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Abstract

We develop a combinatorial framework that assists in finding natural infinite “geometric”
presentations for a large subclass of rearrangement groups of fractals — defined by Belk
and Forrest [3], namely rearrangement groups acting on F-type topological spaces. In this
framework, for a given fractal set with its group of “rearrangements”, the group generators
have a natural one-to-one correspondence with the standard basis of the fractal set, and
the relations are all conjugacy relations.

We use this framework to produce a presentation for Richard Thompson’s group
F [9], [30]. This presentation has been mentioned before by Dehornoy [18], but a com-
binatorial method to find the length of an element in terms of the generating set of this
presentation has been hitherto unknown. We provide algorithms that express an element
of F' in terms of our generating set and reduce a word representing the identity in F' to
the trivial word.

We conjecture that this framework can be used to find infinite presentations for all

groups in the subclass of rearrangement groups acting on F-type topological spaces.



vi



Acknowledgements

I would like to dedicate this thesis to my mother, Sabiha Khalid. She was a professor in
pure mathematics, and my first mathematics teacher. She passed away on 1st January
2014, before I was admitted into this PhD programme. Everything I have accomplished
is because of her.

I am eternally grateful to my supervisors, Collin Bleak and Martyn Quick, for their
help, support and guidance at every step of this journey. I am grateful to the Common-
wealth Scholarship Commission and my programme officer for their support. I am grateful
to Jim Belk, Ewa Bieniecka, James Hyde and Michael Torpey for some mathematical and
programming advice. I would also like to mention my lecturers and advisors from my
undergraduate degree, Fazeel Anwar, Tazeen Athar and Sohail Igbal. Without their en-
couragement and support, I would not have been able to apply for this PhD programme.

I am grateful for the support I have received over the years from my friends and family,
and my colleagues in the University of St Andrews. Finally, thank you to my father, my

partner and my cat.

Funding

I have been supported in this PhD by a Commonwealth Scholarship (PKCS-2015-496),
funded by the UK Government.

vii



viii



Contents

[Declaration|

[Abstractl

|Acknowledgements|

[I'able of Contents|

1 Introductionl

[1.1 Richard Thompson’s Groups| . ... .. ... ... ... ... .. .....

1.2 Rearrangement Groups of Fractals| . . . . .. .. ... ... ... ......

[1.3  An Infinite Geometric Presentation for Richard Thompson’s Group F| . . .

The Limit Space)

2.1 Edge Replacement Systems| . . . . . . .. ... ... ... L.
2.2  An Extended Example| . . . . . . .. ...
2.3 The Limit Space| . . . . . . . . . .

The Rearrangement Group of the Limit Space]

3.3 Rearrangements|. . . . . . . . ..o L

3.4  Rearrangement Groups|. . . . . . . . . ..o

Richard Thompson’s Group F]

4.1 Richard Thompson’s Group F| . . . . . ... ... .. ... ... ...,
4.2 A Limit Space] . . . ... Lo
4.3 Our Limit Space and the Unit Interval| . . . . . . .. ... ... ... ....

4.4 Thompson’s Group F' as a Rearrangement Group|. . . . . . . . . .. .. ..

B

A Generating Set for Richard Thompson’s Group F

[b.1 The Rearrangement fo| . . . . . . . . .. ... oL L.

X

vii

viii

18
24

35
35
43
49
65

67
67
69
79
88

97



5.2 A Generating Set for Thompson’s Group F

5.3 A Normal Form for Thompson’s Group F]|

5.5  An Additional Algorithm|

|6 A Presentation for Richard Thompson’s Group F]

6.1 A New Group|

e -basilica

roup Fp

IBibliography|

CONTENTS



Chapter 1

Introduction

Up he went — very quickly at first — then more slowly — then in a little while
even more slowly than that — and finally, after many minutes of climbing up
the endless stairway, one weary foot was barely able to follow the other. Milo
suddenly realized that with all his effort he was no closer to the top than when
he began, and not a great deal further from the bottom. But he struggled on for
a while longer, until at last, completely exhausted, he collapsed onto one of the
steps.

“I should have known it,” he mumbled, resting his tired legs and filling his
lungs with air. “This is just like the line that goes on forever, and I’ll never
get there.”

“You wouldn’t like it much anyway,” someone replied gently. “Infinity is a

dreadfully poor place. They can never manage to make ends meet.”

— Norton Juster, The Phantom Tollbooth
(Iustration by Jules Feiffer)
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2 CHAPTER 1. INTRODUCTION

In this thesis, we are interested in how the topological properties of geometric spaces
influence the dynamics and behaviour of the infinite groups which act on them. We
have been studying groups of homeomorphisms of self-similar topological spaces — called
rearrangement groups of fractals, introduced by James Belk and Bradley Forrest [3]. These
groups include, but are not limited to, Richard Thompsons groups F, T and V' (see [9],
130).

We have developed a combinatorial framework that assists in finding natural infinite

“geometric” presentations for a large subclass of rearrangement groups (rearrangement

groups of F-type topological spaces, introduced in |[Chapter 2| and [Chapter 3)). In this

framework, for a given fractal set with its group of “rearrangements”, the group generators
have a natural one-to-one correspondence with the standard basis of the fractal set, and
the relations are all conjugacy relations.

As a test case for our approach, we have used the framework to produce a presentation
for Richard Thompson’s group F. As F is a well-studied group and our presentation
is quite natural, it is unsurprising that the presentation that arose had been mentioned
before in by Dehornoy in [18]. One of our key results was to provide an algorithm giving
a normal form for elements of F (given as generic products in our generators) using our
generating set. This was suggested as an interesting open problem in [I8].

In [18], Dehornoy proved that the shortest length products in this generating set rep-
resent the shortest chain of “rotations” of rooted binary trees to get from one given tree to
another, so, our algorithm may represent a new algorithm to solve this question originally
posed by Thurston in [29]. Currently, there is no known algorithm solving the binary-tree
rotation distance question that runs in faster than exponential time (on the size of the ini-
tial pair of trees). Our algorithm also runs in exponential time (a fact we have calculated
but we have not provided a proof in this thesis). However, in all computed examples the
exponential part of the algorithm always admitted easy simplifications; we have always
been able to compute answers by hand with little effort. We hope in future work to decide
if there is a variant of the algorithm that provably runs in polynomial time for all inputs,
and to decide if our normal form really does provide shortest-length rotation sequences

from one tree to another (we conjecture it does).

1.1 Richard Thompson’s Groups

The groups F, T and V were first defined by Richard Thompson in an unpublished
manuscript in 1965 [30]. They arise as subgroups of the homeomorphism group of the
Cantor set. Indeed, these are groups of piecewise differentiable linear homeomorphisms of
the unit interval [0, 1], the unit circle and the Cantor set respectively. Thompson proved
that T and V are finitely-presented infinite simple groups and F' is a finitely-presented
group with a simple commutator subgroup. Thompson’s finite presentations have been

reproduced by Cannon, Floyd and Parry [9] in their survey article. Thompson’s groups
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have been extensively studied, and many infinite families of generalizations have been

found. Some notable generalizations are:
1. The Stein-Thompson groups [28§].
2. The Higman-Thompson groups G, [22], which generalize V.

3. The Rover group I' [27], which is an amalgamation of V' with the Grigorchuk group
[21].

4. The Brin-Thompson group, or “higher-dimensional” nV [7].

5. Braided Thompson groups [§] [19].

6. Belk and Forrest’s Basilica Thompson group [4] and rearrangement groups [3] [31].
7. The groups of piecewise-projective homeomorphisms [23], which generalize T and F'.

Thompson’s group F' remains the most famous of these groups, both because of its
connection with work on homotopy idempotents and because it is one of the most famous
possible counter examples of the Von Neumann conjecture (the amenability of Thomp-
son’s group F remains an open question). It is defined as the group of orientation-
preserving piecewise linear homeomorphisms of the unit interval [0, 1], which are only
non-differentiable at finitely many dyadic rationals, and at the periods of differentiability
the derivatives are powers of 2. A finite presentation has been given in [9], and explicit
combinatorial algorithms exist to compute the length of an element with respect to the

finite generating set (see [2], [9]).

1.2 Rearrangement Groups of Fractals

In [3], Belk and Forrest defined rearrangement groups of fractals — groups of homeomor-
phisms of self-similar topological spaces. The topological spaces these groups act on are
an infinite limit of finite directed graphs, constructed using edge replacement systems.
Belk and Forrest have used this language of rearrangement groups to both develop pre-
sentations for some of these groups and study their finiteness properties, but they have
not developed a systematic process.

We use this language of rearrangement groups to develop a combinatorial framework
which we conjecture can be used to find infinite geometric presentations for the large
subclass of rearrangement groups which act on F-type topological spaces. In this thesis,
we apply this framework to generate an infinite geometric presentation for Thompson’s

group F. We have begun applying this framework to the rearrangement group of F-

Basilica topological space (which is a running example in [Chapter 2and [Chapter 3|) and

have so far met no major obstructions.

{1.2}
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1.3 An Infinite Geometric Presentation for Richard Thomp-

son’s Group F
Our infinite geometric presentation for Thompson’s group F' is as follows:
F=(X|R).

The generating set X is
X ={falae{0,1}7},

where f, acts as follows on points in [0, 1] with the prefix o = e1...e, € {0,1}*, and as

the identity homeomorphism on the rest of the interval:

[@0epi3€nia...] if epyienya = 00,
([aentienta...]) fa = [@l0eni3enia...] if eppienyo = 01,
[a11€n+26n+3 .. } if En+l = 1.

This map is illustrated in the following diagram:

00 . a01 . al
0 X
a0 al0 all
() :; 1':c w

Figure 1.1: f,

The set of relations R is

R={R1: fale = f5 for a L B,
R2 : fao’™ = fafar ™",
R3: fa00, " = faor,
R4 - faor ™ = fa10y,
R5: farr?® = far1y},

(for some a, B,y € {0,1}*).

1.4 Final Remarks
(1.4}

In conclusion, we would like to draw attention to two main threads in this thesis:

1. The development of a combinatorial framework which, while it was used to find
an infinite geometric presentation for Thompson’s group F' in this thesis, can be

generalised to other rearrangement groups which act on F-type topological spaces.

(1.3}
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2. The development of a combinatorial algorithm to find the “normal form” of an
element in terms of our infinite generating set, which can provide useful information

regarding the rotation distance between two binary rooted trees.

Remark. We assume that the reader has some basic knowledge of combinatorial group

theory, point-set topology and graph theory.
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Chapter 2

The Limit Space

James Belk and Bradley Forrest defined a rearrangement group — a group of homeomor-
phisms of a self-similar topological space (called the limit space) — in [3]. In this chapter,
we will construct this limit space by carrying out an iterative process on a sequence of
graphs. We will describe the graphs in we will present an extended example

in and we will define the limit space in

2.1 Edge Replacement Systems

FEach rearrangement group acts on its own topological space. This topological space —
the limit space — is the limit of a sequence of graphs constructed using an iterative edge
replacement process. In this section, we describe this edge replacement process in detail
and construct a sequence of graphs. We will also establish our naming conventions for

edges and vertices.

Definition 2.1.1 (Belk, Forrest [3], Definition 1.1 & Definition 1.4). An edge replacement
system (Go,e — R) consists of the following two things: a finite directed graph Gy called
the base graph, and an edge replacement rule e — R where an edge e is replaced by a
replacement graph R (where R is a finite directed graph with specified initial and terminal

vertices).

In this thesis, we will be using the word “graph” synonymously with the word “digraph,
as all graphs arising will be directed. We are interested in examples of edge replacement
systems (and full expansion sequences constructed using them) which satisfy certain prop-

erties, outlined in the definitions below:

Definition 2.1.2 (Belk, Forrest [3], Definition 1.8). An edge replacement system (G, e —

R) is expanding if it satisfies the following conditions:
1. Neither GGy nor R have any isolated vertices.

2. The initial and terminal vertices of R are not connected by an edge.

7

{basics1}
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3. The replacement graph R has at least three vertices and two edges.

Definition 2.1.3. An edge replacement system (Gp,e — R) is connected if the graphs
Go and R are both connected. (Observe that a connected graph need not be strongly

connected.)

Recall that the degree of a vertex in a graph is the number of edges incident with it.
The following definition is a specialization of the definition of “finite branching” presented
in Section 4 of Belk, Forrest [3]:

Definition 2.1.4. An edge replacement system (Go,e — R) has finite branching if the

initial and terminal vertices of R have degree 1.

Definition 2.1.5. An edge replacement system (Gg,e — R) with finite branching is
oriented if the initial vertex of R is also the initial vertex of the edge incident with it, and

the terminal vertex of R is also the terminal vertex of the edge incident with it.

Recall that an automorphism of a graph G is a graph isomorphism with itself, i.e.,
a mapping from the vertices of G back to vertices of G such that the resulting graph is
isomorphic with G. The group of all automorphisms of G is called the automorphism
group of G and denoted by Aut(G).

Definition 2.1.6. We define an edge replacement system (Go,e — R) to be of F-type if
the following hold:

1. The edge replacement system is expanding, connected, oriented and has finite branch-

ing.
2. The graph Gy is a single edge connecting two distinct vertices.
3. The automorphism group Aut(R) of the graph R is trivial.

Remark 2.1.7. Let (Gog,e — R) be an F-type edge replacement system. Let e, f € E(R)
and v,w € V(R) such that v is the initial vertex and w is the terminal vertex of e in R
and v is the initial vertex and w is the terminal vertex of f in R. Then e = f, otherwise

there exists a non-trivial automorphism of R which transposes e and f.

For the rest of this thesis, we will assume that every edge replacement
system is of F-type.

Most of the results we will prove in the following chapters can be generalized to non
F-type groups, but we will leave that to the reader. Some further discussion can also be
found in [3]. In the next few pages we will present a detailed exposition concerning F-type
edge replacement systems and describe associated notation and constructions, which we
will illustrate by an extended example in

Let G be an arbitrary graph. We denote the set of edges of G by E(G) and the set of
vertices of G by V(G). Let us fix a replacement graph R through the rest of the section
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and consider the edge replacement rule e — R. We shall write Vi (R) for the set of
vertices of R that are neither initial nor terminal.

Let us establish some naming conventions for our edge replacement system (G, e —
R). Let us label the edge in Gy by the empty word €, with the initial vertex a and terminal
vertex b. Let us also label the edge incident with the initial vertex in R by i and the edge

incident with the terminal vertex in R by t.

: z
Go
t
0444444i444447 R I C—
(Y v
R

Definition 2.1.8. Let o be an edge in a graph G with an initial vertex v, and a terminal

vertex we. Then « is a loop if and only if v, = w,.

Definition 2.1.9. We define a simple expansion G’ of an arbitrary graph G by an F-type
edge replacement rule e — R as follows: Let GG be a graph. Choose one edge of GG, labeled
a, and construct a new graph G’ by replacing this edge by a copy of R as follows:

1. The set V(G') of vertices of G’ is the disjoint union of the set V(G) of vertices of G

and the set of new vertices {aw | w € Vipg(R)}, i.e.,

V(G) =V(G)U{aw | w € Vit (R)}.

2. The set E(G’) of edges of G’ is the disjoint union of the set F(G)\{a} of the edges
of G except for a and the set of new edges {ae | e € E(R)}, i.e.,

E(G") = E(G)\{a} U{ae | e € E(R)}.

3. Suppose the edge a leaves the vertex v and arrives to the vertex v’ in G and the
edge e leaves the vertex w and arrives to the vertex w’ in R. The new edge ae joins
vertices of G’ as follows:

(a) If e = i, the initial vertex is v and the terminal vertex is aw’.
(b) If e = t, the initial vertex is aw and the terminal vertex is v’.

(¢) The initial vertex is aw and the terminal vertex is aw’ otherwise.

(0%

ce
@\

G

{celestial}

{symbola}
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ol at

G/

This process can be repeated an arbitrary number of times using the same edge replacement
rule. Any graph G constructed by performing a finite number of simple expansions to G

is called an expansion of Gj.

Definition 2.1.10. We define a full expansion G,, of a graph G,,—1 by an edge replacement
rule e — R as follows: Suppose we have defined the graph G,,_1. The full expansion of
Gp—1 is the graph G,, obtained by replacing each edge of GG,,—1 by the replacement graph
R by the above process. The resulting graph then has the following vertices and edges:

1. The set V(Gy,) of vertices of Gy, is the disjoint union of the set V(Gp—1) of vertices
of G,,—1 with the set of new vertices V;, = {ow | o« € E(Gp—1),w € Vie(R) }, i.e.,

V(Gn) = V(Gn1) U V.

Formally, a new vertex in V,, can be identified with an ordered pair (o, w), where o €
E(Gp-1) and w € Vip(R). However, to simplify notation, we follow the convention
that we denote this new vertex by the symbol aw obtained by the juxtaposition of

o and w.

2. The set E(G,,) of edges of G,, is a one-one correspondence with the Cartesian product
E(Gp-1) x E(R), i.e.,

E(G,) ={ae|a € E(G,-1),e € E(R)}.
Again, an edge «e is an ordered pair («, e), denoted via juxtaposition.

3. Suppose the edge a leaves the vertex v and arrives to the vertex v’ in G,,_1 and the
edge e leaves the vertex w and arrives to the vertex w’ in R. The new edge ae joins

vertices of G, as follows:
(a) If e = i, the initial vertex is v and the terminal vertex is cw’.
(b) If e = t, the initial vertex is cw and the terminal vertex is v’.
(¢) The initial vertex is cw and the terminal vertex is aw’ otherwise.
Lemma 2.1.11. Let (Go,e — R) be an F-type edge replacement system. Let G be an
expansion of Go by R, i.e., it is obtained from Gqo by applying the edge replacement rule
e — R a finite number of times. Let e, f € E(G) and v,w € V(G) such that v is the

initial vertex and w is the terminal vertex of e in G and v is the initial verter and w is
the terminal vertex of f in G. Then e = f.
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Proof. Let (Go,e — R) be an F-type edge replacement system. Let G be an expansion,
i.e., it is obtained from Gy by applying the edge replacement rule € — R a finite number
of times. Let e, f € E(G) and v,w € V(G) such that v is the initial vertex and w is the

terminal vertex of e in G and v is the initial vertex and w is the terminal vertex of f in G.

Observe, by [Definition 2.1.9| (3), that e and f share the save initial and terminal vertices

if and only if one of the following is true:
1. e, f € E(Gy), in which case e = f = €.

2. There exist €/, f' € F(R) such that e = a¢’ and f = af’ (where a is the edge which

was replaced). In this case, there exist v/, w’ € V(R) such that v = av’ and w = aw’.
Then, by [Remark 2.1.7, ¢/ = f’. Hence e = f.

This proves the result. ]

For an arbitrary edge replacement system (Go, e — R), the sequence {G,},~, is called
the full expansion sequence, where Gg is the base graph and each graph G, is the full
expansion of the graph G,,_; by the edge replacement rule e — R. We build our notation
for the edges and vertices of the graph G, in an arbitrary full expansion sequence as

follows:

1. The set E(G,) of edges of G, is the Cartesian product (with elements denoted via
juxtaposition):
E(Gn) = B(Gn1) % E(R)
— B(Go) x E(R)"
={a=e1...ey| e € E(R) fori>1},
Observe that each edge a = €5 ...¢e, of Gy, is an (n + 1)-tuple, expressed as a word

of length n + 1. Observe also that al =e... e, is the edge of G,_1 that was

replaced by our edge replacement rule e — R.

2. The set V,, of new vertices introduced in the graph G,, is the set of (n 4 1)-tuples

(denoted via juxtaposition, and expressed as words of length n + 1):
Ve={alw=ei...c,qw|a’ € BE(Gp_1),w € Vis(R)}
={a'w=e;...e,qw|e; € E(R) for i >1,w € Vie(R)}.
We define Vy = V(Gp). The complete set V(G,,) of vertices of the graph G, is the
disjoint union

V(Gn) =| | Vi
k=0

Definition 2.1.12. Observe that we have defined above the truncation function § as the

operation truncating the last letter of a word. For instance, consider a word o = ey ... ey,

(n—k)

then af =e;...e,_1 and « f=ey...e; (for n > k). (Observe that we are performing

iterated truncation from the right.)
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Definition 2.1.13. We define the depth of a vertex v € V,, to be the index of the set
V,, (denoted by depth(v) = n). Observe that if v = aw (for some w € Vip(R)) then
depth(v) = |a].

The following results characterize the adjacency of edges and vertices of a graph G, in

the full expansion sequence {G,},~, of an F-type edge replacement system (Go,e — R):

Lemma 2.1.14. Let {G,}, be the full expansion sequence of an F-type edge replacement
system (Go,e — R). Letaw =e;...e, € E(Gy) (for somen > 1). The initial and terminal

vertices of a in the graph Gy are one of the following:

1. If a = (i)", the initial vertex is a and the terminal verter is afw (where w is the

terminal vertex of the edge i in R).

2. Ifa=ce1...epp 1 ()" F 1 (where epyq # 1 for some 1 < k < n—1), the initial vertex

(n—k)

1S o twy and the terminal vertez is afwo (where wy is the initial vertex of the

edge ep11 in R and wy is the terminal vertex of the edge i in R).
3. Ifa=-e1...ep1(t)"F1 (where epyq # t for some 1 < k < n—1), the initial vertex

is afwy and the terminal vertez is oz(n_k')Twz (where wy is the initial vertex of the

edge t in R and wy is the terminal vertex of the edge eg+1 in R).

4. If a = (t)", the initial vertex is a'w and the terminal vertex is b (where w is the

initial vertex of the edge t in R).

5. The initial vertex is afwy and the terminal vertez is ofws otherwise (where wy is

the initial vertex and weo is the terminal vertex of the edge e, in R).

Proof. Let {Gy},, be the full expansion sequence of an F-type edge replacement system
(Go,e — R). Recall that, in an F-type edge replacement system, the graph Gy is a single

edge, labelled by the empty word €, with an initial vertex a and a terminal vertex b.

€

IsX J
e

Go

The replacement graph R is such that the automorphism group Aut(R) is trivial. We
shall label the edge incident with the initial vertex of R by i and the edge incident with
the terminal vertex of R by t.

{andone}
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We will prove this result by induction on n.

In the construction of the graph G1, the edge € is replaced with a copy of R.

i t
a b

G1

An edge « in the graph G is of the form a = e; where e; € E(R). Let w; be the initial

vertex and wo be the terminal vertex of the edge e; in R. Then, by [Definition 2.1.10} the

initial and terminal vertices of the edge « in the graph (G; are one of the following;:

1. If o =i, the initial vertex is a and the terminal vertex is ws, which satisfies Case 1
of the result.

2. If a = t, the initial vertex is w; and the terminal vertex is b, which satisfies Case 4

of the result.

3. The initial vertex is w; and the terminal vertex is wo otherwise, which satisfies Case
5 of the result.

Suppose that there exists m > 1 such that the result holds for the graph G,,. Let
us examine the graph G,,11. Consider the edge f = e;...¢e,, € E(Gy,). The initial and
terminal vertices of 8 are as per the hypothesis. In the construction of the graph Gu,41,
the edge f is replaced with a copy of R. Consider the edge o = fep,41 in the graph Gi41,
where e,,11 € F(R). Let w; be the initial vertex and ws be the terminal vertex of the
edge eny1 in R. Let us examine case by case the initial and terminal vertices of the edge

« in the graph G,,+1, given the initial and terminal vertices of the edge § in the graph
Gm:

1. Let 8 = (i)™ with initial vertex a and terminal vertex STws (where ws is the terminal

vertex of the edge i in R) in Gy,.

i

=X J

Gm

Then, by [Definition 2.1.10} the initial and terminal vertices of o in G471 are as

follows:

Bi

Bt

Ay

Gerl
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If o = Bi = (i)™T!, the initial vertex is a and the terminal vertex is afws = Bws,

which satisfies Case 1 of the result.

If o = Bt = (i)™, the initial vertex is afw; = Bw; and the terminal vertex is

a?fws = Blws, which satisfies Case 3 of the result.

The initial vertex is afw; = Bwy and the terminal vertex is afwy = Bws

otherwise, which satisfies Case 5 of the result.

. Let B=-e;...ep01(1)™ 1 (where ey # i) with initial vertex 3" *)fws and the

terminal vertex is Sfwy (where w3 is the initial vertex of the edge er41 in R and wy

is the terminal vertex of the edge i in R) in Gy,.

P ﬁ ® ---

Gm

Then, by [Definition 2.1.10) the initial and terminal vertices of « in G,,41 are as

follows:

2.1.

2.2.

2.3.

8i Bt
PGS 1 T,

Gerl

If o = Bi = ep...e501(1)™F, the initial vertex is o *+DTy; = pim=k)iy,
and the terminal vertex is afws = Sws, which satisfies Case 2 of the result.
If = Bt = e1...ep 1(1)™ % 1t, the initial vertex is afw; = Bw; and the

terminal vertex is o*fwy = Blw,, which satisfies Case 3 of the result.

The initial vertex is afw; = Bwy and the terminal vertex is afwy = Bws

otherwise, which satisfies Case 5 of the result.

. Let B=-e1...epp1(t)™F1 (where epyq # t) with initial vertex STws and terminal

vertex ﬁ(m*k”wzl (where ws is the initial vertex of the edge t in R and wy is the

terminal vertex of the edge er41 in R) in Gp,.

ﬁTTUJS ﬁ(m_%)‘thl

Gm

Then, by [Definition 2.1.10] the initial and terminal vertices of o in G,,41 are as

follows:
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Bi 8t
o 5N,

Gm+1

3.1. If @ = Bi = e1...epq1(t)™F71, the initial vertex is a*fws = Bfws and the
terminal vertex is afws = Bws, which satisfies Case 2 of the result.

3.2. Ifa = Bt = ey ...ep41(t)™F, the initial vertex is afw; = Bw; and the terminal
vertex is oM~k +Dty, = M=Ky, which satisfies Case 3 of the result.

3.3. The initial vertex is afw; = Bwy and the terminal vertex is afwy = Bws

otherwise, which satisfies Case 5 of the result.

4. Let 8 = (t)™ with initial vertex Sws and terminal vertex b (where ws is the initial
vertex of the edge t in R) in G,,.

e

Gm

Then, by [Definition 2.1.10) the initial and terminal vertices of o in G,,41 are as

follows:

i 8t

T

Gm+1

4.1. If a = Bi = (t)™i, the initial vertex is o®fws = BTws and the terminal vertex is

alwy = Bws, which satisfies Case 2 of the result.

4.2. If a = Bt = (t)™*1, the initial vertex is afw; = Bw; and the terminal vertex is

b, which satisfies Case 4 of the result.

4.3. The initial vertex is afw; = Bwy and the terminal vertex is afwy = Bws

otherwise, which satisfies Case 5 of the result.

5. Otherwise, let 3 have the initial vertex 3Tws and terminal vertex 57w, (where ws is

the initial vertex and wy is the terminal vertex of the edge e, in R) in G,,.
& IB o
BTZU3 BTw4

Gm

Then, by [Definition 2.1.10] the initial and terminal vertices of o in G,,41 are as

follows:
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044444f3144447 BR Aggggliggggggo

i G

Gm+1

5.1. If o = f3i, the initial vertex is o*Tws = fTws and the terminal vertex is afw, =

Bws, which satisfies Case 2 of the result.

5.2. If @ = ft, the initial vertex is afw; = Bw; and the terminal vertex is a*fwy =
Btw,, which satisfies Case 3 of the result.

5.3. The initial vertex is afw; = fw; and the terminal vertex is afwy = Bws

otherwise, which satisfies Case 5 of the result.
This proves the result by induction. O

Lemma 2.1.15. Let {Gy},-, be the full expansion sequence of an F'-type edge replacement
system (Go,e — R). Let o =e;...e; € E(Gy), w € Vint(R) andn > k+ 1. Then

1. The edges in G, having aw as the initial vertex are precisely those of the form

ap())"F=1 where p is an edge of R with w as the initial vertex.

2. The edges in G, having aw as the terminal vertex are precisely those of the form

aq(t)"*1 where q is an edge of R with w as the terminal vertex.

Proof. Let {Gy},, be the full expansion sequence of an F-type edge replacement system
(Go,e = R). Let a = ey...ex € E(G), w € Vig(R) and n > k + 1. Recall from
IDefinition 2.1.10| of a full expansion that aw € V(G,,).

1. By [Lemma 2.1.14] (2), aw is the initial vertex of edges of the form ap(i)"~*~! in
G, where p is an edge of R with w as the initial vertex.. We have to show that the
edges of the form ap(i)"*~! are the only edges with aw as the initial vertex. We

shall prove this by induction on n.

Suppose w is the initial vertex of precisely the edges p1,...,p, in R.

Consider the case when n = k + 1. The graph G4 is a full expansion of the graph

Gy, by [Definition 2.1.10} The vertex aw € Vi1 is a new vertex introduced in Gy

when the edge o in Gy, is replaced by a copy of R. It follows from the construction

of Giy1 that aw is the initial vertex of precisely the edges api,...,ap, in Ggy1.
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ap; aqg;
aw

Gry1

This establishes the base case of our induction argument.

Now let us assume that aw is the initial vertex of precisely the edges of the form
ap(i)™ !

as the initial vertex.

in the graph G,, (for some m > k + 1), where p is an edge of R with w

ap(i)m—k—l aq(t)m—k—l
aw

Gm

Let us construct the full expansion G,,+; of G,,. Observe that, since the edge

replacement system is of F-type, when an edge ap(i)™*~! gets replaced by a copy

of R, the vertex aw is the initial vertex of this copy of R and hence the initial vertex

m—Fk

of an edge ap(i)

ap(i)m* aq(t)mk
aw

Gm+1

Therefore, the inductive claim holds.

2. This is proved similarly to (1). The proof is included here for completeness.

By [Lemma 2.1.14! (3), aw is the terminal vertex of edges of the form agq(t)" %=1 i

n
Gy, where ¢ is an edge of R with w as the terminal vertex. We have to show that
the edges of the form ag(t)"*~! are the only edges with aw as the terminal vertex.

We shall prove this by induction on n.

Suppose w is the terminal vertex of precisely the edges qi,...,qs in R.

Consider the case when n = k + 1. The graph G4 is a full expansion of the graph

Gy, by [Definition 2.1.10} The vertex aw € Vi1 is a new vertex introduced in Gy

when the edge o in Gy, is replaced by a copy of R. It follows from the construction

of Gry1 that aw is the terminal vertex of precisely the edges aqy, ..., aqs in Gii1.



(2.2}

{hurtsomeone}

18 CHAPTER 2. THE LIMIT SPACE

ap; aqg;
aw

Gry1

This establishes the base case of our induction argument.

Now let us assume that aw is the terminal vertex of edges of the form aq(t)™ *~! in

the graph G,, (for some m > k + 1), where ¢ is an edge of R with w as the terminal
vertex.
ap(i)" 1 ag(t)n

aw

Gm

Let us construct the full expansion Gy,4+1 of G,,. Observe that, since the edge
replacement system is of F-type, when an edge aq(t)™ *~1 gets replaced by a copy
of R, the vertex aw is the terminal vertex of this copy of R and hence the terminal

vertex of an edge aq(t)™*.

ap(i)mk aq(t)mk
aw

Gm+1

Therefore, the inductive claim holds.

This completes the proof by induction. O

We can prove stronger versions of [Lemma 2.1.15[ and [Lemma 2.1.14] for every specific

rearrangement group. We will prove the analogous results for some specific rearrangement

groups in later chapters.

2.2 An Extended Example

We now present an extended example which defines the edge replacement system and
constructs the full expansion sequence for a particular rearrangement group, the F'-Basilica

group, and discusses the adjacency of edges and vertices for this full expansion sequence

analogously to |Lemma 2.1.15| and [Lemma 2.1.14, We will be using this edge replacement
system (and associated framework) as an example throughout this chapter and

Example 2.2.1. We present the F-Basilica edge replacement system:

€

Go

e
e
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w w
2
> x 1
0
v v
e R

We observe that the initial graph Gy is comprised of one edge, labelled with the empty
word €, leaving a vertex a and arriving at a vertex b. Our replacement system replaces
an edge e with the replacement graph R, which is comprised of one edge, labelled 0,
leaving the specified initial vertex v and arriving to a vertex x, a second edge labelled 1
forming a loop around the vertex x, and a third edge, labelled 2, leaving the vertex x and
arriving to the specified terminal vertex w. We observe that E(Gy) = {¢}, V(Go) = {a, b},
E(R) ={0,1,2} and Vint(R) = {z}.

We present the first few graphs in the full expansion sequence for the F-Basilica re-

placement system:

a 00z Ox 02z =« 20z 22 22z b

Observe that an edge of the form «al in the graph G,, (for some o € E(G,_1)) is a loop
for all n € N.
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Let us discuss the adjacency of the vertex Ox in the first few graphs of the full expansion

sequence for the F-Basilica replacement system:

01

00 02 o
a Ox x

Ga

In the graph Ga, we observe that the edges departing from Ox are 01 and 02, and the

edges arriving to Ox are 00 and 01.

In the graph G3, we observe that the edges departing from Ox are 010 and 020, and the
edges arriving to Ox are 002 and 012.

00z 002z 0 020 T
Gy

In the graph G4, we observe that the edges departing from Ox are 0100 and 0200, and
the edges arriving to Oz are 0022 and 0122. Continuing in this way we can conclude
that, for the n-th full expansion graph G,, of the F-Basilica replacement system, the edges
departing from 0z are 01(0)"~2 and 02(0)"~2, and the edges arriving to 0z are 00(2)" 2
and 01(2)"~2, all of which have the prefix 0.

In fact we can show that, for the graph G,, of the F-Basilica replacement system, the
edges departing from an arbitrary vertex az are a1(0)"~2 and a2(0)" 2, and the edges
arriving to ax are a0(2)""2 and a1(2)"2.

Let us now study the vertices bordering a specific edge «.

In the graph G, the edge 000 leaves the vertex a and arrives to the vertex 00zx.
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001

000 002 N
a 00x Ox
Gs

In the graph G4, the edge 0000 leaves the vertex a and arrives to the vertex 000x.

0011

0001 0010 0012 0021

0000 0002 0020 0022 o
a 000z 00x 002z Oz
Gy

In fact it follows from [Lemma 2.1.14| that, in the graph G,, when a = (0)", the initial

vertex is a and the terminal vertex is afz = (0)"'x.

In the graph G, the edge 222 leaves the vertex 22z and arrives to the vertex b.

221

20 222
2x 22x b
G3

In the graph G4, the edge 2222 leaves the vertex 222x and arrives to the vertex b.

In fact it follows from [Lemma 2.1.14] that, in the graph G,, when o = (2)", the initial

n—1

vertex is afz = (2)""'z and the terminal vertex is b.

In the graph G, the edge 111 leaves and arrives to the vertex 11zx.
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111

110 112

R4

In the graph G4, the edge 1111 leaves and arrives to the vertex 111zx.

In fact it follows from that, in the graph G,, when o = e;...e,—11, the

initial and terminal vertex is afz = ey ...e,_12.

In the graph G, the edge 002 leaves the vertex 00z and arrives to the vertex Ox.
001
000 : ; 002 o
a 00z O0x
G3

In the graph Gy, the edge 0022 leaves the vertex 002x and arrives to the vertex Ox.

In fact it follows from [Lemma 2.1.14| that, in the graph G,,, when o = e ...ex0(2)"*~1

(for n > k), the initial vertex is afx =ey...e,_ 12 and the terminal vertex is an=Fty =
e1...eLr.

In the graph G, the edge 220 leaves the vertex 2x and arrives to the vertex 22z.
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221

o 220 222
2x 22z b
Gs

In the graph G4, the edge 2200 leaves the vertex 2x and arrives to the vertex 220x.

2211
2901 2210 2212 9991
o 2200 2202 2220 2222
2z 220z 22z 222z b
Gy

In fact it follows from [Lemma 2.1.14| that, in the graph G,,, when o = e ...e2(0)"*~1

(for n > k), the initial vertex is a(® ®Tz = e;...epx and the terminal vertex is afz =
€1...6p_1T.

In the graph G, the edge 110 leaves the vertex la and arrives to the vertex 11z.

111

110 112

In the graph Gy, the edge 1100 leaves the vertex lax and arrives to the vertex 110z.

In fact it follows from [Lemma 2.1.14| that, in the graph G, when o = ey ...e1(0)"+~1

(for n > k), the initial vertex is a®*)fz = e;...ep2 and the terminal vertex is afz =
€l1...€p_1T.

In the graph G3, the edge 112 leaves the vertex 11z and arrives to the vertex 1z.
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111

110 112

R4

In the graph G4, the edge 1122 leaves the vertex 1122 and arrives to the vertex 1x.

In fact it follows from [Lemma 2.1.14| that, in the graph G, when o = ey ...e1(2)"+1

(n—k)

(for n > k), the initial vertex is afz =ej...e,_1z and the terminal vertex is « fr =

e1...epx.

2.3 The Limit Space

Let (Gop,e — R) be an F-type edge replacement system. In this section, we will construct
the limit space — the topological space on which our group will act.

Observe that E(Go) = {€} and E(R) is a finite set. We define the finite alphabet to
be the set E(R).

Definition 2.3.1. We define the set of finite words E(R)* as follows:
ER)*={e1...ep|e; € E(R) fori=1,...,n}.
We denote the length of a word o € E(R)* by |a|.

Definition 2.3.2 (Belk, Forrest [3]). We define the symbol space €2 to be the set E(R)%

of all infinite sequences
Q:=E(R)Y ={e1e2...|e; € E(R) fori=1,2,...}.

Definition 2.3.3. We define a prefix order < on E(R)* as follows: For o, € E(R)*, «
is a prefix of 3, denoted by a < f3, if there exists v € E(R)* such that f = a~.
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Let a, 8 € E(R)*. If « is a strict prefix of 3, it is denoted by a < 3. If neither « or
[ are prefixes of the other they are said to be incomparable, denoted by o 1L 8. Given
a L (3, there exists a largest common prefix v € E(R)* defined as follows: ~ is the largest
word such that v < « and v < 3. We can extend this definition to ) as follows: A word
a € E(R)* is a prefix of a sequence ejey ... € Q if and only if there exists an n € N such
that a = e1...¢,.

Observe that the prefix order on F(R)* is a partial order, since it is reflexive, transitive
and anti-symmetric. A finite set A C E(R)* is an antichain if, for all o, € A, o L B.
An antichain A is complete if, for all v € E(R)* such that |y| > N for some N € N,
there exists a € A such that a < v. Equivalently, an antichain A is complete if, for all
t=ejey... €, there exists @ € A such that « is a prefix of ¢ (denoted by o < t). Note
that, in this thesis, we use the symbol C to denote “contained in but not equal
to” and the symbol C to denote “contained in or equal to”.

Assume that we have defined a linear order < on F(R) such that i is the smallest and

t is the largest. We define the lexicographic order <, on 2 as follows:

Definition 2.3.4. Let ejes... and e}é), ... be sequences in 2. Then ejey--- <y €€ ...

if and only if there exists k € N such that e;...ex_1 =€) ...¢€}_; and e; < €}.

*

We define the partial lexicographic order <, on E(R)* as follows:

Definition 2.3.5. We define the lezicographic order <, on any two distinct incomparable
words a and  as follows: Let a = e1...e, and 8 = €] ...€l,. Then there exists k € N

such that ey ...ep—1 =€} ...€;_, and e, # e}.. We define a <; 3 if and only if e}, < e].

While this order is a partial order on F(R)*, it is a full order on a complete antichain
A C E(R)*, and is denoted by the ordered list lex(A) = (o, ..., ay,). The following results

characterize some properties of complete antichains:

Lemma 2.3.6. Let A be a complete antichain in E(R)*. Letlex(A) = (a1,...,ay). Then
there does not exist 1 <i<n—1 and f € E(R)* such that

o <y 6 <p Q1.

Proof. Let A be a complete antichain in E(R)*. Let lex(A4) = (a1, ...,a,). We will prove
this by contradiction. Suppose that there exists 1 <i <n —1 and 8 € E(R)* such that

a; <p B <p g1

Then a; <, B for all j =1,...,7and B <p oy, for all k =i+ 1,...,n. This implies that
B L ag,...,an. Then {a1,...,a;, B, ait1,...,05} is an antichain, which contradicts the

fact that A is complete. This proves the result. O

Lemma 2.3.7. Let A be a complete antichain in E(R)*. If By € A (for some B,y €
E(R)*), then D = {4 | 6 € A} is a complete antichain in E(R)*.

{bridgeburner}

{morningstar}

{blackheartedl

{stillsmiling}



arpdressedman}

26 CHAPTER 2. THE LIMIT SPACE

Proof. Let A be a complete antichain in E(R)*. Let 8y € A (for some 3,7 € E(R)*). Let
D={0]| 36 e A}

Let us prove that D is an antichain: Let 6,0’ € D. If § < ¢, then 8§ < §¢’, contrary
to A being an antichain. Hence D is an antichain.

Let us prove that D is complete: Let t € Q2. Then St € ), and there exists a € A such
that a < ft. If a < B then « < B+, which contradicts the fact that A is an antichain. So
B = «a, which implies that o = 86 for some § € D. Then 8§ < ft. Hence § < t and D is
complete. ]

Lemma 2.3.8. Let (Gg,e — R) be an F-type edge replacement system. Then the following
hold:

1. If G is an expansion, i.e., it is obtained from Gg by applying the edge replacement

rule € — R a finite number of times, then E(G) is a complete antichain in E(R)*.

2. If A is a complete antichain in E(R)*, then there is an expansion G, obtained from
Go by applying the edge replacement rule e — R a finite number of times such that
E(G) = A.

Proof. Let (Go,e — R) be an F-type edge replacement system.

1. Suppose G is an expansion obtained by n simple expansions of Gy, for some n € N.
We have to show that F(G) is a complete antichain. We will prove this by induction

on n.

Let n = 0. Then E(G) = {e}. This is trivially an antichain, and complete because,
forallt € Q, e <t.

Let E(G) be a complete antichain for n = m. Let us perform a simple expansion on
G to get a graph G'. Then some « € F(G) is replaced by a copy of R, and hence
E(G") = (E(G)\{a})U{ae | e € E(R)}. Observe that ae L 3 for all e € E(R)
and 8 € E(G)\{a} since a L B3, and ae L «e’ for all distinct e,e’ € E(R). This
proves that F(G’) is an antichain. Observe also that, for all ejes--- € Q, there
exists an element in E(G) which is a prefix of ejea.... If this element is § # «,
then 8 € E(G'). If this element is «, observe that o = ej...e; and ex11 € E(R).
Then aegyq € E(G'). This proves that E(G’) is a complete antichain, where G’ is

an expansion obtained by m + 1 simple expansions of Gy.

This completes the proof by induction.
2. Suppose A is a complete antichain in F(R)*. We define a pair (m, k) as follows:

m = max {|a| |« € A},

k=#{ac€A||a|=m}.
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We order these pairs lexicographically as follows: (m,k) <, (m’, k') if and only if
m < m' or m =m' and k < k’. Observe that, since both m,k € N, this is a well-
order and there exists a lowest element. We can now prove our result by induction
on (m, k).

Let (m,k) = (1,1). Then A = E(Go) and hence G = Gy and the inductive claim
holds.

Let A be a complete antichain in F(R)* and let m(A) = m and k(A) = k. Suppose
the claim holds for all complete antichains B in E(R)* such that (m(B),k(B)) <¢
(m, k). There exists at least one a = ej...e,—1 in A of length m. Since A is
an antichain, no proper prefix of o is in A. Consider t = e1...ep,_2¢,, ;... € Q
where e/, | # emn—1. Then there exists 5 € A such that 8§ < ¢t. Now 8 £ «
and |B| < m. This implies that 3 = ej...ep_2¢}, ;. Since this is true for all
er._1 € E(R)\{em—1}, A contains all words ej ...epn_of where f € E(R). Let us

m—1

define the set

B=(A\{e1...em—af | fEE(R)})U{e1...em—2}.

Let us prove that B is a complete antichainin E(R)*: Consider «, 3 € B. If a, 3 €
A\{e1...em—of | f € E(R)}, then o L 8. f a € A\{e1...em—of | f € E(R)} and
B=e€1...m_2,thena L ej...ep o forall f € E(R) and hence o L 3. This proves
that B is an antichain. Consider ¢ € 2. Then there exists v € A such that v < t.
Ifve A\{e1...em—aof | f € E(R)}, theny e B. If y e {e1...em—af | f € E(R)},
then § =ej...e—2 € Band § <. Hence § <t and B is a complete antichain in
E(R)*.

Observe that (m(B),k(B)) <¢ (m, k). By our inductive claim, there exists a graph
expansion G such that B = E(G). Let us construct a graph expansion G’ by
performing an edge replacement on the edge e1...e,-2 € B = E(G). Then A =
E(G’) and this completes the proof by induction.

O]

Observe that the set E(R) is finite. Let us endow it with the discrete topology. The

symbol space 2 has a one-one correspondence with the Cartesian product
[[E®).
w

Consequently, we endow Q with the product topology. Let us define the set Q(«) := a2
(for some o € E(R)*) to be the set of all infinite sequences which have the prefix . Then
the collection

{Q(a) [ a € E(R)*}

forms a basis for the topology.
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Since ) is an infinite product of finite discrete sets, it is homeomorphic to the Cantor
space. We observe that every basic open set {2(«) is also closed in 2, and hence compact.
Since €2 is a Hausdorff space, one-point sets are closed in €.

Recall that, in our full expansion sequence, the vertex set V(G,,) of graph G,, is the

disjoint union
V(Gn) = | | Vi
k=0

where Vj is the set of vertices of depth k, introduced in the graph Gj. The vertex sets of

the graphs {G,,}7°, form a nested chain, i.e.
V(Go) CV(G1) CV(Ga) C ...

Definition 2.3.9. We will refer to elements of the vertex set

o OJvicn - [
n=0

n=0

as gluing vertices (for reasons which will become clear as we proceed).

