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Abstract

Sensor-based human activity recognition (HAR) is to recognise human daily activities through

a collection of ambient and wearable sensors. Sensor-based human activity recognition is

having a significant impact in a wide range of applications in smart city, smart home, and

personal healthcare. Such wide deployment of HAR systems often faces the annotation-scarcity

challenge; that is, most of the HAR techniques, especially the deep learning techniques, require

a large number of training data while annotating sensor data is very time- and effort-consuming.

Unsupervised domain adaptation has been successfully applied to tackle this challenge, where

the activity knowledge from a well-annotated domain can be transferred to a new, unlabelled

domain. However, existing techniques do not perform well on highly heterogeneous domains.

To address this problem, this thesis proposes unsupervised domain adaptation models for

human activity recognition. The first model presented is a new knowledge- and data-driven

technique to achieve coarse- and fine-grained feature alignment using variational autoencoders.

This proposed approach demonstrates high recognition accuracy and robustness against sensor

noise, compared to the state-of-the-art domain adaptation techniques. However, the limitations

with this approach are that knowledge-driven annotation can be inaccurate and also the model

incurs extra knowledge engineering effort to map the source and target domain. This limits the

application of the model.

To tackle the above limitation, we then present another two data-driven unsupervised domain

adaptation techniques. The first method is based on bidirectional generative adversarial networks

(Bi-GAN) to perform domain adaptation. In order to improve the matching between the source

and target domain, we employ Kernel Mean Matching (KMM) to enable covariate shift correction

between transformed source data and original target data so that they can be better aligned. This

technique works well but it does not separate classes that have similar patterns. To tackle
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this problem, our second method includes contrastive learning during the adaptation process

to minimise the intra-class discrepancy and maximise the inter-class margin. Both methods

are validated with high accuracy results on various experiments using three HAR datasets and

multiple transfer learning tasks in comparison with 12 state-of-the-art techniques.
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Chapter 1

Introduction

With the advancement in medical science and technology, life expectancy is increasing. The

European Commission has predicted that by 2025, the UK alone will see a rise of 44% in

people over 60 [116]. However, with the ageing population comes the problem of medical costs

and caring for older people. This motivates the development of new solutions to improve and

guarantee an adequate quality of life and independence of elderly people.

Sensor-based human activity recognition aims to develop methods to understand human

behaviour from a series of observations derived from motion, location, physiological signals

and environmental information. Recent advances in data mining, machine learning, and deep

learning [129] have demonstrated promising results in learning complex correlations between

human activities and sensor features. With the support of these intelligent algorithms, we can

infer current activities (e.g., making a meal or performing personal hygiene) and further detect

changes over time.

Human activity recognition has been an active field for more than a decade. The first works

on human activity recognition (HAR) date back to the late ′90s [91]. Since then, it has drawn

much attention to researches due to its essential applications to real-world problems, especially

for medical, military, and security applications.

1
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1.1 Challenges

Today we have witnessed an increasing number of smart environment applications in our everyday

life, such as health assessment (e.g., stress and depression detection, and clinical assessment on

cognition and mobility) [134], activity-driven behaviour changing applications (e.g., smoking

cessation) [139], home automation (e.g., automatic heating configurations) [35], and so on.

Activity recognition lies at the heart of these applications, which is the ability to recognise and

predict users’ current and future activities from data collected on a wide range of sensors that

are embedded in an environment such as RFID, infra-red positioning sensors, and that are worn

on the users such as smartwatches, glasses, and phones. Applications are designed to deliver

intended services automatically and unobtrusively Based on inferred user activities.

Significant progress has been made in activity recognition over the past few years with

the support of a large number of modern data-driven techniques, including Hidden Markov

Models, Conditional Random Fields, Support Vector Machine [185], and the recent deep learning

techniques [129]. To build a robust activity recognition model, most of these existing techniques

require a large number of training data, annotated sensor data with activity labels. However,

the key challenge faced in the current activity recognition community is the lack of sufficient

training data. It often requires a lot of time and effort to annotate sensor data, either relying on

users’ constant self-report on what they are doing or recording users’ activities via videos, which

are annotated later by the users. In addition, there are never enough training data, as users might

behave differently in the actual system running period from the training phase; that is, they can

perform new types of activities or the same activity in different manners. Therefore, the current

annotation approaches that require highly intensive effort or commitment are only suitable for

lab- or test bed-based experiments on a small number of users over a short period of time. It is

difficult, if not impossible, to apply them on hundreds or thousands of users over 1, 2, or 5 years.

Furthermore, some HAR systems require the user to wear sensors and annotate the activities

performed. These can be tedious, and data quality can be compromised. Reducing manual

annotation and minimizing the number of sensors is beneficial and reduces the complexity of

HAR systems. Therefore, the main challenge would be to train a classifier in a dataset with

labelled instances and transfer that knowledge to recognise activities from an unlabelled dataset.

Unsupervised domain adaptation (UDA) is emerging as a practical approach to tackling
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this annotation scarcity challenge. It aims to generalise and transfer a model learnt from a

well-labelled source domain to a new, unlabelled target domain by mitigating the domain shift

in data distribution [31]. However, HAR brings extra challenges in UDA. Most HAR systems

have different sensor deployments (resulting in highly heterogeneous feature spaces between the

source and target domains) and host users with diverse lifestyles (leading to disparate prediction

functions).

1.2 Aims and Objectives

This thesis aims to develop novel unsupervised domain adaptation techniques to achieve high

activity recognition accuracy without collecting labels on target domain, in the face of the source

and target domains in heterogeneous feature spaces. The hypothesis is these techniques will

improve adaptation accuracy with heterogeneous feature transferring via domain knowledge or

bi-directional GAN and with class-distinguishable feature transferring via contrastive learning.

• Q1 Is it possible to relieve the annotation burden on individual users but still be able to

build a robust activity recognition model by sharing and transferring activity models across

users, even though the sensor deployments and operating environments are different?

• Q2 The amount of training data can affect the model’s performance. Can the domain

adaptation model achieve high accuracy with little training data?

• Q3 The performance of the sensors can vary over time, affecting the sensor features

drastically. Is it possible to develop a system that performs robustly in the face of sensor

noise?

• Q4 Is it possible to discriminate better samples from different class labels leading to more

class-discriminative adaptation?

The main goal of this thesis is to demonstrate that the proposed methods can perform accurate

activity recognition across heterogeneous domains. To do so, we conduct a series of experiments

using real-world datasets commonly used in HAR and we define various transfer learning tasks

to examine our research questions.



4 CHAPTER 1. INTRODUCTION

To answer Q1, we implemented a knowledge-driven approach and a deep learning-based

model and we compare the performance of the proposed methods with baseline domain adaptation

techniques.

To answer Q2, we vary the percentage of training data in the target domain from 20% to 80%

and assess the impact of the training data on the accuracy of domain adaptation.

To answer Q3, we systematically inject noise to sensor features and compare the recognition

accuracy with baseline domain adaptation techniques.

To answer Q4, we add contrastive learning during the domain adaptation process to min-

imise the intra-class discrepancy and maximise the inter-class margin. The intra-class domain

discrepancy is minimised to draw closer the feature representations of samples within a class.

In contrast, the inter-class domain discrepancy is maximised to push the representations further

away from each other to enable a suitable decision boundary.

We also aim to comprehensively review human activity recognition and domain adaptation

techniques. Finally, we provide an overview of the main challenges faced in domain adaptation

for HAR and future research directions.

1.3 Main Contributions

The main contributions of this thesis are:

• An in-depth understanding of transfer learning and domain adaptation. This thesis

provides a comprehensive review, comparison and evaluation of non-deep learning and

deep learning-based domain adaptation techniques. In addition to this, we present chal-

lenges and essential applications of HAR to provide further insights and future research

directions.

• A knowledge-driven model for unsupervised domain adaptation. This method com-

bines knowledge- and data-driven techniques in performing domain adaptation at different

stages. We build on a general ontology for smart home datasets and achieve coarse-grained

feature space remapping to link heterogeneous datasets without the need for labelled data

in the target domain. We apply Variational Autoencoder (VAE) to perform fine-grained

feature space alignment. This contribution has been published [140].
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• Two deep-learning based models for unsupervised domain adaptation. We propose

an unsupervised domain adaptation to tackle the scarcity of labelled datasets while not

relying on predefined knowledge. Domain adaptation techniques have been increasingly

applied to HAR applications. These techniques often work well when the source and target

domains share feature space and they only need to tackle the difference in distributions.

However, this assumption does not hold for many other HAR applications where two

domains have heterogeneous feature spaces. In this direction, we propose two innovative

domain adaptation methods using Bi-directional Generative Adversarial Network (Bi-

GAN). The first model uses Kernel Mean Matching (KMM) to improve the matching

between source and target domain. This contribution has been published [141]. The second

model introduces contrastive learning to better discriminate samples from different class

labels during the training process. This contribution has been accepted for publication.

• Validation of the models by using third-party real-world datasets. The validation

process is aimed at assessing the effectiveness of the proposed methods. In this regard,

experiments have been conducted using three publicly available datasets commonly used

in HAR.

We are also the first to go beyond domain adaptation and design and perform other HAR-

specific experiments on sensor noise and sensitivity to training data. These experiments

matter in HAR and other real-world applications where noisy data are pervasive and

training data is scarce.

1.4 Thesis Outline

This thesis consists of 8 chapters, including the introduction chapter. In the following, we will

describe each of them.

Chapter 2 presents essential background and basic human activity recognition and sensor

technology concepts. It then reviews existing work in sensor-based human activity recognition

and focuses on data-driven, knowledge-driven and deep learning techniques. Finally, it discusses

applications and current challenges that form the motivations of this thesis.
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Chapter 3 presents a comprehensive review of transfer learning and domain adaptation

techniques for human activity recognition. First, the chapter introduces basic concepts of

transfer learning and reviews existing work in supervised and unsupervised domain adaptation

for accelerometer and binary data. Finally, it discusses the main challenges in domain adaptation

for HAR.

Chapter 4 presents the first contribution of this thesis: Unsupervised Domain Adaptation

for Human Activity Recognition (UDAR), a knowledge- and data-driven technique for feature

alignment using variational autoencoders. This model addresses unsupervised domain adaptation

between heterogeneous datasets. The chapter explains its configuration and the experimental

results are presented in Chapter 7.

Chapter 5 presents two GAN-based models. The first model is called shift-GAN, which

integrates bidirectional generative adversarial networks (Bi-GAN) and kernel mean matching

(KMM) in an innovative way to learn intrinsic, robust feature transfer between two heterogeneous

domains. Bi-GAN consists of two GANs bounded by a cyclic constraint, enabling more effective

feature transfer than a classic, single GAN model. KMM is a powerful non-parametric technique

to correct covariate shift, improving feature space alignment.

The chapter then discusses the ContrasGAN algorithm, our final contribution, which performs

unsupervised alignment between source and target domain via Bi-GAN and introduces contrastive

learning to minimise the intra-class discrepancy and maximise the inter-class margin. The

evaluation results for both methods are presented in Chapter 7.

Chapter 6 presents the experimental setup and evaluation methodologies. In addition, the

chapter provides the implementation and configuration details for UDAR, shift-GAN and Con-

trasGAN and provides a detailed explanation of the datasets used for evaluation and the baseline

domain adaptation comparison techniques.

Chapter 7 discusses the evaluation results between UDAR, shift-GAN and ContrasGAN and

the baseline domain adaptation techniques. The evaluation process is divided into two parts. The

first one uses binary sensor datasets and the second one is for accelerometer datasets. For each

type of dataset, we have defined specific transfer learning tasks. The results are then presented

and analysed.

Chapter 8 summarises the thesis and draws overall conclusions. Finally, several future
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research directions in human activity and domain adaptation are discussed.





Chapter 2

Background and Literature Review

In this chapter, we provide an overview of recent approaches to human activity recognition

problem. Firstly, it discusses basic and high-level concepts related to Human Activity Recognition

(HAR). Following this, it provides an extensive review of sensor technology. Towards the end of

this chapter, we discuss more specific literature in human activity recognition, including research

challenges and applications.

2.1 Introduction of Human Activity Recognition

Human activity recognition, often referred to simply by its acronym HAR, plays a vital role in

people’s daily life. Human activity recognition is the problem of identifying and classifying

different human actions in real-life environments [83]. Human activities can vary from simple

actions such as walking or jumping, to interactions between humans or objects such as drinking

water or shaking hands. In this sense, the complexity and definition of activity can vary consider-

ably. Activities can be simple using one part of the body or more complex using the whole body.

According to [196], human actions can be categorised into three levels:

1. Action primitives, consist of actions where one part of the body is performing the action;

for example clapping.

2. Activities are actions where the whole body is involved in performing the action, for

example running.

9
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3. Interactions are actions that involve objects or other persons, for example, shaking hands

or throwing a ball.

Turaga et al. [156] differentiate between action and activity, where the former refers to a

simple motion pattern usually executed by a single person and for a short period of time. For

example, walking, swimming, running, etc. On the other hand, activity refers to a sequence

of actions performed by several people interacting with each other. For example, a football

team plays a game. Since the range of the complexity of activity is huge, Vrigkas et al. [164]

classified human activities in six categories:(i) posture estimation are primitive movements that

may correspond to a particular action of a person [182]; (ii) atomic actions are movements of a

person describing a certain motion that may be part of more complex activities [113]; (iii) human-

to-human or human-to-object are human activities that involve two or more persons or objects,

(iv) group actions are activities performed by a group of persons [101]; (v) human behaviours

refer to physical actions that are associated with the emotions, personality, and psychological

state of the individual [101]; and (vi) events that are high-level activities describing social actions

between individuals and indicate the intention of a person [89].

Hussain et al. [72] provided a more concrete classification of human activity recognition.

They divided activities into three main categories:

1. Action-based activities are activities that involve some movements of the human body.

This action can involve either the whole body or a specific part. They further classified

these activities in six sub-categories: (i) gesture recognition such as waving a hand to

control the TV; (ii) posture recognition such as standing up; (iii) behaviour recognition

aims to infer the behaviour of a person; (iv) activities of daily living are daily activities in

an indoor environment such as a home; (v) fall detection occurs when the position of the

human body changes from the normal state (e.g., standing, sitting or walking) to reclining;

and (vi) ambient assisted living intends to develop systems to assist humans in their daily

lives.

2. Motion-based activities are related to the motion of a human being. They are not only

related to performing a specific action but also related to the presence or absence of
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motion. Examples of motion-based activities are tracking, motion detection and counting

or estimating the number of people in a specific area.

3. Interaction-based activities that activities involve using or interacting with objects. A

user can perform gestures or activities either by using their own body or using some object.

As seen from the different definitions stated above, human activities can vary in many ways.

In this thesis, we propose the classification given in Table 2.1. We divide human activities into

two main categories: (i) action-based activities are activities where one part of the body or

the whole body is used to perform an action; and (ii) interaction-based activities are activities

performed with a group of persons or activities that involve interacting with objects. We

further divide action-based activities into gesture/ posture recognition, behaviour recognition

and activities of daily living. Interaction-based activities are divided into two subcategories for

human-to-human and human-to-object activities. We will focus mainly on posture recognition

and activities of daily living. Table 2.1 describes each sub-category along with examples and

potential applications.

Table 2.1: Classification of human activity recognition.

2.2 Sensor Technologies

Human activity recognition is a composite process. Chen et al. [24] proposed to decompose it

into four primary tasks:
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• To choose and deploy appropriate sensors to objects and environments to monitor and

capture a user’s behaviour along with the state change of the environment.

• To collect, store, and process received information through data analysis techniques and/or

knowledge representation formalisms at appropriate levels of abstraction.

• To create computational activity models in a way that allow software systems to conduct

reasoning and manipulation.

• To select or develop intelligent algorithms to infer activities from sensor data.

According to this classification, the first task is deploying the sensors to capture the users’

behaviour. Some of the most common sensors used for activity recognition are [72]:

• Accelerometer. An accelerometer is an electromechanical device that measures accelera-

tion in multiple directions (x, y, and z-direction) simultaneously.

• Motion sensors. Motion sensors are used to detect the motion or the presence of a subject

in a particular environment.

• Proximity sensors. Proximity sensors can detect the presence of nearby objects without

making any physical contact.

• Gyroscope. Sensors can measure and maintain the orientation and angular velocity of an

object.

• Radio-based. Sensors use electromagnetic fields to identify and track objects automati-

cally. The most common ones are RFID sensors.

• Depth cameras. Cameras can retrieve depth information about a scene either using a

particular sensor or by running a stereo algorithm on the colour frames.

Given the diversity in sensor technology, human activity can also be classified in terms of the

type of sensors that are used for activity monitoring. Chen et al. [167] classified human activity

recognition in two categories: video-based HAR and sensor-based HAR. Video-based HAR

analyses motions and behaviours of humans from videos or images, while sensor-based HAR
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analyses motion data from various types of sensing devices such as accelerometers, gyroscopes,

Bluetooth, etc.

The video-based approach is one of the pioneer approaches in HAR. It is easy to use and

can provide good results in capturing information about the activities. However, there are some

issues related to this approach [72]. For example, the use of cameras in private environments

such as smart homes for healthcare purposes raises privacy concerns. Zhang et al. [196] outlined

some domain-specific problems. For example, depending on the camera and scene, the image’s

background can be highly dynamic. This means that the amount of irrelevant information for

identifying an action can be very high. Also, cameras can fail during nighttime if there is no

proper light. For that reason, most of the research in HAR has shifted towards sensor-based

approaches due to the low cost and advances in sensor technology. We are particularly interested

in sensor-based HAR because they have shown excellent results in HAR applications and its

application is rising rapidly [83]. Therefore, for the remainder of this chapter, we will focus on

sensor-based HAR, which is the main topic of this thesis.

2.3 Sensor-based Human Activity Recognition

Sensor-based human activity recognition is to extract high-level descriptions (i.e., activities)

from low-level sensor data [144]. There are two main categories in terms of sensor deployment

strategies. The first approach is deploying sensors in the environment (ambient sensors). In the

second approach, the users carry the sensors (wearable sensors). However, Wang J. et al. [167]

extended these classifications as follow:

• Body-worn Sensors. In this approach, accelerometer, magnetometer or gyroscope sensors

are attached to a user as they perform an activity. Accelerometers can often be found on

smartphones, watches, bands, glasses and helmets. Gyroscopes and magnetometers are

also frequently used together with accelerometers to recognise activities of daily living

(ADL) and sports. Despite their wide use, a major problem with this approach is that

sometimes wearing a tag is not feasible [21]. For instance, a user can forget to wear the

bands or glasses or a user can place the phone in different parts of the body; for example,

in their trouser pocket or shirt pocket, which will give different measures of the activity.
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• Object Sensors. Sensors are attached to objects of daily use and are used to detect the

movements of those objects to infer human activities. For example, the accelerometer

attached to a cup can be used to detect drinking water activity. Another example is Radio

Frequency Identifier (RFID) tags, which are deployed in smart home environments; for

example, Jayatilaka et al. [74] employed a smart cup tagged with passive RFID tags to

recognise fluid.

• Ambient Sensors. Sensors in the environment are deployed when a user performs any

activity. Ambient sensors capture the interaction between humans and the environment.

Examples of ambient sensors are radar, sound, pressure, and temperature sensors. They

capture changes in the environment where they are deployed to infer activities. This

approach does not require the user to carry any device while doing any activity. However,

the deployment is also tricky and is easily affected by the environment.

• Hybrid Sensors. It has been shown that combining different types of sensors can improve

the accuracy of HAR [167]. For example, ambient sensors can be used together with

object sensors to record object movements and environment state.

The diversity of sensors leads to high complexity. Different sensors produce different data

types, including binary, continuous numeric, and featured values [185]. The use and application

can vary significantly due to their different modalities, output signal, size, and costs. The first

attempts in activity recognition are related to home automation, and various location-based

applications aim to adapt systems to users’ locations [21]. Several researchers used RFID to

detect the environment’s interactions through object use [123, 20, 50, 121, 67]. Gaddam et

al. [51] presented a smart home system for assisted living. The system monitors the use of

electronic appliances, the water usage with water flow sensors and the bed usage for determining

the sleeping pattern of the elderly. Many researchers have investigated gesture recognition

and activity recognition from still images and video in stationary settings. To mention some

examples, Turaga et al. [156] presented several approaches to analyse human activities in videos

and classified them according to their ability to handle different degrees of complexity. Some

other researchers employed state-of-the-art techniques for gesture recognition, hand gestures and

facial expressions [106, 1]. However, interests in recognising activities in unconstrained daily
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life settings caused a shift toward using inertial sensors worn on the body, such as accelerometers

or gyroscopes.

Sensors have their own technical advantages and limitations. For example, ambient sensing

has fewer privacy-related problems compared to vision-based systems. This caused studies to

focus more on device-free (dense sensing) technologies. Dense sensing-based monitoring makes

it more suitable to create ambient intelligent applications such as smart environments because

of its low-cost, low-power characteristics [167]. In the early 2000s, activity recognition and

tracking of postures and gestures were done with motion sensors attached to the user [21]. Tapia

et al. [155] used environmental state-change sensors to collect information about interaction with

objects and recognise activities of interest to medical professionals. Wilson et al. [173] used

binary sensors, motion detectors, break-beam sensors, pressure mats, and contact switches for

simultaneous tracking and recognising activities. Wren et al. [176] used passive infrared motion

sensors networks to identify low-level and mid-level activities such as walking and visiting,

respectively.

In more recent studies, sensors have been used in several real-world applications such as

monitoring daily activity to support medical diagnosis, rehabilitation, or to assist patients [72].

For example, healthcare support in smart homes can be used to provide remote healthcare

services or emergency support to elderly and disabled people. It can offer patient-monitoring

services to identify health conditions, ensure assisted services, and generate local warnings [72].

In the industrial sector, wearable computing is used in assembly line operations of blue collar

workers [102]. In sports and the entertainment sector, wearable gyroscopes and acceleration

sensors are used to capture people’s movements while doing sports. The information provided

by these sensors is of special interest for clinical studies and performance tracking [88].

Other important research projects began in 2000s, including the Gator-Tech [66] smart house

built by the University of Florida for research on ambient assisted living. The Aware-home

project was developed by the Georgia Institute of Technology [82]. They used ceiling-mounted

cameras and RFID sensors for localization purposes. In terms of activity recognition purposes,

one of the pioneering studies is the House_n project developed by the Massachusetts Institute of

Technology. Tapia et al. [155] installed reed switches and piezoelectric switches in different parts

of the house and appliances such as microwaves, refrigerators, stoves, etc. to detect more than
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20 activities. In The Center for Advanced Studies in Adaptive Systems (CASAS) project [34],

15 different activities were monitored using a smart home testbed, which was equipped with

motion and temperature sensors, as well as analogue sensors that monitor water and stove burner

use. Gaddam et al. [51] introduced a smart home monitoring application for assisted living. The

sensors provide information used to monitor elderly people by detecting any abnormality pattern

in their daily activities. Other examples of living laboratories for human activities recognition

are inHaus [63], DOMUS [57], and iDorm [125].

There is also an increasing interest in acoustic sensing of the activities in smart environ-

ments [68]. Understanding speech and ambient sound can be beneficial for many healthcare

applications. For example, AuditHIS system performs real-time sound analysis from micro-

phones placed in a smart home [158]. Another example is a multi-modal system proposed by

Karpov et al. [77]. They collected an audio corpus containing five spoken commands and 12

non-speech acoustic events for different activities. They defined alarming speech and audio

events such as "Help", "Problem", "Crying" and "Key/ object drop".

In the wearable sensing category, the increased number of smartphones with sensing capabil-

ity has made it possible to use them for human activity recognition purposes [21]. It is possible

to recognise human activities by collecting data through GPS sensors, microphones, cameras,

light, proximity, etc. Many authors developed wellbeing applications to recognise activities

automatically [21]. For example, Pinky et al. [76] proposed an activity recognition system

working on Android platforms that supports online training and classification. The system can

recognise four main activities: walking, running, standing and sitting.

More recently, activity recognition is a crucial component in many consumer products such as

game consoles which rely on the recognition of body movements to change the game experience.

This led to a vast number of applications, such as personal fitness products. For example, the

Philips DirectLife or the Nike+ running shoes integrate motion sensors to offer athletes feedback

on their performance [21].

In Figure 2.1, we propose human activity recognition classification. First, we classify human

activity recognition in terms of the sensor type used for activity monitoring [167]. The first

category is vision-based, which uses visual sensing technology and the second category is

sensor-based, which employs sensor network technologies. We further classify sensor-based



2.3. SENSOR-BASED HUMAN ACTIVITY RECOGNITION 17

human activity recognition in two main branches:

• Wearable sensing refers to sensors carried by the users. These can be sensors positioned

directly or indirectly on the user. For example, the most popular wearable sensor for

activity recognition is the accelerometer. However, the increased use of smartphones has

made it possible to collect data and automatically recognise activities. In this sense, we

can differentiate between sensors positioned directly on the user (body-worn) such as

accelerometers and those indirectly positioned on the user (object-worn sensors) such as

smartphones or smartwatches.

• Ambient sensing refers to sensors deployed in an environment. Ambient sensors capture

the interaction between humans and the environment. This interaction can be with other

humans or with objects. We classify ambient sensing into three sub-categories: interaction-

based sensors placed on specific objects, device-free such as WiFi and acoustic sensors

such as microphones.

