaging Genetics through Meta-Analyses (ENIGMA) International Consortium®® or multi-
site collaborations and harmonized, longitudinal assessment following examples such as the Human

67,68

Connectome Project and the Adolescent Brain Cognitive Development (ABCD) project’”™, with expert

consensus to address remaining gaps (see eFigure 11 for a summary of systematic review results and these
future directions). Towards this aim, several authors of the present manuscript have formed the steering
committee of the ENIGMA Addiction Cue-Reactivity Initiative (ACRI) within the ENIGMA Addiction working
group to facilitate consensus development, methodological harmonization, and data sharing for mega-
analyses®. Large-scale biomarker definition and validation studies would require substantial funding and
resources often difficult to secure or justify for a single research institution or pharmaceutical company.
This endeavor necessitates formation of diverse consortia to pool resources and guide validation efforts,
develop best practices in study design and reporting, and engage in ongoing dialogue with commercial and
public health stakeholders. Ultimately, there will be a need to form public/private partnerships that inform
future biomarker development studies and systematically approach the arduous task of translating FDCR-
derived biomarkers to clinical use.
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Tables and Figures

Table 1: Potential fMRI drug cue-reactivity (FDRC)-based biomarker domains, their definitions, and
sample studies that provide supporting evidence for biomarker development. Note that potential FDCR-
derived safety biomarkers were very rare in the database, and thus have not been included as a separate category in
other tables and figures. All the definitions for biomarkers have been directly adapted from the BEST Glossary, except

for “Severity” biomarkers (defined based on previous biomarker literature as discussed).

Biomarker
Type

Description

Examples of studies that can provide supporting evidence
for biomarker development

Susceptibility

Indicates the potential for
developing a disease or
medical condition
individual who does not

in an

currently have the clinically
apparent disease or the
medical condition

Baseline cue-reactivity in the ventromedial prefrontal cortex,
orbitofrontal cortex, anterior cingulate cortex, striatum, and insula was
greater in individuals who subsequently transitioned from moderate to

heavy drinking compared to people who did not transition”®

Diagnostic

Detects or confirms the
presence of a disease or
condition of interest, or
identifies individuals with a
subtype of the disease

SUDs vs. Healthy:
*Individuals with cocaine use disorder showed higher FDCR compared to
controls in a frontoparietal
*Individuals with cocaine use disorder compared to people with
recreational stimulant use showed greater orbitofrontal and anterior
cingulate FDCR during a cocaine-cue Stroop task”

71
network

Sub Subtyping:
*Among people with heavy alcohol consumption, “relief” drinking (due
to negative reinforcement or habit) compared to reward drinking (due
to positive reinforcement) was associated with greater dorsal striatal
FDCR”

*Individuals with cannabis use disorder and early-onset cannabis use
showed FDCR in the dorsal striatum, while those with late-onset use
showed FDCR in the ventral striatum’*

Severity

Is correlated with greater
intensity of the disease

In individuals with opioid use disorder, baseline FDCR in the nucleus
accumbens, orbitofrontal cortex, and amygdala was associated with
drug use severity (Addiction Severity Index Drug Composite Score), and
withdrawal symptoms mediated the relationship between nucleus
accumbens FDCR and drug use severi‘cy75

Prognostic

Identifies the likelihood of
a clinical event, disease
recurrence, or progression
in patients who
have the disease or

medical condition of

Among individuals with stimulant use disorder, baseline FDCR in the
nucleus accumbens was prospectively associated with time to relapse
and could classify individuals into those who would relapse and those
would not at 3 months after the scan, with an accuracy outperforming
predictions using self-reported and clinical measures>
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interest

Monitoring

Is measured repeatedly for
assessing the status of a
disease or medical
condition or for evidence
of exposure to (or effect
of) a medical product or

environmental agent

Naturalistic Monitoring:
*Among women with tobacco use disorder, frontal, temporal, and
parietal regions showed FDCR during the follicular phase of the
menstrual cycle but not the luteal phase76
*Among participants with internet gaming disorder (IGD) followed over
one year, natural recovery from IGD was associated with decreased
anterior cingulate and lentiform FDCR and an increase in cue-related

effective anterior cingulate cortex-lentiform connectivity77

Treatment Monitoring:
In a randomized placebo-controlled trial of individuals with alcohol use
disorder, naltrexone lowered ventral striatal FDCR from baseline, and

. . . . 38
more FDCR reduction was associated with greater clinical response

Predictive

The existence or intensity
of the biomarker reflects
the propensity of
individuals to experience
favorable or unfavorable
effects from exposure to a
medical product or

environmental agent

*In individuals with alcohol use disorder, the existence of left putamen
FDCR at baseline and the reduction of left putamen FDCR early during
predicted the
*In individuals with alcohol use disorder, high baseline FDCR in the

treatment effectiveness of naltrexone®
ventral striatum statistically predicted response to naltrexone®’.

Notably, this finding has been directly replica‘ced62

Response

Shows that a biological
effect has occurred in an
individual exposed to a
medical product or

environmental agent

Biological Response:
In a randomized placebo-controlled trial of individuals with cocaine use
disorder, modafinil acutely reduced FDCR in the ventral tegmental area
and increased FDCR in the anterior cingulate and putamen, eliminating
differences between participants with cocaine use disorder and healthy
control participants78

Potential Surrogate
In a randomized sham-controlled trial involving people with tobacco use
disorder, active versus sham tDCS over the dorsolateral prefrontal
cortex (DLPFC) increased cue-related functional connectivity between
the DLPFC and the parahippocampus, and this increase was correlated

with decreased cigarette craving48

Endpoint:

Safety

Is measured before or
after an exposure to a

medical product or an
environmental agent to
indicate the likelihood,

presence, or extent of
toxicity as an adverse

effect

Contributing to discussions on the safety of electronic cigarettes, FDCR
showed that e-cigarette smoking may immediately increase FDCR"®
Furthermore, sweet taste and nicotine content may synergistically
influence the nucleus accumbens FDCR to the sight and smell of e-
cigaretteszz. Safety FDCR biomarkers may overlap with prognostic or
response biomarkers in the context of SUDs since SUDs involve the use
of substances whose safety may be assessed using FDCR
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Figure 1. Four major steps in the validation of potential fMRI drug cue-reactivity-derived biomarkers.
Initially, a context of use for an FDCR-derived biomarker is specified and the potential biomarker is
precisely defined. Following analytical and clinical validation and cost-benefit analysis, the compiled
evidence is presented for regulatory approval. The FDA evaluates the use of biomarkers for drug
development through a biomarker qualification process involving submission of a Letter of Intent, a
Qualification Plan, and a Full Qualification Package, though a Letter of Support may be issued by the FDA to
indicate its support for a biomarker before formal qualification. The use of FDCR-derived biomarkers in
clinical contexts requires the endorsement of a constellation of other institutions. Surr. Endpoint:
Surrogate Endpoint.
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Figure 2. Task and study design features of fMRI drug cue-reactivity studies. a. Number of time points in
FDCR studies. Eighty-one studies scanned participants at two time points, six at three time points, and one
with four time-points. b. Boxplot representing the distribution of median inter-scan intervals (in days) for
FDCR studies with more than one scanning session. Ten studies scanned individuals more than once within
the same day (interval = 0 days). c. Main FDCR task design type. d. Boxplot of the distribution of FDCR task
durations. e. Paradigms combined with FDCR tasks in 52 studies in the database. f. FDCR studies, broken
down by stimulus and substance/behavior type. “Multiple” stands for those studies including more than
one type of addictive substance/behavior The "other" category includes inhalants and betel-quid.
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Figure 3. Seven fMRI drug cue-reactivity study types. a. FDCR studies which, by virtue of their study
design, could theoretically support the development of each biomarker type, broken down by substance or
behavior of interest. Note that all cells do not sum to 415 since some studies do not fit the biomarker
framework and some studies fit multiple biomarker types. b. The number of significant and non-significant
supporting biomarker-related findings. The "other" category includes inhalants and betel-quid.
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Figure 4. fMRI drug cue-reactivity studies with an intervention or manipulation. a. Types of interventional
FDCR studies each vyear, including randomized controlled trials (RCTs), controlled trials without
randomization, single-arm trials, and retrospective studies. b. Types of interventions in interventional FDCR
studies. c. Role of FDCR in interventional studies: FDCR can be measured before an intervention to predict
intervention results or measured after an intervention to assess impact with or without a comparison to
baseline FDCR.
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eFigure 1. Overview of fMRI Drug Cue-Reactivity Task Designs. Overview of fMRI Drug Cue
Reactivity Task Designs A) Cues/Stimuli are presented in groups or “blocks” containing a series
of similarly conditioned cues which are then separated by a delay from the next block. B)
Stimuli are presented in succession with or without a delay, without being arranged by their
type. Tasks may have a few sections or “runs” where a delay separates each run from the next
without the participant exiting the scanner. C) Mixed design tasks may borrow elements (like
grouping or sequence randomization) from either a block design or an event-related design
with the addition of another set of changing conditions or events that occur concurrently with
the task D) Combined tasks use cue-reactivity concurrently with another cognitive task (e.g.,
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Go/No-Go task). Designs can incorporate stimuli presented in various modalities, including
visual (static or dynamic), auditory, olfactory, or tactile.

Methods

The methods section is organized based on the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) checklist. The protocol for this systematic review was
pre-registered’. While we refer to fMRI “drug” cue-reactivity (including alcohol) throughout the
manuscript, behavioral addiction studies focusing on problematic videogame playing or
gambling were not excluded as they constitute a small portion of the cue-reactivity literature
and involve cue-reactivity paradigms similar to drug cue-reactivity studies. Since behavioral
addictions (BAs) have recently been added to the widely used nomenclature system, and the
pathophysiology may not be completely the same as SUDs, one should be cautious in analyzing
these data together. Therefore, information on BAs can be seen separately in our database for
future use.

Eligibility criteria: Original studies were selected according to the criteria outlined below.

Study design and methodology: We employed a broad perspective in the inclusion of studies,
including all types of original research (e.g., basic research, observational studies, and
interventional studies). Only peer-reviewed studies were included.

Of interest were original studies that included one or more fMRI-based investigations as a
major part of their methodology, whether as an observational or as a treatment tool (e.g. in
fMRI neurofeedback). For at least some of the study population, the fMRI investigation had to
include a cue-reactivity task, including the presentation of substance- or problematic behavior-
related cues and at least one other class of cues (i.e., neutral or non-substance-related) for
comparison. Acute challenge studies involving direct administration of substances of use were
not included unless cues associated with the substance/object of use were explicitly presented
as well. Cues also had to be ecologically valid; i.e., they needed to be associated with routine
drug-taking behaviors and not be novel conditioned cues associated with the substance/object
of use for the first time during the experiment. We excluded studies that did not provide details
about the fMRI protocol, setting and tasks, outcomes of interest used in the analysis, and basic
fMRI measures. There were no further exclusions, and both whole-brain and region of interest
(ROI)-based fMRI studies were included.

Participants: Every study required at least one human population or sub-population with more
than one member, for which at least one of the following needed to be true:
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At least one circumscribed group of participants had a diagnosis of at least one SUD or BA,
either manifest as active use or in remission; with the diagnosis made either before the study,
as part of the study protocol during the investigation, or by the end of the study (i.e., with the
diagnosis serving as an outcome measure).

At least one group of participants was included explicitly because they regularly consumed a
potential object of addiction (substance or behavior) and/or had a risky pattern of consumption
that might lead to addiction, and the study focused on their reactivity to cues of that substance
or behavior.