Observe that if v € GV, then v is either a, b or aw (for some o € E(R)* and
w € Vint(R)). Assume that we have defined a linear order <, on Viy(R). Recall from
[Definition 2.1.13| that the depth of a vertex v € GV is the index of the set V}, such that
v € Vp, ie., depth(a) = depth(b) = 0 and depth(aw) = |a|. Observe that, for some
distinct «, 8 € E(R)*, if |a| = |B], then @ L 8 and they can be ordered lexicographically
by [Definition 2.3.5|

Definition 2.3.10. Let GV be the set of gluing vertices of an F-type edge replacement
system. We define an induced vertex depth order <; on GV as follows: for two distinct

vertices z; and z; in GV, z; <q z; if and only if one of the following holds:
1. depth(z;) < depth(z;),

2. depth(z;) = depth(z;) and z; = cw and z; = fw’ (for some distinct o, f € E(R)*)
and a <y B.

3. depth(z;) = depth(z;) and z; = aw and z; = aw’ (for some distinct o, f € E(R)*)

and w <, w'.

Definition 2.3.11. Let 2 be the symbol space and GV be the set of gluing vertices of an
F-type edge replacement system. A sequence ejes... € §) represents a vertex v € GV if

the edge e ... e, is incident with v in the graph G,, for all sufficiently large n.

Lemma 2.3.12. Let  be the symbol space and GV be the set of gluing vertices of an
F-type edge replacement system. Let eres... € Q and v € GV. The sequence eqes . ..

represents the vertex v if and only if one of the following holds:
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1. v=a and erey... =1,
2. v=>bandeey... =t,
3. v=aw (for some a € E(R)* and w € Vit (R)) and ejes ... = apq, where p € E(R)

1s incident with w and q = i if w is the initial vertex of p and q = t if w is the

terminal vertex of p.
Moreover, if it exists, the vertexr v represented by the sequence eies ... is unique.

Proof. Let © be the symbol space and GV be the set of gluing vertices of an F-type edge

replacement system. Let ejes... € Q.

1. Let v = a. Suppose the sequence ejes ... represents the vertex v. Then there exists
N € N such that the edge e ... e, is incident with v in the graph G, for all n > N.

By [Lemma 2.1.14] (1), we know this is only possible if e; ...e, = (i)™ for all n > 0.
This implies that ejes... =1 (and also that N = 0).

Conversely, let ejes... = i. By [Lemma 2.1.14] (1), the edge (i)" is incident with

the vertices a and (i)" !w in the graph G, for some n > 0. It follows that a is the
unique vertex such that the edge e . .. e, is incident with it for all n > 0. And hence

the sequence ejes ... represents the vertex v = a.

2. Let v = b. Suppose the sequence ejes ... represents the vertex v. Then there exists
N € N such that the edge e ... e, is incident with v in the graph G, for all n > N.

By [Lemma 2.1.14] (1), we know this is only possible if e; ...e, = (t)" for all n > 0.
This implies that ejes ... =t (and also that N = 0).

Conversely, let ejes... = t. By [Lemma 2.1.14] (1), the edge (t)" is incident with

the vertices b and (t)" 'w in the graph G,, for some n > 0. It follows that b is the
unique vertex such that the edge e . .. e, is incident with it for all n > 0. And hence

the sequence ejes ... represents the vertex v = b.

3. Let v = aw = ey...ex_1w (for some w € Vip(R)). Suppose the sequence ejes . ..
represents the vertex v. Then there exists N € N such that the edge e;...e, is
incident with v in the graph G, for all n > N. Observe that v is either the initial

or terminal vertex of ej ...e,. Let us examine both cases:

3.1. By [Lemma 2.1.14] (2), v is the initial vertex of e1...e, if e1...e, = ap(i)"*

and w is the initial vertex of p. This implies that ejes... = api (and N = k).

3.2. By|Lemma 2.1.14(3), v is the terminal vertex of €1 ... e, if e1 ... e, = ap(t)" ¥

and w is the terminal vertex of p. This implies that ejes ... = apt (and N = k).

Conversely, suppose v = aw and ejes ... = apg, where p € E(R) is incident with w
and g = i if w is the initial vertex of p and ¢ = t if w is the terminal vertex of p.

Let us examine the two separate cases:
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3.1. Suppose ejes... = api and w is the initial vertex of p. By [Lemma 2.1.14] (2),

the edge e;...e, = ap(i)” % has the initial vertex aw and terminal vertex
ap(i)"~* 1w in the graph G, for all n > k. This implies that v = aw us the

unique vertex represented by ejes. . ..

3.2. Suppose ejes ... = apt and w is the terminal vertex of p. By [Lemma 2.1.14|(3),

the edge e; ...e, = ap(t)" ¥ has the initial vertex ap(i)”*~'w and terminal
vertex aw in the graph G, for all n > k. This implies that v = aw us the

unique vertex represented by ejes. . ..

This proves the result. O
{deadzone}
Definition 2.3.13. Let ) be the symbol space and GV be the set of gluing vertices of an
F-type edge replacement system. Let v € GV. We define the set @), C €2 to contain all
sequences ejes ... € ) which represent the vertex v. It follows from [Lemma 2.3.12] that
Qo = {60}}
Qv = {eot}
Qaw = {apg | p € E(R) incident with w
q = i if w is the initial vertex of p or
g =t if w is the terminal vertex of p }
for some o € E(R)* and w € Vipt(R).
Observe that @, is a finite set for all v € GV since F(R) is a finite set.
{earthlings}
Definition 2.3.14 (Belk, Forrest [3]). Let ©Q be the symbol space of an F-type edge
replacement system. Two sequences from €2
erea... and e€je,. ..
are said to be related to each other under the gluing relation ~ if the edges
e1...e, and 6’1...6;
share a vertex in the graphs G, for all n € N.
{newfang}
Lemma 2.3.15. Let Q be the symbol space and GV be the set of gluing vertices of an
F-type edge replacement system. Let ejes ... and ey ... be two distinct sequences in Q.
Then

6162...'\‘6,16,2...

if and only if there exists a vertex aw € GV (for some a € E(R)* and w € Vipt(R)) such
that

!/
erez...,e1ey... € Qauw.
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Proof. Let 2 be the symbol space and GV be the set of gluing vertices of an F-type edge
replacement system. Let ejes. .. and €€} ... be two distinct sequences in 2.
Suppose that ejes... ~ eje,.... Since ejes... and €)el ... are distinct, there exists

k € N such that e;...ep—1 = €] ...€;_, and e, # e). Let o = e1...ex_1. Then aey

and «e), are distinct edges in the graph Gj, which share a vertex. By [Definition 2.1.10| of

the construction of the full expansion Gy, these edges arise when the edge «a in Gi_1 is
replaced by a copy of R. The edges e, and e} are incident with the vertex w € Vin(R).
Then the edges aej, and ae) are incident with the vertex aw € V(Gy).

Since the edge replacement system is of F-type (in particular, expanding), cw is the
unique vertex such that the edges e;...e, and €] ...e!, are incident with it in the graph
Gy, for all n > k. Then, by e1...en=aeg(p)" Fande...e, = ae)(q)"F
(where p = i if w is the initial vertex of e, in R and p = t if w is the terminal vertex of e
in R, and similarly ¢ =i if w is the initial vertex of e} in R and ¢ = t if w is the terminal
vertex of €} in R). Then, by [Definition 2.3.13]

!/
€1€2...,€1€5 ... € Q-

Conversely, suppose there exists a vertex fw € GV (for some w € Viy(R)) such that

erey...,€eeh. .. € Qpy. Let B = eq...em,—1. By [Definition 2.3.13 ejes... = Be,p and

elel... = PBel,q (where p = i if w is the initial vertex of e in R and p = t if w is the
terminal vertex of e;, in R, and similarly ¢ = i if w is the initial vertex of €} in R and ¢ =t
if w is the terminal vertex of €} in R). Then, by the sequences ejes. ..
and €}é), ... both represent the vertex Sw Hence, e1...e, = €} ...¢€}, for all n < m and
the edges e ...e, and €] ...e], share the vertex Sw in the graphs G,, for all n > m. This
implies that @ = 8 and, by [Definition 2.3.14]

6162...N6/1€’2....

Example 2.3.16. The symbol space for the F-Basilica group is the infinite product
Q={0,1,2}>.

We observed in [Example 2.2.1| that the edges 00(2)"2, 01(0)"~2, 01(2)"2, and 02(0)"~?2

in G,, share the vertex Oz, for all n > 1. It follows from [Definition 2.3.14| that 002, 010,
012, and 020 in € are all equivalent under the gluing relation.
More generally, it follows from [Lemma 2.3.15| that for any two sequences ejes ... and

ehes ... in Q,

6162...N6/16/2...

if and only if there exists a vertex Sz € GV such that

e1ey. .., €eley. .. € Qg = {802,310, 312, 320} .

{deutschland}
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Belk, Forrest [3] Proposition 1.9 proved the following result for an arbitrary expanding
edge replacement system. Below, we present a proof which is specific to F-type edge

replacement systems.

Lemma 2.3.17. Let Q) be the symbol space of an F-type edge replacement system. The

gluing relation from [Definition 2.3.14) is an equivalence relation.

Proof. Let Q be the symbol space and of an F-type edge replacement system. Let ~ be the

gluing relation from [Definition 2.3.14] Observe that ~ is always reflexive and symmetric,

since sharing a vertex in a graph is always reflexive and symmetric.
To prove transitivity, suppose there exist three distinct sequences ejes. . ., €je, ... and
efely ... in Q such that ejea... ~efeh ... and eje,,... ~efel. ...
From [Lemma 2.3.15| we know that ejes ... ~ €}, ... if and only if there exists a vertex
aw € GV such that
er1ea...,e1eh. .. € Quu-

Similarly, ejef ... ~ efe] ... if and only if there exists a vertex fw’ € GV such that

! ! n_n
6162...76162... 6 Qﬁwl

This implies that the sequence €€l ... represents the vertices cw and fw’. But we

know from that the vertex represented by a sequence is unique. Hence
aw = fw’, and therefore

e1eg ... eheh ... eles. .. € Quuw-
Hence, by [Lemma 2.3.15) ejea... ~ efely.... This proves transitivity, and therefore a
gluing relation of an F-type edge replacement system is an equivalence relation. O

Definition 2.3.18 (Belk, Forrest [3], Definition 1.7). Let Q be the symbol space and of
an F-type edge replacement system. Let ~ be the gluing relation from [Definition 2.3.14l

We define the limit space
X =0/~

to be the set of equivalence classes in €.

Let z € 2. We denote the equivalence class under ~ containing x by [z]. Since ~ is an
equivalence relation, the limit space X is a partition of 2. We define the map ¢: 2 — X
by ¢: x — [z]. Let us assign the quotient topology to X, that is a set U is open in X if
and only if its preimage (U)¢ ! is open in Q. It follows that ¢ is the quotient map, and

hence continuous.

We will prove in that X is a Hausdorff space.

Lemma 2.3.19. Let X be the limit space and GV be the set of gluing vertices of an F'-type

edge replacement system.
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1. For all v € GV, the set Q, C S is an equivalence class in X.
2. The map p: GV — X defined by (v)p = (y)¢ for all y € Q, is injective.

3. Every equivalence class with more than one point has the form @, for some v € GV.

Proof. Let X be the limit space and GV be the set of gluing vertices of an F-type edge

replacement system.
1. By we know that
e1ea...,€1eh. .. € Qy
for some v € GV if and only if

6162...N€’16/2....

It follows from [Lemma 2.3.17] and [Definition 2.3.18| that @, is an equivalence class
in X.

2. Observe that the map p: GV — X defined by (v)p = (y)¢ for all y € @, is indepen-

dent of the choice of y by [Lemma 2.3.15] and hence is well-defined for all v € GV.
Consider vy, v2 € GV such that @Q,, = Q,,. By [Definition 2.3.13| every sequence in

(v, represents the vertices v; and ve. Since, by [Lemma 2.3.12| the vertex repre-

sented by a sequence is unique, this implies that v; = vy. Therefore, the map p is

injective.

3. Let x € X be an equivalence class with at least two points. That is, there exist

Y,z € Q with y # z such that (y)¢ = (2)¢ = z. Then y ~ z, and by |[Lemma 2.3.15

there exists v € GV such that y, z € @Q,, which is an equivalence class in X by (1).

O

To simplify notation, for all v € GV, we will use the vertex v as a label for
the equivalence class (v)p in X. We call the equivalence classes in X not corresponding
to gluing vertices regular points.

Belk and Forrest [3], Theorem 1.24 proved the following result in general. We present

a proof for F-type edge replacement systems:

Example 2.3.20. Let X be the limit space of the F-Basilica replacement system Recall

from [Example 2.3.16| that for any two sequences ejes ... and €}é, ... in €,

6162...N6,16,2...
if and only if there exists a vertex Sz € GV such that
e1ey. .., €eley. .. € Qg = {802,810, 312, 320} .

It follows from |[Lemma 2.3.19 that (g, is an equivalence class in X and corresponds to
the gluing vertex Szx.



34

CHAPTER 2. THE LIMIT SPACE



Chapter 3

The Rearrangement Group of the
Limit Space

In this chapter, let 2 be the symbol space and let X be the limit space of an F-type
edge replacement system. We will define the “rearrangement group” — i.e., the group of
homeomorphisms — of X. In we will define a “cell” — a topological object. In
we will define a way to “partition” X using cells. In we will define
a rearrangement of X. In we will prove that the set of rearrangements of X

is a group.

3.1 Cells

In this section, we will define a “cell” — a topological object — and use it to establish our

topological space in detail.

Definition 3.1.1 (Belk, Forrest [3], Definition 1.13). For a word o € E(R)*, a cell C(«)

is the image of a basic open set 2(«) in the limit space X under the quotient map ¢.

Observe that C(e) = X. For every a = e;...e, € E(R)*, the cell C(a) in X has a

one-to-one correspondence with the edge a € E(G,,).

Definition 3.1.2. Let a = e1...e, € E(R)*. Let v, be the initial vertex of the edge «
in the graph G, and let w, be the terminal vertex of the edge « in the graph G,. The
equivalence classes in X corresponding to v, and w, are called the boundary points of the
cell C'(a) (with v, being the initial boundary point and w, being the terminal boundary

point).

The complement of those boundary points in the cell C(«) is called the interior of
the cell, and denoted by int C'(«). Observe that this may or may not be the same as the
topological interior.

Cells and their interiors are our main topological objects, and we will use them to

prove various details of the quotient topology on X. Provided X is Hausdorff, there is a
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simple proof that a cell is closed (hence compact). But since we require various properties
of cells to prove that X is a Hausdorff space, we will provide a different and
slightly more technical proof in that a cell is closed and the interior of a cell
is open. The results which follow have been derived from Belk, Forrest [3], Section 1.5,

but they have been reinterpreted for our construction.

Lemma 3.1.3. Let C(a) be a cell in X (for some o € E(R)*). Then (ai)¢ = v, and
(at)p = wq.

Proof. Leta = ey ...e, € E(R)*. By|Lemma 2.1.14] we know that v, € {a, afw, a"=F)Tw}
and w, € {b,atw, a1y}, for some w € Viy(R) and k < n — 1. Let us examine all of

these cases:

1. If v, = a then (a)¢~ ! = Q, = {i}. Since a € C(a), then from the definition of a cell
there exists a sequence y € Q(«) such that (y)¢ = Q4. Since @, is a singleton set,

it follows that y = i. Also, since € =< q, it follows that y = ai.

2. If vy = alw then (afw)¢™! = Q.- Since afw € C(a), then from the definition of
a cell there exists a sequence y € Q(a) such that ()¢ = afw. Then y = ofpi if w
is the initial vertex of p or y = afpt if w is the terminal vertex of p. Since v, is the
initial vertex of , this implies that w is the initial vertex of p. And hence y = ofpi

Since af < a, we get y = od.

3. If v, = o™ Pfyw then (o™ PTw)p= = Q m-wyr,. Since aFfw € C(a), then
from the definition of a cell there exists a sequence y € Q(«) such that (y)¢ =
"Ry, Then y = " Ppi if w is the initial vertex of p or y = o™ F)Tpt if w is

the terminal vertex of p. Since v, is the initial vertex of «, this implies that w is the

(n—k) (n—k)

initial vertex of p. And hence y = « fpi Since a f < o, we get y = od.

4. If w, = b then (b)p~t = Qp = {t}. Since b € C(a), the definition of a cell that
there exists a sequence y € Q(«a) such that (y)¢ = Q. Since Qy is a singleton set, it
follows that y = t. Also, since € < «, it follows that y = at.

5. If wy, = a'w then then (afw)¢p™ = Q.1,. Since afw € C(a), then from the
definition of a cell there exists a sequence y € Q(a) such that (y)¢ = afw. Then
y = alfpi if w is the initial vertex of p or y = afpt if w is the terminal vertex of p.
Since w,, is the terminal vertex of «, this implies that w is the terminal vertex of p.

And hence y = afpt Since af < a, we get y = ot.

6. If wy = " ®Tw then (" ®Tw)p™' = Q w-wyr,. Since a® Py € C(a), then
from the definition of a cell there exists a sequence y € Q(«) such that (y)¢ =
am Rty Then y = o ®ipi if w is the initial vertex of p or y = o ®ipt if w

is the terminal vertex of p. Since w, is the terminal vertex of «, this implies that

w is the terminal vertex of p. And hence y = (" ®pt Since a" M < o, we get

y = at.
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This proves the result. O

Remark 3.1.4. Let C(«) be a cell in X (for some o = ey ...e, € E(R)*). Recall from
IDefinition 2.1.8| that the edge o € E(G,,) is a loop if and only if v, = wy. It follows from
Lemma 3.1.3| that C(a) corresponds to a loop in E(G),) if and only if ai ~ at.

Recall that our quotient map ¢: 2 — X maps points in €2 to their equivalence class
in X. The limit space X possesses the quotient topology, i.e., a set U is open in X if and
only if (U)¢~! is open in Q.

Recall also that the basic open sets in £ are of the form (2(a) and consist of all
sequences with the prefix @« =ej...e,. A basic open set Q(«) is both open and closed in
Q. There exist sequences in Q(«) which map to the boundary points of the C(«). Since
one-point sets are closed in ), removing these sequences will still give us an open set in
Q.

The following result characterizes similar properties for the elements of the cell C(«):
Lemma 3.1.5. Let C(«) be a cell in the limit space X (for some o € E(R)*).

1. Every equivalence class in C(«) contains at least one sequence with the prefiz .

2. Every sequence in every equivalence class in int C(«) has the prefiz a.

Proof. Let C(«) be a cell in the limit space X (for some a € E(R)*).

1. Since C(a) = ((«))¢, the proof follows from [Definition 3.1.1}

2. Suppose there exists an equivalence class x € C(«) such that there exists y € Q such
that (y)¢ = = but y ¢ Q(«). We will show that x is either v, or wg.

By definition of a cell and of the quotient map, there exists a z € (a) such that

(2)¢ = x. This implies that y ~ z. It follows from [Lemma 2.3.15| that there exists
pw € GV (for some f € E(R)* and w € Vip(R)) such that y,z € Qg,. Observe

that z has the prefix a but y does not. This forces 8 < «, and hence z = ai or

z = at. From [Lemma 3.1.3] we know that (ai)¢ = v, and (at)¢ = w,. This proves

the result.

O]

Corollary 3.1.6. Let C(«) be a cell in the limit space X (for some o € E(R)*). The

following are true:
1. (C(@))¢™" = Q) UQu, U Qu,
2. (int C(a))(ﬁ_l == Q<a)\ (Qva U Qwa)

Proof. The proof follows from O
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Corollary 3.1.7. Let C(«) be a cell in the limit space X (for some a € E(R)*). Let
z = pw € GV (for some p € E(R)* and w € Vipt(R)). Then z € int C(«) if and only if
a = B.

Proof. Let C(a) be a cell in the limit space X (for some a € E(R)*). Let z = pw € GV

(for some 3 € F(R)* and w € Vit (R)). Recall from [Lemma 2.3.19| that, for all y € Q such
that y € (Bw)gp™! = Qpw, B is a prefix of y. Recall also from [Lemma 3.1.5| that, for all

y € Q such that y € (z)¢~! for some z € int C(a), « is a prefix of y. Hence a < 3. O

Lemma 3.1.8 (Belk, Forrest [3] Lemma 1.25). Let X be the limit space of an F-type edge

replacement system.

1. One-point sets are closed in X.

2. Fach cell is closed in X and the interior of each cell is open in X.
Proof. Let X be the limit space of an F-type edge replacement system.

1. Consider a one-point subset of X. If the point is a regular point in X, the preimage
of the set under ¢ is a one-point set in €2, which is closed in . If the point is a
gluing vertex, recall by that the preimage of the set is Q, C Q for
some v € GV, which is a finite set. This is also closed, as it a union of a finite number

of closed sets.

2. Consider a cell C(«a) of X. By |Corollary 3.1.6| (1) the preimage of C'(«) is as follows:

(Cla))o™" = (@) UQu, U Qu,.

Recall that the basic open set Q(«) is both open and closed in Q. The sets Q,,, and
Qu,, are both finite sets and hence closed in Q. It follows that (C(a))¢~! is closed

in €2 since it is a finite union of closed sets. This proves that C'(«) is closed in X.

By |Corollary 3.1.6| (2), the preimage of the interior of the cell is:

(int C(a))o™" = )\ (Qu, U Qu,) ,

Recall that the basic open set Q(«) is both open and closed in . The sets @,,, and
Qu, are both finite sets and hence closed in Q. Hence (int C(a))¢~! is an open set
in Q2 since we have only removed a finite number of closed sets from Q(«). Therefore,

the interior of each cell is open in X.
O

Note that the interior of a cell may or may not correspond to the topological interior.
Each cell C'(«) is compact, being the image of a compact set («). The space X is compact

since it is the quotient of a compact space.

{pleasurelittl
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Lemma 3.1.9. Let X be the limit space of an F-type edge replacement system. Then X

1s a Hausdorff space.

Proof. Let X be the limit space of an F-type edge replacement system. Let x and y be
two distinct points in X. We have to show that there exist open sets U and V such that
x€eU,y€eVand UNV = @. By |Definition 2.3.18|of the limit space X, x = [ejes...] and

y = [eleh...] where ejep... eley... € Q. Since z # y, erea... # €€, .... We consider

three cases concerning the points x and y.

1. Suppose x and y are both regular points.

In this case, we can find an integer n such that e, # e/,. Let us define U =
int C(ey...en) and V = int C(e} .. .¢€},). By[Lemma 3.1.§| (2), these are open subsets
of X. Observe that x € C(e;...e,) and hence x € U since z is not a gluing vertex.
Similarly y € V. Let us now prove that U NV = &: Suppose there exists z € UNV,
then z = [fif2...] for some sequence fifa... € Q. Then, by [Corollary 3.1.6| (2),
fifeoo. € (U)ot C Qley...ep) and fifa... € (V)o! C Q(e)...e). This is
impossible because e, # €/,. Hence UNV = &.

2. Suppose r and y are both gluing vertices.

Let us define the sets U and V as follows: Consider the graph G,, such that z,y €
V(Gy). Let ai,...,ar be the edges in the graph G,i; which are incident with
x and fi,...,0¢ be the edges in the graph G, which are incident with y. By
for all i = 1,...,k, the edge «; is incident with a vertex yw where
w € Vipe(R). Similarly, for all j =1,...,¢, the edge §; is incident with a vertex dw

where w € Viy¢(R). In particular, no edge «; is incident with any edge ;.

Then, for all i = 1,...,k, the cell C(«a;) has x as one of its boundary points. Let
us define z; to be the other boundary point. Similarly, for all j = 1,... ¢, the cell
C(B;) has y as one of its boundary points. Let us define y; to be the other boundary
point. We define the sets U and V as follows:

U=C(ap)U---UC(ax)\{z1,-.., 2k},
V=CB)U---UC(B)\{y1s- - e}

Asx #x; foralli =1,... k, the point x € U. Similarly, y € V.

Let us prove that U and V are open subsets of X: Let f1fs... be a sequence in Q.
Then fifo... represents the vertex x and fi... fr41 is an edge incident with x in

Gni1.- Hence fi1... fp41 = «; for some 1 < i <k, and fifs... € Q(e;). Hence

Q. € Q(Oél) J---u Q(Oék)
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Therefore

k k
(U 0@-)) o =J (Cla) o™

=1

=1

k
= J Q) UQ: U Qa)
=1

)

(Y] ()

Now, observe that fifs... € (U)¢~! if and only if (fifa...)d € Ule C(a;) and
(fifa..)6 & {x1,...,xx}. That is, if and only if fifs... € (U’Zl_f:1 C(Oéi)) ¢! and
fifa... ¢ Ule Q. Hence

k k
ww4:<ungu<UQﬁ.

This is the complement of a finite (hence closed) subset in an open set and thus
(U)¢~! is open in Q. Hence U is open in X. Similarly we can prove that V is open
in X.

Finally, let us prove that U NV = @: Suppose z € UNV. Then z = [g19>...] for
some sequence g1g2... € Q. Then giga... € (U)$~ ! and hence it is contained in
Ule Q(cy;) and therefore there exists an «; for some 1 < ¢ < k such that «; is a
prefix of gigs.... Similarly, we can find a §; for some 1 < j < £ such that 3; is a
prefix of g1go.... However, o; and 3; are edges in the graph G411 and hence have
the same length. This forces o; = 8, which is impossible since these edges are not

even incident with the same vertices. Hence UNV = &.

. Suppose z is a gluing vertex and y is a regular point.

Let us define the sets U and V as follows: Let y = [eje2...]. Since x # y, there
exists an integer n such that e;...e, is not incident with x in the graph G,. Let
Qi,...,qp be the edges in the graph G, which are incident with x, Then, for all
i=1,...,k, the cell C(«;) has x as one of its boundary points. Let us define z; to
be the other boundary point. We define the sets U and V as follows:

U= C(al) Uy---u C(ak)\{xl, ... ,xk},

V=intC(er...en).
We have shown in the previous cases that U and V are open subsets of X, and z € U
and y € V.

It remains to prove that U NV = &: Suppose there exists z € U NV, then z =
[fifz...] for some sequence fifs... € Q. Then fifo... € (U)p~ ! and hence it is
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contained in Ule Q(a;) and therefore there exists an a; for some 1 < i < k such
that a; is a prefix of fifa.... Also, by |Corollary 3.1.6| (2), fifz... € (V)¢~! C
Q(eq ...en). This implies that a; = ey ... e,, which is a contradiction since e ... e,
is not incident with x. Hence U NV = @.

This completes the proof. O
{carbonkid}
Lemma 3.1.10. Let C(a) and C(f3) be cells in X for some o, 8 € E(R)*.

1. C(a) = C(B) if and only if o = B.
2. C(a) C C(B) if and only if a > .
3. Precisely one of the following holds:

3.1. Cla

(),
> C(B),
cCB),
(

3.4. C(a) and C(B) have disjoint interiors.

(@)
3.2. C(a)
3.8. C(a)
(@)

Proof. Let C(«) and C(B) be cells in X for some «a, § € E(R)*.

1. Suppose that C(a) = C(B). It follows that (C(a))¢~' = (C(B))¢~'. By
lary 3.1.6, this gives us Q(a) U Qu, U Qu, C Q(B) U Quy U Quy,. Observe that every
sequence in Qy, and @, either ends in i or t. Consider the sequences ait and ati
in Q(a). Then both ait and ati are in Q(3), which implies that 8 < a. Similarly
consider the sequences Bit and Sti in Q(3). Then both Bit and Sti are in Q(a),
which implies that o < 5. Hence a = (3.

Conversely, let a = 3. Then Q(«) = Q(8), and hence C(«a) = C(p).

2. Suppose that C(«) C C(B). Since taking preimages preserves containment, it follows
that (C(a))o~! c (C(B))¢~'. By|Corollary 3.1.6| this gives us Q(a) U Qy, UQuw, C
Q(B) UQuz UQuy. Observe that every sequence in @y, and @, either ends in ior
t. Consider the sequences ait and ati in Q(a). Then both ait and ati are in Q(f),
which implies that 8 < a. Observe by (1) that if & = 3, C(«) = C(8). Therefore,
a = 3.

Conversely, let o > . Then Q(a) C Q(f), which gives us C(a) C C(8). To prove
that C(a) C C(B), consider p € E(R) such that Bp £ a. Then Bpit € Q(B) but
Bpit ¢ Q(a) and (Bpit)¢ ¢ C(a). This implies that C(a) C C(B).

3. Suppose that
int C(a) Nint C'(B) # 2.
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By [Corollary 3.1.6} it follows that

() (Qua U Qua)) N (2B (Qus U Quyy)) # 2.

From this, we get

Q(a) NQ(B) # 2.
That is, there is some point y in Q(«) that is also in (f). This means y has the
prefix o and B. This is only possible if

3.1. o = (3, which implies that C'(8) = C(«),
3.2. B < «, which implies that C'(8) D C
3.3. a < [, which implies that C(8) C C(«)

O]

Lemma 3.1.11. Let C(«) and C(B) be cells in X (for some o, € E(R)*). Then
C(a) = C(B) if and only if va = vg and wa = wg.

Proof. Let C(«) and C(3) be cells in X (for some «, 5 € E(R)*). Suppose C(a) = C().
By (1), this gives us @ = 8 and the result follows.

Conversely, let vy, = vg and wy = wg. Let « = e;...e, and § = €] ...€}. The cell
C'(a) corresponds to the edge « in the graph G,, and the cell C(3) corresponds to the edge

5 in the graph Gj. Then v, and w,, are the initial and terminal vertices respectively of the

edge o in G, and the edge § in Gg. By [Definition 2.1.2| of an expanding edge replacement
system, n = k, and by [Definition 2.1.6| and |[Remark 2.1.7, o« = . This implies that
C(a) = C(B). I'm not sure how to fix these references. O

Lemma 3.1.12. Let C(a) be a cell in X (for some o € E(R)*):

1. The gluing vertices of the form aw (for some w € Viy(R)) are the gluing vertices of
least depth in the interior of C(a).

2. Let vy and wq be the boundary points of C(«), then

depthv, < depthaw and depthw, < depth aw.

Proof. Let C(«) be a cell in X (for some o € E(R)*) with boundary points v, and w,.

1. Let pw' € intC(a) be a gluing vertex (for some 8 € E(R)* and w' € Vi (R)).
Then, by |Corollary 3.1.7, o < 5. It follows that, for a gluing vertex aw (for some
w e ‘/Ent(R))a

depth aw < depth puw’.

2. Let @ = ey...e,, then depthaw = n + 1. From |[Lemma 2.1.14] we know that
Vo € {a,atw’ a® Pt} and w, € {b, afw’, aPw’}, for some w' € Vip(R) and

k <n—1. Then depthv, < n and depthw, < n and the result follows.
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Definition 3.1.13. We define the depth of a cell C(«) to be
depth C(a) = |a|.

Observe that, by [Lemma 3.1.12| (1), this is the the minimum depth of a gluing vertex
in int C(a).

3.2 Cellular Partitions
In this section, we will define a way to “partition” X using cells.

Definition 3.2.1 (Belk, Forrest [3], Definition 1.14). A cellular partition P of X is a

cover of X by finitely many cells with disjoint interiors.

Lemma 3.2.2. The set
P={Cla) | a e A}

is a cellular partition of X if and only if A is a complete antichain in E(R)*.

Proof. Suppose P = {C(a) | « € A} is a cellular partition of X. Then A is a finite subset
of E(R)*. We have to show that A is a complete antichain in E(R)*.
Let us first prove that A is an antichain: Observe that, for all C(«a),C(8) € P (for

some «, 3 € E(R)*), int C(a) Nint C(B) = @. By (3), this implies that
C(a) € C(B) and C(a) 2 C(B). Byw (1) and (2), this implies that o £ 8

and «a / B. Hence a L 8 for all o, 3, € A, which proves that A is an antichain.

Let us prove that A is a complete antichain: Consider a sequence ejes... € . We
have to show that there exists o € A such that « is a prefix of ejes.... Observe that
[erea...] € X. Suppose that the largest length of a word o in A is n. Consider the
sequence 1 . .. e,it. Then [e; ... e,it] is not a gluing vertex by and therefore
there exists a cell C(a) € P (for some a € E(R)*) such that [e; ...e,it] € int C(a). By
Lemma 3.1.5| (2), v is a prefix of e ... enit, and hence « is also a prefix of ejes . ... This
proves that the antichain A is complete.

Conversely, suppose P = {C(«) | « € A} is a set of cells in X such that A is a complete
antichain in E(R)*. We have to show that P is a cellular partition of X.

Since A is an antichain, for all o, 3 € A, o L 3. Then by int C(a) N
int C(5) = @ for all C(a), C(B) € P. Since the antichain A is complete, for all ejes ... € Q,
there exists a € A such that « is a prefix of ejey . ... Then by [Definition 3.1.1} [ejes...] €
C(a). This proves that P is a cellular partition of X. O

Observe that, while the cells in a cellular partition P of X have disjoint interiors, they

may share boundary points.

(3.2}

{ruby}
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Definition 3.2.3. Let P be a cellular partition of X. The set OP is the set of all boundary
points v, and w, of the cells C(«) in P.

Lemma 3.2.4. Let P = {C(a) | « € A} be a cellular partition of X. Then there exists a
graph expansion Gp with E(Gp) = A and V(Gp) = IP.

Proof. Let P = {C(a) | a € A} be a cellular partition of X. By [Lemma 3.2.2) A is a

complete antichain in F(R)*. By [Lemma 2.3.8| there exists a graph expansion Gp such
that A = E(Gp). By |Definition 3.1.2| of boundary points, 0P = V(Gp). O

We will be using graph expansions to illustrate cellular partitions of our limit space
X.
Let P = {C(«) | a € A} be a cellular partition of X. Recall that, since A is a complete

antichain in F(R)*, there exists a lexicographic order <, on A.

Definition 3.2.5. We define an induced cell lexicographic order <, on P as follows: for
two distinct cells C(a) and C(B) in P, C(a) <¢ C(p) if and only if o <, . We denote
this by that ordered list lex(P) = (C(a1),...C(aq)).

Recall from [Definition 2.3.10| that there exists an induced vertex depth order <; on
GV. We denote this by that ordered list depth(9P) = (21 ..., 24).

Definition 3.2.6. We define an induced cell depth order <4 on P as follows: for two cells
C(a),C(B) € P, C(a) <q C(p) if and only if |a| < |B| or || = || and o <; . We denote
this by the ordered list depth(P) = (C(a1),...C(aq)).

Example 3.2.7. Let us define the set of cells P as follows.

P = {C(00),C(01),C(02), C(10), C(110), C(111), C(112), C(12),
C(20), C(210), C(211), C(212), C(220), C(221), C(222) }.

Observe that the labels of the cells form a complete antichain in E(R)* = {0,1,2}*.
Hence, by the set P is a cellular partition of the limit space of the F-

Basilica replacement system. It is illustrated by the graph expansion below:

111

{allthepeople}

{bitterdivisio
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The set of boundary points of P is:
OP = {0z, z, 1z, 11z, 2z, 21z, 22} .
The induced cell lexicographic order on P is
lex(P) = (C(00),C(01),C(02),C(10),C(110),C(111),C(112),C(12),
C(20), C(210), C(211), C(212),C(220), C(221), C(222)).
The induced vertex depth order on 9P is:
depth(0P) = (z,0z, 1z, 2z, 11z, 21z, 22x) .
The induced cell depth order P is
lex(P) = (C(00),C(01),C(02),C(10),C(12),C(20),C(110),C(111),
C(112), C(210), C(211), C(212), C(220), C(221), C(222)).

Lemma 3.2.8. Let P be a cellular partition of X. Let C(a) € P (for somea=ej...e, €
E(R)*). If C(B) is a cell in P\{C(«a)} (for some p € E(R)*) then C(B) C C(~) for some

ye{de,|d=er...ep1 <a,e;, € E(R)\{ex},k=1,...,n}.

Proof. Let P be a cellular partition of X. Let C(a) and C(8) be distinct cells in P (for
some «, 3 € E(R)*). By [Lemma 3.1.10, « L 5. Let « = e1...e, and S =€} ...¢e),. Then

there exists a k € Nsuch that e;...ex_1 =¢€|...€;,_, and ey #e). Let y =e1...ex_1 €.
Then
ye{de,|d=e1...ex-1 < €, € E(R)\{er},k=1,...,n}.

and 7 < B and by C(B) C C(y). =

Lemma 3.2.9. Let P be a cellular partition of X. Let aw’ € P (for somea =e;...e, €
E(R)* and w' € Vipe(R)). Then

aw, ofw, o*tw, ... a™w=we oP
for all w € Vipg(R).

Proof. Let P be a cellular partition of X. Let aw’ € P (for some a =ej...e, € E(R)*

and w' € Viy(R)). By [Lemma 3.2.4] there exists a graph expansion Gp such that OP =
V(Gp). Then aw’ € V(Gp). We will prove this result by induction on n.

Suppose n = 0. Then aw’ = w’. By |Definition 2.1.9|of a graph expansion, the vertex

the vertex w’ came into existence when the edge € in the graph Gy was replaced by a copy
of the replacement graph R. This implies that the vertices w € V(Gp) for all w € Vipg(R).

Suppose that there exists m € N such that the result is true for n = m. Let us
examine the case when n = m + 1. Then aw’ = e1...ep1w’ € V(Gp). By
of a graph expansion, the vertex ej...epnp1w’ came into existence when the

{sacred}
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edge €1 ...emyt1 was replaced by a copy of the replacement graph R. This implies that
the vertices ey ...epmp1w € V(Gp) for all w € Vip(R). Observe by [Lemma 2.1.14] that
the edge €7 ...emp41 is bordered by a vertex e ...epw” (for some w” € Vi (R)). Hence

afw” € V(Gp). Then, by our inductive hypothesis,
ow, alw, o w, ... oa"w=we V(Gp) =P

for all w € Vipg(R).
This proves the result by induction. O

Lemma 3.2.10. Let C(«) be a cell in X (for some a € E(R)*) and let P be a cellular
partition of X. Then there exists a cell C(B) € P (for some 8 € E(R)*) such that

int C(a) Nint C(B) # 2.

Proof. Let C(a) be a cell in X (for some o € E(R)*) and let P be a cellular partition of
X.

We shall prove this result using information about the cardinalities of basic open sets
in Q and cells in X. Observe that || = 2%, since there are uncountably many sequences
of a finite alphabet. Then |Q(a)| = || = 2%. Observe that since, for a vertex v € GV,
the set @, is finite, the quotient map ¢ identifies at most Ny sequences in 2(«) together.
Hence |C(a)| = 2%0. Tt follows that |int C'(a)| = 20, since we have only removed a finite
number of boundary points.

A cellular partition P of X is a cover of X by finitely many cells with disjoint interiors.
Let P ={C4,...,Cy} for some positive integer m. Recall that these cells share boundary

points. Let OP = {z1,..., z,} for some positive integer n. Then X is the disjoint union:

X = CI int C; |i|{zj}.
i=1 j=1

Since int C(ar) € X, then this disjoint union is a cover of int C'(«). Since a finite
number of boundary points cannot cover an uncountable set, this implies that there exists
some C; = C(B) € P such that

int C(a) Nint C(B) # .
O

Lemma 3.2.11. Let C(«) be a cell in X (for some a € E(R)*) and let P be a cellular
partition of X. Then one of the following holds:

1. There exists a cell C(B) € P (for some B € E(R)*) such that C(8) 2 C(«).

2. There ezist cells C(51),...,C(Bm) € P (for some Bi,...,Bm € E(R)*) with

m

Cla) = [ JC(8)).

=1
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Proof. Let C(«) be a cell in X (for some o € F(R)*) and let P be a cellular partition
of X. Suppose there is no cell C(5) € P (for some f € E(R)*) such that C(8) D
C(a). Consider all cells C(B1),...,C(Bm) € P (for some Bi,..., By € E(R)*) such that

int C(a) Nint C(B;) # @ (for i = 1,...,m). By [Lemma 3.1.10] (3),
C(a) 2 [ JCB).

=1

If z € C(a), then there exists a y € Q(«) such that (y)¢ = z. Then, by [Lemma 3.2.2
there exists a word v € E(R)* such that C() € P and either v < a or v = a.. But by our

assumption and [Lemma 3.1.10, o % . Hence o < =, and C(v) C C(«). Thus v = j; for

some i =1,...,m and z € C(f;). This gives us
m
C(a) € | JCB).
i=1
This proves the result. ]

We observe that cellular partitions have a lattice structure, detailed as follows:
Definition 3.2.12. Let P and Q be cellular partitions of X.

1. We define the meet P A Q as the set of cells from P or Q@ which do not properly

contain other cells from P or Q.

2. We define the join PV Q as the set of cells from P or Q which are not properly

contained in other cells from P or Q.

Let P and Q be cellular partitions of X. Let C(a) € P (for some a € 2) and let
C(B) € Q (for some S € Q) such that int C(«) Nint C(B) # &. Then, by

(3), one contains the other. Suppose without a meaningful loss of generality, C(5) C C(«).

Then C(8) € PAQ and C(a) € PV Q. We know from [Lemma 3.2.11] (2) that, if C(«) € P,
then there exist cells C'(51),...,C(Bm) € P A Q (for some B, ..., € E(R)*) with

m

Cla) = JCB).

i=1
Example 3.2.13. Let X be the limit space of the F-Basilica replacement system. Let P

and Q be cellular partitions of X, defined as follows:

P = {C(00),C(01),C(02),C(1),C(2)}

1

Se
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Q= {0(0)7 C(l)’ 0(20)7 0(21)7 0(22)}7

1

7N o
0 /20
a T 1z b

Then the refinement P A Q and corruption P V Q are as follows:
P AQ={C(00),C(01),C(02),C(1),C(20),C(21),C(22)}

1

01 m 21
00 ; ; \,/ 20 ; ;
a Ox x 1z

b
PvQ={C(0),C(1),C(2)}.
1
00 .
a x b

{intruder}
Lemma 3.2.14. Let P and Q be cellular partitions of X. Then the meet P A Q and join
PV Q are cellular partitions of X.

Proof. Let P and Q be cellular partitions of X. Observe that if C'(a) € PA Q or C(«) €
PV Q (for some a € E(R)*) then C(a) € PU Q. It follows that both P A Q and PV Q
have a finite number of cells, since P and Q have a finite number of cells.

Suppose there exist cells C(«a),C(8) € PAQ or C(a),C(B) € PV Q (for some
o, 8 € E(R)*) with int C(a) Nint C(B) # @. Then, by [Lemma 3.1.10} either C(ar) C C(3)
or C(a) 2 C(B). Hence, by definition of meet and join, C(a) = C(5).

It remains to show that P A Q and PV Q cover X. First let us prove this for
P A Q: Consider a point z € X, then z € C(«a) for some C(«a) € P (for some a €
E(R)*). Either C(a) € P A Q or, by (2), C(a) = Ui~, C(B;) for some
cells C(B31),...,C(Bm) € Q (for some By,...,5, € E(R)*). By the definition of meet,
C(P1),...,C(Bm) € PAQ, and at least one of the cells must contain z. This proves that
P A Qis a cover of X.

Now let us prove this for P vV Q: Consider a point x € X, then x € C(«a) for some
C(a) € P (for some o € E(R)*). Either C(a) € PV Q or, by (1),
C(a) C C(B) for some cell C(B) € Q (for some f € E(R)*). By the definition of join,
C(B) € PV Q, and C(f) must contain x. This proves that PV Q is a cover of X. O
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3.3 Rearrangements
(3.3}

In this section, we will define rearrangements of the limit space X, and discuss their

topological properties.

{available}
Definition 3.3.1. Let Q(«) and Q(3) be basic open sets in the symbol space 2, for some
a=ej...epand f=¢€...¢, in E(R)*. We define a prefiz replacement map
U: Q(a) = Q(B)
by
(a ept1nt2... )V =0 enti€nta....
Lemma 3.3.2. The map ¥ is a homeomorphism.
Proof. Let Q(a) and Q(f) be basic open sets in €, for some o =e1...e, and B =€) ...¢€)
in E(R)*. Let ¥: Q(a) — Q(p) be a prefix replacement map.

A basic open set in Q(5) is of the form (87), for some fixed v € E(R)*. The
preimage of (8v) under ¥ is Q(ary), which is a basic open set in («). This proves that
¥ is continuous.

We can define the map

T Q(B) = Q)
by
(B ex+1€k42--- )\Il*1 = €116kt .-
The composition WW~t = U~V is the identity homeomorphism I, which shows that W1
is the inverse map of W. This proves that the W is bijective.

We observe that ¥~! is also a prefix replacement map, and hence it is continuous by

the same argument as W. This proves that ¥ is a homeomorphism. ]
{extremeways}

Lemma 3.3.3. Let Q(«) and Q(B) be basic open sets in Q (for some o, 5 € E(R)*). Let
both o and B either be loops or non-loops. Let U: Q(a) — Q(B) be the prefix replacement

map. Suppose y and z are two distinct sequences in Q(a). Then y ~ z if and only if
)V ~ (2)¥.

Proof. Let Q(a) and Q(53) be basic open sets in  (for some «, 8 € E(R)*). Let both «
and f either be loops or non-loops. Let W: Q(«) — () be the prefix replacement map.

1. Consider ai,at € Q(a). If a is a loop, then by [Remark 3.1.4] ai ~ at. By our
hypothesis, 3 is also a loop and i ~ t. Observe that (ai)¥ = i and (at)¥ = Bt.
Hence oi ~ ot if and only if fi ~ ft.

2. Consider two distinct sequences y and z in Q(a)\{ai, at}. Observe that (y)¢, (2)¢ €
int C'(a).
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Suppose y ~ z. Then, by [Lemma 2.3.15| there exists a gluing vertex yw € GV (for
some v € E(R)* and w € Vi (R)) such that y, z € Q. By |Corollary 3.1.7, o < .

Let v = . Then, by [Definition 3.3.1|of a prefix replacement map, (Qasw)¥ = Qssw
and (y)¥, (2)¥ € Qgsyw- This implies that (y)¥ ~ (2)V.

