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Abstract

The interest rate has been falling for centuries. A process of natural selec-
tion that leads to increasing societal patience is key to explaining this decline.
Three observations support this mechanism: patience varies across individuals,
is inter-generationally persistent, and is positively related to fertility. A cali-
brated dynamic, heterogenous-agent model of fertility permits us to isolate the
quantitative contribution of this mechanism. We find that selection alone is
the key to explaining the decline of the interest rate.
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1 Introduction

Real interest rates have been falling for at least the last eight centuries (Figure 1).

The global real interest rate declined from around 11-12% in the fourteenth century

to just 2–3% today (Schmelzing, 2020). The real return on land in England fell from

around 10% in the thirteenth century to 1-2% today (Clark, 2010).1

Figure 1: Real interest rate, 1175–2000
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This large, slow and persistent decline suggests that fundamental economic forces are

at play.2 A standard expression for equilibrium real interest rates comes from the

Euler equation in a neoclassical consumption model which, with log utility, is,

rt = gt − log β. (1)

The real interest rate, rt, is the difference between the growth rate of consumption,

gt, and (the log of) the level of patience, β.3 Since growth was close to zero up to

1800 and then increased following the onset of the industrial revolution, equation

(1) points towards rising levels of patience as the driver of declining real interest

rates. We would not normally think of a preference parameter as varying over time

at the individual level. We may, however, think of time-varying changes in societal

1We elaborate on these data in Appendix A. We also report further data across multiple regions
and asset classes. Each point to a similar, centuries-long downward trend.

2Indeed, Rogoff et al. (2022) finds very limited evidence for structural breaks in the series using
the Schmelzing (2020) series.

3Of course, a less parsimonious model could incorporate variance in consumption growth, uncer-
tainty of returns, or time-varying risk preferences. As we document in Appendix B, evidence on the
long-run changes in each of these additional factors is unable to explain the observed pattern.
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levels of patience driven by changing demographics. Blanchard (1985), for example,

showed that rising life expectancy can appear as an increase in the effective β where

agents with finite-horizons save more. However, as we are able to make explicit, this

particular demographic channel does not explain the long decline in rates since life

expectancy was flat until the 19th century (Wrigley et al., 1997).

In this paper, we propose a novel demographic channel that can explain the long

decline in interest rates. We introduce a model of endogenous fertility, in the spirit

of Becker and Barro (1988), where patience levels are heterogenous across agents.

Since children are a form of saving, and since patient agents tend to save more than

impatient agents, the model implies that patient agents will have more children.

Those children in turn inherit part of their parent’s higher patience levels, either

through genetics, socialization or imitation. Together, these facts imply that the

average level of patience in society will increase over time as a result of evolutionary

pressures that naturally select the most patient agents. More patient societies are

then willing to accept lower rates of interest to induce them to save.

While this mechanism is theoretically plausible, its practical relevance is a quan-

titative question we are able to address with our model. Specifically, our model’s

structure allows us to calibrate the historical distribution of patience across indi-

viduals using modern, micro-level evidence alone. Using the calibrated model, we

demonstrate that the contribution of selection—defined as the difference between

our heterogeneous-agent model and a homogenous-agent model—accounts for much

of the global interest rate’s decline over the past 700 years. While the model can

also match the history of population growth, income per capita growth, and life ex-

pectancy, it is selection that drives the ability to explain the fall in the interest rate.

The fully calibrated model can explains 91.1% of the historical decline in the interest

rate. Turning off all channels except the selection mechanism accounts for 86% of the

decline in the interest rate in the data. If we retain all channels except selection, the

model accounts for only 3.7% of the historical decline. Without a fully-specified and

calibrated model, we would be unable to assess the quantitative importance of each

of these channels and measure the importance of our selection mechanism.

Understanding the factors driving the real rate of interest over time is crucial for

long-term, inter-temporal decisions that are associated with savings and investment

choices or future paths of innovation, as well as for the long-run sustainability of

public debt. Optimal policies to address very long-term, inter-generational optimiza-
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tion problems, such as those associated with irreversible planetary climate change or

social-security funding, often hinge almost entirely on the social discount rate (see

Weitzman, 2001; Arrow et al., 2013; and, Millner, 2020). Failing to take account

of the declining social discount rate can mean significantly under-valuing a flow of

future benefits, relative to adopting a constant social discount rate. Moreover, the

further into the future the benefits are realised, the bigger difference accounting for

the declining social discount rate makes. By formalizing the process by which soci-

etal patience can change, we provide an additional basis for incorporating a declining

discount rate in policy.

Related literature First, we contribute to the literature on the role of selection

and preferences in economics. Galor and Moav (2002) propose a theory in which there

is an evolutionary advantage to traits that are complementary to the escape from the

Malthusian trap. Following the demographic transition, higher incomes improve child

quality instead of child quantity. Although our model captures a shift in the aggregate

time-series correlation between fertility and income, this shift doesn’t diminish the

central role of selection in explaining the decline in real rates. Closely related is

Galor and Özak (2016), which presents a dynamic model in which higher patience

leads to better economic outcomes and, consequently, greater reproductive success.

Geographical variation in returns on agricultural investment mean that the returns

to patience also vary, an implication that Galor and Özak find is consistent with

empirical evidence from pre-industrial societies. Our contribution is to understand

the relatively more recent dynamics in a way that complements the very long-run

comparative analysis in Galor and Özak. Falk et al. (2018) point to some variation

in cross-country averages of various preference characteristics, including patience.

Sunde et al. (2021) is an example of such variation having significant consequences

for comparative development. We focus on the distribution across individuals at a

global level, and so explaining differences in cross-country average levels of patience is

beyond the scope of this paper. We do show, however, that the interest rate difference

implied by the cross-country variation in patience is small compared to the decline in

the interest rate observed over time.4

We also relate to literature on evolutionarily stable preferences (Becker, 1976,

Rogers, 1994, and Robson and Szentes, 2008). Since we calibrate a dynamic model

4See Appendix A.3.
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that incorporates the shifting distribution of types, we are able to show just how long

it can take for such stable preferences to be realized. The closest to our set-up is

Hansson and Stuart (1990), in which the population growth of a dynasty is assumed

monotonically increasing in per-capita consumption. In our model, population growth

is a function of preferences and of the environment. The long-run in our model is the

result of a slow process of selection that leads to the most patient dynasty dominating,

a result which also echoes the Ramsey (1928) conjecture.5

Second, we connect to the economic history literature on the intergenerational

transmission of wealth. Clark and Hamilton (2006) shows that families around the

beginning of the seventeenth century with more wealth tended to have more surviving

children. Records going back to the mid-thirteenth century suggest a similar pattern.

For Clark (2007a), variation in reproductive success arises from the Malthusian rela-

tionship between wealth and survival. Since innate patience is more deep-rooted than

wealth, we view patience as the fundamental driver of differences in both dynastic

wealth and household survival.

Third, we relate to the growing literature on family macroeconomics (see Doepke

and Tertilt, 2016 for a recent survey). Doepke and Zilibotti (2008) in particular

focuses on the intergenerational evolution of patience across and within social classes

as it relates to parental decisions to invest in different characteristics of their children.

Since this mechanism operates at a shorter time horizon (no more than two to three

generations), such a channel is complementary to one driven by selection that operates

over much longer periods.

Fourth, our work connects to research on the drivers of the more recent decline in

global real rates (see, for example, the chapters in Teulings and Baldwin, eds, 2014).

Particularly since Laubach and Williams (2003), a focus in macroeconomics has been

to understand the decline in the natural rate since around 1960. Contributions such

as Krueger and Ludwig (2007), Del Negro et al. (2018), Carvalho et al. (2016), Mian

et al. (2021) and Auclert et al. (2021) seek to understand the role that higher life

expectancy, increased risk and declining growth play in driving the decline in the real

rate. Over a relatively short horizon of decades, such factors can explain significant

fluctuations in the equilibrium real interest rate. Mechanisms driven by evolutionary

5Ramsey (op. cit., p. 559) conjectured that, in an economy populated by two groups each with
different levels of patience, “...equilibrium would be attained by a division of society into two classes,
the thrifty enjoying bliss and the improvident at the subsistence level.” See also Becker (1980).
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forces, and which naturally take longer for changes to be apparent, are less immedi-

ately important. As we show, however, over the centuries-long period that we study,

while such other channels do exist there is only one – an increase in societal patience

– that is able to explain the slow, continual decline since 1300.

Structure In section 2 we introduce the evidence on the distribution and transmis-

sion of preferences. In section 3 we develop a Barro-Becker model of fertility where

the key departure is to introduce heterogenous dynasties that differ according to their

discount factor. We calibrate the model in Section 4 and compare its quantitative

implications to the historical record in Section 5. In that Section we also quantify the

contribution of selection to the decline in interest rates under different assumptions

about the model. Section 6 discusses the implications of imperfect transmission or

mutation of preferences. Finally, section 7 offers some concluding remarks.

2 Heterogeneity, transmission and fertility

Two facts motivate our departure from a standard model of endogenous fertility: first,

patience varies across individuals and, second, patience is inter-generationally persis-

tent. In terms of heterogeneity, Andersen et al. (2008) elicit time and risk preferences

in a representative sample of Danes, while Alan and Browning (2010) use structural

estimation and the PSID. Both studies find similar heterogeneity in discount factors

across individuals. More recently, Falk et al. (2018) establish the substantial extent to

which preferences varies across the globe at the level of individuals. The intergenera-

tional transmission of preferences, either by genetics, imitation or by socialization, has

been identified in studies on Danish and Bangladeshi families (respectively, Brenøe

and Epper, 2022 and Chowdhury et al., 2022). Dohmen et al. (2011) has shown that

other elements of preferences are also persistent intergenerationally. Of course, such

transmission is not perfect in reality and we explore in section 6 the consequences

of imperfect transmission for our mechanism. Finally, Cronqvist and Siegel (2015)

and Giannelis et al. (2023) support both the variability and the transmissibility of

patience. These papers explore determinants of the variation in savings disposition,

finding that at least a third of variation can be explained by genetics. Given the per-

sistent nature of the savings disposition, Cronqvist and Siegel argue that the origins

of savings behavior can be found in the transmitted variation in time preference or
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self-control.

A third fact is implicit in standard models of fertility such as Becker and Barro

(1988): higher levels of patience will drive higher demand for children since they

are a form of saving. This is supported by the evidence in Chowdhury et al. (2022)

which finds that the number of children in the household is positively relative to

the father’s patience and in Bauer and Chytilová (2013), which finds the connection

among women in Indian villages. However, to the best of our knowledge the direct

connection has not been investigated substantially beyond this. To provide further

support, in Appendix A.2 we use the German Socio-Economic Panel (SOEP) data and

find a robust, positive relationship between self-reported individual patience levels and

the number of children. This holds when we control for a large number of additional

variables, including age, net income, gender and household status.

The above evidence together implies that parents that are more patient will have

more children than the average, and that the offspring of those highly patient parents

will be more patient than the average of their generation. This suggests that over

time a greater proportion of the population becomes more patient leading to higher

societal levels of patience.

3 A heterogenous-agent Barro Becker model

In section 3.1 we present the basic set-up in which dynasties differ in their levels of

patience and where productivity, life expectancy and child costs can potentially vary

over time. We discuss some of the assumptions before describing the solution of the

model and develop a simple expression that captures the mechanisms driving changes

in the interest rate. In section 3.2 we then introduce a generalization of this basic

set-up to incorporate the implications of potentially imperfect altruism where life

expectancy plays a role as in Blanchard (1985). We present calibration of the model

in section 4 before discussing quantitative results in section 5. As we will show in that

section, the key mechanism driving the decline in interest rates over our period is the

selection that leads to greater societal patience over time. Time-varying productivity,

child costs and life expectancy are important in matching the path of population and

income per capita, but are not important in explaining the decline in interest rates.6

6Appendix G presents a version of the model with a fixed factor (such as land in a Malthusian
setting), in which we also find the role of selection to be key.
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3.1 Model set-up

Consider an economy with aggregate population Nt at time t that consists of a finite

number of dynasties, indexed by i = 1, . . . , I. Each dynasty i consists of N i
t identical

households. Each dynasty differs in its discount factor, βi.7 Without loss of generality,

the sequence {βi}Ii=1 is strictly increasing in i, so dynasty I has the highest discount

factor, βI . Each period every household is endowed with a unit of labor that it

inelastically provides in exchange for a wage, wt, as well as a stock of reproducible

capital, ki
t, that it either retained (if it is a surviving adult) or inherited from its

parent (if it is a child) and that it rents out in exchange for a rental rate, rt. Capital

depreciates at rate δ > 0 and can be accumulated via investment of retained output

xt. A single time period in our model is 25 calendar years (a ‘generation’).

Each household of type i solves the following utility maximization problem in each

period t:

U i
t (k

i
t) = max

cit,n
i
c,t,x

i
t

α log(cit) + (1− α) log(ni
t+1) + βiU i

t+1(k
i
t+1) (2)

s.t. cit + qtn
i
c,t + xi

t ≤ wt + rtk
i
t, ni

t+1 = πt + ni
c,t, ki

t+1 =
ki
t(1− δ) + xi

t

ni
t+1

.

As in Becker and Barro (1988, 1989), households derive utility from their own

consumption, cit, from the size of the household at the beginning of the next period,

ni
t+1, and from the next period average continuation utility, U i

t+1(k
i
t+1). Parents face

a trade-off when it comes to children: They enjoy bigger families, but at the same

time they derive welfare from children who are wealthier. Given their income from

supplying labor, wt, and renting out capital, rtkt, households choose the quantity

of their consumption, cit, the number of children to have, ni
c,t, and the quantity of

capital to accumulate, xi
t. We allow child costs to vary according to an exogenous

price qt ≡ D
1

1−ν

t at, where Dt is time-varying firm productivity. In this expression, the

productivity term captures the rising costs of raising children to adulthood, and at is

an exogenous shock to child costs which we calibrate to match the path of population

7Since households within a dynasty are identical, and since we obtain solutions to the model
in terms of dynasty-aggregates, we omit a household index. As we explain below, household-level
quantities are lower-case, so, e.g., cit is the time t consumption of an individual household in dynasty
i; dynasty-aggregates are upper case, so Ci

t is the sum of consumption by households in dynasty i
at time t. Quantities without the index i are economy-wide aggregates, such as Ct as the sum of
dynasty consumptions at time t.

7



growth.8 Finally, we allow the probability of survival of existing households, πt,

to vary exogenously over time to match the data on life expectancy. The survival

probability of children is set to 1 (this can be readily generalized). Together, these

assumptions imply that the expected number of people in a household at the beginning

of the next period will be ni
t+1 = πt + ni

c,t. We assume that parents care about their

children equally and endow them each with the same share of accumulated capital

(which may be negative9). Thus, parents face a quantity-quality tradeoff with respect

to the number of children à la Becker and Barro (1988, 1989). Finally, we also assume

that the child of an adult in dynasty i perfectly inherits the discount factor βi (we

discuss relaxing this assumption in section 6). This transmission can be thought

of as coming from genetics, imitation or socialization and, given the lack of clear

identification of mechanisms in the empirical literature described above, is left as a

reduced form assumption.