Figure 2.1: Human activity recognition classification

Table 2.2 provides the advantages and disadvantages of each sub-category along with ex-

amples of sensor technologies. As we can see, sensor-based approaches use different kinds of

sensors such as accelerometers, motion sensors, pressure sensors, and RFID tags, for recognising

daily activities. However, it is difficult to have a unique classification because of the different

types of sensors and their output signals, size, weight, cost, etc. Nevertheless, extensive research

has been undertaken to investigate their use to accurately recognises human activity.

In the following section, we present the evolution of sensor-based human activity in terms of

literature review and applications.



18 CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

Table 2.2: Technology, advantages and disadvantages of sensor classification for human activity recogni-
tion.

2.4 Sensor-based Activity Recognition Evolution

A considerable amount of work has been done in human activity recognition for the last decade.

Demrozi et al. [40] identified 293 published papers, of which 46 are survey papers published since

2015. These papers can be categorised based on the data sources and the activity recognition

algorithm. In the following, we describe the most relevant surveys related to sensor-based, we

excluded papers related to video-based HAR.

Chen et al. [167] presented a survey where they classified sensor-based approaches in two

main categories: 1) vision-based vs sensor-based, and 2) data-driven based vs. knowledge-driven

based. In the former, different techniques are discussed, which use wearable sensors and dense

sensing. In the latter, the authors discuss generative modelling and discriminative modelling to

categorise data-driven approaches and for knowledge-driven approaches, techniques are further

divided into logic-based, ontology-based, and mining based methods.

Wang J. et al. [167] have introduced the first survey to describe different deep learning

approaches for human activity recognition using sensors. They classify the literature in activity

recognition in three categories: sensor modality, deep model, and application area. They further

classify modality literature in four categories: body-worn sensors, object sensors, ambient sen-

sors, and hybrid sensors. For deep models, the authors categorised the models in discriminative

deep architecture, generative deep architecture, and hybrid deep architecture. Finally, with

respect to the application area, the literature is classified as activities of daily living, sleep, sports,

and health.

Wang Y. et al. [171] presented the state-of-the-art of wearable sensor modality. They focus on
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the techniques associated with each step of HAR in terms of sensors, data preprocessing, feature

learning, and classification. They discussed the pros and cons of hand-crafted features and the

use of conventional and deep learning methods for recognition tasks. They also summarised

applications of HAR in healthcare and proposed some research challenges.

Sousa et al. [146] have presented a complete historical review and evolution of HAR based

on smartphones. They also described each step of the methodology commonly used to recognise

human activities with smartphones equipped with inertial sensors. They presented two approaches

to extract features based on shallow and deep learning algorithms.

Nweke et al. [114] have provided in-depth analysis of data fusion and multiple classifier

techniques for human activity recognition, emphasising mobile and wearable devices. They

reviewed different deep learning algorithms for HAR, empathising in strengths and weaknesses

of these methods and they provide open research challenges related to data collection.

Finally, Ramasamy et al. [131] reviewed recent machine learning algorithms such as deep

learning, transfer learning, and active learning. They discuss the state-of-the-art techniques and

highlight fundamental problems and challenges as a guide for future research directions.

Various data- and knowledge-driven techniques have been applied to human activity recog-

nition, including ontological reasoning, Naïve Bayes, Decision Trees, Hidden Markov Models

(HMM), Conditional Random Fields (CRF), Neural Networks, and Support Vector Machines

(SVM) [24, 185]. Data-driven approaches rely on large datasets from which a model for a

specific problem is learnt [136]. However, their performance depends on the number of training

samples available. Also, data-driven approaches do not incorporate a semantic structure of

the recognised activities, which, if present, would have allowed reasoning about the activities

being executed and user goals, situations, and causes of behaviour. To address these limitations,

knowledge-driven approaches rely on symbolic models describing the possible behaviours to

reason about the user’s actions and situation [136].

Knowledge-driven activity modelling is motivated by the diversity of activities of daily living

and real-world applications [24]. An activity can be performed in different ways. For example,

a person can enjoy walking on a treadmill while others enjoy walking outdoors. Such domain-

dependent activity-specific prior knowledge provides valuable insights into how individuals in

specific situations can perform activities. Knowledge-driven activity approaches use domain
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knowledge to perform activity modelling and pattern recognition [24].

The knowledge approach can be modelled in different forms, such as schemas, rules or

networks. An example is mining-based. This approach creates activity models by mining

existing activity knowledge from publicly available sources. More specifically, a set of objects

used for each activity are mined to extract information about their usage from text corpora.

Then, the models use co-occurrences and associations to estimate the objects used during the

performance of the activity. Perkowitz et al. [122] tagged each word in a sentence with its

part of speech and customised a regular expression to extract objects used in an activity. They

used the Google conditional probabilities applications programming interfaces to determine the

probability of object usage.

Other approaches combine symbolic models with probabilistic reasoning [191, 87, 192].

These approaches, known as computational state space models (CSSMS) [136], use concise

rule-based representations of the possible actions and the relevant context and probabilistic

inference engines to reason about the observed actions and context in a probabilistic manner.

The rules are used to generate probabilistic models with which the system can infer the user

actions and goals. CSSMS rely on prior knowledge to obtain the context information needed

to build user actions and the problem domain. The prior knowledge is provided in the form of

precondition-effect rule by a domain expert.

Yordanova et al. [87] presented a tool support for human activity recognition using com-

putational casual behaviour models to describe activities and probabilistic inference machines.

Symbolic human behaviour models allow the representation of user actions and the reasoning

over them to infer not only current user actions but also to what more complex activity it belongs.

Computational Casual Behaviour Models (CCBMs) consist of a symbolic casual human be-

haviour model and an observation model that are translated into a probabilistic inference system.

The symbolic model consists of two parts. The first one is the domain description that contains

the available user actions represented as precondition-effect operators, the object types used

and the domain constants. The second part is the problem description that contains the problem

constants, the initial state and the goal state [87].

The logic-based approaches use various logical formalisms [24]. For example, Wobke [175]

used situation theory to address the different probabilities of inferred plans by defining a partial
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order relation between plans in terms of levels of plausibility. Some other works used logical

theory of actions, such as the event calculus for activity recognition [142, 25].

More recent works introduced activity ontologies to analyse social interaction in nursing

homes, car park monitoring scenarios, classify meeting videos, and analyse activities with

surveillance cameras [23, 64, 54, 4]. The ontology-based approach arises from the need to have

a commonly agreed explicit representation of activity definitions or an ontology [24]. Activity

recognition is performed using rule-based algorithms and finite-state machines [64, 4]. Chen

et al. [26] constructed context and activity ontologies for explicit domain modelling. They

mapped sensor activations over a period of time to individual contextual information. Ye et

al. [4] developed a top-level ontology to model and reason on domain knowledge precisely and

traceable, serving as a conceptual backbone for developing domain and application ontologies

for smart environments.

Given the diversity of techniques, we divide the literature review for human activity recogni-

tion into two subsections: classical machine learning approaches, and deep learning approaches.

2.4.1 Classical Machine Learning Approaches

Machine learning methods are driven by data; that is, activity models learn from large-scale

datasets of users’ behaviours [24]. These methods involve the creation of probabilistic or statisti-

cal models, followed by a training and inference process based on statistical classification [24].

The most straightforward approach used for activity recognition is the Naïve Bayes classifier

(NBC). The dependence of observations on activity labels is modelled as a probabilistic function

that can be used to identify the most likely class given a set of observations [24]. Several works

used NBC [10, 19, 32, 155, 147], which achieved good performance when large amounts of

sample data are provided.

Ye et al. [187] have applied ontologies to support automatic sensor data segmentation for

multi-user concurrent activities. They have employed the Pyramid Match Kernel to separate the

activities with similar patterns to a certain degree. This is achieved by calculating the difference

of sensor feature distributions in a hierarchical manner. However, they still cannot distinguish

the users for the same activities, for example, identifying which user is cooking.

van Kasteren et al. [162] have applied Hidden Markov Models (HMM) to model sequential
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relationships of sensor data and activities. The HMM is trained to obtain three probability

parameters, where the prior probability of an activity represents the likelihood of the user

starting from this activity; the state transition probabilities represent the likelihood of the user

changing from one activity to another, and the observation emission probabilities represent

the likelihood of the occurrence of a sensor observation when the user is conducting a certain

activity. Even though the HMM has built the temporal probabilistic model between activities

and sensor observations and thus successfully recognised activities, it has achieved low accuracy

on minority activities [160]. Nguyen et al. [112] applied hierarchical Hidden Markov Models

(HHMM) to recognise primitive and complex behaviours of multiple people. They construct a

unified graphical model composed of a set of HHMMs with data association.

Some machine learning methods suffer from scalability and reusability problems. They

require large datasets for training and learning. Also, it is difficult to apply learnt activity models

from one person to another [24]. Deep learning models overcome some of these limitations [167]

and will be explained in the next section.

2.4.2 Deep Learning Approaches

Deep learning techniques offer an advantage over data-driven and knowledge-driven techniques.

They do not rely on heuristic or hand-crafted methods to extract features, nor do they rely on

human experience or domain knowledge [167].

First works using Deep Neural Network (DNN) show that with more layers, DNN is more

capable of learning from large data [163, 165]. Oniga et. al [117] presented a recognition

system from arm posture, body postures and simple activities like standing, sitting, walking,

running, etc. using neural networks. Their approach consists of a two-layer feed-forward

network, with sigmoid activation function on both the hidden and output layers. They also

presented the data acquisition prototype which gathers data of the patient and recognises the

abnormal status of the patient’s health. These works indicated that, when the HAR data is

multi-dimensional and activities are more complex, more hidden layers can help achieve better

training performance [14].

More recently, Convolutional Neural Networks (CNNs) have become a popular approach

to extract features from low-level sensor data automatically. Bevilacqua et al. [15] proposed to
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use of CNNs to classify human activities. They collected 16 activities from the Otago exercise

program. They trained several CNNs with signal coming from different sensors. Two sensors

were placed on the distal third of each shank, superior to the lateral malleolus, two sensors

centred on both feet, in line with the fifth metatarsal head, and one sensor placed on the lumbar

region at the fourth lumbar vertebrae.

Autoencoders were used to learn more advanced feature representations. Stacked autoen-

coders (SAE) were first used by [7, 166] for human activity recognition. The advantage of

SAE is that it can perform unsupervised feature learning for HAR, which can be used as a

feature extraction tool. Later on, Li et al. [94] investigated the sparse autoencoder by adding

Kullback–Leibler divergence and noise to the cost function.

Some other works introduced Restricted Boltzmann machine (RBM) [124, 65, 90] for activity

recognition. RBM is a bipartite, fully connected, undirected graph consisting of visible and

hidden layers. RBM can also perform unsupervised feature representation [167].

Recurrent Neuronal Networks (RNN) is widely used in speech recognition. However, some

approaches implemented long-short term memory (LSTM) models combined with RNN for

HAR tasks to deal with resource-constrained environments while still achieving good perfor-

mance [167]. Singh et al. [145] introduced a recurrent neural network to classify human activities

without using any prior knowledge. They used Long Short Term Memory (LSTM) to model

temporal sequences and learn long-term dependency problems. LSTM has shown promising

results in pattern recognition that are defined by temporal distance.

2.5 Challenges

The recent advance in data mining, machine learning, and deep learning has made it possible to

learn complex correlations between low-level sensor data and high-level activities. However, due

to the complexity of human actions, activity recognition still faces some challenges. Some of

these challenges are shared with the general field of pattern recognition. However, it also faces

a number of unique challenges [167]. First, we describe the common challenges with pattern

recognition, and secondly, we describe the specific challenges related to HAR.
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2.5.1 Common Challenges

Intraclass Variability. There are many ways to perform a simple activity, for example, people

may walk at different paces. Recognition systems should be able to recognise the same activity

performed differently by different individuals. Intraclass variability can also occur when an

activity is performed differently by the same individual [167]. This can be caused by stress,

fatigue, or the emotional state in which the activity is performed. For example, walking on a

treadmill can be different from walking outdoors.

Interclass Similarity. Interclass similarity occurs when activities have similar sensor data

characteristics [197]. To deal with this problem, accurate and distinctive features need to be

designed and extracted from sensor readings. A human activity recognition system must be

general enough to model all possible changes of a particular activity and distinguish between

them.

The NULL Class Problem. Only a few parts of a continuous data stream are relevant for HAR

systems. Therefore, activities of interest can easily be confused with activities with similar

patterns but are irrelevant to the application in question [167].

Multisubject Interactions. Most researches focus on identifying low-level human activities such

as jumping, running, sleeping, etc. Usually, the recognition is done with a single subject without

any human-human or human-object interactions [197]. However, in real-world applications,

activities are performed with the interaction of other persons and objects. Therefore, it is

challenging to track multiple subjects or to recognise group activities. To recognise group-based

human activities, a higher level representation must be introduced, which can model the activity

as a composition of simpler activities.

2.5.2 Challenges Specific to HAR

Activity Definition. Human activity is complex, diverse and can be performed differently.

Therefore, the first challenge is to define the activities under investigation and their specific

characteristics. Katz et al. [107] develop the Activities of Daily Living (ADLs) index that

includes basic actions that involve caring for one’s self and body, including personal care,

mobility, and eating.
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Class Imbalance. One of the challenges is distinguishing activities with subtle differences and

imbalanced distributions, which can have a significant implication in health-related applications.

Only a few activities often occur in long-term behavioural monitoring, while most activities

occur infrequently. For example, life-threatening situations like falls or heart attacks are often

not frequent and may have subtle differences from other daily activities. Recognising them

effectively will enhance the robustness of an activity recognition system.

To illustrate this challenge, we use the following example. Figure 2.2 presents the distribution

of a set of concurrent activities from two users recorded in a smart home setting [33] and Fig-

ure 2.3 presents a confusion matrix of recognising these activities from a K-Nearest Neighbour

(KNN) technique. As we can see, KNN can fairly well recognise the majority activities like

“Sleep" and “Work" and the activities with distinct patterns like “Bed_Toilet_Transition". How-

ever, it performs poorly on (1) distinguishing the activities from the same user occurring in the

same area; for example, is a user wandering or working in the bedroom?, and (2) differentiating

the users for the same type of activities performed in a public area; for example, is the user R1 or

R2 preparing the meal?. First, some activities do not often occur, especially the wandering in

the room being the least reported activity, which results in too few samples to train a reliable

classifier. Secondly, these activities can have fewer discriminative patterns than their majority

counterpart; they might activate the same set of sensors but with little difference in distributions.

For example, the “Wander" activity fires a collection of sensors that significantly overlap with

the sensors activated on “Work" and “Sleep".

Figure 2.2: Distribution of concurrent activities of two different user

Ground Truth Annotation. A major challenge in current activity recognition research is to

collect sufficient labelled data in the environment to train classification models. This task can
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Figure 2.3: Activity recognition on a set of two-user concurrent activities

be expensive and the lack of training labelled samples can compromise the performance of

the classifier. Also, motion data gathered from accelerometer or gyroscope sensors are often

more difficult to interpret than data from other sensors, such as cameras. In a laboratory setting,

annotation can be done based on video footage. However, in a daily life setting, annotation is

more difficult.

Data Collection. The challenge is to collect datasets on which HAR systems can be evaluated.

The research community has not yet started a joint effort to collect datasets of human physical

activity. Using standard datasets is crucial for reproducible research [167].

Data Representation. Finally, there are also challenges in sensor-based HAR associated with

information representation [15]. State-of-the-art approaches are based on engineered features.

However, these features are mainly based on heuristic methods and frequently, the feature
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extraction process requires a deep knowledge of the application domain. Moreover, traditional

methods often do not perform well on dynamic data or scale for complex motion patterns.

2.6 Applications

Despite the challenges highlighted above, successfully recognising human activities leads to

many useful applications. In this section, we provide an overview of relevant applications.

• Elder Health Care. With the advancement in medical science and technology, life

expectancy is increasing. With the ageing population comes the problem of medical

costs and caring for old people. In recent years, many different technologies have been

developed to assist humans in their daily lives. These technologies are called Ambient

Assisted Living and are helping people with remote monitoring, medication management,

medication reminder, exercise management, and independent living. Human activity

recognition can help elderly people to live independently. By monitoring human activities,

HAR is helping to reduce medical expenses, reduce the demand of health givers, and

improving quality of life.

• Intelligent Environment. Building smart environments have become very popular, such as

smart homes, offices, and smart health centres. In smart environments, activities performed

by the residents are learnt and the system adapts itself. For example, in a smart home

electric systems can turn on/off depending if the residents are in the house, in a smart

health care centre patients are monitored remotely, or a smart refrigerator can monitor

food usage.

• Security and Surveillance. Although surveillance cameras can watch 24/7, there is still

a need for human effort to monitor and detect any suspicious activity. Therefore, many

video-based solutions have been proposed to analyse videos or images from the cameras

to recognise the activities, and report any suspicious incident.

• Human-Computer Interaction. Nowadays, people can interact with machines by making

a gesture or performing a specific activity for giving a command to the machine. For

example, games consoles can recognise activities while the user interact with the game.
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HAR is also helping robots to interact with humans by recognising their activities or even

help them with daily activities. One example is the robotic vacuum cleaner, an autonomous

robotic hoover that has intelligent programming.

• Shopping Experience. Analysing and understanding shopping behaviour of customers

has become very popular. Customers can either be tracked online or indoors. With online

stores, customers’ behaviour is tracked by placing tags on the website and analysing the

users’ clicks, products review, and shopping carts. This information along with sales

history can provide useful information about interests, products bought together, products

compared together, items that users ignore, etc. This information can be used to optimise

websites and improve users’ shopping experience. Inside stores, surveillance cameras

and other sensors such as RFIDs can help recognise shoppers’ behaviours. For example,

shopping patterns can be detected by analysing which aisle the customer visited, which

products they select and which ones they actually place in their baskets. This information

can be used to improve shopping experience or even to decide how the products should be

placed on the shelves.

2.7 Discussion

We have extensively presented basic concepts on human activity recognition, different sensor

technologies, literature review, challenges and potential applications on activity recognition.

Over the past decades, many solutions have been proposed to recognise human daily activities.

Some of these techniques use surveillance cameras but, as mentioned in earlier sections, vision-

based techniques have many limitations. Some other techniques use dense sensing and deploy

different sensors when a user performs an activity. Some methods use a hybrid approach and

combine wearable and object-tagged sensors. Finally, some techniques require that the user

wears a device or sensors attached to daily use objects.

Given the complexity and variety in HAR, in this thesis, we focus on sensor-based human

activity recognition and our main interest is ambient assisted living in smart home. Ambient

sensors, including positioning or pressure sensors and RFID sensors, are deployed to detect the

whereabouts of older adults and their interaction with everyday objects. Wearable sensors, such
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as accelerometers and gryoscopes sensors, are commonly used to recognise activities of daily

living.

Machine learning and deep learning techniques can help us infer their current activities

(e.g., making a meal or performing personal hygiene) and further detect changes in their health

conditions over time. Information to train learning models can be collected through various

approaches and technologies but, as mentioned in Section 2.5, a major challenge is to collect

sufficient labelled data in the environment to train a classification model. This task can be

expensive and the lack of training labelled samples can compromise the performance of the

classifier. To deal with the expensive challenge of collecting sufficient labelled data, transfer

learning can be used to apply knowledge learned from the source domain to the target domain.

However, the research question that comes to light is: Is it possible to relieve the annotation

burden on individual users but still be able to build a robust activity recognition model by sharing

and transferring activity models across users, even though the sensor deployments and operating

environments are different?

Also, in real-world applications, sensors can produce imperfect data. For example, they are

susceptible to breakdowns or may suffer interference. These issues will generate noisy sensor

data, or the data distribution can change over time. Most of the existing approaches [91, 168]

assume that the sensor data distribution is the same as that used in the model training process. So,

can we build a system that performs robustly in the presence of noise? The following chapters

will address how these challenges are solved in our work.





Chapter 3

Transfer Learning and Domain Adaptation

Transfer Learning is a sub-area of machine learning that focuses on re-utilising knowledge

between tasks [168]. Domain adaptation is a branch of transfer learning where a distribution

mismatch between two domains is assumed. It has been extensively studied in many areas,

including speech and language processing, and more recently, computer vision [168]. In this

chapter, we provide an overview of this branch, and we explain basic terminologies necessary to

understand transfer learning. Afterwards, we provide a formal definition of domain and domain

adaptation, and we focus on the methodologies developed in human activity recognition. Among

them, of particular relevance to our work is unsupervised domain adaptation.

3.1 Introduction

Traditional approaches to machine learning assume that the training data and test data are drawn

from identical distributions [30]. However, this assumption is not always possible in many real-

world applications. To tackle this challenge, transfer learning techniques have been proposed to

transfer the knowledge learnt from one domain (known as the source domain) to another domain

(known as the target domain), assuming that there is some relationship between the source and

target domains.

Research on transfer learning dates back from the 1980s [193, 105]. These first works focus

on human learning mechanisms, highlighting the bias in machine learning as a fundamental part

of the learning process. For example, we may find that learning to recognise apples might help

31
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to recognise pears. Transfer learning is motivated by the fact that people can apply knowledge

learned previously to solve new problems [120]. Since 2005, it has been widely discussed in the

Advances in Neural Information Processing Systems (NIPS) Workshop until now [42]. Current

transfer learning approaches focus on learning standard or latent statistical features from both

source and target tasks in multitasking [152]. Before mathematically defining transfer learning,

we firstly introduce the concepts of domain, task, and dataset defined by Pan et al. [120].

A domain consists of two main components: a feature space of inputs X and a marginal

probability distribution of inputs P(X), where X = x1, ...,xn ∈ X is a set of learning samples. For

example, if our learning task is a document classification, and each term is taken as a binary

feature, then X is the space of all document vectors. The marginal distribution is about the value

of each feature and describes the probability distribution of the variables in the dataset.

Given a specific domain, D = {X ,P(X)}, a task consists of a label space and an objective

predictive function f (·) (denoted by T = {Y , f (·)}), which is not observed but can be learned

from the training data, which consist of pairs (xi,yi) where xi ∈ X and yi ∈ Y . The function f (·)
can be used to predict the corresponding label, f (x), of a new instance x.

Finally, a dataset is a collection of data characterised by a specific domain and a specific

task. In transfer learning, the source and target dataset can be different either in the source and

target domains or in both tasks.

In this thesis, we denote the source domain as Ds = {(xs
1,y

s
1), ...,(x

s
ns
,ys

ns
)}, where xs

i ∈ X s is

the data instance and ys
i ∈ Y s is the corresponding class label. Similarly, we denote the target

domain as Dt = {(xt
1,y

t
1), ...,(x

t
nt
,ys

nt
)} where xt

i ∈ X t is the data instance and yt
i ∈ Y t is the

corresponding output. Now that we have defined important concepts we can provide a formal

definition of transfer learning [30].

Definition 1. Given a source domain Ds and a learning task Ts, a target domain Dt and a learning

task Tt , transfer learning aims to help improve the learning of the target predictive function

ft(·) ∈ Dt , using the knowledge in Ds and Ts, where Ds ̸= Dt and Ts ̸= Tt .

The source domain can differ from the target domain by having a different feature space,

different probability distribution, different label space or label distribution. However, all transfer

learning problems assume that there exists some relationship between the source and target
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domains which allows for the successful transfer of knowledge between them [131]. The question

that arises is how much two domains differ from each other. Wouter et al. [85] introduced

a symmetric difference hypothesis divergence (H ∆H -divergence). This measure takes two

classifiers with VC dimension d and looks at to what extent they disagree with each other:

dH ∆H (Ps,Pt) = 2suph,h′∈H |Prs[h ̸= h′]−Prt [h ̸= h′]| (3.1)

where h refers to the decision made by the classifier, the probability Pr is calculated as the

following integral: Prs[h ̸= h′] =
∫

X [h(x) ̸= h′(x)]Ps(x)dx, Ps and Pt are the marginal distributions

of the source and target domain respectively. The sup stands for the supremum, which in this

context finds the pair of classifiers h, h′ for which the probability is largest and returns the value

of that difference [85].

Given us and ut samples of size m from Ps and Pt , respectively, and d̂H ∆H (us,ut) the empirical

H ∆H -divergence between samples, the following equation is true

dH ∆H (Ps,Pt)≤ d̂H ∆H (us,ut)+4

√
dlog(2m)+ log(2

δ
)

m
(3.2)

for any δ ∈ (0,1), with probability at least 1− δ. Equation 3.1 shows that the empirical

H ∆H -divergence between two samples from distributions Ps and Pt converges uniformly to the

true H ∆H -divergence for hypothesis classes of finite VC dimension d [12].

Given the error of the join hypothesis, e∗s,t =minh∈H [es(h)+et(h)], and the H ∆H -divergence,

a bound can be found on the difference between the true target error, et of a trained source

classifier, ĥs = arg minhR̂s(h), and that of the optimal target classifier, h∗t = arg minhRt(h). R(h)

refers to the expected loss, also called the risk, of a particular classifier and R̂(h) is the empirical

risk of the target classifier. This bound has the following form [12]:

et(ĥs)− et(h∗t )≤ e∗s,t +
1
2

dH ∆H (Ps,Pt)+C (H ) (3.3)

where C (H ) describes the complexity of the classification task. The bound states that, the

larger e∗s,t and dH ∆H are, the less a source classifier will generalise in the target domain.
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The challenge that remains is to design an adaptation strategy to improve adaptation perfor-

mance that narrows the generalisation error bounds. Therefore, the following section focuses

specifically on the topic of dataset shift problems. First, we describe the causes and afterwards,

we describe the three main variations to which dataset shift can diverge to.