Conversely, suppose (y)¥ ~ (z)¥. Then, by there exists a gluing
vertex yw € GV (for some v € E(R)* and w € Vint(R)) such that (y)V, (2)¥ € Q.
By [Corollary 3.1.7, 8 =< ~. Let v = B4. Then, by [Definition 3.3.1] of a prefix
replacement map, (Qgsw)¥ ! = Qasw and y, 2 € Qasw. This implies that y ~ 2.

This proves the result. O

Observe that the prefix replacement map ¥ does not preserve the equivalence relation

~ if it is defined between a loop and a non-loop, as illustrated by the following example:

Example 3.3.4. Let X be the limit space of the F-Basilica replacement system.

1

00

Let us define the prefix replacement map ¥: Q(1) — Q(0) Then 10 ~ 12 but (10)¥ ~
(12)w.

Recall that the quotient map ¢ maps each sequence in € to its equivalence class under
~ in X. Let Q(a) and Q(5) be basic open sets in 2, for some «,5 € E(R)*. Let
U: Q(a) = Q) be a prefix replacement map. The map ¥ induces the map

¥: Cla) = C(P),

where C(«) and C(8) are cells in X. Observe that v is well-defined by [Lemma 3.3.3| on

~-equivalence classes. Hence the following diagram commutes:

Qa) Q(p)
¢ ¢
Cle) " ()

Definition 3.3.5. Let C'(«) and C(8) be cells in X. We define the canonical homeomor-
phism of cells in X to be the map ¥: C(a) — C(B).

his term is justified by the following result:
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Lemma 3.3.6. A canonical homeomorphism is a homeomorphism. Moreover, the inverse

of a canonical homeomorphism is a canonical homeomorphism.

Proof. Let C(a) and C(3) be cells in X (for some a, f € E(R)*) and let ¢: C(a) — C(B)
be a canonical homeomorphism. The canonical homeomorphism ) is induced from the
prefix replacement map ¥: Q(«a) — Q(f5), where Q(«) and Q(3) are basic open sets in {2.
We have to show that v is a continuous map with a continuous inverse.

To prove that the map v is continuous, we have to show that the preimage (U)y~! is
open in C(«a) for any open set U in C'(f). By the definition of the quotient topology, the
set (U)y~! is open in C(a) if and only if the set (U)y~t¢~! is open in Q(a)). We observe
that, from the definition of 1,

U)ot = (U)(¢w) !
= (U)(¥e)™!
= (U)o

The set (U)¢~'¥~! is open since V¢ is a continuous map (since it is the composition of

!'is open in C(«), which proves that the map

continuous maps). Therefore the set (U)y~
1 is continuous.

We now prove that 1) has a continuous inverse. The homeomorphism ¥~ induces the
map

Y7 C(B) = Cla)

similarly to the map . Observe that

PPyt = Vo = VU TY =6

from the definition of ~! (since ¥~! is the inverse of ¥). Hence, (y)¢pyp~! = (y)¢ for
all y € Q(a), ie., (x)p~! = z for all z € C(a). Thus 7p~! is the identity on C(a).
Similarly, we can show that 114} is the identity of C'(3). Hence 1~! is the inverse map
of ). We observe that ¢~! is continuous by the same argument which shows that 1) is
continuous.

This proves that 1) is a homeomorphism. O

Lemma 3.3.7. Let C(«a) and C(B) be cells in X (for some o, € E(R)*) and let
P: Cla) — C(B) be a canonical homeomorphism. Consider a cell C(vy) in X such that
C(y) € C(B). Then Y|c(y): Cly) — C(9) is a canonical homeomorphism, for some
c(s) C C ().

Proof. Let C(a) and C(f3) be cells in X (for some «, § € E(R)*) and let ¢: C(a) — C(B)
be a canonical homeomorphism. The canonical homeomorphism ¢ is induced from the

prefix replacement map ¥: Q(a) — Q(8), where Q(a) and () are basic open sets in .

{youmeandmeyou
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Since C(y) € C(«a), then by [Lemma 3.1.10, v < v. Let @ = e1...en, 8 = €]...€)

and v = ej...ey, for some m > n. Consider an element z € C(v), and say z =

(e1...€m emti€mt2--.)¢o. Then

()Y = (e1...em emt1Ems2 ... )oY
= (€} ... eni1---Cm Cmi1€mi2- .. ).

Let 0 = €}...€; eny1...em. Then 9[g(, is induced by the prefix replacement map
Ylo): Q(y) = Q(0). Therefore 9]¢ () : C(v) — C(6) is a canonical homeomorphism. [

Recall that a cellular partition P of X is a cover of X by finitely many cells with

disjoint interiors. The following definition is equivalent to Belk, Forrest [3] 7777:

Definition 3.3.8. A homeomorphism f: X — X is called a rearrangement of X if there
is a cellular partition P of X such that

1. the set {(C)f | C € P} is also a cellular partition of X,

2. the restriction f|¢ : C' — (C)f is a canonical homeomorphism for each cell C' € P.

We denote the set {(C)f | C € P} by (P)f. We call the pair (P, (P)f) a cellular bipartition

for the rearrangement f.

Recall from that cellular partitions of X are characterized by complete
antichains. Then every rearrangement can be defined as a bijection between complete
antichains of the same cardinality. This is how one would normally characterize elements
of groups similar to Thompson’s group V' [9], with the equivalence that expanding any word
in the domain antichain results in an expansion in the range antichain, which preserves the
map. (Observe that we are not allowing all possible bijections, only those which respect
the structure of the limit space.) This provides a natural link between rearrangement
groups and Thompson theory.

Recall that each cellular partition P of X can be illustrated by a graph expansion Gp.
We present the following definition for graph-pair diagrams. This definition is equivalent
to the one found in Belk, Forrest [3] Definition 1.16.

Definition 3.3.9. Let f be a rearrangement of X. Let (P, (P)f) be a cellular bipartition
for f. A graph-pair diagram for f is the pair (Gp,Gpys)-

We will use graph-pair diagrams to illustrate rearrangements of X.

The following results characterize rearrangements of X:

Lemma 3.3.10. Let P = {C(a1),...,C(an)} and Q = {C(p1),...,C(Bn)} be cellular
partitions of X. Let;: C(a;) — C(B;) be a canonical homeomorphism for alli =1,...,n,
such that if z is a boundary point of both C(cy) and C(ay) then (2); = ()1 and if z is a
boundary point of both C(f3;) and C(B;) then (2)i;* = (z)zbj_l. Then the map f: X — X
given by (z)f = (x)¢; when z € C(wy;) is a well-defined rearrangement of X and (P, Q)

s a cellular bipartition for f.
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Proof. Let P ={C(a1),...,C(a)} and Q = {C(B1),...,C(Br)} be cellular partitions of
X. Let ¢;: C(ay) — C(B;) be a canonical homeomorphism for all i = 1, ..., n, such that if
z is a boundary point of both C(«;) and C(«;) then (2)1; = (2)9; and if z is a boundary
point of both C(5;) and C(B;) then (z)i; ! = (z)wj_l. Let us define a map f: X — X by
(x)f = (x)¢; when z € C(«;). We will prove that f is a rearrangement of X by proving
that f is a homeomorphism.

Let us prove that f is well-defined: Suppose that z € C(o;) N C(a;) for some 1 <
i,7 < n such that ¢ # j. By [Definition 3.2.1| of a cellular partition, the cells C'(«;) and

C(cj) have disjoint interiors. This implies that « is a boundary point of both cells. Then,
by our hypothesis, (x)1; = (z);. This proves that f is well-defined.
Let us prove that f is a continuous map: Let U be an open set in X. Observe that

Ufte™t= ( Un C(ﬁz))) et

fC-

UNCB) f ot

Il
=

.
I
—

UnC@B) v et

I

.
Il
—

UNCBH)) b ;!

I
C =

-
Il
—

where U;: Q(a;) — Q(B;) is the prefix replacement map which induces 1; for all i =

1,...,n. By [Definition 3.3.5| of a canonical homeomorphism, the following diagram com-
mutes for all i =1,...,n:
\Ij .
Q(a) : Q(B:)
¢ ¢
C (Ozl) " C(Bl)

This implies that, since U N C(B;) is open in C(B;) for all i = 1,...,n, then (U N
C(B:))p; ' Wt is open in Q(ay) for all i = 1,...,n. Since Q(a;) is open in Q for all
i=1,...,n, then (UN C(ﬁi))@_l@;l is openin Q for alli=1,...,n. Hence Uf top~!

open in Q and thus (U)f~! is open in X. This proves that f is a continuous map.

Let us prove that the inverse map f~! exists: By [Definition 3.3.5[of a canonical homeo-

morphism, the inverse homeomorphism wi_lz C (i) = C(ay) exists for alli = 1,...,n. By
our hypothesis, if z is a boundary point of both C(8;) and C(8;) then (2)y; ' = (2)¥; .
Let us define a map f~': X — X by (2)f = (2)¢; ' when z € C(3;) for some 1 <i < n.
Choose = € X, then z € C(8;) for some 1 < i < n. Then (z)ff~' = (z)yib; ', Since
1 is a homeomorphism, ()1, 1 = 2. Since this is true for all z € X, it follows that
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f~1is the inverse map of the map f. The map f~! can be shown to be well-defined and
continuous in the same way as f.
This proves that f is a continuous map with a continuous inverse, i.e., a homeomor-

phism. O

Observe that a map might not be a rearrangement of an F-type edge replacement
system unless the behaviour of the rearrangement at the boundary points is explicitly

defined, as seen in the following example:

Example 3.3.11. Let X be the limit space of the F-Basilica replacement system. Let us
define a map h: X — X as follows:

[00eseq...], ife; =0,
[Olesey...], if ejes =10,
([erezes...])h = < [02e3eq...], if ereq = 11,
[leges...], if ejeq =12,
[2e2e3...], ife; =2.

Observe that cells get mapped as follows:

Se

S-e

However, h is not a homeomorphism on the boundary points of these cells. Recall that
(z)p~' = {02,10,12,20}. Then (z)h = {Ox,z}. Similarly, (1z)¢~! = {102,110, 112, 120}.

Then (1z)h = {Ox,x}. Hence h is not a rearrangement of X.
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Lemma 3.3.12. Let P be a cellular partition of X and let f be a rearrangement of X.
If flo(a) is a canonical homeomorphism for all C(a) € P, then (P,(P)f) is a cellular
bipartition for f.

Proof. Let P be a cellular partition of X and let f be a rearrangement of X. Let f |C(a)
be a canonical homeomorphism for all C(a) € P. To prove that (P, (P)f) is a cellular
bipartition for f, we have to show that (P)f is also a cellular partition.

Observe that (P)f contains finitely many cells since P contains finitely many cells.
Let us prove that the cells in (P)f have disjoint interiors: Suppose there exist cells
(C(a1))f, (C(a2))f € (P)f (for some a1, s € E(R)*) such that

int(C(ar))f Nint(Clas))f # 2.

Since f is a homeomorphism, int C(«ay) Nint C(ae) # @ for some cells C(aq), C(ag) € P.

This is a contradiction, therefore
int(C(a1))f Nint(C(az)) f = @

for all cells (C(aq))f, (C(a2))f € (P)f.

Let us prove that (P)f is a cover of X: Consider z € X. Then there exists (z)f ! € X.
Since P is a cover of X, there exists a cell C(a) € P (for some a € E(R)*) such that
(z)f~! € C(a). Then z € (C(«))f, which is a cell in (P)f.

This proves that (P)f is a cellular partition of X, and hence (P, (P)f) is a cellular
bipartition for f. O

Example 3.3.13. Let X be the limit space of the F-Basilica replacement system. Let us
define a map ¢g: X — X as follows:

[Oegeq...], if eyea =00
[legeq...], if epea =01
(lerezes...]) g = < [20eses...], if ejeq = 02
[21eges...], ife; =1
[22ege3...], ife; =2

Observe that the cells and boundary boundary points get mapped as follows:

(€(00)) g = C(0)
(C(01) g =C(1)
(C(02)) g = C(20)
(C(1))g=C(21)
(C(2)g=C(22)

{streetofdream
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Then the map ¢ is a rearrangement by and we can define the cellular
bipartition (P, (P)g) such that g restricts to a canonical homeomorphism on each cell in

P. We illustrate this cellular bipartition using graph-pair diagrams:

P = {C(00),C(01),C(02), C(1),C(2)}

Se

(P)g = {C(0),C(1),C(20),C(21), C(22)}

1
C)m

BAVALY,

{ ]
T 2z b

IsX J

Definition 3.3.14. Let f be a rearrangement of X. The support of f, denoted by supp f,
is

supp f ={z |z € X,z # (z)f}.

Cellular bipartitions for a rearrangement f of X are not unique: there can be many
pairs (P, (P)f) (where P is a cellular partition of X) for which a rearrangement f restricts
to a canonical homeomorphism on each cell. One method to find new cellular bipartitions

for f is to “refine” existing cellular bipartitions.

Definition 3.3.15. Let f be a rearrangement of X. Let (P, (P)f) be a cellular bipartition
for f. Let Q be a cellular partition. Then the pair (Q,(Q)f) is called a refinement of
(P,(P)f) if and only if for each cell C(a) € Q (for some o € E(R)*), there exists a
cell C(B) € P (for some f € E(R)*) with C(a) C C(B). The pair (P, (P)f) is called a
coarsening of (Q, (Q)f).

Lemma 3.3.16. Let f be a rearrangement of X and let (P, (P)f) be a cellular bipartition
for f. Let (Q,(Q)f) be a refinement of (P, (P)f). Then (Q,(Q)f) is a cellular bipartition
for f.

Proof. Let f be a rearrangement of X and let (P, (P)f) be a cellular bipartition for f. Let
(9, (Q)f) be arefinement of (P, (P)f). Then, by Definition 3.3.15|of a refinement, for each
cell C(a) € Q (for some a € E(R)*), there exists a cell C(3) € P (for some g € E(R)*)
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with C(a) € C(B). By |Definition 3.3.8| of a rearrangement, f, f|c() is a canonical

homeomorphism. Then, by |Lemma 3.3.7, f \C(a) is also a canonical homeomorphism. This

is true for all cells C'(a) € Q, hence, by [Lemma 3.3.12, (Q, (Q)f) is a cellular bipartition
for f. O

Lemma 3.3.17. Let f be a rearrangement of X and let (P, (P)f) be a cellular bipartition
for f. Let (Q,(Q)f) be a coarsening of (P, (P)f). Then (Q,(Q)f) is a cellular bipartition
for fif and only if f|c(a) is a canonical homeomorphism for all cells C(a) € Q (for some
a € E(R)*).

Proof. Let f be a rearrangement of X and let (P, (P)f) be a cellular bipartition for f. Let
(Q,(Q)f) be a coarsening of (P, (P)f). By [Definition 3.3.15, @ is a cellular partition of
X. Suppose that (Q, (Q)f) is a cellular bipartition for f. It follows from [Definition 3.3.8|
that f|c(q) is a canonical homeomorphism for all cells C(a) € Q (for some o € E(R)*).

Conversely, suppose that f|o(q) is a canonical homeomorphism for all cells C(a) € Q

(for some a € E(R)*). By |[Lemma 3.3.12) (Q)f is a cellular partition of X. Then by

IDefinition 3.3.8| of a rearrangement, (Q, (Q)f) is a cellular bipartition for f. O

Corollary 3.3.18. Let f be a rearrangement of X and let (P,(P)f) be a cellular bipar-
tition for f. Let Q be a cellular partition of X. Then (PAQ,(PAQ)f) is a cellular
bipartition for f.

Proof. Let f be a rearrangement of X and let (P,(P)f) be a cellular bipartition for f.
Let Q be a cellular partition of X. By P A Q is a cellular partition of X
and by |Definition 3.2.12| of a meet, (P A Q,(P A Q)f) a refinement of (P, (P)f). Then,

by [Lemma 3.3.16, (P A Q, (P A Q)f) is a cellular bipartition for f. O

Remark 3.3.19. Let f be a rearrangement of X and let (P, (P)f) be a cellular bipartition
for f. Let Q be a cellular partition of X. Then (PV Q, (P V Q)f) is a cellular bipartition
for f if and only if f|c(a) is a canonical homeomorphism for all cells C(a) € PV Q (for
some a € E(R)*).

Example 3.3.20. Consider the rearrangement g of X defined in [Example 3.3.13| with the

following cellular bipartition (illustrated using graph-pair diagrams):

P = {C(00),C(01),C(02),C(1),C(2)}

1
0
O
00 \/ 02 .
a Ox x b

(P)g = {C(O)v C(1)7 C(20)7 0(21)7 0(22)}

{armyofcops}

{thirteen}

{loveinacoldwo:
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1

N 9
0 /20
{ ]
a T 2z b

Let us define a cellular partition @ as follows:
Q ={C(0),C(1),C(20),C(21),C(22)}

1
0 /20

a T 2x b

21

The meet P A Q is as follows:

P A Q = {C(00), C(01),C(02), C(1), C(20), C(21), C(22)}

01 m 21
00 ; ; \,/ 20 ; ; .
a Ox x 2x b

The join PV Q is as follows:
PvQ={C(0),C(1),C(2)}
1
.\
a T b

Then, the refinement (P A Q, (P A Q)g) is a cellular bipartition for g but the coarsening
(PV Q,(PV Q)g) is not a cellular bipartition for g, since the restriction of g on each cell

of PV Q is not a canonical homeomorphism. The cellular partition (P A Q)g is as follows:

(P A Q)g = {C(0),C(1),C(20), C(21), C(220), C(221), C(222)}

Qe
8
]
8
]
)
8
Sy
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Lemma 3.3.21. Let f be a rearrangement of X and let C(«a) be a cell in X (for some
a € E(R)*) such that f|c() s a canonical homeomorphism. Then there exists a cellular
bipartition (P, (P)f) for f such that C(a) € P.

Proof. Let f be a rearrangement of X and let C'(a) be a cell in X (for some o € E(R)*)

such that f \C(a is a canonical homeomorphism. By [Definition 3.3.8|there exists a cellular

)
bipartition (P, (P)f) for f. Since P is a cellular partition then, by [Lemma 3.2.10] there
exists a cell C(B) € P (for some 5 € E(R)*) such that

int C(a) Nint C(B) # 2.

Then, by [Lemma 3.1.10| one of the following holds:
1. C(a) = C(pB), which implies that C(«) € P.

2. C(a) D C(B). Then, by (2), there exist cells C(f1),...,C(Bn) € P
such that C(5) = C(B;) for some 1 < j < n and

n

Cla) = JCB).

=1

Let us define a set

Let us prove that Q is a cellular partition: Consider x € X. Since P is a cover of X,
either x € C(f) for some 1 < k < n, in which case z € C(a) € Q. Or z € C(y) €
P\{C(B1),...,C(Bn)} (for some v € E(R)*), in which case x € C(y) € Q. Observe
that there are finitely many cells in O, since there are finitely many cells in P. Also
observe that all cells in P\{C(51),...,C(5n)} have disjoint interiors. Consider a cell
C(y) € P\N{C(51),-..,C(Bn)} (for some v € E(R)*). Then int C(v) Nint C(a) = @,
since int C'(y) Nint C(B;) = @ for all k = 1,...,n. This proves that all cells in Q

have disjoint interiors. Hence Q is a cellular partition of X.

Observe that (Q,(Q)f) is a coarsening of (P, (P)f) with the rearrangement f re-

stricting to a canonical homeomorphism on each cell in Q. Then, by
(Q,(Q)f) is a cellular bipartition for f and C(«a) € Q.

3. C(a) C C(B). Let us prove that there exist cells C(a1),...C(ay,) € P such that
C(a) = C(ag) for some 1 < k < m and

m

c(B) =J ().

=1

By|Lemma 3.1.10|(2), 8 < a.. Then, o = B~ (for some v € E(R)*). By |Lemma 3.2.2

there exists a complete antichain A such that « € A. Then, by the properties
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of complete antichains, there exist aq,...,q,;, € A such that &« = «a; for some
1<k<m,a=p0foralli=1,....mand D = {6; | i = 1,...m} is a complete

antichain.

Let us define a set

S=(PCB)}) u{C(),...,Clam)}.

Let us prove that S is a cellular partition: Consider z € X. Since P is a cover
of X, either z € C(p), in which case x € C(a;) € S for some 1 < j < m. Or
x € C(y) € P\N{C(B)} (for some v € E(R)*), in which case z € C(y) € S. Observe
that there are finitely many cells in &, since there are finitely many cells in P.
Also observe that all cells in P\{C(5)} have disjoint interiors. Consider a cell
C(y) € P\{C(B)} (for some v € E(R)*). Then intC(y) NintC(a;) = @ for all
j=1,...,n, since int C(y) Nint C(5) = &. This proves that all cells in S have

disjoint interiors. Hence S is a cellular partition of X.

Observe that (S,(S)f) is a refinement of (P,(P)f). Then, by [Lemma 3.3.16
(S,(S)f) is a cellular bipartition for f and C(a) € S.

O]

Recall from |Definition 3.1.2| that the boundary points of a cell C'(«) of X (for some

a € E(R)*) are the gluing vertices v, and w, such that v, is the initial vertex of the edge

« and w,, is the terminal vertex of the edge «

Lemma 3.3.22. Let f be a rearrangement of X and let (P, (P)f) be a cellular bipartition
for f. Let C(a) € P and C(B) € (P)f (for some a, 8 € E(R)*). Then (C(a))f = C(B)
if and only if (va)f = vg and (wa) f = wg.

Proof. Let f be a rearrangement of X and let (P,(P)f) be a cellular bipartition for f.
Let C(o) € P and C(B) € (P)f (for some o, 8 € E(R)*).

Suppose (C(a))f = C(B). Recall from that (ai)¢ = v, and (at)g = w,.
By [Definition 3.3.8| of a rearrangement, f|c(q) is a canonical homeomorphism. By

of a canonical homeomorphism, the map f|c(.): C(a) — C(j) is induced by
the prefix replacement map ¥: Q(a) — Q(8) such that the following diagram commutes:

Q(a) Q(B)
¢ ¢
C(a) " c(B)

Observe that (ai)¥ = fi and (at)¥ = Bt, and (Bi)¢ = vz and (Bi)¢ = ws. Hence
(va)f = vp and (wa)f = wp.
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Conversely, suppose that (vo)f = vg and (wa)f = wg. Since f is a rearrangement,
by [Definition 3.3.8 there exists a cell C(vy) € (P)f (for some v € E(R)*) such that
(C(a))f = C(vy). Then (vq)f = vy and (wy)f = w,. This implies that vg = v, and
vg = vy. And hence, by [Lemma 3.1.11] C(vy) = C(3).

This proves the result. ]

Corollary 3.3.23. Let f be a rearrangement of X and let (P,(P)f) be a cellular bipar-
tition for f. Let C(a) € P (for some o € E(R)*). Then (C(«))f = C(«) if and only if

(Vo) f = v and (wa) f = wq.
Proof. The proof follows from [Lemma 3.3.22 O

We will show below that cellular bipartitions for a rearrangement f of X have a lattice
structure (in terms of refinements and coarsenings). Then there exists a “coarsest” cellular
bipartition, which we will call a minimal bipartition. This is formally defined as follows:

We use cbp(f) to denote the set of all possible cellular bipartitions for f, i.e.,
cbp(f) ={(P,(P)f) | (P,(P)f) is a cellular bipartition for f}.

We denote the number of cells in a cellular partition P by |P|. We observe that [P| = |f(P)]
for any pair (P, (P)f) in cbp(f). We can define a map 9M;: cbp(f) — N by

Ny (P, (P)f) = [PI.

Definition 3.3.24. A minimal bipartition for f is the cellular bipartition (P 4, Py,.) such
that

N¢ (Pra,Prr) = min Ne (P, (P)f).
1 PraPre) = o i M (P (P))

That is, a minimal bipartition for f is a cellular bipartition with the least number of
cells such that f restricts to a canonical homeomorphism from each domain cell to its

image cell. We will prove that it is unique.

Lemma 3.3.25. Let f be a rearrangement for X. Then there exists a minimum bipartition

(f747¢7m)fbrf-

Proof. Observe that, for any rearrangement f of X, 9y (P, (P)f) is a natural number.
Then there is some cellular bipartition for which 9t (P, (P)f) achieves the minimum value,
and hence the result holds. O

Example 3.3.26. Consider the rearrangement g of X defined in [Example 3.3.13| with the

following cellular bipartition (illustrated using graph-pair diagrams):

P = {C(00),C(01),C(02), C(1),C(2)}

{animal}
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1
01
()
00 \ / 02 .
a Ox x b

(P)g = {C(0),C(1),C(20),C(21),C(22)}

1
ﬁ\ 21

0 /20

a T 2x b

The only cells properly containing the cells in P are C'(0) and C(¢), and g|c (o) and gc(e)

are not canonical homeomorphisms. Therefore, (P, (P)g) is the minimal bipartition for g.

The following results characterize the properties of the minimal bipartition for a rear-

rangement f of X.

Lemma 3.3.27. Let f be a rearrangement of X and let (Pyq, Psr) be a minimal biparti-
tion for f. Let C(a) be a cell in X (for some a € E(R)*) such that f|c(q) s a canonical
homeomorphism. Then C(a) € Pyq if and only if there does not exist a cell C(B) in X
(for some 8 € E(R)*), such that C(8) D C(a) and f|c(g) is a canonical homeomorphism.

Proof. Let f be a rearrangement of X and let (Pyq,Py,) be the minimal bipartition
for f. Let C(a) be a cell in X (for some a € E(R)*) such that f|c(,) is a canonical
homeomorphism.

Suppose C(a) € Pyq. Let us prove the result by contradiction. Suppose there does
exists a cell C(3) in X (for some 8 € E(R)*), such that C(3) D C(a) and f|c(s) is a
canonical homeomorphism. Then, by exist cells C(aq),...,C(am) € Pra

(for some ayq,...,q, € E(R)*) such that C(a) = C(ay) for some 1 < k < m and

c®) =JCla).

i=1

Let us define a set

Q= (P\{Clar),...,Clam)}) U{C(B)}.

Let us prove that Q is a cellular partition: Consider x € X. Since P is a cover of X,
cither z € C(a;) for some 1 < j < m, in which case z € C(8) € Q. Or z € C(y) €
P\{C(a1),...,C(am)} (for some v € E(R)*), in which case x € C(y) € Q. Observe
that there are finitely many cells in Q, since there are finitely many cells in P. Also
observe that all cells in P\{C(ay),...,C(am)} have disjoint interiors. Consider a cell
C(v) e P\{C(a1),...,C(am)} (for some v € E(R)*). Then int C(y)Nint C(5) = &, since
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int C'(y) Nint C(oj) = @ for all j =1,...,m. This proves that all cells in Q have disjoint
interiors. Hence Q is a cellular partition of X.

Observe that (Q, (Q)f) is a coarsening of (P, (P)f) with the rearrangement f restrict-
ing to a canonical homeomorphism on each cell in Q. Then, by (9,(9)f)
is a cellular bipartition for f and My (Q, (Q)f) < Ny (Pta, Psr). Then (Pyq, Py,) is not
the minimal bipartition for f, which is a contradiction. Therefore, there does not exist a
cell C(B) in X (for some 3 € E(R)*), such that C(8) D C(a) and f|¢(g) is a canonical
homeomorphism.

Conversely, suppose there does not exist a cell C(f) in X (for some 5 € E(R)*), such
that C(8) O C(a) and f|¢(g) is a canonical homeomorphism. By [Lemma 3.1.10} there
exists a cell C'(y) € Pyq (for some v € E(R)*) such that

int C(a) Nint C(y) # @.
Then only one of the following holds:

1. C(a) = C(), which implies that C(«) € Py 4.

2. C(a) C C(~). This is not possible by our hypothesis, therefore C(a) ¢ C(7)
3. C(a) D C(v). Let us prove that there exist cells C(v1),...,C(yn) € Pf,q such that
C(y) = C(y) for some 1 < k <n and

n

Cla) = J )

i=1
By [Lemma 3.1.10| (2), & < . Then, 7 = & (for some 6 € E(R)*). By|Lemma 3.2.2
there exists a complete antichain A such that v € A. Then, by the properties of
complete antichains, there exist v1,...,vmn € A such that v =~ for some 1 < k < n,

vi=ad; foralli=1,...,nand D ={J; | i =1,...n} is a complete antichain.

Let us define a set

§= (,Pf,d\{c(a)}) U {0(71)7 R C(Vn)}

Let us prove that S is a cellular partition: Consider x € X. Since Py 4 is a cover
of X, either x € C(a), in which case z € C(v;) € S for some 1 < j < n. Or
x € C(9) € Pra\{C()} (for some § € E(R)*), in which case x € C() € S.
Observe that there are finitely many cells in S, since there are finitely many cells in
Psa. Also observe that all cells in Pf4\{C(«)} have disjoint interiors. Consider a
cell C(8) € Pra\{C(a)} (for some § € E(R)*). Then int C(§) Nint C(vy;) = @ for
all j = 1,...,n, since int C(d) Nint C'(«) = @. This proves that all cells in S have

disjoint interiors. Hence S is a cellular partition of X.

Observe that (S,(S)f) is a refinement of (Py,Py;). Then, by w
(S,(S)f) is a cellular bipartition for f and 9 (S, (S)f) < Ny (Pt Psr). Then
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(P¢.a, Pr,r) is not the minimal bipartition for f, which is a contradiction. Therefore

Cla) 2C(7)

This proves the result. O

Lemma 3.3.28. Let f be a rearrangement of X. The minimal bipartition for f is unique.

Proof. Let f be a rearrangement of X. Let (P4, Psr) and (Qfq, Qf,) be minimal bi-
partitions for f. Consider a cell C'(a) € Pyq (for some o € E(R)*). Since Qpq is a

cellular partition of X, then, by [Lemma 3.2.10} there exists a cell C(f) € Q4 (for some
B € E(R)*) such that

int C'(a) Nint C(B) # .

Then, by [Lemma 3.1.10| (3), precisely one of the following holds:

2. C(a) C C(B),
3. C(a) > C(B).

Observe that f restricts to a canonical homeomorphism on both C(«) and C(8). Then,
by [Lemma 3.3.27 C(a) ¢ C() since (Py,4, Py,) is a minimal bipartition of f and C(«)
C(B) since (Qy,q4, Qyr) is a minimal bipartition for f. This implies that C(a) = C(f).
Observe that the choice of C(«) is arbitrary, hence C(a) = C(B) for all C(a) € Py q.
Therefore Py g = Qf 4, and it follows that P, = Q. O

Lemma 3.3.29. Let f be a rearrangement of X. Let (Psq, Pt,) be the minimal bipartition
for f and let (P,(P)f) be an arbitrary cellular bipartition for f. Then OPyq C OP and
OPsr CO(P)f.

Proof. Let f be a rearrangement of X. Let (Pfq4,Pys,) be the minimal bipartition for f
and let (P, (P)f) be an arbitrary cellular bipartition for f.

Consider a boundary point z € 0Py4. By [Definition 3.2.3| 2 = v, or z = w, for
some cell C(a) € 0Pyq. By |[Lemma 3.3.27| and [Lemma 3.2.11] (2), there exist cells
C(B1),...,C(Bp) € P such that

n

C(a) = JC(8).
i=1
Then z is a boundary point of the cell C(3;) for some 1 < j < n. Hence, z € OP and
therefore 0Py q C OP.
Now consider a boundary point z € 9Py,. Then (z)f~! € 9Py 4, which implies that
(z)f~' € OP. Therefore z € O(P)f and it follows that 9Py, C O(P)f. O
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3.4 Rearrangement Groups

In this section, we will prove that the set of rearrangements of a limit space X of an F-type

edge replacement system is a group.

Lemma 3.4.1. Let f be a rearrangements of X and let (Pyq, Psr) be the minimal bipar-
tition for f. Then the inverse f~1 is also a rearrangement of X and (Pgr,Pta) is the

minimal bipartition for f=1.

Proof. Let f be a rearrangements of X and let (Pyq,Py,) be the minimal bipartition
for f. Since f is a homeomorphism, then there exists a homeomorphism f~! such that
ff~' = f~1f =1, where I is the identity homeomorphism.

Let us first prove that f~! is a rearrangement: By [Definition 3.3.8 of a rearrangement,

flc(a) is a canonical homeomorphism for each cell C(a) € Py g (for some a € E(R)*)

and (C(a))f € Pyr. Then, by F Y@y (Cla))f = C(a) is a canonical

homeomorphism for each cell C(«) € Py 4. This, by [Definition 3.3.8) proves that f~!is a

rearrangement and (P, Prq) is a cellular bipartition for f~1.

Let us now prove that (Pf,, Ps4) is the minimal bipartition for f~!: We shall prove
this by contradiction. Suppose that (Py 4, Py,) is not the minimal bipartition for f 1 Let
(Py-1.4,Ps-1,) be the minimal bipartition for f~!. Then, by |L there exists
cells C(a) € Py, and C(B) € Py-1 4 such that C(a) C C(B). By the definition of a canon-
ical homeomorphism, (C(a))f~! C (C(8))f~! and (C(a))f~ € Prq and (C(B))f! €
Pj-1,,. By[Definition 3.3.8/of a rearrangement, f~|c(5): C(3 ) (C(B))f~!is acanonical
homeomorphism. Then by the definition of an inverse, f|c(g))s-1: (C(8))f~1 —= C(B) is

a canonical homeomorphism. This implies that (P 4, Pf,r) is not the minimal bipartition

for f, which is a contradiction. Hence (Py,,Pyq) is the minimal bipartition for f -0

Lemma 3.4.2. Let f and g be rearrangements of X and let (Ptq, Pfr) and (Pgd, Pgr)

be the minimal bipartitions for f and g respectively. Then
1. ((Pfyr A Pg,d)ffl, Py A Pg,d) is a cellular bipartition for f,
2. (Pgr NPy, (Psr ANPga)g) is a cellular bipartition for g.

Proof. Let f and g be rearrangements of X and let (Psq, Py,) and (Pgq,Pyr) be the

minimal bipartitions for f and g respectively.

1. By f~!is a rearrangement and (Pgr,Pya) is the minimal biparti-
tion for f~!. Observe that P, = (Pra)f. It follows from |Corollary 3.3.18| that
(me NPy, (P /\7797d)f_1) is a cellular bipartition for f~!, which implies that
((Pgr A Pga)f~t, Ppr APga) is a cellular bipartition for f.

2. This follows immediately from [Corollary 3.3.18|

{kmfdm}

{tranference}
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Lemma 3.4.3. Let f and g be rearrangements of X and let (Ptq, Pfr) and (Pgd, Pgr)
be the minimal bipartitions for f and g respectively. Then fg is a rearrangement of X and
(Pgr APga)f 1 (Prr APga)g) is a cellular bipartition for fg.

Proof. Let f and g be rearrangements of X and let (Py,q, Py,) and (Pg.q, Py,r) be the min-
imal bipartitions for f and g respectively. By ((Pgr APga)f  Prr APya)
is a cellular bipartition for f and (P, A Pga, (Prr A Pga)g) is a cellular bipartition for
g. Consider a cell C(a) € (P, A Pya)f ' (for some a € E(R)*). Then (C(a))f €
Prr A Pya and hence fg|c(q) is a canonical homeomorphism, since it is the composition
of the canonical homeomorphisms f|c() and g|(c(a)) - Since this is true for each cell
C(a) € (Pry APga)f~t, fgis arearrangement of X and ((Py, A Pga)ft, (Prr A Pga)g)
is a cellular bipartition for fg. O

Lemma 3.4.4. Let f and g be rearrangements of X and let (Pytq, Psr) and (Pga, Pg,r)
be the minimal bipartitions of f and g respectively. Suppose that for all cells C(«) € Py,
(for some o € E(R)*), there exists a cell C(B) € Pya (for some f € E(R)*) such that
C(a) € C(B). Then (Pya,(Pyrr)g) is a cellular bipartition for the rearrangement fg.

Proof. Let f and g be rearrangements of X and let (P g, Py,) and (Pya, Pgr) be the
minimal bipartitions of f and g respectively. Suppose that for all cells C(a) € Py,
(for some a € E(R)*), there exists a cell C(3) € Py q (for some 8 € E(R)*) such that
C(a) € C(B). Then, by Definition 3.2.12| of a meet, Py, A Pyq = Py,. By
we know that fg is a rearrangement and ((Py, A Pga)f ', (Prr APya)g) = (Pra: Prr)
is cellular bipartition for fg. O

Lemma 3.4.5. Let f and g be rearrangements of X and let (Pytq, Psr) and (Pga, Pgr)
be the minimal bipartitions of f and g respectively. Suppose that OPyq € OPy,. Then
OPga < OPy.a-

Proof. The proof follows from [Lemma 3.4.4] and [Lemma 3.3.29| ]

Belk and Forrest [3] proved the following result for rearrangement groups of all limit

spaces. Here we prove it for rearrangement groups of F-type limit spaces:
Lemma 3.4.6. The rearrangements of X form a group under composition.

Proof. Since every rearrangement of X is a homeomorphism, the set of rearrangements of
X is a subset of the group of homeomorphisms of X (Aut(X)). We will prove that this
subset is a subgroup.

The identity homeomorphism [ is clearly a rearrangement (and ({C(€)},{C(e)}) is
the minimal bipartition for I, where C'(¢) = X). We know from that the
inverse of a rearrangement is also a rearrangement. We know from that
the composition of two rearrangements is also a rearrangement. This proves that the

rearrangements of X form a subgroup of Aut(X). O]

{bringiton}



Chapter 4

Richard Thompson’s Group F

We will now use the framework we developed in [Chapter 2| and [Chapter 3| to define a re-

arrangement group of a particular limit space which is isomorphic to Richard Thompson’s
group F. In we will present the standard definition of Thompson’s group F.
In we will construct a particular limit space. In we will show that
this limit space is homeomorphic to the unit interval [0,1]. And finally, in we
will show that the rearrangement group of this limit space is isomorphic to Thompson’s

group F'.

4.1 Richard Thompson’s Group F

The groups F', T and V were first defined by Richard Thompson in 1965. They arise as
subgroups of the homeomorphism group of the Cantor set, and act on the unit interval
[0, 1], the unit circle S* and the Cantor set respectively. In this section we will present the
“standard” definition of Thompson’s group F'. The definitions, results and terminology

have been taken from the lecture notes by Cannon, Floyd and Parry [9].

Definition 4.1.1 (Cannon, Floyd, Parry [9]). We define F' to be the set of piecewise linear
homeomorphisms from the closed unit interval [0, 1] to itself that are differentiable, except
at finitely many dyadic rational numbers, and such that at the intervals of differentiability

the derivatives are powers of 2.

Proposition 4.1.2 (Cannon, Floyd, Parry [9]). The set F' is a group under the composi-

tion of functions.

Cannon, Floyd and Parry [9] proved this result by showing that F' is a subgroup of the
group of homeomorphisms of [0, 1]. We shall be proving this result by showing that F is

a rearrangement group.

Remark 4.1.3. Observe that Cannon, Floyd and Parry use left-actions in their work. Since
we are using right-actions in this thesis, we shall be replacing the functions defined in [9]

by their inverses.

67
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{daisycutter}
Example 4.1.4 (Cannon, Floyd, Parry [9], Example 1.1 and Example 1.2). Let us define

the maps A and B as follows:

2x OS:J;S%
Alz)=qaz+1 1<z<i
x 1 1
7ty gsosl
T ()S;rg%
2r+1 t<p<d
2 2 — — 8
B(l’): 1 5 3
Tty §STS]
z 1 3
3ty gswsl

It is easy to show that these maps are differentiable, except at finitely many dyadic
rationals, and at the intervals of differentiability the derivatives are powers of 2. Hence,

A, B € F. We shall be illustrating these maps using the following diagrams:

1 1
1 L 1
1 3
0 ! 3 1
A
5 3
53 1
1 3 7
0 3 7 s 1
B

Diagrams of this type are called rectangle diagrams or Thurston diagrams. They were
introduced by Cannon, Floyd and Parry in [9], who in turn cite unpublished work by W.
P. Thurston in 1975. In due course, we shall show that rectangle diagrams are equivalent
to graph-pair diagrams defined in |[Definition 3.3.9

{genius}

Definition 4.1.5 (Cannon, Floyd, Parry [9]). We define the maps Xg, X1, X2, - € F as
follows:

OX():AanXmzB,
o X1 =X, X, Xog = AT"BA™.

The following result from [9] defines two presentations for F' — one finite and one

infinite. It is given here without a proof:
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Proposition 4.1.6 (Cannon, Floyd, Parry [9], Theorem 3.4). The following are two pre-

sentations for Thompson’s group F':

F=(A,B|[AB7',A"'BA],[AB~!, A"2BA?)),
F=(Xo,X1,X0, - | Xp41= X,;anXk for some k < n).

In this thesis, we shall be presenting an alternative presentation for Thompson’s group
F which corresponds to the basic open sets of the unit interval [0,1]. We shall do this
by defining F' as a rearrangement group. We shall present this definition in the rest of

this chapter. In we will define our generating set for F. In we will

define our presentation for F'.

4.2 A Limit Space
{4.2}

We define an edge replacement system as follows:

e Our base graph Gy is a finite directed graph with one edge and two vertices. We
denote the edge by the empty word €, and the vertices by a and b.

€

e
e

Go

e The graph G, is constructed by replacing every edge e of the graph G,,_1 by the
replacement graph R.

w w

al

a0

v v

e R
{dollsinthedar
Definition 4.2.1. We define the F' replacement system to be the edge replacement system
(Go,e — R).

Observe that this fulfills [Definition 2.1.6| of an F-type replacement system. The first

few graphs of the full expansion sequence are as follows:
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00 01 10 11
a 0z T 1z b
Go

Observe that V(Go) = {a,b}, E(Gp) = {€}, Vine(R) = {z} and E(R) = {0,1}. We
shall treat € as the empty word. In a generic F-type edge replacement system, we used i
to denote the edge incident with the initial vertex of R and t to denote the edge incident
with the terminal vertex of R. Note that, in the F' replacement system, i = 0 and t = 1.
Then our notation for the edges and vertices of graph G,, is similar to the general case in
ection

1. Each edge of G, is of the form a = e;1...e,, where al = e1...e,_1 is the edge
of Gj,—1 that was replaced, and e, is an edge of R. The set E(G,) of edges Gy, is
defined as

:{a ’ a=e1...6y,6E; GE(R)}'

Each edge of G, is a word of length n in the alphabet F(R) (observe that the length

of the word would be n + 1 in a generic F-type edge replacement system).

2. Each new vertex of G,, has the form afz = e;...e,_12, where af is the edge of
Gp—1 which was replaced. The set V,, of new vertices introduced in graph G,, (i.e.,

the vertices of depth n), is
Vp, = {aT:n | ol =ei...en_1,6 € E(R)} .
The set Vj contains the vertices a and b (which have depth 0).
The complete set of vertices of G, is the disjoint union

V(Gn) =| | Vi
k=0

{smalltownboy} ) )
Remark 4.2.2. Observe that, in the F' replacement system, the depth of a gluing vertex

ax — defined in [Definition 2.1.13[— is

depth(azx) = |af + 1.

This is because eg = € and is treated as the empty word.
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The following results are |[Lemma 2.1.14] and [Lemma 2.1.15] restated for this setting.

They detail the adjacency of edges and vertices in the graph G,,:

Lemma 4.2.3. Let {Gy},” be the full expansion sequence of the F replacement system.
Let a =eq...e, € E(Gy,) (for somen > 1). The initial and terminal vertices of a are as

follows:
1. If a = (0)", the initial verter is a and the terminal verter is afz = (0)"x.

2. If a = ey ...e1(0)"F=1 (for k < n), the initial vertex is o Pz = ey .. ey and

the terminal vertex is o'z = eq ..., 1.

3 Ifa=-ei...e 0(1)" %=L (for n > k), the initial vertex is a'x = ey ...e,_12 and the

(n—k)

terminal vertex is « fr=e...epz.

4. If a = (1), the initial verter is ofx = (1)" 12 and the terminal vertex is b.

Lemma 4.2.4. Let {G,},_, be the full expansion sequence of the F' replacement system
(Go,e > R). Leta=-ej...e; € E(Gg) andn > k+ 1. Then

1. The edge in G, having ax as the initial vertex is a1(0)" "+,

2. The edge in Gy, having ax as the terminal verter is a0(1)"*=1,

We shall now recall the definitions and terminology from [Chapter 2| and [Chapter 3|and

interpret them in the context of the F' replacement system:

Recall from [Definition 2.3.1] and [Definition 2.3.2] that the set of finite words and the

symbol space are defined as follows:

ER)*={ep...en|eo € E(Gp) and ¢; € E(R) fori =1,...,n},

Q= {eperea---|eg € E(Gp) and e¢; € E(R) fori =1,2,...}.

Observe that, in this chapter, F(Go) = {e}, with € treated as the empty word, and
E(R)={0,1}.

Definition 4.2.5. We define the set of finite words and the symbol space of the F' re-

placement system as follows:
ER)*={e1...en | e; € {0,1}} ={0,1}",

Q= {6162 s ‘ €; € {0, 1}} = {0, l}w.

We define a linear order < on E(R) such that 0 < 1. Then recall from [Definition 2.3.4|
and [Definition 2.3.5| that there exists a lexicographic order <, on €2 and every complete
antichain A C E(R)*.

{garbage}
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As specified in the general case, we endow Q = {0, 1}* with the product topology. Let
us define Q(«) := a€ (for some a € E(R)*). Then the collection

{Q) | a € E(R)"}

form a basis for this topology. Observe that, for all t € Q(«a), a0 <, t <; al.
Recall from [Definition 2.3.9] that the elements of the vertex set

gV = J V(G =| | W
n=0 n=0

are called gluing vertices. In the F' replacement system, a gluing vertex v € GV is either

a, b or ax (for some a € E(R)*). Recall also from [Definition 2.3.11| that a sequence

erea... € Q represents a vertex v € GV if and only if the edge e; ... e, is incident with v

in the graph G, for all sufficiently large n.
The following result is [Lemma 2.3.12] restated for this setting:

Lemma 4.2.6. Let ejea... € Q and v € GV. The sequence eyes ... represents the vertex

v if and only if one of the following holds:
1. v=a and ejea... =0,
2. v=bandeey... =1,
3. v=ax (for some a € E(R)*) and ejes ... is either a01 or a10

Moreover, if it exists, the verter v represented by the sequence eies ... is unique.