At least one group of participants had been assigned a score for an addiction-related
phenomenon (such as addiction or drug-use severity) with or without an explicit diagnosis of an
SUD or BA, and the relationship of this score to important outcomes in the study had been
investigated.

No restriction was placed on study participants based on demographic, ethnic, biological, or
clinical factors (such as any co-occurring disorders).

Language: Only publications with their full text in English were included.

Information source: Existing research was identified and retrieved using PubMed. Relevant
articles were identified using a comprehensive search strategy for all terms related to addiction,
fMRI, and cue-reactivity, as detailed below.

Search strategy: Considering the subject of the review, a list of three sets of keywords was
compiled (eTable 1). These terms were adapted for use in PubMed (exact search syntax and
search results are outlined in eTable 2). The first set included synonyms of “functional magnetic
resonance imaging”, the second included terms related to cue-reactivity, and the third included
synonyms of “addiction” and various terms related to SUDs and BAs and addiction medicine. To
help widen the search, no filters were used. The exclusion of systematic reviews and other non-
original research and the application of other inclusion/exclusion criteria were handled
manually. Given the large volume of relevant literature on PubMed, other search engines or
grey literature were not used.
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eTable 1. Search terms used for this systematic review

fMRI “functional MRI”
“functional magnetic | “cue-reactivity”
resonance”

“cue exposure” “craving”

“cue induced” “drug cue”
“drug cues”

addict* dependence

“substance use”

“substance abuse”

“drug abuse”

“drug use”

nicotine smoker
tobacco opioid

opiate heroin
marijuana cannabis
“thc” alcohol*
cocaine amphetamine

methamphetamine

“behavioral addiction”

“internet addiction”

“problematic gaming”

“gaming disorder”

“gambling disorder

“problem gambling”

fMRI search terms

10R20R3

Cue-reactivity search terms

40R50R60R70R80R9

Addiction search terms

100R110OR120R 13 OR14 OR150R 16 OR 17 OR 18 OR 19 OR 20
OR 21 0OR 22 OR 23 OR 24 OR 25 OR 26 OR 27 OR 28 OR 29 OR 30 OR
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310R320R330R34

Final search

35 AND 36 AND 37
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eTable 2. Final syntax of PubMed search, and number of raw search results

Term Group Search Number of
results on 5
Jan 2023
fMRI search fMRI OR “functional MRI” OR “functional magnetic resonance” 573243
Cue-reactivity search  “cue reactivity” OR “cue exposure” OR craving OR “cue induced” 9841
OR “drug cue”
Addiction search addict* OR dependence OR “substance use” OR “substance 1424082
abuse” OR “drug abuse” OR “drug use” OR nicotine OR smoker
OR tobacco OR opioid OR opiate OR heroin OR marijuana OR
cannabis OR “THC” OR alcohol* OR cocaine OR amphetamine OR
methamphetamine OR “behavioral addiction” OR “behavioral
addiction” OR “internet addiction” OR “problematic gaming” OR
“gaming disorder” OR “gambling disorder” OR “problem
gambling”
Final search (fMRI OR “functional MRI” OR “functional magnetic resonance”) 952

AND (“cue reactivity” OR “cue exposure” OR craving OR “cue
induced” OR “drug cue” OR “drug cues”) AND (addict* OR
dependence OR “substance use” OR “substance abuse” OR “drug
abuse” OR “drug use” OR nicotine OR smoker OR tobacco OR
opioid OR opiate OR heroin OR marijuana OR cannabis OR “THC”
OR alcohol* OR cocaine OR amphetamine OR methamphetamine
OR “behavioral addiction” OR “behavioral addiction” OR
“internet addiction” OR “problematic gaming” OR “gaming
disorder” OR “gambling disorder” OR “problem gambling”)

Study records

Data management: Literature search results were imported to Excel. Screening of articles for

relevance was performed by reviewing the title and abstract sections of candidate texts, and

full texts were obtained for studies that passed preliminary screening.
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Study selection: Screening forms were developed for title/abstract and full-text assessment
and studies were checked by two authors (MZB and AS). The authors initially checked the
eligibility of fifty randomly chosen studies under the supervision of the corresponding author
(HE) as a calibration exercise to ensure eligibility criteria were applied consistently 2. After title
and abstract screening, the two authors screened the full texts of papers that either met the
eligibility criteria or had an uncertain status. Any papers with an uncertain eligibility status after
full-text screening were then discussed with HE until a consensus on their inclusion was
reached. Reasons for the exclusion of articles at the title and abstract or full-text screening
stages were recorded, according to the PRISMA framework®. Neither of the review authors was
blind to the journal titles, study authors, or institutions.

Data collection: Data were filled into a spreadsheet by PA, AFJ, AH, and AKZ. Consistency
between the authors was honed through a calibration exercise in which all authors evaluated
and discussed their ratings for 20 randomly chosen studies 2. AS, MZB and HE further refined
the data extraction form to reduce inconsistency and ambiguity after the exercise. Data on
study design features and basic methodological parameters were extracted first, and each
article was reviewed independently by two authors in two separate spreadsheets, with
inconsistencies resolved in discussions with MZB and AS with HE’s supervision. To check
whether any study samples overlapped with other studies (e.g. in the case of re-analysis
studies), a single rater (AFJ) screened the methods sections of all studies.

Data items: We extracted publication details, publication country (where the first affiliation of
the first study author is located or the affiliation of the majority of the authors in case country
was not clear), publication year (based on PubMed’s indexing), the substance or behavior (main
substance(s) and/or behavior(s) of interest in the study), main experimental task design type
(whether cues were presented in blocked, event-related, or mixed forms), stimulus type
(sensory modality of cues), combined tasks (whether cue-reactivity was paired with other tasks;
and what tasks were used), task duration (seconds, excluding other paradigms that may have
been implemented in the scanner), study sample characteristics (number of participants of
each sex; number of participants with untreated or treated addictive disorders, drug-using
individuals who did not meet SUD criteria, individuals in long-term abstinence, and healthy non-
using participants), intervention (if included, type of intervention), association with a future
event (a non-fMRI variable measured at a later point in time based on fMRI results), number of
fMRI sessions (times each participant was scanned), and interval between fMRI sessions (if
participants were scanned more than once for a study, the average time interval between the
scans). Yes/No ratings were used to classify whether the design of each FDCR study allowed for
it to be potentially used to develop susceptibility, diagnostic, response, prognostic, predictive,
or severity biomarkers for one or more SUDs/BAs. Yes/No ratings were also used to specify
whether a study investigated relationships between FDCR-derived parameters and subjective
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craving, demographic variables, behavioral measures, biochemical assays, participant genetics,
non-FDCR structural or functional neural markers, physiological parameters, or psychiatric
assessments. For each study investigating use of FDCR as a biomarker type or assessing FDCR
correlates, it was also rated as to whether significant test results were observed. However, we
elected to use the relatively simple metric of “significance” given the extreme heterogeneity of
analyses and reported statistics in the field, which would complicate further quantitative
synthesis. The scope of this work is to provide an overview of the status of the field and address
the current heterogeneities to provide a roadmap to support the development of evidence that
can be used in higher quality quantitative metrics in the future.

Software

The PubMed search engine from the National Library of Medicine’s online portal
(www.ncbi.nlm.nih.gov/pubmed/) was used to conduct the search. Endnote X9* was used for
reference management. Google Sheets from Google’s Google Docs Editors suite was used to
design tables for data extraction and sharing among authors. Data analyses and illustrations
were conducted using R version 4.0.5°.

The protocol for this systematic review was developed throughout 2019 and was first
registered on the Open Science Framework (OSF) website on May 18" 2020. The current
extracted database is available publicly in the OSF page (https://osf.io/eb972/). As this is an
ongoing systematic review, we recommend viewing the OSF page of this project for the latest
developments and updates’.
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Results

The search was performed on January 5, 2023, yielding 952 results. Of these, 415 were
excluded at the title-and-abstract screening stage, and 122 were excluded after full-text
screening, yielding a total of 415 FDCR publications that were included in the data extraction
phase of the systematic review. The PRISMA flowchart is presented in eFigure 2. Most studies
are from the US (51.0%) followed by Germany (13.3%) and China (13.0%) (eFigure 3). A
breakdown of papers by the substance or behavior of interest shows that most studies have
been conducted on various forms of either nicotine (29.6%), alcohol (29.2%), or cocaine (11.1%)
use/use disorders, overall accounting for 69.9% of the papers in the database. Earlier studies in
the database were all focused on cocaine and alcohol, with the first studies on cannabis and
video games published in 2009 and the first on methamphetamine published in 2012 (eFigure
4). There is an overall yearly increase in the number of FDCR studies, with the vast majority of
studies (303, 74.0 %) published in the last 10 years.
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193  eFigure 2. PRISMA Flowchart. The titles and abstracts of 952 records from the start of 1998
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195  full texts of 537 records were extracted and assessed for eligibility. Ultimately, 415 records
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eFigure 3. Global contribution to fMRI drug cue-reactivity (FDCR) studies. Number of FDCR
studies in each country, broken down by the type of addictive substance/behavior. “Multiple”
stands for studies including more than one type of addictive substance/behavior. The "other"
category includes inhalants and betel-quid. Note that only papers whose full-text was in English

were included, potentially leading to a relative over-representation of majority English-speaking
countries.
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Nicotine 2 122 (29.6%)
Alcohol
Cocaine
Opioids
Videogame

Cannabis

Methamphetamine 16 (3.9%)

Gambling 1 ‘ | 8(1.9%)
Multiple 19 (4,6%)
Other 2 2(0.5%)

eFigure 4. fMRI drug cue-reactivity studies (1998-2022). Number of FDCR studies each year
from 1998 till the end of 2022, broken down by the type of addictive substance/behavior.
“Multiple” stands for those studies including more than one type of addictive
substance/behavior. The "other" category includes inhalants and betel-quid.

Study and task design

Most FDCR studies scanned participants at a single time point (78.8%). For the 88 studies with
more than one scanning time point, the median inter-scan interval was 14 days, though a
relatively wide distribution was observed (IQR = 21) (Figure 2b). The vast majority of studies
(85.3%) used visual stimuli (for a detailed breakdown, see eFigure 5), with a minority using
other stimulus types such as semantic (2.7%), gustatory (2.2%), auditory (1.7%), olfactory
(1.2%), and imaginary (1%) stimuli. Another 25 multi-sensory studies (6%) used various
combinations of stimuli (Figure 2f). Cues have been commonly presented in a block (61.9%) or
event-related (36.9%) design, with only 1.2% of studies using other designs or both event-
related and blocked-design FDCR tasks within a single study (Figure 2c). The median FDCR task
duration was 720 seconds (IQR = 800) (Figure 2d), and 52 FDCR studies used combined FDCR
tasks: these are tasks in which the presentation of addiction-relevant cues is paired with
another concurrent task component to probe cognitive functions such as response inhibition
(32.7% of the 52 studies), interference resolution (25.0%), attention (13.5%), decision-making
and reward processing (11.5%), perception (7.7%), working memory (5.8%), or
approach/avoidance (3.8%) (Figure 2f).
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eFigure 5. Breakdown of visual cues. Among 354 sets of visual cues used in FDCR studies, they
are broken down into pictures and videos with audio and without audio.