Discussion Three aspects of the above model merit further discussion. First, as in

Becker and Barro (1988, 1989), we assume in (2) a particular form of altruism. Part

of this altruism is that parents enjoy larger families; another part is that parents care

about the average utility of children in future periods. This particular choice of utility

function follows Tamura (1996), Lucas (2002) and Bar and Leukhina (2010). In those

models, parents live for one period only and do not co-exist with their children. In our

model, however, parents survive into the future with some probability, alongside their

children. As such, our discounting parameter not only captures the present value of

the utility of children realized at different points in the future but also captures the

future utility of the parent. The implicit altruistic assumption we make is that, in

terms of time discounting, the future utility of children is treated the same as the

future utility of parents. That is, in each period a parent applies the same time

discount factor to their own and their children’s future utility. The altruism implicit

in the equal treatment of own and descendant utility is itself unrelated to β. Given

8Since we have assumed that the cost of raising children is paid in terms of the final good, we
need to assume that the goods cost of children grows in proportion to income, much like in Lucas
(2002) and Bar and Leukhina (2010), to ensure the existence of a balanced growth path. As in
those studies, we take qt to be a reduced form way to capture the cost of an additional child. That
cost can capture the parental opportunity cost from spending time with children, the presence of
mandatory education, changes in the relative cost of services, laws that prevent children working,
and so on. An equivalent approach would be to incorporate the time cost of raising children.

9Schoonbroodt and Tertilt (2014) shows how the possibility to endow negative bequests can
matter for efficiency in models of endogenous fertility.
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this assumption, and the fact that parents live for multiple periods, the β captures the

level of time preference rather than the extent of altruism. We refer to this preference

structure as ‘perfect altruism’ since parents take account of all future periods, i.e.,

they care about their descendants even after they die. In order to consider the

sensitivity of our results to this assumption, we relax it in section 3.2 and allow for a

form of ‘imperfect’ altruism in which parents care about their children, but only while

they themselves are alive. This introduces a different effective weight on a parent’s

own future utility compared to the entire future of their descendant’s utility.10 This

also permits us to consider a mechanism, such as in Blanchard (1985), where finite

horizons can matter in savings decisions; this may be important in explaining a decline

in interest rates that arises out of increasing life expectancy observed after 1850. In

the quantitative analysis, the contribution of selection to explaining the decline in

the interest rate remains similar in both cases.

Second, an assumption implicit in models of endogenous fertility is that parents

can always choose the number of children. Whether deliberate birth control existed

in the period before the demographic transition is a topic of recent debate.11 For

Clark and Hamilton (2006) and Clark (2007a), differences in survival rates across

groups, rather than fertility rates, led to changes in the composition of the population.

Either interpretation is consistent with our model. In the current set-up, we make

the assumption that all children survive to adulthood and so the endogenous choice

of the number of ‘children’ in our model is really a choice of the number of adults in

the dynasty in the next period. We can thus otherwise think of this as a choice to

allocate the resources in raising a child to adulthood. The mechanism in our model

holds whether the variation arises from endogenous birth rates, or whether it arises via

endogenous survival to adulthood through different parental investment decisions.12

Third, children are a normal good in our model. As such, while more patience leads

directly to greater fertility, more patient households also save more in terms of physical

10Again, this is distinct from the time preference parameter, as the time-zero household problem
shows.

11See Cinnirella et al. (2017), Clark and Cummins (2019) and Cinnirella et al. (2019). Clark et
al. (2020) found that parity dependent fertility control did not exist within marriage; de la Croix
et al. (2019) incorporate additional margins, such as the propensity to marry, the child mortality
rate and the rate of childlessness within marriage, and find that the net reproduction rate can vary
considerably across social groups, suggesting some fertility control.

12We could separately consider these in a model where child mortality existed, and where the
‘fertility’ choice is partly the number of births and partly an investment in raising children to
adulthood.
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capital, accumulating greater wealth. That higher wealth then leads further to greater

fertility, an indirect consequence of higher patience. That is, there are three channels

at work, that between patience and wealth/income, that between wealth/income and

fertility, and that between patience and fertility. Each of those channels operate in a

way supported by the data. The evidence discussed in Section 2 points to a positive

and direct relationship between patience and fertility. The connection from patience

to income/wealth is established in Epper et al. (2020) and Sunde et al. (2021). The

causal relationship between income, wealth and fertility has also been found to be

positive at an individual level. Black et al. (2013) asks ‘Are children normal?’. Their

analysis using U.S. data uses the oil price shock of the 1970s to isolate exogenous

variation in incomes, pointing to a causal effect on fertility of higher men’s income.

Lovenheim and Mumford (2013) use exogenous shocks to housing wealth to show using

individual-level U.S. data a relationship between wealth and fertility. Kolk (2022)

finds a positive relationship between lifetime accumulated income and fertility for

men in Sweden. Evidence from household-level data using exogenous wealth shocks

supports a positive causal relationship between income and fertility. Kearney and

Wilson (2018) use the fracking boom to isolate exogenous variation in income, finding

a positive relationship between (male) earnings and household fertility. Bennett et al.

(2021) use the discovery of oil and gas in the North Sea as an unexpected shock, find

a positive relationship between income and the number of children. Cesarini et al.

(2023) uses lottery shocks to wealth, finding again a positive connection with fertility.

In sum, along with the positive direct relationship between patience and fertility,

the evidence on a causal connection from patience to income/wealth and from in-

come/wealth to fertility implicitly supports the notion that there is an positive and

causal indirect connection between patience and fertility via income/wealth.

Time-zero households and dynastic planners Since households care about the

outcomes of their future children, we can simplify the above problem and, by iterative

substitution, re-write the individual household problem in the framework of a time

zero household of each type:

max
{cit,ni

c,t,x
i
t}∞t=0

∞∑
t=0

(βi)t
(
α log(cit) + (1− α) log(ni

t+1)
)

(3)
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s.t.

cit + qtn
i
c,t + xi

t ≤ wt + rtk
i
t, ni

t+1 = πt + ni
c,t, ki

t+1 =
(1− δ)ki

t + xi
t

ni
t+1

.

The above reflects the choice of an individual time zero adult household. Since there

are N i
0 identical households in each dynasty i at time zero, we can also re-write the

time zero household problem from the perspective of a single dynastic planner for each

type. At time t, there are N i
t identical members of the dynasty of type i. Next period,

the dynasty will be comprised of the number of children produced by each household,

ni
c,t (all of whom are assumed to survive and become household heads in their own

turn), and the expected number of surviving adults. The number of households in

dynasty i at time t+1 will thus be given by N i
t+1 = (πt+ni

c,t)N
i
t = ni

t+1N
i
t . Dynasty-

aggregate values are Ci
t ≡ citN

i
t , N

i
c,t ≡ ni

c,tN
i
t , K

i
t ≡ ki

tN
i
t , X

i
t ≡ xi

tN
i
t and so we can

re-write the time-zero household problem for the dynastic planner of each type as:

max
{Ci

t ,N
i
c,t,X

i
t}∞t=0

∞∑
t=0

(βi)t
(
α log(Ci

t) + (1− α− βi) log(N i
t+1)

)
(4)

s.t.

Ci
t + qtN

i
c,t +X i

t ≤ wtN
i
t + rtK

i
t

N i
t+1 = πtN

i
t +N i

c,t

Ki
t+1 = (1− δ)Ki

t +X i
t .

Notice that the discount factor appears both as the term used for discounting the

future, but also as a preference weight for children. This reflects the fact that current

children are both an investment and a consumption good in this model. In particular,

the more patient agents place less weight on current children as they are partially

viewed as current consumption goods rather than entirely investment goods for the

future. Following Lucas (2002), to ensure strict concavity of the objective we need to

assume that 1− α− βi > 0.

Firms The representative firm hires workers (Nt) and capital (Kt) to produce final

output (Yt). The profit maximization problem of the firm is given by:

max
{Kt,Nt}

Yt − wtNt − rtKt, (5)

11



where Yt = DtK
ν
t N

1−ν
t and where 0 < ν < 1 is the output elasticity of capital. Dt is

the exogenous and potentially time-varying level of technology.

Market clearing Economy-wide aggregate quantities are denoted Ct, etc. The

market clearing conditions are given by:

I∑
i=1

Ci
t = Ct ,

I∑
i=1

N i
t = Nt ,

I∑
i=1

N i
c,t = Nc,t ,

I∑
i=1

Ki
t = Kt,

Ct + qtNc,t +Xt = DtK
ν
t N

1−ν
t . (6)

Notice that capital is now produced from output and that producing a child costs

and exogenous qt units of output.

Competitive equilibrium A competitive equilibrium, given a series of child prices

{qt}∞t=0 and technology {Dt}∞t=0, along with parameter values and initial conditions

{N1
0 , . . . , N

I
0 , K

1
0 , . . . K

I
0}, consists of allocations {Ci

t , N
i
c,t, N

i
t+1, K

i
t+1, X

i
t}∞t=0 for each

dynasty i = 1, . . . , I and prices {wt, rt}∞t=0 such that firms’ and dynasties’ maximiza-

tion problems are solved, and all markets clear.

3.1.1 Model solution

To solve the model, we start by deriving the first order conditions of the dynastic

planner and the firms. For given parameter values, initial population and capital dis-

tributions, the competitive equilibrium of the problem, for each dynasty i = 1, . . . , I,

is characterized by consumer first-order conditions with respect to choice of children

and consumption as:

(1− α− βi)

N i
t+1

+ (πt+1qt+1 + wt+1)
αβi

Ci
t+1

= qt
α

Ci
t

, (7)

Ci
t+1

Ci
t

= βi(πt+1(1− δ + rt+1), (8)

with consumer budget constraints for each dynasty i:

Ci
t + qtN

i
t+1 +Ki

t+1 = (wt + πtqt)N
i
t + (1− δ + rt)K

i
t . (9)
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The firm first-order conditions are:

wt = (1− ν)DtK
ν
t N

−ν
t and rt = νDtK

ν−1
t N1−ν

t . (10)

Finally, there are two transversality conditions per dynasty:

lim
t→∞

(βi)tu′(Ci
t)K

i
t+1 = 0, lim

t→∞
(βi)tu′(Ci

t)N
i
t+1 = 0, (11)

where, u(Ci
t) = log(Ci

t) is the period utility of consumption.

From the above, we obtain the following two Euler equations that describe the

evolution of dynasty consumption and population:

Ci
t+1

Ci
t

= βiRt+1, t ≥ 0,
N i

t+1

N i
t

= βiR̃t+1, t ≥ 1, (12)

where Rt+1 ≡ (1− δ + rt+1) is the gross real interest rate on capital and R̃t+1 ≡
Rt+1

qt−1Rt−wt−qtπt

qtRt+1−wt+1−qt+1πt+1
is the shadow gross real interest rate on dynasty population.13

Since the interest rates are common across dynasties, we can obtain expressions

relating the relative evolution of total consumption and population for any two dy-

nasties. Using repeated substitution, together with market clearing conditions, we

can obtain the shares of consumption and population of each dynasty relative to

economy-wide aggregate consumption and population, respectively, as a function of

the initial distribution of dynasty-specific consumption and population:

Ci
t

Ct

=
(βi)tCi

0∑I
j=1(β

j)tCj
0

, and,
N i

t+1

Nt+1

=
(βi)tN i

1∑I
j=1(β

j)tN j
1

, (13)

for t ≥ 0. Note that given the initial distributions, the evolution of a particular

dynasty’s population and consumption shares depends only on that dynasty’s patience

relative to the patience of other dynasties. In particular, recalling that dynasty I is

most patient, the above expressions imply that as t → ∞, so
NI

t+1

Nt+1
→ 1 and

CI
t+1

Ct+1
→ 1

whilst, for all i < I,
N i

t+1

Nt+1
→ 0 and

Ci
t+1

Ct+1
→ 0. This means that the total consumption

and population of the most patient dynasty will dominate the economy over time

(consistent with the Ramsey (1928) conjecture). As t → ∞ the model collapses to

13These two interest rates differ since children are both a consumption and an investment good,
whereas capital is only an investment good.
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a standard homogenous agent model with discount factor βI and a standard Barro-

Becker steady state. Consequently, if we derive the steady state, the model can be

solved with a variation of the reverse-shooting algorithm.14

3.1.2 Distribution of βi

We assume that the distribution of generational discount factors in the population

follows a scaled beta distribution defined on (0, β̄), with cumulative distribution func-

tion, F (·) given by:

F (β; t) =
B
(
β/β̄, γt, δt

)
B(γt, δt)

. (14)

In the above, B(γt, δt) and B
(
β/β̄, γt, δt

)
are the complete and incomplete beta func-

tions, respectively, and γt, δt > 1 are two potentially time-varying shape parameters

that determine the mean and dispersion of the distribution.

There are a number of reasons for choosing this distribution. First, this distri-

bution can be defined on any positive sub-interval, and thus is useful for considering

discount factors which are naturally bounded. Second, it is a flexible distribution

often used to mimic other distributions, both skewed and centered, given appropriate

bounds. Third, a distributional assumption is required for the purposes of calibration,

as will become clear below. Finally, the beta distribution is also intimately linked

to the evolution of the population distribution implied by our model, as Theorem 1

shows.

Theorem 1. If I → ∞ and dynastic discount factors within the population are

distributed according to a scaled-beta distribution on (0, β̄) with shape parameters

γt̄ and δt̄ for some period t̄, then dynastic discount factors will also be distributed

according to a scaled beta distribution in period t̄+ 1 on (0, β̄) with shape parameters

γt̄+1 = γt̄ + 1 and δt̄+1 = δt̄.

Proof. See Appendix E.2.

Theorem 1 establishes that if discount factors obey a scaled-beta distribution in

any one period then they will follow a scaled-beta distribution in all other periods.