Let v € GV. Recall from |Definition 2.3.13| that the set @, C £ contains all sequences
eres ... €  which represent the vertex v. It follows from that

Qo = {[_)}
Qv = {1}
Qa:p = {OéOI, 0416}

for each o € E(R)*.

Recall from [Definition 2.3.14] that two sequences from the symbol space

erez... and ejeh...
are said to be related to each other under the gluing relation ~ if the edges
/

/
ej...e, and ej...e,

share a vertex in the graphs G, for all n.



{dirtyboots}

{europa}

4.2. A LIMIT SPACE 73

Lemma 4.2.7. For two distinct sequences ejea ... and ejeh ... in Q= {0,1}*,
€1€2...N€’1€,2...
if and only if there exists a finite word B = ey ...ex such that

erez...=B01 and €je,... = B10.

Proof. The proof follows from [Lemma 4.2.6| and [Lemma 2.3.15| O

Definition 4.2.8. Similarly to the general case in [Definition 2.3.18] we define the limit

space X of the F' replacement system to be the quotient space:
X :=Q/~.

It will be shown in [Section 4.3|that this limit space is homeomorphic to the unit interval
[0,1]. It follows from that the sets @, are equivalence classes in the limit
space X for all gluing vertices v € GV. As per the general case, will be using the gluing
vertex v as a label for the equivalence class.

Recall from |Definition 3.1.1| that, for « = e1...e, € E(R)*, a cell C(a) is the image

of a basic open set Q(«) in the limit space X under the quotient map ¢. Recall from

IDefinition 3.1.2fthat the boundary points of C(«), v, and wg, are the gluing vertices such

that v, is the initial vertex of the edge « in G, and w,, is the terminal vertex of the edge

a in G,. Observe from [Lemma 3.1.3| that vy, w, € C(a).

The characterizes cells and boundary points in the limit space X for the F replacement

system:

Lemma 4.2.9. Let X be the limit space of the F' replacement system. Let C(«) be a cell
in X (for some a € E(R)* = {0,1}*). Then the following hold:

1. vy = (a0)¢ and w, = (al)d.
2. A point z € C(a) if and only if a0 <ot <, al for some t € (2)¢~ 1.
3. A point z € int C(a) if and only if a0 <, t <y al for allt € (z)¢~ 1.

Proof. Let X be the limit space of the F' replacement system. Let C(a) be a cell in X
(for some a € E(R)* = {0,1}%).

1. By [Lemma 3.1.3, v, = (ai)¢ and w, = (at)$. Recall that, in the F replacement

system, i = 0 and t = 1. Hence v, = (a0)¢ and w, = (al)é.

2. Consider a point z € C(«). Then, by [Definition 3.1.1}of a cell, there exists t € Q(«a)
such that (t)¢ = z. Hence, by [Definition 2.3.4] of the lexicographic order on Q(«),
al <, t <, al.

Conversely, consider a sequence t € € such that a0 <, t <, al. Then t € Q(«) and,
by [Definition 3.1.1|of a cell, z = (t)¢ € C(a).

{quicksand}
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3. Consider a point z € int C'(«). Then, by |Corollary 3.1.6| (2),

(Z)Qb_l C Qa)\ (Quy U Quy, ) -

That is, for all t € (2)¢~ !, « is a prefix of t but ¢t # a0 and t # al. Then, by
[Definition 2.3.4] of the lexicographic order on Q(a), a0 <, t <, al.

Conversely, consider a sequence t €  such that a0 <, t <; al. Then ¢t € Q(«) but
t ¢ Qy, and t ¢ Q. Hence

t € Qa)\ (Qu, U Quy,)

and, by [Corollary 3.1.6| (2), z = (t)¢ € int C(«).

O

Recall from [Definition 3.2.1| that a cellular partition P of X is a cover of X by finitely

many cells with disjoint interiors. Recall from [Definition 3.2.3] that the set P is the set

of all boundary points of the cells in P. The cellular partitions in X are illustrated using
graph expansions.

Recall from [Definition 3.2.5| [Definition 2.3.10| and [Definition 3.2.6| that there exist the
following orders on P and 9P:

e the induced cell lexicographic order (lex(P))
o the induced vertex depth order (depth(0P))
e the induced cell depth order (depth(P))

Example 4.2.10. Let X be the limit space of the F' replacement system. We define a set

P of cells in X as follows:
P = {C(0000),C(0001),C(001),C(01000),C'(01001),C(0101),C(011),C(1)}.

Observe that the edges corresponding to the cells in P form a complete antichain in E(R)*.
Hence, by P is a cellular partition of X. It is illustrated by the following

graph expansion:

—
s} o
2 =
=] 001 oS o 011 1
o——e e e oo o & @
a o coco O x b
@) ) 8 == =
S sSg °
g P

Then
lex(P) = (€C(0000), C'(0001),C(001),C(01000),C(01001),C(0101),C(011),C(1))
depth(9P) = (a, b, z,0x, 00z, 01z, 000z, 010z, 0100x)
depth(P) = (C(1),C(001),C(011),C(0000), C'(0001),C(0101),C'(01000),C(01001))
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The following results characterize cellular partitions of the limit space X of the F

replacement system:

Lemma 4.2.11. Let X be the limit space of the F' replacement system. Let P be a cellular
partition of X. Let z € OP.

1. If z = a, then there is precisely one cell C(a) € P (for some o € E(R)*) such that

z = vy and no cell C(B) € P (for some B € E(R)*) such that z = wg.

. If z =0, then there is no cell C(a) € P (for some a € E(R)*) such that z = v, and

there is precisely one cell C(8) € P (for some € E(R)*) such that z = wg.

. If z =~ (for some v € E(R)*), then there is precisely one cell C(a) € P (for some

a € E(R)*) such that z = v, and precisely one cell C(B) € P (for some € E(R)*)
such that z = wg.

Proof. Let X be the limit space of the F' replacement system. Let P be a cellular partition
of X. Let z € OP.

1. Let z = a. Then (2)¢~! = Q, = {0}.

Let us first prove that there exists a cell C'(a) € P (for some a € E(R)*) such that
Z = Uq. By P ={C(a) | a € A}, where A is a complete antichain in
E(R)*. Then there exists o € A such that o < 0, i.e., « = (0)" for some n € N.
Then v, = ((0)"0)¢ = 2

Let us now prove that there exists only one cell C(«) € P (for some o € E(R)*)
such that z = v,. We will prove this result by contradiction. Suppose there exist
two distinct cells C(ay), C(a2) € P such that z = vy, and z = v,,. By[Lemma 4.2.9]
(1), v, = (10)¢ and v4, = (a20)¢. This implies that a10 € Q, and a0 € Q,,
which gives us o; = (0)" and ag = (0)™ for some n,m € N. Then C(a1) C C(az)
or C(a1) 2 C(ag). Since P is a cellular partition, C'(ay) = C(az), which is a

contradiction. Hence there exists only one cell C'(a) € P such that z = v,.
Let us now prove that there does not exist a cell C(8) € P (for some 5 € E(R)*)

such that z = wg. By |Lemma 4.2.9((1), wg = (81)¢. But S1 ¢ Q, for all 8 € E(R)*.
Hence there does not exist a cell C(3) € P (for some § € E(R)*) such that z = wg.

. Let z =b. Then (2)¢~ ! = Qp = {1}.

Let us first prove that there does not exist a cell C'(«) € P (for some o € E(R)*)

such that z = v,. Bym , Vo = (a0)¢. But a0 ¢ Q, for all a € E(R)*.
Hence there does not exist a cell C(« ) ePpP (for some « € E(R)*) such that z = wq,.

Let us now prove that there exists a cell C(8) € P (for some § € E(R)*) such that
z = wg. By [Lemma 3.2.2, P = {C(B) | 8 € A}, where A is a complete antichain



76

CHAPTER 4. RICHARD THOMPSON’S GROUP F

in E(R)*. Then there exists 8 € A such that 3 < 1, i.e., 8 = (1)" for some n € N.
Then wg = ((1)"1)¢ = z.

Let us now prove that there exists only one cell C(3) € P (for some 5 € E(R)*)
such that z = wg. We will prove this result by contradiction. Suppose there exist
two distinct cells C(81), C(B2) € P such that z = wg, and z = wg,. By [Lemma 4.2.9]
(1), wg, = (B11)¢ and wg, = (B21)¢. This implies that S11 € Qp and B2l € Q,
which gives us 81 = (1)" and B2 = (1)™ for some n,m € N. Then C(51) C C(B2)
or C(B1) 2 C(B2). Since P is a cellular partition, C(51) = C(B2), which is a

contradiction. Hence there exists only one cell C(5) € P such that z = wg.

. Let z = yz (for some v € E(R)*). Then (2)¢~ ! = Q. = {701,~10}.

Let us first prove that there exists a cell C'(a) € P (for some a € E(R)*) such that
z = v, and there exists a cell C(f) € P (for some € E(R)*) such that z = wg. By
[Lemma 3.2.2) P = {C(a) | @ € A}, where A is a complete antichain in E(R)*. Then
there exists o € A such that o < y10. If v < «, then by z € int C(a)
which is a contradiction since z € OP. Hence a = 71(0)" for some n € N. Then
va = (71(0)"0)¢ = 2. Similarly, there exists 8 € A such that 8 < 701. If v < 3,
then by [Corollary 3.1.7, z € int C'(3) which is a contradiction since z € 9P. Hence
B =~0(1)™ for some m € N. Then wg = (70(1)"1)¢ = z.

Let us now prove that there exists only one cell C'(«) € P (for some a € E(R)*) such
that z = v,. We will prove this result by contradiction. Suppose there exist two
distinct cells C(aq), C(az) € P such that z = ve, and z = va,. By |[Lemma 4.2.9| (1),
Va; = (10)¢ and va, = (20)¢. This implies that a0 € Q- and a20 € Q.4, which
gives us a; = v1(0)™ and ay = 1(0)™ for some n,m € N. Then C(a1) C C(a2)
or C(ay) 2 C(az). Since P is a cellular partition, C(a;) = C(ag), which is a

contradiction. Hence there exists only one cell C'(a) € P such that z = v,.

Let us now prove that there exists only one cell C(3) € P (for some 5 € E(R)*)
such that z = wg. We will prove this result by contradiction. Suppose there exist
two distinct cells C(f1), C(B2) € P such that z = wg, and z = wg,. By [Lemma 4.2.9]
(1), wg, = (B11)¢ and wg, = (B21)¢. This implies that £11 € Qp and ol € Q,
which gives us 51 = (1)" and B2 = (1)™ for some n,m € N. Then C(5;) C C(B2)
or C(p1) 2 C(B2). Since P is a cellular partition, C(51) = C(B2), which is a

contradiction. Hence there exists only one cell C(5) € P such that z = wg.

This proves the result. ]

Lemma 4.2.12. Let X be the limit space of the F replacement system. Let P be a
cellular partition of X and let lex(P) = (C(an),...,C(ay,)). Then, for allt € Q such that
(t)p € C(ay) (for some 1 <i<n), aj—11 <pt <; a;+10.
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Proof. Let X be the limit space of the F' replacement system. Let P be a cellular partition
of X and let lex(P) = (C(a1),...,C(ay)). Consider t € Q such that (¢)¢ € C(w;) (for

some 1 <i <n). Let (t)¢ = z. Then we have the following choices for z:
1. Suppose z € int C(«;). Then, by [Lemma 4.2.9| (3), ;0 <, t <; ;1.

2. Suppose z = v,,. Then, by (1), 2 = (a;0)¢. Since z € GV, then
there exists 8 € E(R)* such that (2)¢~! = Qs = {801,810}. If 8 < «;, then
by [Corollary 3.1.7, z € int C(a;) which is a contradiction since z € 9P. Hence
a; = 51(0)™ for some n € N.

Observe that ¢t € Qg,, that is either ¢ = 501 or ¢ = 10 = ;0. To prove the
result, we have to show that 301 = o;_11. By P ={C(a) | ac A},
where A is a complete antichain in E(R)*. Then there exists a; € A such that
aj < BO1. If a; < B3, then aj < a; which is a contradiction since A is an antichain.
Hence a; = B0(1)™ for some m € N. Since A is a complete antichain, o; = ;1.
Therefore £01 = a;_11.

3. Suppose z = w,,. Then, by [Lemma 4.2.9 (1), 2 = (a;1¢. Since z € GV, then
there exists v € E(R)* such that (2)¢~! = Q.. = {701,710}. If v < «;, then
by [Corollary 3.1.7, z € int C(a;) which is a contradiction since z € 9P. Hence

a; = v0(1)" for some n € N.
Observe that t € Qz, that is either t = 401 = o;1 or t = 410. To prove the result,

we have to show that y10 = a;411. By P ={C(a) | « € A}, where
A is a complete antichain in F(R)*. Then there exists ap € A such that ay < y10.
If ap < 7, then ap < «a; which is a contradiction since A is an antichain. Hence
ag = v1(0)™ for some m € N. Since A is a complete antichain, a = a;41. Therefore

v10 = a4 11.
By combining (1) — (3) above, we can conclude that
a;—11 <pt <p a;410.
[

Lemma 4.2.13. Let X be the limit space of the F' replacement system. Let P be a cellular
partition of X and let lex(P) = (C(aq),...,C(ow,)). Then C(oy) NC(ay) # @ if and only
ifli—jl<1.

Proof. Let X be the limit space of the F replacement system. Let P be a cellular partition
of X and let lex(P) = (C(a1),...,C(ay)). Suppose that C(a;) N C(e;) # @. We shall
prove that |i — j| < 1 by contradiction. Let |i — j| > 2, and suppose without a meaningful
loss of generality that j > i 4 2. Then C(a;) <; C(it1) <¢ C(cyj). Observe that <y is a

linear order, induced from the linear lexicographic order <y on €. Then it follows that if

{jambinai}
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t € (C(ay))p~ ! then t <4 ;4101 and if t € (C(aiy1))¢~! then t >; a;,101. This implies
that C'(a;) N C(a;) = @, which is a contradiction. Hence |i — j| < 1.
Conversely, suppose that |i — j| < 1. If i = j, then the result follows trivially. If i # j,

let us suppose without a meaningful loss of generality that j =i+ 1. By Q;
and a;4+1 belong to a complete antichain A in E(R)* and, by [Definition 2.3.5, <, is a linear

order on A. Then there exists k € N such that a; = e;...ex0y and ;11 = e;1...¢e;1d (for
some 7,0 € E(R)*). Observe that, since A is a complete antichain, v = (1)? and 6 = (0)?
(for some p, ¢ € N). Then, bym (1), wa, = [e1...€;01] and vq,,, = [e1 ... e;10]
and, by Wea; = Va;,,- This implies that C'(a;) N C(as41) # D. O

Lemma 4.2.14. Let X be the limit space of the F' replacement system. Let P be a cellular
partition of X and let lex(P) = (C(a1),...,C(ay)). Then

1. Vo, = a,
2. Wa; = Vayyy foralli=1,...,n—1,
3. wq,, =Db.

Proof. Let X be the limit space of the F' replacement system. Let P be a cellular partition

of X and let lex(P) = (C(a1),...,C(ay)). By |Lemma 3.2.2) P = {C(«a) | « € A}, where
A is a complete antichain in F(R)*. Then

1. Consider the gluing vertex a. Observe that (a)¢p~! = Q, = {0}. By [Lemma 4.2.11
(1), there exists precisely one cell C(«;) € P such that v,, = a. By |Lemma 4.2.9|(1),

Va; = (;0)¢. Hence o = (0)" for some n € N. Then o; <y vj for all j =1,...,n,

k3

and therefore 7 = 1.

2. Consider the gluing vertex vz (for some v € E(R)*). Observe that (y2)¢™! = Q, =
{+01,~410}. By (3), there exists precisely one cell C(a;) € P such
that v,, = vz and there exists precisely one cell C(a;) € P such that w,,; = .
By [Lemma 4.2.9| (1), va, = (0)¢ and ws; = (a;1)¢. Hence a; = v1(0)" and
a; = v0(1)" for some n,m € N. Since A is a complete antichain, ¢ = j + 1 for all

j=1,....,n—1.

3. Consider the gluing vertex b. Observe that (b)¢~' = Qp = {1}. By |[Lemma 4.2.11
(2), there exists precisely one cell C(q;) € P such that w,, = b. By|Lemma 4.2.9| (1),

Wa; = (oi1)¢. Hence o; = (1)" for some n € N. Then o; > o forall j =1,...,n,

7

and therefore i = n.
This proves the result. O

Lemma 4.2.15. Let X be the limit space of the F' replacement system. Let P be a cellular
partition of X with |P| =n. Then |0P| =n+ 1.
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Proof. Let X be the limit space of the F' replacement system. Let P be a cellular partition

of X with |P| = n. Let lex(P) = (C(a),...,C(cy,)). Then, by [Lemma 4.2.14]
1. v, = a,
2. Wo; = Vo, foralli=1,...,n—1,
3. Wq, =b.

n

And, by for each z € OP.

1. If z = a, then there is precisely one cell C(«) € P (for some o € E(R)*) such that
z = v, and no cell C(B) € P (for some § € E(R)*) such that z = wg.

2. If z = b, then there is no cell C(«) € P (for some o € E(R)*) such that z = v, and
there is precisely one cell C(5) € P (for some 5 € E(R)*) such that z = wg.

3. If z = vz (for some v € E(R)*), then there is precisely one cell C'(a) € P (for some
a € E(R)*) such that z = v, and precisely one cell C(3) € P (for some § € E(R)*)
such that z = wg.

Then a simple counting argument shows that [OP| =n + 1. O

4.3 Our Limit Space and the Unit Interval

{4.3}
In this section, we will show that limit space X of the I’ replacement system, constructed
in is homeomorphic to the unit interval. { \
nigel

Definition 4.3.1. A binary expansion for a real number x € [0, 1] is a sequence ejeg - -+ €
{0,1}°° such that

o0

T = Zeﬂ‘i, e; € {0,1}.

=1

Lemma 4.3.2. Every real number x € [0,1] has a binary expansion.

Proof. Let z € [0,1] and define a sequence ejes ... as follows
Oifac<%
€] = ) 1
1ifz > 5
: 1
_Joife— G <y
€2 = 1
: e

and so on. In general,

. ke 1
0if x — 325 5 < g5

life—YF &

€k+1 =

v

We observe that ejes ... satisfies [Definition 4.3.1] ]
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We observe that binary expansions are not unique for some elements = € [0, 1].

Example 4.3.3. Observe that 10 and 01 are both binary expansions for %, since

1_1+1+1+
2 4 8 16 ’

Definition 4.3.4. A dyadic rational in the unit interval [0,1] is a rational number 7%

2n
such that m,n € N, m < 2" and 2 {m.
The following results describe the binary expansions of an element x € (0, 1) precisely:

Lemma 4.3.5. The number 3 is a dyadic rational in (0,1) if and only if there exists a

word o = ey ...ep—1 € E(R)* such that a01 and a10 are precisely the binary expansions

for Zﬂn

Proof. Let & be a dyadic rational in (0,1). Then m,n € N, 0 <m < 2" and 2 { m. We

can express m in base 2 as

m=e12" 14 e2" 24 e 12+ en,

where e; € {0,1} for i = 1,...,n. Since m is odd, necessarily e, = 1. Hence
We know that 2 = > sl 2%, which gives us
mo e e en—1 0 1 1
=gttt Tt g T
Setting o = ey ...e,_1 gives us the binary expansions a10 and «01 for the dyadic rational
m
on -

Conversely, consider a word « = ey ...e,-1 € E(R)*. Define
m=e 2" 1+ 622"_2 + - +e,_12+ 1.

Observe that 0 < m < 2™ and 2 {m. Then

m e1  es €en_1 1
A TR T RT)
€ €2 en—1 0 1 1
—54-?4—'--—1—2“_1 +27+2n+1 —i—w—i--"
That is, a01 and «10 are the binary expansions for 5. This proves the result. ]

Corollary 4.3.6. Let & be a dyadic rational in (0,1) with binary expansions a01 and

al0 (for some a € E(R)*). Then

1. a0 is a binary expansion for 7”2;1.

m+1

2. al is a binary expansion for o
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Proof. Let 5 be a dyadic rational with binary expansions a01 and «10 (for some a €
E(R)*). Then

1.
m 1 (e en—1 1 0 1
D T N R T R TR Tas BT AL T
_61 €En—1 0 0 0
That is, a0 is a binary expansion for o — 2%
2.
m 1 el €en—1 1 0 0 1
D T N T T S TR TEs BT A BT
—54‘"'4‘2”_14‘274‘%4'@4-“-.
That is, a1 is a binary expansion for g + 2%
This proves the result. O

Lemma 4.3.7. An element t € (0,1) has a unique binary expansion if and only if it is

not a dyadic rational.

Proof. In part 1, we have proven that every dyadic rational has two binary expansions. It
is sufficient to show that every element ¢ € (0,1) with more than one binary expansion is
a dyadic rational.

Consider two distinct binary expansions ejes ... and €}é€), ... for some ¢ € (0,1). Then,
by [Definition 4.3.1| we have

o o0
E €27 = E €27
i=1 i=1

We can assume without a meaningful loss of generality that there exists n € N such that

€1...en—1 =¢€)...e,_, but e, =0 and e}, =1. Then

I > e — €
iﬁ'__ jz: 91
i=n+1
oo
1 1
i=n+1

which is only true if e; — e, = 1 (ie., ¢ = 1 and €, = 0) for all ¢« > n + 1. Setting

a=e1...e, 1givesus eres--- = a0l and 6’16'2 .-+ = 10. We have proven in[Lemma 4.3.5

that these are both binary expansions of the same dyadic rational & (for some m,n € N
such that 0 < m < 2" and 2 {m). O

{truefaith}
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{palacesofmont
Definition 4.3.8. Let us define the intervals B, ,  in (0,1) as follows:
m 1 m 1
Bk = (2n ~ ok on + 2k> )
for some m,n, k satisfying Property A, where Property A is defined as: m,n,k € N,
0<m<2" 2¢{m and k > n.
{thebronx}

Lemma 4.3.9. The collection
B = {Bumnk | m,n,k satisfy Property A}
forms a basis for the Euclidean topology on (0,1).

Proof. Recall that open sets in the Euclidean topology on (0,1) are the unions of open
intervals. So it is sufficient to show that for any open interval (x,y) C (0, 1), there exists

a collection C C B such that
(z,y) =JC.

Since dyadic rationals are dense in (0,1), we can find a dyadic rational & such that

r < gr < y. Consider all dyadic rationals g% contained in (z,y). Let us define our

collection C to be the set of all intervals By, ,, x centred at such 5 and contained in (z,y).
By the definition of C,

(z,y) 2 UC.

Consider a point z € (x,y). We have the following two choices for z:

1. If z is a dyadic rational, let z = 3% and choose k € N such that 2% < min{z—z,y—=z}.
Then

PSS Bm,n,k c ($,y)

2. If z is not a dyadic rational, choose k € N such that 2% < min{z — z,y — z}. Then

there exist dyadic rationals of the form 2% in (z,z) and (z,y). Choose £ € N to be

as small as possible that z < 2%. It follows that

-1 4 C+1

$<ZT<Z<27<2T<Z/

Set 5 = 2% (after cancellation). Then

2 € Byni C (z,9).

Hence

(.CI}, y) = UC

This proves that B is a basis for (0, 1). O
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This basis can be extended to a basis for [0,1] by including all intervals of the form

[0, 2%) and (1 — 2%, 1] for n > 1.
{daedalus}
Definition 4.3.10. Let us define a map ¥: Q — [0, 1] by

> e
(6162...)192251.
=1

We observe that 1 is a surjective mapping but it is not injective, since, by
(1), (a01)9 = («10)¥ for all « € E(R)*.

The following lemma shows that ¥ preserves the lexicographic order on :
{forever}

Lemma 4.3.11. Letejesy ... and 6/16/2 ... be two distinct sequences in €} such that eres ... <y

elel.... Then one of the following holds:

1. (ereg...)9 = (€€, ...)0 if and only if there exists « € E(R)* such that ejey ... = a0l

and € ey ... = all.
2. (ereg...)0 < (el ...)0 otherwise.

Proof. Let ejes ... and €€} ... be two distinct sequences in Q such that ejey ... <pejé, .. ..
Suppose that (e1ez...)0 = (ej€)...)0. By|Definition 4.3.10/of ¢, they must be two different

binary expansions of the same dyadic rational 5. By|Lemma 4.3.5] there exists o € E(R)*

such that ejes... = a0l and €|é} ... = al0 (since they are in lexicographic order).
Conversely, suppose that there exists « € F(R)* such that ejes... = a0l and €jé ... =

«10. By [Lemma 4.3.5| there exists a dyadic rational #% such that o01 and 10 are the

binary expansions for 5. This implies that (ejez...)0 = (ejey...)0. O

Example 4.3.12. Consider the interval

1 3
Bii12= (47 4> :

Observe that (3)9~1 = {001,010} and (3)9~! = {101,110}. Consider ejes. .. € Q. Since,
by [Lemma 4.3.11], ¥ is an order-preserving map, then

(e1e2...)0 € (i i)

if and only if 010 <y e1es ... < 101. Hence

13 _ _
<4,4> 19_1:{6162...€Q|010 <g€162...<101}

= (Q(01) U 2(10)) \{010, 101}.

This is open in 2, since it is the union of basic open sets with the complement of a finite

number of closed sets.

More generally, we have the following result:
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{ceilingunlimi
Lemma 4.3.13. Let By, ,, 1 be an interval defined in |Definition 4.5.8 (for some m,n,k
satisfying Property A). Let o € E(R)* such that a01 and a10 are the binary expansions

for the dyadic rational ;.

1. If k =n, then
(Brnn)? ™t = Q(a)\{al, al}.

2. If k > n, then

(Bing)9 ' = (Q(aO(l)k"”‘l) U Q(al(o)k—n—1)> \ {aO(l)k—”—lﬁ, al(o)k—n—li} .

Proof. Let By, 1 be an interval defined in [Definition 4.3.8 (for some m,n, k satisfying

m 1 m 1
Pt =g =g g0 T8 )+
By 5 the dyadic rational Ji has precisely two binary expansions a01 and «10
(for some a =e;1...e,-1 € E(R)").

Property A):

m—1

t and al

1. Suppose k = n. Then, by |Corollary 4.3.6|7 a0 is a binary expansion for

m+1
27L .

Consider a sequence t € €. By [Lemma 4.3.11] ¥ is order-preserving. Then (¢)¢ €
By if and only if a0 <, t <g al. It follows that

is a binary expansion for

(Bimnn)9 ! = Q(a)\{a0, al}.

This is open in 2, since it is the union of basic open sets with the complement of a

finite number of closed sets.

2. Suppose k > n. Then

1 _ 0 1 1 1
m__<el_|_...+e"1_|_+ _|__|_...>_

on 2k 2 on—1 omn on+1 on+2 2k
€ en—1 0 1 1 0 0
Syttt a Tt tamt ot T e
That is, 0(1)¥~"~10 is a binary expansion for S — ik Similarly,
m I (e €n_1 1 0
o 9k 5+”+w4+%+WH+%ﬁ+“ o
_a €n—1 0 0 1
—§+"'+2n_1 +*+2n+1 + - "4‘27—1—%4-@4‘“"
. k—m—17 = . . 1
That is, 1(0)"~"7"1 is a binary expansion for 7 + 5.

Consider a sequence t € €. By [Lemma 4.3.11} ¥ is order-preserving. Then (¢)¥ €
Bk if and only if a0(1)*7"710 <, t <4 1(0)*"~11. It follows that

(Buna)? ™ = (20171 UQ(a1(0)* 1))\ {a0(1)F=" 710, a1(0) "1} .
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This is open in €2, since it is the union of basic open sets with the complement of a

finite number of closed sets.

O
{holyfallout}
Lemma 4.3.14. The function ¥ is continuous.
Proof. Let ¥ be as defined in [Definition 4.3.10f To show that ¢ is a continuous function,
we have to show that ¥~1(U) is open in € whenever U is open in [0,1]. It is enough to
verify this condition when U is chosen from a suitable basis for the topology on [0, 1] since
all open sets are unions of basic open sets.
In [Lemma 4.3.13 we have shown that the preimage of the intervals B,, ,, ; under 9
is open in Q. Observe that (5)9~1 = (0)"I and (1 — 5 )9~ = (1)"0. Then, a similar
argument to shows that
1 _ _
(o-3) ) o =200
and .
((1-g1] ) o =amniaro).
These are open in €, since one-point sets are closed in 2. This proves that ¥ is continuous.
{cultofshe}
Lemma 4.3.15. Letejes... andeiely ... be two distinct sequences in Q. Then (e1ez...)0 =
(elely... )0 if and only if erea... ~eley. ...
Proof. Let ejea ... and €€} ... be two distinct sequences in Q. Suppose that (ejes ... )90 =
(ej€h...)0. Then, by these are two distinct binary expansions of a dyadic
rational. Then there exists a € E(R)* such that
e1€. .., e ey. .. € {all, al}.
Hence, by ereg...~eeh. ...
Conversely, suppose that ejey ... ~ €€, .... Then, by [Lemma 4.2.7, o € E(R)*
erey ..., eveh ... € {all, all}.
It follows from that are the binary expansions of the same dyadic rational.
Hence (ejez...)0 = (e}e...)0. O
{templeoflove}

Definition 4.3.16. The function ¢ induces a unique map 6: X — [0, 1], where ¥ = ¢0,

i.e., the following diagram commutes:

Q




{rotersand}

{angriff}
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Let x € X. Then (x)8 = (¢)¥ for all ¢ such that (¢)¢ = z. By |[Lemma 4.3.15| the map

Y is constant on ~-equivalence classes. Hence (t)¢f = (¢)¥ is independent of the choice of

representative ¢ for the equivalence class (t)¢. Therefore 0 is well-defined.

Lemma 4.3.17. The map 0 is a homeomorphism.

Proof. Let §: X — [0,1] be the map defined in [Definition 4.3.16| Observe that X is

compact and [0, 1] is Hausdorff. Then it is sufficient to show that the map 6 is continuous

and bijective.

Let us prove that 6 is continuous: Consider an open set U in [0,1]. Observe that
(U)6~! C X. Then, by [Definition 4.3.16} (U)0~1¢~1 = (U)9¥~!, which is open in € since
¥ is continuous by Then, by definition of the quotient topology on X,
(U)#~! is open in X.

Let us prove that 6 is surjective: Observe, since 1 is surjective, that for any x € [0, 1]
there is a t € Q such that ()9 = z. Then (¢)¢ is an element of X and (y)¢0 = (y)9 = =.

Let us prove that 6 is injective: Consider x1,z9 € X such that (x1)0 = (x2)f. Let

t1,te € Q such that (t1)¢ = x1 and (t2)¢ = x2. Then ¥(t1) = 9(t2), and, by |[Lemma 4.3.15

t1 ~ to. Hence 1 = x9.

This proves that 6 is a homeomorphism. O

Lemma 4.3.18. Let a = e1...e,_1 € FE(R)* such that a0l and 10 are the binary
expansions of the dyadic rational 5. Then
m
()l = o
Proof. Let o = e1...e,_1 € E(R)* such that a0l and «10 are the binary expansions
of the dyadic rational &7. Consider the gluing vertex ax. Observe that (ax)p™! =
{a01,210}. By [Lemma 4.3.5) and [Definition 4.3.10, (a01)9 = % and (al0)Y = Zt.
Hence, by [Definition 4.3.16),

m
()l = o

Remark 4.3.19. Observe that (a)f =0 and (b)0 = 1.

Let « = e1...e,-1 € F(R)* such that a01 and «10 are the binary expansions of the
dyadic rational 7. Let us define the depth of 3 to be depth(gi) = n. Observe that

this is equal to depth(ax) = n. There exists a natural order on dyadic rationals (which is

different to the normal order on real numbers): Let g7 and 572 be two dyadic rationals.
Then
mp _ ma
271 < 272 if ny < n9
or
mi ma .
2—n<2—n if ni =ng and m; < ma.

We observe that this is the same as [Definition 2.3.10] of depth order <; on the set GV .
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Definition 4.3.20. A standard dyadic interval is an interval of the form

m—1 m+1
2n 7 9n ’

where m,n € N, 2t m, and m < 2".

Example 4.3.21. Consider the standard dyadic interval [%,%] In this case, 57 = %.

Observe that ()9 = {001,010} and () = {01,10}. Then, for t € 2, 010 <, t <, 011

if and only if fracld < (t)9 < % Hence

(Q(01))9 = B ;] |

By [Definition 4.3.16] it follows that

(C(01))0 = [i ;] .

More generally, we have the following result:
{dinosaurjr}
Lemma 4.3.22. Let X be the limit space of the F' replacement system. Let C(«a) be a

m

cell in X (for some o =e1...e,_1 € E(R)*). Then there exists a dyadic rational 5z such
that

clpp= "t ]

Proof. Let a« = ey...e,—1 € E(R)*. By |Lemma 4.3.5 and |Corollary 4.3.6 there exists a

dyadic rational 5 such that

_ m—1
(a0) 9 = o
(aT) ¥ = m;l.

Since ¥ is an order-preserving surjective map, this implies that

()i = [”’; ) i 1] .

By [Definition 4.3.16] ¢ = ¢f. Therefore

c@pr= "t ]

O]

Remark 4.3.23. Observe that [Definition 3.1.13|of the depth of a cell C'(«) in X is the same
as the depth of the dyadic rational 57 such that

o= "t .



{beastland}

{persephone}

{atlasair}

{paragun}
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4.4 Thompson’s Group F' as a Rearrangement Group

Let X be the limit space of the F' replacement system. In we showed that X
is homeomorphic to the unit interval [0, 1]. Let Rearr(X) be the group of rearrangements
of X. In this section, we will prove that Rearr(X) is isomorphic to Richard Thompson’s

group F.

Recall from [Definition 4.3.16| the homeomorphism 6: X — [0, 1]. There exists a topo-
logical conjugation #*: Aut(X) — Aut([0,1]), induced by 8, i.e., 8*: f — 671 f0 for all
f € Rearr(X). Recall from that Rearr(X) is a subgroup of Aut(X). Let
G = (Rearr(X))0*. We will show that G = F, i.e., 0" |gearr(x): Rearr(X) — F'is a group

isomorphism. We will do this by proving the following two results:

Proposition 4.4.1. The group G is a subgroup of Thompson’s group F'.
Proposition 4.4.2. Let A, B € F from|[Example 4.1.J) Then A,B € G.

To prove these propositions, we require the following results regarding rearrangements

of the limit space X of the F' replacement system:

Lemma 4.4.3. Let X be the limit space of the F replacement system. Let f be a rear-
rangement of X. Let (P,(P)f) be a cellular bipartition for f. Let C(a) € P (for some
a€ E(R)*) and C(B) € (P)f (for some B € E(R)*). Suppose one of the following holds:

Proof. Let X be the limit space of the F' replacement system. Let f be a rearrangement
of X. Let (P,(P)f) be a cellular bipartition for f. Let C(a) € P (for some a € E(R)*)
and C(B) € (P)f (for some 8 € E(R)*).

Suppose (vq)f = vg. By the definition of a rearrangement, there exists a cell C () €
(P)f (for some v € E(R)*) such that (C(«))f = C(v). Then, by (va)f =

vy, i.e., vg = v,. By|Lemma 4.2.11} there is only one cell C(8) € (P)f such that vg is the
initial vertex of C'(3). This implies that C(y) = C(p).

Suppose (wq)f = wg. By the definition of a rearrangement, there exists a cell C(y) €
(P)f (for some v € E(R)*) such that (C(«))f = C(vy). Then, by [Lemma 3.3.22 (w,)f =

Wy, i.e., wg = wy. By [Lemma 4.2.11] there is only one cell C(8) € (P)f such that wg is
the terminal vertex of C'($). This implies that C(vy) = C(5). O

Lemma 4.4.4. Let X be the limit space of the F replacement system. Let f be a rear-
rangement of X. Then (a)f = a and (b)f =b.

(4.4}
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Proof. Let X be the limit space of the F' replacement system. Let f be a rearrangement of
X. Let (Pgq4,Pyr) be the minimal bipartition for f. Let lex(Pfq) = (C(a1),...,C(an))
and lex(Pys,) = (C(B1),...,C(Bn)). We shall prove this result by contradiction.
By (1), @ = va, and a = vg,. Suppose (a)f # a. Then, by
(C(en))f # C(B1). Suppose (C(a1))f = C(B;) for some 2 < i < n. Then, by[Lemma 4.2.14]

(2), (a)f = wg,_,. By the definition of a rearrangement, there exists a cell C(c;) (for
some 2 < j < n) such that (C(B;-1))f ' = C(ay). By [Lemma 3.3.22} this implies that

((a)f)f~! = wa,, i.e., a = wq,. This contradicts [Lemma 4.2.11] Therefore, (a)f = a.

By (3), b = wq,, and b = wg,. Suppose (b) f # b. Then, by
(C(an))f # C(Bn). Suppose (C(an))f = C(B;) for some 1 < i < n — 1. Then, by

Lemma 4.2.14| (2), (b)f = vg,,,. By the definition of a rearrangement, there exists a cell
C(a;) (for some 1 < j <n — 1) such that (C(Bi41))f 1 = C(aj). By this
implies that ((b)f)f~! = va,, i.e., b = vqy,. This contradicts [Lemma 4.2.11] Therefore,
(b)f = b. 0

Lemma 4.4.5. Let X be the limit space of the ' replacement system. Let P and Q be cel-
lular partitions of X and letlex(P) = (C(a1),...,C(ay)) andlex(Q) = (C(B1),...,C(Bn))-
Then there exists a rearrangement f of X such that f|c(a,): Clai) — C(B:) is a canonical

homeomorphism for allt=1,...,n.

Proof. Let P and Q be cellular partitions of X and let lex(P) = (C(ay),...,C(ay,)) and
lex(Q) = (C(B1),...,C(Bn)). Let us define the canonical homeomorphism v;: C(a;) —

C(p;) for all i = 1,...,n. By |[Lemma 4.2.14

1. vo, = a,
2. Wq; = Vo, foralli=1,...,n—1,
3. wq,, =0.

Observe that
1. (va, )1 = v, = a,
2. (wa,; )i = wg, = vg,,, = (Vayy, )Wiq1 foralli=1,...,n—1,
3. (Va,)¥n =vg, =b.

That is, if z is a boundary point of both C(«;) and C(¢;), then (2)1; = (2)1;. Let us
define a map f: X — X such that f[c(,,) = ¥ is a canonical homeomorphism for all

i =1,...,n. Then, by [Lemma 3.3.10, f is a rearrangement of X. ]

Lemma 4.4.6. Let X be the limit space of the F replacement system. Let f be a rear-
rangement of X and and let (P, (P)f) be a cellular bipartition for f. Suppose lex(P) =
(Clar), ..., Clan)). Thenlex((P)f) = ((Clar))f,-..,(Clan))f).

{cockroachking

{deathgrips}
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Proof. Let f be a rearrangement of X and and let (P, (P)f) be a cellular bipartition for
f. Suppose that lex(P) = (C(a),...,C(ay)) and lex((P)f) = (C(ﬂl), ., C(Bn)).

2y BT ).t 0w v = . By TR (3 = T s
o (o) = o e, vy [ TR (0o = O By [T 2

(wo; )i = wg, = vg,, = (Va;y,)¥it1 forall i =1,...,n — 1. And thus, by similar log1c,
(C(ay))f =C(p;) for all i = 1,...,n. Hence, lex((P)f) = (C(a1))f,...,(C(an))f). O

Let f be an element of Richard Thompson’s group F. Recall the characterisation for f

from [Definition 4.1.1} f: [0,1] — [0, 1] is a piecewise linear homeomorphism, differentiable

everywhere except at finitely many dyadic rationals, and at the intervals of differentiability
the derivatives are powers of 2. Let us call these dyadic rationals the break points of f,
and denote them by the ordered list (aq,...,a,) where a; = 0 and a, = 1. Then the unit

interval [0, 1] is the overlapping union
r—1
[07 1] = U [a’iv ai+1]7
i=1
where the points of overlap are as,...,a,_1, or the disjoint union
r—1 n
[0,1] = <|_|(ai,ai+1)> U] {as
j=1

=1

Each interval [a;, a;41] is a finite union of standard dyadic intervals with disjoint interiors.
Observe that the points of overlap of these standard dyadic intervals reveal hidden break

points. This is illustrated in the example below:

Example 4.4.7. Let us define a function g € F as follows:

2x nggé

_ 11 3

(x)g = r+5 g<x<g
z 1 3

7t3 gsz=1

Observe that the break points of this function are: 0, 1 3 4, 1. This gives us the following

intervals of differentiability: (0, é) (é %) (%, 1). When we convert these to standard
dyadic intervals, we get: ( , 8) (% ) (% %) , (%, %) , (%, g) , (%, %) , (%, 1). Observe that
1315
1,818

there exist hidden break points: %

OO

Then ¢ is a rearrangement of X, defined as follows: Let x € [0,1] with z = [ejezes . . .].



4.4. THOMPSON’S GROUP F AS A REARRANGEMENT GROUP

Then
006364 .. .], if €1e9€3 — 000

], if ezegeg = 001
], if ejeseg = 010
, if ejeqeg = 011
J, if epeges = 100

oy if €1€9€3 — 101

[

[

[
([erezes...]) g = { [100ezey . . .

[

[

[ ], iferes =11

]
]
]
-]
]
]

Observe that the cells and boundary points get mapped as follows:

(C(000)) g = €C(00)
(00x) g = Ox
(C(001)) g = C(010)
(0z) g = 01z
(C(010)) g = C(011)

(0lz)g ==
(C(011)) g = C(100)
(x) g =10z
(C(100)) g = C(101)
(10x) g = 1z
(C(101)) g = C(110)
(1x) g = 11z
(C(11)) g = C(111)

The rearrangement g has the following minimal bipartition:

P,.a = {C(000),C(001),C(010),C(011), C(100), C(101), C(11)}
P, = {C(00),C(010),C(011),C(100), C(101), C(110), C(111)}

The rearrangement g¢ is illustrated by the following graph-pair diagram:

000 001 010 011 100 101

NNVNY




{gallowsbird}
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Let g be a rearrangement of X and let (P, Q) be a cellular bipartition for g. The
following algorithm finds the minimal bipartition (Pg 4, Py,) for g:

Algorithm 4.4.8 Minimal bipartition for a rearrangement g of X.
{actors}

Require: Let g be a rearrangement of X and let (P, Q) be a cellular bipartition for g,
where lex(P) = (C(aq),...,C(ay)) and lex(Q) = (C(51), ..., C(Bn))-

1: function MINIMALBIPARTITION(P, Q)

2 Set switch = false.

3 Set i = 1.

4 while switch = false and i < n do

5: if C(a;) UC(air1) =C(vy) v € E(R)*) and

6: C(Bi) UC(Bit1) = C(9) (for some § € E(R)*) then

7 Set switch = true.

8 Set P' = {C(a1),...,C(a;i-1),C(7),C(ait2),...,C(an))
9 and Q' = {C(p1),...,C(Bi=1),C(0),C(Bir2),...,C(Bn)}-

10: Set i =1+ 2.

11: else

12: Set i =14 1.

13: end if

14: end while

15: if switch = true then

16: return MINIMALBIPARTITION(P, Q).
17: else

18: return (P, Q).

19: end if

20: end function

Lemma 4.4.9. Let X be the limit space of the F' replacement system. Let g be a rearrange-
ment of X. Let (P, Q) be a cellular bipartition for g. Let lex(P) = (C(aq),...,C(an))
and lex(Q) = (C(B1),...,C(Bn)). Then MINIMALBIPARTITION (P, Q) is the minimal bi-

partition for g.

Proof. Let X be the limit space of the F' replacement system. Let g be a rearrangement
of X. Let (P, Q) be a cellular bipartition for g. Let lex(P) = (C(a1),...,C(a,)) and
lex(Q) = (C(p1),...,C(Bn)). We will prove this result by induction on n.

Let n = 1. In this case, P = Q = {C(e)} and g is the identity map. In this case,
implementing [Algorithm 4.4.8| gives us MINIMALBIPARTITION (P, Q) = (P, Q) and the

inductive hypothesis holds.
Suppose the inductive hypothesis is true for n = m. Let us examine the case when

n =m + 1. We have the following possibilities:
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1. Consider the case when (P, Q) is the minimal bipartition for g. Let us implement

[Algorithm 4.4.8/and calculate MINIMALBIPARTITION (P, Q). [Algorithm 4.4.8|imple-
ments the while loop in lines 4-14 as follows: By the conditions of the
if loop in lines 5-6 are not satisfied for all i = 1,...,m 4+ 1. Hence, [Algorithm 4.4.§|
skips lines 7-10 for all ¢ = 1,...,m + 1. Since switch = false, [Algorithm 4.4.§|

skips line 16 and implements line 18, which returns (P, Q), which is the minimal

bipartition for g. Therefore, the inductive hypothesis holds for n = m + 1.

2. Consider the case when (P, Q) is not the minimal bipartition for g. Let us imple-

ment [Algorithm 4.4.8/ and calculate MINIMALBIPARTITION (P, Q). |Algorithm 4.4.8

implements the while loop in lines 4-14 as follows: By |Lemma 3.3.27, the con-
ditions of the if loop in lines 5-6 are satisfied for some 1 < ¢ < m + 1. Then

[Algorithm 4.4.8| implements lines 7-10, which gives us switch = true and the sets

P’ and Q'. Since switch = true, |Algorithm 4.4.8| implements line 16 and calls
MINIMALBIPARTITION (P, Q’). Observe that |P| = |Q| < m. Hence, the induc-
tive hypothesis holds and therefore MINIMALBIPARTITION (P, Q') = (P”, Q") is the

minimal bipartition for g. Therefore, the inductive hypothesis holds for n = m + 1.