Participants in FDCR studies

Overall, 19,311 individuals participated in FDCR studies from 1998-2022. Of these, 12,950 were
male (66.1%) and 5,130 were female (26.5%), with the sex of 1231 participants (6.4%) not
explicitly specified. The median sample size of FDCR studies was 37. The 19,311 participants can
be divided into 10,186 individuals with untreated addictive disorders (52.7%), 3,008 individuals
with addictive disorders undergoing treatment at recruitment (15.6%), 2,388 individuals who
used potentially addictive substances or engaged in potentially addictive behaviors without
necessarily meeting addictive disorder criteria (12.4%), 618 individuals in long-term abstinence
(3.2%) and 3,111 participants (16.1%) who were not using substances (i.e., “healthy controls”).
A plurality of the participants (6708, 34.7%) were recruited to investigate alcohol use/use
disorders with the following statistics for other use/use disorders: nicotine (4363, 22.6%),
cocaine (1901, 10.0%), cannabis (1403, 7.2%), opioid (1205, 6.2%), and methamphetamine
(836, 4.3%). Of the remaining participants, 1373 (7.1%) used betel-quid, inhalants, or multiple
substances, and 1522 (7.9%) were recruited in studies focusing on gambling or video game
playing. While most participants (13037, 67.5%) were recruited in observational studies, a
substantial portion participated in trials or experimental studies involving pharmacological
(2897, 15.0%), behavioral (2257, 11.7%), or other interventions (1120, 5.8%), such as
neurofeedback or non-invasive brain stimulation (eFigure 6). No duplicated samples across
studies were discovered in the database based on a screening.
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eFigure 6. Participants in fMRI drug cue-reactivity studies (N = 19,311). The Sankey diagram
represents the number of participants in FDCR studies divided by sex, population type,
potentially addictive drugs and behaviors, and interventions. The width of the boxes in each
column represents the relative prevalence of each category in the column, while the width of
the ribbons connecting the categories across columns represents the proportion of participants
shared between each of the two categories. AD: Addictive Disorder (including both SUDs and
BAs, diagnosed formally based on widely used criteria such as the Diagnostic and Statistical
Manual (DSM) or International Classification of Diseases (ICD)). Participants who used
substances without necessarily meeting diagnostic criteria are termed “User”.

Study design types and relevance for potential biomarker development

It is important to note that none of the FDCR indices used by studies in the systematic review
constitute fully validated biomarkers at this time. As detailed previously, any biological signal
needs to undergo an extensive validation process to qualify as an actual biomarker of disease or
recovery, which is not the case for any of the FDCR-derived measures in our included studies.
However, the evidence presented in 335 of the studies in our database (75.9%) could
potentially support the development of at least one future FDCR biomarker, by virtue of their
study designs. We defined seven types of biomarkers based on their context of use. These
biomarker types have all been directly adapted from the BEST Glossary®, with the exception of
“severity” biomarkers which are indices that reflect latent disease severity and were defined
based on previous biomarker literature’ . None of the studies in our database explicitly used
FDCR as an index of “safety” and thus we removed the BEST safety biomarkers category.
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Nevertheless, we provide two examples of studies that we think point to contexts in which
FDCR-derived safety indices might prove useful.

These studies tested a total of 437 relationships (404 significant and 33 non-significant), across
contexts of use, between FDCR-derived and clinical measures in 7 different biomarker
categories: (1) In diagnostic studies, the FDCR signal reflects differences between populations
(143 (32.7%) of the included studies, 134 studies reporting a significant association of FDCR and
a grouping variable and nine reporting a non-significant association). (2) A response index might
reflect the neural impact of an intervention (141 (32.3%) studies, 125 reporting significant and
16 non-significant results). (3) In a severity context, it would be tested whether an FDCR signal
co-varies with addiction severity indices (such covariations were reported in 84 (19.2%) of the
studies, 79 significant and five non-significant). (4) A prognostic measure should link to future
disease course (30 (6.9%) studies, 29 significant and one non-significant). (5) A predictive index
should explain a significant portion of variance in intervention outcomes (investigated in 25
(5.7%) studies, 24 significant and one non-significant). (6) A monitoring index should explain a
significant portion of the variance of changes in clinically-relevant variables over time (reported
in 12 (2.7%) studies, 11 significant, and one non-significant). Note that “monitoring” measures
are only distinguished from “response” markers (in interventional contexts) and “severity”
markers (in observational contexts) in that they can be measured repeatedly over time, and
their variation over time within one individual is clinically meaningful. (7) A susceptibility index
would assess the link between FDCR and the progression of non-addictive to addictive use (such
links were reported in only 2 (0.5%) studies, both significant) (Figure 3). These biomarkers are
defined in Table 1, and related example findings for each are presented in Table 1 and eFigure
7.
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a) Susceptibility b) Diagnostic c) Severity d) Prognostic

Striatum Darsal
Anterior Cingulate Striatum

Anterior Cingulate Nucleus

Accumbens

Ventral
Striatum

Network

Amygdala
Cortex

Ventromedial

Orbitofrontal
Prefrontal Cortex rbitofron

Cortex

e) Monitoring f) Predictive g) Response h) Safety

Anterior Cingulate ACC-Lentiform
Cortex Connectivity

Parahippocampal
Cortex

Anterior Cingulate
Cortex

— Putamen
Ventral
Striatum

Nucleus
Accumbens g

Putamen

Ventral
Tegmental

Precuneus

Ventral
Striatum
Lentiform
Cortex
Dorsolateral

Prefrontal

Cortex

Medial Superior ™=
Frontal
Gyrus

DLFPC- PHC
Connectivity
Inferior Temporal

Gyrus

eFigure 7. Examples of brain regions in fMRI drug cue-reactivity (FDCR) studies with
supporting evidence for potential biomarker development. Visual representation of regions
with significant FDCR signal in example studies presented in Table 1. Each panel presents
significant findings from studies whose results could support the development of one of the
biomarker types in the modified BEST biomarker taxonomy, with each region presented with a
unique color across panels. Note that these are example findings, and do not necessarily
generalize beyond the context of the studies referenced in Table 1.

Interventional FDCR studies

Given the importance of interventional studies and the potential of FDCR to develop response
or predictive biomarkers, we present a separate summary of interventional studies in the
database. Overall, 155 studies (37.3%) used FDCR in the context of a therapeutic intervention
or experimental manipulation. Most commonly, interventional studies used target and control
interventions with random assignment (91 studies, 58.7% of interventional studies). Eight
studies (5.2%) included a control group without random assignment, 47 (30.3%) included only a
single intervention arm without a control condition, and 9 (5.8%) investigated individuals who
had been treated retrospectively, for example by comparing them to individuals with untreated
SUDs or by comparing individuals who had undergone treatment for different lengths of time
(Figure 4a). Most interventional FDCR studies investigated pharmacological agents (67 studies,
43.2% of the 155 interventional FDCR studies) and cognitive or behavioral interventions (52
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studies, 33.5%) (Figure 4b). The most commonly investigated pharmacological agents were
naltrexone (10 studies), varenicline (4 studies), baclofen (4 studies), oxytocin (3 studies), and
methadone (3 studies). Four studies investigated the impacts of administering a potentially
addictive substance, rather than a therapeutic one. Among cognitive and behavioral
interventions, the most common were simple abstinence (10 studies) and instructed craving
regulation (4 studies). Seven studies used mixes of interventions in different modalities (eFigure
8). Besides pharmacological and behavioral interventions, 12 studies (7.7% of interventional
studies) used brain stimulation technologies (7 TMS, 4 tDCS, and 1 DBS), and 10 (6.5%)
employed neurofeedback (Figure 4b) (For a detailed breakdown of interventional FDCR studies,
see eFigure 6). A majority of the interventional studies (141 out of 155, 91%) used FDCR as a
response biomarker, and 125 reported significant FDCR alterations as a result of treatment.
Twenty-five studies (16.1%) used FDCR as a predictive biomarker, with 24 observing significant
correlations between baseline FDCR and treatment outcomes. Among the 130 studies using
FDCR as an outcome measure, 87 measured pre- to post-intervention changes in FDCR as an
index of intervention effect (66.9%), and 43 (33.1%) measured only post-intervention cue-
reactivity (Figure 4c).
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eFigure 8. Detailed breakdown of interventional FDCR studies with pharmacological (N = 67)
or behavioral (N = 52) interventions. The “Multiple” column stands for those studies that
included more than one type of addictive substance/behavior, while the “Multiple” rows stand
for those FDCR studies which used multiple pharmacological interventions or multiple
behavioral interventions.
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Cross-modal Correlations

Further, 278 studies in the database also tested the relationship between one or more FDCR-
derived parameters and non-FDCR variables (other than direct measures of disease severity)
such as craving, impulsivity, physiological markers of cue-reactivity, hormonal profiles, and
gene variants, with 255 significant and 23 non-significant test results (eFigure 5). Such
investigations could be helpful to demonstrate links between FDCR and different aspects of
SUDs and to clinically validate FDCR markers by supporting their etiological relevance in SUDs.

a. Correlate Types b. Non-Significant and Significant Results
. IR N o oo
Behavioral --- 2 3 3 6 (15%) - |———34 (85%)
Psychological 4 2! o 2 2{7.7%) _! 24 (92.3%)
Genetic 3 2 1 2 (8%) |—— 23 (92%)
Demographic 3 2 3 2 4(19%) =17 (81%)
Neuroimaging 3 1 1 1 —— 19 (100%)
Endocrine/Metabolic 2! 1 —| 12 (100%)
Developmental/Familial 2 1(25%) -|3 (75%) Non Significant
BMI 1 1 1 H3 (100%) . —
Skin Conductance 1 1 (100%)
\l\u‘;&& ‘;06(\0\ 0‘3“'?}& Gb(s"y\c’ z“"Q’b Q\Bb ?,cé{\\ 4 0?&0\\(& \)\'ﬁb

eFigure 9. Multi-modal correlations in FDCR studies. a. Studies which investigated correlations
between FDCR results and other types of measures, broken down by substance or behavior of
interest in each study. “Multiple” stands for those studies that included more than one type of
addictive substance/ behavior. The "other" category includes inhalants and betel-quid. Note
that numbers do not sum to 415 since some studies investigated no multi-modal correlations,
while some fit multiple categories. b. Dumbbell plot showing the number of significant and non-
significant tests of multi-modal correlation.
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eFigure 10. Separate analyses for behavioral addictions. a. Participants in behavioral addiction
studies. The Sankey diagram represents the number of participants in fMRI cue-reactivity
studies divided by sex, population type, potentially addictive drugs and behaviors, and
interventions. b. Seven fMRI cue-reactivity study types for behavioral addictions. The dumbbell
plot shows 100% significant supporting biomarker-related findings for each biomarker
categories. c. Multi-modal correlations in fMRI cue-reactivity studies in behavioral addictions.
The dumbbell plot shows 100% significant test of multi-modal correlations.
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eFigure 11. Preliminary map of the evidence and future directions in biomarker development.
The Sankey diagram presents a summary of the methodological parameters and contexts of use
(COUs) across the 437 potential biomarkers in the systematic review. Moving forward, expert
consensus and meta- and mega-analyses may be used to facilitate harmonization and the
development of optimal FDCR biomarkers which would undergo analytical and clinical
validation and cost-benefit analysis before regulatory qualification for drug development or
clinical use.
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Review of PSY23-0829 (Ekhtiari et al.)
Editorial comments

Thank you for the careful and substantive review of the manuscript, and for considering it for
publication in JAMA Psychiatry. We have thoroughly revised the manuscript in response to both
the editorial requirements and the reviewer's comments. In summary, we have:
1) substantially reduced the word count and references in line with the journal’s
requirements. Some of the material has been removed or summarized, and most has
been restructured and moved to online-only materials,

2) moved several figures and tables to online-only materials,

3) added a “key points” section,

4) moved all authors to a group byline, “Addiction Cue Reactivity Initiative (ACRI) group”,
5) added the required additional sections (Role of Funder/Sponsor Statement, Access to

Data and Data Analysis, Data Sharing Statement)

6) changed the styling format in line with the AMA and JAMA requirements,

7) revised the manuscript substantially in response to reviewer comments, with responses
to each comment provided below.