14Notice that since the model exhibits trend growth in both output per worker and population to
derive the steady state it first needs to be de-trended. Appendix C describes derivations in the full
model (incorporating the extension introduced below in section 3.2) and its solution in de-trended
variables, and documents the aggregation and solution algorithm.
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Since the theorem also pins down the evolution of shape parameters over time, the

choice of year in which to calibrate is irrelevant. An immediate implication of the

Theorem is that we can derive expressions for the mean and variance of generational

discount factors at any time t:

Et(β) = β̄
γ0 + t

γ0 + t+ δ0
and vart(β) = β̄2 (γ0 + t)δ0

((γ0 + t) + δ0)2(γ0 + t+ δ0 + 1)
(15)

Selection A further advantage of this distributional assumption is that we can

illustrate the role of selection in driving the evolution of the interest rate with the

following simple approximation:15

Rt+1 ≈
gNt+1g

1
1−ν

Dt+1

Et(β)
. (16)

This approximation is an analogue to equation (1). It illustrates the three key forces

driving changes in the interest rate: 1) the time-varying growth rate of consumption

as captured by population growth (gNt+1 ≡ Nt+1/Nt) and 2) productivity growth

(gDt+1 ≡ Dt+1/Dt); and, 3) selection-driven changing societal patience as captured

by the expected value of the discount factor, Et(β). Without our selection mechanism,

in a model with homogenous agents, Et(β) is simply a constant and the interest rate

is driven by growth alone. Population and productivity growth increase over our

period, especially after the industrial revolution, and thus cannot help explain falling

interest rates. However, with our selection mechanism, Et(β) increases over time.

We show that changes in the mean value of beta driven by selection are enough to

explain a large part of the observed decline of interest rates, irrespective of the other

mechanisms.

3.2 Imperfect altruism and finite-horizons

Recent studies16 after Laubach and Williams (2003) have found a key role for rising

life expectancy in explaining the decline in the natural rate since the 1960s. In

such explanations, higher life expectancy causes agents to save more, thus depressing

the real interest rate. In a model with perfect altruism, however, since there is

15The derivation of which is in Appendix E.3
16See under related literature in section 1.
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no distinction between utility derived by a future self and a future child, the life

expectancy of an adult does not affect their savings decisions. In order to incorporate

such a channel, we thus need to depart from the perfect altruism of section 3.1. To

do so, we introduce a form of imperfect altruism in which parents care about their

children’s future average utility, but only while they themselves are alive. Changes in

life expectancy then influence the interest rate since an individual parent’s own finite

horizon enters into their decision-making (see Blanchard, 1985).

Suppose that each household i’s problem at time t is now:

U i
t (k

i
t) = max

cit,n
i
c,t,x

i
t

α log(cit) + (1− α) log(ni
t+1) + βi(πt(1− ω) + ω)U i

t+1(k
i
t+1). (17)

s.t. cit + qtn
i
c,t + xi

t ≤ wt + rtk
i
t, ni

t+1 = πt + ni
c,t, ki

t+1 =
ki
t(1− δ) + xi

t

ni
t+1

.

In the above ω ∈ [0, 1] is a parameter that captures a particular form of imperfect

altruism that parents may have for their children. If ω = 1, we return to the baseline

preferences of section 3.1 where parents are perfectly altruistic towards their children.

Setting 0 ≤ ω < 1, introduces a form of selfishness; with ω = 0, parents care about

their own future utility and the utility of their descendants but only so long as they

themselves are alive. In the extreme case that survival probability goes to zero,

agents would care only about present consumption and the number of children that

they have. Higher life expectancy (captured by an increase in the survival probability,

πt) extends the expected horizon over which parents consider future utility, meaning

that parents care more for the future and save more, potentially depressing interest

rates. The solution to the above problem and its aggregation follows in a similar

fashion to the baseline model for a time zero household and the dynasty planner (see

Appendix C for details).

With imperfect altruism, and a similar assumption on the distribution of discount

factors, we can obtain a generalization of (16) (see Appendix E.3 for the derivation):

Rt+1 ≈
gNt+1g

1
1−ν

Dt+1

Et(β)(ω + (1− ω)πt+1)
. (18)

Relative to equation (16), equation (18) now incorporates the fourth force that can

drive changes in the interest rate in our model: life expectancy as captured by chang-
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ing survival probabilities (πt) in the presence of imperfect altruism (ω < 1). Just

like population and income per capita, life expectancy begins to increase during the

demographic transition. As we will see, changes to life expectancy can thus help

explain some of the decline in the interest rate after around 1850 but not earlier.

4 Calibration

The calibration aims to replicate the path of world population, income per capita and

life expectancy over the period 1300 to 2000. Additionally, it aims to fit the modern

variance of patience types using experimental data from around the year 2000. Note

that the decline in the interest rate is not itself targeted in our calibration. Model

parameters and their calibrated values are summarized in Table 1. Below we outline

the calibration procedure, leaving technical details to Appendix D. Calibration of

parameters depends on the value we set for ω, that is, whether we have a model with

perfect altruism or whether we introduce a form of imperfect altruism as in section

3.2. In the absence of a clear way to calibrate the extent of imperfect altruism, we

present the two extreme versions: with perfect altruism (ω = 1) and with imperfect

altruism where parents care about their children only while they are themselves alive

(ω = 0).

One period in the model is 25 calendar years and period zero in the model cor-

responds to the year 1300 in the data. The initial level of population is set to be

N0 = 0.37 corresponding to a world population of 0.37 billion in 1300 (The Mad-

dison Project, 2013). The capital elasticity of the production function is set to

0.33 to match the capital share in Gollin (2002). We assume that all children sur-

vive into adulthood (25 years) and that capital depreciates 10% annually, so that

δ = 1− (1− 0.1)25 = 0.928.

The path for net annualized productivity growth, (gDt)
1
25 −1, the child cost param-

eter, at, and the survival probability, πt, are reported in Figure 2. The productivity

growth sequence gDt is set to match the compound annual growth rates of world

GDP per capita over three periods that exhibit markedly different growth patterns

(1275–1700, 1700–1875, and 1875–2000), using data in The Maddison Project (2013),

with a smoothed transition imposed in the model. Note that since in the model the

savings rate endogenously grows over time (as average patience increases), the low

growth in output per capita in The Maddison Project (2013) up to 1775 is captured

17



Table 1: Calibrated parameters

Parameter(s) Value Target/Description/Source
Perfect Imperfect
altruism altruism
ω = 1 ω = 0

D0 1 1 Normalization
N0 0.37 0.37 World population, 1300, The Mad-

dison Project (2013)
δ 0.928 0.928 10% annual depreciation (see text)
gDss 1.00525 1.00525 Predicted long run productivity

growth rates, Crafts and Mills
(2017)

k̃0 0.001 0.001 On saddle path (see text)
ass 0.345 0.345 Predicted future population growth

rates from Herrington (2021) of -1%
ν 0.330 0.330 Capital share, Gollin (2002)
I 10000 10000 Number of Types

{βi}Ii=1

{
β̄(2i−1)

2I

}I

i=1

{
β̄(2i−1)

2I

}I

i=1
Subdivide domain into grid

πss 0.667 0.667 Long-run adult life expectancy of 75
α 0.345 0.345 Global consumption share of 0.75

(see App. D)
β̄ 0.512 0.769 Maximum (generational) discount

factor, 1−α
πss(1−ω)+ω

{γ28, δ28} {32.6, 58.8} {33.6, 60.4} Standard deviation of discount fac-
tors (Andersen et al., 2008; Falk et
al., 2018) and long run rate of re-
turn

{gDt+1}28t=−1 Figure 2 Figure 2 World output per capita growth
rates (smoothed), The Maddison
Project (2013)

{at}28t=−1 Figure 2 Figure 2 World population growth rates,
The Maddison Project (2013)

{πt}28t=0 Figure 2 Figure 2 English life expectancy, smoothed{
N i

0

N0

i
}I

i=1

See text See App. D Andersen et al. (2008) and Falk et
al. (2018){

k̃i0
k̃0

}I

i=1
See text See App. D Consistency (see text)
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Figure 2: Time-varying parameters
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Note: We report the annualized growth rate of the technology level, Dt, calibrated so the model
matches the average growth of output per capita in the data. The parameter at, along with

Dt, determines the cost of children via qt ≡ atDt
1

1−ν . The adult survival probability, πt, is
chosen to match the historical trend in life expectancy. Each of the population, income and
life expectancy series are smoothed to capture transitions between different phases, as detailed
in the text and elaborated in Appendix D. We report model outputs both with perfect altruism
(ω = 1) and with imperfect altruism (ω = 0).

by a very slightly decreasing level of TFP. The cost of children qt ≡ D
1

1−ν

t at is set

by choice of at to match compound annual population growth rates over three peri-

ods that also exhibit markedly different growth patterns (1275–1775, 1775–1875, and

1875–2000) by exogenously varying at, again in a smoothed fashion. The path for the

survival probability πt is set to match a smoothed series based on the historical life

expectancy. Roser et al. (2013) compiles life expectancy over the period 1543–2020

based on a number of sources, including Wrigley et al. (1997).

Dynasties We assign a discount factor to each dynasty i ∈ I. Recall that we

order dynasties such that the sequence {βi}Ii=1 is strictly increasing in i. Given the

restriction that 1−α−βi > 0, each discount factor is bounded by 0 < βi < β̄, where

β̄ ≡ 1−α. We divide this interval (0, β̄) into I equally-sized sub-intervals and locate

each type’s patience level at the central point of every sub-interval, so that, for each i,

βi = β̄ (2i−1)
2I

. We specify the number of dynasties to be I = 10, 000.17 We discuss the

17This is largely a computational choice which makes little difference to our results for a large
enough number of dynasties. If too few dynasties are chosen, the resulting transitions are non-
smooth. Since we view our model as largely approximating a near-continuous distribution of types
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calibration of α and the upper bound β̄ in Appendix D. In practice, the population

at this upper bound in our simulations is negligible until the very distant future.

Initial capital and population distribution We present here the calibration

of the capital and population distribution only for the model with ω = 1 simply

for expositional clarity. We leave the calibration of the general model (which is

procedurally similar) to Appendix D. Results in section 5 are presented for both the

ω = 0 and ω = 1 cases.

We first need the initial distribution of capital, {Ki
0}

I
i=1, and population, {N i

0}
I
i=1

across dynasties. This data is not readily available for the year 1300. To obtain the

initial distribution of capital we will assume that the model is in equilibrium prior

to our initial period. We then use the structure of our model to obtain the initial

population distribution from modern data.

More specifically, the initial distribution of capital across dynasties determines the

population distribution of those dynasties in subsequent periods. To obtain a capital

distribution in period t = 0 we assume that the growth of each dynasty’s population

is consistent with solutions of the model in the period prior to the initial period.18 In

practice, this means assuming that the second equation in (12) also holds for t = 0.

This gives I equations that can be used to pin down an initial capital distribution for

I dynasties. Notice that this assumption also implies a direct relationship between

period zero and period 1 population distributions which will be useful below:

N i
1

N j
1

=
βi

βj

N i
0

N j
0

. (19)

Since we do not have data on the population distribution of patience in the year

1300 (t = 0 in the model), we choose our period-zero distribution of types so that

the model replicates evidence on the distribution of types in the year 2000 (t = 28 in

the model). To do this, note that the second expression in (13) gives the population

share of each dynasty over time as a function of the t = 1 population share and each

dynasty’s level of patience. Using this and (19), we obtain the t = 0 population share

in the data, we select a large number of types in the calibration.
18That is, we assume that outcomes in the period before t = 0 are on the equilibrium saddlepath

just as much as they are in periods from t = 0 on. This simply means that we are ignoring potential
shocks, such as wars, famines or pandemics, that may cause population growth from t = 0 to deviate
from the saddlepath that continues from period t = 1.
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of each dynasty i relative to dynasty I,

N i
0

N I
0

=
N i

t

N I
t

(
βi

βI

)t

. (20)

With evidence on the distribution of patience at some later date t, we can thus

calibrate the initial distribution of the population across levels of patience.

Patience distribution One problem with using modern data is that it will capture

only a censored portion of the full initial distribution of preference types – even the

most populous dynasties of the year 1300 could be completely indiscernible in data

for the year 2000.19 To address this issue, we use modern data to parameterize

the scaled beta distribution introduced in section 3.1.2. This holds for the ω = 1

version; the ω = 0 version is in the appendix. Note that from (15) the two shape

parameters, γt and δt, of the distribution of generational discount factors may be

obtained if we observe the mean and variance of that distribution. Appendix D details

the calibration of the variance using the experimental evidence from representative

individuals in Denmark (Andersen et al., 2008) and the individual-level data in the

Global Preference Survey introduced in Falk et al. (2018). We choose the mean of the

patience distribution by matching the model implied rate of return in 2100 to 6.4%.

This value is derived from the long run equity returns calculated in Appendix A.5.

Appendix D.2 demonstrates robustness to varying γt and δt around the calibrated

values.

5 Quantitative results

Figure 3 reports various key simulation results with ω = 0 (results for ω = 1 are in

Appendix Figure A3). Panel A) shows a monotonic increase in the level of societal

patience (the mean level of patience in the economy) over time. That increase reflects

the changes depicted in panel B) – the shifting distribution of patience across agents

at different points in time. In 1300, societal patience is low and virtually no-one

belongs to the dynasties with β > 0.2 (an annual discount factor of around 0.94).

19For example, consider two dynasties i and j with discount factors βi = 0.05 and βj = 0.5. From
equation (20), the relative size of the two dynasties in the year 2000 (t = 28) and the year 1300

(t = 0) will differ by a factor of
Ni

0/N
j
0

Ni
28/N

j
28

=
(

βi

βj

)28
= 10−28.
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More patient households however, will tend to have more children who in turn will

have the same higher levels of patience as their parents. The distribution of the

population will thus shift towards higher levels of patience as relatively more patient

households are born. By 1900, the median dynasty will have a generational discount

factor of around β = 0.25. Panel B) also makes clear that while there is substantial

variation in levels of patience across individuals at a point in time, this cross-sectional

variation is substantially less than the change in patience as a whole over the 700 years

we study.

To examine the changing composition of the population over time, we aggregate

individual dynasties into eight groups by their level of patience.20 Panel C) of Figure

3 shows the population share of each group over time. Initially, the global population

is dominated by the least patient agents in group βa, who constitute approximately

90% of the total population in 1300. Over time, since the group as a whole has fewer

children than more patient groups, the share of these agents falls and the group with

the next highest patience level, βb, takes their place, accounting for more than 80% of

the population by around 1500. This process continues until the most patient group of

agents eventually dominates the entire population. As can be seen from panel B), the

shift from the least patient to the most patient group is gradual. Each dynasty and

respective group experiences periods of dominance and decline over several centuries.

To make things concrete, we can consider the relative fertility of different groups in

the year 2000 in the ω = 0 version, at which point the average number of children

per household per period is 0.7 (recall that since adults can live for multiple periods,

population growth can be positive even if nc < 1). In 2000, the bulk of the population

belongs to the βc and βd groups. On average, dynasties in βd have 0.3 more children

than their counterparts in βc. The most patient agents (βh) have 2.6 more children

than the least patient agents (βa). Of course, since there are vastly fewer households

in the βh group of dynasties in 2000 it takes many centuries before that fertility

differential begins to be manifested as a non-negligible population share.

The key to understanding the cyclical pattern for each group lies in Figure 3

panel D), which reports the evolution of the capital share owned by each group.