This proves the result by induction. O

We can now prove |Proposition 4.4.1| and [Proposition 4.4.2

Proof. (Proof of |[Proposition 4.4.1))

Let X be the limit space of the F' replacement system. Let G = (Rearr(X))6*. Let
F be Thompson’s group F. Let f* € G. Then f* = 6~!f6 for some f € Rearr(X). By
[Definition 3.3.8] there exists a cellular bipartition (P, (P)f) for f. Let P be the set of
boundary points of P. Recall that 9P C GV. Then, by for all z € 0P,
(2)6 is a dyadic rational.

Let C(«) € P (for some o € E(R)*). Then there exists C(8) € (P)f (for some ( €
E(R)*) such that f|c () : C(a) — C(B) is a canonical homeomorphism. By

0 establishes a one-to-one correspondence between cells in X and standard dyadic intervals

in [0,1]. We will show that f*[(c(a))s is an affine map, and its derivative is a power of 2.

Set a =ep...e, and S =€ ...€},. Let [aepy1€nt2...] € C(a). Then

([aentientz. . ))f = [Bentienta .. .

Observe that f*[(c(a))e = 0*1]"\0(0‘)0. Hence

([aenriensz.. o= % + Y %

=1 i=n-+1

and

m.

€ = €i+n—m
([Bentientz.. )0 =Y o 3 +T
=1

i=m-+1
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=25+

i=1
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€j
2j+m-n’
j=n+1

[e.e]

Setting c =1 | &, d=>7", 5 i and z = D gl % gives us

(c+2)f"|C(a) =d+

2mn

This proves that f*|c(s) is an affine map and its derivative is a power of 2. Hence

g<F

Proof. (Proof of |[Proposition 4.4.2)

Let A and B be the generators of Thompson’s group F' from

Let z € [0,1] with z = [e1ezes ..

.]. Then we can define the maps A* and B* as follows:

[Oegeq...], if epea =00
([erezes...]) A" = { [10ezey...], if ejes =01
[1leges...], ife; =1
( [Oeges . . ], ife; =0
(ereacs .. ) B = [10ege5 . ..], if ejeges = 100
[110eq4e5...], if ejeges = 101
[11legeyq...], if ejeg =11

Observe that cells and boundary points get mapped as follows:

(€(00)) A
(0z) A™ =
(c(o1)) A
(IL')A*
) A

()

(C(0)) B
(ﬂ?)B*

(C(100)) B
(1 ﬂ?)B*

(C(101)) B
(1z) B*

) B

(C(11)

C(0)

10)

T
1x

11)

C(0)

C(10)

C(110)
= 1lx
C(111)

z
1
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We observe that these maps are in fact rearrangements of X, with the following minimal
bipartitions:

PA*,d = {C(OO)’ C(Ol)a C(l)}

Pa-r ={C(0),C(10),C(11)}

Pp+q={C(0),C(100),C(101),C(11)}
Pp-, ={C(0),C(10),C(110),C(111)}

They are illustrated using the following graph-pair diagrams (which we can see are the

same as rectangle diagrams):

00 _ 01 _ 1
i 0z T D
0 10 11
a T 1z b
A*
0 100 _ 101 11
a a 10 1 v
0 10 110\ 111
x T 1z 1lz b
B*
Then A = §~1A*0 and B = 9~ ' B*0. Hence A,B € G. O

Cannon, Floyd, Parry [9] have shown that Thompson’s group F' = (4, B). By
G < F and, by [Proposition 4.4.2) (A, B) < G. Hence G = F.

From now on, we shall be referring to the group Rearr(X) as Thompson’s group F.

This equivalence induces an action of F' on GV corresponding to the action of F' on the
set of dyadic rationals. Let us name this action by the homomorphism 7: F' — Sym(GV)
(where Sym(GV) is the symmetric group on GV).
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Chapter 5

A Generating Set for Richard
Thompson’s Group F

In this chapter, we develop a combinatorial algorithm to define an infinite generating set
for Richard Thompson’s group F' which follows from the structure of the topological space
it acts on. The elements in this generating set correspond to small actions restricted to
basic open sets of the limit space X. This enables us to build elements “locally”, while
previous generating sets ([9], [I7]) consist of elements on the “right vine” (the right-most
nodes of the binary rooted tree or the right most cells in a cellular partition).

This generating set was introduced and discussed by Patrick Dehornoy in [18]. How-
ever, there do not exist any combinatorial algorithms to find the “normal form” of an
element of F' in terms of this generating set (which is significantly shorter than the normal
form in terms of previous generating sets — for which combinatorial methods do exist (see
[2], [20])). In this chapter, we attempt to find a combinatorial algorithm.

Recall from that Thompson’s group [’ is isomorphic to the rearrangement
group Rearr(X) of the limit space X of the F' replacement system. We will be presenting
results specifically for Rearr(X) in this chapter. Following the notation established in

let us fix the following in this chapter:

e The set of finite words of the F' replacement system: E(R)* = {0, 1}*.
e The symbol space of the F replacement system: € = {0, 1}~.
e The limit space of the F' replacement system: X = [0, 1].

e The set of gluing vertices of the F' replacement system: GV = {a,b,ax | « € E(R)*}.

5.1 The Rearrangement f,

Recall from [Definition 3.3.14] that the support of a rearrangement g of X is

suppg = {y |y € X,y # yg}.

97
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{floorshow}
Definition 5.1.1. Let X be the limit space of the F' replacement system. Let a =

er...en € BE(R)" ={0,1}*. We define a map fo: X — X which acts as follows on points
in the cell C(«) indexed by «, and as the identity on the rest of the interval:

[a0epi3enta...], if ept1ent2 =00
([aen+1en+2 .- ]) Ja = [a10€n+36n+4 .. .}, if epyi1ente =01
[allepyoent3...], ifeppr =1

Observe that the cells and boundary points get mapped as follows:

This map is illustrated by the rectangle diagram in

a00 a0l al
0 x w
a0 al0 all
v x 1z w

Figure 5.1: f,

Definition 5.1.2. We define the set X to be as follows:
X ={flla€ER),ne{£l}}.

Lemma 5.1.3. Let X be the limit space of the F replacement system. Let f, € X
(for some o = ey ...e, € E(R)*). Then fq is a rearrangement of X with the minimal
bipartition (Py, d, Pt.r), defined as follows:
Pjoa = {C(a00),C(a01), C(a1),C(8) | B = al"= Vi)
where e; € BE(R)\{e;} foralli=1,..., n},
Pjor = {C(a0),C(10),C(a11),C(8) | B = al"=+Die]

where e; € E(R)\{e;} foralli=1,..., n}
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Proof. Let X be the limit space of the F' replacement system. Let f, € X (for some
a=er...e, € E(R)*). Let Py, 4 and Py, , be the sets defined as follows:

Piod = {C(aOO),C(aOl),C(al),C(B) | B = an=i D¢,
where ¢; € E(R)\{e;} foralli=1,.. .,n},

Pior = {C(OcO),C(alO),C(all),C(ﬁ) | B = aP— D¢
where ¢} € E(R)\{e;} for alli =1,.. n}

It is easy to prove that Py, 4 and Py, , are cellular partitions of X. By [Lemma 3.2.2 we
observe that Py, q and Py, , are characterised by complete antichains in E(R)*.

By [Definition 3.3.8] to prove that f, is a rearrangement of X, we have to show that

falc(y) is a canonical homeomorphism for all C(y) € Py, 4. Observe that

falc(aooy: C(a00) — C(a0),

falc(aor): C(a0l) — C(al0),

falc(ary: Clal) — C(all),

falegy: C(B) = C(B) for all 3 defined above.
Then fa|(;(7) is induced by the following prefix replacement maps respectively:

Uy Q(a00) — Q(a0),
Uy: Q(a01) — Q(l0),
Us: Qal) — Q(all),
Ug: Q(B) — Q(B) for all B defined above.

Then, by [Definition 3.3.5) fa|c(y) is @ canonical homeomorphism for all C(y) € Py, 4.

This proves that f, is a rearrangement of X and (Py, .4, Py, ) is a cellular bipartition for

fa
We can prove that (Py, .4, Pf,,r) is the minimal bipartition for f, by a straightforward

application of [Algorithm 4.4.8| and [Lemma 4.4.9, This completes the proof. O
{juliuscaesar}

Corollary 5.1.4. Let f, € X (for some o« € E(R)*). Then the boundary points of the

minimal bipartition (Py, 4, Ps.r) are as follows:

OPf..a = {aOa:, az,alz, oz, ..., x} ,
OPfpr = {alx, ax, aTx,QQTac, ey x} .

Proof. Let fo € & (for some oo € E(R)*). Let (Pf,.4, Pt.r) be the minimal bipartition
for fo. The result follows from the definition of Py, 4 and Py, , in|Lemma 5.1.3 ]

Corollary 5.1.5. Let fo € X (for some a € E(R)*). Then

supp fo = int C(a).
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Proof. Let f, € X (for some o € E(R)*). Let x € X. By |Definition 5.1.1} if z ¢ int C'(«)
then (x)f, = = and if z € int C(«) then (x)fo # x. The result follows. O

The following results characterise the rearrangement f, (for some a € E(R)*):

Let z = ax € GV (for some a € E(R)*). Recall from [Remark 4.2.2| that depth(z) =

|a] + 1. Recall from [Definition 2.3.10| that there exists an induced vertex depth order on
OP, denoted by the ordered list depth P = (z1,. .., 2q4).

Lemma 5.1.6. Let GV be the set of gluing vertices of the F replacement system. Let
z=ax € GV (for some a € E(R)*) and let fj € X (for some B € E(R)* and n € {£1}).
Then z € supp fg if and only if B <X a.

Proof. Let GV be the set of gluing vertices of the F' replacement system. Let z = ax € GV
(for some a € E(R)*) and let fg € X (for some 5 € E(R)* and n € {£1}). Suppose
that fg has a non-trivial action on z. Then z € int C(f), and by |Corollary 3.1.7|, B =< a.
Conversely, suppose that 5 < «. Then z € int C(5) and therefore fg has a non-trivial

action on z. O

Lemma 5.1.7. Let GV be the set of gluing vertices of the F replacement system. Let
z = oax € GV (for some o € E(R)*) and let fg € X (for some 3 € E(R)*) with f =< a.

The rearrangement fg will act as one of the following on z:
1. If z = B0x, then zfg = [x.
2. If z = Pz, then zfg = Blx.
3. If z € int C(B00), then depth(zfs) = depth(z) — 1.
4. If z € int C(B01), then depth(zfz) = depth(z).
5. If z € int C(p1), then depth(zfg) = depth(z) + 1.

Proof. Let GV be the set of gluing vertices of the F' replacement system. Let z = ax € GV
(for some o € E(R)*) and let fg € X (for some § € E(R)*) such that 5 =< a.
1. and 2. follow from |Definition 5.1.1fof fg.

3. If z € int C(00), then, by |Corollary 3.1.7, 00 =< «. Say a = 00y for some v €
E(R)*. Then, by [Definition 5.1.1} zfg = (800yz) f3 = f0yx, and hence depth z f3 =
depth z — 1.

4. If z € int C(B01), then, by |Corollary 3.1.7, S01 =< «a. «. Say a = 017y for some
v € E(R)*. Then, by [Definition 5.1.1} zfg = (801yx)fs = B10yx, and hence
depth z f3 = depth z.

5. If z € int C(P1), then, by [Corollary 3.1.7, f1 < «. «a. Say a = B1v for some 7 €
E(R)*. Then, by [Definition 5.1.1, zfg = (811yz) f3 = f1lyx, and hence depth z f3 =
depth z + 1.
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Corollary 5.1.8. Let GV be the set of gluing vertices of the F' replacement system. Let
z=ax € GV (for some a € E(R)*) and let fgl € X (for some 5 € E(R)*) with f =< a.

The rearrangement fﬂ_l will act as one of the following on z:
1. If z = Blx, then zfﬁ_l = Bx.
2. If z = Bz, then zfg1 = [0zx.
3. If z € int C(511), then depth(zfﬁ_l) = depth(z) — 1.
4. If z € int C(410), then depth(zfgl) = depth(z).
5. If z € int C(B0), then depth(zf;') = depth(z) + 1.
Proof. The proof follows from O

Lemma 5.1.9. Let X be the limit space of the F replacement system. Let g be a rear-
rangement of X and let z = yx € OPyq (for some v € E(R)*). Suppose that yg =y for
all y € {yTax,~¥x, ..., x}. Then zg = azx (for some o € E(R)*) with v < a.

Proof. Let X be the limit space of the F' replacement system. Let g be a rearrangement
of X and let z = yx € OPyq4 (for some v € E(R)*). Recall, by that
iz, v 2, . .,x € 0P,y 4. Suppose that yg = y for all y € {y'z,7*Tz,...,z}. Then,
by z = ~x is the boundary point of least depth in int C'(y). Recall, by

Lemma 2.1.14] that vy, w, € {'yTx, ...,x,a,b}. Then, by our hypothesis, v,g = v, and

wyg = wy. This implies that, by [Corollary 3.3.23, (C(vy))g = C(y). Since z = vz €
int C(7y), then zg = ax € int C(7y) and, by [Corollary 3.1.7, v =< a. O

Corollary 5.1.10. Let X be the limit space of the F' replacement system. Let g be a
rearrangement of X and let depth(0Pyq) = (21,...,24). Choose z; € OPyq such that
zig =z and zjg = z; for all j =1,...,i — 1. Let z; = yx (for some v € E(R)*). Then
zjg = ax (for some a € E(R)*) with v < .

Proof. The statement follows from [Lemma 5.1.9 O

Lemma 5.1.11. Let X be the limit space of the F' replacement system. Let g be a rear-
rangement of X and let z = ax € 0Py, (for some a € E(R)*). Let fg € X (for some
B € E(R)" andn € {£1}) with B < . Then one of the following holds:

1. If B0 =X «, then 8Pf5,d C OPy,.

2. If B1 < «, then angl g S OPgy.

{imonster}

{inbinary}

{survivalism}
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Proof. Let X be the limit space of the F' replacement system. Let g be a rearrangement
of X and let z = ax € 0P, (for some a € E(R)*). Let fg € X (for some 5 € E(R)* and

n € {£1}) with § < «. Using |[Lemma 3.2.9| and the hypothesis that z = ax € 0P,,, we

observe that 0P, contains the boundary points ate, ...z

1. By |C0rollary 5.1.4|, the set of boundary points 0Py, 4 = {ﬁO:L“, Bz, Btz, ¥z, . .. ,:L‘}.
It follows that, if 50 < «, then 0Py, 4 C OPy,;.

2. Observe that Pfa_l a4 = Pggr- Then, by
877]@[;1@ = {5136,53:,5%,52%,...,30}. It follows that, if 81 < «, then 8Pfgl,d C
OPgr-

Corollary 5.1.4|7 the set of boundary points

O]

Lemma 5.1.12. Let GV be the set of gluing vertices of the F replacement system. Let
z=ax € GV (for somea =e;...e, € E(R)*) and let fg € X (for some § € E(R)* and
n € {x£1}). Then depth(zfg) = depth(z) — 1, if and only if one of the following holds:

1. Ife,=0,8=¢e1...ey_1 and n = +1.
2. Ife,=1,8=e1...ep_1 and n=—1.
3. Ifexs1 =ex2 =0, B=e1...ex andn=~+1 (for some 0 < k <n).
4. If egy1 =epro=1,8=ce1...e; and n= —1 (for some 0 < k <n).

Proof. Let GV be the set of gluing vertices of the F' replacement system. Let z = ax € GV
(for some o = e1...e, € E(R)*) and let f7 € X (for some 3 € E(R)" and n € {£1}).

Suppose that depth(zfg) = depth(z) — 1. Then z € supp fg and, by [Lemma 5.1.6] 8 < a.
By [Lemma 5.1.7|and [Corollary 5.1.8, depth(z fg) = depth(z) — 1 if

1. n=+1 and z = [0z,
2. n=+1 and z € int C(/500),
3. n=—1and z = flz,
4. n=—1and z € int C(B11).

The result follows.

The converse is a direct consequence of [Lemma 5.1.7] and [Corollary 5.1.8| ]

5.2 A Generating Set for Thompson’s Group F

We can now present our main result for this chapter:

Proposition 5.2.1. Richard Thompson’s group F' is generated by the set X.
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To prove [Proposition 5.2.1) we will develop an algorithm to decompose an arbitrary

rearrangement g of X into a word fa} ... faN € W(X) (for some oy, ...,ay € E(R)* and
M...,nn € {£1}).

Let X be the limit space of the F' replacement system. Let g be a rearrangement of
X. Using [Algorithm 4.4.8, we can find the minimal bipartition (Py 4, Pg,) for g. Recall
from that the minimal bipartition for a rearrangement is unique. Using this
minimal bipartition, the following algorithm finds a word fii ... fiN € W(X) (for some
ai,...,ay € E(R)* and m1,...,ny € {£1}) such that gfd; ... fAN = 1.

Algorithm 5.2.2 The function FACTORIZATION.

Require: Let g be a rearrangement of X and let (Pgy 4, Py) be the minimal bipartition
for g.

1: List 8779,[1.
2: Define bp = depth(0P, 4) = (21, ..., z4).
3: function FACTORIZATION(g, bp)

4: Set outputword = I.

5 fori=1,...,d do

6 Set h = g outputword.

7: Compute interimword = MAPBACK(h, bp, )
8 Append interimword to outputword.

9 end for

10: return outputword.

11: end function

Observe that [Algorithm 5.2.2] calls a function MAPBACK. This function is defined in

the following algorithm:

Let X be the limit space of the F' replacement system. Let g be a rearrangement of X.
Let (Pg.d4,Pg,r) be the minimal bipartition for g. Let bp = depth(9Pyq4) = (21,. .., 24)-
Choose z; € 0Py q such that z,g = z1,...,2i-19 = zi—1. The function MAPBACK(g, bp, 1)
finds a word fg' ... 3k € W(X) (for some Bi,...,Bx € E(R)* and n1,...,nx € {£1})
such that z1gf5' ... fir = 21,...,2i9f3) - [ar = 2.

Algorithm 5.2.3 The function MAPBACK.

Require: Let g be a rearrangement of X. Let (P 4, Py,») be the minimal bipartition for
g. Let bp = (z1,...,24) be a list of precomputed gluing vertices ordered by depth
such that 0P, 4 C bp. Let z;g = 2z1,...,2i-19 = zi—1.

1. function MAPBACK(g, bp = (21,..., 24), 1)
2: Let zig=ax =e1...ex2, 2 =yr =€1...67T.

3: Set outputword = I.

{killingjoke}

{thetwilightsa
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4: if z;9 # z; then

5: Define fg such that

6: B=e1...ep1 and

7 n=+1life,=0o0r

8: n=-1life, =1.

9: Append fg to outputword.

10: Set interimword = MAPBACK(gfg, bp, 7).
11: Append interimword to outputword.

12: end if

13: return outputword.

14: end function

The following results and examples provide a full proof and explanation of
[rithm 5.2.3t

Lemma 5.2.4. Let X be the limit space of the F replacement system. Let g be a rear-
rangement of X. Let (Pgaq,Py,r) be the minimal bipartition for g. Let depth(0Pyq) =
(21,...,24). Let z19 = z1,...,2i-19 = zi—1. Let z;g = ax (for some a = ej...e, €
E(R)*) and z; = ~yx (for some v = e1...em € E(R)*) such that z;jg # z;. Let fg be as
defined in Lines 5-8 of|Algorithm 5.2.5. Then

1.oz19fg =21, 2im19f8 = zi-1,
2. zigfy = atz.

Proof. Let X be the limit space of the F' replacement system. Let g be a rearrangement
of X. Let (Pg.q,Pg,r) be the minimal bipartition for g. Let depth(0Pyq) = (21,...,2a)-

Let z19 = 2z1,...,2i-19 = zi—1. Let z;g = ax (for some a € E(R)*) and z; = vz (for some

v € E(R)*) such that z;g # z;. By |Corollary 5.1.10, v < «. Suppose v = e; ...e,, and

o =eq...e, for some n,m € N such that n > m. Let fg be as defined in Lines 5-8 of
Algorithm 5.2.3} Then f = ng where n = +1 if ¢, = 0 and n = —1 if e,, = 1. Then, by
Lemma 5.1.7| (1) and |Corollary 5.1.8| (1), zigfl = alx.

Now consider the a boundary point z; for some 1 < j <i—1. Suppose z; = éx. Then,
by [Definition 2.3.10] of the depth order, either § L v or § < 7. This implies that either

§ L at or § < af. Hence, by [Lemma 5.1.6 zj ¢ supp ng and therefore zjgfg = z;. Since

this is true for all j = 1,...,7 — 1, this proves the result. O

Lemma 5.2.5. Let X be the limit space of the F' replacement system. Let g be a rearrange-
ment of X. Let (Pgq4,Pgr) be the minimal bipartition for g. Let bp 2 depth(0Pyq) =
(21,...,24). Let 219 = z1,...,2i—19 = zi—1. Let z;g = ax (for some a = ey...e, €
E(R)*) and z; = ~x (for some v = e1...e, € E(R)*). Let MAPBACK(g,bp,i) =
f"l1 .. fg;: Then

1. 1.1. K =n—m,
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1.2. By=a't forallt=1,...,K,
1.3 m=+1lifenp1=0and s = —1ifenyy1=1forallt=1,.... K.
2. zlgfnl1 f"}’; = zl,...,zigfnll fng = z.
3. zl-gfnll...fﬁss =o'tz foralls=1,... K.

Proof. Let X be the limit space of the F' replacement system. Let g be a rearrangement of
X. Let (Pg,d, Pg,r) be the minimal bipartition for g. Let bp C depth(0P, 4) = (21, ..., 24)-

Let 219 = 2z1,...,2i-19 = 2zi—1. Let z;g = ax (for some o € E(R)*) and z; = vy (for some

v € E(R)*). By|Corollary 5.1.10, v < a. Suppose v =e€j...€, and a = ej ...e, for some
n,m € N such that n > m. Let MAPBACK(g,bp, i) = f3! ... f3X.

Let us prove this result by induction on n — m:

Suppose n —m = 0. Then v = « and z;9 = z;, and [Algorithm 5.2.3| omits lines 4-12

and returns I. Hence fgll e fgfj = [ and the inductive hypothesis holds.

Suppose the inductive hypothesis holds for n — m = r. Let us examine the case when

n—m =r+ 1. Let us implement [Algorithm 5.2.3| By lines 4-9, outputword = fgll where

Bi =al and m = +1ife, = 0 and n = —1 if e, = 1. By [Lemma 5.2.4 zigfgll =

21,...,zi_1gfg11 = z;_1 and Zigfgll = afz. Set h = gjgl1 By line 10, interimword =

MAPBACK(h, bp,i). Observe that the inductive hypothesis holds for h. Therefore we have
MAPBACK (h, bp, i) = fj: ... fgfill such that

1. 1.1. The length of the word fg; . g:ll is 7.
1.2. Bp=alt forallt =2,...,r+1

1.3. ;p=+1life, 41 =0and g =—-1life, gy =1forallt=2,....r+1

72 Mr+1 __ 72 r+1 __
2. Zlhf2 S B —Zl,...,Zihf2 S B = Z.

3. zihfnj...fﬁj =o'tz foralls=2,..., K.

By line 11, outputword = fJ' f72... g:ll By line 13, MAPBACK(g,bp, i) = f3' ... g:ll

and

1. 1.1. The length of the word fg' ... g:ﬂ isr+1.
1.2. Br=att forallt=1,...,r+1
1.3. ;p=+1lifepy41=0and g =—-1lifep gy =1forallt=1,....,r+1

m Mr+1 __ . 1 Mr+1 .
2. zlgfﬁ1 R =21,---,2i9fg --- Gy = %

3. Zz‘gfnll...fﬁj =offzforalls=1,... K.

Hence, the inductive hypothesis holds for r 4+ 1. This proves the result by induction. [
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{sistereurope}

Lemma 5.2.6. Let X be the limit space of the F' replacement system. Let g be a rearrange-
ment of X. Let (Pga,Pyr) be the minimal bipartition for g. Let bp O depth(0P,q) =
(z1,.-.,2q). Let z19=21,...,2i—19 = zi—1. Let MAPBACK(g, bp, i) = fg1 f”K. Then

Proof. Let X be the limit space of the I’ replacement system. Let g be a rearrangement of
X. Let (Pg,d, Py,r) be the minimal bipartition for g. Let bp O depth(0P, 4) = (21, ..., 24)-

Let z19 = 2z1,...,2i-19 = 2zi—1. Let z;g = ax (for some o € E(R)*) and z; = vy (for some

v € E(R)*). By|Corollary 5.1.10, v < a. Suppose v =e€j...€, and a = e ...e, for some

n,m € N such that n > m.
Let MAPBACK(g,bp,i) = f"ll...fg;:. Consider s € N such that 1 < s < K. By

Lemma 5.2.5( (3), zigfl ... f=} = o(5=Dtz. Then, by [Lemma 5.1.11

apf"ls d C 8P

Ns—1 .
fnl fcxz 197

Hence, by

873 f’]l f”]s d = - 873 771 faé 1 d-

s—1’

Since this is true for all s =1,..., K, it follows that

8?’ ﬁk’d Ci87{,d

~fg
O

Example 5.2.7. Let X be the limit space of the F' replacement system. We define a

rearrangement g of X which acts as follows on points in X:

[Oeseg - . ] if e1egezeq = 0000,
[10ese6 . . .| if ejegsezeq = 0001,
(lerezes...]) g = < [110eq4e5...] if ereses = 001,
[1110e3e4...] if ejea =01,
[111leges...] ifep =1.

Cells and boundary points get mapped as follows:

(€(0000)) g = C(0),
(000x) g = x,
(C (0001))920( 0),
(00z) g =
(C(001)) g = 0(110)
(0z) g =
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(€(01)) g = C(1110),
(x)g =111z,
(C(1)) g = C(1111).

This map is illustrated by the following rectangle diagram:

We observe that bp = depth(0Pyq) = (z,0x,00x,000x). Also observe that z1g =
111z # x = z;. Let us carry out MAPBACK(g, bp, 1):

Require: ¢, bp, ¢ = 1 defined above.
function MAPBACK(g, bp, 1)
outputword = [.
z19g =111z # x = z.
f3=rat
Append fg to outputword.
outputword = fl_ll.
interimword =MAPBACK(g outputword = gffll, bp, 1).
outputword = I.
zlgfl_l1 =1lx # x = 2.
A=t
Append f} to outputword.
outputword = ffl
interimword =MAPBACK(gf;' outputword = gf;;' f{ ', bp, 1).
outputword = I.
agfn i =1l #Fr =2
f1= g
Append fg to outputword.
outputword = f 1.
interimword :MAPBACK(gfﬂlff1 outputword = Qfﬁlfflfe_l, bp, 1).
outputword = I.
agfn fL T = =2

end function
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interimword = I.
Append interimword to outputword.
outputword = f. 1.
end function
interimword = f!
Append interimword to outputword.
outputword = fl_lfgl.
end function
interimword = fl_lfe_1
Append interimword to outputword.
return outputword = fl_ll fl_lfe_l.

end function

We observe that indeed z1g f1_11 fi ! f-1 = o = 2. We illustrate this by the following

composite rectangle diagram:

S
S 3
S S 001 01 1
@ o h
o O
g 8
- g
—
—
—
¢
= 1
fi
— /111
€z = =
o/ K| 1
o/ fl
0 100 11
X =/=/1x D
8 -1
= J.
00 10 1
a Ox S b
S5

hreinachliebe}

Example 5.2.8. Let X be the limit space of the F' replacement system. We define a
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rearrangement h of X which acts as follows on points in X:

06364 .. ] if €169 = 00,

1000egey ... if ejes =01,

1legey .. ] if e1eq = 11.

\

Cells and boundary points get mapped as follows:

(€(00)) h = C(0),
(0z) h ==,
(C(01)) h = C(10),
(x) h = 100,
(C(100)) h = C(110),
(10x) h = 10z,
(C(101)) h = C(1110),
(1z) h = 1z,
(D) h = C(111),

This map is illustrated in the following rectangle diagram:

[
[

([erezes...]) h = { [1001eges...] if ereqes = 100,
[10leges...]  if ejeges = 101,
[

00 _ 01 _ 100 101 11
( (5 10z 1
—
=
0 =\ —| 101 11
a N~ 1x b
g 8
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We observe that bp = depth(0Pyq) = (x,0x,1x,10x). Also observe that z1h =

100z # x = z;. Let us carry out MAPBACK(h, bp, 1):

Require: h, bp, i = 1 defined above.

function MaPBACK(h, bp, 1)
outputword = [.
z1h = 100x # x = 21.
I3 = ho-
Append fg to outputword.
outputword = fig.
interimword =MAPBACK(h outputword = hfig, bp, 1).
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outputword = I.
zihfio =10z # x = z;.
fi=rf
Append fg to outputword.
outputword = fi.
interimword =MAPBACK(h fio outputword = hfiof1, bp, 1).
outputword = I.
z1hfiofi = 1o #x = 2z1.
fi= g
Append fg to outputword.
outputword = f. 1.
interimword =MAPBACK(h fiof1 outputword = hfiofif. !, bp, 1).
outputword = [.
zahfihfit =z =z,
end function
interimword = [.
Append interimword to outputword.
outputword = f. 1.
end function
interimword = f!
Append interimword to outputword.
outputword = fi f 1.
end function
interimword = ff!
Append interimword to outputword.
return outputword = fiofifo 1.

end function

We observe that indeed zihfiof1fo I = 2 = 2. We illustrate this in the following

composite rectangle diagram:
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00 01 100 101 11
( (0F% 102 1z
—
S
0 =\ — 101 11
1
g &
=
0 100\, —\ — 11
¢ o\ o 1 ’
K \=
S
0 10 111
¢ X x : = D
o/ 8

00 01 00 01 11
a Oz x 10x 1z b

The following results and examples provide a full proof and explanation of

frithm 5.2.2¢

Lemma 5.2.9. Let X be the limit space of the F replacement system. Let g be a re-

arrangement of X. Let FACTORIZATION(g) = fdi...faN (for some N € N). Then
m N _ T

gfar - fan .

Proof. Let X be the limit space of the F' replacement system. Let g be a rearrangement of
X. Let (Py,d, Pg,r) be the minimal bipartition for g. Let FACTORIZATION(g) = fd} ... fin
(for some N € N). Let bp O depth(0Py4) = (21,...24). Let us define the following

functions:

h., = MAPBACK(g,bp, 1),
hz, = MAPBACK(gh.,, bp, 2),

h., = MAPBACK(gh., ... h, ,,bp,d).

We will prove that fi ... faN = hs, ...hs,. Let us implement [Algorithm 5.2.2, Suppose

that, having completed step ¢ — 1 of the loop, outputword = h,, ...h;, ,. Then the
next step of the loop appends h,, to outputword. Hence, having completed step ¢ of
the loop, outputword = h, ...h,,. It follows that, having completed step d of the loop,
outputword = h;, ... h,,.

Then, by [Lemma 5.2.5| (2),

z1gh., = =1

{framedinblood
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Zlghz1 hzz = Z1, Z2ghz1 hzz = 22

z1ghsy oo hyy =21, 2490, o hyy | = 24
And, by [Lemma 5.2,

873th1 .d - 8739701

OPgh.hey,d © OPgh., d

apghzl "'thvd g apghzl "'hzd—l ,d-

Hence,

(973th1” he d S OPgq-

. Zd7
Let C(a) € Py, ..h.,a (for some a € E(R)*). Then vo = z and wa = z;. Hence

(Va)ghz, ... hyy; = vo and (W )ghz, - .. hy; = wo. Therefore, by|Lemma 4.4.3, C(a)gh, ... h,, =
C(«). Hence, gh., ...h;, acts as the identity map C(a). This is true for all cells

C(a) € Pohs, ..h.pd 10 the domain partition and hence
g g}fg% =ghy ... hy; =1.
O

Example 5.2.10. Recall the rearrangement g of X from [Example 5.2.7 Let us now apply
|Algorithm 5.2.2f to compute FACTORIZATION(g):

Require: g defined above.

0Pg.q = {000z, 00z, 0x, x}.

bp = depth 0P, 4 = (21 = x, 22 = Ox, 23 = 00z, 23 = 000z).

function FACTORIZATION(g, bp)

Applying for loop for i =1,...,4:

outputword = I.
i=1.
h = goutputword = g.
z1h = 111z # x = 2.
interimword =MAPBACK(h, bp, 1).
return interimword = fl_llfl_lf;l.
Append interimword to outputword.
outputword = fl_llfl_lfgl.
1=2.
h = g outputword = gfl_llfl_lfe_l.
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zoh = 011x # Ox = 25.
interimword =MAPBACK(h, bp, 2).
return interimword = fo_llfo_l.
Append interimword to outputword.
outputword = fi ' fi o ol fo
1 =3.
h = goutputword = g f1,' fi f7 for fi
z3h = 001z # 00z = zs.
interimword =MAPBACK(h, bp, 3).
return interimword = f&)l.
Append interimword to outputword.
outputword = f " fi o fort fo H oot
1 =4.
h = goutputword = g f1, 7 f fior f foo'
z4h = 000x = z4.

For loop ends.

return outputword = fﬂl fflf;lf(ilfglf&)l.

end function

We observe that indeed ¢ fﬂl fi ! ! f(il fo ! f&)l = I. We illustrate this in the following

composite rectangle diagram:
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—
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—
—
—_
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q ¥ Ti )
o/ 8
o/
0 100 11
¢ X ?: »: x )
8
[a)
==
00 10 1
q O q
ey
[a)
[a)
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T =
g
S/
000 01 1
0 T D
ST Lo
8
—
2
S /S /001 01 1
a Ox x b

000 e
00 e

Example 5.2.11. Recall the rearrangement h of X from Let us now apply
|Algorithm 5.2.2f to compute FACTORIZATION(h):

Require: h defined above.
OPh.a = {0z, z,10x, 1x}.
bp = depth 0P} 4 = (21 = x, 22 = 0z, 23 = 1, 23 = 10z).
function FACTORIZATION(h, bp)
Applying for loop for i =1,...,4:
outputword = [.
i=1.
¢ = houtputword = h.
216 =100z # = = 2.
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interimword =MAPBACK(/, bp, 1).
return interimword = fiofif !
Append interimword to outputword.
outputword = fiof1f L.
1=2.
¢ = houtputword = hfiofif'.
zoh = 0z = 29.
outputword = fiof1f !
1 =3.
¢ = houtputword = hfiofif .
z3h = 1o = 23.
outputword = fiof1f. '
1 =4.
h = houtputword = hfiof1f .
z4h = 10x = z4.
For loop ends.
return outputword = fiof1f 1.

end function

We observe that indeed hfiofi1f! = I. We illustrate this in the composite rectangle

diagram below:

00 _ 01 _ 100 101 11
( 0z a 10z 1z h
—
S
0 =\ —| 101 11
( a 1x
S\ &
—
3
0 100\, —\ — 11
O\ O 1
8\
O\
0 10 111
z Z = /=
o/ 8
00 01 00 01 11

a Oz x 10z 1z b

Proof. (Proof of Proposition |5.2.1)
Let X be the limit space of the F replacement system. By [Proposition 4.4.1] F is
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the group of rearrangements of X. Let g € F. Then g is a rearrangement of X. Let

FACTORIZATION(g) = feh ... faN, where foh ... faN € W(X) (for some aq,...,ay €

E(R)* and ny,...,ny € {*1}). By |[Lemma 5.2.9, gfos ... faN = I. This implies that

9= far™ ... fay"t. Observe that fo N ... fo," € W(X). Since this is true for all g € F, it
follows that F' is generated by X. O

5.3 A Normal Form for Thompson’s Group F

Let g be a rearrangement of X. Let FACTORIZATION(g) = fdi ... fiN. Observe that this
is only one choice of fa ... fay € W(X) (for some a,...,ay € E(R)* and ny,...,nx €
{£1}) such that gfa; ... fax = I. We can find several other choices, due to conjugations
in the following result. These conjugacy relations were mentioned by Dehornoy in [18].

We provide our own proof here:

Proposition 5.3.1 (Dehornoy [18], Lemma 2.10). Let o, 8,y € E(R)*. Then the following
hold:

1. fgle=fsifa LB,
2. faol® = fufoi'
3. fa00r"™ = faoy,
4 fa01" = fatr04,
5. fa1y?® = fai1y-
Proof. Let a, 8,7y € E(R)*. Let us prove the result case by case:

1. fglo =fsifa LB
We examine the left-hand side of this equation, fﬂfa = fflf,gfa. By |Lemma 5.1.6

67

the rearrangements f, and fg have a non-identity action only on points of X with

prefixes a or B. Let a =e;y...e, and B =¢€|...€,,. Then f;'fsf acts as follows

on a point [aept1€pt2...] in X:
([a00ept2€n43-..]) fafa if eng1 =0,
([aensienya - ]) fa ' fofa =3 ([a0lenysensa. . ]) fofa if ensrenta = 10,
([alen+3en+4 .. ]) fﬁfa if En+1€n+2 = 11,

\
([@00ep42en+3-..]) fo if eny1 =0,

- ([a01en+3€n+4 e ]) fa if enpienie =10,

([alepisenta-..]) fa  if enprenio = 11,
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[a0epi2ents...] ifepy1 =0,
= 9 [@10ep43€nta...] if epqienro =10,
[allen+3en+4 .. } if En+1€n4+2 = 11.

And f ! fzfa acts as follows on a point [Bemt+1€mia .. ] in X:

([Bemt1emta--]) fojlfﬁfa = ([Bemt1emi2 - ]) Jofa
( ([606m+26m+3 . ]) fa if Em+1€m+2 = 00,

— ([510€m+36m+4 .. ]) fa lf €m+1€m+2 = 01,

L ([ﬁ116m+36m+4 .. ]) fa if Cm+1 = 1,

[50€m+2€m+3 .. ] if Em+1€m+2 = 00,
= [510€m+3em+4 .. ] if Em+1Em+2 = 01,
[511€m+3€m+4 N ] if €m+1 = 1.

We observe that the support of fi!fsfs is int C(3). In this support, we observe
that it acts like fg.

2. fao®* = fafai
We examine the left and right-hand sides of the equation separately and observe

that they both give us the same rearrangement.

Left-hand side: faof“ = o faofa

(07

By |Lemma 5.1.6] the rearrangements f, and f,o have a non-identity action only on
points of X with prefix a. Let a = ej...e,. Then f,!f.0fa acts as follows on a

point [aept1€pt2...] in X:
([a00€n+26n+3 .. ]) faOfa, if En+l1 = 0
([aen+1€n+2 .- ]) fojlfozofa = ([a016n+36n+4 .. ]) faofa, if entienyo =10
L ([alen+3en+4 .. ]) fonfay lf E€n+1€n+2 = 11

a00en13€ni4-..]) fa, if epti1€nt2 =00

(I

([@010ep43€nt4a--.])) fa, if enti€nyo =01
([@011lept3enta-..]) fa, if enyienyo =10
(I

alepisenia...]) fas if epr1eni0 =11
)
[@0ep+3€n44 -], if ept1€n42 =00
B [@100e,,4+3€n+4-..], if ept1€nto =01
[a101€n+3€n+4 .. .], if En+1€n+2 = 10
[

| lallentoenys .. gy ifeppiengo =11
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This is illustrated in the following diagram:

.. . .
. 000 001 al

a0z o w
aOl aOll al o

- a0 al al all o
v a al0x aia: w

Right-hand side: f,f, '

By |[Lemma 5.1.6, the rearrangements f, and f,; have a non-identity action only on
points of X with prefix a. Let o = e;...¢e,. Then faf0711 acts as follows on a point

[epti€ny2...] in X:

(
([a0ept3€nta-..]) fojll, if epy1epi0 =00

([aenti€nta...]) faf;f =9 ([a10ep+3€n+44--.]) f;ll, if ept1€n12 =01

([allenioents .- ]) fals ifenpn =1

[@0ept3€n44 -], if ept1€n42 = 00
_ [@100e,+3€n+4--.], if ept1ento =01
[@l01lept3enta.. ], if eptienio =10
[alleny2en43...], if eppienio =11

This is illustrated in the following diagram:
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a0 a0l = al0 all o
a0 a al w
a0 «l0 alld, ol11
x all0xr olx
a0 100 101 all

3. faOO‘yfa = faO'y
We examine the left-hand side of this equation, faoovf o= f-1 faooy fa- By|Lemma 5.1.6

the rearrangements f, and f,00, have a non-identity action only on points of X

with prefix . Let a = eq...ey.

[aentienia.. ] in X:

([a6n+16n+2 .- D fc:lfaOO'yfoz

([allen 3enta. ],

([a006n+26n+3 ‘e ]) faOO'yfon
[a01€n+3€n+4 .. ]) focOvaou

(
([a1€n+3en+4 e ]) fonO’yfaa

a00vy0em+3ema - - .]) fa,
a00v10em+36m+4 - --]) fa,
@00v11emt2€mt3 - ]) fa
a00e, 126043 - - -]) fas
allepy3€n44 - - ]) fa

(I
(I
(I
(I
(I
(I

alen+3en+4 .. ]) fom

ar al0r alz w

Then £, ! fa00yfa acts as follows on a point

if En+l1 = 0
if €nt+1€nt2 = 10

if ey =11

ifeny1 =0, epya...ep = and eppi1emyz = 00
ifepy1 =0, epqo...6p =7 and epr1emyo = 01
ifepy1 =0, epq0...6 =7vand ey =1

if ep11 =0 and epi0...6m F 7

if En+1€n+2 = 10

if epy1en42 =11

[a0Y0emt3emta...], ifeny1 =0, enta...em =y and emiiemiz = 00
[@0y10€13€mta --.], if ent1 =0,€n42...6p = and eyq1€mpo = 01
[a0y1lemi2emts -], ifenr1 =0,ep49...em =~ and eypy1 =1
[a0ept2€n13 ..., if eppr =0and epq9...p #

[@10ey 136044 - - ], if epy1ep10 =10

[

if epp1ene =11

We observe that the support of this rearrangement is int C'(«07). In this support,

we observe that it acts like f,o,. This is illustrated in the following diagram when

v =e€
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_ a000 2001 a0l = «al0 = all
a()0x oOx x 1x
'_c‘xO 001 a01 al
n00000x a0z x
N a00 11 a0l al
v 0890tk
- a00 o018, a0 al0 all
v a0z al0lz ax alz

4. faOl—yfa = .falO—y

We examine the left-hand side of this equation, fQOMf @ = fol foo1y fa- By[Lemma5.1.6

the rearrangements f, and f,014 have a non-identity action only on points of X

with prefix a. Let a =

€1...€En.

[@epti1€ny2...] in X:

([aensienta . ..]) fo' faotyfa

\
7

)
([a00ent2€n+3 - - .]) faory fas

([a0lept3enta - -]) faoiy fas

([alenssenta--.]) faoryfas

a00ep 26043 - --]) fa,
a01v0em+3€mta - - ) fa,
a01v10e,43€m+4 - - ]) fa,
a0lyllep 3emid - - ]) fas
alleyi3eniq .. ]) fa,

(I
(I
(I
(I
(I
(I

alegizenia...]) fa

alepi9€nis ...,
al0v0em+3€mt4 - - -],
al0v10e4+3€m+44 - - -,
alOylleptsemtd - - -,
alOeptsenta ...,

[
[
[
[
[
[

Oéllen+3€n+4 .. .],

if En+l = 0
if epp1en2 =10

if €41 = 11

ifept1 =0

if En+1€n+2 = 10,
if En+1€n4+2 = 10,
if En+1€n+2 = 10,
if En+1€n+2 = 10,

if epy1en42 =11

ifepy1 =0
if eny1eni2 =10, €43
if eny1ent2 =10, epy3..
if En+1€n+2 = 10, €n+3--
if En+1€n+2 = 10, €n+3--

if enp1en2 =11

€n+3--
€n+3 .-
€n+3 .-

€n+3--

Then f!fa014fa acts as follows on a point

.em =y and epr1emy2 = 00
.em =7 and epii1emyo = 01
.em =7 and ey =1

cem F Y

.em =7 and epnt1emy2 = 00
.em =7 and epyi1emys = 01
.em =7 and ey =1

em F Y
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We observe that the support of this rearrangement is int C'(«107). In this support,

we observe that it acts like f,104. This is illustrated in the following diagram when

v =€
a0 al@IOk101  «ll B
Oz alx w
a0 « 0p011 al .
« D1 x w
a00 a0l 11 al
a0x o 1
- a0 al 1 «oll o
v ar 1610tz w

9. .fal'y'fa = .fall'y

We examine the left-hand side of this equation, famf @ = folforyfa. By|Lemma5.1.6

the rearrangements f, and f,1, have a non-identity action only on points of X with
prefix . Let « = e;1...e,. Then f;lfoal,yfa acts as follows on a point [ae,+1€p42 ...
in X:

(loentrenta .- ]) fo ' faryfa

([a00enr2en43 - ..]) fatyfa, if €nt1 =0
([a0lepi3enta-..]) faryfa, if enti€nia =10
([alepszenta-..]) faryfa, ifenpr =11
a00ep,12€n43 . ..]) fa, ifepy1 =0
allepisenta .. )) fa, if ep11€n10 =10

aly0emisemid---]) fa, if enti1enio =11, ep43...6p =y and epp1€mi2 = 00

alyllemioemts.-.)) fa, if enyienio =11,€n43...6m =y and ey =1

[
[
[
[a1v10emt3emtda - --]) fo, if entienio =11 €epn43...€m =7 and ept1emia = 01
[
[

(
(
(
(
(
(

| ([alentzenta - ]) fa, if epr16nio =11 and epy3...ep £



122 CHAPTER 5. A GENERATING SET FOR RICHARD THOMPSON’S GROUP F

[a0epnt2€n13 ..., if e,y 1 =0
[a10ept3€nta -], if epi1enio =10

B [@1170em13€mta --.],  if ept1enio =11, ep43... € =7 and epy1€m42 = 00
[@11910€em+3€mta - -], if ent1ento =11 ep43...6p =y and epyi€mi2 = 01
[allyllemioemts-..], if enyienio =11,€ep43.. .60 =7 and epeq =1
[allen3€niq -], if enr1ento =11 and epy3...ep £

We observe that the support of this rearrangement is int C'(l1lvy). In this support,

we observe that it acts like f11,. This is illustrated in the following diagram when

v =€
a0 . a010 ol HDodl1ll
T 0¥1x
a00 ) a01 -
04 T W
a0 | a0l all alll B
02 T W
a0 all 1 1 )
v T lz  11%1lzw
This proves the result. O

We would like to draw attention to [Proposition 5.3.1) (2) in particular. Dehornoy

referred to it as the pentagon relation (however, the author misread it as the Pentagram

relation). We find it more useful in the follwing two forms:

focOfafal = fafa

or
fa_lfaofafalfa_l =

Let X be the limit space of the F' replacement system. Let g be a rearrangement

of X. We can now modify [Algorithm 5.2.2| to develop an algorithm which outputs an
optimized word fai ... fax (where fdi € X (for some o; € E(R)* and n € {£1}) for
each i = 1,...,n) such that ¢ = fdi...faN. This word is often significantly shorter
than FACTORIZATION(g). In we conjecture that it might help determine the

“rotation distance” of g.