3.2 Dataset Shift

The term dataset shift was first introduced by Quiñonero-Candela et al. [128]. The problem of

dataset shift is closely related to transfer learning. The former deals with relating information

in two closely related environments to help with the prediction in one given the data in the

other. While the latter deals with the general problem of how to transfer information from one

environment to help with learning, inference, and prediction in a new environment [128].

3.2.1 Types of Dataset Shift

This subsection explains different kinds of shift that can appear in a classification problem.

• Prior shift refers to changes in the distribution of the class; that is, the prior probabilities

of the classes are different Ptr
Y ̸= Ptst

Y , where Ptr
Y and Ptst

Y are the prior class probability for

the training and testing set respectively, but the conditional distributions are equivalent,

Ptr
X |Y = Ptst

X |Y , where Ptr
X |Y and Ptst

X |Y are the conditional distribution for the training and

testing set respectively [85]. For example, if the training set has equal prior probabilities

on the number of spam emails received, we expect 50% of the training set to contain spam

emails and 50% to contain non-spam. If, in reality, only 90% of our emails are spam, then

our prior probability of the class variables has changed.

• Concept shift is not related to the data distribution or the class distribution but instead

is related to the relationship between the two variables. For example, consider a medical

setting where the aim is to make a prognosis for a patient based on their age, severity of

their flu, general health, and socio-economic status. Originally, the classes are defined as

“remission" and “complications". But, other aspects are counted as a form of ”complication”
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during the test time and are so labeled. In this case, the data distributions remain constant

while the posteriors probabilities change [85].

• Covariate shift is the most common data shift. It is given when the distributions on the

training and test set do not match, the default assumptions of independent and identical

distributed datasets are not valid [148]. From a domain adaptation perspective, the biased

sampling corresponds to the source domain and the target domain to the unbiased sample.

For example, a face recognition algorithm is trained in the source domain with a dataset

that has a much more significant proportion of older faces in it.

3.2.2 Causes of Dataset Shift

In some machine learning models, there is an assumption that the distributions of the datasets do

not change over time. If this is not true, and the distributions change, we need to model for that

change. To do so, we first need to understand why such a shift may occur. Of the various causes

of dataset shift, some can take place in the design process of training data sampling. Others can

be categorised as environmental causes since the cause of shift is due to the inevitable changes

over time of the environment’s characteristics. Moreno-Torres et al. [108] presented the two

most important causes:

1. Sample selection bias is when the discrepancy in distribution is due to the fact that the

training samples have been obtained through a biased method. This causes the training

samples to be selected non-uniformly from the population to be modeled.

2. Non-stationary environments occur when the training environment is different from the

testing environment. Depending on the problem, this change can be different:

• In X → Y problems, a non-stationary environment could generate covariate shift or

concept shift. That is, changes in PX or PY |X , respectively.

• In Y → X problems, it could generate prior probability shift with a change in PY or

concept shift with a change in PX |Y

Non-stationary problems commonly appear in remote sensing applications, where a dataset

collected in a given period of time for a specific environment is employed to train a classifier but,
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when that classifier is deployed, mismatches may appear due to seasonal changes or because of a

new distribution of the environment [5].

Generally, according to the different situation between source and target domains and tasks,

different transfer learning approaches can be applied. The most typical approaches can be

classified in the following categories [195]:

• Statistical Approach is employed at instance, feature and classifier level by measuring

and minimising the divergence of statistical distributions between the source and target

datasets. Typical methods are instance re-weighting [71], feature space mapping [118],

and classifier parameter mapping [127].

• Geometric Approach assumes that the domain shift can be reduced by using the re-

lationship of geometric structures between the source and target datasets. Subspace

alignment [48], intermediate subspace [55], and manifold alignment [36] are commonly

used methods.

• Higher-level Representation Approach finds a high-level representation that is repre-

sentative, compact, and invariant between datasets. It does not require any labelled data

but assumes that there are domain invariant higher-level representations between datasets.

Examples of this approach are sparse coding [130], low-rank representation [143], deep

neural networks [43], stacked denoising auto-encoders [27], and attribute space [2].

• Correspondence Approach constructs a relationship between domains by finding corre-

spondence pair samples from different domains. The typical methods are sparse coding

with correspondence [200], and manifold alignment [194].

• Class-based Approach assumes that labelled data is available from both domains and

connects the source and target dataset by label information. Examples of methods used in

this approach are feature augmentation [73], metric learning [137], linear discriminative

model [181], and bayesian model [47].

• Self labelling trains a model using a labelled source dataset and creates pseudo labels for

the target domain. Then the model is retrained with the target data and the pseudo labels.

An example of this approach is self-training [38].
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• Hybrid Approach combines two or more approaches to improve knowledge transfer

between domains. Some examples are correspondence and class-based [41], statistic and

class-based [44], higher-level representation and statistics [202].

In Table 3.1, we present an overview of transfer learning techniques. We classify the

approaches based on two important concepts: (1) label availability; that is, if the source and

target datasets are labelled, semi-labelled, unlabelled or any label is available, and (2) if the

source and target domain have the same or different feature and label space. The following

section presents a comprehensive review of domain adaptation in more detail. We mainly focus

on unsupervised domain adaptation approaches.

Table 3.1: Transfer learning techniques classification.

3.3 Domain Adaptation

Given the situation when the distribution of training and test data do not match, we face the

problem known as domain adaptation, a particular case of transfer learning. The challenge in

domain adaptation is to overcome the differences between domains so that the classifier trained

on the training dataset (source domain) generalises well on the test data (target domain) [85].

Domain adaptation can be categorised into supervised domain adaptation where labels on the

target domain are available, unsupervised domain adaptation where labels on the target domains
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are not available, and domain generalisation where a domain agnostic model is generalised

by learning from multiple domains. In the following, we will briefly introduce representa-

tive approaches in the other categories and then focus on unsupervised domain adaption for

accelerometer and sensor-based data.

3.3.1 Supervised Domain Adaptation

As labels are available in supervised domain adaption, it is possible to perform within-class

adaptation. For example, Xu et al. [180] propose d-SNE where samples from both source

and target domains are transformed to common latent space; i.e., stochastic neighborhood

embedding (SNE) space, and then a modified Hausdoff distance is employed to minimise the

distance between samples from the same classes but maximise the distance between samples

from different classes. Morsing et al. [109] propose to deal with covariate shift by connecting

samples in a penalty graph structure.

Conditional Generative Adversarial Networks (CGANs) proposed by Mirza el at. [104]

extend the original model by introducing extra information to both the generator and discriminator.

This additional information can be any kind of information such as class labels or data from other

modalities. Both, the generator and the discriminator are multilayer perceptrons with Rectified

Linear Units (ReLU) as the activation for hidden layers and sigmoid for the output layer. Their

model can be used to learn a multi-modal model and in image tagging.

Odena et al. [115] have introduced a new approach called auxiliary classifier (AC-GAN) to

improve image samples quality by adding more structure to the GAN latent space with a spe-

cialised cost function. They modified the standard GAN formulation to include a corresponding

class label to every generated sample. The discriminator gives both a probability distribution

over sources and a probability distribution over the class labels.

Mao et al. [100] propose the least square generative adversarial networks (LSGANs) that use

the least square loss function for the discriminator to improve the learning process. The least

square loss function moves the generated samples towards the decision boundary even though

they are correctly classified. LSGANs are thus able to generate samples that are closer to real

data.
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3.3.2 Domain Generalisation

A classic approach in domain generalisation is to combine training samples from different

source domains to train a classifier and regulate the weights of the classifier for an unseen target

domain. CCSA (Classification and Contrastive Semantic Alignment) is one of the first deep

learning techniques that tackle both domain adaptation and generalisation. It uses contrastive

loss to encourage samples with the same class labels from different domains to be close in the

embedding space [110]. Li et al. [93] employ an adversarial autoencoder to align distributions

from different domains where Maximum Mean Discrepancy (MMD) is used to minimise the

difference in distributions.

3.3.3 Unsupervised Domain Adaptation

In this section, we discuss existing methods for unsupervised domain adaptation. We divide

the literature review into two sections: non-deep learning-based and deep learning models. In

particular, we provide more details on the methods we will use for comparison.

3.3.3.1 Non-deep Learning Models

Feature transformation is a classic type in unsupervised domain adaptation, which maps the

features of the source and target domain into a high-dimensional space. Previous work [119]

has demonstrated that finding good feature representations can help reduce the difference in

distributions between domains.

Hotelling et al. proposed [69] Canonical Correlation Analysis (CCA). The goal of CCA

is to find a linear transformation of the source and target domains so that they are maximally

correlated [69]. CCA is a representation learning technique that preserves the main characteristic

of the relationship between the two domains. This method shares many mathematical similarities

with dimensionality reduction techniques such as principal components analysis (PCA) and with

regression methods such as partial least squares regression (PLS) [17].

Given two feature spaces, Xs and Xt , CCA finds a canonical coordinate space that maximises

correlations between the projections of the feature spaces onto that space. Assume that we
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represent the linear combinations of these feature spaces as X̂s = ξT
s Xs and X̂t = ξT

t Xt such that

var(X̂s) = ξT
s ΣXsξs, var(X̂t) = ξT

t ΣXt ξt , and cov(X̂s, X̂t) = ξT
s ΣXs,Xt ξt .

The first pair of canonical variates X̂ 1
s and X̂ 1

t can be defined as linear combination vectors

{ξs
1,ξt

1} that maximises the correlation of X̂s and X̂t :

ρ(Xs,Xt) = maxcorr(ξT
s Xs,ξ

T
t Xt) = max

ξs,ξt

cov(X̂s, X̂t)√
var(X̂s)

√
var(X̂t)

.

That is, the maximum canonical correlation is the maximum of ρ with respect to ξs and ξt . The

solution to this problem can be done by computing the Q R decomposition of the transposed

feature space matrices, X T
s and X T

t [46].

Long et al. proposed [97] a Joint Distribution Adaptation (JDA) approach, which aims to

jointly adapt both the marginal distribution and conditional distribution from the source and

target domain to generate a new feature transformation T .

JDA learns a feature representation that reduces the difference between P(ys|xs) and P(yt |xt),

and P(Xs) and P(Xt). This can be done by minimising the following equation:

min
T

∥EP(xs|ys)[T (xs)|ys]−EP(xt |yt)[T (xt)|yt ]∥ (3.4)

where T is the feature transformation and EP(xs|ys)[T (xs)|ys] and EP(xt |yt)[T (xt)|yt ] are the

joint expectations of the features x and labels y of the source and target domain respectively. The

problem with equation 3.4 is that we do not use the labels of the target domain, thus P(xt |yt)

cannot be estimated. Instead, JDA adopts the Maximum Mean Discrepancy (MMD) distance

measure to reduce the difference between the marginal distributions P(Xs) and P(Xt).

Pan et al. [119] have proposed to find such representation through transfer component

analysis (TCA). TCA finds a representation across domains in a Reproducing Kernel Hilbert

Space (RKHS) using Maximum Mean Discrepancy (MMD). MMD measures the similarity

between the source and the target domain by computing the distances as follows.

D(Xs,Xt) = ∥ 1
ns

∑
xi∈Xs

φ(xi)−
1
nt

∑
x j∈Xt

φ(x j)∥2
H , (3.5)

where ∥ · ∥H denotes the RKHS and φ is a feature map to map the original data points to RKHS.
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TCA learns a set of common transfer components such that the difference in distributions of data

in the source and target domains can be reduced [119]. TCA can be viewed as a special case of

JDA. The main difference between the two methods is that JDA adapts the marginal distributions

and conditional distributions simultaneously [97].

Boqing et al. [58] have proposed to minimise the distance between the source and target

domains with a kernel-based method called geodesic flow kernel (GFK) that integrates an infinite

number of subspaces to represent the geometric changes and statistical properties from the

source to the target domain. GFK constructs an infinite-dimensional feature space H ∞ that

contains information about the source domain DS, the target domain DT , and the phantom

domains interpolation between the two domains. That is, given DS and DT ∈ R(D−d) , the

source and target domains respectively, and RS ∈ RD×(D−d) the orthogonal complement to

DS, i.e, R T
S DS = 0. Using the canonical Euclidean metric for the Riemannian manifold, the

geodesic flow is parametrized as Φ : t ∈ [0,1]→ Φ(t)∈ G(d,D) with constraints Φ(0) = DS and

Φ(1) = DT . For t ̸= 0,1, Φ(t) = DSU1Γ(t)−RSU2Σ(t), where U1 ∈Rd×d and U2 ∈R(D−d)×d

are orthonormal matrices:

DT
S DT = U1ΓV T , R T

S DT =−U2ΣV T (3.6)

where Γ and Σ are diagonal matrices of size d ×d whose diagonal elements are cosθi, and sinθi.

The overlap degree between DS and DT is measured by θi [56].

Feature-Level Domain Adaptation (FLDA) [86] fits a probabilistic sample transformation

function that models the transfer between the source and target domain. The transfer model

is a data-dependent distribution that models the likelihood of the target data conditioned on

observed source data. The parameters of the model are estimated by maximising the likelihood

of the target data under the transfer distribution conditioned on the source data. The transfer

distribution pZ|X describes the relation between the source and the target domain. Given pZ|X

and pX , the marginal distribution over the target domain is

qZ(z|θ,η) =
∫

X
pZ|X (z|x,θ)pX (x|η)dx (3.7)

where θ are the parameters of the transfer model, and η the parameters of the source model.
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First, the parameters η are learnt by maximising the likelihood of the source domain data under

the model pX (x|η). Then, the parameters θ are estimated by maximising the likelihood of the

target domain data under the model qZ(z|θ,η).
Bickel et al. [16] proposed Importance-weighting with logistic discrimination (IW) . Given a

labeled training sample L = ⟨(x1,y1), ...,(xm,ym)⟩ governed by an unknown distribution p(x|λ).
Labels are drawn according to an unknown target concept p(y|x). Let T = ⟨xm+1, ...,xm+n⟩ be an

unlabeled test set. The test set is governed by a different unknown distribution p(x|θ). The goal

is to find a discriminative model for learning under two different distributions. In other words,

the goal is to find a classifier f : x 7→ y and to predict the missing labels ym+1, ...,ym+n for the

test instances. The model should minimise the loss function E(x,y)∼θ[l( f (x),y)] that is defined

with respect to the unknown test distribution p(x|θ). The discriminative model estimates weights

for the training instances instead of modelling the distribution over the instances. That is, the

contribution of each training instance to the optimisation problem is weighted with a density

ratio: for each element x of the training set, selector σ = 1 indicates that x ∈ L. For each x in the

test data, σ = 0 indicates that x ∈ T . The conditional probability p(σ = 1|x,θ,λ) discriminates

training (σ = 1) against test instances (σ = 0). The density ratio can be expressed as follows:

p(x|θ)
p(x|λ) =

p(σ = 1|θ,λ)
p(σ = 0|θ,λ)

p(σ = 0|θ,λ)
p(σ = 1|θ,λ)

p(x|θ)
p(x|λ) (3.8)

The model parameters are calculated with a joint maximum a posteriori (MAP) hypothesis

of both the parameters of the density ratio and the final classifier.

3.3.3.2 Deep Learning Models

Deep Adaptation Network (DAN) [96] embeds the hidden representations of the task-specific

layers of a CNN in RKHS and explicitly matches the mean embeddings of source and target

domain distributions. As mean embedding matching is sensitive to the kernel choices, an optimal

multi-kernel selection procedure is performed to reduce the domain discrepancy.

DAN focuses on the multiple kernel variant of MMD (MK-MMD) proposed by Gretton

et al. [60]. MK-MMD jointly maximise the two-sample test power and minimise the Type II

error, that is, the failure of rejecting a false null hypothesis. The MK-MDD dk(p,q) between
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probability distributions p and q is defined as the RKHS distance between the mean embeddings

of p and q.

d2
k (p,q)≜

∣∣∣∣Ep[φ(xs)]−Eq[φ(xt)]
∣∣∣∣2

Hk
(3.9)

where Hk is the reproducing kernel Hilbert space endowed with a characteristic kernel k.

An important property is that p = q if d2
k (p,q) = 0 [60]. The characteristic kernel associated

with the feature map φ, k(xs,xt) = ⟨φ(xs),φ(xt)⟩, is defined as the convex combination of m

positive-defined kernels {ku},

K ≜

{
k =

m

∑
u=1

βuku :
m

∑
u=1

βu = 1,βu ≥ 0,∀u
}

(3.10)

where the constraints on coefficients {βu} are imposed to guarantee that the derived multi-

kernel k is characteristic.

DAN fine-tunes a CNN model on the source labelled samples and introduces MK-MMD-

based multi-layer adaptation regulariser to perform layerwise matching so that the source and

target domain are as similar as possible under the hidden representations of fully connected

layers.

min
Θ

1
na

na

∑
i=1

J(θ(xa
i ),y

a
i )+λ

l2

∑
l=l1

d2
k (D

l
s,D l

t ) (3.11)

where λ > 0 is a penalty parameter, l1 and l2 are layers indices between which the regu-

lariser is effective. D l
∗ is the lth layer hidden representation for the source and target samples

and d2
k (D

l
s,D l

t ) is the MK-MMD between the source and target evaluated on the lth layer

representation.

Joint Adaptation Networks (JAN) [98] extends DAN by aligning the joint distributions

of the multiple domain-specific layers based on joint maximum mean discrepancy (JMMD).

JMMD measures the Hilbert-Schmidt norm between kernel mean embedding of empirical joint

distributions of source and target data.

Denote by L the domain-specific layers where the activations are not safely transferable. The

discrepancy in the joint distributions of the activations in layers L can be reduced by integrating

the JMMD over the domain-specific layers L into the CNN error
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min
f

1
ns

ns

∑
i=1

J( f (xs
i ),y

s
i )+λD̂L(P,Q) (3.12)

where λ> 0 is a tradeoff parameter of the JMMD penalty, J(·, ·) is the cross-entropy loss func-

tion, D̂L is the empirical estimate of JMMD and P(X s) and Q(X t) are the marginal distributions

of the source and target domains, respectively.

The universal RKHS kernel-based MMD may suffer from vanishing gradients for low-

bandwidth kernels. To overcome this issue, JAN includes multiple fully-connected layers

parametrised by θ to JMMS to make the function class of JMMS richer. In this way, JAN

maximises JMMD with respect to θ to approach the virtud of the original MMD, maximising

the test power of JMMD such that distributions of the source and target domains are more

distinguishable. This leads to

min
f

max
θ

1
ns

ns

∑
i=1

J( f (xs
i ),y

s
i )+λD̂L(P,Q;θ) (3.13)

The goal of JAN is to reduce the shift in the joint distributions across domains and to learn

transferable features such that the target risk can be minimised by jointly minimising the source

risk and domain discrepancy.

Domain-Adversarial Neural Network (DANN) [53] is proposed to learn domain-invariant

features by combining domain adaptation with feature learning. The distribution alignment

between two domains is achieved through standard backpropagation training. The model focuses

on learning features that are discriminative for the main learning task on the source domain and

domain-invariant with respect to the shift between the domains.

To tackle the challenging domain adaptation tasks, DANN focuses on the H -divergence that

relies on the capacity of the hypothesis class H to distinguish between samples generated by the

source domain Ds from samples generated by the target domain Dt . Ben-David et al. [13] proved

that, for a symmetric hypothesis class H , the empirical H -divergence between two samples can

be computed as follows

d̂H (S,T ) = 2
(

1− min
η∈H

[
1
n

n

∑
i=1

I[η(xi) = 0]+
1
m

N

∑
i=n+1

I[η(xi) = 1]
])

(3.14)
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where S ∼ (Dx
s )

n, T ∼ (Dx
t )

m and I [a] is the indicator function which is 1 if predicate is true,

and 0 otherwise.

Ben-David et al. [13] showed that the H -divergence d̂H (Dx
s ,Dx

t ) is upper bounded by

its empirical estimate d̂H (S,T ) plus a constant complexity term that depends on the Vap-

nik–Chervonenkis (VC) dimension of H and the size of samples S and T . Ben-David et al. [13]

proof that in order to control H -divergence the feature representation of both source and target

domains should be as indistinguishable as possible. Under such representation, a hypothesis

with a low source risk will perform well on the target data.

DANN implements this idea to learn a model that can generalise well from one domain to

another. It ensures that the internal representation of the neural network contains no discriminative

information about the origin of the input (source or target data), while preserving a low risk on

the labeled source samples.

Tzeng et al. [157] have proposed an unsupervised adversarial adaptation method called Ad-

versarial Discriminative Domain Adaptation (ADDA) that learns a discriminative representation

using the labels in the source domain and builds an asymmetric mapping learned through a

domain-adversarial loss to map the target data to the source representations. The goal is to

regularise the learning of the source and target mappings to minimise the distance between

source and target mapping distributions. If this is the case then the source classifier Cs can be

directly applied to the target representation.

min
Ms,C

Lcls(Xs,Ys) =−E(xs,ys)∼(Xs,Ys)

K

∑
k=1

I[k=ys] logC(Ms(xs)) (3.15)

First, the domain discriminator D classifies whether a data point is drawn from the source or

the target domain. This discriminator is optimised using a supervised loss

LadvD(Xs,Xt ,Ms,Mt) =−Exs∼Xs[logD(Ms(xs))]−Ext∼Xt [log(1−D(Mt(xt)))] (3.16)

where Ms and Mt are the mapping distributions of the source and target domains, respectively.

Second, the source and target mappings are optimised according to a constrained adversarial

objective.
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min
D

LadvD(Xs,Xt ,Ms,Mt),

min
Ms,Mt

LadvM(Xs,Xt ,D)

s.t.ϕ(Ms,Mt)

(3.17)

where ϕ(Ms,Mt) is the mapping optimisation constraints and LadvM is the adversarial map-

ping loss

LadvM(Xs,Xt ,D) =−Ext∼Xt [logD(Mt(xt))] (3.18)

The model effectively learns an asymmetric mapping by using a pre-trained source model as

initialisation for the target representation space and fixes the source model during adversarial

training. In this way, ADDA is optimised in stages. First Lcls is optimise over Ms and C by

training the classifier using a labelled source data. The source mapping distribution Ms is fixed

while learning the target mapping distribution Mt , LadvD and LadvM can be optimised without

revisiting 3.15.

Tang et al. [154] proposed Discriminative Adversarial Domain Adaptation (DADA) which

reduces domain discrepancy by generating a mutually inhibitory relation between its domain

prediction and category prediction for any input instance. The adversarial training conducts

competition between the domain neuron and the true category neuron. DADA enables explicit

alignment between the joint distributions, thus improving target data classification.

Given {(xs
i ,y

s
i )}ns

i=1 of labeled instances from the source domain Ds and {xt
j}nt

j=1 of unla-

beled samples from the target domain Dt , the objective of unsupervised domain adaptation

is to learn a feature extractor G(·) and a task classifier C(·) such that the expected target risk

E(xt ,yt)∼Dt [Lcls(C(G(xt)),yt)] is low for a certain classification loss function Lcls(·).
The Correlation Alignment (CORAL) proposed by Sun et al. [149] uses asymmetric transfor-

mations to match the mean and covariance of the two distributions. CORAL is an unsupervised

domain adaptation method that aligns the second-order statistics of the source and target dis-

tributions with a linear transformation. The original CORAL model relies on transforming the

extracted features and then training an SVM classifier in the next step.
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The CORAL model minimises the distance between the covariance of the source and target

domains by applying a linear transformation LT to the original source features and using the

Frobenius norm as the matrix distance metric:

min
LT

= ||CŜ −CT ||2F = min
LT

||LT TCSLT −CT ||2F (3.19)

where CŜ is the covariance of the transformed source features, and CS and CF are the

covariance matrices of the source and target domain, respectively.

Sun et al. [150] extended the model to incorporate it into deep networks by constructing a

differentiable loss function that minimises the source and target correlation difference. This

new loss function is the CORAL loss. In this sense, the CORAL loss is defined as the distance

between the second-order statistics or covariances of the source and target features:

LCORAL =
1

4d2 ||Cs −CT ||2F (3.20)

where || · ||2F denotes the squared matrix Frobenius norm. The covariance matrices of the

source and target data are given by:

CS =
1

nS −1
(DT

S DS −
1
nS

(1T DS)
T (1T DS)) (3.21)

CT =
1

nT −1
(DT

T DT − 1
nT

(1T DT )
T (1T DT )) (3.22)

where DS and DT are the training samples of the source and target domains respectively,

and nS and nT are the sample size of the source and target data respectively. The gradient with

respect to the input features is calculated using the chain rule:

∂LCORAL

∂Di j
S

=
1

d2(nS −1)
((DT

S − 1
nS

(1T DS)
T 1T )T (CS −CT ))

i j (3.23)

CORAL later is extended in a deep neural network, called DeepCORAL, to learn a non-

linear transformation that aligns correlations of layer activation between the source and target

networks [151].

Saito et al. [138] employ a task-specific classifier as a discriminator to consider the relation-

ship between target samples and class decision boundaries when aligning distributions. Zhao
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et al. [198] have proposed multi-source distillation domain adaptation that first adversarially

maps the target domain into each source domain and selects the source training samples that are

close to the target domain to fine-tune the source classifier. Then the improved source classifiers

will classify the mapped target samples, and the prediction results will be aggregated for a final

prediction.