Given that agents can lend or borrow capital for optimal consumption and fertility

20That is, we split the interval (0, β̄) into eight sub-intervals each containing the same mass of dy-
nasties. The aggregate of dynasties in each sub-interval thus comprises the groups

{
βa, βb, . . . , βh

}
,

where βa is the group of the least patient dynasties.
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Figure 3: The rise of societal patience (ω = 0)
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Note: Panel A) depicts the societal average level of generational patience over time. Panel B)
shows the distribution of levels of patience (the generational β) at the labelled years over the
period 1300-6100. The dashed vertical line is at β̄. Each panel C)–D) reports the sum of the
model output across all dynasties in the group of dynasties defined in the legend. Results here
from the model with imperfect altruism (ω = 0); the results with perfect altruism (ω = 1) are
given in Appendix Figure A3.

decisions, the βa-group initially depletes its capital, later borrowing from more patient

dynasties to prioritize current consumption over children. Note that the ability of the

more impatient dynasties to increase their consumption hinges on the population size

and capital ownership of their relatively more patient counterparts. The growth of

the βb-group thus paves the way for the relative decline of the βa-group as a more

substantial market emerges for the latter’s capital. As the βa-group diminishes, so

the βb-group emerges as the largest population and the dominant owner of capital.
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Figure 4: Output per capita, population, fertility and child cost
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Note: Data for world output per capita and population is from The Maddison Project (2013).
The models are calibrated to match exactly the fertility rates in the data, the derivation of which
is described in Appendix D. The nc,t is children per household per generation. Since adults can
live for multiple generations, population growth can be positive even if the number of children
born to each household in each period is less than one. We report model outputs both with
perfect altruism (ω = 1) and with imperfect altruism (ω = 0).

The eventual rise of the βc-group provides the βb-group with growing opportunities

to maintain high consumption by selling their capital holdings. By around 1900,

the βb-group starts borrowing capital, albeit to a lesser degree given their relatively

greater patience compared to the βa-group. As Figure 3 also makes clear, over the

period of study, the most patient dynasties represent an insignificant fraction of the

population. Appendix Figure A3 presents analogous model outcomes for the scenario

where ω = 1. All results remain qualitatively identical.

Figure 4 reports the model outcomes (for both ω = 0 and ω = 1) and the data

for aggregate population, output per capita and fertility rates. Panel A) of Figure 4

shows the growth of output per capita as close to zero up to around 1800, thereafter

accelerating, as in the data. Panel B) demonstrates the excellent fit in the model to

the growth of population in the data. The aggregate fertility rate over time is given

in Figure 4 panel C), with an initial increase in fertility at the onset of the industrial

revolution followed by a rapid decline that, by the calibration,21 matches the pattern

in the data (see Galor, 2005; Bar and Leukhina, 2010). This figure also makes clear

21The aggregate fertility series in the data is calculated using the smoothed data for population
and life expectancy. The figure depicts the number of children born to each household in each period.
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Figure 5: Selection and the interest rate
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Note: Data is the Schmelzing (2020) global real interest rate; we report the 25-yearly median
interest rate beginning in 1325 (since the Schmelzing real ‘Global R’ series begins in 1314). We
report the model interest rates in annualized terms. The data and model outputs are normalized
to zero in the year 1325. We report model outputs both with perfect altruism (ω = 1) and with
imperfect altruism (ω = 0). Panel A) reports results with heterogenous agents whose distribution
of patience is calibrated at the year 2000. Results in panel B) are based on a homogeneous-agent
set-up where there is only one dynasty calibrated to match the average patience in the year 2000
in the heterogenous-agent model. Panel C) is the contribution of selection, defined as the
difference between the heterogenous- and homogenous-agent model results.

that the aggregate path of fertility does not prevent the role that differences in fertility

rates across dynasties play in driving higher societal patience over time.

Finally, we examine the model’s prediction for the decline in the interest rate.

Figure 5 panel A) reports the calibrated model against the Schmelzing (2020) global

real interest rate series, each normalized to their values in 1325. Up to 1775, in

the presence of a constant growth rate and stable life expectancy, steadily increasing

societal patience acts endogenously to depress the equilibrium interest rate over time.

After 1775, the growth rate of output per worker increases, putting upward pressure

on the interest rate in both versions of the model. In the model with perfect altruism

(ω = 1), since there is no life-expectancy channel, the growth-effect overwhelms

the ongoing trend in societal patience and interest rates begin to rise. Where life

expectancy does play a role in the presence of imperfect altruism (ω = 0), the growth

in life expectancy around the same time as the increased growth rate of output per

capita means that each mechanism roughly cancels each other out, leaving the trend

in societal patience to continue to drive declining rates. While we have no clear
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way to calibrate ω, a value nearer to ω = 0 thus appears more plausible given its

better fit with the interest rate series. Panel B) reports the simulation outcomes

in corresponding models with homogenous agents, i.e., where all households have a

constant value of β. In this scenario, since there can be no trend in societal patience,

the only mechanisms operating to change equilibrium interest rates are growth rates

and life expectancy: again, growth pushes up interest rates in the absence of the

life-expectancy channel (ω = 1); where life expectancy plays a role, the two channels

act in opposite directions and together cause only minimal change in the interest

rate. Panel C) of Figure 5 then reports the contribution of selection as the difference

between the heterogenous- and homogenous-agent models. As is clear, the selection

mechanism alone can account for most of the decline in the interest rate over time.

Without preference heterogeneity and the associated selection, we would be unable

to explain the historical decline in rates.

5.1 Decomposition

Equation (18) encapsulates the four channels governing the change in the interest rate

in the model: population growth, productivity growth, changes to life expectancy,

and, changes to average patience. We now turn to quantifying the importance of

each of these mechanisms in explaining various elements of the historical data. To

do so, we simulate counterfactuals in which we shut down each of these channels

separately. In a final counterfactual we shut down all channels except selection.

Table 2 presents the quantitative implications of the model compared with the

data under different assumptions. We report the decline in the interest rate over the

whole period for which we have data (∆2000−1325Rt), the average annualized growth

rate of income per capita (ḡy), the average annualized growth rate of population (ḡN),

the increase in fertility from 1325 to its peak in 1875 (∆1875−1325Nc,t) as well as its

decline from 1875 to 2000 (∆2000−1875Nc,t). Figure 6 illustrates the decline of interest

rates in each model variant, relative to 1325.

What becomes clear is that time-varying productivity, population growth and

life expectancy in the model are key for matching the average growth of per capita

income, population and fertility in the data. However, these forces are not able to

account for the decline in the interest rate. The model with constant population

(‘Fixed N ’) fails – by construction – to match either the average population growth
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Table 2: Decomposition of channels

Full Fixed Fixed Fixed Fixed Selection
Data model N D π β only

∆2000−1325Rt (p.p.) -6.77 -6.17 -7.33 -7.84 -2.79 -0.25 -5.82
ḡy(%) 0.40 0.38 0.38 0.13 0.38 0.38 0.10
ḡN(%) 0.43 0.39 0.00 0.39 0.39 0.39 0.00
∆1875−1300Nc,t 0.15 0.14 -0.10 0.14 0.24 0.14 0.00
∆2000−1875Nc,t -0.16 -0.15 -0.23 -0.15 0.08 -0.15 0.00

Note: We report model implications against the data from the Schmelzing (2020) global real
interest rate; we report the 25-yearly median interest rate beginning in 1325 (since the Schmelz-
ing real ‘Global R’ series begins in 1314). The ‘Full model’ is that with all channels operating
(that is, also with imperfect altruism ω = 0). ḡX denotes the mean annualized growth rates
over the period 1300-2000. Each model variant holds fixed the specified channels leaving others
to operate. ‘Selection only’ is a counterfactual where we hold constant all of N , D and π.

Figure 6: Interest rate decline, model variants
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Note: The figure depicts the model-implied decline in interest rates since 1325 in each of the
model variants specified in Table 2, i.e., the ‘Full model’ is that with all channels operating (that
is, also with imperfect altruism ω = 0). Each model variant holds fixed the specified channels
leaving others to operate. ‘Selection only’ is a counterfactual where we hold constant all of N ,
D and π.

or the fertility pattern but it can explain the decline in interest rates since selection

drives higher average patience. This makes clear that it is not the population size

that impacts interest rates but rather its changing composition. The model with

constant technology (‘Fixed D’) struggles to explain most of the average growth in

output, but it is able to understand a fall in interest rates as selection continues to

operate. Note that in this model variant, some growth in income per capita arises
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even in the absence of technological progress – as societal patience increases, so the

average saving rate increases and capital accumulates leading to per capita output

growth. We return to this implication in section 5.2. The model with constant life

expectancy (‘Fixed π’) fails to capture the fall in fertility after 1875, but also means

that higher growth in D after 1800 predicts a counterfactually increasing interest rate

(as shown in Figure 6).

In terms of explaining the interest rate, the full model explains 91.1% of the

historical decline in the interest rate. Turning off all channels except the selection

mechanism (‘Selection only’) yields a model decline in the interest rate of 86% that in

the data. If we retain all channels except selection (‘Fixed β’), we completely fail to

understand the decline in rates – the model then explains only 3.7% of the historical

decline. Selection alone is the key to explaining the decline of the interest rate.

5.2 Further implications

In addition to accurately matching the decline in interest rates and other macroe-

conomic trends, there are two more aspects of the quantitative findings that merit

further discussion.

Fertility and child costs To match the trend in global population over time, we

exogenously varied the path for at, the parameter that, along with Dt, governs the

cost of children for households. Since, by construction, we capture the time path

of fertility in a growing economy, we also capture a relationship between income

and fertility that switches from positive to negative once a certain threshold level of

income is reached. This is shown in Figure 7 panel A), which presents model predicted

income-fertility pairs at different points in time. Both time-series and cross-country

evidence support this: typically, a negative correlation between income and fertility

emerges once countries surpass a certain income level.22

Since child costs within the model are not targeted directly but are calculated

from other calibrated parameters (since qt = atD
1

1−ν

t ), we can validate the role that

child costs play by comparing the model against the data. One proxy for the cost of

children is the relative price of the service sector goods with respect to the Consumer

22See, for example, Galor and Weil (2000), Jones and Tertilt (2008) and Manuelli and Seshadri
(2009); more recent discussion of potential changes to the relationship is in Doepke et al. (2022).
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Figure 7: Further quantitative implications
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Note: Panel A) depicts output per capita against fertility from Figure 4. Panel B) reports child

costs in the model (qt ≡ atDt
1

1−ν ) against the price of services relative to CPI in the data, which
we take as a proxy for child costs. Panel C) gives the series for the investment rate which is
from Broadberry and de Pleijt (2021) over the period 1300–1825 (which covers England up to
1700 and Great Britain thereafter) and from Thomas and Dimsdale (2017) for 1875–2000. For
1850 we take the mean of these two series. We report model outputs both with perfect altruism
(ω = 1) and with imperfect altruism (ω = 0).

Price Index (see Appendix A.6).23 This captures the idea that the prices of service

goods, such as those that affect the costs of raising children, increase with income due

to relatively low productivity growth (the Baumol and Bowen (1965) cost disease).

Figure 7 panel B) shows a close fit between the relative price of children implied by

our model24 and the proxy for the child cost in the data, suggesting that our use of

child costs to fit the population series is plausible. A number of factors outside of

our model could underpin this change over time. For example, variation in laws that

prevent children working, the introduction of mandatory education, parents spending

more time with children, changing social norms, and so on, can all affect the relative

cost of having children.

23On measurement issues and available data see Deaton and Muellbauer (1986) and Donni (2015).
24We calculate the Consumer Price Index in our model as a Paasche Index of consumption goods

and children with a base period in the year 2000. We use a Paasche Index instead of a Laspeyres
index to take into account the changing consumption weights over the 700 years under consideration
which the Laspeyres index holds constant.
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Investment ratio An implication of steadily rising average patience is that savings

rates should also increase over time. This is consistent with empirical evidence on

the relationship between patience and savings (Cronqvist and Siegel, 2015, Sunde

et al., 2021). In our model, the endogenous growth in savings rates also sustains

significant growth in income per capita even in the absence of technological change

(see Table 2). There is also good empirical evidence that savings rates have increased

over long periods of time. Sutch, ed (2006) documents an increase in the gross private

saving rate in the U.S. from around 10% to over 30% over the period 1834–1909. The

savings rate then declines, particularly in the latter half of the twentieth century,

largely for reasons extrinsic to our model.25 In the UK, the household savings rate

grew from less than 5% in the nineteenth century to around 10% in 2000 (Thomas

and Dimsdale, 2017). Data prior to the nineteenth century on household savings is

scarce, but data on investment is available for the UK. Figure 7 panel C) reports the

UK investment rate from 1300 to 2000 (using Broadberry and de Pleijt, 2021 and

Thomas and Dimsdale, 2017). As can be seen, the trend in the investment rate is

increasing over the 700 years, accelerating after 1900. The Figure shows that in our

model, the investment rate increases over time as societal patience grows, even if we

do not match the level. Given that nothing in the calibration is intended to target

these objects, we consider the fit to the data to be further validation of the role of

increasing societal patience over time.

6 Imperfect transmission

Thus far, we have assumed that the level of patience within a dynasty is perfectly

transmitted across generations. In reality, transmission is likely to be imperfect due

to factors such as mutation, changing patterns of socialization or mean-reversion that

may arise from imperfect assortative mating. An immediate question is whether such

imperfect transmission slows the process of selection and hence diminishes its role in

driving the declining interest rate.

To address this issue we consider a version of our model in which some portion

of children in dynasty i inherit a mutated level of patience of {βi − ε, βi + ε} for

25Much of the twentieth century variation in savings rates, at least for the U.S., has been shown
to be the result of government transfers and of changes to consumption propensities which may be
attributed to policy intervention (see, e.g. Gokhale et al., 1996).
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some ε > 0. Children with a positive shock have what is called an advantageous

mutation (one that increases fitness); whilst those with a negative shock have a dele-

terious (which decreases fitness) mutation. One consideration is whether such noise

is distributed symmetrically or whether it is skewed toward the mean of the pop-

ulation. While Brenøe and Epper (2022) and Chowdhury et al. (2022) find strong

transmission in patience across generations, neither study identifies the existence of

asymmetric transmission. We thus consider the case of symmetric noisy transmission

and its implications.

Specifically, in Appendix F we develop a version of our model which incorporates

mutation as an unanticipated shock to an agent’s discount factor. In the model set-

ting, such ‘mutation’ is a reduced form way to consider the implications of imperfect

transmission of preferences in general. Those agents that experience a deleterious

mutation have very small effects on interest rates. Those that receive an equal-sized,

but advantageous mutation can have large and long-lasting consequences since those

agents begin to accumulate a greater share of capital and have a larger number of

children (who themselves inherit the higher patience level). This highly asymmetric

response to a symmetric shock demonstrates that even a small and ongoing process of

imperfect transmission would serve to accelerate the pace of selection and the decline

in the interest rate.