5.3. A NORMAL FORM FOR THOMPSON’S GROUP F 123

Let (Py,4, Pg,r) be the minimal bipartition for g. Let bp 2 depth(0Pyq) = (21, ..., 24)-
Choose z; € 0Py 4 such that z;9 = z1,...,2-19 = z;—1. The function MAPBACKSET(g, bp, 7)
finds a set of words fgll fgf; € W(X) (for some fB1,...,0k € E(R)* and ny,...,nK €
{£1}) such that 2193 ... f35 = 21,...,zigf5; .- fan = 2.

Algorithm 5.3.2 The function MAPBACKSET.

{desertkisses}
Require: Let g be a rearrangement of X. Let (Pg 4, Py,») be the minimal bipartition for
g. Let bp = (z1,...,24) be the list of precomputed gluing vertices ordered by depth
such that 0P, 4 C bp. Let z;9 = 21,...,2-19 = zi—1.
1: function MAPBACKSET(g, bp = (21, ..., 24), 1)
2 Let zig=ar =e1...epx, zi =7y =€1...€np X.
3 Set outputset = [].
4 if z;9 # z; then
5 Create prelimset consisting of all fg with the following two properties:
6: 1. ~ is a prefix of 5.
7 2. One of the following is true:
8 a=p0,n=+1,
9: a=p1,n=-1,
10: a = 400§, n = +1,
11: a=p116, n=—1.
12: for each fj in prelimset do
13: Set interimset = MAPBACKSET(gfg, bp, 7).
14: if interimset = [| then
15: for each h in interimset do
16: Add fgh to outputset.
17: end for
18: else if interimset # || then
19: Add fj to outputset.
20: end if
21: end for
22: end if
23: Return outputset.
24: end function
The following results characterize the function MAPBACKSET, and are analogous to
[Lemma 5.2.4] [Lemma 5.2.5| and [Lemma 5.2.6| for the function MAPBACK:
{modularity}

Lemma 5.3.3. Let X be the limit space of the F replacement system. Let g be a rear-
rangement of X. Let (Pgaq,Pg,r) be the minimal bipartition for g. Let depth(0Pyq) =

(21,..,24). Let z19 = z1,...,2i-19 = zi—1. Let z,g = ax (for some a = e;...e, €
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E(R)*) and z; = yx (for some vy =e;...en € E(R)*) such that zjg # z;. Let S be the set
containing all fg which satisfy Lines 6-11 0f|Algom'thm 55’4 Then, for each fg €S, the
following hold:

1.oz1gfg =21, 2im19f8 = zi1,
2. depth(zigfg) = depth(z;g) — 1.

Proof. Let X be the limit space of the F' replacement system. Let g be a rearrangement
of X. Let (Pg.q,Pg,r) be the minimal bipartition for g. Let depth(0Pyq) = (21,...,24)-

Let z19 = 2z1,...,2i-19 = zi—1. Let z;g = ax (for some a € E(R)*) and z; = vz (for some

v € E(R)*) such that z;g # z;. By |Corollary 5.1.10, v < «. Suppose v = €; ...e,, and

a=e1...e,, for some n,m € N such that n > m. Let us define the set S to contain all
functions fg which satisfy Lines 6-11 of |A1g0rithm 5.3.2} That is, S us as follows:

S = { fg{'y =< B and one of the following is true:
a=p30,n=+1,
a=pln=-1,
a = 006, n = +1,
o= p116,n=—1}.

Then, by [Lemma 5.1.12 depth(zigfg) = depth(z;g) — 1, for all fg es.

Now consider the a boundary point z; for some 1 < j <i—1. Suppose z; = dx. Then,
by [Definition 2.3.10|of the depth order, either § L « or § < . By the definition of S, § 1L 3

or § < f3, for all fg € S. Hence, by [Lemma 5.1.6 z; ¢ supp fg and therefore ngfg = zj,

for all fg € S. Since this is true for all j =1,...,¢ — 1, this proves the result. O

{lastexit}
Lemma 5.3.4. Let X be the limit space of the F' replacement system. Let g be a rearrange-

ment of X. Let (Pga,Pyr) be the minimal bipartition for g. Let bp O depth(0P,q) =
(z1y.-.,2q). Let z19 = 2z1,...,2i-19 = zi—1. Let zg = ax (for some a = ej...e, €
E(R)*) and z; = yx (for some v = e;...em € E(R)*). Then MAPBACKSET(g, bp, 1) is
non-empty if and only if n > m.

Suppose MAPBACKSET(g, bp, i) is non-empty. Let fgll e fgf; € MAPBACKSET(g, bp, ).
Then the following hold:

1. K=n—m.
2. zlgfgllfgg = zl,,zzgfgllfgg = z;.
3. depth(zigf]) ... f5°) = depth(zig) — s for all s =1,..., K.

Proof. Let X be the limit space of the F' replacement system. Let g be a rearrangement of
X. Let (Pg.4, Py,r) be the minimal bipartition for g. Let bp O depth(0Pgq) = (21, ..., 24)-

Let z19 = 21,...,2i—19 = #zi—1. Let z;g = ax (for some o € E(R)*) and z; = v (for some
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v € E(R)*). By|Corollary 5.1.10, v < «. Suppose y =¢€1...€, and o« = ey ...e, for some
n,m € N such that n > m. Let fg' ... fgg € MAPBACKSET(g, bp, ).

Let us prove this result by induction on n — m:

Suppose n—m = 0. Then a = 7y and z;9 = z;, and [Algorithm 5.3.2|omits lines 4-22 and

returns the empty set. Hence MAPBACKSET(g, bp,7) = @ and the inductive hypothesis
holds.

Suppose n — m = 1. Then depth(z;) = depth(z;g) — 1. Let us implement
We construct prelimset consisting of all fg which satisfy Lines 6-11. Then,

by [Lemma 5.3.3} for each fg € prelimset, the following hold:

Lozigf] =21, zic19f5 = 21,
2. depth(zigfg) = depth(z;g) — 1.

Observe that prelimset # &, since there must exist fg satisfying Line 8 or Line 9.

Let fg € prelimset. Since v < 8 and depth(zigfg) = depth(z;), this implies that
zigfg = z;. Line 13 calls interimset = MAPBACKSET(gfg7 bp,i). Observe that the previ-
ous base case applies and we can conclude that interimset = MAPBACKSET(g fg, bp,i) =
&. Then, by Lines 18-20, fg € outputset. Since this is true for all fg € prelimset,
then outputset = prelimset. Then MAPBACKSET(g, bp,i) = outputset. Hence every
product in MAPBACKSET(g, bp, i) has the form fg and the inductive hypothesis holds.

Suppose the inductive hypothesis holds for n — m = r. Let us examine the case when

n—m =71+ 1. Let us implement |Algorithm 5.3.2] By lines 5-11, we construct prelimset

containing all fgll such that v < 8 and one of the following is true:

a=p80,n=+1,
a=pl,n=-1,
a = 006, n = +1,
a=pB1186,n=—1

By|Lemma 5.3.3] for all fgll € prelimset, zigfgll =2z,... ,zi_lgfgll = z;_1 and depth(zigfg) =
depth(z;g) — 1. Line 12 initiates a for loop on each fgll € prelimset as follows: By like

13, we construct interimset = MAPBACKSET(gf"ll,bp,i). Observe that the inductive

Mr+1 c

hypothesis holds for gfj', for all fgll € prelimset. Therefore, for each fgj S

interimset the following hold:

1. The length of the word fgj . g:ll is 7.

2. z19f4! fnjf";‘ =21, 2915 fnj g::ll = z;.

3. depth(zigf3, fa, --- f5:) = depth(zig) — s forall s =2,...,r + L.
By lines 14-16, for each fgj . ,g:j:ll € interimset, weadd fj! fg° ... fg:;l to outputset.
The for loop from line 12 is terminated on line 17. And by line 19, the function MAPBACKSET(g, bp, i)
returns outputset. Hence, the following hold for each fgll e fg:’ll € MAPBACKSET(g, bp, 1):
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1. The length of the word fgll e g:: is 7.

m Nr4+1 __ m Tr4+1 __
2. zmgfg, - By =21,---,2i9fg, --- B = Zis

3. depth(zigfgl1 ... [g.) = depth(zig) —sforall s=1,...,r+1.

Hence, the inductive hypothesis holds for r + 1. This proves the result by induction.
O

Lemma 5.3.5. Let X be the limit space of the F' replacement system. Let g be a rearrange-
ment of X. Let (Pgq,Pyr) be the minimal bipartition for g. Let bp 2 depth(0Pyq) =
(21y.--,2q). Let 219 = z1,...,2i-19 = zi—1. Let fgll fg; € MAPBACKSET(g, bp, ).
Then

Proof. Let X be the limit space of the F' replacement system. Let g be a rearrangement of
X. Let (Pgy.q, Pg,r) be the minimal bipartition for g. Let bp D depth(0P, 4) = (21, ..., 24)-

Let z19 = 2z1,...,2i-19 = zi—1. Let z;g = ax (for some a € E(R)*) and z; = vz (for some

v € E(R)*). By|Corollary 5.1.10, v < o. Suppose vy =¢€j...€, and o« = ey ...e, for some

n,m € N such that n > m.
Let fgll .. fg;f € MAPBACKSET(g, bp, ). Observe that each fgz satisfies the conditions

of [Lemma 5.1.11|in relation to ax. Then, by |[Lemma 5.1.11

873f2§ ,d Q an

1 Ns—1
fa1~-- ag_17

Hence, by [Cemmm 3.1
8739]‘2}...)‘23701 < 87)9}% a1 .

eJag 1

Since this is true for all s =1,..., K, it follows that

1

O]

Example 5.3.6. Recall the rearrangement g of X from Example 5.1.17. We observe that
bp = depth(9Pgy.q4) = (x,0x,00x,000x). Also observe that z1g = 111z # = = 2;. Let us
carry out MAPBACKSET(g, bp, 1):

Require: g, bp, i = 1 defined above.
function MAPBACKSET(g, bp, 1)
outputset = [J.
z19 =111z # x = z.
prelimset = {f,', fi ', f'}.

for fl_l1 € prelimset:
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interimset :MAPBACKSET(gfﬁl, bp, 1)
outputset = [|.
zlgfl_l1 =1lx #x = 21.
prelimset = {f; ', f-'}.

for ffl € prelimset:
interimset :MAPBACKSET(gfﬁlfl_l, bp, 1)
outputset = [|.
21gj"1_11f1_1 =lx#zx=2.
prelimset = {f1}.
for f! € prelimset:
interimset :MAPBACKSET(gfﬁlfl_lfgl, bp, 1)
outputset = [|.
agfn' it ==
end function
interimset = [].
Add f71 to outputset.
end for
outputset = {f!1}.
end function
interimset = {f 1}

Add fflfe_1 to outputset.

for f-! € prelimset:
interimset =MAPBACKSET(gf;' £, bp, 1)
outputset = [|.
zlgfﬁlfe_l =lz#x=72.
prelimset = {f1}.
for 7! € prelimset:
interimset :MAPBACKSET(gfl_lle_lfe_l, bp, 1)
outputset = [|.
agfn [T =r =2
end function
interimset = [|.
Add f7! to outputset.
end for
outputset = {f !}
end function
interimset = {f '}

Add f71f71 to outputset.
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end for

return outputset = {fflfgl,félfél}-
end function

interimset = {f{lfgl,félfefl}-

Add fit e and £ £ to outputset.

for ffl € prelimset:
interimset =MAPBACKSET(gf; ', bp, 1)
outputset = [|.
zlgfl_l =1lx # x = 2.
prelimset = {f; %, f-'}.

for f;! € prelimset:
interimset :MAPBACKSET(gfflffl, bp, 1)
outputset = [|.
agfi it =la#t =2
prelimset = {f1}.
for 7! € prelimset:
interimset =MAPBACKSET(gf; 'f; 1 f=!, bp, 1)
outputset = [|.
agfi T ==
end function
interimset = [|.
Add f7! to outputset.
end for
outputset = {f !}
end function
interimset = {f '}
Add fl_lfe_1 to outputset.
for f~! € prelimset:
interimset =MAPBACKSET(gf; "', bp, 1)
outputset = [|.
zlgfl_lfgl =lx#x=2.
prelimset = {f !}
for f-! € prelimset:
interimset :MAPBACKSET(gfflfe_lfﬁ_l, bp, 1)
outputset = [|.

agfi T ==
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end function
interimset = [].
Add 71 to outputset.
end for
outputset = {f !}
end function
interimset = {f,1}.
Add fo1f7! to outputset.

end for

return outputset = {f; ' f, foL 1)
end function

interimset = {f; ' f=L, foL 1)

Add fU o and f NN £ to outputset.

for f! € prelimset:

interimset =MAPBACKSET(gf. !, bp, 1)
outputset = [|.
zgfit =1z #2=2.
prelimset = {f; ', f='}.

for ffl € prelimset:
interimset =MAPBACKSET(gf ' f; *, bp, 1)
outputset = [|.
agfi it =le# =z
prelimset = {f-!}.
for f-! € prelimset:

interimset =MAPBACKSET(gf ' f=!, bp, 1)

outputset = [|.
agf T ==
end function
interimset = [].
Add f7! to outputset.
end for
outputset = {f '}
end function
interimset = {f '}

Add fflfe_1 to outputset.

for f-! € prelimset:

129
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interimset =MAPBACKSET(gf- ! f= !, bp, 1)
outputset = [|.
agftfet=le#r =2
prelimset = {f1}.
for 7! € prelimset:
interimset =MAPBACKSET(gf ' f-1f- !, bp, 1)
outputset = [|.
agf T = =2
end function
interimset = [].
Add f7! to outputset.
end for
outputset = {f !}
end function
interimset = {f 1}
Add f1f! to outputset.

end for

return outputset = {f{lfgl,félfél}-

end function

interimset = {f{ 'f- ', [ f').
Add fUf o and £V £ to outputset.

end for

return outputset = {fi; i fL f fT A A T A T fT A T T A

end function

We observe that indeed zlgfgll . fg}’: =1 = z forall fgll e fg}’j € MAPBACKSET(g, bp, 1).

Example 5.3.7. Recall the rearrangement h of X from Example 5.1.18. We observe that
bp = depth(0Pyq) = (z,0x,1x,10x). Also observe that z1h = 100x # = = 2. Let us
carry out MAPBACKSET(h, bp, 1):

Require: h, bp, i = 1 defined above.
function MAPBACKSET(h, bp, 1)
outputset = [J.
z1h =100x # = = 2.
prelimset = { fio, f1}.

for fip € prelimset:
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interimset =MAPBACKSET(hf19, bp, 1)
outputset = [|.
z1hfio = 10x # x = 2.
prelimset = {fi}.
for fi; € prelimset:
interimset =MAPBACKSET(hf10f1, bp, 1)
outputset = [|.
z1hfiofi = 1o #x = 21.
prelimset = {f1}.
for f-! € prelimset:
interimset =MAPBACKSET(hfiof1f !, bp, 1)
outputset = [|.
z2hfrofifit =2 =21
end function
interimset = [|.
Add f7! to outputset.
end for
outputset = {f !}
end function
interimset = {f'}.
Add f1f7! to outputset.
return outputset = {f1 /7 '}.
end function
interimset = {f1f- 1}
Add fiofif- ! to outputset.

for f; € prelimset:
interimset =MAPBACKSET(hfi, bp, 1)
outputset = [|.
z19f1 = 10z # x = 2.
prelimset = {f1}.
for f; € prelimset:
interimset =MAPBACKSET(hf1f1, bp, 1)
outputset = [|.
zihfifi =l #x = 2.
prelimset = {f1}.
for f-! € prelimset:
interimset =MAPBACKSET(hf1 f1f7 ", bp, 1)
outputset = [|.
ahfififot =2 =2
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end function
interimset = [].
Add f7! to outputset.
end for
outputset = {f !}
end function

interimset = {f,1}.

Add f1f7! to outputset.
return outputset = {f1f!}.
end function

interimset = {fi1f-'}.
Add f1fif-! to outputset.

return outputset = { fiofifo %, fififi '}
end function

We observe that indeed z1hfj! ... fg”: =1 = z forall fgll .. fg}’: € MAPBACKSET(h, bp, 1).

onicgenerator}
Definition 5.3.8. Let X be the limit space of the F' replacement system. Let g be a
rearrangement of X. Let (Pyq,P,,) be the minimal bipartition for g. Let z € 0P, 4.
Suppose z = ax (for some o =e;...e, € E(R)*) and zg = Sz (for some S =¢€]...€e,, €

E(R)*). Let v = e1...ex € E(R)* be the largest common prefix of a and 3. Then we

define the damage of z associated to g as follows:

damage,(z) = (n — k) + (m — k).

We define the damage of the rearrangement g as follows:

damage(g) = Z damage,(2).

ZG'Pg,d

Let X be the limit space of the F' replacement system. Let g be a rearrangement of
X. Let (Pg,d, Py,r) be the minimal bipartition for g. Using |[Algorithm 5.2.2] and [Defini-|
the following algorithm finds an optimized word fd ... faN € W(X) (for some
ai,...,an € E(R)* and m1,...,nn € {£1}) such that gfdh ... faN =1I:
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Algorithm 5.3.9 Normal form of a rearrangement g of X.

{godflesh} - : T R— —
Require: g is a rearrangement of X with minimal bipartition (Pg 4, Py,)-

1: List 0Py 4.

2: Define bp = depth(0Pyq) = (21, ..., 24)-
3: function NORMALFORM(g, bp)

4: Set outputword = I.

5 fori=1,...,ndo

6 Set h = g outputword.

7: if z;h # z; then

8 interimset = MAPBACKSET(g, bp, 7)

9 Choose interimword from interimset such that interimword has the

least damage.

10: Append interimword to outputword.
11: end if

12: end for

13: return outputword.

14: end function

{useless}
Lemma 5.3.10. Let X be the limit space of the F' replacement system. Let g be a rear-
rangement of X. Let (Pg 4, Py,r) be the minimal bipartition for g. Let NORMALFORM(g) =
ol faN (for some N € N). Then gfih ... faN =1.

Proof. Let X be the limit space of the F' replacement system. Let g be a rearrangement of
X. Let (Py,4, Pg,r) be the minimal bipartition for g. Let FACTORIZATION(g) = fd} ... faN
(for some N € N). Let bp O depth(0Pyq) = (21,...24). Let us define the following

functions:

hz, € MAPBACKSET(g, bp, 1)

such that h,, has the least damage,
hz, € MAPBACKSET(gh;,, bp,2)

such that h., has the least damage,

h., € MAPBACKSET(gh,, ...h,, ,,bp,d)
such that h,, has the least damage.

We will prove that fa ... faN = hs, ...hs,. Let us implement [Algorithm 5.3.9L Suppose

that, having completed step ¢ —1 of the for loop, outputword = h, ... h;, ,. Let us imple-
ment step ¢ of the for loop: By Line 8, interimset = MAPBACKSET(ghy, ...hs,_,,bp,i).

By Line 9, we choose h,, from interimset such that h,, has the least damage. By
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Line 10, outputword = h;, ...h,,. It follows that, having completed step d of the loop,
outputword = h, ... h_,.
Then, by [Lemma 5.3.4| (2),
z19hz =21

Zlghz1 hzg = z1, ZQthl hzz = 22

21ghzy o hey = 21,000 2q9hs o hay, | = 2.

And, by
3¢2hﬁpd C 0Py

OPgh., hoyd © OPgh., d

OPgh.,..h.pd © OPgh., . h., . d-

Hence,
OPgh.,..hzyd © OPg -

Let C(a) € Poh.,..hzyd (for some o € E(R)*). Then vy, = 2z; and w, = z; (for some
i <14,j < d). Hence (vq)ghs, ... hsy = vo and (wq)ghs, ... h,, = ws. Therefore, by

Lemma 4.4.3] C(a)ghs, ...h,, = C(«). Hence, gh, ...h,, acts as the identity map C(«).

Since this is true for all cells C(«) € Pghzr--hmad’ we can conclude that

gfeh . fN =ghy ... hy, =1

-Jan

O]

Definition 5.3.11. Let G be a group. Let X be a generating set for G. The normal form
of an element g € G is a uniquely determined word w € W(X) such that g = w.

The following result proves that the output of [Algorithm 5.3.9| is the normal form of

an element of F:

Lemma 5.3.12. Let w,w’ € W(X) such that w = w' in F. Then NORMALFORM(w) =
NORMALFORM w’.

Proof. Let w,w’" € W(X) such that w = w’ in F. By [Proposition 5.3.1, w and w’ are

equal to the same rearrangement g € F. By |[Lemma 3.3.28] the minimal bipartition
(Pg.d, Pyg,r) for g is unique. This implies that the input to [Algorithm 5.3.9|is unique.

Hence NORMALFORM(w) = NORMALFORM w'. O

Example 5.3.13. Recall the rearrangement g of X from Example 5.1.17. Let us now

apply Algorithm 4 to compute NORMALFORM(g):
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Require: g defined above.
OPgy.a = {000z, 00z, 0z, }.
bp = depth 0P, 4 = (21 = x, 22 = Ox, 23 = 00z, z4 = 000z).
function NORMALFORM(g, bp)
Applying for loop for i =1,...,4:
outputword = I.

1=1.
h = g outputword = g.
z1h = 111z # x = 2.
interimset =MAPBACKSET(h, bp, 1).
return interimset = {f,' fi ' f 0 S SO ST SO S SO S S S S S
Check damage of all fgll . fg: € MAPBACKSET(h, bp, 1).
damage fi' fi ' f71 = 6.
damage fﬁlfe_l!fe_1 =4.
damage fl_lj'"l_lj‘"e_1 =6.
damage fl_lfe_lf;1 =2.
damage fe_lfl_lfﬁ_1 =4.
damage f- ' f71 f71 = 0.
Choose f-!f-1f~! and append to outputword.
outputword = f-lflft

7 = 2.
h = goutputword = gf 1 f1 L.

zoh = 0x = 29.

1 =3.

h = goutputword = gf- 1 flf L
zzh = 00x = z3.

1 =4.

h = goutputword = gf- ' flf L
zah = 000x = z4.

For loop ends.

return outputword = f1f 1 f L.

end function

We observe that indeed gf'f-!f-! = I. Observe that this word is significantly
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shorter than the word found in Example 5.1.20. This is illustrated in

0
x
10 110 /111

S

X X
it
000 001 10 11
JZ

i T h
- fot
S
S/ 001 01 1
a o o x b

==

g

Figure 5.2: gf - f-1f71 {detachment}

Example 5.3.14. Recall the rearrangement h of X from Example 5.1.18. Let us now
apply Algorithm 4 to compute NORMALFORM(h):

Require: h defined above.
OPh,a = {0z, z,10x, 1x}.
bp = depth 0P} g = (21 = 2, 22 = Oz, 23 = 1z, 24 = 10z).
function NORMALFORM(h, bp)
Applying for loop for i =1,...,4:
outputword = I.

1= 1.

h = houtputword = h.

z1h = 100x # x = z1.

interimset =MAPBACKSET(h, bp, 1).

return interimset = {fiofif- ', fififo '}

Check damage of all fg ... f3* € MAPBACKSET(h, bp, 1).
damage fi0f1 /7" = 0.
damage f1f1 /7! =



5.3. A NORMAL FORM FOR THOMPSON’S GROUP F

Choose fiof1f-! and append to outputword.
outputword = fiof1f. L.

i=2.
h = houtputword = hfiofi1f .

zoh = 0x = 29.

1=3.
h = houtputword = hfiof1f .

z3h = 1z = z3.

1 =4.
h = houtputword = hfiof1f'.

zah = 10z = 24.

For loop ends.
return outputword = fiof1f 1.

end function

137

We observe that indeed hfiof1f. ' = I. Observe that this word is the same word found

in Example 5.1.21. This is illustrated in

00 _ 01 _ 100 101 11
Ox 10z 1
E
0 —\ —| 101 11
G T = 1 h
=]
g
=
0 100,202 11
d a 2\ 1 h
8\
O\
0 10 111
¢ x L = = )
o/
00 01 00 101 11
a Ox T 10z 1z b

Figure 5.3: hfiofif!

f1o

N

ft

{preservationb
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5.4 A Note on Rotation Distance

Recall from that cellular partitions of X are characterised by complete an-
tichains. Then every rearrangement of X (i.e., an element of Thompson’s group F') can be
defined as a bijection between complete antichains of the same cardinality. Since complete
antichains in {0, 1}* can be expressed as finite rooted binary trees, a rearrangement of X
defines a transformation between two binary rooted trees with the same number of nodes.

A rotation in a binary tree is a local restructuring of the tree, executed by collapsing
an internal edge of the tree to a point, thereby obtaining a node with three children, and
then re-expanding the node of order three in the alternative way. The rotation distance
between a pair of trees with the same number of nodes is the minimum number of rotations
needed to convert one tree into another. There has been a great deal of interest in the
problems: what is the maximum rotation distance between any pair of nm-node binary
trees? Is there a polynomial time algorithm (in the number of nodes of the trees) to
determine the rotation distance between a given pair of trees? See [16], [29] for bounds;
[10], [11], [12], [13], [24] for results about restricted rotation distance, [14], [1], [25], [26]
for approximation results; and [15)] for results about tractability.

Observe that the action of an element f, € X on [0, 1] is equivalent to a single rotation
of a binary rooted tree. Using this fact, in Proposition 2.9 of [I§], Dehornoy shows that
the length of an element of F' with respect to the generating set X’ is in fact equal to
the rotation distance between two binary rooted trees. Dehornoy has left finding explicit

combinatorial methods for computing this length as an open question. We conjecture

that the normal form of an element of F' given by [Algorithm 5.3.9] provides a shortest-

length sequence of rotations taking one tree to the other. Moreover, [Algorithm 5.3.9|

provides an explicit combinatorial method to compute this normal form. Further, while

[Algorithm 5.3.9| runs in exponential time, in all examples computed we have found that

there have been easy reductions which enable us to carry out the calculations by hand.
Thus, we wonder if the algorithm admits simplifications into a polynomial time algorithm
(or at least, polynomial expected time), and answering that question represents work for
the future.

5.5 An Additional Algorithm

We have found the following algorithm useful in our calculations. It is included here for

completeness:

Algorithm 5.5.1 Factorization set of a rearrangement g

Require: g is a rearrangement of X with minimal bipartition (P 4, Pg.r)

List 87397d.
Order 0P, 4 by depth: bp = (21,..., zq).

{5.4}
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function FACTORIZATIONSET(g, bp)
Set counter ¢ = 1.
while z;9 = z; and ¢ < n do
Set i =14+ 1.
end while
if ¢ > n then
return ||
else
prelimset = MAPBACKSET(g, bp, 1)
outputset =1
for h in prelimset do
interimset = FACTORIZATIONSET(g, bp)
for k£ in interimset do
Append kh~! to outputset.
end for
end for
return outputset.
end if

end function
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Chapter 6

A Presentation for Richard
Thompson’s Group F

{f-presentatio

In we developed a combinatorial algorithm to express an arbitrary element of
Richard Thompson’s group F' in normal form in terms of the generating set in
tion 5.2.11 In this chapter, we will provide a combinatorial proof that the generating set

in [Proposition 5.2.1]and the set of relations in |Proposition 5.3.1| provide a presentation for

Richard Thompson’s group F.

Let us recall the following definitions from the previous chapters:

e The set Q = {0,1}* is the set of infinite sequences of 0 and 1, and called the symbol

space.
e The set E(R)* = {0,1}* is the set of finite words of 0 and 1.
e The equivalence relation ~ is such that y01 ~ 410 for all v € E(R)*.

e There exists a one to one correspondence between the unit interval [0, 1] and the

quotient 2/ ~.

e A cell C(v) is a subinterval of [0, 1], consisting of the equivalence classes of all infinite

sequences from €2 with the prefix ~.

e The gluing vertex vz is the center point of the cell C'(y). It denotes the image of
the equivalence class {701,710} in Q/ ~ (and the corresponding dyadic rational in
[0,1]).

e The complete set of gluing vertices in [0, 1] is GV = {a = {0},b = {1},yx | v € E(R)*}.
6.1 A New Group
(6.1}

Let us define a new group combinatorially as follows:
F=(X|R)

141
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where X is a set of generators
& ={falacB®m)y}

and R is a set of relations

R={Rl: flo=jsifalp,
R2: fls = fufil,
R3: foSow = faow
R4 : fjfam = fal0s
R5: f(f‘fv = fall'y}a

(for some «, 8,7 € E(R)*).

Consider the set functions ¢*: X — F and ¢*: X — F, induced by the sets of rules
fa — fa and fa — f, respectively. These functions induce group homomorphisms
¢: Free(X) — F and (: Free(X) — F (where Free(X) is the free group on X). Observe
that ker(¢) C ker(¢) and X generates F. Then there is an induced group homomorphism

x: F — F such that the following diagram commutes:

Free(X) ‘ F
O
. X
¢
F

As the maps f, generate F', we observe that x is surjective.

This brings us to the main result of this chapter:

Theorem 6.1.1. The group F is isomorphic to Richard Thompson’s group F.

In order to prove it is sufficient to show that x is injective. We will
prove this result by developing a combinatorial algorithm to show that ker(x) = {I}.

6.2 A Combinatorial Action

Let us compose y with the “action” homomorphism p: F — Sym(GV). This gives us an

action of ' on GV which is determined by the action of the generators:

Lemma 6.2.1. Let fo € X (for some o € E(R)*). Then fo acts on z € GV as follows:

1. Ifz=ua, (a)fa =a,

2. Ifz=0b, (b)fa =D,
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3. If z =~zx, (for some v € E(R)*)

alx if v = «a,

ax if v = a0,
. aOAx  if v = a00A,
(’Y‘T)foz =
alOAz  if v = a01A,
allhz  if vy = all,
R if a £,
(for some A € E(R)*).
Proof. The statement follows immediately from the action of F' on GV. O
Observe that, for an arbitrary element g = f2b ... fI" € W(X) (for some ay, ..., a, €

E(R)* and n1,...,nm, € {£1}), the action on yx € GV is as follows:
(vz)g = (((v2) fdi)fas) - - falr-
Observe that the function in is in contrast to the partial function below:

Definition 6.2.2. Let f, € X (for some a € E(R)*), then f, induces a partial function
on E(R)*, defined as follows: Let § € E(R)*, then

(undeﬁned if 8 <X a,

Ié] if 51 «,
Befo=1a0s if 8 = 2000,

al06 if 8 = a016,

alld if 8 =ald

(for some 6 € E(R)*).

This function has been shown to be a partial action by Dehornoy in [17]. This partial

action has, in turn, been extended to a full action by Bleak, Matucci and Neunhéffer in
[5].

Definition 6.2.3. Let ¢ = fIi ... fI" € W(X) (for some o,...,o, € E(R)* and
My .M € {£1}) and let yz € GV (for some v € E(R)*).

1. We define the prefiz chain for g to be the ordered list:

prefixchain(g) = (I L g gme '77").

yJapy JaypJar rJan tJan

2. We define the depth chart of yx associated to g (denoted by depthchart,(yz)) to be

ordered list depicting the action of each element in the prefix chain for g on ya:

depthehart, (12) = (v2, (2) {1, () fL f2B, o, () f . e ).
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We illustrate this list by plotting the depths of each gluing vertex, as seen in the

following example.
3. We say yz is dynamic under g if depthchart, (yx) is not constant.

Example 6.2.4. The depth charts for the action of the function fyf.fi on the gluing

vertices x, Oz and 1z are as follows:

depth(:hau"tf-of-éf1 () = (z,z, 1z, 11z),
depthchartf-of-efl(Ox) = (0z,01z, 10z, 1z) ,
depthchart; ¢ ¢ (1z) = (1z, 1z, 11z, 111z) .

These are illustrated in the following diagram:

f 01z Je 10x

i1 A v

x x Oz 1l 1x 1z

1x

We observe that, while fofefi = fof. (by the Pentagram relation R2), the depth charts

for the action of f€ fe on the gluing vertices z, 0z and 1z are different:

depthchart ; ; (z) = (z, 1z, 11z),
depthchart; ; (0z) = (0z, z, 1z),
depthchart; ; (1z) = (1z, 11z, 111z).

These are illustrated in the following diagram:

The depth charts for the action of the full Pentagram relation fe_ Liofefr fe_l on the gluing

vertices x, Oz and 1z are as follows:

depthchartfglfofeflf:1(x) = (z,0z,01z,10z, 1z, x),
depthchartf;1fof€flf;1(Ox) = (0z, 00z, 0z, x, z,0x)
depthchartf;1f0f€f1f;1(1;1:) = (lz,z,z, 1z, 112, 1) .

These are illustrated in the following diagram:
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01z fe 10z 00z

11z

Definition 6.2.5. The reverse of a depth chart is the graph obtained using left-right

reflection and replacing each function by its inverse.

Lemma 6.2.6. Let g = fiI' ... fI" € W(X) and let v € GV. Let 6z = (yx)g. Then
depthchart,1(dx) is the reverse of depthchart,(yz).

Proof. The statement follows from [Definition 6.2.5] O

Definition 6.2.7. Let g = fl'...fI" € W(X) (for some o,...,a, € E(R)* and
My .-y € {£1}). We define the set of boundary points of g to be:

. . -1
By ={(2) (fo .. J8) | B2 a0ifn=+1or
B = ailifn; = —1,

forizl,...,n}.

Recall from [Definition 2.3.10| that there exists a depth order on the set G)V. We shall
denote the depth order on By by the ordered list depth(By) = (21, ..., z4)-

Lemma 6.2.8. Let g = fli ... fI" € W(X) (for some o, ... ,an, € E(R)* andny,...,n, €
{£1}). Let By be the set of boundary points of g. Let (Pyy.d, Pgy,r) be the minimal bipar-
tition for the rearrangement gx € F'. Then By 2 0Py q-

Proof. Let g = fli ... fll" € W(X) (for some o, ..., 0, € E(R)* and n1,...,m, € {£1}).
Let (Pgy.d» Pgy,r) be the minimal bipartition for the rearrangement gy € F'. We will prove
this result by induction on n.

If n =0, g = I and the result is trivially true. If n =1, g = g} and

Bg:{ﬂx‘ﬁjal()wifm:—i—lor

B2 ailxif g = —1}.

By |[Corollary 5.1.4, By = 0Pgy.q-

{burundi}

{parabol}

wolfparade
P

{stripdown}
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Suppose that there exists m € N such that the inductive claim holds for n = m. We

will examine the case when n = m + 1. Let g = fdi ... fd™ and consider h = gfamt!.

Observe that
/8 j Oém-‘,—llﬂ? lf T]m-i—l = —1}

Observe that hx = gxfartt. Let (Phy.ds Phyr) be the minimal bipartition for the rear-

m—+1"°

rangement hy € F', then

OPhy,a € OPyy,a U (GanmH d)(gx)fl.

Q417
By our inductive hypothesis,
OPgyy.a € By.

Observe that

(8Pf7im+1 d)(gX)_l = {(ﬁx)g_l ‘ ﬁ < aerlOCC if Nm+1 = +1 or

Q17

B < a1z if g1 = —1}.

Hence
8'Phx,d C By,

This proves the result by induction. O

Corollary 6.2.9. Let g € W(X). Then there exists a cellular partition (P, (P)gx) for the
rearrangement gx € F such that By = OP.

Proof. The statement follows from O

Lemma 6.2.10. Let g = fli ... fI" € W(X) (for some o, ..., an € E(R)* andny, ..., 0, €
{£1}). Let By be the set of boundary points of g. Let depth By = (21,...24). Choose z;

such that z1,...z;—1 are not dynamic under g, but z; is dynamic under g. Then
depth(z;h) > depth(z;)
for all h € prefixchain(g).

Proof. Let g = flb ... fir € W(X) (for some oy, ...,a, € E(R)* and ny,...,n, € {£1}).
Let By be the set of boundary points of g. Let depth B, = (21,...24). Choose z; such
that z1,...2;—1 are not dynamic under g, but z; is dynamic under g.

Let z; = vz (for some v € E(R)*). By [Definition 6.2.7 of B,, {y'z,...,2} C B,. By
our hypothesis, {y/z,..., 2} C {21,...,2_1}. Then, yh =y for all y € {7z, ... 2} and
h € prefixchain(g). Recall that hy € F for all h € prefixchain(g). By there
exists a cellular bipartition (P, (P)gx) for the gx such that By = 9P. Then (P, (P)hx) is

a cellular bipartition for hx for all h € prefixchain(g). Then, by [Lemma 5.1.9, z;h = Sx
(for some § € E(R)*) where v < 3 for all h € prefixchain(g). This proves the result. [




{pertubator}
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Lemma 6.2.11. Let g = fli ... fI" € W(X) (for some o, ..., an € E(R)* andny, ..., 0, €
{£1}). Let ¢ be obtained from g by one of the following methods:

1. The application of an appropriate relation from R to replace a subword fi! fgiﬁ

either fA3(f2)5 or (f2i)IR f2

2. The cancellation of fai by an adjacent inverse.
Then By C By.

Proof. Let g = fli ... fil" € W(X) (for some oy, ...,a, € E(R)" and n1,...,n, € {£1}).
Let h = fil' ... fi-t and k = foit2 .. . Then g = hfm V1 k. Observe that

Q542

Bg = B U (B i "7i+1)h_1 U ( )(fmfgiii) 1h_1'

iS4

Suppose ¢ = hfg“ll . fg::k (for some m = 0,2,3), where fgll fg: is obtained from

¢ £Mi+1
Qi J 041

by one of the following methods:

1. The application of an appropriate relation from R to replace a subword f fgiﬁ by
either fI3(f)/5 or (fi1) 2
2. The cancellation of fai by an adjacent inverse.
Then
By = B, U (Bfg;.__fgznn)h_l U B

Observe that f! fgjﬁ f”ll . fﬁn’j in I, and therefore fZi fai*! and f“1 f[g: have the

same action on the set GV of gluing vertices. Hence
(Bi)(fI faii)th=t = (BR)(fh) - fm) et
Hence, to show that By C By, it sufficces to show that

B C B (Mg i1

L L

We have the following possibilities for fa fa+1:

| B |
fo fao faofa [l e | fadfa
fa' faoor | favorfa | Ja' Faous | faoirSa
fa'fan | fanta
folfor | farfa | S| fadlfa
f s | Floade | 13 fhon | Flhonfa

f—1 ¢n
fa all) fall)\fo‘
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(for some a, B, A € E(R)* such that a L 8 and n, u € {£1}).
Let us examine the following cases in detail (and leave the proof of other similar cases
to the reader):

L flifaly = fafs’
In this case '51 . fgm = I. This gives us Bjm_jum = @ and the result holds
1 m B1 " Bm

trivially.

2. f”lfgzii fgf,g (for some a, 3 € E(R)* suchthat « L Band n,pu € {£1})

In this case, we apply relation R1 and f“ll . fﬁg = fgfg This gives us Bf'glmf'um =
1 m
Bf;;f;’ = Bju U (Bfg fﬁ_“ Choose vz € Bg. Then v X a0 or v X al. Then 3 £y

and, by [Lemma 6.2.1L (yx) fﬁ_” = . Since this is true for all yo € B, this implies

that (Bjy ) f3" = Bjy. Hence Bjss _jum = By UBjy.
Similarly, we can show that B ; mit1 = B U Bf[;
Hence

B

fﬁ me — B (M5 141,

QS Ag41

and the result holds.

3. f"zii = £ 17 0x (for some a, A € E(R)* and n € {£1})

Observe that B miy1 = B = B;1 U (B in )fa Choose yx € By .
fOti LA | f‘l aOOA fa faOOA . a00A
Then v < @00X0 or v = a00Al. If v < a, then (yz) fo = yz. If ¥ = «, then
(yx) fo=alze B If v = a0, then (yx) fo=aze Bin . If v = @004 (for some
« . a0
6 € E(R)" such that § X A0 or § < A1), then (yz) fo = a0éz € Bjn K Since this is
a0
true for all vz € Bfn , this implies that B »; ;141 = Bf 1U B
a00A o

agl 41 a0

Let us apply relation R3 and f”ll . f”;” = fg(p\fojl. This gives us Bf511~~-f“,,’f =

Bju =B U (B ) f;g;. Choose 7 € Bj-1. Then 7 < al. Then a0\ £
and, by [Lemma 6.2.1 ('yx) fooh = 7. Since this is true for all ya € B, this
implies that Bf'ul f”m =B UB;

B

a0X f‘l

Hence

Bf,Bl f,ﬁm — B (Mg fi41

Q41

and the result holds.

4. f”lfn:ii = f';lj:'ag (for some a € E(R)*)

Observe that B i frit = Bfa oo Bfa_l U (Bfa0> fa. Choose yx € Bfao‘ Then
v < a00. If v < «, then (yx) fo = ~vz. If v = @, then (vx) fo = alx € B If
v = a0, then (yzx) fo = ax € Bj-1. If v = a00, then (vx) fa = a0z. Since this is
true for all yo € B; , this implies that B, iy = Bj-1 U{a0z}.

A X1
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Let us apply relation R2 and f” fﬂm = faf f 1. This gives us Bfm fum =

Bfaf’llfal —B U( )f U( )falf ChOOSG’Y.ﬁUGBffll. Then v < all.
If v < «, then ('ya:) fa1 = ~yz. If v = o, then (yz) f;! = a0z € B; . If v = al,
then (yz) fi! = ax € B . If v = all, then (yz) fz' = alz. Similarly, choose
6x € Bj—1. Then § < al. If 6 < «, then (dz) farfal = 6x. If § = a, then
(0z) far f3' = alz € Bj . If 6 = al, then (dz) farfat = alx. Since this is true for
all yz € Bj-1 and 0z € Bj-1, this implies that Bf§11~--f§;” = B; U{alz}.
Hence

Bfﬁ fﬂm — B (5 fMi41

ajla;q

and the result holds.

It follows that By C B, in all cases, and this completes the proof. O

Lemma 6.2.12. Let g = fiI' ... fI" € W(X) (for someay, ... ,a, € E(R)* andn, ... 10, €

{£1}). Let depth(By) = (21,...,24). Suppose z; is not dynamic under g for all i =
,d. Then g =TI in W(X).

Proof. Let g = fIi ... flI" € W(X) (for some o, ..., 0, € E(R)* and n1,...,m, € {£1}).
Let depth(Bg) = (21, ..., 24)-
We will prove this result by proving its contrapositive: Suppose g # [ in W(X ).

Then n > 1. Let us examine the gluing ajz. By [Definition 6.2.7, onx € By. By
depth(aqz ') = depth(ajz) + 1. Since fI! € prefixchain(g), this im-
plies that depthchartg(oq:v) is not constant. Hence ajz is dynamic under g. This proves
the result. O

6.3 Casework Lemmas

Let g € W(X). Let By be the set of boundary points of g. Let depth By = (21,...24).
Choose z; such that z1, ... z;—1 are not dynamic under g, but z; is dynamic under g. In this
section, we will present a casework argument to “reduce” the maximum depth achieved in
depthchart(z;). Since the following results are quite lengthy, we have only provided the
full proof of the first result and the rest are left to the reader.

Lemma 6.3.1. Let fI} f2 € W(X) (for some o1, s € E(R)* and n1,m2 € {£1}) and let
yx € GV (for some v € E(R)*) such that the following conditions are satisfied:

1. depth(yz) = depth(yz fd} fa2),
2. depth(yzfI!) = depth(yz) + 1.

Then there exists fgllfg: e W(X) (for some Bi,...,0x € E(R)* and p1,... 1 €
{+1}) with k = 0,2,3 such that f”ll fg: = fI 2 in F and the following conditions

are satisfied.

{hausswolff}

{adult}
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3. depth(yx) = depth(v:nfgll . fg:),
4. depth(’yxfgll . fﬁj) = depth(yz) — 1 for 1 <i<k—1.

Proof. Let fi! f2 € W(X) (for some oy, as € E(R)* and 11,12 € {#1}) and let vz € GV
(for some v € E(R)*) such that the following conditions are satisfied:

1. depth(yz) = depth(*wag} 33),
2. depth(yz fI!) = depth(yz) + 1.

Let us illustrate depthchart g i (yx) as follows:
apJag

V2
« (e D)
(%1 V3

where v] = vz, vy = Y& fI} and vg = (7$f2}) e
We will examine all cases which arise. Let us first divide into cases according to the

exponents 71 and 7s:
1. m =+1and 2 = +1,
2. m =+1 and e = —1,
3. m =—1and 2 = +1,
4. 1 =—1and ny = —1.
Observe that cases (3) and (4) are the inverses of cases (1) and (2). Then, by Lemma 6.2.6]

we only need to examine cases (1) and (2).