Reviewer #1

1. This is a very interesting systematic review of the potential role of fMRI-Derived Cue
Reactivity (FDCR) in serving as a biomarker for addictions. The authors include many of
the leaders in this field, and the review uses excellent methodology and analyses
associated with systematic reviews. They find over 400 such relevant research articles
that have documented studies of FDCR in association with prediction of substance use,
SUD risk and treatment response.

We appreciate the reviewer’s careful review of the manuscript and their recognition of
the impact and high quality of the manuscript.

2. Notably about 60% of these FDCR studies are in nicotine (tobacco) and alcohol
populations, where we have FDA-approved pharmacotherapes for potential biomarker
validation. An important issue that is raised in interpretation of this large number of
studies is the heterogeneity of the methods used (e.g. scanning times, single versus
multiple FDCR sessions, differences in substances studied and whether they meet
criteria for an SUD or not, psychiatric and medical co-morbidities) and the relatively
small sample size per study (~35) which make viable conclusions from a systematic
review of this topic very difficult.

As the reviewer correctly notes, there are substantial methodological and conceptual
heterogeneities between the reviewed studies and many FDCR studies have small and
unbalanced sample sizes. This was indeed one aim of the systematic review: to
systematically evaluate the current state of the FDCR literature and identify challenges
and potentials for biomarker development. We further emphasize these objectives,
methodological heterogeneity and sample size limitations of previous research in the



“Participant Characteristics” section, page 8, lines 153-166, and online-only materials, in
the “eMethods” section, page 10, lines 162-167.

3. In addition, there is no attempt to quantify outcomes of FDCR with specific substances
or paradigms, and we are told only what percentage of studied are “significant”.
We considered the use of formal meta-analytic techniques, but ultimately elected to use
the relatively simple metric of “significance” given the extreme heterogeneity in the field.
The scope of this work is to survey the status of the field broadly and provide a roadmap
to support FDCR biomarker development, and also facilitate future meta-analyses of
homogenous subsets of studies in the database. We have added a discussion of this
point in the “Participant Characteristics” section, page 8, lines 163-166.

4. By the end of the manuscript, one is left with the impression that while much work has
been done in the field, actionable items for biomarker development are not well-
established. It is evident that in order to develop viable and validated treatment
biomarkers, larger studies that incorporate standardized FDCR procedures that are
replicable and cost-effective are clearly needed. Thus, the value of the present
systematic review for the field of addictions biomarker development, beyond what has
been recently published (e.g. Ekhtiari et al., 2022. Nature Protocols; Goldstein, 2022.
JAMA Psychiatry), is not entirely clear.

The mentioned papers focus specifically on: (A) The development of a tool/checklist to
improve reporting quality standards; and B) The potential utility of FDCR as a clinical
outcome measure (as only one of many types of biomarkers). Here, we attempt to
provide an overview of the FDCR literature, assess methodological heterogeneity, and
develop a comprehensive biomarker development framework to identify key challenges.
We agree with the reviewer that actionable items for biomarker development have not
been well-established in the field, and indeed one aim of the present manuscript is to
highlight and specify actions such as larger collaborations and funding, methodological
harmonization, biomarker specification and clinical/analytical validation (see biomarker
specification and validation sections, as well as the “Methodological heterogeneity and
biomarker specification” section, page 7, lines 139-144, the “Participant Characteristics”
section, page 8, lines 159-160 and 165-166 , the “Validation of FDCR biomarkers”
section, page 10, lines 253-257, and the “Conclusion” section, page 12, lines 301-310) .
Thus, we view this paper as complementary — not redundant with — the important works
mentioned. Some of these points have been made more explicitly in the revised
manuscript.

Reviewer #2

5. This is a tour-de-force effort by a large group of alcohol and substance abuse
neuroimaging experts to summarize, quantify, and prescribe the future use of functional



neuroimaging (Fmri) research over the last 20 or so years. The paper describes the
review and data abstraction method utilized in this effort, which seems appropriate. The
primary authors should be congratulated on the scope of this effort, and the detail in
which they proceeded in collapsing the diverse data across multiple substances of
abuse and various domains. Beyond the extraordinary catalogue of the relevant
published material, they venture beyond to begin the important process of characterizing
domains in which the totality of this work might benefit future therapeutic drug discovery
and clinical care. In particular, they, and their expert co-authors, should be commended
for their thoughtful analytic and prescriptive approach for the potential of functional
neuroimaging of alcohol and substance abuse disorders (AUD and SUD) to be qualified
by the FDA as a biomarker(s) for drug development. This is an extremely important and
relevant undertaking, which parenthetically is not trivial in scope, technology, and cost.
We appreciate the reviewer’s positive comment, and indeed hope that this and other
efforts can help facilitate the development of clinically relevant biomarkers.

Inclusion criteria for study participants was rather broad from those who met SUD/AUD
diagnostic criteria, to those who used substances excessively or had some rating-scale
Indication of addictive severity. Those with co-occurring disorders were also included.
This can either be seen as a plus or a minus. Since the effort in this paper was to
“catalogue and order” germane studies in this area, that is a plus, however, further work
needs to clarify the overlap or distinction of these co-occurring disorders from the major
findings from primary independent AUD and SUD where the biology might be a bit less
complex — an important distinction to make.

We agree with the reviewer’'s comment about the tension between comprehensiveness
and homogeneity. Given that we focused on reporting the status of the FDCR field so
far, we elected for broadness as the reviewer has noticed. We have further clarified the
aim and limitations of the study and touch on future directions as suggested in the
“Participant Characteristics” section on page 7-8.

Importantly, the data base forming the substrate of this paper was made publicly
available. This group and others can utilize the work presented in this paper (and more)
to address many more questions such as: how specific cues (within and between
substances), prestation times of cues, various brain regional reactivities, sample size
effects, and many others might impact various choices for standardization and
eventually drug development. A comment might be made about this in the conclusion or
elsewhere.

We are glad that the reviewer has noticed the importance of a central repository of
FDCR studies. Sentences are now added to the “Participant Characteristics” section,
page 8, lines 159-166 to highlight this further as well.

It is good to see that some reference is made to the role of genetics and epigenetics in
influencing brain induced cue reactivity. In this reviewer’s opinion, the marriage of
functional molecular genetics and brain neuroimaging is one of the few investigative
pathways to untangle the biological and treatment aspects of AUD and SUD. Perhaps a



10.

11.

bit more emphasis should be placed in this area.

We definitely agree with this important comment and believe that multimodal integration
is essential as the field moves towards developing clinically relevant and biologically
interpretable biomarkers. This is discussed both in the revised “Validation of FDCR
Biomarkers” section on page 10, lines 241-245 and in online-only materials. Several
authors of the present manuscript have formed the steering committee of the ENIGMA
Addiction Cue-Reactivity Initiative (ACRI) within the ENIGMA Addiction working group to
facilitate consensus development, methodological harmonization, and data sharing for
mega-analyses (now mentioned in the “Conclusion” section, page 12, lines 301-310)

The authors might consider commenting on what looks like “a peak or flattening” of the
number of published studies over time. Irrespective of COVID-19 impact, is there a
reason for that? Cost, divergence of results, need for new paradigms? It might speak to
the need for consilience on data and methods. In fact, more emphasis should be placed
on the need for likely commercial, or governmental, (or both) development of a tool box
or standards for investigators to use across studies. Perhaps NIAAA or NIDA could take
the lead in this standardization.

We agree with the reviewer that this trend is intriguing, though we do not believe our
data can clarify the causes. As suggested, we further emphasized the need for
accessible resources to enable further harmonization and synthesis in the field in the
“Conclusion” section, on page 12, lines 301-305. We have actually taken steps towards
this goal with a recent “design and reporting standards” checklist
(https://www.nature.com/articles/s41596-021-00649-4) and are undertaking an effort to
develop a toolbox to help implement and modify an FDCR task (https://osf.io/fbeu8/).

Please explain the difference between a block vs. event related imaging design. While
this might be obvious to experienced neuroimagers it is likely not obvious to the more
naive reader. Perhaps a bit more clarity is needed about the main “dependent variable”
for those studies where only a direct substance cue without additional/combined tasks
were done. The assumption is that the “cue reactivity” had some increased (or perhaps
decreased) salience, reward potential, etc. A bit of time is spent describing the combined
tasks without first defining the essence/meaning of the simple cue reactivity task.

We appreciate the reviewer bringing these issues to our attention, especially since we
aim for the manuscript to be accessible to a wide audience of scientists and
practitioners. A few sentences are now added in the “Introduction” section, on page 4,
lines 57-63, along with a new figure (eFigure 1), to familiarize readers with the basic
design and varieties of an FDCR task.

While figure 4 is visually appealing, it is hard to follow and takes too long to decipher. It
would be best to present the data in tabular form which can be done with more clarity.
We see the reviewer’s point about the figure’s decipherability. We have moved the figure



12.

13.

14.

to online-only materials (eFigure 6) and the information presented in this figure is further
discussed in the “Participants in FDCR studies” section (online-only materials pages 15-
16).

Regarding the “predictive index” which can also be considered a “therapeutic response
index/marker/indicator”, it would be wise to mention that differential drug mechanisms
might act differentially on established brain reactivity and potentially brain regional
reactivity. For instance, opiate antagonists might block reward-mediated pathways but
other drugs like acamprosate or gabapentin might not do so. Others might work through
cognitive enhancing or impulse control cortical pathways etc. This is alluded to later but
should be emphasized a bit more in this section.

This is an important point. This is now further discussed in the discussion section in
“Contexts of use of FDCR biomarkers” section, page 9, lines 201-206, to briefly illustrate
and discuss differential intervention mechanisms.

Good job on Figure 5, very creative use of graphics (heat map) and adapted odds ratio
type graphics. However, it would be helpful to add (%) after the numbers in graph 5b to
better control for overall number of studies. One could alternatively only provide % and
not N. This is also true off Supplementary Figure 4b. One other important point needs to
be made about this section (perhaps more important for supplementary figure 4b) is
publication bias and post-hoc exploratory analyses. It seems a bit unusual that across
the multitude of domains explored in that figure there were “very few” non-significant
findings. This is likely accounted for by publication bias and post-hoc exploratory
observations. This should be more made explicit.

We appreciate the reviewer’s kind note, and percentages are now added to Figure 3 and
eFigure 9. The issue of potential publication bias and post-hoc exploration is also
discussed in greater detail in the “Validation of FDCR biomarkers” section of the revised
manuscript on page 10, lines 261-265.

Figure 6 probably should be removed since it is showing only the results from the
studies referenced in Figure 5. In some ways it is a graphic rehash of what is written in
figure 5, but more importantly it represents the results of only one or two studies, while
perhaps well done and representative, are trivial in the context of what this article is
trying to do i.e., aggregate data across a number of studies. It would have been better to
have utilized the relevant studies detailed under the substance categories in Figure 5.
And in tabular (or perhaps brain graphic) form show what regions were most reported
most frequently affected in each biomarker-type by substance-category. Perhaps this
can be limited to the top two-three substance categories. These can be included as
either primary or supplemental tables. If the authors choose not to do that, they might
comment that this needs to be done in a future manuscript but still removing figure 6
which seems premature.



15.

This was included to provide a visual companion to the table of exemplar studies, but we
agree with this comment and the figure is now moved to the online-only materials
(eFigure 7).