If some form of asymmetric, mean-reverting transmission did exist, it would need

to be very strongly mean-reverting in order to offset the consequence of even a small

number of advantageous mutations. Given the complexity that such skewed mutation

bring to the model, given that there is no immediate way to calibrate such noisy

transmission in general, and given the limited evidence in the literature to guide us

in calibrating any potentially asymmetric mutation, we leave a fuller analysis of the

implications of skewed imperfect transmission to future research.

7 Concluding remarks

We introduced a simple fertility model with heterogenous preferences, calibrated to

the modern-day distribution in patience, and showed that the process of natural se-

lection can explain the trend in the interest rate over the last eight centuries. The

role of selection is robust to incorporating a number of extensions and to alternative

calibration. There are many further implications to consider. First, in our model the
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population shift toward more patient types occurs partly via trading in capital. This

suggests a potentially important relationship between the constraints on trade or bor-

rowing, the evolution in the population and the interest rate. Second, we have focused

on a simple form of the intergenerational transmission of preferences and pointed to

some implications of imperfect transmission. We leave to future work a fuller con-

sideration of the role of the strength and bias of transmission across generations.

Moreover, we studied heterogenous patience levels as the only time-varying element

of societal preferences. The evidence on the heterogeneity of altruism, risk aversion,

and other preferences, together with their intergenerational transmission and effect

on fertility, suggests that a number of additional further preference heterogeneities

could evolve over time alongside time preference. Third, we have focused our model

on its implications for the interest rate but our time period encompasses the onset of

the industrial revolution and periods of mass migration. While we captured the path

of income and population by exogenously varying child cost and productivity, these

items could potentially be made endogenous. The role for the evolution of societal

preferences in explaining these changes is left for future work.

Finally, we noted in the introduction that understanding social discount rates is

critical in formulating optimal policies to address very long-term, inter-generational

problems such as those that relate to the funding of social security programmes and

that address climate change. Our analysis points to a new way to rationalize the use of

a declining discount rate in cost-benefit analysis. Moreover, understanding the short-

and long-run relationship between the social discount rate and policy interventions is

an important avenue for future research.

8 Data availability

Data and code for replicating the tables and figures in this article can be found in

Stefanski and Trew (2023) in the Harvard Dataverse, DATASET URL.
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and Özak Özak, “The Agricultural Origins of Time Preference,” American Eco-

nomic Review, 2016, 106 (10), 3064–103.

Giannelis, Alexandros, Emily A. Willoughby, Robin Corley, Christian

Hopfer, John K. Hewitt, William G. Iacono, Jacob Anderson, Aldo Rus-

tichini, Scott I. Vrieze, Matt McGue, and James J. Lee, “The Association

between Saving Disposition and Financial Distress: A Genetically Informed Ap-

proach,” Journal of Economic Psychology, June 2023, 96, 102610.

Gokhale, Jagadeesh, Laurence J. Kotlikoff, and John Sabelhaus, “Under-

standing the Postwar Decline in U.S. Saving: A Cohort Analysis,” Working Paper

5571, NBER, Cambridge, MA, 1996, p. 93.

Gollin, Douglas, “Getting Income Shares Right,” Journal of Political Economy,

April 2002, 110 (2), 458–474.

37



Griffiths, Anthony J. F., “Mutation,” Encyclopædia Britannica, 2020.

Hansson, Ingemar and Charles E. Stuart, “‘Malthusian Selection of Prefer-

ences’,” American Economic Review, 1990, 80 (3), 529–44.

Herrington, Gaya, “Update to limits to growth: Comparing the World3 model

with empirical data,” Journal of Industrial Ecology, June 2021, 25 (3), 614–626.

Hudson, Michael, “How Interest Rates Were Set, 2500 BC-1000 AD: Máš, tokos
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A Data Appendix

A.1 Detail on interest rate data

Schmelzing (2020) considers a number of measures of real interest rates over time,

which vary by the asset class and region. Figure 1 panel A) reports the 25 year

medians of the annualized generational returns based on the headline annual series

‘Global R’ in real terms (based on sheet II column N of the data appendix accompa-

nying Schmelzing, 2020). In this section we describe these measures and supplement

them with country-specific real rates of return on land based on the work of Clark

(1988). The findings all point to a centuries-long downward trend in real interest rates

– regardless of the measure used and regardless of the region under examination.26

Figure 1 panel B) is from Figure 5 of Clark (2010).

Safe or risk-free rate The main measure introduced by Schmelzing (2020), and

the real rate used in our paper in our Figure 1 panel A), is the ‘risk-free’ mea-

sure. Schmelzing describes this as the real interest rate for the historical ‘safe asset

provider’. The series is constructed by splicing together yields of long-term, mar-

ketable, sovereign-bond debt issued by the countries that were considered to be the

safest and most reliable in a given period of time. The series runs from 1311 to 2018,

using data from Italy, Spain, Holland, UK, Germany and the US. Importantly each

of the types of debt was traded on deep secondary markets and the series’ “central

feature consists of the fact that it remained default-free over its 707 year span” (op.

cit., p.18). The nominal rates of return are deflated using country-specific price data

from Allen (2001). For details of the assets used, the countries under consideration,

the chosen splice points as well as the justification of those countries and dates, see

Table A1. Whilst arguably the exact timing of the splice points is somewhat subjec-

tive, Schmelzing very carefully lays out the case for the selected countries and their

debt being the safest assets available in their given time. He also shows that the

return on land consistently coincides with the safest asset.

Country specific Schmelzing extends the data used in the safe-asset calculations

to generate a 700 year long series for all countries in that exercise as well as a number

26For expositional ease, all results in the section are presented as 50-year averages of generational
rates of return.
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Table A1: Details of Schmelzing’s Global ‘Safe Rate’.
Justification for:

Period Country Type of Assets Start Date End Date

1311-
1509

Italy

Venetian Prestisi and
Genoese Luoghi. Earliest
marketable long-term
sovereign bond debt.

Earliest inflation data
available from 1311,

(Allen, 2001).

Battle of Agnadello
(1509). Venice lost “in
one day what took them

eight hundred years
exertion to conquer”,
(Machiavelli, 2003)

1510-
1598

Spain

Juros long-term debt
(de-facto sovereign debt:
sold for cash, established
seniority system, traded
in secondary market).
Cont. serviced unlike

short-term debt.

“During the 16th
century no other power
controlled ... armed
forces as powerful or
financial resources as
vast as Habsburg

Spain,”(Parker, 2000).

Philip II’s death in 1598
& Spanish decline: “The
empire on which the sun
never set had become a
target on which the sun
never set”, (Parker,

2000).

1599-
1702

Holland
Long term bond debts

(Renten and obligations)
issued by Dutch province

“Financial capital of the
world,”

(Marjolein T’Hart and
van Zanden, eds, 1997)

Transition of financial
markets from

Amsterdam to London

1703-
1907

UK British consol yields

Britain Europe’s “most
vibrant” economy,
(Broadberry and
Fouquet, 2015)

Germany overtakes UK
in GDP

1908-
1913

Germany
German Imperial 3%

benchmark
Strongest growth

trajectory
World War 1

1914-
1918

UK British consol yields
UK regains GDP

primacy
Cost of War, lower GDP

1919-
1961

US 10-year treasury bonds
US GDP pc permanently

surpasses UK
Great Inflation in US

1962-
1980

Germany
10-year government

bonds

Revaluation of D-mark,
rise of eurodollar market
& low inflation rates.

Paul Volcker’s successful
’war on inflation’

1981-
2018

US 10-year treasury bonds
Largest GDP, low

inflation
-
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of other economically important countries. In particular he constructs rates for Italy,

UK, Holland/NL, Germany, France, United States, Spain and Japan. Data for each

country consists of long-term debt yields. For countries and time periods included

in the global ‘safe’ series, the debt instruments remain the same and consist of the

sovereign debt discussed above. For countries and/or periods not covered in the ’safe’

series, observations are arithmetically weighted on the country-level across data points

of long-term consolidated debt (such as debt issued by municipalities or mortgage-like

pledge loans) and sovereign personal loans (like loans to the British Crown or French

Revolutionary war loans to the United States) until marketable, national bond data

becomes available. The nominal rates of return are deflated using country-specific

price data from Allen (2001). As can be seen in the first panels graphs of Figure A.1

panel A), the real rates of return are declining in each country under consideration.

Global Schmelzing then constructs a global interest rate series by weighting the

country-specific data above using GDP shares derived from The Maddison Project

(2013). The GDP share of the eight countries under consideration are on average

80.1%, and for the past 600 years they have never fallen below 52%. As can be seen

in the last panel (WLD) of Figure A.1 panel A), the global real rate of return is

steadily declining over the entire period.

‘Personal’ or ‘Sovereign’ non-marketable loans Schmelzing also examines the

extent to which the non-marketability of loans can account for the decline of interest

rates presented above by examining personal loans to sovereigns (including “pledge

loans” and loans from municipalities to the central authorities). These types of loans

were very common, outside “of the urban financial centers of Northern and Central

Europe in late medieval and early modern times, prior to the consolidation of debt

on the national level, (...) especially in war episodes and in the context of weak

central bureaucracies, (...) until well into the 17th century (...). Such non-marketable

sovereign loans have gone out of fashion over the past two centuries.” (op. cit., p.9).

As Schmelzing notes, “A ‘benchmark’ non-marketable instrument today is represented

by U.S. savings bonds, which are non-transferable, long-term, and redeemable after

12 months.” (p.11) Since there was considerably more scope to distort market prices

of capital in these circumstances, it is interesting to see if the rate of decline in these

types of loans is any larger than in the safe-series or in the global-series. The analysis
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Figure A1: Country specific real rates of return on long-term debt and land. Dashed line
show regression trends.

A) Rates of Return on long-term debt

B) Rates of return on personal/non-marketable loans to sovereigns and private
debt

C) Rates of return on land (Flanders/Netherlands,
Italy) and rent charges (France, Germany)
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focuses on 454 non-marketable sovereign loans but excludes ‘all intra-governmental

loans, loans featuring in-kind payments, forced loans and those which are de facto

expropriations’. The prices are adjusted for inflation using arithmetically weighted

inflation rates from Allen (2001). The results are shown in the first panel of Figure

A.1 panel B); here too we observe falling interest rates. Importantly the rate of

decline of interest rates is very similar to other measures of interest rates.

Private, ‘non-sovereign’ rates Schmelzing also examines non-sovereign (private)

real interest rates. In particular, he constructs a consistent series from the private,

secured mortgage market over last 700 years within “Carolignian Europe” – mostly

Germany, Switzerland, some parts of France and Holland. These debts “all involve

the debtor as a private party who pays the recorded interest rate, which is tied to

the value of a real estate asset itself, or where the collateral involved consists of

a real estate asset. The creditor counterparties involve abbeys, municipalities, or

other private individuals.” (op. cit., p.25). Contract length is often not specified

but is for at least for ‘one life’-time, thus this is certainly long-term private debt.

The instruments involved historically are Leibrenten or Erbleihen which changed into

Pfandbriefe in the 19th century and still exist today. Inflation data once more comes

from Allen (2001). The result is shown in the second panel of Figure A.1 panel B)

and also demonstrates a steady decline over time.

Land Using data for nominal returns to farmland and rent-charges reported in Clark

(1988) as well as inflation data from Schmelzing, we construct real interest rates on

land for various countries. In particular, the first five panels of Figure A.1 panel C)

show the real rates of return on land – arguable the ‘safest asset’ – for 5 countries

(Italy, U.K., Flanders, France and Germany).27 In addition, Schmelzing constructs

a real interest rate on land using similar sources, specifically Ward (1960, cited in

Schmelzing), Featherstone and Baker (1987), and Clark (1988, 2010), for the ‘G-5’

countries (Italy, U.K., Flanders, France, U.S.). We report the GDP-weighted average

in the last panel of Figure A.1 panel C). The high interest rates in 13th century

England that can be seen shown in Figure 1 panel B). are echoed across northern

27The GBR series is constructed using the same nominal interest rate data as in Figure 1. Notice
also that the real rates data for the Netherlands (i.e. NLD) is constructed using nominal interest
rates from Flanders and inflation from Amsterdam - whilst not ideal this is the best we can do due
to a lack of other data.
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Europe with surprisingly close agreement and the declining pattern of real interest

rates on land is a feature in every country in which long-term data is available.

In addition to data for the last eight centuries, there is also evidence of an even

longer-run trend from ancient data, as shown in Table A2.

Table A2: Historical interest rates

Period Place Rate (%) Note
3000-1900 BC Sumer 20–25 Rate of interest on silvera

c.2500 BC Mesopotamia ≥20 Smallest fractional unitb

1900–732 BC Babylonia 10–25 Return on loans of silvera

C6th BC Babylonia 16–20 Interest on loansa

C5th-2nd BC Greece ≥10 Smallest fractional unitb

C2nd BC on Rome ≥81
3

Smallest fractional unitb

C1st-3rd AD Egypt 9–12 Land return, interest on loansa

C1st-9th AD India 15-30 Interest on loansa

C10th AD South India 15 Yield on temple endowmentsa

1200 AD England 10 Return on land, rent chargesa

1200–1349 AD Flanders, France,
Germany, Italy

10–11 Return on land, rent chargesa

C15th AD Various Euro-
pean

9.43 Risk-free rental ratec

C16th AD Ottoman Empire 10–20 Interest on loansa

C19th AD Various Euro-
pean

3.43 Risk-free rental ratec

2000 AD England 4–5 Return on land, rent chargesa

2000–17 AD Various Euro-
pean

1.24 Return on land, rent chargesc

Notes: aCalculated or referenced in Clark (2007b). bHudson (2000).
cSchmelzing (2020).

A.2 The German Socio-Economic Panel

The German Socio-Economic Panel (SOEP) is a longitudinal dataset which has, since

1984, collected information by interview on around 30,000 unique individuals in nearly

11,000 households (see Wagner et al., 2007). Among the data collected is household

net income, marital status and age. Of particular use to this paper is a question

asking for ‘general personal patience’ on a scale of 0-10 (where 0 is very impatient
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and 10 is very patient). This question was asked in 2008 and 2013. We use SOEP-

Core version 33.1 which includes data up to 2016. Since there is some variability in

self-reported patience of individuals between 2008 and 2013, we use the 2008 measure

of patience since it has been validated using experimental methods (Vischer et al.,

2013). We then focus on the number of unique children in each household at 2008

plus the number of additional household children up to 2013.

To construct our sample, we merge 2008 and 2013 using the ‘never changing person

ID’. We calculate the total number of children of each household as the number present

at 2008 plus any additional children at 2013. We drop those 41 observations where

patience is not observed in 2008 as well as the resident relatives and non-relatives.