Chen et al. [28] have designed a Re-weighted Adversarial Adaptation Network (RAAN)

for unsupervised domain adaptation to reduce disparate domain discrepancies and adapt the

classifier. First, they train a domain discriminator network together with a deep convolutional

neural network in an adversarial manner to minimise the optimal transformation based on EM

distance. The label distribution is matched by estimating a re-weighted source domain label

distribution to adapt the classifier.

Adversarial Domain Adaptation with Domain Mixup (ADADM) [179] advances adversarial

learning by mixing transformed source and real target domain samples to train a more robust

generator. This is done by using a variant of VAE-GAN propused by Larsen et al. [92]. In the

same way as convention variational autoencoder, an encoder Ne maps inputs from source and

target domains to the standard Gaussian distribution N (0, I). For every sample, a mean vector µ

and a standard deviation vector σ are used as the feature embedding. At feature level, the feature

embeddings of source and target domains are linearly mixed to produce mixup features

xm = λxs +(1−λ)xt ,

lm = λls +(1−λ)lt = λ

(3.24)

where xm are mixup samples with corresponding soft domain labels lm, λ ∈ [0,1] is the mixup

ratio, and λ follows a Beta distribution.

The source and target samples are embedded to (µs,σs) and (µt ,σt) in the latent space by a

shared encoder Ne. The two domains’ embeddings are then linearly mixed to produce mixup

feature embedding (µm,σm)
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µm = λµs +(1−λ)µt ,

σ
m = λσs +(1−λ)σt

(3.25)

The embedding of the source domain is used to do K-way object classification by the classifier

C and the source and target domain are aligned on category level through enforcing the decoded

samples to be as similar as possible to source samples and preserve class information inputs.

In recent years, the research in GAN has well advanced and several coupled GAN archi-

tectures have been proposed in domain adaptation and image-to-image translation [189, 204].

For example, DupGAN [70] learns domain-invariant representation via an encoder, a generator,

and two discriminators. The encoder aims to encode samples from both domains into a latent

space, a conditional generator decodes latent representations back into source and target domains

conditioned on the domain code, and discriminators on each domain to tell whether a sample

is from the specific domain or generated. However this approach assumes both source and

target domain shares the same feature space, due to the design on the encoder. Bi-directional

GAN [189, 204], originated in image-to-image translation, unpairs two GANs to enforce cycle

(or bi-directional) consistency between source and target domains, making sure each image

can be recovered through two generators’ operation. This approach has achieved promising

performance and does not assume the same feature space between source and target domains.

Therefore, we will base our approach on this architecture.

The above techniques are used for domain adaptation in general. However, our interest

relies on accelerometer and binary sensor data. Therefore, in the following section, we present a

specific literature review related to these topics.

3.3.4 Domain Adaptation on Accelerometer Data

There have been quite a few attempts of transfer learning on accelerometer data; e.g., from one

user to another [199], from one body position (e.g., chest) to another (e.g., hips) [169], and from

one device to another [81]. However, as accelerometer data share the same dimensions, i.e.,

timestamp and x-, y-, and z-dimension, generated feature spaces can be uniform as long as they
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use the same feature extraction technique. Thus, the focus is to align the distributions rather than

transfer feature spaces.

Qin et al. [126] propose Adaptive Spatial-Temporal Transfer Learning (ASTTL) to allow

more accurate source selection to perform domain adaption. Chang et al. [22] have looked into

feature matching and adversarial learning in adapting the activity model from one sensor position

to another. These recent techniques are built on a similar assumption that both source and target

domains share the same feature space; therefore, they can share the same activity model [169]

or feature extractor [126, 22].

Zhao et al. [199] propose a TransEMDT system to transfer accelerometer-based activity

recognition models between different users. The idea is to train a decision tree on one user and

then predict activity labels on another user’s accelerometer data. A k-means clustering algorithm

is applied to the classification results. Then the original decision tree model will be updated by

iteratively resampling the most confident data on the new user. Similarly, Khan and Roy propose

an instance-based transfer boost algorithm with k-means clustering to transfer activity models

between smart phones and smart watch [81].

Maekawa et al. [99] have proposed an unsupervised approach to recognise physical activities

from accelerometer data. They utilise information about users’ characteristics such as height and

gender to compute the similarity between users, and find and adapt the models for the new users

from the similar users.

Wang et al. [169] have proposed a Stratified Transfer Learning (STL) model to recognise

physical activities from different users. They first train classifiers on the annotated source domain

dataset and use the classifiers to generate pseudo activity labels on the target domain dataset.

Then they perform intra-class knowledge transfer; that is, map the sensor data of both source

and target domain on the same activity label and use various types of transfer kernels to project

both domains’ feature spaces to a common subspace. Then they will re-train classifiers on the

common subspaces to re-label the target domain dataset. This approach has produced promising

results when there is no labelled data in the target domain.

Generative adversarial models have been employed in the image-to-image translation task [190,

203]; for example, generating a sketch from a real image. The main idea is to use two GANs,

where one is to generate target images on the input of the source images and the other is to
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generate source images on the input of the target images. The loss function is a combination of

both GANs. For example, CycleGAN [203] learns a generator which produces images in one

domain given images from the other domain and a model is trained with a cycle-consistency

constraint which enforces a strong connection across domains by mapping an image from the

source domain to the target domain and then back to the source domain which will result in the

same starting image. However, one limitation of CycleGAN is that it only learns one-to-one

mapping. Almahairi et al. [6], extended the CycleGAN model and introduced a model called

Agumented CycleGAN which learns many-to-many mappings between domains. The key idea is

to use auxiliary variables separately from the input image to capture the variations independent

from the content to be translated. Liou et al. [95] introduced a tuple of GANs (CoGAN) to learn

a joint distribution of multi-domain images. It consists of a pair of GANs; each is responsible

for synthesizing images in one domain. During the training process, both GANs share a subset

of parameters. The generators share their high-layer weights and the discriminators share their

low-layer weights. In this way, the GANs learn to synthesize pairs of corresponding images

without correspondence supervision.

Karras et al. [78] proposed StyleGAN which re-designs the generator architecture of style

transformer network to control the image synthesis process. The generator starts from constant

learned input and adjusts the style of the image at each convolution layer based on the latent

code. The training efficiency and outcomes achieved are better than pairwise transformations

thanks to the power of joint leaning.

Choi et al. [29] proposed a GAN-based method called StarGAN to perform image-to-image

translations for multiple domains. Their method allows simultaneous training of multiple datasets

with different domains using only a single generator and a discriminator. StarGAN incorporates

multiple datasets containing different types of labels and uses a mask vector that allows to ignore

unspecified labels and focus on known labels provided by particular datasets. Besides its good

performance, StarGAN generates images of higher visual quality compared to existing methods.

Suzuki et al. [153] extended StarGAN method to use multi-channel sensory data and intro-

duced a generative adversarial network based style transformer to produce a user’s gesture data.

First gesture data is transformed into another gesture data (intra-user transformation) or one

user’s gesture data is transformed to another user’s data (inter-user transformation), and then the
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output is used to train a personal classifier. Their method enables users to reduce the effort in

collecting personal training data.

3.3.5 Domain Adaptation on Binary Event Sensor Data

Transfer learning on binary event sensor data is different from accelerometer data. Features

generated on accelerometer data are in the same feature space and transfer learning focuses on

transferring the distributions of features between different subjects. However, in binary sensor

data, sensor features can be drastically different. Furthermore, each environment can have a

different sensor deployment in terms of the number and the locations of sensors being placed.

This heterogeneity in feature spaces brings an extra challenge on transfer learning of activity

models. It often requires an intermediate mechanism to bridge the feature spaces in the source

and target domain.

Rosales et al. [135] proposed a 2-staged domain adaptation where semantics similarity is

employed to perform linear transformation of sensor features from one domain to another domain

and then a variational autoencoder (VAE) is used for fine alignment between transferred features

and source features. Other than semantics, Feuz et al. [49] map feature spaces via meta-features

on each sensor; that is, the time a sensor is activated, and intervals and sequence between sensor

activation. These approaches have achieved promising results in resolving heterogeneity between

feature spaces but they require extra effort to craft the knowledge [161, 184, 132, 135] and learn

meta-mapping [49]. Also the effectiveness of these approaches is significantly subject to the

reliability of such knowledge [135].

Zheng et al. [201] propose an algorithm for cross-domain activity recognition that transfers

the labelled data from a source domain to a target domain. The activity model in the source

domain can help complete the similar activity model in the target domain. The similarity is

measured not only on the objects involved in the activities but also on their underlying physical

actions. One example in [201] is that the activity ‘Washing-laundry’ is similar to ‘Hand-washing

dishes’ on the action of ‘Hand washing’. They use the web search and apply the information

retrieval techniques to build the similarity function that produces different probabilistic weights

of actions and objects on activities of interest. These weights will be further used to train a

multi-class weighted support vector machine to support activity recognition.
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van Kasteren et al. [161] propose a manual mapping between sensors in different households

and learn the parameters of a target model using the EM algorithm to transit probabilities of

HMM models from source to target. Similarly, Rashidi et al. [132] learn sensor mappings based

on their location and activity models’ roles. The role is characterised by mutual information,

measuring the dependence between an activity and a sensor, and suggests the sensor’s relevance

in predicting the corresponding activity. Feuz et al. [49] propose a data-driven approach to

automatically map sensors based on their meta-features, which are mainly about when a sensor

reports, and time intervals between events reported by this sensor and other sensors.

Ye et al. [184] propose shared learning on scarcely and partially annotated data from multiple

users to achieve satisfactory activity recognition accuracies. The hypothesis is that as long as

each user contributes a very small number of labelled examples (even though these examples

might not cover a complete set of activity types), a shared learning approach will learn annotated

examples across all the users and complement each other to build an activity recognition model to

cover all the activities. This approach has the potential of reducing the annotation burden on each

user and has demonstrated its effectiveness when each user contributes to a very small number

of annotated activities. However, the performance of this approach still needs a significant

improvement.

Adaptive Spatial-Temporal Transfer Learning (ASTTL) [126] is proposed to transfer activity

knowledge and select appropriate source domain for cross-dataset HAR problem. It extends

GFK with the Markov property to learn temporally adaptive features in the manifold space.

Convolutional deep Domain Adaptation model for Time Series data (CoDATS) [174] also tackles

the source domain selection problem and it is built on the domain adversarial neural network

(DANN) [53]. Chang et al. [22] have developed unsupervised domain adaptation algorithms

on feature matching and confusion maximisation and performed in-depth analysis of these

algorithms in wearing diversity.

3.4 Challenges of Domain Adaptation in HAR

Although transfer learning techniques have progressed in the last few years, there are still many

challenges. First, researchers have not applied transfer learning yet when the source data is not



54 CHAPTER 3. TRANSFER LEARNING AND DOMAIN ADAPTATION

labelled. Current approaches use labelled source data to improve transfer performance in the

target domain. However, transfer-based activity recognition when the source data is not labelled

has received little attention. Similarly, transferring across different label spaces is a much less

studied problem in transfer-based activity recognition [30].

Work to date in transfer learning falls mainly in transferring knowledge learned in the

source domain to the target domain over the same variables. What remains is to generalise

between domains where the type of objects and variables are different [39]. This is called

relational-knowledge, which requires a particular relationship in the data that can be learned and

transferred across populations [30]. That is, knowledge from one domain is applied in another

by establishing a correspondence between the objects and relations in them.

More work needs to be done to improve transfer across sensor modalities and knowledge

across multiple environments. For example, instead of transferring knowledge from one envi-

ronment to another, can we transfer from one environment to a completely different one? For

example, can we train a model in a smart home and transfer the knowledge learned to to another

smart home with a different setup?

Finally, a major challenge in current activity recognition research is to collect sufficient

labelled data in the environment to train classification models. Transfer learning has been

proposed to deal with this problem, however, the challenge still remains.



Chapter 4

Knowledge-driven Unsupervised Domain

Adaptation

4.1 Overview

Sensor-based human activity recognition recognises daily human activities through a collection

of ambient and wearable sensors. It is the key enabler for many healthcare applications, especially

in ambient assisted living. In addition, the advance of sensing and communication technologies

has driven the deployment of sensors in many residential and care home settings. However, the

challenge still resides in the lack of sufficient, high-quality activity annotations on sensor data,

which most existing activity recognition algorithms rely on.

In this chapter, we present our first contribution in the thesis; we propose an unsupervised

domain adaptation technique for activity recognition, called UDAR, which supports sharing

and transferring activity models from one dataset to another heterogeneous dataset without the

need for activity labels on the latter. This approach has combined knowledge- and data-driven

techniques to achieve coarse- and fine-grained feature alignment. We have evaluated UDAR on

third-party, real-world datasets and it has demonstrated high recognition accuracy and robustness

against sensor noise, compared to the state-of-the-art domain adaptation techniques. Most of the

material is extracted from our publication [140].

55



56 CHAPTER 4. KNOWLEDGE-DRIVEN UNSUPERVISED DOMAIN ADAPTATION

4.2 Introduction

Recognising everyday routine activities can be challenging, as it involves understanding human

behaviour from a series of observations derived from motion, location, physiological signals

and environmental information. Most of the existing approaches [91, 168] assume that the

sensor data distribution is the same as that used in the model training process. However, this

assumption is not always valid. A major challenge in current activity recognition research is to

collect sufficient labelled data in the environment to train classification models. This task can be

expensive, and the lack of training labelled samples can compromise the classifier’s performance.

Transfer learning is proposed to apply knowledge learned from the source domain to the target

domain to deal with this problem.

We hypothesise that we can accurately recognise one user’s (referred to as the target user)

activities by performing unsupervised adaptation of activity models from another user (referred

to as the source user). Instead of collecting activity labels on the target user, we can transfer

the knowledge on the source user and automatically predict activity labels on the target users.

The main challenge resides in the mapping between heterogeneous feature spaces. Both users

can live in different environments with different spatial layouts and are deployed with different

numbers of sensors or different types of sensing technologies. In transfer learning, this problem

is regarded as unsupervised domain adaptation [52].

In this chapter, we explore a research question: is it possible to relieve the annotation burden

on individual users but still be able to build a robust activity recognition model by sharing and

transferring activity models across users, even though the sensor deployments and operating

environments are different? We hypothesis that our method UDAR, which supports sharing and

transferring activity models from one dataset to another heterogeneous dataset without the need

for activity labels on the latter dataset, can address this question.

The main contributions and novelty of our method are listed as follows.

• We have designed a workflow that combines knowledge- and data-driven techniques in

performing domain adaptation at different stages. We build on a general ontology for smart

home datasets and achieve coarse-grained feature space remapping to link heterogeneous

datasets without the need for labelled data in the target domain. We apply Variational
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Autoencoder (VAE) to perform fine-grained feature space alignment. VAE has achieved

promising results in learning effective latent feature representations in computer vision [84]

and also in minimising the distance of the source and target feature spaces based on their

latent feature representations [3].

• We have performed an extensive empirical evaluation on third-party, real-world datasets

that have different spatial layouts and sensor deployments. We have designed different

experiments on assessing the effectiveness and robustness of domain adaptation with

different training data percentages and sensor noise settings. The results have demonstrated

the robustness of UDAR as it has consistently outperformed the state-of-the-art domain

adaptation techniques. These results are presented in chapter 7.

Section 4.3, describes the problem – unsupervised domain adaptation and presents our

approach in a workflow. Section 4.4, introduceS the pre-annotation process with coarse-grained

knowledge-driven feature space remapping and section 4.5, describes fine-grained VAE based

feature alignment.

4.3 Problem Statement and Overview

In this section, we define the problem of unsupervised domain adaptation, illustrate it in a

concrete example, and present the workflow of our approach UDAR.

Definition 2. Assume that a source and target domain dataset is defined as follows.

• A source domain dataset consists of a collection of labelled instances, Ds = {(xs
i ,y

s
i )}Ns

i=1,

where an instance xs
i (∈ X s) is labelled with a class label ys

i (∈ {1,2, ...,C}). Here X s is a

Ms-dimensional feature space.

• A target domain dataset consists of a collection of unlabelled instances Dt = {xt
j}Nt

j=1,

where xt
j ∈ X t . Here X t is a Mt-dimensional feature space.

Both source and target domains have different feature spaces but share the same label space; i.e.,

X s ̸= X t such that they have different dimensions Ms ̸= Mt , and their marginal distributions and

conditional distributions are different; i.e., P(X s) ̸=P(X t) and P(ys|xs) ̸=P(yt |xt). Unsupervised
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domain adaptation is to predict a label yt
j for each instance xt

j in the target domain dataset and yt
j

∈ {1,2, ...,C}.

Figure 4.1 illustrates the above problem. Two houses A and B are presented, each of which

is deployed with a number of binary event-driven sensors [162]. For example, House A is

configured with infrared passive motion sensors, which report 1 when the presence of an object

or a user is detected. House B is configured with RFID to monitor the presence of an object and

switch sensors to monitor the ‘open’ and ‘close’ states of a cupboard or a door. Our task is to

transfer an activity model from one house (e.g., A) to predict labels in the other house (e.g., B),

without using any activity labels on house B.

Figure 4.1: The representation of sensor deployments in two different smart homes: House A and House
B [162]. A sensor similarity matrix is used to initialise the similarity of sensor features between both houses.

4.3.1 Overview

A general strategy to address the unsupervised domain adaptation problem is to align feature

spaces from both domains and then find a common subspace where both feature spaces can be

projected onto and minimise their distance [120]. Aligning feature spaces can be done through

matching distributions [120], but this is infeasible as the dimensionality of feature spaces is

completely different here. Another way for alignment is based on class labels; that is, align

instances from both domains when they share the same class label [169]. Since we do not use

the target domain’s labels, we need to find a way to generate pseudo labels on the instances in

the target domain. In the following, we list the main steps in UDAR.
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Step 1 - Knowledge-driven feature remapping between source and target domains, where we use

simple semantics to transfer feature space from the target domain to the source domain;

Step 2 - Pre-annotating on the target domain, where we train a classifier on the source domain

dataset and generate pseudo labels on the semantics-transferred target domain dataset;

Step 3 - Performing domain adaptation, where we align feature spaces in both source and target

domains based on the generated pseudo labels;

Step 4 - Re-annotating on the target domain, where we train a classifier on the transferred target

feature space along with their pseudo labels and predict labels on the target dataset.

4.4 Knowledge-driven Feature Remapping and

Pre-annotating

This section will describe how we generate pseudo labels on the target dataset to prepare for

domain adaptation. Knowledge-driven feature remapping is to map sensor features based on the

sensor semantics, where they are deployed and which objects they are attached to. This feature

remapping has demonstrated promising results in transferring learning between heterogeneous

smart home environments [184], but semantics can be coarse-grained as they ignore any feature

distribution on activities. Therefore, they often cannot lead to accurate and fine-grained feature

space mapping. This work will only use knowledge-driven feature remapping to generate pseudo

labels and then perform more sophisticated domain adaptation later.

4.4.1 Feature Remapping

Ye et al. [186] have presented a general ontology to project sensors in different smart home

environments onto the same location and object ontologies. The location ontologies represent

the spatial containment relationship between location concepts; e.g., Bedroom ⊑ SleepingArea.

The object ontologies are extracted from WordNet [103] and represent the semantic relations

between lexical concepts; e.g., Door ⊑ MovableBarrier. Through the conceptual hierarchy
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of the ontologies, we can calculate semantic similarity between a pair of sensors based on the

similarities between their location and object concepts; that is,

sim(ss,i,st, j) = ωL × sim(li, l j)+ωO × sim(oi,o j), (4.1)

ωO +ωL = 1 (4.2)

where ωL and ωO are the weights on location and object concepts contributing to the similarity

of sensors, ss,i and st, j are ith and jth sensor in a dataset s and t respectively, and li, l j, oi, o j are

the location and object concepts in the general ontologies that the sensors i and j are mapped

to. The similarity measure between domain concepts is based on their hierarchy [178], which

has been detailed in [186]. The weights are set as 0.5 for both object and location because we

consider both of their contributions to activity recognition are equally important.

For example, in Figure 4.1, consider the sensor node, marked as S_A1, is attached to the

bedroom door in House A, and S_B1 and S_B2 to the bedroom door and bed in House B. When

projecting all these sensors onto the same location and object ontologies: Bedroom – location

concepts for these three sensors, Door – object concepts for S_A1 and S_B1, and Bed – object

concepts for S_B2. Using the above formula 4.1, we can calculate the similarities between

S_A1 and both S_B1 and S_B2, which are 1.0 and 0.8 respectively. In this way, we can produce

a similarity matrix between each pair of sensors from the source and target domain. A more

detailed description can be found in [183]. There might exist some sensors in the target domain

that cannot find strong matches in the source domain; i.e., a sensor’s similarity scores with all the

sensors in the source domain are low. We will leave the feature alignment and the re-annotation

process to learn the correlation of these sensors and activity labels.

4.4.2 Pre-annotation

The pre-annotation step is to generate pseudo activity labels on the unlabelled target dataset, using

the classifier trained on the source domain dataset. We aim to predict the labels as accurately

as possible, as we will use the labels to align feature spaces in the source and target domain

datasets. To enhance the accuracies of label generation, we design a stacked ensemble on the

source domain dataset, which is presented in Figures 4.2 and 4.3 .
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fF
Figure 4.2: The stacked ensemble to predict activity labels on the unlabelled target domain dataset
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representations on the transformed target data zt!s. We use a neural network that has the same

architecture and weights of the encoder in the previous VAE so that we can learn the domain adap-

tive features by mapping the target domain data into the feature distribution of the source domain.

We will then retrain the network with the transformed target data X̂t!s,k. The training objective

is to minimise the KL divergence between the posterior distribution of the latent representations

q✓(zs|x) and q✓(zt!s|x):

DKL(q✓(zt!s|x)||q✓(zs|x)) =
1

2
(tr(⌃�1

s ⌃t!s) + (µs � µt!s)
T⌃�1

s (µs � µt!s) � l + ln
|⌃s|

|⌃t!s|
), (8)

where tr(⌃�1
s ⌃t!s) is the trace function to compute the sum of diagonal of ⌃�1

s ⌃t!s, and l is the

dimension of the latent representation. This process aligns the latent PDF of the transformed target

data to that of the source data by matching their means and the eigenvalues of their covariances.

5.2. Re-annotation

Once we have aligned the source and target feature spaces, we will go back to re-annotate

uncertain instances remaining in the target dataset. To achieve this, we train a classifier fs!l

on the encoded source domain X̂s!l; i.e., X̂s!l = vae.encode(Xs), where l is the latent space

learnt by a VAE. We use this classifier to predict labels on the encoded target domain X̂t!l; i.e.,

X̂t!s!l = vae.encode(X̂t!s). We assume that the newly predicted labels on the target domain are

more reliable than the labels predicted at the pre-annotation step as now the source and target

domains are mapped to the same latent subspace. Then we train a new classifier ft with confident

instances from the target domain; i.e., {(x
(j)
t , y

(j)
t )|(y(j)

t , p(j)) = fs!l(x
(j)
t!s!l), p

(j) � ⌧}, where ⌧ is

the confidence threshold. Then we predict labels for all the remaining unlabelled instances in the

target domain. This process is illustrated in Algorithm 1.

6. Experiment and Evaluation

The objective of UDAR is to evaluate how accurately we can predict activity labels on the target

domain dataset using our proposed unsupervised transfer learning approach. More specifically, we

seek to answer the following questions:

1. Does UDAR enable more accurate domain adaptation than the state-of-the-art domain adap-

tation techniques?
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side of the equation, Eq✓(z|x)[log(p✓(x|z))], is the expected value of the data likelihood, while the

KL divergence is a regulariser for the encoder to align the approximate posterior with the prior

distribution of the latent variables.
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Having that in mind, we can convert a standard normal distribution into a Gaussian; that is,

z = µ(X ) + ⌃1/2(X )✏, (5)

where ✏ ⇠ N(0, 1). In this way, the backpropagation does not depend on z. Finally, the weights

and parameters are updated according to the loss function optimisation.

E[g2]t = �E[g2]t�1 + (1 � �)
@C

@W
2

, (6)

Wt = Wt�1 �
⌘p

E[g2]t

@C

@W , (7)

where E[g] is the moving average of square gradients, @C
@W is the gradient of the cost function with

respect to the weight, ⌘ is the learning rate, and � the moving average parameter.

5.1.2. VAE-based Domain Adaptation

We use VAE to align semantics-based remapped feature spaces in the target domain with the

feature space in the source domain to adjust data distributions in order to achieve fine-grained

feature alignment. The proposed training framework is presented in Figure 2b.

We first train the VAE on the source data to obtain the source domain latent representa-

tions; that is, given the training data Xs,k in the source domain on an activity class k, and

zs ⇠ q✓(zs) the latent representation, the posterior distribution q✓(zs|x) is modelled as a mul-

tivariate Gaussian distribution with the estimated mean µ(Xs,k) and covariance ⌃(Xs,k); i.e,

q✓(zs) = N (zs; µ(X̂s,k),⌃(X̂s,k)).

Second, we transform the target data on the same class k using the sensor similarity matrix;

that is, X̂t!s,k = Xt,kSt⇥s. Then we obtain the posterior distribution q✓(zt!s|x) of the latent
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(tr(⌃�1

s ⌃t!s) + (µs � µt!s)
T⌃�1

s (µs � µt!s) � l + ln
|⌃s|

|⌃t!s|
), (8)
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minimise

Figure 4.3: Fine-grained feature alignment with VAE

First we train a number of independent classifiers on the source domain dataset, and use them

to produce probability distributions on each source instance; that is, Pfi = [p f ,1, p f ,2, ..., p f ,N ]

represents the probability distribution from a classifier fi on each class, given that there exists

a set of classes {1,2, ...,N} and a collection of classifiers { f1, f2, ..., fF}. Then we concatenate

these probability distributions together [Pf1,Pf2, ...,PfF ] and build a neural network on top of

them to learn the correlations of each base classifier’s probability distributions and activity labels.