While recognizing that this paper contains considerable material and contains significant
depth of content, it would be useful to provide a bit more information on the
interventional studies in regards to actual predictors (brain region by drug). To interest
pharma companies, and to “jump start” more commercial exploration and interest, more
detail in this regard would be useful. Perhaps adding a supplementary tables or at least
indicate which drugs showed the most promise for a treatment response being predicted
by a FDCR biomarker. This is done in a summary way in the discussion but more depth
in the results appears warranted.

Thanks for this critical suggestion by the reviewer. Besides further highlighting the
potential uses of FDCR biomarkers in drug development (for example with Fast-Fail
trials), we have provided some statistics about the frequency of various intervention
types and interventions in the discussion of interventional biomarkers in “Contexts of use
of FDCR biomarkers” section, on page 9, lines 196-200 and lines 219-223. Further detail
is provided in the online-only materials of the revised manuscript on pages 18-19.

Discussion:

16.

17.

While a discussion of “combined paradigms” seems logical in a compendium of this
work, if word space is needed, this can be shortened to two sentences with the highlight
on the last sentence (lines 564-565) being the most important.

The change is now made as suggested in the revised manuscript.

The section on methodological design is very important and mostly accurate. However, if
| were a pharma company going to invest in this area, | would be “scared to death” about
the highlighted/perceived complexity of the issue. Considerable “parametric work” might
be needed prior to validation in a qualification plan for FDA approval. Unfortunately,
within typical RO1 review and funding, parametric studies are not highly valued. Some
statement regarding the need for appropriate parametric studies (as indicated in this
section) and funding sources (like perhaps NIH (NIAAA, NIDA) contracts, RFA’s etc.)
need to be highlighted. The conclusion alludes to some of this, but | think it would be
worth being more explicit with a larger “call to arms” for NIH the FDA and pharma
companies to cooperate in this effort.

This issue had been previously raised among co-authors as well, and we agree with the
reviewer that a more forceful “call to arms” is warranted. Funding issues are now
discussed more explicitly in the revised manuscript as suggested in the “Conclusion”
section, page 12, lines 301-310, and we hope that our outlining of concrete and
incremental steps towards tackling the most substantial challenges will help allay fears
of insurmountability.
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19.

20.

21.

In the section under population differences, | think it might be useful to reduce the
discussion to acknowledging that various demographic and disease specific differences
(sex, race, severity of SUD, recency of use, co-morbid conditions etc.) should be further
explored using the data derived from this review or others. One wonders whether
machine learning, Al, or large multivariate models might be of particular use here and
encouraged.

We had previously briefly touched on the potential of multivariate and deep learning
models. We agree with the reviewer’s note and the discussion is now slightly extended
(within word limit bounds) to highlight that such models hold immense potential to aid the
development of useful neuromarkers and disambiguate the impact of demographic
factors ( “Participant characteristics” section, page 8 lines 153-158 and Box 2).

The section on FDCR intervention biomarkers is particularly important and some
relevant literature is added. A further, more refined, analysis of this area from the data
available from the studies identified in this review is in order and should be noted as
suggested above.

We agree with the importance of interventional FDCR biomarkers, particularly
biomarkers of treatment response. We have highlighted the need for further quantitative
syntheses of studies in the database for biomarker development in the “Participant
characteristics” section, on page 8, lines 159-166.

The idea of the FDCR biomarker as a surrogate endpoint is intriguing. This idea could be
enhanced by pointing to several other diseases such as brain amyloid scanning for new
Alzheimer drugs, and cholesterol monitoring for heart disease. These analogies could
draw attention from pharma companies to encourage translational thinking. This a
laudable goal but likely a way off in FDA regulatory thinking.

We agree with the reviewer’s observation, and a sentence is now added mentioning the
useful analogies that the reviewer recommended in the “Contexts of use of FDCR
biomarkers” section, on page 9, lines 216-219.

There should be a small section detailing “future impediments” to developing and
validating a FDCR qualification plan that should include: sufficient expertise within the
FDA internal Qualification Section, and the significant costs of doing qualification studies
and who will bear those costs. It is likely that the perceived low return-on-investment for
Pharma companies to invest in a costly FDCR qualification plan will be a large
impediment. It would seem, that the most likely mechanism for such an event would be
through an NIH funded mechanism — perhaps in a public/private partnership. The article
should address this crucial point that goes a bit beyond what was already mentioned.
We completely agree with the reviewer. We discussed this important point further in the
“Conclusion” section, on page 12, lines 304-310, highlighting the importance of a
suitable funding mechanism in the revised manuscript.



Tables/figures:

22.

Figure 4 is hard to understand despite having visual appeal. It should be turned into a
table.

We have moved the figure to online-only materials (eFigure 6) and the information of this
figure is further discussed in the “Participants in FDCR studies” section in online-only
materials, page 15, lines 230-348.

Reviewer #3

23.

24.

25.

This manuscript describes the potential of using fMRI drug cue reactivity (FDCR) as a
biomarker for addictions research. The authors detail FDA criteria for evaluating
biomarkers and conducted a systematic review of prior FDCR work. As they note, the
latter part of this is not very novel, as there are multiple recent reviews of the FDCR
literature. Presumably there are also reviews detailing the FDA criteria for biomarker
development, however combining the two things here and proposing future directions to
move the field forward is a potentially important contribution to the literature. However, |
do note several limitations.

We thank the reviewer for their positive comment. We have highlighted the fact that,
unlike recent reviews and systematic reviews of the FDCR literature, we focus on the
methodological and study design characteristics of FDCR studies in the “Introduction”
section, page 6, lines 91-97.

A primary limitation of this review is the lack of detail and consideration of data quality.
For example, the first study in Table 1 (Dager et al., 2016) had a small sample size
(N<20 per group) which is a weakness. The fact that small sample sizes used to be
standard in fMRI does not mean that findings from such studies should not be viewed
within the context of this limitation. Similarly, it is highly likely that many of the studies
included used approaches for multiple comparison correction that are unacceptable by
today’s standards. | also did not see any references to excess motion or whether the
quality of preprocessing steps was evaluated. Some discussion of these critical
methodological issues is warranted.

We agree with the reviewer that there are substantial methodological heterogeneities
between the reviewed studies, and many FDCR studies suffer from limitations such as
small sample sizes and improper preprocessing or analysis. We have now more
explicitly highlighted several methodological and analytical shortcomings in the
“Participant characteristics” section non page 8, lines 158-160 and in “Validation of
FDCR biomarkers” section, page 10 lines 253-261, and 265-268, though we did not
collect data on multiple comparisons correction and head motion correction methods
since the scope of the present manuscript is already very broad.

Based on the definition of ‘predictive’ biomarkers in Table 1 (“existence or intensity of the
biomarker reflects the propensity of individuals to experience favorable or unfavorable



26.

27.

28.

effects”), it is not clear that the example studies necessarily meet this definition. For
example, the Bach 2021 paper describes a median split of data that is then used to
predict relapse. Again, some discussion of the methodological limitations of prior work
seems missing here. This is not to criticize the existing studies but to provide appropriate
context.

We appreciate the reviewer’s highlighting of this issue. A principal aim of the present
manuscript is the explication of challenges in developing FDCR-derived biomarkers. We
have now added a discussion of this limitation in the context of “Validation of FDCR
biomarkers” section on page 10, lines 253-257, and online-only materials eFigure 7,
page 18, lines 303-304.

Including subtyping studies under ‘diagnostic’ seems overly simplistic (especially as the
subtypes described, e.g., ‘relief drinking’ are not themselves diagnostic categories).
Were these studies actual data-driven subtyping studies or just comparisons of
individuals with or without a given characteristic?

We use the term “diagnostic” for this class of biomarkers in line with the cited FDA-NIH
handbook from which we have adapted this category, and have now endeavored to
further clarify its scope in the revised manuscript in the “Contexts of use of FDCR
biomarkers” section on page 8, lines 178-183. The diagnostic studies in our database
have all essentially conducted statistical comparisons of the FDCR signal between
participant groups defined a priori, though in principle, researchers could start from the
other end, i.e., with data-driven identification of “neurotypes” using the fMRI data.

Figure 6 only describes findings from studies highlighted in Table 1, which is not
ultimately very helpful in the context of the much larger number of studies included in the
review. It is also potentially misleading, as it seems to imply to that, for example, the
amygdala is important for severity but not for prognosis. This is particularly problematic if
some of the studies used to create this figure did not use whole-brain approaches (e.g.,
may not have tested the amygdala at all).

We agree with the reviewer's comment and can see how this figure might be viewed as
a summation of “what is known” rather than a visual illustration of exemplar findings. The
figure is now moved to online-only materials (eFigure 7) with further explanation in its
caption to avoid any misreading.

The authors note that the studies reviewed ‘may have included partially or fully
overlapping samples’. This is a pretty big limitation. It is best practice for authors to
report when they are publishing a re-analysis of a prior sample, so presumabily it would
have been possible to remove such studies or to at least quantify how many studies
have overlapping samples?

We agree that this is an important limitation when estimating the number of participants
across FDCR studies, and that our provided numbers are effectively an “upper bound”.
We did seek to address this issue by having one rater review the methods sections of all
included studies and no sample duplications were discovered in the database based on
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31.

what study authors have explicitly reported in papers. This is now noted in the online-
only “eResults” section, page 15, lines 247-248.

Figure 4 is very hard to follow. Suggest creating a table or different figure other than a
Sankey diagram.

We agree with this concern (also raised by another reviewer). The figure may be
confusing since it's an attempt at summarizing much of the data in a single visualization.
We have moved the figure to online-only materials (eFigure 6) and the information of this
figure is further discussed in the “Participants in FDCR studies” section in online-only
materials.

Inclusion of individuals with behavioral addictions needs better justification and it would
also be helpful to see these studies analyzed separately.

Thanks to the reviewer for raising this important issue. To make our systematic review
as broad as possible, we decided to include all the addiction types that are defined in the
DSM 5, including gambling disorder and internet gaming disorder. We do acknowledge
its importance and have included a discussion in the “Methods and Results” section,
page 6, lines 106-110, and online-only eMethods page, lines 61-65. Furthermore, we
have added eFigure 10 presenting our central analyses for behavioral addiction studies
only.

In Fig. 4, are all “AD” individuals those with a confirmed DSM diagnosis or are some of
these individuals who were included on the basis of a rating scale (as indicated in the
methods)?