Our sample of 17,452 individuals thus leaves only the head of the household and their

partner. The average number of children in each household is 0.71 (with a standard

deviation of 1.00); the average number in a household that has at least one child is

1.71 (s.d. 0.84). The average patience level is 6.1 (s.d. 2.28).

Equation (13) gives the equilibrium relationship between dynasty population dy-

namics, the dynasty-specific discount rate and the gross real interest rate on children

(which is common across dynasties). Since N i
t+1 = N i

tn
i
t, we can re-write (13) in terms

of the number of children each household has as simple ni
t = βiR̃t+1. Motivated by

this simple relationship, we estimate the following specification,

childreni,2013 = β0 + β1patiencei,2008 +X′
iβ + εi (A1)

where childreni,2013 is the unique number of children of person i over the period 2008–

13, patiencei,2008 is the self-reported patience in 2008, and X is a vector of control

variables including age, log of net income, as well as dummy variables for gender and

marital status.

Table A3 column 1 reports our most parsimonious regression specification, where

we restrict the sample to those of child-rearing age (18-40). We can see a statistically

strong positive correlation between the patience of an individual and the number

of children they have. Columns 2 to 4 include observations of all ages. Column

2 includes a control for age, column 3 adds the log of net income and column 4

adds dummy variables for whether an observation is male, head of the household,

married, widowed, divorced or separated. Our preferred specification, in Column 5,

reports results with all controls for only those observations aged 18-40. In each of

49



Table A3: Patience and Children

(1) (2) (3) (4) (5)
VARIABLES totalChildren totalChildren totalChildren totalChildren totalChildren
HHpatience 0.027** 0.013*** 0.017*** 0.012*** 0.022***

(0.010) (0.004) (0.004) (0.004) (0.009)

HHage -0.024*** -0.021*** -0.030*** 0.017***
(0.001) (0.001) (0.001) (0.005)

lincome 0.414*** 0.274*** 0.175***
(0.016) (0.017) (0.035)

Observations 4,341 17,224 17,222 17,222 4,340
R2 0.004 0.176 0.256 0.336 0.312
Controls no no no yes yes
Ages 18-40 All All All 18-40

Note: Robust standard errors in parentheses. Standard errors are clustered at the household
level. Observations are weighted according to SOEP individual person weights. lincome is
the log of household post-government income. Controls are dummy variables for whether an
observation is male, the household head, married, widowed, divorced or separated.

these specifications, the coefficient on patience is statistically significant and of the

expected sign. Table A4 reports the results from an alternative approach to age,

where we use dummy variables for age brackets instead of including age as a linear

variable.
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Table A4: Patience and Children: Age bins
(1) (2) (3)

VARIABLES totalChildren totalChildren totalChildren
HHpatience 0.010** 0.016*** 0.014***

(0.004) (0.004) (0.004)

mediumyoung 0.573*** 0.272*** 0.146***
(0.061) (0.062) (0.056)

mediumold 0.884*** 0.471*** 0.199***
(0.057) (0.060) (0.058)

old -0.056 -0.362*** -0.729***
(0.050) (0.052) (0.055)

lincome 0.420*** 0.312***
Observations 17,224 17,222 17,222
R2 0.181 0.259 0.317
Controls yes no yes

Note: Robust standard errors in parentheses. Standard errors are clustered at the household
level. Observations are weighted according to SOEP individual person weights. lincome is
the log of household post-government income. mediumyoung is a dummy equal to 1 if 25 <
HHage <= 35; mediumold is a dummy equal to 1 if 35 < HHage <= 45; and, old is a dummy
equal to 1 if 45 < HHage. Controls are dummy variables for whether an observation is male,
the household head, married, widowed, divorced or separated.
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A.3 Cross-country considerations

The denormalized Falk et al. (2018) data points to some variation in average discount

factors across countries. These differences are much smaller than the variation implied

by the model across time. For example, the average patience level in the top and

bottom 10 percent of countries in the denormalized Falk et al. (2018) data is β10 =

0.934 versus β90 = 0.949 (on an annualized basis). Using equation (16) with gNt =

gDt = 1 this implies a difference of approximately 1.7 percentage points in interest

rates between the most and the least patient countries (1/β10− 1/β90). Whilst this is

not negligible, compared to the average decline of the interest rate of between 7 and

14 percentage points over the 700-year time span under consideration this difference

is relatively unsubstantial. As such throughout the paper we abstract from variation

in patience levels across countries and we focus only on variation in individual level

patience that gives rise to the large downward trend in interest rates over time.

A.4 Steady state consumption share

Data on final consumption expenditures in US dollars (NE.CON.TOTL.CD) and

GDP at market prices in US dollars (NY.GDP.MKTP.CD) comes from the World

Development Indicators. To match the scss term in the main body of the text, we

proceed as follows. We first calculate the ratio of global consumption to global GDP

in every year and then calculate the average of world consumption shares for the years

2000-2018 which comes to 75%.

A.5 Calibrating the beta distribution

The annualized variance of generational discount factors We proceed in two

steps to calculate a global variance for individual discount rates. A natural source

would be the Global Preference Survey described in Falk et al. (2018). This cannot be

used directly, however, as its data is normalized (each preference variable has a zero

global mean and unit standard deviation). The GPS data is also based on responses

to survey questions that are each focused on distinct preference characteristics. This

is problematic given the evidence in Andersen et al. and other work that the joint-

elicitation of time and risk preferences matters for measures of patience. Andersen et

al. (2008) report the standard error of their estimate for the discount rate, r. Since
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Table A5: Annual Rates of Return, un-weighted.
Asset N Mean Median Std p90/p10
Equities 2520 0.064 0.056 0.206 0.464
Bonds 2520 0.009 0.006 0.125 0.169
Treasuries 2520 0.016 0.012 0.129 0.248

Table A6: Generational Rates of Return (Annualized), un-weighted.
Asset N Mean Median Std p90/p10
Equities 1930 0.049 0.051 0.038 0.094
Bonds 1930 0.001 0.011 0.043 0.092
Treasuries 1930 0.004 0.010 0.054 0.119

β = 1
1+r

in equilibrium, we need to express var
(

1
1+r

)
as a function of the mean E(r)

and variance var(r). We use a first-order Taylor expansion of the second moment of

the transformed variable to find var
(

1
1+r

)
= 1

(1+E(r))4
vart(r). Thus we use the time

preference evidence in Andersen et al. to ‘de-normalize’ the Falk et al. data by fixing

the GPS variation across individuals in Denmark to that found in the experiments.

We then obtain a measure of the global variation across individuals, having taken

account of region-specific fixed effects. We find the median standard deviation across

countries is 0.0053.

The long run interest rate To find data on the long run interest rates we use

the Credit Suisse Global Investment Returns Yearbook (Dimson et al., 2002). This

publication provides cumulative real returns from 1900 to 2015 for equities, bonds

and treasury bills for 23 major economies that cover 98% of the world equity market

in 1900 and 92% at the end of 2015. Furthermore, the yearbook provides an “all-

country world equity index denominated in a common currency, in which each of the

23 countries is weighted by its starting-year equity market capitalization. (It) also

compute(s) a similar world bond (and treasury) index, weighted by GDP.”

For each country (c), year (t) and asset class (s), we are given a cumulative real

return, Rs
c,t. We then use this to calculate both the annual rate of return (rsc,t) and

the annualized 25-year generational rate of return (r̄sc,t) as:

rsc,t+1 =

(
Rs

c,t+1

Rs
c,t

)
− 1, (A2)
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and

r̄sc,t+25 =

(
Rs

c,t+25

Rs
c,t

) 1
25

− 1. (A3)

Tables A5 and A6 show summary statistics for both the annualized and generational

rates of return. Notice that as usual returns are highest for equities. For annual data,

it is also true that the variation in returns is much higher in equities than in either

bonds or treasuries. Generational return on equities however (these are the annualized

rates of return from making and holding an investment for 25 years) still offer higher

average rates of return than bonds or treasuries, but are no longer as volatile - the

variation in generational equity returns is either smaller or indistinguishable from

variation in returns on treasuries or bonds. This motivates why we choose to calibrate

our model to average, generational returns on equities - dynastic planners have a long

time horizon and rates of returns of equities over this horizon are higher than of bonds

or treasuries - and their variation is no higher.

The rate of return used in the calibration of the main body of the paper is obtained

as follows. We calculate the (weighted) generational rate of returns of the world

equity index, r̄sW,t, in every year and then find the average of the implied rates of

return between 2000 and 2015 which is equal to an annualized 6.4%.

A.6 The price of service-sector goods

We construct a relative price index of the service sector with respect to the consumer

price index (CPI) for the UK. To do this we construct constant and current prices

sectoral value added measures for the service (S) sector. Taking a ratio of these gives

us a price index for the S sector relative to the CPI. Then, dividing the S price index

by the CPI results in the required data series. We proceed as follows.

1. We calculate (constant price) service sector value added shares:

(a) Obtain 1949-2009 constant (2005) price sector value added for the S sector

from Timmer et al. (2015).

(b) From Smits et al. (2009) obtain the 1855-1965 sector size index normalized

to 1965=1.

(c) Using quantity data from (a) transform the value added indices in (b) into

constant price value added of S.
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(d) Combine the two series using data from Timmer et al. (2015) for 1949-2009

and data from Smits et al. (2009) for 1855-1948 to obtain constant (2005)

price sectoral value added for S for 1855-2009.

(e) Use this to calculate (constant price) sectoral value added shares.

2. We calculate current price sectoral value added shares:

(a) Use current price value added data from Timmer et al. (2015) to calculate

current price value added shares for S for 1960-2009

(b) Combine this data with current price value added shares from Buera and

Kaboski (2012) from 1800 to 1959, interpolating missing values. (They

in turn obtain this data from Mitchell). This gives current price sectoral

value added shares from 1800 to 2009.

3. From Thomas and Dimsdale (2017) obtain current price and constant price

GDP for 1700-2016 (tabs A8, A9). Re-base the constant price GDP measure

to the year 2005. Next, multiply constant price sectoral shares from 1. by

this constant price GDP to obtain sectoral value added in constant 2005 prices.

Next, multiply current price sectoral shares from 2. by this current price GDP

measure to obtain current price sectoral value added. We do this, following

Duarte and Restuccia (2010), to remain consistent between the current and

constant price sectoral value added series.

4. Divide the S sector’s current price value added by its corresponding constant

price value added series from point 3 above to obtain a sectoral price index for

S for 1855-2009.

5. Obtain the sectoral price index for S for 1270-1855 from Thomas and Dimsdale

(2017) in tabs A6 and A7. Use the implied growth rates from this series to

extend the 1855-2009 sectoral price index data from 4. above backwards to

1270.

6. Obtain a Consumer Price Index from Thomas and Dimsdale (2017) (Tab A47,

preferred measure). Then, dividing the service sector price from the previous

point by this consumer prices index allows us to calculate the relative price of

service to consumption goods from 1270 to 2009. This is the data that we use

in the main body of our paper.
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B Equation (1): derivation and discussion

In the main text we posited an expression for the real interest rate as a function of

growth and the discount rate:

rt = gt − ln β.

In more general terms, the real interest rate on an asset L takes the form,

r̃Lt = γgt −
γ2

2
σ2
t − ln β + γdL,t. (A4)

where γ is the relative risk aversion coefficient, σ2 is the variance of consumption

growth, dL,t is related to the covariance between the consumption growth and the

return on asset L. While this is a standard expression, below we present its derivation

for completeness. We also discuss the evidence on these other parameters and the

role they play in driving declining interest rates.

B.1 Derivation

Consider a household that maximizes the present value of a flow utility by choice of

a portfolio of assets comprised of the risky asset, L and risk-free bonds, B,

max
Lt,Bt

Et

∞∑
t=0

βtU (Ct) (A5)

subject to,

Lt+1 +Bt+1 = RL
t Lt +Rf

tBt +Wt − Ct (A6)

where RL
t and Rf

t are gross returns on risky assets and bonds, respectively, and where

Wt is an income endowment each period. Rf
t is known at period t − 1; only the

probability distribution of RL
t is known at period t− 1.

Optimal portfolio choices satisfy,

Rf
t+1Et

βU ′(Ct+1)

U ′(Ct)
= 1, (A7)

EtR
L
t+1

βU ′(Ct+1)

U ′(Ct)
= 1. (A8)

To obtain an expression in certainty-equivalent form, we make two assumptions.
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First, we impose CRRA utility of the form,

U(Ct) =
1

1− γ
C1−γ

t , (A9)

and so the optimal portfolio satisfies,

Rf
t+1Etβ

(
Ct+1

Ct

)−γ

= 1, (A10)

EtR
L
t+1β

(
Ct+1

Ct

)−γ

= 1. (A11)

Second, let rLt+1 = lnRL
t+1 and gt+1 = ln(Ct+1)− ln(Ct) and assume that these are

jointly Normally distributed,[
gt+1

rLt+1

]
∼ N

([
ḡt+1

r̄Lt+1

]
,

[
σ2
g,t, σ

2
g,L,t

σ2
g,L,t, σ

2
L,t

])
. (A12)

where x̄t is the mean of x, σ2
x,t is the variance of x, and σ2

x,y,t is the covariance of x

and y at time t.

Given these assumptions, we can re-write the first order conditions as,

β exp

{
rft+1 − γḡt+1 +

1

2
vart (−γgt+1)

}
= 1 (A13)

β exp

{
r̄Lt+1 − γḡt+1 +

1

2
vart

(
rLt+1 − γgt+1

)}
= 1. (A14)

Note that from (A13) we have the following expression for the real rate,

rft = γgt −
γ2

2
σ2
g,t − ln β. (A15)

where with log utility (γ → 1) and no consumption growth variance (σ2
g,t = 0), we

have the expression for the real rate given above as equation (1).

The two first order conditions together give a relationship between the risk-free

rate and the return on L,

r̄Lt+1 +
1

2
σ2
L,t+1 = rft+1 + γσ2

g,L,t+1 (A16)
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Note that r̄Lt+1 = Etr
L
t+1 and, since rLt is Normally distributed, we can write

lnEtR
L
t+1 = r̄Lt+1 +

1
2
σ2
L and so,

lnEt−1R
L
t = rft + γσ2

g,L,t (A17)

which, with r̃Lt = lnEt−1R
L
t and dL,t = σ2

g,L,t, is the expression given in equation (A4).

B.2 Discussion

As we discussed in the paper, and as we develop in the extended versions of the model,

the historical record for per capita growth and life expectancy are unable to explain

the fall in rates over time. Equation (A4) suggests a number of additional potential

channels.

Variance of consumption growth If the variance of consumption growth (σ2
g,t)

increased over time, this could explain a fall in real rates. However, shocks to con-

sumption, assets and production have either remained stable or declined over time.