We map the target domain dataset onto the source domain; i.e., X̂ t→s = X tSt×s, where St×s is

the sensor similarity matrix from the target to source domain. Then the trained stacked ensemble

f is applied to predict labels on X̂ t→s; i.e., (y j, p j) = f (x̂t→s
j ), indicating that the ensemble f

predict a class label y j on a jth instance in X̂ t→s with a posterior probability p j. We collect a
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collection of confident instances in the target domain whose posterior probability is higher than

a pre-defined threshold τ; i.e., {(x̂t→s
j ,y j)|(y j, p j) = f (x̂t→s

j ), p j ≥ τ}. We assume that a high

confidence score indicates that most classifiers ‘agree’ on the same result. A low confidence

value is an indication of uncertainty. We leave all the uncertain instances unlabelled for now.

4.5 Domain Adaptation and Re-annotating

Once we generate pseudo activity labels on the target dataset, we align feature spaces from both

source and target domain based on their activity labels and perform in-class transfer. We align

the instances in the source and target datasets if they share the same label, and learn the affinity

between feature spaces for each label. For example, the activity ‘eating’ in House A and House

B is the same for both domains even though it has different distributions and we assume it should

lay on the same intrinsic subspace. Here we introduce how to use a Variational AutoEncoder

(VAE) for in-class transfer to learn the latent representations that reveal meaningful relationships

between the source and target domain.

4.5.1 Domain Adaptation

Domain adaptation is used to match the feature distributions of the source and target domains.

This can be achieved by projecting the feature spaces in the source and target domain onto the

same subspace so as to minimise their distances. Here we perform in-class domain adaptation.

For each class label k (∈ {1,2, ...,N}), we collect its instances in the source domain; i.e.,

{(xs
i ,y

s
i )|ys

i = k}, and its confident instances in the transformed target domain from the pre-

annotation process; i.e., {(xt→s
j ,yt

j)|yt
j = k} and yt

j is a label predicted on the trained stack

ensemble f . We denote the above instances from the source and target domain on the same class

label k as X s,k and X̂ t→s,k respectively. The task of domain adaption is to align these two feature

spaces.

4.5.1.1 Variational AutoEncoders

Variational AutoEncoders (VAEs) are a variational inference approach for an autoencoder based

latent factor model [84]. A VAE is a generative model that draws sample x using latent variable z;
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pθ(x) =
∫

pθ(z)pθ(x|z)dz, where pθ(z) is the prior distribution on latent variable z, pθ(x|z) is the

conditional distribution of generating x given z, and θ is the model parameter. pθ(x) is intractable

because the likelihood function pθ(x|z) is complex, which often is modelled as a neural network

with a nonlinear hidden layer [84]. To tackle this problem, VAE introduces an encoder network

qφ(z|x) to approximate the intractable true posterior pθ(z|x). That is, a VAE consists of two

networks: an encoder qφ(z|x) that produces the distribution over the latent representation of the

variable z given the input data x and a decoder pθ(x|z) that produces the distribution over x given

a latent representation of the variable z.

The marginal likelihood of individual data points x(i) then can be rewritten as

log(pθ(x(i))) = DKL[qφ(z|x(i))||pθ(z|x(i))]+L(θ,φ;x(i)). (4.3)

The second term L(θ,φ;x(i)) is called evidence lower bound (ELBO) on the marginal

likelihood of the data point x(i), which can be written as

L(θ,φ;x(i)) = Eqφ(z|x)[log(pθ(x(i)|z))]−DKL[qφ(z|x(i))||pθ(z)], (4.4)

where the decoder pθ(x|z) and the encoder qθ(z|x) are parameterised as the neural networks.

The choice of qθ(z|x) is often a factorised Gaussian distribution. The first term of the right hand

side of the equation is the expected value of the data likelihood, while the KL divergence is a

regulariser for the encoder to align the approximate posterior with the prior distribution of the

latent variables.

The overall model is trained by stochastically optimising the ELBO using the reparameterisa-

tion trick to make the network differentiable [84]. The reparameterisation trick works as follow.

If x ∼ N(µ,Σ), we can standardise it as xstd; i.e µ = 0 and Σ = 1, and revert it to the original

distribution by reverting the standardisation process using x = µ+Σ1/2xstd .

Having that in mind, we can convert a standard normal distribution into a Gaussian; that is,

z = µ(X )+Σ
1/2(X )ε, (4.5)

where ε ∼ N(0,1). In this way, the backpropagation does not depend on z. Finally, the weights
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and parameters are updated according to the loss function optimisation.

E[g2]t = βE[g2]t−1 +(1−β)
∂C

∂W

2

, (4.6)

Wt = Wt−1 −
η√

E[g2]t

∂C
∂W

, (4.7)

where E[g] is the moving average of square gradients, ∂C
∂W is the gradient of the cost function

with respect to the weight, η is the learning rate, and β the moving average parameter.

4.5.1.2 VAE-based Domain Adaptation

We use VAE to align semantics-based remapped feature spaces in the target domain with the

feature space in the source domain to adjust data distributions in order to achieve fine-grained

feature alignment. The proposed training framework is presented in Figure 4.3.

We first train the VAE on the source data to obtain the source domain latent representations;

that is, given the training data X s,k in the source domain on an activity class k, and zs ∼
qθ(zs) the latent representation, the posterior distribution qθ(zs|x) is modelled as a multivariate

Gaussian distribution with the estimated mean µ(X s,k) and covariance Σ(X s,k); i.e, qθ(zs) =

N (zs;µ(X̂ s,k),Σ(X̂ s,k)).

Second, we transform the target data on the same class k using the sensor similarity matrix;

that is, X̂ t→s,k = X t,kSt×s. Then we obtain the posterior distribution qθ(zt→s|x) of the latent

representations zt→s on the transformed target data. We use a neural network that has the same

architecture and weights of the encoder in the previous VAE so that we can learn the domain

adaptive features by mapping the target domain data into the feature distribution of the source

domain. We will then retrain the network with the transformed target data X̂ t→s,k. The training

objective is to minimise the KL divergence between the posterior distribution of the latent

representations qθ(zs|x) and qθ(zt→s|x):

DKL(qθ(zt→s|x)||qθ(zs|x)) =
1
2
(tr(Σ−1

s Σt→s)+(µs −µt→s)
T

Σ
−1
s (µs −µt→s)− l + ln

|Σs|
|Σt→s|

),

(4.8)
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where tr(Σ−1
s Σt→s) is the trace function to compute the sum of diagonal of Σ−1

s Σt→s, and l is

the dimension of the latent representation. This process aligns the latent probability distribution

function of the transformed target data to that of the source data by matching their means and the

eigenvalues of their covariance.

4.5.2 Re-annotation

Once we have aligned the source and target feature spaces, we will go back to re-annotate

uncertain instances remaining in the target dataset. To achieve this, we train a classifier fs→l

on the encoded source domain X̂ s→l; i.e., X̂ s→l = vae.encode(X s), where l is the latent space

learnt by a VAE. We use this classifier to predict labels on the encoded target domain X̂ t→l; i.e.,

X̂ t→s→l = vae.encode(X̂ t→s). We assume that the newly predicted labels on the target domain

are more reliable than the labels predicted at the pre-annotation step as now the source and target

domains are mapped to the same latent subspace. Then we train a new classifier ft with confident

instances from the target domain; i.e., {(xt
j,y

t
j)|(yt

j, p j) = fs→l(xt→s→l
j ), p j ≥ τ}, where τ is the

confidence threshold. Then we predict labels for all the remaining unlabelled instances in the

target domain. This process is illustrated in Algorithm 1.

Algorithm 1 Re-annotation
Require: a trained VAE vae, labelled source domain data X s, and unlabelled target domain data X t

1: map X s onto the latent space l of vae: X̂ s→l = vae.encode(X s)
2: train a classifier fs→l on X̂ s→l

3: map X t onto the latent space l of vae: X̂ t→s→l = vae.encode(X tSt×s)
4: use fs→l to predict labels on X̂ t→s→l

5: collect instances in the target domain that are predicted with high confidence: {(xt
j,y

t
j)|(yt

j, p j) =

fs→l(xt→s→l
j ), p j ≥ τ}

6: train a classifier ft on the above target instances {(xt
j,y j)}

7: predict the remaining unlabelled instances in X t

4.6 Conclusions

This chapter proposes UDAR as a knowledge-driven unsupervised domain adaptation algorithm

to enable transferring activity recognition systems across heterogeneous domains. However,

the limitations of UDAR are that knowledge-driven annotation can be not accurate and UDAR

requires extra knowledge engineering effort. Furthermore, the sensor similarity matrix might not
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be available for all transfer learning tasks, limiting this method’s scope. In chapter 5, we present

two deep learning models that do not rely on any predefined knowledge to tackle this problem.



Chapter 5

GAN-based Unsupervised Domain

Adaptation Techniques

5.1 Overview

In this chapter, we present two data-driven GAN-based unsupervised domain adaptation tech-

niques. The first method, called shift-GAN, is presented in section 5.4. It is proposed for

resolving heterogeneous feature space between source and target domain using a Bidirectional

Generative Adversarial Networks (Bi-GAN) and Kernel Mean Matching (KMM) in an innovative

way to learn intrinsic, robust feature transfer between two heterogeneous domains. Most of the

material of this section is extracted from our publication [140].

Although shift-GAN works well it does not separate classes that have similar patterns. To

solve this limitation, in section 5.5 we introduce a second model called ContrasGAN that uses

contrastive learning to minimise the intra-class discrepancy and maximise the inter-class margin.

With contrastive learning, we hypothesise that we can better discriminate samples from different

class labels and lead to more class-discriminative adaptation. This contribution has been accepted

for publication in Pervasive and Mobile Computing Journal.

In section 5.2, we briefly describe unsupervised domain adaptation. Finally, in section 5.3, we

introduce Generative Adversarial Networks (GAN), explain Bi-GAN architecture, and describe

the process of performing domain adaptation using Bi-GAN.

67
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5.2 Introduction

Let Ds = {(xs
i ,y

s
i )}Ns

i=1 be the labelled source domain and Dt = {xi
t}Nt

i=1 be the unlabelled target

domain, where xs(∈ RMs) and xt(∈ RMt ) is a Ms and Mt-dimensional feature vector, and Ms can

be different from Mt . Both domains share the same label space Y . We aim to perform adaptation

between Ds and Dt with the objective to predict labels for all the instances in Dt .

Activity Recognition Benchmark 175

processing and is timestamped using the same clock (the internal clock of the computer)

that is used to timestamp the sensor data.

(a) House A
(b) House B
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Fig. 8.2 Floorplan of houses A, B and C, the red boxes represent wireless sensor nodes.

8.3.3 Houses

A total of three datasets was recorded in three different houses. Details about the datasets

can be found in Table 8.1. Floorplans for each of the houses, indicating the locations of the

sensors, can be found in Figure 8.2.
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new activity      on the 
target dataset

Sensorised Environment Feature Distribution Domain Adapation 

Figure 5.1: A use case [79] of generalised unsupervised domain adaptation.

We will illustrate the above definition through an example in Figure 5.1. Assume that there

are two sensorised house settings (i.e., source and target) having different spatial layouts and

installed with different sensors (as marked in red dots) [79]. The sensor data collected on these

two houses are different and so are the sensor features extracted. The activity set Y to predict

can be the same; i.e., a common set of daily activities such as preparing breakfast and performing

personal hygiene.

Our aim is to learn a feature space transformation function gs→t that maps the source domain

features into the target domain features; i.e., gs→t(xs) = x̃t . Then, we can build a classifier with

transformed data {(x̃t
i,y

s
i )}Ns

i=1, with which we can predict labels on real target data Dt .

We consider the transformation function gs→t is generalised or activity-invariant, if it can

be applied to sensor data on emerging, new activities that have not been observed in Ds. Let

D′
s = {(x′si ,y′i)}

N′
s

i=1 be a new collection of labelled source domain’s data, which has the same

feature space as Ds but has a different label space; that is, y′si ∈ Y ′s and Y ′s ∩Y s = /0. The

transformation function is regarded intrinsic to features, independent of specific activity classes
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if gs→t(x′s) still holds on the new data D ′
s without the need of retraining; i.e., gs→t(x′s) = x̃′t . In

Figure 5.1, if the source domain’s data are annotated with a new activity ‘leaving home’, we can

use the function to transform the source domain data on this new activity to the target domain,

without the need of retraining the function.

To achieve this feature transformation, we proposed to use Generative Adversarial Networks

(GAN). GAN-based approach has been widely applied in domain adaptation [157]. In the

following section, we describe GAN’s architecture and explain how it can be used to perform

domain adaptation.

5.3 Feature Transformation via GAN

In this section, we will briefly introduce the details of GAN and Bi-GAN, and then describe how

we extend the latter for better feature space transformation.

5.3.1 Generative Adversarial Network

GAN systems consist of a generator and a discriminator. In the domain adaptation task the

generator can learn to generate target samples from source samples, while the discriminator will

try to tell whether a sample is generated or from the real target domain. When the discriminator

is defeated, then we have a well-trained generator that bridges source and target domains.

The idea behind GAN is to train two models – a generator and a discriminator – in an

adversarial process. The generator G takes as input a random noise vector z and uses a multilayer

perceptron with θ(G) as parameters such as weights and biases. The discriminator D estimates the

probability of a given sample coming from a real dataset. It takes as an input x and uses another

multilayer perceptron with θ(D) parameters. The models are represented by two functions, each

of which is differentiable both with respect to its inputs and parameters.

The two models compete against each other during the training process: the generator G is

trained to generate samples that could easily be mistaken for real data. While, the discriminator

D is trained to maximise the probability of assigning the correct label to both training examples

and generated samples from G. In other words, D and G are playing a minimax game. The dis-

criminator wishes to minimise JD(θ(D),θ(G)) while controlling only θ(D). The generator wishes
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to minimise JG(θ(D),θ(G)) while controlling only θ(G). Their interaction can be summarised

in the following loss function. Let Pd be the original data’s distribution, Pg be the generator’s

distribution, and Pz be the noise variable z’s distribution.

min
G

max
D

L(D,G) =Ex∼Pd [logD(x)]+Ez∼Pz [log(1−D(G(z)))]

=Ex∼Pr [logD(x)]+Ex∼Pg [log(1−D(x))],
(5.1)

where Ex∼Pd [logD(x)] corresponds to the log-likelihood of maximising the probability of as-

signing the correct label, and Ex∼Pg[log(1−D(x))] represents the log-likelihood of generating

samples as real as possible.

5.3.2 Bi-directional GAN (Bi-GAN)

Figure 5.2: The architecture of Bi-GAN
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Figure 5.2 describes the architecture of Bi-GAN. The Bi-GAN model consists of two GANs:

{Gs,Ds} and {Gt ,Dt}, each composed of a generator and a discriminator on the source and

target domain respectively. Gs(xs) = x̃t takes a source instance xs and generates a corresponding

instance x̃t in the target domain. Gt(xt) = x̃s takes a target instance xt and generates a correspond-

ing instance x̃s in the source domain. Both generators are trained to generate fake samples as

close as to the real samples in the other domains and their objective function is to minimise the

reconstruction losses:

Lg
s = ||Gt(Gs(xs,z),z′)− xs||, (5.2)

Lg
t = ||Gs(Gt(xt ,z′),z)− xt ||, (5.3)

where z and z′ are random noise introduced in Gs and Gt .

The discriminator Ds is a binary classifier to detect whether an input is generated by Gs or a

real sample from the target domain, and Dt is to detect whether an input is generated by Gt or a

real sample from the source domain. Their loss functions are defined as:

Ld
s = Ds(Gs(xs,z))−Ds(xt), (5.4)

Ld
t = Dt(Gt(xt ,z′))−Dt(xs) (5.5)

The combined loss function on both generators and discriminators is:

Lg(xs,xt) =λs||Gt(Gs(xs,z),z′)− xs||+

λt ||Gs(Gt(xt ,z′),z)− xt ||−

Dt(Gt(xt ,z′))−Ds(Gs(xs,z))

(5.6)

5.4 shift-GAN

This section presents the four main steps of shift-GAN and explains how we integrate Bi-GAN

and KMM to learn intrinsic, robust transfer between two domains, which are activity-invariant.

shift-GAN works as follow:
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1. Feature space transformation – perform unsupervised feature space transformation be-

tween source and target datasets with GAN; that is, we learn the mapping function gs→t

and obtain X̃ t = gs→t(X s).

2. Feature distribution alignment – shift the transformed features X̃ t towards the real target

data X t ; that is, X̄ t = βX̃ t , where β = [β1,β2, ...,βN ], N is the size of transformed samples

X̃ t , and βi is a weighting factor on each transformed sample.

3. Classifier training – train a classifier on the aligned, transformed features X̄ t and their

corresponding labels inherited from the source domain.

4. Prediction – use the trained classifier to predict labels on the data in the target domain.

5.4.1 Feature Space Transformation

Algorithm 2 Bi-GAN training [189]

Data: Unlabelled source domain Ds = {xs
i}Ns

i=1 and unlabelled target domain Dt = {xt
i}Nt

i=1
Build two generators GA and GB and two discriminators DA and DB

repeat
foreach iteration do

sample L-sized instances from both Ds and Dt ; {xs
j}L

j=1 ⊆ Ds and {xt
j}L

j=1 ⊆ Dt

update the parameters on Ds to minimise 1
L ∑

L
j=1 Ld

s (x
s,xt)

update the parameters on Dt to minimise 1
L ∑

L
j=1 Ld

t (x
t ,xs)

sample L-sized instances from both Ds and Dt ; {xs
j}L

j=1 ⊆ Ds and {xt
j}L

j=1 ⊆ Dt

update the weights on both generators to minimise 1
L ∑

L
j=1 Lg(xs,xt)

until converge;

To perform the feature space transformation, we adopt the same training process of Bi-

GAN [189], which does not need labels on neither source nor target domains. The training

process is shown in Algorithm 2. At the end of training, both generators act as the mapping

functions. Bi-GAN enables to transform examples from the source domain to the target domain.

In principle, the generator can generate many instances on each source example. The quality

of each instance can vary due to the random variable z. In image-to-image application, human

experts can visually inspect the images and perform the selection process. However, this practice
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is infeasible for sensor data generation, so we extend one-to-many instance generation and

selection process.

For a given source example xs, we use Gs to generate N number of target samples, calculate

their reconstruction loss using Eq (2) (3), and order them in an ascending order. Then we

select the top-k (1 ≤ k ≤ N) samples that have the smallest reconstruction loss. The rationale

is to choose the best transformed samples for the target domain while covering the diverse

feature space by using k samples. In the end, we will have X̃ t = {x̃t
j}

N′
s

j=1 (N′s = k ∗Ns), where

x̃t
j = Gs(xs

i ) (1 ≤ i ≤ Ns and 1 ≤ j ≤ N′
s).

5.4.2 Covariate Shift Correction via Kernel Mean Matching

The transformed examples X̃t might still not reflect the true target data distribution. To better

align the distribution, we are looking into Kernel Mean Matching (KMM), which is designed as

a non-parametric distribution matching method between training and testing samples. KMM

reweights the training examples such that the means of the training and testing examples when

projected in a Reproducing Kernel Hilbert Space (RKHS) are close. In this way, the training

data will be better aligned with testing data, leading to improved classification accuracy [111].

KMM has been successfully applied with GAN to control the image generation process [75].

Inspired by the promising results, we will apply KMM to shift feature distributions to improve

classification accuracy. In the following, we will briefly introduce the theoretical background of

KMM and illustrate how it is integrated in shift-GAN.

The idea of KMM is to assign each instance in generated target domain data {x̃t
i}

N′
s

i=1 with an

importance weight βi, which will be factored in a weighted loss function on a classifier f :

Lw( f ) =
N′

s

∑
i=1

βil( f (x̃t
i),yi). (5.7)

The purpose of the importance weight is to shift the source domain data closer to the target

domain data such that P(X t) = βP(X̃ t), where β = [β1,β2, ...,βN′
s
]. In order to find suitable
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values of β ∈ RN′
s , we need to minimise the discrepancy between means of X̃ t and X t subject to

βi ∈ [0,1] and | 1
N′

s

N′
s

∑
i

βi(xs
i )−1| ≤ ε, (5.8)

where ε is set as 0.01. The first part limits the scope of discrepancy between P(X̃ t) and P(X t)

and ensures the robustness by limiting the influence of individual instances. The second part

ensures that βP(X̃ t) is close to a probability distribution.

To find β, a feature space F is used, which is a RKHS with a universal kernel k(x,x′) =

⟨Φ(x),Φ(x′)⟩. With the feature map Φ: Xt → F , we define

Ki j := k(x̃t
j,x

t
j) (5.9)

κi :=
N′

s
Nt

Nt

∑
j=1

k(x̃t
i,x

t
j) (5.10)

Then the discrepancy equation is defined as:

|| 1
N′

s

N′
s

∑
i=1

βiΦ(x̃t
i)−

1
Nt

Nt

∑
j=1

Φ(xt
j)||2

=
1

N′2
s

β
T Kβ− 2

N2
t

κ
T

β+C (5.11)

where C is a constant. Thus, finding suitable β can be formulated as a quadratic problem [59],

such that
min

β

1
2

β
T Kβ−κ

T
β

subject to βi ∈ [0,B] and |
N′

s

∑
i=1

βi −N′
s| ≤ N′

sε.

(5.12)

5.4.3 Prediction on Target Dataset

Algorithm 3 presents an overall algorithm of shift-GAN and Figure 5.3 shows the workflow. It

starts with training two generators Gs and Gt and then with Gs we can transform source dataset

into target dataset. Then we align the transformed data with unlabelled target dataset to learn

weighting factor β. After alignment, we build a SVM classifier with the transformed source

dataset, with which we can predict labels on the transformed target dataset. SVM classifier



5.5. UNSUPERVISED DOMAIN ADAPTATION VIA CONTRASTIVE LEARNING 75

demonstrated superior performance than other classifiers. These results will be discussed in

chapter 7.

Source data Xs

Target data Xt

Bi-GAN

Transformed 
"𝑋t

KMM 𝛽
SVM

1.
 T

ra
in

 a
 B

i-G
AN

2. Transform source
samples to target
domain via Bi-GAN

3. Train KMM

4. Build a SVM with 
transformed target 
samples and 𝛽 from KMM 

5. Use trained SVM to predict labels on target data 

Figure 5.3: The overall workflow of shift-GAN

Algorithm 3 shift-GAN Training

Data: Labelled source domain Ds = {(xs
i ,y

s
i )}Ns

i=1 and unlabelled target domain Dt = {xt
j}Nt

j=1

Learn a generator Gs by training a Bi-GAN with {xs
i}Ns

i=1 and {xt
j}Nt

j=1 in Algorithm 1

Generate top-k samples in the target domain on each source sample xs
i : {x̃t

l}
N′

s
l=1, N′

s = k ∗Ns

Learn β with {x̃t
l}

N′
s

l=1 and Dt using Eq (12)

Build a SVM classifier f with β and {x̃t
i}

N′
s

i=1
Predict labels for instances in Dt

shift-GAN is a powerful technique that can learn invariant transformation functions between

source and target domain. However, shift-GAN focuses on the translation between individual

samples and does not consider the classes. To tackle this problem in the following section 5.5, we

present a contrastive approach to better discriminate activities with similar patterns and improve

the prediction of classes with few training samples.

5.5 Unsupervised Domain Adaptation via Contrastive

Learning

This section presents the third contribution of this thesis called ContrasGAN. ContrasGAN is

an unsupervised domain adaptation technique that introduces contrastive learning to improve



76CHAPTER 5. GAN-BASED UNSUPERVISED DOMAIN ADAPTATION TECHNIQUES

class alignment. It is composed of the following components and its workflow is presented in

Figure 5.4:

1. Feature space transformation - perform unsupervised feature space transformation between

source and target domains via Bi-GAN;

2. Class-level alignment - perform class-level alignment via contrastive learning;

3. Target label prediction - predict labels on the data in the target domain.

5.5.1 Feature Space Transformation

To perform feature space transformation, we modify the architecture of Bi-GAN presented in

section 5.3.2 to introduce another term – expectation loss, which constrain the global mapping

between two feature spaces [11] to better globally align the generated space with the original

space:

Lexp = E[(Gt(X t)−X s)2]+E[(Gs(X s)−X t)2]

=
1
nt

nt

∑
i=1

(Gt(xt
i)− xs

i )
2 +

1
ns

ns

∑
i=1

(Gs(xs
i )− xt

i)
2 (5.13)

The collaboration between the two GANs is established from their loss functions:

L = LGs +LGt +Lexp −LDs −LDt
(5.14)

The training of Bi-GAN goes as follows. We first train two discriminators Ds and Dt as

binary classifiers on {xs
i}Ns

i=1 and {xt
i}Ns

i=1 using the loss functions in Equations 5.3.2. Then we

train two generators Gs and Gt with Ds and Dt in an adversarial way using the loss function in

Equation 5.5.1. Then we iterate the above two steps for several iterations until both generators

and discriminators converge.
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Figure 5.4: Workflow of ContrasGAN
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5.5.2 Class-level Alignment

At the end of training Bi-GAN, we will have two generators that can transform samples from

one domain to the other. Now our first task is to perform class-level alignment to learn class-

discriminative feature transformation. To do so, we will first look into contrastive learning that

has the strength in learning intra-class compactness (i.e., grouping samples that share the same

class labels) and inter-class separability (i.e., pushing apart the samples that have different class

labels).