These are all individuals diagnosed with an addictive disorder based on widely accepted
diagnostic criteria, such as those outlined in the DSM or ICD manuals. Individuals who
use substances but are not formally diagnosed with an addictive disorder are termed
“Users”. Further details are added to the legend of eFigure 6, page 16, lines 256-259.
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eBox. Biomarkers in Psychiatry and Addiction Medicine

The FDA-National Institutes of Health (NIH) Biomarker Working Group defines a “biomarker”
as “a defined characteristic measured as an indicator of normal or pathogenic biological
processes, or biological responses to an exposure or intervention, including therapeutic
interventions” [BEST (Biomarkers, EndpointS, and other Tools) Resource!]*. The development
of clinically relevant biomarkers is a major goal of addiction neuroscience and translational
psychiatry. Regulating agencies have shown increasing interest in validated biomarkers, with
the FDA’s biomarker qualification program, among others, working to provide formal
endorsement of biomarkers to facilitate their use in drug development and regulatory
decisions?. Recent reviews and opinions have outlined the potential for an expanding group of
central and peripheral biomarkers of major psychiatric conditions, including genomic,
epigenetic, and transcriptomic biomarkers3, proteomic biomarkers*, inflammatory markers>,
non-inflammatory chemokines®, cardiovascular biomarkers’, hormonal and neurotransmitter
profiles®, cognitive and behavioral markers®, biomarkers derived from neuroimaging
paradigms!®!! and multi-modal biomarkers!?. Several neuroimaging biomarkers are also at
varying stages of validation by the FDA for neurological or psychiatric disorders. These include
baseline hippocampal volume assessed by Magnetic Resonance Imaging (MRI) in Alzheimer's
disease and Glx (Glutamine+ Glutamate) measured in the brain by Magnetic Resonance
Spectroscopy (MRS) in depression. Notably, the NIMH “Fast-Fail” trial initiative supports the
use of functional MRI (fMRI) in early-phase drug development to lower the risk of failure in
large clinical trials: in the first implementation of the approach, task-related fMRI revealed that
kappa opioid receptor antagonism can enhance reward-related ventral striatal activation,
supporting larger trials for cross-diagnostic treatment of anhedonia®>*4,

Commensurate with broader progress in biomarker development across various psychiatric
disorders, different types of brain-based markers with potential for clinical translation have
been proposed for addictive disorders, but their clinical and analytical validation remains
limited®>. Objective biological metrics of SUDs are currently limited to measures of substance
use - mainly testing for psychoactive substances or their metabolites in biological samples®’
- or measures that reflect the toxic effects of use!®. Notably, these biomarkers reflect endpoints
of substance use and toxicity and are not informed by the dynamic processes that underlie
how drug use behaviors relate to addiction. This limitation hampers the clinical use of
intermediate phenotypes and the development of biomarkers to identify at-risk individuals
and to mechanistically inform, predict, and monitor interventions'®. Relatedly, although the
DSM-5 proposed diagnostic criteria for behavioral addictions (BAs), including gambling
disorder and internet gaming disorder, no biomarkers are included for BAs?°, According to the
FDA website (visited December 15th, 2020), there are no qualified biomarkers or ongoing
qualification processes for biomarkers in addiction medicine/psychiatry?!. The only submitted
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biomarker qualification proposal - covering a single nucleotide polymorphism in the delta
opioid receptor 1 gene - appears to have been rejected at an early phase.

Reactivity to addiction-relevant cues

A popular paradigm to assess brain function in individuals with SUDs is data acquisition with
fMRI during the administration of a drug cue-reactivity task??. Similar paradigms have been
developed to investigate reactivity to addiction-relevant cues in BAs?32>, These paradigms
(referred to collectively as “cue-reactivity paradigms”) involve the presentation of a variety of
conditioned cues, associated with the availability or use of substances or other similarly
desirable experiences to participants who have had prior experiences with them. The cue-
reactivity paradigm rests on the understanding that addictive disorders involve sensitization to
addiction-relevant cues?®, which can trigger behavioral and physiological responses associated
with craving and anticipation?’. Cue-reactivity tasks had been developed and validated
extensively before the advent of fMRI and have been readily modified and adopted in fMRI
research?®?°, Engagement with addiction-relevant cues under fMRI scanning enables the
exploration of the neural mechanisms that are associated with the response to addiction-
relevant cues®, and fMRI drug cue-reactivity (FDCR) has demonstrated that SUDs are
associated with aberrations in the neural circuitry underpinning incentive salience, reward
evaluation, interoception, memory, habit formation, and executive control332,
If variations in FDCR signal are associated with the existence and severity of addiction-related
processes, the development of FDCR-derived biomarkers could aid in diagnostic classification
and sub-grouping, assessing disease severity, identifying at-risk individuals, understanding the
neural mechanisms involved in effective interventions, targeting disrupted neural function
with novel interventions, early evaluation of new interventions based on surrogate endpoints

13,32-34  More recent

such as target-engagement, and monitoring treatment effectiveness
avenues of research have combined cue-reactivity with other paradigms during fMRI
acquisition3>37 and investigated the interaction of FDCR and genomic3, epigenetic®,
metabolic®, physiological*!, developmental*?, behavioral*3, cognitive***+’, personality*® and
psychiatric*>°° correlates of addiction. Considering the multi-faceted and multi-causal nature
of these disorders and their frequent co-occurrence with other mental and physical health
conditions, such studies establish the etiological importance of FDCR in SUDs and lead to better
characterizations of addictive processes, ultimately enabling the development of multi-domain
biomarkers®>? For example, neuro-genetics studies have shown that the A118G single
nucleotide polymorphism of the mu opioid receptor (OPRM1) gene may result in higher levels
of FDCR> (Ray et al., 2014) and also impact the clinical response to naltrexone (a p-opioid

antagonist medication)>.

© 2024 American Medical Association. All rights reserved.
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eFigure 1. Overview of fMRI Drug Cue Reactivity Task Designs

Overview of fMRI Drug Cue Reactivity Task Designs A) Cues/Stimuli are presented in groups or
“blocks” containing a series of similarly conditioned cues which are then separated by a delay
from the next block. B) Stimuli are presented in succession with or without a delay, without being
arranged by their type. Tasks may have a few sections or “runs” where a delay separates each
run from the next without the participant exiting the scanner. C) Mixed design tasks may borrow
elements (like grouping or sequence randomization) from either a block design or an event-
related design with the addition of another set of changing conditions or events that occur
concurrently with the task D) Combined tasks use cue-reactivity concurrently with another
cognitive task (e.g., Go/No-Go task). Designs can incorporate stimuli presented in various
modalities, including visual (static or dynamic), auditory, olfactory, or tactile.

© 2024 American Medical Association. All rights reserved.



Sources of
Evidence

1 - Systematic Reviews
3 - Meta/Mega-Analyses

) 4

Biomarker Speciﬁcation"2

2 - Expert Elicitation/Consensus
4 - New/Prospective Research

Context of Use Specification'?

e N ~
Target Population Standard Operating Procedure
= + Demographic Criteria + Abstinence status
o Disease
= + Drug Use Profile + Fasting Natural Course Oitcomes
é + Clinical Characteristics + Familiarization procedures
8 + MRI and Task-related Criteria + Time of Day Health Disease m
(%]
>
= - ) on oot e
g Image Acquisition Analysis & Utilization P Y Intervention Physiological Effect o b0
:
g * MRI Device Properties + FCR Measure Specification R ARITIEY (i 200
+ Imaging Protocol + Image Preprocessing R ersa Effacts
+ Image Quality Control Criteria + fMRI Analysis Framework
+ Task Parameters + Clinical Interpretation
. 4 \& o
. At R . s - 18
Analytical Validation Clinical Validation Cost-Benefit Analysis
S » Accuracy/Precision - Etiological Grounding of FDCR « Drug Development Acceleration
- — . i i i 1 (o)) i .
2 « Subject, Operator, and Scanner in Addiction « Preclinical/Clinical Benefit
T Reliability . FS{tet(rjosSecFlveéIZrospectlve - False Positive/Negative Cost
@ . iati udy Design*®"
& Natural FDCR Variation 0 . ) o Gz Gt
« Instrument/Random Error + Statistical Analysis Plan
Modelling
[ |
X7
c Letter of Support :
(o]
=
@ e
O Drug f Intent Institutional
= Development 2l Review Clll’mt(t:al Use
S5 Pathway athway
o Qualification Plan
Py (QP) Endorsement,
9 Recommendation
) FDA L and Inclusion in  NJA/NIMH/NIAAA
=1 Qualification ':‘;Lf:agfzgao“s;‘ Guidelines SAMHSA
& Framework g APA/ASAM
Qualification Announcement Practice Guidelines
c
[e]
3
2 ‘ FDCR as Drug Development Tool I FDCR in Direct Clinical Use
Q.
a
<C

© 2024 American Medical Association. All rights reserved.

Use and Ongoing
Evaluation/Optimization

{.




eFigure 2. Four Major Steps in the Validation of Potential fMRI Drug Cue Reactivity—
Derived Biomarkers

Initially, a context of use for an FDCR-derived biomarker is specified and the potential biomarker
is precisely defined. Following analytical and clinical validation and cost-benefit analysis, the
compiled evidence is presented for regulatory approval. The FDA evaluates the use of biomarkers
for drug development through a biomarker qualification process involving submission of a Letter
of Intent, a Qualification Plan, and a Full Qualification Package, though a Letter of Support may
be issued by the FDA to indicate its support for a biomarker before formal qualification. The use
of FDCR-derived biomarkers in clinical contexts requires the endorsement of a constellation of
other institutions. Surr. Endpoint: Surrogate Endpoint.
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eMethods.

The methods section is organized based on the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) checklist. The protocol for this systematic review was pre-
registered®. While we refer to fMRI “drug” cue-reactivity (including alcohol) throughout the
manuscript, behavioral addiction studies focusing on problematic videogame playing or gambling
were not excluded as they constitute a small portion of the cue-reactivity literature and involve
cue-reactivity paradigms similar to drug cue-reactivity studies. Since behavioral addictions (BAs)
have recently been added to the widely used nomenclature system, and the pathophysiology
may not be completely the same as SUDs, one should be cautious in analyzing these data
together. Therefore, information on BAs can be seen separately in our database for future use.

Eligibility criteria: Original studies were selected according to the criteria outlined below.

Study design and methodology: We employed a broad perspective in the inclusion of studies,
including all types of original research (e.g., basic research, observational studies, and
interventional studies). Only peer-reviewed studies were included.

Of interest were original studies that included one or more fMRI-based investigations as a major
part of their methodology, whether as an observational or as a treatment tool (e.g. in fMRI
neurofeedback). For at least some of the study population, the fMRI investigation had to include
a cue-reactivity task, including the presentation of substance- or problematic behavior-related
cues and at least one other class of cues (i.e., neutral or non-substance-related) for comparison.
Acute challenge studies involving direct administration of substances of use were not included
unless cues associated with the substance/object of use were explicitly presented as well. Cues
also had to be ecologically valid; i.e., they needed to be associated with routine drug-taking
behaviors and not be novel conditioned cues associated with the substance/object of use for the
first time during the experiment. We excluded studies that did not provide details about the fMRI
protocol, setting and tasks, outcomes of interest used in the analysis, and basic fMRI measures.
There were no further exclusions, and both whole-brain and region of interest (ROI)-based fMRI
studies were included.

Participants: Every study required at least one human population or sub-population with more
than one member, for which at least one of the following needed to be true:

At least one circumscribed group of participants had a diagnosis of at least one SUD or BA, either
manifest as active use or in remission; with the diagnosis made either before the study, as part
of the study protocol during the investigation, or by the end of the study (i.e., with the diagnosis
serving as an outcome measure).
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At least one group of participants was included explicitly because they regularly consumed a
potential object of addiction (substance or behavior) and/or had a risky pattern of consumption
that might lead to addiction, and the study focused on their reactivity to cues of that substance
or behavior.

At least one group of participants had been assigned a score for an addiction-related
phenomenon (such as addiction or drug-use severity) with or without an explicit diagnosis of an
SUD or BA, and the relationship of this score to important outcomes in the study had been
investigated.

No restriction was placed on study participants based on demographic, ethnic, biological, or
clinical factors (such as any co-occurring disorders).

Language: Only publications with their full text in English were included.

Information source: Existing research was identified and retrieved using PubMed. Relevant
articles were identified using a comprehensive search strategy for all terms related to addiction,
fMRI, and cue-reactivity, as detailed below.