Climate variability has been relatively constant over the last millennium, at least up

until the 20th century (Salinger, 2005). Levels of violence and warfare have system-

atically declined (Pinker, 2012). Moreover, the emergence of sophisticated insurance

markets have improved the resilience of agents to shocks (Bernstein, 1998). Each of

these changes lead to lower, not higher, variance in consumption growth. Broadberry

and Wallis (2017) provides direct evidence of the consequence. Using cross-country

data for the later 19th century, and long-run historical data for a number of Euro-

pean countries, Broadberry and Wallis shows that sustained increases in growth are

the result of fewer episodes of negative growth, rather than more episodes of positive

growth.

Risk aversion Note that the relationship between relative risk aversion (γ) and

the risk-free rate depends, by (A4), on the sign of (ḡt − γσ2). Maddison (2013)

data suggests that the country-level average annual variance in per capita incomes

since 1800 are at least one order of magnitude less than the average level of annual

growth. So a fall in risk aversion may explain a portion of the decline in rates. In

the same way as the level of patience is not normally time-varying, the deep risk

aversion parameters are usually considered fixed over time. There is evidence that
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risk aversion is intergenerationally transmitted, but the direction of the effect on

fertility is not clear and so there is no clear route in the manner of a Barro-Becker

fertility model of the sort introduced in the paper. However, we can see the required

direction of any potential societal shift: the evidence on risk aversion is that it has,

if anything, emerged and grown over time as an evolutionary adaptation (Robson,

1996; Levy, 2015). This would make the decline in the real interest rate harder to

explain.

Declining risk We might see a decline in interest rates if our data are historical

returns on assets that become steadily closer to being risk-free over time. This would

manifest itself through a decline in dt and hence falling interest rates.28 There are a

number of reasons for thinking this is not the case, however. First, a key contribution

of Schmelzing (2020) is in constructing a dataset of the global risk-w rate by careful

study of financial history, taking into account the shifts in stable global financial

systems. Thus the series is constructed from the rates of returns on sovereign debt

in 14th century Genoa, 18th century UK and 20th century US. Clark (2010), in

contrast, uses data for one country and calculates returns on the safest assets within

a single country. Second, Clark (2010) makes the case for England that the risk of

expropriation of land was very stable in the long run and did not change significantly

over this period. For Clark (p.44), “The medieval land market offered investors a

practically guaranteed ... real rate of return with almost no risk.”

C General model derivation

In this section we derive the solution to and calibrate the general model. As we will

see below, this general model nests that developed in section 3.1. Setting ω = 1 will

give us the model of section 3.1 with perfect altruism; and setting ω < 1 introduces a

form of imperfect altruism as introduced in section 3.2. In simulations we set ω = 0,

28Importantly a falling dt is not caused by declining idiosyncratic risk. When we speak of the
declining risk of an asset we are not referring to returns becoming less volatile over time, but rather
returns on the risky asset become less (positively) correlated with consumption growth. Risk that is
uncorrelated with consumption growth rates will generate no premium on returns - and changes in
this type of risk will not result in changes in the interest rate. So, for example, if the probability of
expropriation of an asset declines over time - this would not be reflected in declining interest rates.
Instead, we would need to observe a decline in expropriation probability in ‘bad’ times i.e. when a
negative shock hits consumption growth.

59



capturing the possibility that agents care about children only while they themselves

are alive.

Time zero household problem By iterative substitution, we re-write the indi-

vidual household problem (17) in the framework of a time zero household of each

type. The time-zero household solves:

max
{cit,ni

c,t,x
i
t}∞t=0

∞∑
t=0

(βi)t

(
t∏

j=0

(πj(1− ω) + ω)

)(
α log(cit) + (1− α) log(ni

t+1)
)

(A18)

s.t.

cit + qtn
i
c,t + xi

t ≤ wt + rtk
i
t, ni

t+1 = π + ni
c,t, ki

t+1 =
(1− δ)ki

t + xi
t

ni
t+1

.

As noted in the text, the altruism component, common across all agents and captured

in ω and πj, is distinct from the pure time preference βi, which varies by dynasty.

Dynastic planner problem We can re-write the time zero household problem

from the perspective of a single dynastic planner for each type of dynasty i. Dynasty-

aggregate values are Ci
t ≡ citN

i
t , N

i
c,t ≡ ni

c,tN
i
t , K

i
t ≡ ki

tN
i
t , X

i
t ≡ X i

tN
i
t . The number

of households in dynasty i at time t+1 will be given by N i
t+1 = (πt+ni

c,t)N
i
t = ni

t+1N
i
t .

The problem for dynasty i is then given by:

max
{Ci

t ,N
i
c,t,X

i
t}∞t=0

∞∑
t=0

(βi)tθ(t, ω)
(
α log(Ci

t) + (1− α− βi(πt+1(1− ω) + ω)) log(N i
t+1)

)
(A19)

s.t.

Ci
t + qtN

i
c,t +X i

t ≤ wtN
i
t + rtK

i
t

N i
t+1 = πtN

i
t +N i

c,t

Ki
t+1 = (1− δ)Ki

t +X i
t ,

where in the above θ(t, ω) ≡∏t
j=0(πj(1− ω) + ω).
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Firms The representative firm hires workers (Nt) and capital (Kt) to produce final

output (Yt). The profit maximization problem of the firm is given by:

max
{Kt,Nt}

Yt − wtNt − rtKt, (A20)

where Yt = DtK
ν
t N

1−ν
t is a standard Cobb-Douglas production function where 0 <

ν < 1 is the output elasticity of capital. Dt is the exogenous and time-varying level

of technology.

Market clearing The market clearing conditions are given by:

I∑
i=1

Ci
t = Ct ,

I∑
i=1

N i
t = Nt ,

I∑
i=1

N i
c,t = Nc,t ,

I∑
i=1

Ki
t = Kt,

Ct + qtNc,t +Xt = DtK
ν
t N

1−ν
t . (A21)

Notice that capital is now produced from output and that producing a child costs an

exogenous qt units of output.

Competitive equilibrium A competitive equilibrium, given a series of child prices

{qt}∞t=0 and technology {Dt}∞t=0, parameter values and initial conditions

{N1
0 , . . . , N

I
0 , K

1
0 , . . . K

I
0}, consists of allocations {Ci

t , N
i
c,t, N

i
t+1, K

i
t+1, X

i
t}∞t=0 for each

dynasty i = 1, . . . , I and prices {wt, rt}∞t=0 such that firms’ and dynasties’ maximiza-

tion problems are solved, and all markets clear.

C.1 Solution

To solve the model, we start by deriving the first order conditions of the dynastic

planner and the firms. For given parameter values, initial population and capital dis-

tributions, the competitive equilibrium of the problem, for each dynasty i = 1, . . . , I,

is characterized by consumer first-order conditions with respect to choice of children

and consumption as:

(1− α− βi(πt+1(1− ω) + ω))

N i
t+1

+ (πt+1qt+1 + wt+1)
αβi(πt+1(1− ω) + ω)

Ci
t+1

= qt
α

Ci
t

,

(A22)
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Ci
t+1

Ci
t

= βi(πt+1(1− ω) + ω)(1− δ + rt+1), (A23)

with consumer budget constraints for each dynasty i:

Ci
t + qtN

i
t+1 +Ki

t+1 = (wt + πtqt)N
i
t + (1− δ + rt)K

i
t . (A24)

The firm first-order conditions are:

wt = (1− ν)DtK
ν
t N

−ν
t and rt = νDtK

ν−1
t N1−ν

t . (A25)

The market clearing conditions are:

I∑
i=1

Ci
t = Ct ,

I∑
i=1

N i
t = Nt ,

I∑
i=1

Ki
t = Kt,

Ct + qt(N
i
t+1 − πtN

i
t ) + (Ki

t+1 − (1− δ)Ki
t) = DtK

ν
t N

1−ν
t . (A26)

Finally, there are two transversality conditions per dynasty:

lim
t→∞

(βi)tu′(Ci
t)K

i
t+1 = 0, lim

t→∞
(βi)tu′(Ci

t)N
i
t+1 = 0, (A27)

where, u(Ci
t) = log(Ci

t) is the period utility of consumption.

Dynamics Since πt can be time-varying, we define a mortality-adjusted population

measure as Ñ i
t ≡ 1−α−βi(πss(1−ω)+ω)

1−α−βi(πt(1−ω)+ω)
N i

t , where πss is the long-run survival probability,

i.e. πss = limt→∞ πt. Making this adjustment allows us to derive an Euler equa-

tion for the evolution of the adjusted population that depends only on interest rates

which, as we show below, allows for a simple solution to the problem via aggregation.

Specifically, from equations (A22) and (A23), we can obtain two Euler equations that

describe the evolution of dynasty consumption and adjusted population:

Ci
t+1

Ci
t

= βiR̄t+1, t ≥ 0, (A28)

Ñ i
t+1

Ñ i
t

= βiR̂t+1, t ≥ 1. (A29)
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where Rt+1 ≡ (1 − δ + rt+1), R̄t+1 ≡ Rt+1(πt+1(1 − ω) + ω) and R̂t+1 ≡ Rt+1(πt(1 −
ω) + ω) qt−1Rt−qtπt−wt

qtRt+1−qt+1πt+1−wt+1
. Note that when ω = 1 we are back to the baseline model

and Ñ i
t = N i

t .

Since the interest rates are common across dynasties, we can obtain expressions

relating the relative evolution of total consumption and adjusted population for any

two dynasties, {i, j} which is true for all t ≥ 0 for the first expression and for t ≥ 1

for the second expression:

Ci
t+1

Ci
t

=
βi

βj

Cj
t+1

Cj
t

, and,
Ñ i

t+1

Ñ i
t

=
βi

βj

Ñ j
t+1

Ñ j
t

. (A30)

Using repeated substitution, together with market clearing conditions, we can ob-

tain the shares of consumption and adjusted population of each dynasty relative

to economy-wide aggregate consumption and adjusted population, respectively, as

a function of the initial distribution of dynasty-specific consumption and adjusted

population:
Ci

t

Ct

=
(βi)tCi

0∑I
j=1(β

j)tCj
0

, and,
Ñ i

t+1

Ñt+1

=
(βi)tÑ i

1∑I
j=1(β

j)tÑ j
1

, (A31)

for t ≥ 0 where Ñt ≡
∑I

i=1 Ñ
i
t . Note that given the initial distributions, the evolution

of a particular dynasty’s adjusted population and consumption shares depends only

on that dynasty’s patience relative to the patience of other dynasties. In particular,

recalling that dynasty I is that with the highest patience, the above expressions

imply that as t → ∞, so
ÑI

t+1

Ñt+1
→ 1 and

CI
t+1

Ct+1
→ 1 whilst, for all i < I,

Ñ i
t+1

Ñt+1
→ 0 and

Ci
t+1

Ct+1
→ 0. Given the above, it is easy to show that the same relationship also holds

for the un-adjusted population. From the definition of Ñ i
t and Ñt we can show that:

N i
t

Nt

=

1−α−βi(πt(1−ω)+ω)
1−α−βi(πss(1−ω)+ω)

Ñ i
t

Ñt∑I
i=1

1−α−βi(πt(1−ω)+ω)
1−α−βi(πss(1−ω)+ω)

Ñ i
t

Ñt

. (A32)

Together with the previous results this implies that as t → ∞, so
NI

t+1

Nt+1
→ 1 whilst,

for all i < I,
N i

t+1

Nt+1
→ 0. This means that the consumption and population of the most

patient type will dominate the economy over time. As t → ∞ the model collapses

to standard homogenous-agent model with discount factor βI and a standard Barro-

Becker steady state (with the appropriate de-trending, discussed below).
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Detrending Since our model exhibits equilibrium growth both in output per worker

and in population, in order to solve it we need to first de-trend all variables (that is,

to write them in units per effective worker). We define de-trended variables as follows:

k̃i
t ≡ Ki

t

D
1

1−ν
t Nt

, k̃t ≡
∑I

i=1 K
i
t

D
1

1−ν
t Nt

, c̃it ≡ Ci
t

D
1

1−ν
t Nt

, c̃t ≡
∑I

i=1 C
i
t

D
1

1−ν
t Nt

, w̃t ≡ wt

D
1

1−ν
t

. We also let ηit ≡ N i
t

Nt

and denote gross growth rates of aggregate population and as TFP gNt+1 ≡ Nt+1

Nt
and

gDt+1 ≡ Dt+1

Dt
. We then proceed to re-write the first order conditions of the model

in terms of the above variables. The de-trended first order conditions and budget

constraint of the dynastic planner are:

α
c̃it+1

c̃it
gNt+1at = αβi(πt+1(1−ω)+ω) (w̃t+1 + πt+1at+1)+(1−α−βi(πt+1(1−ω)+ω))

c̃it+1

ηit+1

.

(A33)
c̃it+1

c̃it
gNt+1g

1
1−ν

Dt+1 = βi(πt+1(1− ω) + ω) (1− δ + rt+1) . (A34)

c̃it = (w̃t + πtat) η
i
t + (1− δ + rt) k̃

i
t − gNt+1

(
atη

i
t+1 + k̃i

t+1g
1

1−ν

Dt+1

)
. (A35)

The de-trended first order conditions of the firm are:

rt = νk̃ν−1
t and w̃t = (1− ν)k̃1−ν

t . (A36)

Finally, the market clearing conditions in terms of de-trended variables are:

I∑
i=1

c̃it = c̃t ,
I∑

i=1

ηit = 1 ,
I∑

i=1

k̃i
t = k̃t,

c̃t + at(gNt+1 − πt) + (k̃t+1gNt+1g
1

1−ν

Dt+1 − (1− δ)k̃t) = k̃ν
t . (A37)

Steady state If we assume that the child-cost parameter, the survival probability

and TFP growth rates converge to constants (i.e. at → ass, πt → πss and gDt → gDss)

we can solve for the steady-state levels of the de-trended model. Denoting steady

state values as k̃ss, etc. we have:

gINss = gNss and giNss = 0 ∀i < I (A38)

k̃I
ss = k̃ss and k̃i

ss = 0 ∀i < I (A39)
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c̃Iss = c̃ss and c̃iss = 0 ∀i < I. (A40)

Using the above along with the de-trended dynasty first order conditions and budget

constraints (A33)-(A35), and the firm’s de-trended first order conditions (A36) we

obtain a set of 6 equations that characterize the steady state and can be solved for

six unknowns, gNss, k̃ss, w̃ss, rss, ỹss and c̃ss:

αgNssass = αβI(πss(1−ω)+ω) (w̃ss + πssass)+(1−α−βI(πss(1−ω)+ω))c̃ss. (A41)

gNssg
1

1−ν

Dss = βI(πss(1− ω) + ω) (1− δ + rss) . (A42)

c̃ss + ass(gNss − πss) + (k̃ssgNssg
1

1−ν

Dss − (1− δ)k̃ss) = k̃ν
ss (A43)

ỹss = k̃ν
ss (A44)

w̃ss = (1− ν)k̃1−ν
ss (A45)

rss = νk̃ν−1
ss . (A46)

Note that the above steady state is identical to the steady state which would arise in

an economy populated by only one dynasty with discount factor βI .