Our second task is to further refine the source and target feature space transformation driven

by the classification performance. We will focus on improving the target generator Gt to

transform target samples to the source domain as accurately as possible. To do so, we will train

two classifiers: f and g. f is trained on the transformed source data onto the target domain;

that is, D̃s→t = {(x̃s→t
i ,ys

i ) | x̃s→t
i = Gt(xs

i )}. g is trained on the original labelled source data

Ds. Then for the same target sample, we can measure the prediction discrepancy between the

classifiers f and g. This discrepancy will guide the generator Gt to better map target samples

onto the source domain and thus minimise the discrepancy, and guide the classifier g update

to adapt to the transformed target samples. However, the prediction discrepancy is only for

first-order moment matching [37]. To further improve the performance, we add maxmimum

mean discrepancy (MMD) loss between the source samples and the transformed target samples

to match the difference via higher-order moments. In the end, we will have improved target

generator Gt that can accurately transform target samples to the source domain and the classifier

g that can predict labels for transformed target samples.

5.5.2.1 Contrastive Loss

Our first step is to pre-label target samples. We transform all the source domain data to the target

domain; that is, D̃t→s = {(x̃s→t
i ,ys

i ) | x̃s→t
i = Gt(xs

i )}. We build a classifier f on this transformed

dataset and use it to pre-label all the target data.

Once we have labelled the target data, we will use contrastive loss to minimise the intra-

class discrepancy and maximise the inter-class margin. The intra-class domain discrepancy is

minimised to compact the feature representations of samples within a class, whereas the inter-

class domain discrepancy is maximised to push the representations of each other further away
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from the decision boundary. The intra-class and inter-class discrepancies are jointly optimised to

improve the adaptation performance.

The contrastive loss function is a distance-based loss function and it runs over pairs of samples

to ensure that semantically similar samples are embedded close together. Here semantically

similar samples means the samples belong to the same class. We define the following distance

function on the source samples and the transformed source samples from the target domain.

con_dist((x̃t→s
i , ỹt→s

i ),(xs
j,y

s
j)) =




||x̃t→s

i − xs
j||2 ỹt→s

i = ys
i

max(0,m−||x̃t→s
i ,xs

j||2) ỹt→s
i ̸= ys

j

(5.15)

where yt→s is the predicted label on the sample x̃t→s and ys is the label on the real source sample

xs. It measures the distance of a pair of similar samples which belong to the same class and

constrains the distance of a pair of dissimilar samples which belong to different classes. m is

pre-defined margin. The margin specifies the maximum distance between a pair of dissimilar

samples, over which the distance is 0, meaning that it will not contribute to the contrastive loss

later. Following [62], the contrastive loss function is defined on the distance function as follows.

Lcon =
1
ε

nt

∑
i=1

ns

∑
j=1

con_dist((x̃t→s
i , ỹt→s

i ),(xs
j,y

s
j)). (5.16)

where ε is a parameter used to normalise the contrastive loss. The normalisation prevents the

overall loss is dominated by the individual loss with higher magnitude. We employ a batch

normalisation; that is, the loss is normalised by the number samples in a batch, which helps

balance the magnitude of different loss components.

5.5.2.2 Discrepancy Loss

We also want to enforce the consistency between two classifiers on the same target samples. The

discrepancy loss represents the level of disagreement of the classifiers between the transformed

and real target instances. Let xt
i and xt→s

i be a target sample and its corresponding transformed

sample in the source domain. pt
i = [pt

1, ..., pt
N ] be the probability output vector on xt

i from the

classifier f , indicating the confidence of inferring each class (∈ [1, ...,N]). Similarly, pt→s
i be the
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probability output vector on xt→s
i from the classifier g. The discrepancy loss between pt→s

i and

pt
i is defined as:

Ldisc = E[
nt

∑
i=1

(
1
N

N

∑
n=1

|pt,n
i − pt→s,n

i |)] (5.17)

where | · | denotes the l1-norm. It measures the prediction difference between two classifiers on

the same target instance. It guides the generator Gt to transform better aligned target samples to

reduce this difference and also the classifier g to produce more consistent prediction probability

with the other classifier f .

5.5.2.3 MMD Loss

MMD is to estimate the distance of two distributions with their mean of projected embeddings in

the reproducing kernel Hilbert space (RKHS) [18]. MMD is motivated by the fact that if two

distributions are identical, all of their statistics should be the same.

Let X = {xi}n1
i=1 and X ′ = {x′i}n2

i=1 be random variables sets with distributions P and Q . The

empirical estimated distance between P and Q defined by MMD is

mmd_dist(X ,X ′) =

∥∥∥∥∥
1
n1

n1

∑
i=1

φ(xi)−
1
n2

n2

∑
i=1

φ(x′i)

∥∥∥∥∥
H

(5.18)

where φ is the function mapping X to H and H is a universal RKHS.

Here, we define a MMD loss to minimise the distance of transformed and real feature spaces:

LMMD = mmd_dist(Gt→s(X t),X s) (5.19)

Therefore, minimising MMD means to minimising all orders of moments. In practice, the

squared value of MMD is estimated with the empirical kernel mean embeddings:

Lmmd(X s,X t→s) =
Ns

∑
i=1

Nt→s

∑
j=1

k

(
φ

(
x̃t→s

j

∥x̃t→s
j ∥

)
,φ

(
xs

i
∥xs

i∥

))
(5.20)

where φ(·) is the kernel mapping and ∥·∥ denotes the l2-norm. k is the kernel to compute the

inner product between two feature maps; k(x,x′) = ⟨φ(x),φ(x′)⟩H [18]. The MMD loss forces
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the normalised features in the two domains to be identically distributed improving the global

domain alignment.

5.5.2.4 Algorithm and Training Regime

Algorithm 4 describes the training process of ContrasGAN: (1) train a Bi-GAN model Gs and

Gt to allow the transformation of instances between source and target domains; (2) perform

class-level alignment. We initialise two classifiers f and g with the transformed source samples

and the real source samples respectively; and then we fix the classifier f and the source generator

Gs, and update Gt and the classifier g.

Algorithm 4 ContrasGAN Training

Data: Labelled source domain Ds = {(xs
i ,y

s
i )}Ns

i=1 and unlabelled target domain Dt = {xt
j}Nt

j=1

1. Train generators Gs and Gt by training a Bi-GAN with {xs
i}Ns

i=1 and {xt
j}Nt

j=1
Initialise two generators Gs and Gt and two discriminators Ds and Dt

repeat
foreach iteration do

sample L-sized instances from both Ds and Dt ; {xs
j}L

j=1 and {xt
j}L

j=1

update the parameters on Ds to minimise 1
L ∑

L
j=1 Ld

s (x
s,xt)

update the parameters on Dt to minimise 1
L ∑

L
j=1 Ld

t (x
t ,xs)

sample L-sized instances from both Ds and Dt ; {xs
j}L

j=1 ⊆ Ds and {xt
j}L

j=1 ⊆ Dt

update the weights on both generators to minimise 1
L ∑

L
j=1 L in Eq (6)

until converge;
2. Perform class-level alignment
Build a classifier g on Ds
Build a classifier f on transformed source data Ds
repeat

foreach iteration do
sample L-sized instances from both Ds and Dt ; {(xs

j,y
s
j)}L

j=1 and {xt
j}L

j=1
generate transformed target samples via Gt : {x̃t

j|x̃t
j = Gt(xt

j)}L
j=1

infer class labels and posterior probabilities on original target data and transformed
target data
update the parameters of g to minimise Lcon

sample L-sized instances from both Ds and Dt
update the weights on Gt to minimise Ldisc +Lmmd

until converge;
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5.6 Conclusions

This chapter presented two GAN-based unsupervised domain adaptation techniques for het-

erogeneous feature spaces. It only requires one well-annotated domain and can transfer the

activity model from this domain to many other unlabelled domains. Thus, it can significantly

reduce the labelling effort. Our work suggests the potential of combining bi-directional GAN and

contrastive learning in learning distinctive feature transfer and thus leading to effective activity

model transfer. Below we summarise the main contributions of shift-GAN and ContrasGAN:

• We proposed shift-GAN as a general unsupervised domain adaptation technique to enable

activity transfer across heterogeneous datasets, including accelerometer and binary sensors.

• We have extended Bi-GAN by not just performing one-to-one instance translation but

one-to-many instance translation along with instance selection process to allow more

robust domain adaptation.

• We have validated shift-GAN extensively on different transfer tasks across multiple

datasets. All these datasets feature different sensor deployments, spatial layouts of en-

vironments, and different end users. Our results have demonstrated that shift-GAN has

outperformed classic and deep domain adaptation techniques. The results are discuss in

chapter 7.

• ContrasGAN makes it possible to adapt an activity model with a well-annotated dataset to

a large number of real-world settings without the need of collecting any additional labels.

• Contrastive learning improves classification accuracy by learning a feature space where

similar samples are put close to each other while dissimilar ones are pushed apart.

In the following chapter, we present the experimental setup and evaluation methodologies

and in chapter 7, we discuss the evaluation results.



Chapter 6

Experimental Setup and Evaluation

Methodologies

6.1 Introduction

We evaluate our methods in the context of cross-body, cross-user and cross-sensor human activity

recognition. We compare them to baseline models and other competing domain adaptation

techniques. Section 6.3 introduces the benchmark datasets used in the experiments. The general

experimental setup is presented in section 6.6.3, including an introduction to the implementation

framework, configuration and hyperparameter selection and an explanation of comparison

techniques.

6.2 Evaluation Objectives

The main goal of the evaluation is to assess the effectiveness of UDAR, shift-GAN and Con-

trasDGAN in generalised unsupervised domain adaptation; that is, how accurately UDAR,

shift-GAN and ContrasDGAN can recognise activities in the target domain without using any

labelled data in the target domain, and to what extent the domain adaptation being learnt can be

generalised. In the following, we will introduce the experiment setup and the implementation

details.

83
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6.3 Datasets

To assess the generality and feasibility of UDAR, shift-GAN and ContrasDGAN, we consider

the two most common types of datasets: ambient binary sensors and accelerometers. All these

6 datasets are collected by third parties and are publicly available. These 6 datasets exhibit a

wide range of domain adaptation challenges, especially the varying feature complexity (from

14 to 405) and a large number of activities (from 6 to 19). Also, there exists a high similarity

between activity classes and high diversity of patterns in one activity class. All these challenges

have added extra complexity to unsupervised domain adaptation, which will be discussed later.

The detailed setting for each dataset is as follow.

6.3.1 Binary Sensor Datasets

For ambient binary sensor datasets, we use three datasets collected and curated by the University

of Amsterdam (named A, B, and C respectively in the remainder of this chapter) [162]. They

are collected on three different users in three different residential settings, each being deployed

with binary sensors, including infra-red position sensors, switch sensors, and water flow sensors.

In House A, the sensor network is composed of 14 state-change sensors on household objects

like doors, cupboards, or toilet flush. In House B and C, each network node was equipped with

heterogeneous sensors: passive infrared to detect motion in a specific area; pressure mats to

measure whether someone is sitting on a couch or lying in bed; switches to monitor whether

doors and cupboards are open or closed; mercury contacts to detect the movement of objects

(e.g., drawers); and water flow sensors to detect the flush of the toilet. All these sensors output

binary readings (0 or 1), indicating whether or not a sensor fires. In these three datasets, the

activities “Toilet", “Leave House", and “Sleep" dominate the datasets, while the activity “drink”

is the least frequently recorded activity.

For binary sensor data, we employed state-of-the-art techniques to extract features [45]; that

is, the activation ratio within a fixed interval (i.e., 60 seconds) as sensor features. Figure 6.1

presents the activity distribution of these three datasets.
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Figure 6.1: Activity distribution of the 3 binary sensor datasets used in evaluation

6.3.2 Accelerometer Sensor Datasets

For accelerometer data, we select 3 commonly-used HAR datasets: WISDM [172], UCI daily

and sports (DSADS) [9, 8], and PAMAP2 (PAMAP) [133].

The WISDM dataset was collected from 51 subjects when they were performing 18 daily

activities including walking, jogging, brushing teeth, eating and drinking. During the data

collection, each subject either wore a smartwatch (i.e., LG G Watch) on their dominant wrist

or had a smartphone (i.e., Samsung Galaxy or Google Nexus 5/5X) in their pocket. The

accelerometer and gyroscope’s data from both watch and phone were collected at a rate of

20 Hz. We use the handcrafted features from WISDM datasets, including the mean, standard

deviation, mel-frequency cepstrum coefficients (MFCC) of each dimension, and correlations

between dimensions [172]. The PAMAP dataset records 12 activities performed by 9 subjects,

including sitting, lying, house cleaning, and ironing. Each subject wears 3 accelerometer units on

their dominant arm, chest, and dominant side ankle. The DSADS consists of 19 daily activities

performed by 8 subjects, including exercising on a stepper, rowing, and running on a treadmill.

Each subject wears 5 accelerometer units on their torso, right arm, left arm, right leg, and left
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leg. We use the feature dataset [170] generated from these two datasets. That is, 27 features are

extracted per sensor on each body part, including mean, standard deviation, and spectrum peak

position. Table 6.1 summarises the characteristics of these datasets.

Table 6.1: Descriptions of Datasets
No. of Features No. of Samples No. of Users No. of Activities Activities

243 7352 9 12
ascending stairs, cycling, descending stairs, ironing, lying, nordic walking, 
rope jumping, running, sitting, standing, vacuum cleaning, walking

405 9120 8 19

sitting, standing, lyiing on back and on right side, ascending and 
descending stairs, standing in an elevator still, moving around in an 
elevator, walking in a parking lot, walking on a treadmill with a speed of 
4km/h, running on a treadmill with a speed of 8 km/h, exercising on a 
cross trainer, cycling on an exercise bike in horizontal and vertical 
positions, rowing, jumping, and playing basketball

PHONE 90 40553

WATCH 90 34942
WISDM

PAMAP

DSADS

Dataset

walking, jogging, stairs, sitting, standing, typing, brushing teeth, eating 
soup, eating chips, eating pasta, drinking from cup, eating sandwich, 
kicking, playing catch w/ Tennis Ball, dribllinlg, writing, clapping, folding 
clothes

51 18

For the experiments, we use similar and different body parts as described in Table 6.2.

Beyond the tasks within each dataset, we also consider the tasks between PAMAP and DSADS

on their four common activities, including walking, standing, sitting, and lying.

Table 6.2: Descriptions of transfer learning tasks on body parts

6.4 Implementation Frameworks and Libraries

The code1 for the experiments is in Python, using the PyTorch, Numpy and Pandas libraries. The

experiments have been run on a modest computer configured with an Intel Core i7-9700K CPU

3.60GHz and 32GB memory.

1The source code can be accessed here: https://github.com/An5r3a.
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6.5 Configuration and Hyperparameter Selection

UDAR configuration consists of two main components: (1) for the pre-annotation step we used

three base classifiers: the random forest classifier with 50 trees, SVM with RBF kernel and

the grid parameter searching to find the optimal values for C and γ, and k-Nearest Neighbour

(kNN) with k = 5. All the base classifiers are from the Scikit-learn library2. These classifiers are

vanilla classifiers and their confidence probabilities are calculated as follows. SVM estimates the

multi-class probability via Pairwise Coupling [177], RF computes the probability as the mean

of the predicted class probabilities of the trees in the forest, and kNN computes the probability

as the fraction of classes among the selected neighbours. On top of these three base classifiers,

we build a stacked ensemble, which is implemented as a neural network consisting of 2 hidden

layers and the sparse categorical cross-entropy loss function. (2) In the domain adaptation step

all models are implemented with PyTorch, the loss function of the VAE is minimised using the

RMSProp optimisation. The optimizer is parametrised with a learning rate of 10−2. We use tanh

as the activation function except for the output layer. The mini-batch size is set to 100 instances.

In order to choose the best setting for VAE, we have done the grid search on the number of layers

from 1 to 3 and the number of neurons from S−S/2 to S+S/2, where S is the number of sensor

features and choose the setting that leads to the highest accuracy for each dataset.

shift-GAN consists of two main components: Bi-GAN and SVM with KMM. For the Bi-

GAN, both generators Gs and Gt have identical network architecture. The leaky ReLU activation

function is used in both generators with the exception of the output layer which uses tanh

function. We observed that using the leaky ReLU activation function allows the model to learn

more quickly as it allows gradients to flow backwards through the layer unimpeded. A leaky

ReLU is like a normal ReLU, except that there is a small non-zero output for negative input

values. Mathematically, ReLU is defined as y = max{0,x}. The downside of ReLU activation

function is that it is zero for all negative values. This problem is called dying ReLU, which states

that we can have dead neurons during the learning process if the derivative slope is zero. Once

a neuron gets negative, it is unlikely for it to recover. Then the accumulated gradient for the

weight update will be multiplied by zero. To fix this issue, Leaky ReLU assigns a small slop for

negative values, which improves the learning process as it does not have zero-slope parts.

2Scikit-learn library can be accessed at: https://scikit-learn.org/.
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To help the discriminators generalise better, we make use of the parameter smooth. This

process is known as label smoothing. Label smoothing regularises a model based on a softmax

with k output values by replacing the hard 0 and 1 classification values with values of ε

k and

1− k−1
k ε, respectively. We update the cross-entropy loss with these soft values.

The loss function of GAN is minimised using the Adam optimisation. The optimiser is

parameterised with a learning rate of 10−2 and the mini-batch size is set to 100. In order to

choose the best setting, we have done the grid search on the number of layers from 1 to 3 and

the number of neurons from S−S/2 to S+S/2, where S is the number of sensor features and

choose the setting that leads to the highest accuracy for each dataset. Similarly, we have run

grid search for configuring the weights of source and target generators λs and λt in Eq (6) in the

range of [100, 1000].

ContrasDGAN consists of two main components: Bi-GAN and class-level alignment. In

terms of the architecture of Bi-GAN, each generator contains three linear layers with leaky

ReLU as the activation function. Each layer has the same dimension as the input layer. Batch

normalisation is applied and between each pair of layers, 20% dropout rate is used. The

discriminator has a similar architecture as the generator and the only difference is that the last

layer of the discriminator is for classification, which has sigmoid as activation function and has

binary output. For class-level alignment, both classifiers are implemented as a two-layered neural

network, where each hidden layer has the same dimension as the input layer and the output layer

maps to the number of classes. We set the optimiser as ADAM, the learning rate is set to 1e4,

and decaying to 1e3. We train the model for 500 epochs with a batch size of 100.

We have done the grid-search with the hyperparameters including the number of layers for

generators, discriminators, and classifiers, batch size, learning rate, and number of epochs and

dropout rates. We choose the configuration that leads to the highest accuracy.

6.6 Evaluation Methodologies

This section describes the evaluation setup, including metrics and a general description of

comparison techniques used to assess the effectiveness of our methods.
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6.6.1 Evaluation Metrics

The accuracy of recognising activities is evaluated using two parameters: precision and recall.

Precision is the ratio of the times that an activity is correctly recognised to the times that it is

inferred. Recall is the ratio of the times that an activity is correctly inferred to the times that it

actually occurs. The F1-score is the harmonic mean of precision and recall:

F1-score = 2∗ precision∗ recall
precision+ recall

(6.1)

As our datasets are imbalanced, we use both micro-F1 and macro-F1 scores. The micro-F1 is

the F1-scores averaged across all instances, and the macro-F1 is the F-scores averaged on all

activity classes.

6.6.2 Comparison Techniques

We compare our methods with the state-of-the-art domain adaptation models and other com-

peting domain adaptation techniques. First, we select 5 classic techniques that have achieved

best performance in transferring heterogeneous feature spaces [135] including Geodesic Flow

Kernel (GFK) [56], Transfer Component Analysis (TCA) [119], Feature-Level Domain Adap-

tation (FLDA) [86], Joint Distribution Adaptation (JDA) [97], and Importance-weighting with

logistic discrimination (IW) [61], along with a linear baseline technique Canonical Correlation

Analysis (CCA). Then we choose recent unsupervised domain adaptation techniques. We mainly

focus on the recent adversarial techniques that have achieved high adaptation accuracy and

demonstrated robustness in transferring heterogeneous feature spaces. Therefore, we select

Adversarial Discriminative Domain Adaptation (ADDA) [157], Domain-Adversarial Neural

Network (DANN) [53], Deep Adaptation Networks (DAN) [96], and Adversarial Domain Adap-

tation with Domain Mixup (ADADM) [179], Joint Adaptation Networks (JAN) [98], Deep

Correlation Alignment (DeepCORAL) [151].

Beyond these techniques, we also add the upper bound and lower bound baseline: (1) for the

upper bound baseline we train a classifier with 80% of original target data and test on 20% of the

target data, which indicates the best performance that we can achieve on the target data; and (2)

for the lower bound baseline we train a classifier with all of the source data and test on the target
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data, which suggests the difference between source and target domains and thus indicates the

difficulty of a transfer learning task.

6.6.3 Experiments

We conducted experiments on several real-world datasets to assess the performance of UDAR,

shift-GAN and ContrasDGAN in tackling the main types of domain adaptation tasks in human

activity recognition:

Cross-body Transferring an activity model from one wearing body position to another; e.g.,

from left leg to right leg. It is motivated by wearing diversity of wearable sensors [22]

in that users tend to change where to put their sensors or wearables depending on their

preference and their current activities. It is desirable to transfer an activity model learnt on

one body position to another, which can reduce annotation cost and improve recognition

accuracy and robustness to the variability of wearing positions.

Cross-sensor Transferring an activity model across different sensing technologies, for example

from phone to watch, or between environments deployed with different ambient sensing

technologies [135]. This can be the most complicated domain adaptation task in HAR

where the source and target domains are in heterogeneous feature spaces. It tackles a

problem where a system tries to deploy a new set of sensors for activity recognition without

the need of collecting any activity labels. With the help of an existing dataset that targets a

similar set of activities, the adaptation task can quickly build an activity model with new

sensors.

In the following, we provide a description of each experiment.

6.6.3.1 Performance of Unsupervised Domain Adaptation

Our first experiment is to assess the effectiveness of domain adaptation. To do so, we compare

state-of-the-art domain adaptation techniques and deep learning-based domain adaptation tech-

niques. For each technique, we use all the source domain data and randomly split the target

domain data into 80% for training and 20% for testing. The labels on the target dataset are not

used during training.
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6.6.3.2 Impact of Training Data

We also assess the impact of training data on the effectiveness of domain adaptation. It is

desirable to use less training data while achieving comparable accuracy. Therefore, in this

experiment, we vary the percentage of training data in the target domain from 20% to 80% and

assess the impact of the training data on the accuracy of domain adaptation.

6.6.3.3 Robustness to Sensor Noise

The performance of the sensors can vary over time affecting drastically the sensor features. For

example, a sensor could break or a wrong calibration can cause signal interference resulting in

deterioration in the measurement. The sensor configuration can be cost-inefficient for large-scale

deployment and require a lot of maintenance to calibrate the sensors. Here we aim to assess the

impact of sensor noise on the performance of domain adaptation and thus to shed light on sensor

maintenance management. To do so, we systematically inject noise into sensor features and

compare the accuracy of the recognition accuracy with the state-of-the-art domain adaptation

techniques.

We inject random Gaussian noise into the target domain data to simulate the real-world

situation where the environment to be adapted to is compromised with unexpected sensor noise.

On the test data of the target domain, we randomly select a number of sensors, and for each

randomly selected sensor, we inject it with Gaussian noise. The percentage of sensors is chosen

from 25% to 100% with a step size of 25%. The mean and variance of Gaussian noise are

randomly sampled between 0 and 1.

6.6.4 Summary

In this chapter, we have explained our experimental strategy including the configuration of

the models, hyperparameter tuning and datasets used. These datasets are well-known public

datasets for activity recognition for experimentation and evaluation. We have also provided

a comprehensive explanation of each of the methods used for comparison. These approaches

have achieved very good results on different transfer learning tasks. In the next chapter, we will

proceed with the comparison results and discussion.





Chapter 7

Results and Discussion

7.1 Introduction

We conduct various experiments on three real-world datasets commonly used in human activity

recognition to evaluate the domain adaptation performance of our methods and baseline tech-

niques. The general experimental setup is presented in chapter 6, which includes a description of

the learning tasks, benchmark datasets, hyperparameter selection, comparison techniques and

evaluation metrics.

In this chapter, we report first the overall performance of UDAR, shift-GAN and ContrasGAN

against several baseline domain adaptation techniques on binary and accelerometer data. In all

accelerometer experiments, we do not compare our first proposed method UDAR. The reason is

that UDAR is a knowledge-driven feature remapping technique that maps sensor features based

on the sensor semantics which is not available for accelerometer data.

Accelerometer results are divided into two section. Section 7.2.2.1 presents the results for

cross-body experiments that evaluate transferring an activity model from one wearing body

position to another. Section 7.2.2.2 discusses the results for cross-sensor experiments which

transfer an activity model across different sensing technologies, for example from phone to watch.

In section 7.3, we discuss the stability and convergence of UDAR, shift-GAN and ContrasGAN.