Search strategy: Considering the subject of the review, a list of three sets of keywords was
compiled (eTable 1). These terms were adapted for use in PubMed (exact search syntax and
search results are outlined in eTable 2). The first set included synonyms of “functional magnetic
resonance imaging”, the second included terms related to cue-reactivity, and the third included
synonyms of “addiction” and various terms related to SUDs and BAs and addiction medicine. To
help widen the search, no filters were used. The exclusion of systematic reviews and other non-
original research and the application of other inclusion/exclusion criteria were handled manually.
Given the large volume of relevant literature on PubMed, other search engines or grey literature
were not used.
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eTable 1. Search Terms Used for this Systematic Review

fMRI

“functional MRI”

“functional
resonance”

magnetic

“cue-reactivity”

“cue exposure”

“craving”

“cue induced”

“drug cue”

“drug cues”

addict*

dependence

“substance use”

“substance abuse”

“drug abuse” “drug use”
nicotine smoker
tobacco opioid

opiate heroin
marijuana cannabis
“thc” alcohol*
cocaine amphetamine

methamphetamine

“behavioral addiction”

“internet addiction”

“problematic gaming”

“gaming disorder”

“gambling disorder

“problem gambling”

fMRI search terms

10R20R3

Cue-reactivity search terms

40R50R60R70R80R9

© 2024 American Medical Association. All rights reserved.




Addiction search terms

100R110R120R130R140R150R16 OR170R 18 OR190OR 20 OR
21 0R220R230R240OR250R26 OR270R 28 0R29 OR300R310R
320R330R34

Final search

35 AND 36 AND 37
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eTable 2. Final Syntax of PubMed Search, and Number of Raw Search Results

Term Group Search Number of
results on 5
Jan 2023
fMRI search fMRI OR “functional MRI” OR “functional magnetic resonance” 573243
Cue-reactivity search  “cue reactivity” OR “cue exposure” OR craving OR “cue induced” 9841
OR “drug cue”
Addiction search addict®* OR dependence OR “substance use” OR “substance 1424082
abuse” OR “drug abuse” OR “drug use” OR nicotine OR smoker OR
tobacco OR opioid OR opiate OR heroin OR marijuana OR cannabis
OR “THC” OR alcohol* OR cocaine OR amphetamine OR
methamphetamine OR “behavioral addiction” OR “behavioral
addiction” OR “internet addiction” OR “problematic gaming” OR
“gaming disorder” OR “gambling disorder” OR “problem
gambling”
Final search (fMRI OR “functional MRI” OR “functional magnetic resonance”) 952

AND (“cue reactivity” OR “cue exposure” OR craving OR “cue
induced” OR “drug cue” OR “drug cues”) AND (addict* OR
dependence OR “substance use” OR “substance abuse” OR “drug
abuse” OR “drug use” OR nicotine OR smoker OR tobacco OR
opioid OR opiate OR heroin OR marijuana OR cannabis OR “THC”
OR alcohol* OR cocaine OR amphetamine OR methamphetamine
OR “behavioral addiction” OR “behavioral addiction” OR “internet
addiction” OR “problematic gaming” OR “gaming disorder” OR
“gambling disorder” OR “problem gambling”)

Study records

Data management: Literature search results were imported to Excel. Screening of articles for

relevance was performed by reviewing the title and abstract sections of candidate texts, and full

texts were obtained for studies that passed preliminary screening.

© 2024 American Medical Association. All rights reserved.




Study selection: Screening forms were developed for title/abstract and full-text assessment and
studies were checked by two authors (MZB and AS). The authors initially checked the eligibility
of fifty randomly chosen studies under the supervision of the corresponding author (HE) as a
calibration exercise to ensure eligibility criteria were applied consistently °6. After title and
abstract screening, the two authors screened the full texts of papers that either met the eligibility
criteria or had an uncertain status. Any papers with an uncertain eligibility status after full-text
screening were then discussed with HE until a consensus on their inclusion was reached. Reasons
for the exclusion of articles at the title and abstract or full-text screening stages were recorded,
according to the PRISMA framework>’. Neither of the review authors was blind to the journal
titles, study authors, or institutions.

Data collection: Data were filled into a spreadsheet by PA, AFJ, AH, and AKZ. Consistency
between the authors was honed through a calibration exercise in which all authors evaluated and
discussed their ratings for 20 randomly chosen studies °¢. AS, MZB and HE further refined the
data extraction form to reduce inconsistency and ambiguity after the exercise. Data on study
design features and basic methodological parameters were extracted first, and each article was
reviewed independently by two authors in two separate spreadsheets, with inconsistencies
resolved in discussions with MZB and AS with HE’s supervision. To check whether any study
samples overlapped with other studies (e.g. in the case of re-analysis studies), a single rater (AF)J)
screened the methods sections of all studies.

Data items: We extracted publication details, publication country (where the first affiliation of
the first study author is located or the affiliation of the majority of the authors in case country
was not clear), publication year (based on PubMed’s indexing), the substance or behavior (main
substance(s) and/or behavior(s) of interest in the study), main experimental task design type
(whether cues were presented in blocked, event-related, or mixed forms), stimulus type (sensory
modality of cues), combined tasks (whether cue-reactivity was paired with other tasks; and what
tasks were used), task duration (seconds, excluding other paradigms that may have been
implemented in the scanner), study sample characteristics (number of participants of each sex;
number of participants with untreated or treated addictive disorders, drug-using individuals who
did not meet SUD criteria, individuals in long-term abstinence, and healthy non-using
participants), intervention (if included, type of intervention), association with a future event (a
non-fMRI variable measured at a later point in time based on fMRI results), number of fMRI
sessions (times each participant was scanned), and interval between fMRI sessions (if participants
were scanned more than once for a study, the average time interval between the scans). Yes/No
ratings were used to classify whether the design of each FDCR study allowed for it to be
potentially used to develop susceptibility, diagnostic, response, prognostic, predictive, or severity
biomarkers for one or more SUDs/BAs. Yes/No ratings were also used to specify whether a study
investigated relationships between FDCR-derived parameters and subjective craving,
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demographic variables, behavioral measures, biochemical assays, participant genetics, non-FDCR
structural or functional neural markers, physiological parameters, or psychiatric assessments. For
each study investigating use of FDCR as a biomarker type or assessing FDCR correlates, it was also
rated as to whether significant test results were observed. However, we elected to use the
relatively simple metric of “significance” given the extreme heterogeneity of analyses and
reported statistics in the field, which would complicate further quantitative synthesis. The scope
of this work is to provide an overview of the status of the field and address the current
heterogeneities to provide a roadmap to support the development of evidence that can be used
in higher quality quantitative metrics in the future.

Software

The PubMed search engine from the National Library of Medicine’s online portal
(www.ncbi.nlm.nih.gov/pubmed/) was used to conduct the search. Zotero®® was used for
reference management. Google Sheets from Google’s Google Docs Editors suite was used to
design tables for data extraction and sharing among authors. Data analyses and illustrations were
conducted using R version 4.0.5°°.

The protocol for this systematic review was developed throughout 2019 and was first registered
on the Open Science Framework (OSF) website on May 18", 2020. The current extracted
database is available publicly in the OSF page (https://osf.io/eb972/). As this is an ongoing
systematic review, we recommend viewing the OSF page of this project for the latest
developments and updates®>.
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eResults.

The search was performed on January 5, 2023, yielding 952 results. Of these, 415 were excluded
at the title-and-abstract screening stage, and 122 were excluded after full-text screening, yielding
a total of 415 FDCR publications that were included in the data extraction phase of the systematic
review. The PRISMA flowchart is presented in eFigure 3. Most studies are from the US (51.0%)
followed by Germany (13.3%) and China (13.0%) (eFigure 4). A breakdown of papers by the
substance or behavior of interest shows that most studies have been conducted on various forms
of either nicotine (29.6%), alcohol (29.2%), or cocaine (11.1%) use/use disorders, overall
accounting for 69.9% of the papers in the database. Earlier studies in the database were all
focused on cocaine and alcohol, with the first studies on cannabis and video games published in
2009 and the first on methamphetamine published in 2012 (eFigure 5). There is an overall yearly
increase in the number of FDCR studies, with the vast majority of studies (303, 74.0 %) published
in the last 10 years.

© 2024 American Medical Association. All rights reserved.



= Records Additional
= Identified Records

3 Through Identified
E Database Through Other
__8 Searching Sources

= (n=1952) (n=0)

\/

Records After
Duplicates
Removed
(n =952)
g * Record
= ecoras
c Records
v Excluded
o Screened
&} ~ (n = 415)
e (n=952) - Not Original (n = 117)
- Not fMRI (n = 70)
- Not Addiction-Related Cue-Reactivity (n = 131)
- Not English (n = 9)
- Not Relevant Population (n = 78)
- Not Human {n = 6)
- Single Subject (n = 4)
1
R 4 Full Record Full
T :ecoAr n d Texts Excluded,
exts Assesse .
- for Hlicibilit With Reasons
or Eligibili
£ OB (n=122)
2 (n =537) - Not Original (n = 23)
= - Not fMRI {n = 15)
t - Not Addiction-Related Cue-Reactivity (n = 71)
- Not Relevant Population (n = 12)
- Single Subject(n = 1)
|
Studies
D Included In
= _
= Qualitative
E Synthesis
(n = 415)

eFigure 3. PRISMA Flowchart

The titles and abstracts of 952 records from the start of 1998 until the end of 2022 were screened,
and 415 were excluded during preliminary screening. The full texts of 537 records were extracted
and assessed for eligibility. Ultimately, 415 records were included in the systematic review.
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eFigure 4. Global Contribution to fMRI Drug Cue Reactivity (FDCR) Studies
Number of FDCR studies in each country, broken down by the type of addictive
substance/behavior. “Multiple” stands for studies including more than one type of addictive

substance/behavior. The "other" category includes inhalants and betel-quid. Note that only
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papers whose full-text was in English were included, potentially leading to a relative over-
representation of majority English-speaking countries.

© 2024 American Medical Association. All rights reserved.



= = m = =

1

1

1

1
Bow

Nicotine

Alcohol o 11

Cocaine 1 1 1 - 46 (11.1%)

Opioids - 33 (8%)
Videogame 24 (5.8%)

Cannabis 23 (5.5%)

Methamphetamine 16 (3.9%)

Gambling Ia (1.9%)
Multiple 19 (4.6%)
Other 2 2(0.5%)
D O DN A D> H OOA DO O NN NS AN DO O N A
PPN T PP PS PO 0000020 P g
I i L S S S i

eFigure 5. fMRI Drug Cue Reactivity Studies (1998-2022)

Number of FDCR studies each year from 1998 till the end of 2022, broken down by the type of
addictive substance/behavior. “Multiple” stands for those studies including more than one type
of addictive substance/behavior. The "other" category includes inhalants and betel-quid.

Study and task design

Most FDCR studies scanned participants at a single time point (78.8%). For the 88 studies with
more than one scanning time point, the median inter-scan interval was 14 days, though a
relatively wide distribution was observed (IQR = 21) (Figure 1b). The vast majority of studies
(85.3%) used visual stimuli (for a detailed breakdown, see eFigure 6), with a minority using other
stimulus types such as semantic (2.7%), gustatory (2.2%), auditory (1.7%), olfactory (1.2%), and
imaginary (1%) stimuli. Another 25 multi-sensory studies (6%) used various combinations of
stimuli (Figure 1f). Cues have been commonly presented in a block (61.9%) or event-related
(36.9%) design, with only 1.2% of studies using other designs or both event-related and blocked-
design FDCR tasks within a single study (Figure 1c). The median FDCR task duration was 720
seconds (IQR = 800) (Figure 1d), and 52 FDCR studies used combined FDCR tasks: these are tasks
in which the presentation of addiction-relevant cues is paired with another concurrent task
component to probe cognitive functions such as response inhibition (32.7% of the 52 studies),
interference resolution (25.0%), attention (13.5%), decision-making and reward processing
(11.5%), perception (7.7%), working memory (5.8%), or approach/avoidance (3.8%) (Figure 1f).
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eFigure 6. Breakdown of Visual Cues

Among 354 sets of visual cues used in FDCR studies, they are broken down into pictures and
videos with audio and without audio.