Let us now examine these cases:

1. mm=+1and n2 = +1

Let us set f! = fo (for some a € E(R)*). By [Lemma 6.2.1} in order for condition

(2) to be satisfied
depth(yz f') = depth(yz) + 1,

we have the following choices for yax:

1.1. vz = ax,

1.2. vz = alyz (for some v € E(R)*).
Let us examine each of these cases:
1.1. v = ax

We observe that azf, = alz. The graph for depthchart Fm g (yx) is then as
apJaz

follows:
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1.2.

alx
BN
ax U3

where v = ozl:nfa?.
By [Lemma 6.2.1} in order for condition (1) to be satisfied
depth(az) = depth(amfafaz)a
alz = 00Tz (for some 7 € E(R)*). We can conclude that 500 is a prefix of
a. Let a = 00k for some (for some x € E(R)*). Then fglfg2 = faooxf5-

Observe that ’yxfgoo,{fg = BOO/@xfﬁoo,{f/B = BOO/@leg = B0k1z. The graph for
depthchart g, i (vx) is then as follows:
oy

B00k1x
f,BOO 'ﬂ
B00kx B0k1x

. , .o f
Conjugating these terms using relation R3 gives us fgooxfs = [f3 (f500H> -

fﬁf:ﬁoﬁ. Observe that 'yxfgfgo,i = ﬂOOmxfﬁfﬁon = 5Oﬁxf50,i = [B0klz, and
hence conditions (3) and (4) are satisfied with k£ = 2:

depth(*wagll o fg:) = depth(B00kz f5 fs0x) = depth(B0k1z)
= depth(B00kz) = depth(yz)
and
depth(’yaﬁfgll) = depth(800kz f5) = depth(B0kz)
= depth(500kz) — 1 = depth(yx) — 1.

The graph for depthchart jer (yx) is then as follows:
1 k

B00kx B0k1x
B0kx

~yx = aldx (for some A € E(R)*)
We observe that al\z fo = alllz. The graph for depthchart e (yx) is then
as follows:

alllx

allx U3
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where vz = allAz f2.
By in order for condition (1) to be satisfied
depth(yx) = depth(yzfa f3),
we have the following possibilities for f{2:
1.2.1. alldz = al1160z and 2 = fai1s,

1.2.2. alllz = 1160072z and f72 = fai1s,
1.2.3. all\z = B00011Az and f22 = fg,

Let us examine each of these cases separately:

1.2.1. alldz = 1180z and f72 = fo116.
In this case fI' fi2 = fofat1s. Observe that vz fofai1s = @160z fafaris =
11602 fo115 = 11dz. The graph for depthchartf-mf-ng (yx) is then as fol-

lows:
al1160x

f .a116
alé0x alléx
.o . fat .
Conjugating these terms using relation R5 gives us fo fa11s = ( fa115> fa =
fa15fa. Observe that vz fors5fa = @100z faisfa = alézfy = alldz, and
hence conditions (3) and (4) in the Lemma are satisfied with k& = 2:
depth(’yavf'gl1 . fg:) = depth(a160z fu15fo) = depth(alldz)
= depth(a160x) = depth(yx)
and
depth(’y:r;fgll) = depth(a160z f,15) = depth(aldz)
= depth(al00z) — 1 = depth(yzx) — 1.
The graph for depthchart o (yx) is then as follows:
B1 B
al§Ox allox
fa15 fa
aléz

1.2.2. alldz = 118007z and f72 = fa11s
In this case fI' 2 = fuofa115. Observe that vz fo fa11s = 160072 fo fai1s =
allSOOTxfallg = «116072. The graph for depthchartfnlf'ng (vx) is then as

follows:
al15007x

f 'ozllé
al6007z «llé0Tz
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. . ot
Conjugating these terms using relation R5 gives us fq fa11s6 = ( fa115) fa =
falgfa. Observe that fymfah;fa = aléOOm:falgfa = aléOTxfa = 11007,
and hence conditions (3) and (4) in the Lemma are satisfied with k = 2:
depth(’ygvf'gl1 . fg:) = depth(a16007z fa15fa) = depth(al1507z)
= depth(a10007z) = depth(yx)

and

depth(v:rfg?;) = depth(a16007 f415) = depth(ald0rz)
= depth(a10007x) — 1 = depth(yzx) — 1.
The graph for depthchart . f;;,f (vx) is then as follows:
aléQ0rx allé0rz
f'M
aléOrx

1.2.3. alldz = 00611z and f72 = fz
We can conclude that 500 is a prefix of a. Let a = 500§ for some § €
E(R)*. Then fI! f2 = faoosf5. Observe that vz faoos f5 = 0061z fa005 f5 =
ﬁOOéll)\xfB = 0611 \z. The graph for depthchartfgifgg (yx) is then as fol-

lows:

B00511 Az
8005 5
£0001Ax  BOST1Ax

. . .o f
Conjugating these terms using relation R3 gives us fgoosfz = f3 ( fgoog) ’ =

fgfgog. Observe that ’y])fgfgog = ﬁOOélAa:fgfgog = BOélx\a:fgog = 0611z,
and hence conditions (3) and (4) in the Lemma are satisfied with k = 2:

depth(’y:cfgll . fg:) = depth (80061 5 fs05) = depth(B0511\x)

= depth(80001Az) = depth(yz)

and

depth(w:ﬂfgll) = depth(ﬁ()()él)\xfg) = depth(5051\x)
= depth(80051Ax) — 1 = depth(yx) — 1.

The graph for depthchart o (vx) is then as follows:
B1 By
50061Az 00811\
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2.m =4+1land gy = —1
Let us set fI! = f, By in order for condition (2) to be satisfied
depth('y:zfgi) = depth(yx) + 1,
we have the following choices for ~zx:

2.1. yvx = ax,
2.2. yx = allz (for some X € E(R)*).

Let us examine each of these cases:

2.1. v = ax
We observe that ax fa = alxz. The graph for depthchart jo o (vx) is then as
follows:
oqlx
a1x U3

where v3 = alzx fa2. From [Lemma 6.2.1] we observe that, in order for condition

(1) of the Lemma to be satisfied
depth(ya) = depth(yzf} f2),

we have the following possibilities for fgg
2.1.1. alz = Bl and fI2 = /3"
2.1.2. alz = fllre and fI5 = f3

We observe that, although BOxfﬁ = [z, this is not relevant here as alz # S0zx.

Let us examine each of these cases separately:

2.1.1. alz = Blz and f12 = f5°
In this case, fil f2 = f3 f[; L' — I, and the conditions in the Lemma are
satisfied with k = 0.

2.1.2. alx = BllTx and f;’; = f,@_1
We can conclude that 511 is a prefix of a. Let o = S11k for some k €
E(R)*. Then fI! fI2 = f.ﬂu,{fgl. Observe that q/xf‘gu,{f/gl = Bllﬁxfﬂnﬁfﬁ_l =
ﬁlllill'fﬁ_l = Blklx. The graph for depthchartf-;z%f-gg (vx) is then as fol-
lows:

Bllklz

) -
fa11 3

Bllkx Blklx
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. . .o fat
Conjugating these terms using relation R5 gives us fgn,{fﬂ_l = fs (f[glln) ’=

fﬂ_lfﬁln. Observe that fya:fﬁ_lfgm = ﬁll/ia:fﬂ_lfmn = ,81/<;xf'51,{ = PBlklx,
and hence conditions (3) and (4) in the Lemma are satisfied with k& = 2:

dep‘ch('wa'g’l1 . fg“:) = depth(ﬂllﬁxfﬁ_lfgln) = depth(B1k1z)
= depth(B11kz) = depth(vx)

and

depth('yxfgll) = depth(ﬁllnxfgl) = depth(B1kz)
= depth(S11kx) — 1 = depth(yx) — 1.

The graph for depthchart jm 2 (yx) is then as follows:
Bllkx Blrlx
me
Blkx
2.2. yx = alAx (for some XA € E(R)*)
We observe that alAz fa = allAz. The graph for depthchart Fm gz (vx) is then
apJag
as follows:

alllx

allx V3

where vz = all\zf.
Using [Lemma 6.2.1] we observe that, in order for condition (1) from the Lemma
to be satisfied

depth(yz) = depth(yz £ f12),

we have the following possibilities for fgg

2.2.1. all\z = allAz and f2 = f1,
2.2.2. all\z = allélz and f1 = f},,

«

2.2.3. alllz = alldllre and f2 = f L5,

a

2.2.4. all\z = 1116z and f22 = .,
2.2.5. all\z = f11611\z and fI2 = fgl,
2.2.6. allhz = 111Xz and 33 = f5.

We examine each of these cases separately:

22.1. alldz = alldz and f12 = f71.
In this case, fi! fo? = fof7' = I, and conditions (3) and (4) of the Lemma

are satisfied with £ = 0.
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2.2.2.

2.2.3.

. 1
allx = a?ld‘lm an‘d f;’g = foi1s- N o

In this case i} fa? = fafiiys- Observe that vafofi s = aldlafof s =
alldlzf s = alldz. The graph for depthchart jm 2 (yx) is then as fol-

lows:
alldlz

, -
f alld
aldlx allox
.. ) fat .
Conjugating these terms using relation R5 gives us f, f;lll 5= ( f;lll 5) fa =
f;lléfa. Observe that ’y:L‘f.;f(;fa = aléle;llt;fa = aldzf, = alldz, and
hence conditions (3) and (4) in the Lemma are satisfied with k£ = 2:
depth(’yxf”l1 . fg:) = depth(aléleojl%fa) = depth(alléx)
= depth(aldlx) = depth(~x)

and

depth(’y:cfgll) = depth(aldlzf ) = depth(aldz)
= depth(aldlz) — 1 = depth(yzx) — 1.

The graph for depthchart jer e (yx) is then as follows:
1 k
alylx alléx
fojllé fa
aldx

. —

alllx = (1'11?5117'33. a.nd T2 = faiis- o o

In this case fai faz = fafoiis- Observe that v fof )s = aldllrafof s =

alléllTxf:llw = a11§17x. The graph for depthchartf-m 2 (vx) is then as
aplal

follows:
alléllrx

. _
f alld
aldllre  olldlrz

.o . ot
Conjugating these terms using relation R5 gives us f, f;lll 5= ( f;lll 5) fa =
f;ll(;fa. Observe that ’yxf(;ll(;fa = aldle;ﬁ;fa = alézf, = alldz, and

hence conditions (3) and (4) in the Lemma are satisfied with k& = 2:

depth(fyﬂz:!}‘;”l1 . fg:) = depth(alélleijlléfa) = depth(alldlrx)
= depth(aldll7x) = depth(~x)

and

depth(’ya;fgll) = depth(aldllraf L) = depth(aldlTz)
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= depth(aldllTz) — 1 = depth(yzx) — 1.

The graph for depthchart jr (yx) is then as follows:
1 k
aldllre  alllrz
f'oj115 fa
aldlrx

(0%
In this case fil fi2 = fof!. Observe that vafofil = all\efof ! =
allllz f'ojll = allAz. The graph for depthchart fm jn2 (yx) is then as fol-
apla

2.2.4. alldz = allléz and f72 = f!

lows:
allllx

mll
alllx alllx

. oSl
Conjugating these terms using relation R2 gives us f, fojll = ( f _11> fa =

f;lfagfa. Observe that vxfoflfaofa = ozllef;lfaofa = AT fa0fa =
al\zf, = all)z, and hence conditions (3) and (4) in the Lemma are
satisfied with k£ = 3:

depth('yxf“ll e fg:) = depth(al1A\zf; ! faofa) = depth(alllz)
= depth(all\z) = depth(yz),

depth(fya:fgll) = depth(all)zf; ') = depth(allz)
= depth(alllz) — 1 = depth(yz) — 1.

and

depth(’yavfgl1 f”;) = depth(all)\xfglfao) = depth(allx)
= depth(alllz) — 1 = depth(~yz) — 1.

The graph for depthchart ju .k (yx) is then as follows:
1 k
alllx alllx
fa_’ f a0 fa
allx allx

2.2.5. alliz = B11611Az and 12 = f5!
We can conclude that 11 is a prefix of . Let @ = 5116 for some § €
E(R)*. Then fingne — fgngfgl. Observe that ")/.’L'fﬁngfﬁ_l = ,81151Aa;f,3115fﬂ_1 =
ﬁlléll)\xfgl = 1611 \x. The graph for depthchartfg%fg% (yx) is then as

follows:
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. . . . fat
Conjugating these terms using relation R3 gives us f,3115f5_1 = fﬁ_1 (fmw) f=

fﬁ_lfgw. Observe that ’yxfﬁ_lfmg = 51151)\$f§1f,315 = Bldl)xxfgw =
B1611Ax, and hence conditions (3) and (4) in the Lemma are satisfied with
k=2

depth(yaf5! ... f5*) = depth(81151\zf5 ' fa15) = depth(B1611Az)
= depth(51101\x) = depth(yz)

and

depth(wxfgll) = depth(ﬁllélx\xfﬁ_l) = depth(5101Ax)
= depth(51101Ax) — 1 = depth(yx) — 1.

The graph for depthchart jun g (yz) is then as follows:
1 k

B1161Az  B11611Ax
fg fﬁw
B181Ae
2.2.6. allAxz = G111 x and fgz = fﬁ_l
We can conclude that @ = 1. In this case fg} 23 = fﬁl fﬁ_ L Observe
that vz farfs' = BUAzfarfy" = Bl zf;" = Bl1Az. The graph for
depthchart jni gn (y2) is then as follows:

B111)Ax
fs R
Bl1lx Bl11x
. . NS

Conjugating these terms using relation R2 gives us f31 fgl = fgl (fgl) b=
f5! f/;?l fa. Observe that yafy ' foo fs = B1INef; " 50 fs = BlAef0 f5 =
BlAxzfg = [llAz, and hence conditions (3) and (4) in the Lemma are
satisfied with k = 3:

depth(’yxfgll . fg:) = depth(ﬁllz\a:fﬁ_lfgglfﬁ) = depth(811\z)

= depth(S11Az) = depth(yz),

depth(q/xfgll) = depth(ﬁllz\a:fﬁ_l) = depth(B1\x)
= depth(S11Az) — 1 = depth(yz) — 1.
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and

depth(yzf! f1?) = depth(811 x5 f3) = depth(B81Az)
= depth(f11Ax) — 1 = depth(yx) — 1.

The graph for depthchart jr (vx) is then as follows:
1 k
Bl1)x Bl1)\x
Ts N\ fao Ve
Blx BlAx

{wildinblue}
Lemma 6.3.2. Let Il f2 € W(X) (for some a1,00 € Q* and n1,m0 € {£1}) and let
yx € GV (for some v € Q*) such that the following conditions are satisfied:

A. depth(yz ') = depth(yz) + 1,
B. yafdi =y fil fd.

Then there exists fgllfg: e W(X) (for some Bi,...,Br € * and py, ..., € {£1})
with k = 2 such that f”ll . fg: = fI 2 in ' and the following conditions are satisfied:

C. yx =~z fh,
D. depth('mf"‘l1 fg;) = depth(yz) + 1.

Proof. Let fII' f2 € W(X) (for some ay, o € Q* and 11,72 € {£1}) and let vz € GV (for

some v € *) such that the following conditions are satisfied:
A. depth(yafI') = depth(yz) + 1,
B. yafdi = vz fdl 1.

Let us illustrate depthchart o e (vx) as follows:

12
a2

'1UP—.
g 2 V3

U1

where v; = vz, vy = yofi} and vy = ya fIIl fI2.
We will examine all cases which arise. Let us first divide into cases such that Condition
(A) is satisfied:
depth(yzx (Z}) = depth(yzx) + 1.

1. fI' = f, and vz = ax (for some a € E(R)*),
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2. fil = fo and vz = al)z (for some o, \ € E(R)*),
3. fil = f71 and yx = az (for some a € E(R)*),

4. fI = f-1 and y& = a0Az (for some o, A € E(R)*).
Let us now examine these cases:

1. fgi = f, and vx = az (for some a € E(R)*)

Observe that, for Condition B to be satisfied

L L $12
P)/x a1 _737 a1d Q"

yxflt = axfo = alx should not be in supp f2. By [Lemma 6.2.1} this implies that

ag # al. This gives us the following choices for f22:

1.1. f2 = fg (for some 3 € E(R)* such that 8 L « and n € {£1}),
1.2. f&2 = f7s (for some § € E(R)* and n € {1}),
1.3. fi =[5 (for some § € E(R)* and n € {£1}),

(

1.4. fi2 = f7 5 (for some § € E(R)* and n € {£1}).

Let us now examine these cases:

1.1. fgz = fg (for some 8 € E(R)* such that 8 L « and n € {£1})
In this case fi! fi? = J‘a]‘é7 Observe that vy fi! fi2 = axfafg = aleg = alx.
The graph for depthchart jn i (yx) is then as follows:
aypJag
/3
I

8
—
3

alz

8
3

.. Nfal . . .
Conjugating these terms gives us fafé7 = (fg) fo = fgfa. Set fj! fg: =
fgfa Observe that 'yxfgll .. fg: = a:z‘fgfa — azf, = alz, and hence Condi-
tions (C) and (D) are satisfied with k& = 2:

depth(’yxfgll . fg’:) = depth(axfgfa) = depth(alzx)
= depth(ax) + 1 = depth(yx) + 1,
and
depth('ya:fgll) = depth(aa:fg) = depth(ax)
= depth(ax) = depth(yx).

The graph for depthchart jun (vx) is then as follows:
1 k
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ax
ax

1.2. fg’;’ = f205 (for some 6 € E(R)* and nn € {£1})
In this case fI' f2 = f, .;705. Observe that ya fi fi2 = axfafgo(; = odglcf'(zo5 =
alz. The graph for depthchart jm jn2 (yx) is then as follows:
 Jaos
I

8
—
3

alx

8
3

.. . fat. ) . ) .
Conjugating these terms gives us fo fs = ( 205> fo = Floosfa- Set [ ... f5F =
f;zoo&fa- Observe that vmf“f fg: = azr .2005]501 = axf, = alz, and hence
Conditions (C) and (D) are satisfied with k£ = 2:

dep‘ch(v:nf'“l1 .. fg:) = depth(awfgooéfa) = depth(alx)
= depth(ax) + 1 = depth(yzx) + 1,
and
depth(yxfgll) = depth(ax .2005) = depth(ax)

= depth(ax) = depth(vyz).

The graph for depthchart jun (vx) is then as follows:
1 k

J
s S
006 3

8 g8
3 3
1.3. fg; = £, 05 (for some § € E(R)* and n € {£1})
In this case fI 2 = f, .2105. Observe that vz fI' f12 = axfaf2106 = O‘legloé =
alz. The graph for depthchart s g, (vx) is then as follows:
apJa
) faos
f

8
—
3

alx

ax
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) ) ) . . ot . .
Conjugating these terms gives us fofl 05 = ( fgmé) fo = floisfa- Set
foh o f5Y = [lorsfa- Observe that yafil... fiF = axfly ;fa = azxfo = alw,
and hence Conditions (C) and (D) are satisfied with k = 2:

depth(v:::f’“l1 .. fg:) = depth(axfgowfa) = depth(alx)
= depth(ax) + 1 = depth(yzx) + 1,

and

depth(’yxfgll) = depth(ax '2015) = depth(ax)
= depth(ax) = depth(yx).

The graph for depthchart o (yx) is then as follows:
By By
i J 8
fa016 %‘
8 8
3 3
1.4. f;”;’ = fgud (for some 6 € E(R)* and n € {£1})

In this case fa; fas = fafl ;5. Observe that ya fl' fis = axfafl1; = alafl s =

alz. The graph for depthchart Fm g (yx) is then as follows:

_ faiis
f

8
—
3

alx

S
. . &t L
Conjugating these terms gives us fo[fg115 = <f2115> fa = f;’wfa. Set
f”ll...fg: = .215]‘;04- Observe that fya:f“f f[”;: = ax '215]5& = azf, = alz,

and hence Conditions (C) and (D) are satisfied with k£ = 2:

dep‘ch('yacf'gl1 . fg:) = depth(az f s fa) = depth(alz)
= depth(ax) + 1 = depth(yz) + 1,

and

depth('yxfgll) = depth(axfgw) = depth(ax)
= depth(ax) = depth(yz).

The graph for depthchart jun (vx) is then as follows:
1 k
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alx

ald
N &
3 3

2. fg} = fo and vz = allz (for some a, A € E(R)*)

Observe that, for Condition B to be satisfied

e f £12
7$ a1 —’7$ a1d g’

vz fll = aldzfo = alllz should not be in supp f2. By [Lemma 6.2.1] this implies
that ap A @11, This gives us the following choices for .

2.1. fi2 = fg (for some 8 € E(R)* such that 8 L o and n € {£1}),

2.2. fl2 = f1 s (for some § € E(R)* and n € {+1}),

2.3. [ = f7 5 (for some § € B(R)* and n € {£1}),

2.4. f = f7 5 (for some § € B(R)* such that § L X and 5 € {£1}),

2.5. fl2 = f 5 (for some & € E(R)* such that A\ < § and n € {£1}).

Let us now examine these cases:

2.1. fg’;’ = fg (for some 8 € E(R)* such that 8 L o and n € {£1})
In this case fiI' f12 = j‘"aj‘"é7 Observe that vz fiI' f12 = alefafg = allXzfl =
alliz. The graph for depthchart g gn (y2) is then as follows:

/s

.
11z
alllx

aldx
a

. Nfa o . .
Conjugating these terms gives us ]“’a]‘”ﬁ7 = (fg) fo = fgfa. Set f4! fg: =
fgfa Observe that 'y:vf“f fg: = ozl)\xfgfa = alA\zf, = alllz, and hence
Conditions (C) and (D) are satisfied with k = 2:

depth(’ya:fgf .. f,g:) = depth(alx\xfgfa) = depth(all)z)
= depth(alAz) + 1 = depth(yz) + 1,
and
depth(’yazfgll) = depth(al)\xfg) = depth(alx)
= depth(alAx) = depth(yx).

The graph for depthchart jun (vx) is then as follows:
1 k
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2.2. ;’; = f7,s (for some § € E(R)* and n € {%1}),
In this case [ fI2 = fa ‘205. Observe that yz fI' f22 = a1z fa '205 = all)\xf;zo& =

alllz. The graph for depthchart gn (yx) is then as follows:

(1)
fa06

—.
11z
alllx

aldx
a

_ ) ] .o . ot . . . .
(.Jonju.gatlng these terms leeS us f.afgw = (f;]%) . fa= fgoo.éfa' Set f“l1 fg: =
fl0sfa- Observe that ’ymfgll . fg: = aldzfl o sfa = aldzfo = alllz, and
hence Conditions (C) and (D) are satisfied with k = 2:

depth(v:nf“l1 .. fg:) = depth(al)\xfgooéfa) = depth(all)\z)
= depth(allz) + 1 = depth(yx) + 1,

and

depth(7$fg11) = depth(al)\xfgooé) = depth(alix)
= depth(alAx) = depth(yx).

The graph for depthchart jun (vx) is then as follows:
1 k
j
n
a008

2.3. (’172 = f7.,s (for some § € E(R)* and n € {£1}),
In this case filfi2 = faf2105. Observe that ~afI'fi? = al)\xfaf2105 =

alllx f(ZlO s = alllz. The graph for depthchart jm e (yx) is then as follows:

aldz
aldz
all)z

fa105

.
11z
3
all\x

allz
a
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2.4.

. . &t . .
Conjugating these terms gives us fofl 05 = ( fgmé) fo = floisfa- Set
fgll . f“: = f;,owfa‘ Observe that fy:r:f”ll . fg: = al)\xfgomfa = ald\zf, =
alllz, and hence Conditions (C) and (D) are satisfied with k = 2:

depth(’y:v!}‘;’“tl1 . fg:) = depth(al)\xfgowfa) = depth(alllz)
= depth(alAz) + 1 = depth(yzx) + 1,

and

depth(q/xfgll) = depth(al)\xfgow) = depth(al\z)
= depth(alAz) = depth(yx).

The graph for depthchart ju; juy, (yx) is then as follows:
fay - Ta,
.
fa015

fgz = .2115 (for some 6 € E(R)* such that § 1L A and nn € {£1}),
In this case fIlfi2 = fafglm. Observe that ~a fI'fi? = al)\xfafglw =

alllx f;gn s = @l1Az. The graph for depthchart jm oz (yx) is then as follows:

aldz
aldz
all)\z

f‘n
. alld
f 8 8

< <
— —
L) L)
3 3

)

,<

i

3

.. ) fat . L.
Conjugating these terms gives us fafgng = <f2115> fa = fgwfa. Set
f”ll...fg: = fglafa' Observe that wzvf“ll fg: = al)\ajfgwfa = ald\zf, =
alllz, and hence Conditions (C) and (D) are satisfied with k = 2:

depth(’ygvf.[’;l1 . fg:) = depth(alXzf" ; f.) = depth(alllz)
= depth(alAz) + 1 = depth(yz) + 1,

and

depth('ya:fgll) = depth(al)\xfgw) = depth(alx)
= depth(alAz) = depth(yz).

The graph for depthchart jun (vx) is then as follows:
1 k
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oy
n
ald

2.5. f;’z = fglw (for some 6 € E(R)* such that A < é and n € {£1}).
In this case fIlfi2 = fafgng- Observe that ~afI'f? = al)\xfafglw =

alllx fgll s = @l1Az. The graph for depthchart jm oz (yx) is then as follows:

aldz
aldz
all)\z

f’?
. alld
f 8 8

< =<
— —
— —
3 3

8

~<

—

3

.o . &t L
Conjugating these terms gives us fof!;5 = (f;7115> fo = [lsfa- Set
f‘“ll...fg: = fgwfa. Observe that fogllfg: = al)\xfgwfa = allzf, =
alllz, and hence Conditions (C) and (D) are satisfied with k = 2:

depth(’yxf“l1 e fg:) = depth(al)\xf;’wfa) = depth(alllz)
= depth(alAz) + 1 = depth(yx) + 1,

and

depth(vmfgll) = depth(al)\xfgw) = depth(alAz)
= depth(alAx) = depth(yx).

The graph for depthchart jun (vx) is then as follows:
1 k
b'—/ﬂ/
n
ald

3. f;’i = f:l and yx = ax (for some a € E(R)™*)

aldx
aldx
alllx

Observe that, for Condition B to be satisfied

P f £12
’}/.iU a1 —'7$ a1d g’

v fI' = azf7! = a0z should not be in supp f22. By |[Lemma 6.2.1} this implies that

ag £ a0. This gives us the following choices for 2.

3.1. f2 = fg (for some 3 € E(R)* such that 8 1 « and n € {£1}),
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3.2.
3.3.
3.4.

fir = .2006 (for some § € E(R)* and n € {£1}),
fl2 = 1,5 (for some 6 € E(R)* and n € {£1}),
fl2 = 1 5 (for some § € E(R)* and n € {+1}).

Let us now examine these cases:

3.1.

3.2.

fg; = fg (for some 8 € E(R)* such that 8 L o and n € {£1})
In this case fi' fi2 = fcjlfg Observe that yafI' f2 = axf;! g = aO:cfg =
alz. The graph for depthchart jn: ¢ (vx) is then as follows:

alpJag

axr

Conjugating these terms gives us f; ! g = (fg) fal= fgfojl. Set f5! ... faF =
fgfojl. Observe that ’ya;f“ll . f“: = axfgfgl = axf;! = a0z, and hence
Conditions (C) and (D) are satisfied with k& = 2:

depth(’y:z:fgll . fg:) = depth(amfgfojl) = depth(alx)
= depth(ax) + 1 = depth(yz) + 1,

and

depth('yznfgll) = depth(a:rfg) = depth(ax)
= depth(ax) = depth(yx).

The graph for depthchart jer e (yx) is then as follows:
1 k

fal
13

a0z

8 8
3 3

£ = flgps (for some § € E(R)* and n € {+1}),

In this case filfa2 = folfls Observe that yafi' fi2 = axfi'fls =

a0z fgoo s = @0z. The graph for depthchart e (vx) is then as follows:

]
- fa005
f_
p, = =
ew] (@]
3 3

ax
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3.3.

Conjugating these terms gives us fo'fl s = ( f;’005> fot = flsfat. Set
fgll...f“: = fgo(;fojl. Observe that fyxfgll fg: = azx ‘gogf‘o?l = azf! =
a0z, and hence Conditions (C) and (D) are satisfied with k = 2:
dep‘ch(’)/x]‘;gl1 . f“:) = depth(azf’ s f5') = depth(alz)
= depth(ax) + 1 = depth(yz) + 1,

and

depth(’y:cfgll) = depth(axf,5) = depth(ax)
= depth(ax) = depth(vyz).

The graph for depthchart jr (yx) is then as follows:
1 k

fal

] 8
a0d %
& &
3 3

23 = f(’;’ow (for some 6 € E(R)* and n € {£1}),
In this case fii fi = f3' ‘;]016' Observe that yafd' fdi = axf;1f2015 -

a0z f201 s = a0x. The graph for depthchart e (vx) is then as follows:
- Jaows
fo,

8
ot
3

alOx

8
3

Conjugating these terms gives us fo'f/5; = <f2016> ot = flosfat. Set

f”ll...fg: = f1osfat. Observe that 'y:pfgll...fg: = azflsfal = azfil =

a0z, and hence Conditions (C) and (D) are satisfied with k = 2:

depth(y:z:f”l1 . fg:) = depth(aacfglo(sfcjl) = depth(alx)
= depth(ax) + 1 = depth(yz) + 1,

and

depth(yxfgll) = depth(ax .;7105) = depth(ax)
= depth(ax) = depth(yz).

The graph for depthchart jun (vx) is then as follows:
1 k
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axT
axT

3.4. fgz = f.5 (for some § € E(R)* and n € {£1}).
In this case fiI! fi2 = fojl '215. Observe that yz fI' f12 = axfojlfgw = aO:L‘ng =
a0z. The graph for depthchart g s (yx) is then as follows:
@S
o Jas
iy

8
et
S

alx

8
3

Conjugating these terms gives us fy!f7, = (fgw) fat = flsfat. Set
foho f5r = flsfat. Observe that yafpt.. fpF = ax Dslat = axfit =
a0z, and hence Conditions (C) and (D) are satisfied with k = 2:

depth(’yxfgll . fg:) = depth(azf", ;fa ') = depth(alz)
= depth(ax) + 1 = depth(yz) + 1,
and

depth(yxf'gll) = depth(azf",,;) = depth(az)
= depth(ax) = depth(yz).
The graph for depthchart jr (yx) is then as follows:
1 k
Ry
v S
alld 3
g g
3 3
4. fgi = f';l and yx = a0z (for some a, A € E(R)*)
Observe that, for Condition B to be satisfied
el =y fi

o f = a0 zf; = a00Az should not be in supp f22. By |[Lemma 6.2.1} this implies
that as A a00A. This gives us the following choices for fg;

4.1. fI2 = fs (for some B € E(R)* such that 8 L a and n € {£1}),
4.2. f&2 = 75 (for some & € E(R)* and n € {+1}),
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4.3. i = f1,,s (for some § € E(R)* and n € {£1}),

4.4. f& = f,s (for some 6 € E(R)* such that § L A and n € {£1}),
4.5. fi = f1.,s (for some § € E(R)* such that A\ < & and n € {£1}).

Let us now examine these cases:

4.1. f;’g = f3 (for some 3 € E(R)* such that 3 1 « and n € {%1}),
In this case fI! fI2 = fojlfg Observe that vz fI' f1? = aO)\xfojlfg = a00\zf] =
a00Az. The graph for depthchart g > (y2) is then as follows:

o ' e o
C'or'ljugatlng these terms gl.ves us fa lfg = (fg) ' fal= fgfa 1. Set foh f5t =
fgf;l. Observe that yzfg' ... f" = aO/\a:fgfojl = a0z f;! = 200z, and
hence Conditions (C) and (D) are satisfied with k£ = 2:

depth(’yacf‘“l1 . fg:) = depth(aO)\:):fgfojl) = depth(a00Ax)
= depth(a0Az) + 1 = depth(yzx) + 1,

and

depth(’yazfgll) = depth(aO)\xfg) = depth(a0Az)
= depth(a0Ax) = depth(vyx).

The graph for depthchart jr (yx) is then as follows:
1 k

f—1

. o
P2
o=
p ]
3
8 8
< =
) )
3 3

42. fm2 = f7 o (for some § € E(R)* and n € {£1}),
In this case fgﬁ 23 = f:l ';715. Observe that vxfgl 23 = aOAxf;l .215 =

a00Ax fgl s = @00Az. The graph for depthchart Fm g2 (vx) is then as follows:

]
. fa1(5
fo)

a00\z
a00\z

a0z
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Conjugating these terms gives us fy!f7, = (fgw) fot = flsfat. Set
fgll . f“: = fglwfojl. Observe that fya:f“ll . fg: = aO)\xfglwajl = a0z f;! =
a00Az, and hence Conditions (C) and (D) are satisfied with k = 2:
dep‘ch(’yazf“l1 . fg:) = depth(aO\z f7,,5f~ ") = depth(a00\z)
= depth(a0Ax) + 1 = depth(yz) + 1,

and

depth(yz f7') = depth(a0Az f1;,5) = depth(a0Az)
= depth(a0Ax) = depth(yz).

The graph for depthchart jr (yx) is then as follows:
1 k

4.3. fg’;’ = fgow (for some § € E(R)* and n € {£1}),
In this case fIfi2 = f! ';7015. Observe that ya fi' fi2 = aO)\xfcjlf(Zow =
a00\z fgm 5 = a@00Az. The graph for depthchart gn (yx) is then as follows:

fa
. a01d
f—l
o/ 8 8

~ ~
(e )
o ]
3 3

8

~<

(e}

3

.o . fo . . .
Conjugating these terms gives us fo'f/5; = (f2016> ot = flosfat Set
f‘“ll . fg: = f:glogf;l- Observe that vxfgll fg: = aO)\xfgloéfojl = a0Azf;! =
a00\z, and hence Conditions (C) and (D) are satisfied with k = 2:

dep‘ch(v:cf”l1 e fg:) = depth(a())\xfgloéfgl) = depth(a00\x)
= depth(a0Ax) + 1 = depth(yz) + 1,

and

depth(7$fg11) = depth(oz())\xfgloé) = depth(a0\x)
= depth(a0Ax) = depth(yz).

The graph for depthchart jun (vx) is then as follows:
1 k
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4.4. fg; = 505 (for some § € E(R)* such that § L X and n € {£1}),

In this case fol fi2 = fi'fo0s- Observe that vz fi' fa2 = aOXafitf7s =

a00\x: fgoo s = @00Az. The graph for depthchart g o (yx) is then as follows:

(1
fa00(5

fak

a00\z
a00\z

a0z

o : fa . L
Conjugating these terms gives us fo'f7 s = <f2005> fot = flsfat. Set
fgll . f": = fgodfgl. Observe that ’ya;fgll . fg: = aO)\xfgoéfojl = a0z f;! =
a00Az, and hence Conditions (C) and (D) are satisfied with k = 2:
dep‘ch(v:z:f“l1 e fg:) = depth(a())wfgo(sf(;l) = depth(a00\x)

= depth(a0Az) + 1 = depth(yz) + 1,

and
depth('ya:fgll) = depth(aO)\xf205) = depth(a0Ax)
= depth(a0Ax) = depth(vyx).

The graph for depthchart o (yx) is then as follows:
B1 B

4.5. fg’;’ = f2005 (for some § € E(R)* such that A < d and n € {£1}).
In this case fIfi2 = f! '(;7005. Observe that ya fi' fi2 = aO)\xijlf(ZOO(s =
a00\z fgoo s = @00Az. The graph for depthchart gn i (yx) is then as follows:

4]
fa005

fal

a00\z
a00\z

a0z
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Conjugating these terms gives us fo'f7 s = ( f;’005> fot = flsfat. Set
fgll . f“: = fgodfgl. Observe that ’ya;fgll . fg: = aO)\xfgoéfojl = a0Xzf;! =
a00Az, and hence Conditions (C) and (D) are satisfied with k = 2:

depth('yacf”l1 e fg:) = depth(aO)\xng(sfojl) = depth(a00\z)
= depth(a0Az) + 1 = depth(yz) + 1,

and

depth(vmfgll) = depth(aO)\zfgoé) = depth(a0Ax)
= depth(a0Ax) = depth(vyx).

The graph for depthchart jer e (yx) is then as follows:
1 k

—1

I Pty g

n =

a0d 8

3
8 8
=< =<
o o
3 3

This completes the proof. ]

{ripitup}
Lemma 6.3.3. Let fII' f2 € W(X) (for some a1,y € Q* and ny,np € {£1}) and let

~yx € GV (for some vy € Q*) such that the following conditions are satisfied:
A. depth(yzfI') = depth(yz) + 1,
B. yafdi # yxfdl fdi and depth(ya fdi fi) = depth(yz fe}).

Then there exists fgllfg: e W(X) (for some Bi,...,B, € * and py, ..., € {£1})
with k = 2,3 such that fgll e fg: = fI {2 in F and the following conditions are satisfied:

C. depth(’ya:fgll . fg:) = depth(yz) + 1,
D. depth(’yacfgll . fﬁ:) < depth(yz) fori=1,2.
Except for the following problem cases:
1. fgifgz = fgof@ and yr = B010x (for some 3,6 € E(R)*),
1. f;’} fgg = f'gfﬁ_ll and yx = B100x (for some 3,8 € E(R)*),
114. fg;fg; = f'ﬂ_lfﬁo and yxr = B010x (for some 3,8 € E(R)*),
0. fg;fg; = f'ﬁ_llf'gl and vyxr = 3106x (for some 3,8 € E(R)*).

Proof. Let fI fI2 € W(X) (for some o, ag € Q* and 1,15 € {£1}) and let vz € GV (for

some v € *) such that the following conditions are satisfied:
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A. depth(yzfI') = depth(yz) + 1,
B. yafdi # ywfdh fdi and depth(yz [ f&5) = depth(yafd}).
Let us illustrate depthchart fm jn2 (vx) as follows:

P
a2

A1
oz1/52 U3

U1

where v1 = vy, vo = fyxfg} and v = 'y:vfgi 33
We will examine all cases which arise. Let us first divide into cases such that Condition
(A) is satisfied:
depth(vxf’g}) = depth(yx) + 1.

1. f' = f, and vz = ax (for some a € E(R)*),
2. f' = f, and vz = al)z (for some a, A € E(R)*),
3. f' = f-1 and vz = ax (for some o € E(R)*),
4. fI = f-1 and y& = a0Az (for some o, A € E(R)*).
Let us now examine these cases:
1. 21 = fo and vz = ax (for some a € E(R)*)
Let us now divide into cases such that Condition (B) is satisfied:

ya fil = yafL S
1.1. o= 8016 and fi2 = f5 (for some 3,6 € E(R)*),
1.2. o = 4106 and f? = fg_1 (for some (3,8 € E(R)*),

1.3. a= B0 and fI2 = fs (for some B € E(R)*).
Let us now examine these cases:

1.1. a = (3014 and f;'; = f5 (for some 3,8 € E(R)*)
In this case fil fl2 = faoisfs. Observe that vz fi' fi2 = B016zfa0i5fs =
ﬁ()ldleg = [1061x. The graph for depthchartf-mfng (vx) is then as follows:

. f5
Jp018% 8
— —
o o)
— (e}
(@) —
R/ @

£010x
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Conjugating these terms gives us fgo15f3 = [f3 <f5015> ’ = fafsi0s- Set
fgll . f“: = f5f3105. Observe that ’ya;fgll . f“: = 8010z f5 fa1056 = 100z f105 =
£1061x, and hence Conditions (C) and (D) are satisfied with k = 2:

depth('yacf“l1 - fg:) = depth(ﬁOldxfgfglog) = depth(51001x)
= depth(5010x) + 1 = depth(yx) + 1,

and

depth('yacfgll) = depth(ﬂ()léxfﬂ) = depth(5100x)
= depth(8016x) = depth(yx).

The graph for depthchart ;u1  sui (yz) is then as follows:
fay - Ta,

fﬁl S

o —

fs =

Ll

8 8 o
o) o
— (@)}
o —
QA o

1.2. a = (3106 and fgg = flgl (for some 3,6 € E(R)*)
In this case fI' fI? = f5105f[3_1. Observe that vz fi! fi2 = BlOéwme(;f'ﬂ_l —
ﬁlOéleEl = $0161x. The graph for depthchart gn ¢ (yx) is then as follows:
s
Ip1

£1001x
60161x

5106x

. . . . fat L
Conjugating these terms gives us f/glo(;fﬁ_l = fﬁ_1 <f5105) f= fﬂ_lfﬁglg.
Set f”ll f”: = fﬁ_lfﬁow. Observe that ”y:rf“ll...fg: = BlO(S:):fﬁ_lfgow =
016z fgo15 = 0161z, and hence Conditions (C) and (D) are satisfied with
k=2:

depth(’mf'gl1 . fg:) = depth(ﬁlOéa:fglfﬁow) = depth(80151z)
= depth($10dz) + 1 = depth(vyz) + 1,

and

depth(’yxfgll) = depth(ﬂl()éa:fﬁ_l) = depth(501dz)
= depth(510dz) = depth(yz).

The graph for depthchart ;u1  su4 (yx) is then as follows:
o) Ia,
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. fBO 8

7t s

B —

[}

8 8 =
=) o
(@} —
— [}
Q. Q.

1.3. a = (30 and fg; = f5 (for some 3 € E(R)*)
In this case fiI' fi2 = fgofs. Observe that yafi' f2 = B0z fsofs = B0lxfs =
$10z. The graph for depthchart g i (vx) is then as follows:

s
[ W
8

8
S
bon
Q
8
o
Q

Conjugating these terms gives us fzof3 = f3 <f50> - fgfgfﬁ_ll. Set f5! ... fgF =
fgfgfﬁ_ll. Observe that ’y:cfgll .. fg: = ﬁOxfgfgfﬂ_ll = Ba:fgfﬂ_ll = ﬂl:z:fﬁ_ll =
B10zx, and hence Conditions (C) and (D) are satisfied with k = 3:

depth(’yxj‘;”l1 . f”;) = depth(ﬁOZL‘fgfgfgll) = depth(510x)
= depth(80x) + 1 = depth(yz) + 1,

depth(*yxfgll) = depth(ﬁOxfﬁ) = depth(fSz)
< depth(80z) = depth(yz),
and

depth(y:vf'“l1 fgj) = depth(ﬁ():nfgfg) = depth(51x)
< depth(80zx) = depth(yx).

The graph for depthchart jr (yx) is then as follows:
1 k

2. fg} = fo and vz = allz (for some a, A\ € E(R)*)

Let us now divide into cases such that Condition (B) is satisfied:

'771 . .771 .772
7"1: aq —"}/.T a1dag”
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2.1. a = 015 and fI2 = f5 (for some 3,6 € E(R)*),
2.2. o= 100 and f? = fﬁ_1 (for some 3,6 € E(R)*),
2.3. a = B0 and f2 = f5 (for some 5 € E(R)*).

2.4. A= 0017 and fI2 = fa115 (for some 6,7 € E(R)*),
2.5. A= 0107 and f? = f .4 (for some &, 7 € E(R)*),

[0}

2.6. A= 06 and fi2 = f! (for some § € E(R)*).
Let us now examine these cases:

2.1. o« = 3016 and fg; = fﬁ (for some (3,0 € E(R)*)
In this case fll fi2 = fﬁglgfﬁ. Observe that vz fi' fil2 = ﬁOlélef5015f5 =
501511)\me = (10611Az.  The graph for depthchart gn (yx) is then as

follows:
_ I3

f 50 =<

— —

i Al

o o

= =

=] u
o
—
o
Q.

Conjugating these terms gives us fgo15fs = f3 <f5015> b= fafsios. Set
f'“ll - fg: = fﬁfﬂlg(s. Observe that yxfgll e fg: = BOlélAmefﬁlog = B1051)\:pf5105 =
$10011Az, and hence Conditions (C) and (D) are satisfied with k = 2:

depth(fyacf‘gl1 .. fg:) = depth(80181\x f5 fa105) = depth(810511\z)
= depth(50151Az) + 1 = depth(vyx) + 1,

and

depth(’ya:fgll) = depth(ﬁOlél)\xfﬁ) = depth(51051\x)
= depth(50151\x) = depth(vz).

The graph for depthchart o (yx) is then as follows:
By By

fs1

o —

fs =

S

S S 0«
o o
— (@}
o —
_ o

2.2. a = 104 and f;'; = fﬁ_l (for some 3,6 € E(R)*)
In this case fill fi2 = fmogfﬁ_l. Observe that va fi! fiI2 = 61051)\.%.]&5105]{671 =
ﬁlOéll)\xfgl = (01011 z.  The graph for depthchartfnlfng (yx) is then as
apJag

follows:
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r—1
fs

fﬁl =<

— —

i i

o o

= =

= @
o
(@)
i
S

i—1
Conjugating these terms gives us fmo(;fﬁ_l = fﬁ_1 (fmo(;) s = fﬁ_lfﬁom. Set
f‘gll . fg: = fﬁ_lfﬁom. Observe that vmfgll . fg: = 51051)\95]55_1]‘:5015 =
B0161Ax fgo1s = P01611Az, and hence Conditions (C) and (D) are satisfied
with k = 2:
depth(’y:z‘f.”l1 o fg:) = depth(ﬁlOCSl)\xfElfﬁolg) = depth(501011)\x)
= depth(51051A\z) + 1 = depth(vyx) + 1,

and

depth(’yxfgll) = depth(ﬂlOélx\a:fﬂ_l) = depth(80151\x)
= depth(81001Az) = depth(yz).

The graph for depthchart jer e (yx) is then as follows:
1 k

~ . Jpo
it s
P =
=
S S =
o o
o —
— )
Q. Q.