We also investigate issues that could happen in real-world problems. In section 7.4 we

analyse the impact of varying the percentage of training data on the effectiveness of domain

adaptation and in section 7.5 we study the effects of sensor noise in domain adaptation. With these

93
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experiments, we aim to understand which conditions can affect domain adaptation performance

and to validate the robustness of our models. We will compare our methods with the best

performing deep and non-deep learning-based techniques from the previous experiments.

7.2 Performance of Unsupervised Domain Adaptation

In this section, we analyse and compare the performance of UDAR, shift-GAN and ContrasGAN

against baseline techniques. Beyond these techniques, we add the upper- and lower-bound

baselines. We report results first for binary sensor data followed by accelerometer results.

7.2.1 Binary Sensor Data

The binary sensor data experiments measures the accuracy of transferring an activity model

learnt on one house (e.g., House A) to another house (e.g., House B). We used three datasets

curated by the University of Amsterdam (named A, B, and C respectively in the remainder of

this chapter) [162]. On these three datasets, we define six adaptation tasks: A-B, B-A, A-C, C-A,

B-C, and C-B. Here the task A-B means that A acts as the source domain and B as the target

domain.

Tables 7.1 and 7.2 report the micro-F1 and macro-F1 scores of the proposed methods and the

baseline techniques on binary sensor data experiments. ContrasGAN, shift-GAN and UDAR

have achieved a performance improvement in micro-F1 score of 41%, 35% and 41% and in

macro-F1 score of 46%, 32% and 43% over the lower bound accuracy, respectively.

Compared to deep learning-based domain adaptation techniques, UDAR outperforms ADADM,

DADA, JAN, DANN, DeepCORAL and DAN in 14%, 7%, 42%, 4%, 34% and 5% in micro-

F1 score, respectively. DANN outperforms UDAR on tasks A-B, B-A, A-C and C-A. However,

for C-B and B-C it struggles in finding meaningful latent representations when the dataset has

more noise. DADA also fails to minimise the domain discrepancy between the source and

target domain with noisy datasets. DAN deals with large divergence better, however, UDAR

outperforms DAN in 12% and 14% on B-C and C-B tasks, respectively. Although JAN is an

extension of DAN, it has the worst performance between the adversarial techniques. The joint
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maximum mean discrepancy does not improve minimising the shift between the distributions of

the different houses.

It is evident that UDAR outperforms non-deep learning-based methods. More specifically,

the performance improvement in micro-F1 score of UDAR over each technique is: 23% (GFK) ,

35% (TCA), 51% (FLDA), 32% (JDA), 69% (IW) and 79% (CCA). On C-A, UDAR performs

worse than GFK by 11.4%, which is because House C is very noisy, finding a joint subspace that

is still discriminative is hard.

Table 7.1: Comparison of micro-F1 scores between ContrasGAN, shift-GAN, UDAR and baseline
techniques on binary datasets.

Table 7.2: Comparison of macro-F1 scores between ContrasGAN, shift-GAN, UDAR and baseline
techniques on binary datasets.

Between the non-deep learning-based techniques, CCA is the worst, which reflects its

limitations. CCA requires a one-to-one correspondence between data points in the source and

target domains. This correspondence is then used to find the linear transformation to correlate

both domains. To align the dimensions of the data points in both domains during the domain

adaptation step, first, we select the instances from a class from the source domain and instances

from the target domain on the same class using the pseudo labels. If the size of instances is

different in each domain, we select a random sample to fit the dimensions. The canonical

functions that maximise the correlation between both domains might depend on the random

samples in each set. The sample size per class is important when the sample size is small; i.e.,

if only a few instances in a certain class are selected, the learnt canonical correlation can be

meaningless and not effective. On the other hand, a smaller number of samples from one domain
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can be dominated by the samples from the other domain, leading to incorrect representation of

the instances with small number of samples. For example, in the A-B task, the activity ‘drink’

represents 4% and 1% of the activity distribution in House A, and House B, respectively. CCA

requires more instances for the alignment to be possible. When the sample size contains less

than 5 instances, CCA will struggle to find a meaningful correlation between both samples.

JDA struggles to adapt the marginal distributions and conditional distributions when the

source and target domains are considerably dissimilar. FLDA constructs a feature-level transfer

model that calculates the difference between the target and source domain for each feature

individually. However, its working assumption does not suit the problem that we are targeting.

FLDA assumes a strong correlation between features on the corresponding activities in the

source and target domain. For example, given that a sensor S is related to an activity ‘shower’

in House A, and House A and B have similar sensor features, then FLDA will assume that the

mapped sensor S is only related to the activity ‘shower’ in House B, but not to any other activities.

However, it is difficult to distinguish activities that activate a common set of sensors.

(a) House A to B using UDAR (b) House A to B using TCA

Figure 7.1: Activity visualisation in transferring House A to B. t-SNE is applied on the feature representa-
tions of (a) the latent feature space on UDAR, and (b) the common subspace learnt on TCA for both the
source and target domain. The activity labels for the source domain are A.0 - Leave Home, A.1 - Toilet,
A.2 - Shower, and for the target domain are B.0 - Leave Home, B.1 - Toilet, B.2 - Shower.

Figure 7.1 visualises the feature spaces transformed in UDAR and TCA onto a 2D plot

using t-Distributed Stochastic Neighbor Embedding (t-SNE) [159], a multidimensional scaling

technique. In t-SNE, the pairwise distances δ2
i j = ∥xi − x j∥2 between the high-dimensional data

points xi and x j are converted into a joint probability distribution P over all pairs of non-identical

points. The matrix P has entries:
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pi j =
exp(−δ2

i j/σ)

∑k ∑l ̸=k exp(−δ2
i j/σ)

(7.1)

for ∀i and ∀ j such as i ̸= j. The aims of t-SNE is to model each object by a point yi in a

low-dimensional map in such a way that the pairwise similarities pi j are modeled as well as

possible in the map.

As we can see, in Figure 7.1a, when we encode the feature spaces of the source and target

domain in the latent feature space learnt from UDAR, the data points that correspond to the

same activity are clustered together, implying that the latent representations from the source and

target domains are well aligned. On the contrary, the data points for the same activity are more

separated in Figure 7.1b, which visualises the latent representations learnt from TCA on both

source and target domains. This means that the latent space of TCA fails to capture inherent

common representations of the source and target domain.

UDAR outperforms shift-GAN in micro-F1 and macro-F1 scores by 6% and 11%, respec-

tively. This is because UDAR is a knowledge-driven method that aligns sensor features using

a sensor similarity matrix. Domain knowledge and the use of VAE to align feature space help

improving activity recognition. However, UDAR can not be applied in many situations as it

requires a sensor mapping which limits the application of the approach. shift-GAN does not

require engineering effort to map two domains. shift-GAN leverages the generative capability of

GAN in mapping features between the source and target domain on high dimensional and high

heterogeneous spaces.

DANN and DAN outperform shift-GAN with 3% and 2% in micro-F1 scores, respectively.

The reason is that they leverage convolutional layers to learn transferred features on the combined

source and target features and then minimise the discrepancy on embeddings on task-specific

layers. Combining features together allows better feature contrast and alignment than shift-GAN

where the focus is only to learn the mapping functions between domains.

Looking across the tasks, we can see that shift-GAN performs better than ADADM, DADA,

JAN, DANN and DeepCORAL on tasks B-C and C-B. This means that shift-GAN is more robust

to noisy datasets. shift-GAN has an improvement over the lower bound of 35% and 32% in

micro-F1 and macro-F1 scores respectively. Most deep learning techniques do not perform well

especially on B-C task. This is the case of DeepCORAL, DADA and JAN which achieve a
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micro-F1 score of 64%, 53% and 68% respectively. Figure 7.2 presents the confusion matrix of

shift-GAN, DeepCORAL, DADA and JAN on the B-C task. We can see that DeepCORAL and

DADA are biased towards the activity with more training instances and are unable to recognise

other activities. JAN shows a similar pattern but it can distinguish other activities such as

‘Breakfast’ and ‘Dinner’. Although shift-GAN struggles in recognising ‘Breakfast’, is more

effective in finding discriminative features and is better dealing with imbalanced datasets.

(a) shift-GAN (b) DeepCORAL

(c) DADA (d) JAN

Figure 7.2: Confusion matrices on the B-C task

Among the non-deep learning-based techniques, GFK performs better, but still 25% less than

shift-GAN in both micro-F1 and macro-F1 scores. Figure 7.3 presents the confusion matrix of

shift-GAN and GFK on the A-B task. We can see that GFK has good discriminative power;

however, shift-GAN is more capable of recognising activities that have fewer distinctive patterns
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(a) shift-GAN (b) GFK

Figure 7.3: Comparison of confusion matrices on task A-B between shift-GAN and GFK

like ‘Drink’, and is better at finding discriminative features between activities that fire the same

set of sensors; for example, ‘Toilet’ and ‘Shower’. Therefore, we conclude that shift-GAN is

more effective than GFK when dealing with imbalanced datasets and is better at recognising

activities that have less frequent patterns than the other techniques.

CCA, IW and FLDA perform the worst. Compared to CCA and IW, shift-GAN is less

affected by the sample size and it performs well when there is little overlap between the source

and target domain [86].

ContrasGAN outperforms shift-GAN by 6% and 11% in micro-F1 and macro-F1 scores.

Figure 7.4 presents the confusion matrix of ContrasGAN and shift-GAN on the C-B task. House

C is a very noisy dataset, making it more difficult to find discriminative features. We can

see that shift-GAN has good discriminative power, however, ContrasGAN is more capable

of differentiating between activities that have less distinctive patterns; for example, ‘Drink’.

This demonstrates the effectiveness of using a contrastive learning to find better discriminative

features.

7.2.2 Accelerometer Sensor Data

For the accelerometer sensor, data we define two types of experiments: Cross-body to measure

the performance of domain adaptation techniques in transferring an activity model from one
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(a) ContrasGAN (b) shift-GAN

Figure 7.4: Comparison of confusion matrices on task C-B between ContrasGAN and shift-GAN

wearing body position to another. It is motivated by wearing diversity of wearable sensors [22]

in that users tend to change where to put their sensors or wearables depending on their preference

and their current activities, and Cross-sensor to test the effectiveness of domain adaptation across

different sensing technologies. In addition, this experiment tackles a problem where a system

tries to deploy a new set of sensors for activity recognition without collecting any activity labels.

7.2.2.1 Cross-Body Experiments

For cross-body experiments, we define 13 domain adaptation tasks using DSADS and PAMAP

datasets. On the DSADS dataset, we perform 9 transfer learning tasks, (1) between the sides of

the same position including right arm to left arm (RA-LA), left arm to right arm (LA-RA), right

leg to left leg (RL-LL), left leg to right leg (LL-RL); (2) between different positions including

right arm to torso (RA-T), torso to right arm (T-RA), left arm to torso (LA-T); and (3) between

different positions on the same side right arm to right leg (RA-RL), left arm to left leg (LA-LL).

On the PAMAP dataset, we perform 6 tasks between three body parts: hand (H), chest (C), and

Ankle (A).
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Tables 7.3 and 7.4 report the micro-F1 and macro-F1 scores of ContrasGAN and shift-GAN

and the baseline techniques on cross-body experiments. ContrasGAN and shift-GAN have

achieved a performance improvement in micro-F1 scores of 60% and 36% and in macro-F1

scores of 90% and 54% over the lower bound accuracy, respectively.

On average, the performance improvement of ContrasGAN and shift-GAN in terms of

micro-F1 scores is 77% and 55% over non-deep learning-based techniques respectively. In

terms of macro-F1 scores, the improvement is even much better of 84% and 49% over non-

deep learning based techniques, respectively. Compared to adversarial domain adaptation

techniques, ContrasGAN shows an improvement of 28% and 34% in micro-F1 and macro-F1

scores respectively. In comparison, shift-GAN has an improvement of 9% for both micro-F1 and

macro-F1 scores.

As expected, the classification performance is poor for the state-of-the-art methods. It is

evident that GFK, TCA and JDA techniques show better performance than CCA, FLDA and

IW but they do not outperform the other techniques. The performance of TCA and JDA is

more stable and better than the performance in the previous sensor data experiment. This might

be because we are trying to align two different domains with different and similar body parts.

Thus, this suggests that the similarity between the source and target domain is important for a

successful cross-domain learning for classic transfer learning methods. However, our results

suggest that ContrasGAN and shift-GAN can perform a suitable domain adaptation when using

different and similar body parts at the same time across different datasets.

ContrasGAN obtains the highest averaged micro-F1 and macro-F1 scores: 83% and 81%,

which is 5% and 7% higher than DAN, the second-best performing technique. It is also worth

noting that with class-level alignment ContrasGAN can achieve more balanced accuracy on

each class, leading to much higher macro-F1 scores than all the comparison techniques. In

addition, ContrasGAN outperforms shift-GAN with 12% and 15% in micro-F1 and macro-F1

scores, demonstrating the effectiveness of contrastive learning in capturing discriminative transfer

features between classes.

Figures 7.5, 7.6, 7.7, 7.8 present confusion matrices on ContrasGAN, shift-GAN, DANN, and

DAN. shift-GAN, DANN, and DAN struggle to distinguish similar activities, for example, sitting,

standing, lying back and lying side, and walking on a treadmill at different speeds. ContrasGAN
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Figure 7.5: ContrasGAN

with contrastive learning has demonstrated superior performance on separating these groups of

activities, even though it also faces the challenge of differentiating subtle activities like different

cycling modes.

Among the comparison techniques, DeepCORAL and JAN do not work well on the ac-

celerometer data and have produced worse accuracy than the classic techniques TCA and GFK.

shift-GAN, DAN, JAN (a variation of DAN), and ADADM have achieved better overall perfor-

mance. shift-GAN is also built on Bi-GAN and extends it with a kernel mean matching technique

to align transformed target data with the real target data. Both ContrasGAN and shift-GAN are

significantly better than the others, including a single GAN based approach – ADADM, which

shows that Bi-GAN is effective for domain adaptation. DAN and JAN that combine domain

adaptation with feature learning; i.e., minimises the distance of hidden representations of source
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Figure 7.6: shift-GAN

and target domains at the task-specific layers, have shown their promise in achieving global

adaptation.

Looking across the tasks, we can see that the lower-bound accuracy on the tasks of RA-T

and H-C are the lowest, suggesting that the source and target domains have very different

distributions. Also the upper bound accuracy on H-C is lower than the others, implying the

difficulty of classifying on the target domain. On this task, most of the techniques do not

perform well. DANN has achieved the highest micro-F1 score 72%, which is 8% higher than

ContrasGAN. However, its macro-F1 score is only 49%, 14% lower than ContrasGAN. This

suggests that its learning prioritises the majority classes. On the other hand, ContrasGAN,

DANN and GFK can achieve more balanced accuracy across all the classes.
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Figure 7.7: DAN

7.2.2.2 Cross-sensor Experiments

For cross-sensor experiments, we measure the accuracy of transferring an activity model from

different types of devices. This can be the most challenging transfer learning task in HAR

as the source and target domains can have highly heterogeneous feature spaces, with differ-

ent dimensions and different distributions. Here we perform the experiments on all three

datasets: W.PHONE-PAMAP, W.PHONE-DSADS, W.WATCH-PAMAP, W.WATCH-DSADS,

and PHONE-WATCH within WISDM. For each pair of datasets, we use the common set of

activities between them as the prediction target.
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Figure 7.8: DANN



7.2. PERFORMANCE OF UNSUPERVISED DOMAIN ADAPTATION 107

Ta
bl

e
7.

5:
C

om
pa

ri
so

n
of

m
ic

ro
-F

1
sc

or
es

be
tw

ee
n

C
on

tr
as

G
A

N
an

d
sh

ift
-G

A
N

an
d

ba
se

lin
e

te
ch

ni
qu

es
on

ac
ce

le
ro

m
et

er
da

ta
se

ts
.

Ta
bl

e
7.

6:
C

om
pa

ri
so

n
of

m
ac

ro
-F

1
sc

or
es

be
tw

ee
n

C
on

tr
as

G
A

N
,a

nd
sh

ift
-G

A
N

an
d

ba
se

lin
e

te
ch

ni
qu

es
on

ac
ce

le
ro

m
et

er
da

ta
se

ts
.



108 CHAPTER 7. RESULTS AND DISCUSSION

Tables 7.5 and 7.6 compare the micro-F1 and macro-F1 scores between ContrasGAN and

the comparison techniques. ContrasGAN outperforms all these techniques and achieves the

averaged micro-F1 and macro-F1 scores as 81% and 79%, which is higher than the second-best

technique (ADADM) by 4% and 7% respectively. ContrasGAN also outperforms shift-GAN by

8% and 10% in micro-F1 and macro- F1 scores respectively.

Due to the heterogeneity in the feature space, we cannot run the lower-bound baseline and

non-deep learning-based methods. We use an upper-bound baseline to indicate the challenge

on the target data. As shown in Table 7.5, PHONE-WATCH produces the lowest upper-bound

accuracy (81%). Most of the comparison techniques seem to struggle: for example, GFK and

DAN only reach 2% and 36% in macro-F1 scores. ContrasGAN achieves the macro-F1 scores

of 63%, 12% higher than ADADM, the second-best technique. When observing the difference

between micro-F1 and macro-F1 scores, ContrasGAN has the smallest difference, indicating

that it can better balance the majority and minority classes.

Figure 7.9 presents the confusion matrices on the PAMAP-W.PHONE task. First of all,

ContrasGAN and DAN are better than DANN and DeepCORAL at differentiating similar

activities, such as walking and running. Secondly, ADADM seems not stable and the performance

might be affected by the mixup ratio. Thirdly, GFK cannot cope with high heterogeneity well

and only predicts one activity.

7.3 Ablation, Stability and Convergence Study

The following sections present the stability and convergence of the proposed models. First, we

assess the stability of UDAR by evaluating the importance of each component in its architecture.

Then, for ContrasGAN and shift-GAN we record the loss during the training process over epochs

to prove that both models converge well.

7.3.1 UDAR

In this section, we discuss how the design of each component in UDAR can impact its perfor-

mance. We will start with the quality of pre-annotation steps, and then assess the advantage of

UDAR over coarse-grained feature remapping (i.e., mapping feature spaces only with semantics).
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(a) ContrasGAN (b) DANN

(c) DeepCORAL (d) DAN

(e) ADADM (f) GFK

Figure 7.9: Confusion matrices on the PAMAP-W.PHONE task
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Quality of Pre-Annotation. The quality of pre-annotating has an important role in achieving

effective domain adaptation, as the feature spaces are aligned based on whether they have the

same class label. Therefore, here we aim to find an approach to achieve high accuracy in

pre-annotating. To do so, we will look into how to select a classifier in generating accurate

pseudo labels.

We experiment with a collection of the base classifiers, including Random Forest (RF),

Support Vector Machine with RBF Kernel (SVM), and k Nearest Neighbors (kNN), and two

ensemble approaches on the three base classifiers: Majority Voting (MV) [169] and Stacked

Ensemble (SE). For each of them, we train the classifier with the source domain dataset, and

predict activity labels on the knowledge-transferred target domain dataset. Then we select the

predictions with high confidence (e.g., the confidence score is greater than 80%) and compare

them with the true labels to calculate the pre-annotation accuracy.

Figure 7.10: Comparison of micro-F1 scores in the pre-annotation step between SVM RBF, kNN, RF,
MV and SE. The SE outperforms the other techniques and is selected as the technique for pre-annotating.

Figure 7.10 presents the micro-F1 scores of pre-annotation with the above techniques. The

results demonstrate that the stacked ensemble achieves the highest accuracy in pre-annotation,

with an improvement of 11% over RF, 30% over SVM, 12% over kNN, and 7% over MV. In the

experiments from House B to C and from House C to A, SVM performs the worst compared to

RF and kNN. The reason is that the datasets we are using are imbalanced and sensor features

between activities can have subtle difference; e.g., showering and toileting, and having breakfast

and drinking. This problem has made the base classifiers and majority voting approaches struggle

in differentiating activities with less distinctive patterns. During the majority process, we face
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the problem that most of the time the classifiers will ‘agree’ on the same label, meaning that we

will not have uncertain instances to re-annotate later on.

In the experiment from House C to A, MV achieves the same performance as the base

classifiers. In most cases, the base classifiers seem to fail to find meaningful similarities

across different datasets, when the datasets are much noisier. For example, the House B and C

datasets are very noisy in that the activity annotation is not accurate [80] and sensor activation

is unexpected for a certain activity [188]. Also, these two datasets have imbalanced class

distribution; e.g., House C only has 6 instances of the ‘Drinking’ activity. Due to these problems,

the experiment results with A-B, A-C, and C-B are worse than the others. In the experiment from

House C to A, MV achieves the same performance as the base classifiers while SE outperforms.

In the end, we consider the stacked ensemble technique as an ideal choice to achieve high quality

of generated pseudo labels.

Impact of Confidence Thresholds in Pre-annotation. As we mentioned before, the accuracy

of pre-annotations can have a significant impact on the re-annotation process. To evaluate the

impact, we control the confidence threshold from 50% to 85% with step size 5%, and select the

target instances for the re-annotation process only when their prediction confidence is higher

than the threshold. Figure 7.11 compares the micro-F1 scores of domain adaptation on different

thresholds with different domain adaptation techniques on selected tasks. Again, we can see that

UDAR significantly outperforms these comparison techniques on different threshold settings.

Figure 7.11: Comparison of the impact of confidence thresholds on domain adaption accuracy.

The lower the confidence threshold, the worse UDAR performs. If we set up a threshold
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lower than 50% all classifiers will ‘agree’ on the majority class label, and we will have very

few or no uncertain instances to re-annotate later on. On tasks A-B and C-A, we observe

that the accuracy of TCA and GFK drops when the confidence increases, because during the

pre-annotation process, most of the instances, if not all, are classified as uncertain.

Figure 7.12: Comparison of micro-F1 scores between KDFR and VAE.

Figure 7.13: Confusion matrix of KDRF on A-B with 80% training data.

Comparison with Coarse-grained Feature Alignment. Aligning features from the two

domains based on the sensor ontologies is intuitive and acts as a good baseline to see what

additional benefit that VAE-based fine-grained alignment adds to our approach. We compare

activity recognition accuracy between UDAR and knowledge-driven feature remapping (KDFR).

Knowledge-driven feature remapping is to map sensor features based on the sensor semantics;

that is, where they are deployed and which objects they are attached to. We train a stacked

ensemble on a percentage p of the source domain dataset, predict labels on the target domain

dataset, and evaluate the prediction accuracy. Figure 7.16 compares the micro-F1 scores between
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UDAR and KDFR with different training data percentages. The label ‘KDFR - 0.2’ means that

we predict the labels on target domain data that is transformed via KDFR alone using the stacked

ensemble that is trained with 20% of the target domain dataset. We observe that UDAR achieves

much better micro-F1 scores than KDFR during the pre-annotation step. This advantage is

especially seen in transferring tasks A-B, A-C, and C-B, where the micro-F1 score during the

pre-annotation step is lower than 15% and the performance improvement is over 50%.

These results demonstrate that the fine-grained feature space alignment and the pre-annotation

process can significantly improve the performance. In terms of the low accuracy on KDFR,

during the pre-annotation process, the classifiers on KDFR struggle in finding meaningful

similarities between instances in the source and target domains. For example, we can see this

from Figure 7.14, where all classifiers achieve very low accuracy in the tasks of A-B and C-B

compared to the other tasks. This leads to a significant distribution differences between domains

and increases the transferring complexity. Furthermore, Figure 7.17 presents the confusion

matrix on the A-B task, where the classifier is biased towards one class; that is, the KDRF

classifies most of the activities as ‘dinner’. This activity activates seven sensors, more than

the other activities that fire at most 4 sensors. When few sensors are activated, the original

feature representation is more sparse. With knowledge remapping, the representations will not

be sparse anymore as each sensor in one dataset can be mapped to a collection of sensors in

the other dataset even with low similarity scores. This adds noise to the knowledge-remapped

representations and decreases the performance of the classifier.

Figure 7.14: Comparison of micro-F1 scores in the pre-annotation step between SVM RBF, kNN, RF, MV and SE.
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Figure 7.15: Comparison of micro-F1 scores on VAE with different number of layers.

Figure 7.16: Comparison of micro-F1 scores between KDFR and VAE.

Figure 7.17: Confusion matrix of KDRF on A-B with 80% training data.
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7.3.2 shift-GAN

(a) Loss on B-C (b) ROC on B-C

Figure 7.18: Loss performance and ROC curves for tasks B-C during training

Stability and difficulty to converge are two classic problems in GAN. These two problems can

be a significant concern for unsupervised domain adaptation. Since we do not use any labels on

the target domain, domain adaptation performance relies on stable feature space transformation

between two domains. For this purpose, we have recorded the loss on both generators and

discriminators over epochs and compared domain adaptation performance in ROC curves.

Figure 7.18 contains two plots of the performance of the discriminator and generator during

the training process for task B-C. The discriminator and generator are on the primary GAN; i.e.,

from source to target domain. We can see that in our experiments GAN has converged well on

sensor data.

We choose SVM classifier after evaluating the performance of different classifiers on 6

learning tasks: k Nearest Neighbors (kNN), Support Vector Machine with RBF Kernel (SVM),

Random Forest (RF), two Neuronal Networks (NN) with different number of layers and parame-

ters, and Naïve Bayes (NB). We train each classifier with the source domain data and we predict

labels using different percentages of target domain data. We varied the percentage of testing data

from 10% to 80% with a step of 10%. The results are shown in Table 7.3.2.