Participants in FDCR studies

Overall, 19,311 individuals participated in FDCR studies from 1998-2022. Of these, 12,950 were
male (66.1%) and 5,130 were female (26.5%), with the sex of 1231 participants (6.4%) not
explicitly specified. The median sample size of FDCR studies was 37. The 19,311 participants can
be divided into 10,186 individuals with untreated addictive disorders (52.7%), 3,008 individuals
with addictive disorders undergoing treatment at recruitment (15.6%), 2,388 individuals who
used potentially addictive substances or engaged in potentially addictive behaviors without
necessarily meeting addictive disorder criteria (12.4%), 618 individuals in long-term abstinence
(3.2%) and 3,111 participants (16.1%) who were not using substances (i.e., “healthy controls”). A
plurality of the participants (6708, 34.7%) were recruited to investigate alcohol use/use disorders
with the following statistics for other use/use disorders: nicotine (4363, 22.6%), cocaine (1901,
10.0%), cannabis (1403, 7.2%), opioid (1205, 6.2%), and methamphetamine (836, 4.3%). Of the
remaining participants, 1373 (7.1%) used betel-quid, inhalants, or multiple substances, and 1522
(7.9%) were recruited in studies focusing on gambling or video game playing. While most
participants (13037, 67.5%) were recruited in observational studies, a substantial portion
participated in trials or experimental studies involving pharmacological (2897, 15.0%), behavioral
(2257, 11.7%), or other interventions (1120, 5.8%), such as neurofeedback or non-invasive brain
stimulation (eFigure 7). No duplicated samples across studies were discovered in the database
based on a screening.
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eFigure 7. Participants in fMRI Drug Cue-Reactivity Studies (N = 19 311)

The Sankey diagram represents the number of participants in FDCR studies divided by sex,
population type, potentially addictive drugs and behaviors, and interventions. The width of the
boxes in each column represents the relative prevalence of each category in the column, while
the width of the ribbons connecting the categories across columns represents the proportion of
participants shared between each of the two categories. AD: Addictive Disorder (including both
SUDs and BAs, diagnosed formally based on widely used criteria such as the Diagnostic and
Statistical Manual (DSM) or International Classification of Diseases (ICD)). Participants who used
substances without necessarily meeting diagnostic criteria are termed “User”.

Study design types and relevance for potential biomarker development

It is important to note that none of the FDCR indices used by studies in the systematic review
constitute fully validated biomarkers at this time. As detailed previously, any biological signal
needs to undergo an extensive validation process to qualify as an actual biomarker of disease or
recovery, which is not the case for any of the FDCR-derived measures in our included studies.
However, the evidence presented in 335 of the studies in our database (75.9%) could potentially
support the development of at least one future FDCR biomarker, by virtue of their study designs.
We defined seven types of biomarkers based on their context of use. These biomarker types have
all been directly adapted from the BEST Glossary?, with the exception of “severity” biomarkers
which are indices that reflect latent disease severity and were defined based on previous
biomarker literature®-°2, None of the studies in our database explicitly used FDCR as an index of
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“safety” and thus we removed the BEST safety biomarkers category. Nevertheless, we provide
two examples of studies that we think point to contexts in which FDCR-derived safety indices
might prove useful.

These studies tested a total of 437 relationships (404 significant and 33 non-significant), across
contexts of use, between FDCR-derived and clinical measures in 7 different biomarker categories:
(2) In diagnostic studies, the FDCR signal reflects differences between populations (143 (32.7%)
of the included studies, 134 studies reporting a significant association of FDCR and a grouping
variable and nine reporting a non-significant association). (2) A response index might reflect the
neural impact of an intervention (141 (32.3%) studies, 125 reporting significant and 16 non-
significant results). (3) In a severity context, it would be tested whether an FDCR signal co-varies
with addiction severity indices (such covariations were reported in 84 (19.2%) of the studies, 79
significant and five non-significant). (4) A prognostic measure should link to future disease course
(30 (6.9%) studies, 29 significant and one non-significant). (5) A predictive index should explain a
significant portion of variance in intervention outcomes (investigated in 25 (5.7%) studies, 24
significant and one non-significant). (6) A monitoring index should explain a significant portion of
the variance of changes in clinically-relevant variables over time (reported in 12 (2.7%) studies,
11 significant, and one non-significant). Note that “monitoring” measures are only distinguished
from “response” markers (in interventional contexts) and “severity” markers (in observational
contexts) in that they can be measured repeatedly over time, and their variation over time within
one individual is clinically meaningful. (7) A susceptibility index would assess the link between
FDCR and the progression of non-addictive to addictive use (such links were reported in only 2
(0.5%) studies, both significant) (Figure 2). These biomarkers are defined in Table 1, and related
example findings for each are presented in Table 1 and eFigure 8.
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eFigure 8. Examples of Brain Regions in fMRI Drug Cue Reactivity (FDCR) Studies
With Supporting Evidence for Potential Biomarker Development

Visual representation of regions with significant FDCR signal in example studies presented in
Table 1. Each panel presents significant findings from studies whose results could support the
development of one of the biomarker types in the modified BEST biomarker taxonomy, with each
region presented with a unique color across panels. Note that these are example findings, and
do not necessarily generalize beyond the context of the studies referenced in Table 1.

Interventional FDCR studies

Given the importance of interventional studies and the potential of FDCR to develop response or
predictive biomarkers, we present a separate summary of interventional studies in the database.
Overall, 155 studies (37.3%) used FDCR in the context of a therapeutic intervention or
experimental manipulation. Most commonly, interventional studies used target and control
interventions with random assignment (91 studies, 58.7% of interventional studies). Eight studies
(5.2%) included a control group without random assignment, 47 (30.3%) included only a single
intervention arm without a control condition, and 9 (5.8%) investigated individuals who had been
treated retrospectively, for example by comparing them to individuals with untreated SUDs or
by comparing individuals who had undergone treatment for different lengths of time (Figure 3a).
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Most interventional FDCR studies investigated pharmacological agents (67 studies, 43.2% of the
155 interventional FDCR studies) and cognitive or behavioral interventions (52 studies, 33.5%)
(Figure 3b). The most commonly investigated pharmacological agents were naltrexone (10
studies), varenicline (4 studies), baclofen (4 studies), oxytocin (3 studies), and methadone (3
studies). Four studies investigated the impacts of administering a potentially addictive substance,
rather than a therapeutic one. Among cognitive and behavioral interventions, the most common
were simple abstinence (10 studies) and instructed craving regulation (4 studies). Seven studies
used mixes of interventions in different modalities (eFigure 9). Besides pharmacological and
behavioral interventions, 12 studies (7.7% of interventional studies) used brain stimulation
technologies (7 TMS, 4 tDCS, and 1 DBS), and 10 (6.5%) employed neurofeedback (Figure 3b) (For
a detailed breakdown of interventional FDCR studies, see eFigure 9). A majority of the
interventional studies (141 out of 155, 91%) used FDCR as a response biomarker, and 125
reported significant FDCR alterations as a result of treatment. Twenty-five studies (16.1%) used
FDCR as a predictive biomarker, with 24 observing significant correlations between baseline FDCR
and treatment outcomes. Among the 130 studies using FDCR as an outcome measure, 87
measured pre- to post-intervention changes in FDCR as an index of intervention effect (66.9%),
and 43 (33.1%) measured only post-intervention cue-reactivity (Figure 3c).
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Nicotine Vaccine
Naltrexone/Acamprosate
Maltrexone
Nalmefene
N-acetylcysteine
Medafinil
Mirtazapine
Methylphenidate
Guanfacine
D-amphetamine
Buprenorphine 1
Amisulpride 1
Acamprosate 1
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eFigure 9. Detailed Breakdown of Interventional FDCR Studies With Pharmacological

(n =67) or Behavioral (n = 51) Interventions
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The “Multiple” column stands for those studies that included more than one type of addictive
substance/behavior, while the “Multiple” rows stand for those FDCR studies which used multiple
pharmacological interventions or multiple behavioral interventions.
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Cross-modal Correlations

Further, 278 studies in the database also tested the relationship between one or more FDCR-
derived parameters and non-FDCR variables (other than direct measures of disease severity) such
as craving, impulsivity, physiological markers of cue-reactivity, hormonal profiles, and gene
variants, with 255 significant and 23 non-significant test results (eFigure 10). Such investigations
could be helpful to demonstrate links between FDCR and different aspects of SUDs and to
clinically validate FDCR markers by supporting their etiological relevance in SUDs.

a. Correlate Types b. Non-Significant and Significant Results
Craving 3 9 (7%) f119 (93%)
6 (15%) - |———34 (85%)
2 2(7.7%) f—— 24 (92.3%)
2 (8%) |—— 23 (92%)
2 4(19%) - |——17 (81%)
—— 19 (100%)
12 (100%)

1(25%) Ha (75%) Non Significant

H3 (100%)
Significant
1 (100%)

Behavioral
Psychological

Genetlc

Demographic
Neuroimaging
Endocrine/Metabalic
Developmental/Familial
BMI

Skin Conductance

eFigure 10. Multimodal Correlations in FDCR Studies

a. Studies which investigated correlations between FDCR results and other types of measures,
broken down by substance or behavior of interest in each study. “Multiple” stands for those
studies that included more than one type of addictive substance/ behavior. The "other" category
includes inhalants and betel-quid. Note that numbers do not sum to 415 since some studies
investigated no multi-modal correlations, while some fit multiple categories. b. Dumbbell plot
showing the number of significant and non-significant tests of multi-modal correlation.
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1522 Subjects in 32 Studies

Gender Population Drug/Behavior Intervention

Healthy (347)

Behavioral (491)

User (333)

\!

Pharmacological (19)

Observational (1012}

AD-Untreated (792)

b. C.
Diagnastic {25 (100%) Craving {13 (100%)
Response _|7 (100%)
i o
Severlty 3 (100%) Behavioral _| 6 (100%)
Monitoring |- 2 (100%) Semogractic B 2 (100%)
Prognostic 1 H1 (100%) . .
Significant e Significant
Predictive r _|1 (100%) Neuroimaging 1 —|1 (100%)
@ S e &
oﬁb@ 6:“\@ o&é\ <£‘°\\°
&F F &F [

eFigure 11. Separate Analyses for Behavioral Addictions

a. Participants in behavioral addiction studies. The Sankey diagram represents the number of
participants in fMRI cue-reactivity studies divided by sex, population type, potentially addictive
drugs and behaviors, and interventions. b. Seven fMRI cue-reactivity study types for behavioral
addictions. The dumbbell plot shows 100% significant supporting biomarker-related findings for
each biomarker categories. c. Multi-modal correlations in fMRI cue-reactivity studies in
behavioral addictions. The dumbbell plot shows 100% significant test of multi-modal

correlations.
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Contexts of Use (COU)
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eFigure 12. Preliminary Map of the Evidence and Future Directions in Biomarker
Development

The Sankey diagram presents a summary of the methodological parameters and contexts of use
(COUs) across the 437 potential biomarkers in the systematic review. Moving forward, expert
consensus and meta- and mega-analyses may be used to facilitate harmonization and the
development of optimal FDCR biomarkers which would undergo analytical and clinical validation
and cost-benefit analysis before regulatory qualification for drug development or clinical use.
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