2.3. a = 30 and fgg = f'g (for some 8 € E(R)*)
This is a Problem Case. In this case fI'f1? = fﬁofg. Observe that
yafd fe = B0\ fgofs = BO1LAz f3 = B101Az.  The graph for depthchart i ins (vz)
a1 o

is then as follows:

fs

=
011z
B101Ax

501z
B

' ] ) . NG . .
Conjugating these terms gives us fzofz = f3 <f50> = fgfgfﬁll. Set fi! .. fg: =
fgf/gfﬁ_lhl. .However in thi§ case we observe that 'yxfgll . fg: = BOlAwfgfgfgll =
B10Azfafs = B110Azf4' = B101Az, and hence Conditions (C) and (D) are

not satisfied.

depth(’ya:flgf . fg;) = depth(ﬁOl)\xfﬁfgfgll) = depth(8101Az)
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= depth(501Az) + 1 = depth(yx) + 1,
depth(’ya:fgll) = depth(801\z f3) = depth(810Az)
< depth(501Az) = depth(yz),
but

depth(yaf4! f4?) = depth(B01Ax f5f5) = depth(5110Az)
> depth(801Az) = depth(yz).

The graph for depthchart fr g (yx) is then as follows:
1

I,
f'—l
. A1
Iz =
f,@ — o
— —
s s Q. Q.
< =
— [a)
o —
Q. Q.

2.4. X =0017 and fg; = fa11s (for some 8,7 € E(R)*)
In this case fg} 23 = fofar1s. Observe that vz fo "73 = 160172 fo far1s =
1160172 fa11s = aldl0rz.  The graph for depthchartfmfng (yx) is then as

follows:

fat1s

alldolr
aldlor

aldOlr

.. . &t .
Conjugating these terms gives us f,fa115 = (fall(;) fa = fars5fa- Set
fgll . fg: = fa15fa. Observe that ’ymf“ll . fg: = 160172 far5fo = 161072 fo =
16107z, and hence Conditions (C) and (D) are satisfied with k = 2:

dep‘ch(vmf'“l1 .. fg:) = depth(a100172 fa15fa) = depth(ald107z)
= depth(ald017x) + 1 = depth(yx) + 1,

and

depth(’yxfgll) = depth(a16017z f415) = depth(ald107z)
= depth(al0017z) = depth(yx).

The graph for depthchart jun (vx) is then as follows:
1 k
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fats

L?
16107

«

aldOlr
aldlOr

2.5. A = 0107 and f;’; = f:llw (for some 6,7 € E(R)*)
In this case fill fi? = faf;1115~ Observe that vz fi! fil2 = alélOTxfafojllw =
alld107x f:lll s = 16017z, The graph for depthchart Fm g2 (yx) is then as

follows:

r—1
fa116

alls107
aldOlr

aldlor

.o . &t L
Conjugating these terms gives us fafojllw = (f;1115> fa = f;lléfa. Set
f“ll . f”: = f;lléfa. Observe that 'yxfgll . f/’;: = a15107'xf;115fa = ald0l7zfy =
16017z, and hence Conditions (C) and (D) are satisfied with k = 2:

depth('ynvf'gl1 . fg:) = depth(a16107x f s fo) = depth(ald0l7rz)
= depth(al16107z) + 1 = depth(yz) + 1,

and

depth('yxfgll) = depth(alélOTxfojll(s) = depth(a16017x)
= depth(al10107z) = depth(yx).

The graph for depthchart jr (yx) is then as follows:
1 k

)

r—1
fa15

aldolr

aldlor
ald0lr

2.6. A= 06 and f2 = f.! (for some § ¢ E(R)*)
This is a Problem Case. In this case fif? = f.f,!. Observe that
o f' fil2 = 2106z fo fo! = @11062f,! = a1016x. The graph for depthchart jn ¢ (yx)
apJa

is then as follows:
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r—1
fal

P

all0dz
al01éx

al0dz

. . N\ Ja S
Conjugating these terms gives us f, f;ll = ( fojll) fa = fi'faofa- Set
f‘“ll . fg: = f&lfaofa- H‘ow'ever in this case we observe that 'yxfgll . fg: =
al00z £  faofo = a016x foofa = a0116xf, = 1015z, and hence Conditions
(C) and (D) are not satisfied.

depth(’mf'gl1 . fg;) = depth(a108z ;! faofa) = depth(al016z)
= depth(al00z) + 1 = depth(vyx) + 1,
depth(’yxfgll) = depth(a106zf; 1) = depth(a016z)
< depth(a10dz) = depth(yz),

but

depth(vxfgll fg;) = depth(a106z f, ! fao) = depth(a0115x)
> depth(a10dz) = depth(yz).

The graph for depthchart jun (vx) is then as follows:
1 k

fa

o fz B

f! = 3

[a] —

5 5 3 3
o o
o —
— [e]
3 3

3. fgi = f'(;l and yx = ax (for some a € E(R)*)

Let us now divide into cases such that Condition (B) is satisfied:

.771 . .771 .772
7‘%. aq 771. a1dag”

3.1. a = 016 and fI2 = fs (for some 3,6 € E(R)*),
3.2. a = 106 and fI2 = f/gl (for some 3,8 € E(R)*),

3.3. a=pf1and f? = fgl (for some B € E(R)*).

Let us now examine these cases:
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3.1.

3.2.

a = #0164 and fg; = fg (for some (3,6 € E(R)*)
In this case fim e — f[;()lwfg. Observe that vz fil' fI? = ﬁOlémf/;olwfg =
0160z fg = $1060x. The graph for depthchart jn; ¢ (vx) is then as follows:
apJaz
o
fa0

ﬁ&ﬁ
31000z

5016x

Conjugating these terms gives us fgolwfg = fa (fg0115> b= fgfgl%é. Set
F5% o f8F = fa 105 Observe that yafh! ... fi* = 8016z f5 f3105 = 5100x f 3105 =
£1060z, and hence Conditions (C) and (D) are satisfied with k = 2:

depth(v:nf"“l1 .. fg:) = depth(,BOlé:z:fgfglloé) = depth(51060x)
= depth(5010x) + 1 = depth(yx) + 1,

and

depth(*yxfgll) = depth(ﬁOldxfb) = depth(5100x)
= depth(5019z) = depth(yx).

The graph for depthchart ju; juy, (yx) is then as follows:
fay - Ta,
i
fs

a = (3108 and fg; = fﬁ_l (for some 3,0 € E(R)*)
In this case figne — fﬁTllo(;fﬁ_l. Observe that vz fi! fil2 = ﬂlOéwall()afﬁ_l =
£1060x fs ! = B0160xz. The graph for depthchart Fm g (yx) is then as follows:

£1060x

£010x
£100x

5!
jol
BLO8Y 8
] ]
o o
@) —
— )
s @ @
(=)
o
i
Q.
, . . . fat L
Conjugating these terms gives us j"ﬂ_llo(ﬂcﬁ_1 = fﬂ_1 <fﬂ_1105> = fglfﬁ_olw.

Set f”ll f”: = fﬁ_lfﬁ_olw. Observe that 'ya:fgll . f”: = ﬂlOéxfElfﬁ_OlM =
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ﬁOléxffgolw = 0160z, and hence Conditions (C) and (D) are satisfied with
k=2

depth(’ymf”l1 . f[";:) = depth(ﬁlOéxfglfﬁ_olw) = depth(80160z)
= depth(5100z) + 1 = depth(yz) + 1,

and

depth(’ymfgll) = depth(ﬂlOéxfﬁ_l) = depth(801dz)
= depth(510dz) = depth(yz).

The graph for depthchart ju; juy, (yzx) is then as follows:
fay - Ta,
- T
/s

3.3. a = B1 and f;’z = fﬁ_l (for some B € E(R)*)
In this case fiI! fi2 = f/gllfﬁ*l. Observe that vz fI' f12 = 51xfg11f51 = ﬂlefEl
B01x. The graph for depthchart Fm 2 (vx) is then as follows:
apJag

301502

5100x
5016x

S5
fa .
o =

8
—
«Q

501z

Conjugating these terms gives us fﬁ_llfgl = fﬁ_1 (fﬁ_ll)fﬁ 1 = fglfﬁ_lfﬁo. Set
f‘“ll . fg: = fﬁ_lfﬁ_lfgg. Observe that 'yxfgll . fg: = lefﬁ_lf/glfﬂo =
ﬁxfﬂ_lfﬁo = B0z fso = B0z, and hence Conditions (C) and (D) are satisfied
with k = 3:
depth(yafh! ... f42) = depth(B1zf5" f5" f30) = depth(801z)
= depth(B1lz) + 1 = depth(yx) + 1,

depth(’yxfgll) = depth(ﬂlegl) = depth(Bx)
< depth(81z) = depth(yz),
and

depth('yxfgf fg;) = depth(,lefﬁ_lfﬁ_l) = depth(S0x)
< depth(f1lz) = depth(yz).

The graph for depthchart ;u1  su4 (yx) is then as follows:
o) Ta,
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1. fm

= f:l and yx = a0z (for some a, A € E(R)*)

Let us now divide into cases such that Condition (B) is satisfied:

4.1.
4.2.
4.3.
4.4.
4.5.
4.6.

yuflt = e f [
a = 016 and fI2 = fs (for some B,5 € E(R)*),
o = 106 and f12 = fﬂ_l (for some 3,8 € E(R)*),
o= f1and fi2 = fﬁ_1 (for some 3 € E(R)*).
A =6017 and f22 = fa115 (for some 6,7 € E(R)*),
A = 6107 and f = f . (for some §,7 € E(R)*),

A =16 and f2 = fa0 (for some § € E(R)*).

Let us now examine these cases:

4.1.

a = (3014 and f;’g = fs (for some 3,5 € E(R)*)

In this case fll fi2 = fﬁglgfﬁ. Observe that vz fi! fil2 = ﬁ()lél/\mfﬁowfﬁ =
B01611)\xf5 = (10611Az.  The graph for depthchart n o (yx) is then as
follows:

_ fs

f 50 ~<

i i

— —

o o

= =

5]
o
i
]
Q

Conjugating these terms gives us fgoi5fs = f3 (fgom) b fafsi0s. Set
f“ll . fg: = f5fs105. Observe that 'ya:fgll e fg: = B0151Ax f5 fa105 = B1061Mx fa105 =
£10611\z, and hence Conditions (C) and (D) are satisfied with k = 2:

depth(’yacf“l1 . fg:) = depth(ﬂ()lél)\xfgfmog) = depth(510011\z)
= depth(80151\z) + 1 = depth(vyz) + 1,
and
depth(yz fJ') = depth(80161Az f3) = depth(81051Az)
= depth(80151\x) = depth(vz).

The graph for depthchart jun (vx) is then as follows:
1 k



6.3. CASEWORK LEMMAS 185

fs1

- Aol

s =

S

S S @
o o)
— (@)}
(@) —
QA o

4.2. a = 104 and fg; = fﬁ_l (for some 3,6 € E(R)*)
In this case fg} &73 — fﬁloafgl' Observe that vfb‘fgl &’3 = 51061Axf5105f§1 —
ﬁ10511)\xf'6_1 = (01011 z.  The graph for depthchartf-m 12 (vx) is then as
apJag

follows:
f'— 1
. B
f £1 ~<
Aol Al
— i
=) o
= =
il
= o @
o
S
—
Q.

. . . . fat L
Conjugating these terms gives us f/glo(;fﬁ_l = fﬁ_1 (fﬁlog) b= fﬁ_lf/jow. Set

fgllfg: = fﬁ_lfﬁow. Observe that ’yxfgllfg: = ﬁ1051/\:cf5_1f5015 =
BOlélefgom = (01011Az, and hence Conditions (C) and (D) are satisfied
with k = 2:

depth(’ymfé‘ll e fg:) = depth(ﬁlOél)\xfﬂ_lfgm(g) = depth(801511\x)
= depth(81051\x) 4+ 1 = depth(yzx) + 1,

and

depth(yaf') = depth(81051 xf5") = depth(50151\z)
= depth(51001Az) = depth(yz).

The graph for depthchart jr (vx) is then as follows:
1 k

. Jpo
it s
B =
3
S S =
o ‘o
o —
— )
Q. Q.

4.3. o = B1 and f;’z = fﬁ_l (for some B € E(R)*)
This is a Problem Case. In this case fI'f? = fﬁ_llfﬁ_l. Observe that
yxfdt fi2 = ﬁlOAxfgllfgl = ﬁlOO)\szI = $010Az. The graph for depthchartfmf'ng (yx)
apJag

is then as follows:
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i—1

Conjugating these terms gives us fﬁ_llfﬂ_l = fﬁ_1 <f6_11)fﬁ = fﬂ_lfﬁ_lfgo. Set
f“ll . f“: = fﬂ_lfﬁ_lfgo. However in this case we observe that fya:fgll . f“: =
ﬂlO)\a:fﬁ_lfﬁ_lf,go = ﬁOl)\xfﬂ_lfm = BOOlA:Bf/BO = B010Ax, and hence Condi-
tions (C) and (D) are not satisfied.

depth('ymfgl1 .. fg;) = depth(BlO)\xfﬁ_lfﬁ_lfgo) = depth(5010\x)
= depth(510A\x) + 1 = depth(~yx) + 1,

depth(vmf'gll) = depth(ﬁl()/\:cfﬁ_l) = depth(801A\z)
< depth(510Az) = depth(yz),
but

depth('yacfgl1 fg;) = depth(ﬁl())\mfﬁ_lfﬁ_l) = depth(5001)\x)
> depth(810Az) = depth(yx).

The graph for depthchart fun e (vx) is then as follows:
1 k

. Jeo
f*l

-1 ~< ~

f — o

B o —

() =)

S S Q. Q.
< <
o —
— ]
Q. Q.

44. X = 46017 and fgz = fa115 (for some 8,7 € E(R)*)
In this case fil! f2 = fofa11s. Observe that yzfil' fi2 = al6017a fo fairs =
1160172 fa11s = aldl07z.  The graph for depthchartf-mfnz (yx) is then as
allag

follows:

fallé

alldolr
aldlor

aldOlr
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4.5.

.o . & .
Conjugating these terms gives us f,fa115 = (fa115> fa = fa1s5fa- Set
fgll . f“: = fa1sfa. Observe that fya:f“ll . fg: = 100172 far5fa = 2161072 fo =
16107z, and hence Conditions (C) and (D) are satisfied with k = 2:

depth('yacf'“l1 ... fg:) = depth(100172 fa15fa) = depth(al151072)
= depth(ald017x) + 1 = depth(yx) + 1,

and

depth(yxfgll) = depth(16017 fa15) = depth(a1d107x)
= depth(al0017z) = depth(yx).

The graph for depthchart ;u1  sui (yz) is then as follows:
f 81 -, B

fa15

Li
16107

«

aldOlr
aldlor

A = 0107 and fg; = f.;lllé (for some 6,7 € E(R)*)
In this case fg} 23 = fa f;lll s- Observe that yx fgl 23 = aldl0rx fa f(;lll 5 =

allél0rz f;lll s = al00l7xz.  The graph for depthchart Fm g (yx) is then as
apda

follows:
i1
. fa115
fo & &
= o
< S
= —
s < c
i
o
!
3
‘ ‘ _ - IRV 1
Conjugating these terms gives us fof, 115 = (fa115> fa = foisfa- Set

f‘“ll . fg: = f‘ojlléfa. Observe that vasfgll . fg: = a15107':cf;115fa = ald0l7zfy =
16017z, and hence Conditions (C) and (D) are satisfied with k = 2:

depth(*ynvf'gl1 . fg:) = depth(a101072 £ fo) = depth(al5017x)

«

= depth(al10107z) + 1 = depth(yz) + 1,
and

depth(*yxfgll) = depth(ald1072f ) = depth(ald017x)
= depth(a10107z) = depth(yx).

The graph for depthchart ;u1  su4 (yx) is then as follows:
o) Ia,
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4.6. A = 16 and fgz = fao (for some & € E(R)*)

This is a Problem Case. In this case fI' f2 = f:1fs1. Observe that
N fIf2 = 0016z f; ! fa1 = 200162 f41 = a0106z. The graph for depthchart jn 2 ()
apJag

is then as follows:

a0ldz

r—1
Conjugating these terms gives us fcjlfal = (fa1>fa fojl = fafojllf:l. Set
f‘“ll . fg: = fofilfat. However in this case we observe that 'yxfgll f/g: =
aOléxfafojllfojl = alO(Smf(;llfgl = 04100(53:]&071 = 0106z, and hence Condi-
tions (C) and (D) are not satisfied.

depth(7$f511 fg:) = depth(a016z fo f3)' fo') = depth(a0106z)
= depth(a016x) + 1 = depth(vyx) + 1,
depth(’yxfgll) = depth(a016z f,) = depth(a100z)
< depth(a010zx) = depth(vyx),
but

depth(vmfgll fg;) = depth(aOl(Sﬂsfaf;ll) = depth(a1006x)
> depth(a010x) = depth(vyx).

The graph for depthchart o (yx) is then as follows:
B1 By

f'—l
a
r—1
. Yo =)
j s =
a — =]
S e 3 3
e} o
— o
o —
3 3

This completes the proof. ]
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Lemma 6.3.4. Let fI1 f2 € W(X) (for some a1,00 € Q* and n1,m2 € {+1}) and let
yx € GV (for some vy € Q*) such that the following conditions are satisfied:

A yafdy =y,
B. depth(’yxfg} 23) = depth(yzx) — 1.

Then there ewists fgllf“: € W(X) (for some By,...,Br € Q° and p, ..., u, € {£1})

with k = 2 such that f”ll .. fg: = fI {2 in I and the following conditions are satisfied:
C. depth('yxfgll) = depth(yzx) — 1,
D. P)/xf'gll fg; - 7xf511'

Proof. Let fI fI2 € W(X) (for some o, ag € Q* and 1,15 € {£1}) and let vz € GV (for

some v € *) such that the following conditions are satisfied:
A, yaflh =y,
B. depth(yafI! f2) = depth(yz) — 1.

Let us illustrate depthchart jm iz (vx) as follows:

1
aq

+12
v1 onlds

v3

11 FN1 £M2
where v = vz, vy = 'yxfgl and vg = fogl gz-

By|Lemma 6.2.6| depthchart Fm g (yx) is the reverse of depthchart o jmm (v fm gg)
ayJag a2 Jajg

All cases with this depth chart have been discussed in Then there exists

f”ll...fg: e W(X) (for some Bi,...,0; € Q* and py,...,u, € {£1}) with k = 2 such

that fgll e fg = 72 in F and the following conditions are satisfied:

C. depth('ymfgll) = depth(vyzx) — 1,
D. ’yxf’“llfg; = V:Ufgll.
O

Lemma 6.3.5. Let I f2 € W(X) (for some a1,00 € Q* and n1,m2 € {£1}) and let
yx € GV (for some vy € Q*) such that the following conditions are satisfied:

A. vz # yofd and depth(yafd}) = depth(yz),

B. depth(yafI! f2) = depth(yz) — 1.

{usgirls}
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Then there exists fgll f/g}f e W(X) (for some Bu,...,B, € QF and p1, ..., € {£1})

with k = 2,3 such that f”ll . f”: = fI {2 in F and the following conditions are satisfied:
C. depth(’yxfgf . fg:) = depth(yz) — 1,
D. depth(wcf”l1 . fﬁf) < depth(yz) — 1 fori=1,2.
Except for the following problem cases:
i. 21 g; = fsfs1 and yx = B0106z (for some 3,8 € E(R)*),
1. f;’ifg; = fglfﬁ_l and yxr = 1010z (for some 3,6 € E(R)*),
1. fgifgi = f'golf.g and yx = 0100z (for some 3,6 € E(R)*),
v. fgifgi = f.ﬁ_lf'ﬁ_o1 and yx = B1010x (for some 3,86 € E(R)*).

Proof. Let fgl 12 ¢ W (X) (for some aq,as € QF and m,n2 € {£1}) and let vz € GV (for
1 2

some v € *) such that the following conditions are satisfied:
A. vz # yafdi and depth(yzfd}) = depth(yz),
B. depth(yzf2! f2) = depth(yz) — 1.
Let us illustrate depthchart jm o (vx) as follows:
2

(12
1)1 UQ a9

v3

A1 (N1 £12
where v = yzx, vy = ’yl‘fgl and vz = V»ngl gz'

By [Lemma 6.2.6, depthchart g1 s () is the reverse of depthchart o fom (ya fI f12).
ayJag =3)] a1

All cases with this depth chart have been discussed in Then there exists

Vi ...fg: e W(X) (for some Bi,...,08, € O and py,...,u, € {£1}) with k = 2,3 such

that fgll . fg = 72 in F and the following conditions are satisfied:

C. dep‘ch(q/wf“l1 e fg:) = depth(yx) — 1,
D. depth(’yxfgll . fgj) < depth(yz) — 1 for i = 1, 2.
Except for the following problem cases:

i. fifi? = f5fs and yx = B0105z (for some 3,8 € E(R)*),

—e
—

e — f'mfﬁ_l and vz = $101dz (for some 3,6 € E(R)*),

—-
—

i, fo e = fﬂ_olfg and vz = 0106z (for some 3, € E(R)*),

iv.

<

T f'fj_lfﬁ_ol and yx = 51016z (for some 3,0 € E(R)*).
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O

Lemma 6.3.6. Let fI} ... fI3 ¢ W(X) (for some o, ..., a3 € Q* andn1,...,n3 € {£1})

and let vz € GV (for some v € ) such that fI' f12 is a problem case from
and fgg 23 s a problem case from and the following conditions are satisfied:

A. depth(yxfit ... fll¥) = depth(yx) + 1 fori=1,2,
B. depth(yx ! ... fI3) = depth(yz).

Then there exists fgll . fg: € W(X) (for some Bi,...,Bk € Q* and py,...,ux € {£1})
with k = 4 such that fgll . fg: = fI {2 in ' and the following conditions are satisfied:

C. depth(’yxfgll fg;) = depth(yz) 4+ 1,
D. depth('yauf'/’;l1 e fB:) = depth(yz) fori=1,3,4.

Proof. Let fli ... fB € W(X) (for some o, ...,a3 € Q* and 71,...,13 € {£1}) and let

yx € GV (for some v € Q*) such that f7' f2 is a problem case from [Lemma 6.3.3 and
gg f;?g is a problem case from [Lemma 6.3.5 and the following conditions are satisfied:

A. depth(yafit ... fli) = depth(yz) + 1 for i = 1,2,
B. depth(yzfI ... f28) = depth(yz).

Let us illustrate depthchart g s (y2) as follows:
ay--Jag

-
az
1 3
g 2 U3 23
V1 V4

The problem cases from are:
i. fifi? = fs0fs and vz = B01x (for some 3,6 € E(R)*),
i, fhfe = fgf[;ll and yr = $106z (for some 3,5 € E(R)*),
i, fo e = fglfﬁo and yx = 5010z (for some (3, € E(R)*),
iv. fhf8 = f5' f5" and v = 106z (for some 3,6 € E(R)).
The problem cases from are:
i f2f0 = f,fa1 and vz = a010Az (for some a, A € E(R)*),
ii. f2 1 = fofot and yx = a101\z (for some o, A € E(R)*),

it f22 128 = f-il fo and vz = a010Az (for some o, X € E(R)*),
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iv. fl2fdd = fi1fo) and yx = al01)\z (for some a, \ € E(R)*).
This gives us the following eight choices for fI ... f13:
L flhf2 = faofs, f2f8 = fafar, vy = B016z and vz fl = a010Az (for some
B,6,a, A € E(R)*),
2. ff2 = foofs, fRFE = farfil, yo = B010z and vz fll = al0l\z (for some
B,0,a, A € E(R)*),
3. flh R = f,@fg_ll, f&’é ZZS = fa_olfa7 vyr = [106x and 'yxfg} = a010Az (for some
B,0,a, A € E(R)*),
4. = fﬁfﬂl’ 02 fas = fa1 a07 vz = B106z and vz fl 1 = «al01)\x (for some

ﬁ,é,a, A € E(R)Y),

= fﬁ fgo, 2 fas = = foafar, v = B016z and 'ya?fg} = a010Az (for some
ﬁ,é,a, A € E(R)),

= fﬂ fgo, o2 fols = falfojl, vz = 016z and vz fI} = al0l\z (for some
ﬁ,é,a, A € E(R)),

e — f/gllfﬁ_l, s = folfo, vy = 106z and vz fl} = a010A\z (for some
187 67 a’ )\ 6 E(R)*)’

DA = fT FBIR = £ ve = F1062 and yaf} = 0101 (for some
B,6,0,\ € E(R)").

Let us examine each case in detail:

1.

f’72 = fggfg, "3 = fafa1, yx = 016z and ’yccf"l = a010Az (for
some 3,0, a, \ € E(R) )

In this case 8 = . This gives us fi! fi2 f1? = foofafa1. Then vz = a01ldz. Observe
that vz fI' = 0102 fap = a0116z. But in our hypothesis vz fI' = a010Az. There
do not exist 0,y € F(R)* such that 16 = 0. Therefore this case is not valid.

) f;’i fgi = f'gofﬂ, fgifgg = falf';l, ~x = 301dx and 7wfgi = al01Az (for

some (3,0,a,\ € E(R)*)

In this case 8 = al. This gives us fg} gg ;’g = falofalf'(;l. Then vx = «101dx.
Observe that vz fl! = al016zfa0 = al0116z. But in our hypothesis vz fJ! =
o101Az. This implies that A = 15.  Hence vz fI' f22 f1B = 010102 far0far f! =
10110z for f7' = 2110162 f; " = a1016z. The graph for depthchartfg%fg%fgg (yx) is

then as follows:
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. fal . . . . .

falO) f(;l = fozlfalfalllfojl =
fat L . . L.

falfalf (fall) = falfalfilfa_ll Set fﬂl . f‘uk = falfalfilfa_ll ObSGI‘VG

that wf“ll...fﬁ = 010162 fo1 for fo L o} = @100z for f5 1 f ) = 111062 £, f! =

al1106zf;' = a1016z, and hence Conditions (C) and (D) are satisfied:

Conjugating these terms gives us fam fod foj 1= fal

YoumnN

depth(’yaffgll) = depth(a1010z f41) = depth(al100z)
= depth(al101éx) = depth(yz),

depth(’yxfgll fg;) = depth(alOl&xfalfal) = depth(al11104z)
= depth(a1016z) + 1 = depth(yx) + 1,

depth('yxfgll . fgj) = depth(alOlémfalfalfojl) = depth(al10dz)
= depth(a1010x) = depth(vyx),
and

dep‘ch(’yxf';_/fl1 . f,gf) = depth(10102 fa1 far f5 ' f) = depth(al016z)
= depth(al1010z) = depth(yx).

The graph for depthchart fun (vx) is then as follows:
1 k

far D!
fal fojll

alll0dz

al0ldz
all0dz
al106x
al0lox

3. "2 = f,gj"ﬁ1 s foz "3 = faO for y£ = B106z and ’ya:f"l = 010z (for
some ,6,5, a, )\ € E(R) )
In this case 1 = a0. But there do not exist «, 5 € E(R)* such that this is true.

Therefore this case is not valid.

4. fgifgz = f'gfﬁ_ll, fggfgg = f:l ';01, yx = $100x and 7mfgi = al01Ax (for
some 3,d,a, A € E(R)*)
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In this case o = B1. This gives us fI' f22 fi8 = fgfgllfgl%. Then vz = $106x.
Observe that yx fd} = 8106z f3 = $1106z. But in our hypothesis vz fa; = S1101Az.
This implies that § = 1\, Hence ya:fdi fo fif; = B101\af5 /5" f310 = 1101z f5 f510) =
B1011 Az f/gllo = 101 x. The graph for depthchart jm oz s (yx) is then as follows:

f'—1
g1 1
10

51

=
101z
B1011\z;

B101Ax
L1011z

] ] ) . NG P Lo
Conjugating these terms gives us fgfmlfmlo = f,B <f,3110> o f@ll = fﬁfﬁllfﬁllfgll =
. . L . . . S .
(fﬂll) ’ fﬁfgllfml = fﬁlfﬂfgllfgll- Set fgllfg: = fﬁlfﬁfﬁllfml- Observe
that v fgll B = B0 fa faf g o = B110Az faf5) f5) = B1110Az f5,' [ =
,BllOAxbell = 101z, and hence Conditions (C) and (D) are satisfied:

depth(yaf4!) = depth(8101\zf51) = depth(5110Ax)
= depth(5101\z) = depth(yx),

depth(wnj;gl1 fg;) = depth(ﬁl()l)\xf[glfﬁ) = depth(51110\z)
= depth(8101A\x) + 1 = depth(yx) + 1,

depth(y:rf'“l1 . fg;) = depth(ﬁlOl)\:Ufﬁlf/gfﬂ?) = depth(5110\x)
= depth(5101\x) = depth(vz),

and

depth(yaf4! ... f4%) = depth(8101\z fs1 f3. /5, f3,") = depth(B101x)
= depth(5101\x) = depth(vyx).

The graph for depthchart jer e (yx) is then as follows:
1 k

. 1
f5/a\s1

. 8 .
foo /2 N fal
8 = 8
—

8 S — 8 S
~< ~< Q. ~< ~
— [a) [a) —
[a) — — (e}
— — — —
Q. Q. Q. Q.
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5. fmfnz = f57" fao, F2f5 = fafar, vz = 010z and vz f1 = a010Az (for
some (3,d,a, A € E(R)*)
In this case @ = 0. This gives us fil {2 fI8 = f/glfﬁofgm. Then vz = 301dz.
Observe that *ya:fg} = 501530]56_1 = (0016x. But in our hypothesis ’ymfg} =
30010Az. This implies that 6 = 0X.  Hence ~ya fI! fI12 f3 = BOlO)\xf,glfﬁofggl =
BOOlO)\xfggfgm = BOlOO)\xfggl = (010Az. The graph for depthchartf-m fm2 f13 (vx)
is then as follows:

 Jro
01

50

Knl.
0102
80100\

B010\z
B010\z

_ ) ] PR 1/ \ao e
Conjugating these terms gives us fﬁ 1f50f501 = fﬁ 1 (fﬁm) 0 fao = fﬁ 1f5010f,80f60 -

N 2 S L . . .
(Fawo) " F5 foofao = o 7" Foofao.  Set fhi .. fhe = j5) 5" faofao. Observe
that yaf4! ... f5* = BO10Azfa f5 " faofso = BOOINf5 ! fa0 fao = BO00IAZ fao fa0 =
ﬁOOI/\xf/g() = 010z, and hence Conditions (C) and (D) are satisfied:

depth(’yxfgf) = depth(ﬁOlO)\:L'fﬁ_Ol) = depth(B001\z)

= depth(5010Az) = depth(vx),

depth(yaf5! f42) = depth(8010Az f34 f5') = depth(80001\z)
= depth(8010Az) + 1 = depth(yx) + 1,

depth(w:f”l1 .. fg;) = depth(,@OlOAmeolelfgo) = depth(5001\x)
= depth(5010A\x) = depth(~x),
and

depth(wvf/gfl1 .. fgf) = depth(ﬁ()l())\l'f./;olfglfﬁofﬁo) = depth(5010\x)
= depth(5010A\x) = depth(~x).

The graph for depthchart ju. e (yx) is then as follows:
1 k

[5G
. SN
fa0 = f
80 = B0
(@)

8 S S 5] 5]
~< ~< oY ~< ~<
(an} — — o
— o o —
o = S o
Q. Q. Q. Q.
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6. fg;fgg = fg_lfﬁo, f;’;f;’g = forf3', vy = B01dx and 'yacf;’i = alO0lAx
(for some (3,6, a, A € E(R)*)
In this case 0 = al. But there do not exist «, 5 € E(R)* such that this is true.
Therefore this case is not valid.

7. 21 fﬁ_llfﬂ_l, o2 N3 — ‘ojolf‘a, yxr = (3106x and 'ya:fgi = a010A\x

a3
(for some 3,6,a, A € E(R)*)
In this case § = a0. This gives us f 23 = fam fa Then vz = a0100z.
Observe that 7xfa1 = 0100z f 0l = a01006x But in our hypothesis ’ymfg} =
«010Az. This implies that A = 04. Hence 'y;rf C’Zg = aOlO(Sxf_l ._lf.a =
aOlOO&cf 1, = a00100z fo = 20106z. The graph for depthchartfmfngfng (yx) is

then as follows:

Jéfl

X a0

fogr® B

alf B B «
(e ]
o —
— o
o o
3 3

Conjugating these terms gives us f OlfaO fo = fao (fa01> fa = fa0 faO Fo00fa =
fao fao fa (faoo) "= fodfad fafoo Set fi o f5E = fod fao fafao. Observe
that ya /4! ... f'g = 01002 f. foit fafao = 00102 f 3 fofao = 000162 fofao =
20016z fop = 20106z, and hence Conditions (C) and (D) are satisfied:

depth(*ya:fgll) = depth(a0106z /) = depth(a001dx)
= depth(a0106x) = depth(yz),

depth(’yxf f J) = depth(a0106zf fod) = depth(a00015x)
= depth(a0100z) + 1 = depth(vyz) + 1,

depth(’yavfgl1 . fg;) = depth(a0106z f4 foil fo) = depth(a0015z)
= depth(a0100z) = depth(vyx),
and

depth('y:vf'gl1 .. fgf) = depth(aOlO&xfcjol '(;01 fafa0) = depth(a0106z)
= depth(a010dz) = depth(yz).

The graph for depthchart jun s (vx) is then as follows:
1 k
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o010z
0016z
a0100x

8. f”l ’72 = fﬂ_llfﬁ_l, f;’; 773 = f 1 aO, ~yx = (3106x and 'yzz:fgi = al01)\x
(for some 3,68, a, A € E(R) )
In this case 8 = «. This gives us fifR B = folic i) Then 4z = al0dz.
Observe that 'y:z:f = ozl()(sznf 1 = a1000z. But in our hypothesis vazfgi = al01)x.
There do not exist §,y € E(R)* such that 00 = 1y. Therefore this case is not

valid.

This completes the proof. O

{strawberryswi

Lemma 6.3.7. Let fI} ... f3 € W(X) (for some o, ..., a3 € Q* andn1,...,n3 € {£1})

and let yx € GV (for some v € Q) such that fIi f2 is a problem case from

and the following conditions are satisfied:

A. depth(yaz fI' ... ) = depth(yz) + 1 fori=1,2,3,

F11 (M3 __ (11 112
B. yxfay - fas = YT o fas

Then there exists f“ll. fg’“ € W( ) (for some B, ...,Bk € QF and p1,...,ux € {£1})
with k = 3 such that f”ll f = f 23 in F and the following conditions are satisfied:

C. depth(*yxfgll o fﬁZ) = depth(yzx) fori=1,
D. depth('yyvj';/gfl1 . fﬁf) = depth(yz) + 1 for i = 2,3.

Proof. Let fIi ... f € W(X) (for some o, ...,a3 € Q* and 71, ...,m3 € {£1}) and let
vz € GV (for some v € Q*) such that fI! fI2 is a problem case from [Lemma 6.3.3, and the

following conditions are satisfied:

A. depth(yazfdt ... f2) = depth(yx) + 1 for i = 1,2,3,

f11 (M3 1 £M2
B. vxfay ... fas ’Yxf oy Jaz

Let us illustrate depthchart g s () as follows:
S

(12 M3
a9 as
M
ayUy U3 Uy

U1

where v; = yx, vy = v fi' and v3 = vy = v fol f2. The problem cases from [Lemma 6.3.3

are:
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L. filh fi2 = fpofs and ya = 016z (for some 3,8 € E(R)*),
2. filjiz = fgfgll and vz = $108z (for some 3,8 € E(R)*),
3. fhfr = fglfﬁg and yx = 5010z (for some (3, € E(R)*),
4. fife = fgllfﬁ_l and vz = $10dz (for some 3,5 € E(R)*).

The rest of this proof proceeds similarly to
O

Lemma 6.3.8. Let fI} ... f3 ¢ W(X) (for some o, ...,a3 € Q* andny,...,n3 € {£1})
and let yx € GV (for some v € Q) such that fIi f2 is a problem case from

and the following conditions are satisfied:
A. depth(yz fI' ... f) = depth(yz) + 1 fori =1,2,3,
B. yafdi ... f& # vy fdi & and depth(yz i ... fd3) = depth(yafd; f33).

Then there exists fgllfg: e W(X) (for some Bi,...,B, € Q* and py, ..., € {£1})
with k = 2,3 such that fgll e fg: = f {2 in F and the following conditions are satisfied:

C. depth(’yxfgll . fg:) = depth(yz) fori=1,
D. depth(’y:vfgll o fBZ) = depth(yx) + 1 fori = 2,3.

Proof. Let fli ... fB € W(X) (for some o, ...,a3 € Q* and n1,...,13 € {£1}) and let
y& € GV (for some vy € Q*) such that fI' f72 is a problem case from [Lemma 6.3.3, and the

following conditions are satisfied:
A. depth(yzfI' ... fi) = depth(yz) + 1 for i = 1,2, 3,
B. yafdi ... f& # yafl f and depth(yz fi ... f&5) = depth(ya fd} f32).
Let us illustrate depthchart g (vx) as follows:

(12 i3
e as

oAy vy Oy

U1

where v1 = yx, vo = yrfai, v3 = yrfoi far and vy = YT for for fos. The problem cases

from [Lemma 6.3.3 are:
i. fi 2 = fa0fs and vz = B01z (for some 3,6 € E(R)*),
i, fhfre = fgfgll and yr = $105z (for some 3,5 € E(R)*),

i, fofre = fﬁ_lfgo and vz = 5016z (for some 3,5 € E(R)*),
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v, flfr = fgllfgl and yr = 3106z (for some 3,5 € E(R)*).

The rest of this proof proceeds similarly to O

{newnoise}

Lemma 6.3.9. Let I} ... fIB ¢ W(X) (for some o, ..., a3 € Q* andn,...,n3 € {£1})
and let yx € GV (for some v € Q) such that f22f1 is a problem case from

and the following conditions are satisfied:
A yz =z,
B. depth(yafd fi2) = depth(yz),
C. depth(yzfI ... f13) = depth(yz) — 1.

Then there exists fgll . fg: e W(X) (for some By,...,B, € QF and 1, ..., € {£1})
with k = 3 such that f** ... f* = fI' {2 in E' and the following conditions are satisfied:
B1 Bk /a2

D. depth(’yzfgll e fBZ) = depth(yzx) fori=1,
E. depth('ymfgll o fBZ) = depth(yx) — 1 fori=2,3.

Proof. Let fli ... fB € W(X) (for some a,...,a3 € Q* and 71,...,13 € {£1}) and let
v € GV (for some v € Q*) such that fI2 f3 is a problem case from [Lemma 6.3.5, and the

following conditions are satisfied:
A. vy = yafd,
B. depth(yzfll f2) = depth(1a),
C. depth(yzfI ... f13) = depth(yz) — 1.
Let us illustrate depthchart g (vx) as follows:
o

3
U1 V2 U3 &73

Vg

where v = vy = v, v3 = ya 2 and vy = v fI2 f2. By|[Lemma 6.2.6| depthchart s (7T)
ay-Jag

is the reverse of depthchart jams. fom (yx fg} .. gg) All cases with this depth chart have

been discussed in [Lemma 6.3.7] Then there exists fgll... It v € W(X) (for some
By Bk € QF and pq,...,u € {£1}) with k& = 3 such that f“llfg: = fIf2 in

F and the following conditions are satisfied:
C. depth(vxfgll e fﬁj) = depth(~zx) for i =1,

D. depth('ya:fgll e fﬁZ) = depth(~yx) — 1 for i = 2, 3.
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{blackcelebrat
Lemma 6.3.10. Let fI' ... {2 € W(X) (for someaq,...,a3 € Q" andny,...,n3 € {£1})

and let vz € GV (for some v € Q) such that f22 1 is a problem case from

and the following conditions are satisfied:
A. vz # vz fil,
B. depth(yafI! ... f1) = depth(yz) fori=1,2,
C. depth(yz fI' ... fi1?) = depth(yz) — 1.

Then there exists fgll . fg: e W(X) (for some By,...,B, € QF and p1, ..., € {£1})
with k = 2,3 such that fgll . f“: = fI {2 in F and the following conditions are satisfied:

D. depth('ymj‘;gl1 e fﬁz) = depth(yzx) fori=1,
E. depth(yzf5' ... f§') = depth(yz) + 1 fori = 2,3,

Proof. Let fIi ... f € W(X) (for some o, ...,a3 € Q* and 71, ...,73 € {£1}) and let
vz € GV (for some v € Q*) such that f22 £ is a problem case from [Lemma 6.3.5, and the

following conditions are satisfied:
A. vz # yafid,
B. depth(yzflt ... f1i) = depth(yz) for i = 1,2,
C. depth(yzfll ... f2) = depth(yz) — 1.
Let us illustrate depthchart g (vx) as follows:

A1 F12
al [
(13
V1 V2 U\ a3

V4

where v; = vz, vo = ”yxfgi, vg = ’yxfﬂ} 23 and vq = 'yxfg} ,;73 Z,Zg By [Lemma 6.2.6
depthchart i (yx) is the reverse of depthchart jams. fom (v fI' ... ). All cases with
this depth chart have been discussed in Then there exists f* Lo fg: €
W (X) (for some By, ..., B, € Q*and ..., u, € {£1}) with k = 2, 3 such that fgll fg: =

1 f72 in F and the following conditions are satisfied:
C. depth('yxf“f . fﬁf) = depth(yz) for i =1,

D. depth('yxfgll e fﬁ:) = depth(~yx) + 1 for i = 2, 3.



{laibach}

6.4. A PRESENTATION FOR THOMPSON’S GROUP F 201

6.4 A Presentation for Thompson’s Group F

Proposition 6.4.1. Let g = fIi ... fI" € W(X) (for some o,...,0an € E(R)* and
M, --.,Nn € {£1}). Let By be the set of boundary points of g. Let depth(By) = (21,. .., zq).
Suppose (z;)g = z; for alli=1,...,d. Then g=1I in F.

Proof. Let g = fIi ... flI" € W(X) (for some a1, ..., 0 € E(R)* and n1,...,m, € {£1}).
Let B, be the set of boundary points of g. Let depth(By) = (21, ..., z4). Suppose (2;)g = 2;
foralli=1,....,d.

If n =0, then g = I and the result is trivially true.

Suppose n > 0. Then By is a non-empty finite set. By |Lemma 6.2.12] there exist some
dynamic boundary points in B,. Choose z; € By such that z1,...%;_1 are not dynamic

under g, but z; is dynamic under g. By |[Lemma 6.2.10] depth(z;h) > depth(z;) for all
h € prefixchain(g).
We define a pair (My(z;), Cy(2;)) as follows:

Mg(z;) = max {depth(z;h) — depth(z;) | h € prefixchain(g)},
Cy(zi) = # {h | depth(z;h) — depth(z;) = My(2;)} .

Recall that, since My(z;),Cy(2z;) € N, there exists a lexicographic order on the pair

(Mg(2),Cy(2;)). The lexicographic order is a well-order, with a least element.

We construct a word ¢’ € W (X)) by one of the following methods:

1. The application of an appropriate relation from R to replace a subword fI fgiﬂ by
_ s iy £ . (i
either fgzﬁ( gi)f i+l or ( giﬂ)fai fgz

2. The cancellation of a generator fai by an adjacent inverse.

Then g = ¢ in F. By [Lemma 6.2.11, B, C B,. By [Lemma 6.3.1, [Lemma 6.3.2]
[Lemma 6.3.4] |Lemma 6.3.3] |[Lemma 6.3.9 |Lemma 6.3.6] [Lemma 6.3.7, [Lemma 6.3.8]
ILemma 6.3.9| and [Lemma 6.3.10, (Mg (z;), Cy(2:)) < (Mg(2i), Cy(2s)).

We can only repeat this process finitely many times until we achieve a word such that

z; is no longer dynamic under it. Repeating this process for all dynamic points in B, gives

us a word k which has no dynamic boundary points. By |Lemma 6.2.12] £ = I. Then
g=k=1IinF. O

We can now prove our main result:

Proof. (Proof of [Theorem 6.1.1))
Recall the homomorphism x: F' — F, induced by the map f, — fa, where f, € X in

[Definition 5.1.1] We have already observed that x is surjective. We will prove that it is

injective.
Let g € I such that gy = I. Let h € prefixchain(g). By [Lemma 6.2.1} the action of A

on By is the same as the action of hx on By. Since this is true for all h € prefixchain(g),
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it follows that, for all z € By, zg = z. Then, by |Proposition 6.4.1|, g = I in F. This proves
that ker(y) = {I}. Hence

FxeF



Chapter 7

The F-Basilica Group F'g

{f-basilica}
In this Chapter, we conjecture a presentation for the F-Basilica group F, i.e., the group

of rearrangements of the F-Basilica replacement system defined in This
replacement system and its rearrangements were used as an example in and

The F-Basilica group Fp is the group of homeomorphisms of one edge of the Basilica
Julia set. This group was briefly mentioned in [3], and shown to not be finitely generated
in Remark 4.7 (since it can be constructed as an infinite wreath product of Thompson’s
group F).

Our infinite presentation for Fp is very similar to our infinite presentation for Thomp-
son’s group F', and follows similarly from the geometric structure of the topological space.

Our conjecture for an infinite presentation for Fp is as follows:
F=(X|R)
where the generating set X is
X ={fa|ae{0,1,2}"}

with f, acting as follows on points in the topological space with the prefix o = ej...e,
with each e; € {0,1,2} for ¢ = 1,...,n, and as the identity homeomorphism on the rest

of the space:

[a0epi3€nta...] if epyienso = 00,
[alepisenia...] if epyienyo =01,
([aentienta...]) fa = { [020en13€nsa...] if epiienio = 02,
[a2leptoents...] ifepy1 =1,
[@22€y19€n43...] if epy1 = 2.

This map is illustrated in the following diagrams:

203
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ol
a01
a00 a02 a2
A
al
a2l
a0 a20 @ a22
[ { }
Ja
and the set of relations R is
R ={RL: fale = f5 for a L B,
R2: faOfa = fozfoz2_1a
R3: faOOﬂffa = fonw;
R4 - faOl'yfa = falw;
R5: faOQ'yfa = fa20w7
R6 : falfyfa = fa2177
RT: faQ’yfa = fa227}7

where «, 8,7 € {0,1,2}*.
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