7.3.3 ContrasGAN

ContrasGAN extends the original Bi-GAN model with two components, introducing the expecta-

tion loss and adding the class-level alignment with MMD, discrepancy and contrastive loss. First,
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Table 7.7: Comparison of the performance of different classifiers in binary sensor data.

we show the importance of each type of new loss via an ablation study. Figure 7.19 presents the

macro-F1 scores of the ablation experiments on a subset of tasks.

Figure 7.19: Ablation study of ContrasGAN

Based on these results, we can make the following observations. Firstly, contrastive loss

significantly boosts performance, especially on task H-C, where it outperforms Bi-GAN with 25%

in macro-F1 scores. This indicates that contrastive loss helps to learn discriminative features and

improve class-level recognition accuracy. Secondly, the combination of contrastive, discrepancy,

and MMD loss makes significant improvement, from 65% on Bi-GAN with expectation loss

to 84% on ContrasGAN in the averaged macro-F1 scores. It suggests that the discrepancy

and MMD loss make a contribution to transforming the global feature spaces during the fine

alignment stage. Thirdly, the expectation loss, discrepancy loss, and MMD loss each individually

improve the performance on these transfer learning tasks only to a certain degree.

Figure 7.20 presents the loss plots of ContrasGAN for class-level alignment, DAN, and

DANN. This shows that ContrasGAN can converge smoothly and stably.
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(a) ContrasGAN (b) DAN (c) DANN

Figure 7.20: Comparison of loss between ContrasGAN, DAN, and DANN

7.3.4 Training Time

Training a domain adaptation model can be a challenging and expensive task depending on the

size of the datasets. In Figure 7.21 we compare the training time between UDAR, shift-GAN

and ContrasGAN and the baseline techniques for binary sensor data. Training time is similar

between tasks; therefore, we only present the results on task A-B for detailed comparison. The

average computational time among all techniques is 11.4 minutes. We can see that UDAR,

shift-GAN and ContrasGAN are not computationally expensive techniques - just 2 minutes above

the average. Among the deep learning techniques, DeepCORAL has the smallest training time

while ADADM is 10 minutes more than the average.

Figure 7.21: Comparison of training time between UDAR, shift-GAN and ContrasGAN and other
techniques on task A-B.

Now in Figure 7.22 we compare the average training time for more complex tasks: RA-LA,

RL-LL, RA-T and H-C. shift-GAN and DAN have the least training time and ContrasGAN

takes 10 more minutes (45% more time) on average when training each task. DANN is the most

expensive as it performs adaptation with feature learning and employs an end-to-end training

regime, which takes longer to converge. This becomes a particular problem when the two

domains are highly heterogeneous. The training time of DANN on the H-C task is 1784 mins,
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nearly 50 times the training time on ContrasGAN and significantly higher than all the other

techniques.

Figure 7.22: Comparison of training time between ContrasGAN and other techniques.

7.4 Impact of Training Data

We also assess the impact of training data on the effectiveness of domain adaptation. It is

desirable to use less training data while achieving comparable accuracy. Therefore, in this

experiment, we vary the percentage of training data in the target domain from 20% to 80% and

assess the impact of the training data on the accuracy of domain adaptation.

7.4.1 Binary Sensor Data

In Figure 7.23 we average the accuracy across all tasks and all the training percentages. Con-

trasGAN outperforms all domain adaptation techniques. More specifically, the improvement

of ContrasGAN in micro-F1 score over shift-GAN, UDAR, DAN, DANN, ADADM, TCA and

GFK is 8%, 3%, 4%, 3%, 13%, 31% and 21%, respectively. We can also see that UDAR shows a

similar performance to DAN and outperforms ADADM, TCA and GFK. shift-GAN achieves

better micro-F1 than TCA, GFK and ADADM in 23%, 13% and 4%, respectively. However,

shift-GAN performs worse than UDAR, DAN, and DANN in 5%, 5% and 5%, respectively,

across all tasks and different training percentages.

Figures 7.24 and 7.25 compare the micro-F1 and macro-F1 scores of domain adaptation on

six transfer learning tasks between ContrasGAN, shift-GAN and UDAR and the other techniques.

The x-axis indicates the percentage of the training data. From the results, we observe that UDAR

achieves better micro-F1 and macro-F1 scores across various learning tasks. UDAR and GFK
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Figure 7.23: Average of micro-F1 and macro-F1 scores across all tasks over different training percentage.

(a) A-B (b) B-A

(c) A-C (d) C-A

(e) B-C (f) C-B

Figure 7.24: Comparison of micro-F1 scores (%) of domain adaptation between ContrasGAN, shift-GAN,
UDAR and baseline techniques on binary sensor data.
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(a) A-B (b) B-A

(c) A-C (d) C-A

(e) B-C (f) C-B

Figure 7.25: Comparison of macro-F1 scores (%) of domain adaptation between ContrasGAN, shift-GAN,
UDAR and baseline techniques on binary sensor data.

are stable and can achieve good domain adaptation independently of the percentage of training

data. In contrast, TCA presents a higher variance especially on task C-B where both datasets are

very noisy. GKF require expensive computation for subspace projection and hyper-parameter

selection. This alignment becomes more difficult when the training dataset is small. ADADM

seems to suffer from negative transfer, which sometimes produces lower accuracy, for example,

tasks A-B and A-C. shift-GAN has a very stable performance except in task C-A where the

accuracy decreases drastically with 20% of training data. This means that shift-GAN struggles

in finding good discriminative features especially when little data is available and when the data

is noisy.
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Table 7.8: Comparison of average micro-F1 scores between ContrasGAN, shift-GAN and UDAR and
baseline techniques on binary datasets across all training percentages.

Table 7.9: Comparison of average macro-F1 scores between ContrasGAN, shift-GAN and UDAR and
baseline techniques on binary datasets across all training percentages.

In Tables 7.10 and 7.11 we average micro-F1 and macro-F1 scores across all training

percentages for each task and we highlight the best micro-F1 and macro-F1 scores among all

the domain adaptation techniques. ContrasGAN achieves the best macro-F1 scores on 4 out

of 6 transfer tasks. The macro-F1 scores are 16% (shift-GAN), 8% (UDAR), 9% (DAN), 10%

(DANN), 26% (ADADM), 33% (TCA) and 31% (GFK) lower than ContrasGAN. Although

DANN performs better in tasks A-C (83% vs. 84%) when using 80% of the training data,

ContrasGAN is more stable and outperforms DANN when the percentage of training data

decreases. However in terms of micro-F1 scores, ContrasGAN is outperformed by DANN in

C-A (86% vs. 82%) and B-A (83% vs. 79%) tasks, by DAN performs in B-A task (86% vs. 79%)

and by UDAR in C-B task (87% vs. 81%). This means ContrasGAN achieves more balanced

accuracy on each class than the other methods.

7.4.2 Accelerometer Sensor Data

In Figures 7.26 and 7.27 we present the micro-F1 and macro-F1 scores across different training

percentages for each learning task. All techniques are more stable in the accelerometer exper-

iments independently of the percentage of training data compared to the binary ones. This is

probably due to the feature representations of the datasets. The binary sensor data collected in

the in-the-wild real-world environments is more sparse, noisy, and imbalanced across classes

while the acceleration sensor data curated in the controlled environments is balanced in class



122 CHAPTER 7. RESULTS AND DISCUSSION

distribution.

In Tables 7.10 and 7.11 we can see the average micro-F1 and macro-F1 scores across all

training for each learning model. On average, ContrasGAN has the best classification accuracies

despite the amount of training data. This indicates that contrastive learning can provide better

class-discriminative features. The closest competitor to ContrasGAN is DAN, which performs

3% and 6% worst in micro-F1 and macro-F1 scores.

ContrasGAN performs best on 10 out of 15 learning tasks. Note that while ContrasGAN

and DANN improve over the lower bound in task LA-RA, the other methods underperform.

ADADM is very unstable and performs similar to non-deep learning base methods - the domain

mix up adds noise and complexity to the transfer learning task.

It is also interesting to point out that the improvement of DANN, TCA an GKF over the

lower bound is limited by only 4%, 1% and 7%, respectively. This observation may direct some

future work on studying under what situations deep learning and non-deep learning techniques

can be used.

Table 7.10: Comparison of average micro-F1 scores between ContrasGAN and shift-GAN and baseline
techniques on accelerometer sensor datasets across all training percentages.

7.5 Robustness to Sensor Noise

In this section, we further examine how sensor noise affects domain adaptation. We inject

random Gaussian noise into the target domain data to simulate the real-world situation where the
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(a) RA-LA (b) RL-LL (c) RA-T

(d) H-C (e) LA-RA (f) LL-RL

(g) T-RA (h) C-H (i) RA-RL

(j) LA-LL (k) LA-T (l) P.Ankle-P.Chest

(m) P.Ankle-P.hand (n) P.Chest-P.Ankle (o) P.hand-P.Ankle

Figure 7.26: Comparison of micro-F1 scores (%) of domain adaptation between ContrasGAN and shift-
GAN and baseline techniques on accelerometer data.
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(a) RA-LA (b) RL-LL (c) RA-T

(d) H-C (e) LA-RA (f) LL-RL

(g) T-RA (h) C-H (i) RA-RL

(j) LA-LL (k) LA-T (l) P.Ankle-P.Chest

(m) P.Ankle-P.hand (n) P.Chest-P.Ankle (o) P.hand-P.Ankle

Figure 7.27: Comparison of macro-F1 scores (%) of domain adaptation between ContrasGAN and shift-
GAN and baseline techniques on accelerometer data.
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Table 7.11: Comparison of average macro-F1 scores between ContrasGAN and shift-GAN and baseline
techniques on accelerometer sensor datasets across all training percentages.

environment to be adapted to is compromised with unexpected sensor noise. On the test data

of the target domain, we randomly select a number of sensors, and for each randomly selected

sensor, we inject it with Gaussian noise. The percentage of sensors is chosen from 25% to

100% with a step size of 25%. The mean and variance of Gaussian noise are randomly sampled

between 0 and 1.

7.5.1 Binary Sensor Data

Figures 7.28 and 7.29 compare the accuracy of UDAR, shift-GAN, ContrasGAN and the existing

techniques on different levels of sensor noise. It is evident that ContrasGAN outperforms all the

domain adaptation techniques and it is very stable even in the presence of noise. ContrasGAN

achieves better accuracy than DAN in task A-C when only 25% of the sensor features are affected

by noise; however, DAN is less sensitive to noise and outperforms ContrasGAN when more

sensors are injected with noise.

shift-GAN have achieved higher macro-F1 scores than DAN (11.7%), ADADM (1.8%), GFK

(28.2%), and TCA (34.2%). This further demonstrates that using GAN for domain adaptation

plus KMM for shift correction are stable and effective methods in domain adaptation tasks.

ADADM, mixing up the samples, can be more robust in dealing with noise, as the accuracy on

ADADM does not vary much with different noise effects. DAN achieves better performance on
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H-C since concatenating source and target features will lead to more robust feature learning.

UDAR achieves on average much better performance than TCA (53% vs. 34%) and GFK

(53% vs. 28%). UDAR achieves the most stable results during domain adaptation when noise is

injected into the sensor features. The overall improvement of UDAR is 32.1%, and 29.7% over

TCA, and GFK respectively.

It is also evident that classic techniques are more sensitive to noise. For example, TCA

degrades abruptly when noise is introduced in binary sensor data. This is because TCA is unable

to find a feature representation for each activity in both domains and it is biased towards one

class; that is, after the domain adaptation process the feature representation is not meaningful,

which makes the SVM classifier struggle in distinguishing between classes and will only predict

one. GFK is mainly affected by the noise and the size of the dataset.

7.5.2 Accelerometer Sensor Data

Tables 7.12 and 7.13 report the average micro-F1 and macro-F1 scores across all percentages

of sensor noise for each learning task and we highlight the best micro-F1 and macro-F1 scores

among all the domain adaptation techniques. Clearly, ContrasGAN yields better accuracy than

the other methods. It has an improvement of 28% and 35% in micro-F1 and macro- F1 scores,

respectively, over the lower bound and it outperforms in 9 out of 15 learning tasks. One key

factor that may contribute to the superiority of our method is a class-discriminative adaptation

that models better the domain shift between the source and the target domain. The second-best

method is DAN, which performs 4% and 6% lower than ContrasGAN in micro-F1 and macro-F1

scores respectively.

shift-GAN has achieved higher micro-F1 scores than DANN (11%), ADADM (6%), TCA

(12%) and GFK (9%). This demonstrates the robustness and capability of KMM for shift

correction even in presence of noise. The poor performance of DANN highlights its weaknesses

- learning domain-invariant features is not sufficient to guarantee successful domain adaptation.

It is interesting to note that non-deep learning techniques, specifically TCA and GFK, improve

very little over the lower bound; 3% (TCA) and 6% (GFK) in micro-F1 scores and 8% (TCA)

and 8% (GFK) in macro-F1 scores. This asserts the complexity of the learning process under the

presence of noise.
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(a) A-B (b) B-A

(c) A-C (d) C-A

(e) B-C (f) C-B

Figure 7.28: Comparison of micro-F1 scores (%) of domain adaptation between ContrasGAN, shift-GAN,
UDAR and baseline techniques on binary sensor data injected with Gaussian noise.

In Figures 7.30 and 7.30, we show the micro-F1 and macro-F1 scores on different levels of

sensor noise. The x-axis represents the percentage of sensor features injected with Gaussian

noise and the y-axis represents the accuracy. Clearly, adding noise to the sensor features makes

domain adaptation more difficult. However, all techniques are very stable independently of the

percentage of noise injected.

7.6 Summary

Here we summarise the following highlights yielded from the above experiments:



128 CHAPTER 7. RESULTS AND DISCUSSION

Table 7.12: Comparison of average micro-F1 scores between ContrasGAN and shift-GAN and baseline
techniques on accelerometer datasets across different percentage of sensor noise.

Table 7.13: Comparison of average macro-F1 scores between ContrasGAN and shift-GAN and baseline
techniques on accelerometer datasets across different percentage of sensor noise.
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(a) A-B (b) B-A

(c) A-C (d) C-A

(e) B-C (f) C-B

Figure 7.29: Comparison of macro-F1 scores (%) of domain adaptation between ContrasGAN, shift-GAN,
UDAR and baseline techniques on binary sensor data injected with Gaussian noise.

• ContrasGAN outperforms the baseline techniques on all the transfer learning tasks and

datasets with a low computational footprint.

• Contrastive learning helps capture distinctive class-level features, which improve recogni-

tion accuracy.

• On cross-body experiments, the task difficulty is more related to body positions rather

than sides of sensors being worn on. ContrasGAN has outperformed all the comparison

techniques on tasks at different difficulty levels.

• On cross-sensor experiments, when dealing with the most challenging tasks in heteroge-
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(a) RA-LA (b) RL-LL (c) RA-T

(d) H-C (e) LA-RA (f) LL-RL

(g) T-RA (h) C-H (i) RA-RL

(j) LA-LL (k) LA-T (l) P.Ankle-P.Chest

(m) P.Ankle-P.hand (n) P.Chest-P.Ankle (o) P.hand-P.Ankle

Figure 7.30: Comparison of micro-F1 scores (%) of domain adaptation between ContrasGAN and shift-
GAN and baseline techniques on accelerometer data with sensor noise.
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(a) RA-LA (b) RL-LL (c) RA-T

(d) H-C (e) LA-RA (f) LL-RL

(g) T-RA (h) C-H (i) RA-RL

(j) LA-LL (k) LA-T (l) P.Ankle-P.Chest

(m) P.Ankle-P.hand (n) P.Chest-P.Ankle (o) P.hand-P.Ankle

Figure 7.31: Comparison of macro-F1 scores (%) of domain adaptation between ContrasGAN and shift-
GAN and baseline techniques on accelerometer data with sensor noise.
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neous feature spaces and imbalanced class distribution, ContrasGAN can still produce

a consistently good performance, while some of the existing techniques have less stable

performance and are more sensitive to the difficulty level of tasks.

• shift-GAN is computationally efficient compared to baseline techniques and it has demon-

strated its strength of performing a fine-grained feature space alignment.

• UDAR has demonstrated superior performance on domain adaptation over deep learning

and non-deep learning-based methods across a range of tasks on binary sensor data, each

with different sensor deployments and room layouts.

• UDAR has achieved consistent improvement over the other domain adaptation techniques

in the presence of sensor noise and when training data is scarce.

In Table 7.14 we also summarise the main difference between UDAR, shift-GAN, Con-

trasGAN and the best performing comparison techniques, which are DAN, DANN, ADADM,

GFK and TCA. The main advantage of ContrasGAN is that it uses contrastive learning to better

discriminate samples from different class labels. The results of the experiments show that class-

discriminative adaptation improves accuracy. In contrast, shift-GAN focuses on the translation

between individual samples and does not consider the classes.

The disadvantage of DAN is that it might not perform very well in feature level transfer

and the assumption that source and target domain share classifiers might not always be suitable

in different adaptation scenarios. DANN learns domain-invariant features to perform domain

adaptation. However, it is not clear if the aligned representations and small source error are

sufficient assumptions to guarantee a good generalization on the target domain. The results

confirm that DANN does not necessarily perform well in the target domain. The disadvantage of

ADADM is that it hypothesises that mixing transformed source and real target data can improve

domain adaptation. However, the learnt representation can add more complexity to the model,

which will result in low performance.

The main advantage of UDAR is that UDAR performs 2-stage intra-class alignment and

focuses on capturing intra-class variation using a latent subspace associated with each class.

In contrast, GFK computes an infinite number of subspaces to obtain the overall new feature

representations. TCA assumes that if two domains are related to each other, then there may be
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common components between them. These common components may contain less discriminative

information with activities that deploy the same sensors.

Table 7.14: Comparison between domain adaptation techniques
Technique Domain adaptation approach
ContrasGAN Extends Bi-directional Generative Adversarial Network (Bi-GAN) and includes contrastive

learning during the adaptation with the goal to minimise the intra-class discrepancy and
maximise the inter-class margin. The intra-class domain discrepancy is minimised to draw
closer the feature representations of samples within a class, whereas the inter-class domain
discrepancy is maximised to push the representations of each other further away from the
decision boundary.

shift-GAN Extends Bi-directional Generative Adversarial Network (Bi-GAN) that allows transforming
from one heterogeneous feature space to another and vice versa through two GAN models. To
improve the matching, the model employs Kernel Mean Matching (KMM) to enable covariate
shift correction between transformed source data and original target data.

UDAR Performs 2-stage intra-class alignment. Variational Autoencoders (VAE) captures intra-class
variation using a latent subspace associated with each class. Data from the target domain T is
then mapped to the learned embedding. The latent probability distribution function of T is
aligned to that of the source domain S by matching their means and the eigenvalues of their
covariance using the KL divergence.

DAN Fine-tunes a CNN model on the source labelled samples and introduces MK-MMD-based
multi-layer adaptation regulariser to perform layerwise matching so that the source and target
domain are as similar as possible under the hidden representations of fully connected layers.

DANN Learns domain-invariant features by combining domain adaptation with feature learning. It
focuses on the H -divergence that relies on the capacity of the hypothesis class H to distinguish
between samples generated by the source domain Ds and samples generated by the target
domain Dt .

ADADM Advances adversarial learning by mixing transformed source and real target domain samples
to train a more robust generator. This is done by using a variant of VAE-GAN.

GFK Constructs an infinite-dimensional feature space H ∞ that aggregates information on the source
domain S , and the target domain T . This is done by extracting the difference in angles between
the principal components of the source and target domains. The kernel implicitly maps the
data onto all possible subspaces on the geodesic path between domains.

TCA Learns transfer components across domains in a Reproducing Kernel Hilbert Space (RKHS)
using Maximum Mean Discrepancy (MMD). This set of common transfer components underlie
both domains such that the distance across domains is reduced in a RKHS.

In summary, in this chapter, we discussed and compared our approaches to several competitive

methods in domain adaptation for human activity recognition. We discussed the advantages

and disadvantages of each technique. In addition, we also provided detailed analysis to validate

each component of the architecture in our approaches and their convergence. The next chapter

summarises the main contributions of this thesis and discusses future work.





Chapter 8

Conclusion and Future Work

This chapter concludes the thesis, summarises the main contributions and discusses future

research directions. The overall goal of this thesis is to learn transferable features to perform

unsupervised domain adaptation for human activity recognition. Our methods are evaluated over

various experiments using real-world datasets commonly used in human activity recognition and

demonstrated better, or at least comparable, accuracy than existing domain adaptation techniques.

Based on the results of the experiments, we can answer the following research questions:

• Q1 Is it possible to relieve the annotation burden on individual users but still be able to

build a robust activity recognition model by sharing and transferring activity models across

users, even though the sensor deployments and operating environments are different?

We can conclude that a knowledge-driven approach and deep learning-based model can

provide accurate domain adaptation and in most cases outperform existing techniques.

• Q2 The amount of training data can affect the performance of the model. Can the domain

adaptation model achieve high accuracy with little training data?

We have found that our models are stable and can achieve competitive recognition accuracy

regardless of the amount of training data.

• Q3 The performance of the sensors can vary over time affecting drastically the sensor

features. Is it possible to develop a system that performs robustly in the face of sensor

noise?

135
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We are able to conclude that adding noise to sensor features adds complexity to the domain

adaptation process. Nevertheless, our methods are stable independently of the percentage

of Gaussian noise injected and outperform the baseline domain adaptation techniques.

• Q4 Is it possible to better discriminate samples from different class labels leading to more

class-discriminative adaptation?

We can conclude that contrastive learning improves recognition accuracy significantly. It

is robust in noisy data and achieves competitive accuracy even when few training data is

available. However, a well-annotated domain is required to transfer the activity model

from the source domain to many other unlabelled domains.

The remainder of this chapter summarises our contributions and then discusses future work.

8.1 Summary of Contributions

We summarise the main contributions of this thesis as follows:

1. We have designed a workflow that combines knowledge- and data-driven techniques in

performing domain adaptation at different stages. We build on a general ontology for smart

home datasets and achieve coarse-grained feature space remapping to link heterogeneous

datasets without the need for labelled data in the target domain. This approach uses

Variational Autoencoder (VAE) to perform fine-grained feature space alignment.

2. We have developed two GAN-based unsupervised domain adaptation models that do not

need any extra knowledge engineering effort to align the source and target domains. The

first model called shift-GAN integrates bidirectional generative adversarial networks (Bi-

GAN) and kernel mean matching (KMM) to learn intrinsic, robust feature transfer between

two heterogeneous domains. The second model called ContrasGAN uses bi-directional

generative adversarial networks for heterogeneous feature transfer and contrastive learning

to capture distinctive features between classes.
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3. We have extended Bi-GAN by not just performing one-to-one instance translation but

one-to-many instance translation along with an instance selection process to allow more

robust domain adaptation.

4. We have performed an extensive empirical evaluation on third-party, real-world datasets

that have different spatial layouts and sensor deployments. We have designed different

experiments on assessing the effectiveness and robustness of domain adaptation. The

results have demonstrated the robustness of our models as they have consistently achieved

better, or at least comparable accuracy to baseline domain adaptation techniques.

5. We provide a comprehensive review of human activity recognition and domain adaptation

techniques. In terms of human activity recognition, we present different sensor tech-

nologies, we provide an overview of the main challenges and future research directions.

We compare and evaluate non-deep learning and deep learning-based domain adaptation

techniques and we discuss important challenges of domain adaptation in HAR.

6. We design and perform other HAR specific experiments on sensor noise and sensitivity to

training data to test the robustness and performance of our models and existing ones. These

challenges are more real-world scenarios. Addressing them can improve the credibility of

domain adaptation techniques.

8.2 Future Work

Domain adaptation aims to learn domain adaptive representations from the source domain towards

representing samples from the target domain. It is present in various real-world applications and

has been an energetic research field. To develop robust algorithms, we have to carefully examine

the relationship between the source and target domain to understand which method is suitable

under which circumstances.

Our experiment results have shown that some non-deep learning and deep learning-based

techniques show little improvement over the lower bound. This issue is more evident in the

presence of noise and when few training data is available. Several questions arise with this

finding: 1) when do we need domain adaptation?, 2) how can we determine if a model trained in
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a source domain may be adapted to our target domain? and 3) is it possible to build a robust

system that can reliably identify the best model to train in the source domain?. Addressing these

questions, we can improve the universality and interpretability of domain adaptation techniques.

Also, the poor performance of some deep learning methods can be related to negative transfer;

a typical problem in domain adaptation where the model overfits in the source domain and the

transfer knowledge from the source domain can have a negative impact on the target domain.

This specific research area is of interest for the robustness of our models, how to overcome

negative transfer to transfer useful knowledge from the source to target domain?.

One specific research area of domain adaptation that has received little attention is co-

adaptation of multiple but heterogeneous domains. We hypothesise that our approaches have

generalisation capability as the feature mapping function learnt can be activity-independent. This

generalisation capability will enable scalability in domain adaptation techniques.

It is also interesting to consider the implications for this thesis outside human activity

recognition. For example, transfer learning is needed in many applications where there are

differences between training and deployment scenarios and when there is substantial variation in

deployments. We hypothesise that approaches such as ContrasGAN could be useful in applying

machine learning to such diverse and challenging contexts, making classifiers more robust to the

minor differences that often defeat current techniques.
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