Initial population and consumption A useful relationship for solving the model

is that between the relative dynastic consumption in period zero and relative dynastic

population size in period 1. We can take the equations in (A31) and (A32) and use

them to replace c̃it, c̃
i
t+1 and ηit+1 in equation (A33). Then, taking the limit of the

resulting expression as t → ∞ and using the steady-state first order conditions (A41)-

(A46) we obtain the following relationship for each i:

Ci
0

CI
0

=
1− α− βI(π1(1− ω) + ω)

1− α− βi(π1(1− ω) + ω)

N i
1

N I
1

. (A47)

Aggregation It is convenient to solve the model in two stages: first, by deriving

aggregate variables and, second, by calculating dynasty-specific variables. We start by

re-writing the first order condition (A33) and (A34) for dynasty I in terms of aggregate

population growth rates, gNt, and de-trended capital, k̃t, only. To do this, we use

equations (A31) and (A47) as well as the definitions of the de-trended variables above

to relate dynasty- and aggregate-level de-trended variables via weighted averages of
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time zero dynasty-level de-trended consumption:

c̃it =
(βi)tc̃i0∑I
j=1(β

j)tc̃j0
c̃t, and, ηit+1 =

(βi)t(1− α− βi(πt+1(1− ω) + ω))c̃i0∑I
j=1(β

j)t(1− α− βj(πt+1(1− ω) + ω))c̃j0
.

(A48)

Substituting (A36), (A37) and (A48) into (A33) and (A34), all evaluated with i = I,

gives us two first order condition in terms of aggregate population growth rates,

{gNt}∞t=1, de-trended capital {k̃t}∞t=0 and the initial de-trended consumption distribu-

tions, {c̃i0}Ii=1, only. Assuming that the model converges to its steady state after T

periods, we use a reverse-shooting algorithm to solve for {gNt}Tt=1 and {k̃t}∞t=1 as a

function of {c̃i0}Ii=1. Given this, we can then use (A48), the firm first order condi-

tion (A36) and market clearing condition (A37) to solve for {c̃it, ηit+1, c̃t, w̃t, rt}Tt=0 as

functions of {c̃i0}Ii=1.

Given the above and the assumption that the model converges to steady-state after

T periods,29 we can use the dynasty specific budget constraints to derive sequences

of each dynasty’s capital stock, {k̃i
t}Tt=1, as functions of {c̃i0}Ii=1:

k̃i
t =

c̃it + gNt+1

(
atη

i
t+1 + k̃i

t+1g
1

1−ν

Dt+1

)
− (w̃t + πtat) η

i
t

(1− δ + rt)
(A49)

Finally, given a distribution of period zero capital across dynasties, evaluating (A35)

at t = 0, enables us to infer the dynasty distribution of initial consumption:

c̃i0 = (1− δ + r0) k̃
i
0 − gN1

(
a0η

i
1 + k̃i

1g
1

1−ν

D1

)
+ (w̃0 + π0a0) η

i
0. (A50)

We can thus solve the problem for any initial distribution of capital and population.

D Calibration detail

The following section provides further details on the calibration of the model. It is

written-up in terms of the general model in which ω can take any value. We also

present the detail on the data sources used in the calibration.

29So that k̃IT+1 = k̃ss and k̃iT+1 = 0 for all i ̸= I.
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Productivity Productivity in the model, Dt, is chosen to match the average com-

pound generational growth rates of world GDP per capita during three time periods

that exhibited markedly different growth patterns – 1275 to 1775, 1775 to 1875, and

1875 to 2000. Specifically, we calculate the average generational GDP per capita

growth rates during each of those periods (1.06%, 9.75% and 44.85% respectively) us-

ing data from The Maddison Project (2013). We then estimate a generalised logistic

function using three corresponding productivity growth rates in the model (-1.57%,

8.71% and 32.59% in the ω = 1 model and -1.29%, 6.92% and 27.97% in the ω = 0

model) such that when the model is fed in this implied productivity growth path it

generates the observed GDP per capita growth over the three time periods.30 Finally,

the model also requires choosing a long-run productivity growth rate, gDss. As Crafts

and Mills (2017) argue, predicting future TFP growth rates from past data can be

difficult. Nonetheless, both they and an extensive literature have shown consistently

declining productivity growth rates that may stay low into the future. They estimate

that productivity growth between 2005 and 2016 was approximately 0.5% per year.

As such we set our gDss = 1.00525 and assume that the productivity growth rate in

the model drops to this level after 2100.

Survival probabilities We calculate survival probabilities in the model by using

data on life expectancy for England and the UK for the period 1543-2020 from Roser

et al. (2013) who in turn compile data from Riley (2005), Zijdeman and Ribeira da

Silva (2015) and the UN (UN, 2019). We use English data as this offers the longest

time span available. Wrigley et al. (1997) Table 6.21 finds life expectancy from birth

in England fluctuates between 37 and 40 with no clear trend up to 1800. We linearly

interpolate this data and smooth it using the Hodrick Prescott filter with smoothing

parameter of 100. Then, assuming that one generation is 25 years, we calculate the

generational expected probability of death in the model as Πt = 1−25/lt - where lt is

life expectancy for generations from 1550 to 2000 at 25 year intervals. Finally, we fit

a generalized logistic function to this data in order to generate a smooth transition in

30The productivity logistic function is given by: g(t) ≡ A+ K−A

1+e−B( t−1275
25

−M)
, where in the model

with ω = 0, A ≡ 0.98 is the minimum asymptote, K ≡ 1.33 is the maximum asymptote whilst
B = 0.91 and M = 22.63 are the fitted values. In the model with ω = 1 the corresponding values
are A ≡ 0.99, K ≡ 1.28, B = 1.01 and M = 22.76.
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Figure A2: Generational Survival Probability, England.
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life expectancies.31 We assume a long run survival probability of πss = 0.667 which

implies a life expectancy of 75 years. Also notice that πss > πt – a fact that we use in

our calibration of the patience grid below. We extrapolate this logistic function back

to 1300 giving us survival probabilities from 1300 to 2000. The survival probability

implied by the data is presented in Figure A2, along with the smoothed series we use

to calibrate the model (Figure 2 panel C)).

Child cost In both the model with ω = 0 and with ω = 1, we generate a demo-

graphic transition by choosing child costs, at, in such a way as to exactly replicate the

evolution of population growth. Specifically, generational population growth rates are

chosen to match world population growth rates during three periods that exhibited

markedly different growth patterns – 1275-1775, 1775-1875, and 1875 to 2000. We

calculate the average generational population growth rate during each of those peri-

ods (3.06%, 11.87% and 35.64% respectively) using data from The Maddison Project

(2013). We then smooth the transition between these growth rates using a general-

ized logistic function. Finally, we choose period-by-period at in order to replicate the

observed (smoothed) growth rates of population. The model also requires choosing

a long-run population growth rate which enables us to pin down long-run child cost,

ass, in the next paragraph below. Herrington (2021) updates the Club of Rome’s

31This logistic function is given by: g(t) ≡ A+ K−A

1+e−B( t−1550
25

−M)
, where A ≡ 0.32 is the minimum

asymptote chosen to match the average probabilities in the first 250 years, K ≡ 2/3 is the maximum
asymptote chosen to match a long-run life expectancy of 75 years whilst B = 0.89 and M = 14.01
are the fitted values.
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1972 ‘Limits To Growth’ report and estimates that global population between 2020

and 2100 may fall by 1% per year. As such we set the long run growth rate to be

gNss = 0.9925 and assume that population growth rates in the model drop to this

level after 2100.

Patience grid We assign a discount factor to each dynasty i ∈ I. Recall that

we order dynasties such that the sequence {βi}Ii=1 is strictly increasing in i. In

order to ensure the strict concavity of the objective function we need to assume that

1−α−βi(πt+1(1−ω)+ω) > 0. Given this restriction as well as the assumptions that

limt→∞ πt → πss and that πss ≥ πt, each discount factor can bounded by 0 < βi < β̄,

where β̄ ≡ 1−α
πss(1−ω)+ω

. We sub-divide the interval (0, β̄) into I equally-sized sub-

intervals and locate each type’s patience level at the central point of every sub-interval,

so that, for each i, βi = β̄ (2i−1)
2I

. We set the number of types to be I = 10, 000 in

order to obtain a good approximation of continuous distribution. To pin down the

sequence of βis, we need to find values for α and β̄, βI , k̃ss and ass. We can solve

for these five unknowns by noting first that the share of expenditure on consumption

relative to aggregate income in the steady-state, scss ≡ limt→∞Ct/Yt, is an implicit

function of the above values and given by:

scss ≡
k̃ν
ss − (gNssg

1
1−ν

Dss k̃ss − (1− δ)k̃ss − ass(gNss − πss)

k̃ν
ss

. (A51)

We assume that capital depreciates 10% annually, so that δ = 1− (1−0.1)25 = 0.928.

Then, combining this equation with the first two equations of the steady state first

order conditions (A41) and (A42) as well as the expression βI = β̄ (2I−1)
2I

and β̄ ≡
1−α

πss(1−ω)+ω
and setting scss = 0.75 to match the average global steady-state income

share post-2000,32 allows us to solve for these unknowns: α = 0.488, β̄ = 0.512,

βI = 0.512, ass = 0.345 and k̃ss = 0.082 in the baseline model and α = 0.488,

β̄ = 0.769, βI = 0.769, ass = 0.345 and k̃ss = 0.082 in the model with ω = 0.

Capital distribution We choose total (de-trended) capital so that initial (de-

trended) capital stocks pre-1300 lie on a saddle path. To do this we proceed by

starting the model in 1275 (instead of 1300) with a guess of the initial capital stock.

Since capital stocks adjusts very quickly (one period in the model is 25 years) capital

32See Appendix A for details.
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stock in 1300 (i.e. t = 0) will be on the saddle path.33 The initial distribution of

capital across dynasties determines the population distribution of those dynasties in

subsequent periods. To obtain the initial capital distribution, we assume that the

growth of each dynasty’s population is consistent with solutions of the model in the

period prior to the initial period. Specifically, we assume that outcomes in the period

before t = 0 are on the equilibrium saddlepath just as much as they are in periods

from t = 0 on. The initial distribution of capital is thus chosen such that population

growth rates are solutions of the model from period t = 0. In practice, this means

assuming that equation (A29) also holds for t = 0. This assumption then allows us

to re-write equation (A47) as:

Ci
0

CI
0

=
βi

βI

(
1− α− βI(π0(1− ω) + ω)

1− α− βi(π0(1− ω) + ω)

)
N i

0

N I
0

. (A52)

or in de-trended terms as:

c̃i0
c̃I0

=
βi

βI

(
1− α− βI(π0(1− ω) + ω)

1− α− βi(π0(1− ω) + ω)

)
ηi0
ηI0

. (A53)

Given this consistency assumption, the initial population distribution tells us what

initial consumption distribution should be. Finally, we can use dynastic budget con-

straints (A50) to determine what this initial distribution of consumption implies about

the initial distribution of (de-trended) capital, {k̃i
0}Ii=1.

Patience distribution As in the the model with ω = 1 we do not have data on

the population distribution of patience in the year 1300 (t = 0 in the model), we

choose our period-zero distribution of types so that the model replicates evidence

on the distribution of types in the year 2000 (t = 28 in the model). Under the

assumption of consistency we made in the previous paragraph we obtain the following

expression relating the relative distribution of dynasties in time t with respect to their

distribution in time zero:

ηit
ηIt

=
(βi)t(1− α− βi(πt(1− ω) + ω))(1− α− βI(π0(1− ω) + ω))

(βI)t(1− α− βI(πt(1− ω) + ω))(1− α− βi(π0(1− ω) + ω))

ηi0
ηI0

. (A54)

33In practice this means setting k̃−1 = k̃0 - but then only considering results from 1300.
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Thus, given evidence on the distribution of patience at some later date t, we can infer

the initial distribution of the population across levels of patience. However, modern

data will capture only a censored portion of the full initial distribution of preference

types. To address this issue, we once more impose a distribution on the data. Unlike

the baseline model with ω = 1 however, we will impose a distribution of generational

discount factors on the mortality-adjusted population, Ñ i
t ≡ 1−α−βi(πss(1−ω)+ω)

1−α−βi(πt(1−ω)+ω)
N i

t .

Similarly to the baseline we prove the following theorem in the extended model which

shows that if in any one period the distribution of patience levels in the mortality-

adjusted population takes the form of a scaled beta distribution, f̃t(β; γt, δt), then for

a fine enough grid, it will follow a scaled-beta distribution in the mortality-adjusted

population in all other periods with shape parameters given by γt+1 = γt + 1 and

δt+1 = δt.

Theorem 2. If I → ∞ and dynastic discount factors within the mortality-adjusted

population are distributed according to a scaled beta distribution on (0, β̄) with shape

parameters γt̄ and δt̄ for some period t̄, then dynastic discount factors will also be

distributed according to a scaled beta distribution in the mortality-adjusted population

in period t̄+ 1 on (0, β̄) with shape parameters γt̄+1 = γt̄ + 1 and δt̄+1 = δt̄.

Proof. See Appendix E.

Notice that when ω = 1 the mortality-adjusted and the unadjusted populations are

identical. We can relate the distribution of patience within the adjusted population

to the distribution of patience in the non-adjusted population for any 0 ≤ ω ≤ 1

using the following theorem.

Theorem 3. If I → ∞ and dynastic discount factors are distributed according to

f̃(β) within the mortality-adjusted population, then dynastic discount factors will

be distributed according to the following distribution in the un-adjusted population:

ft(β) =
1−α−β(πt(1−ω)+ω)
1−α−β(πss(1−ω)+ω)

Ef̃t

(
1−α−β(πt(1−ω)+ω)
1−α−β(πss(1−ω)+ω)

) f̃t(β).
Proof. See Appendix E.

Furthermore, recalling that in our calibration we have 1− α = β̄(ω+ (1− ω)πss),

using Theorem 3 we can derive an explicit expression for the distribution of patience

71



levels in the un-adjusted population:

ft(β) ≡ f(β; γt, δ) =
(1− δ)(β̄(πss(1− ω) + ω)− β(πt(1− ω) + ω))

(β̄ − β)((πss(1− ω) + ω)(1− γt − δt) + γt(πt(1− ω) + ω))
f̃(β; γt, δt).

(A55)

As in the baseline model with ω = 1 we can then calculate analytical expressions

for the expected value and variance of both generational and annualized β. When

t → ∞, the mean generational beta converges to β̄ and the variance goes to zero.

We set var28(β
1
25 ) = 0.00532 to match experimental evidence from representative

individuals in Denmark (Andersen et al., 2008) and the individual-level data in the

Global Preference Survey (GPS) described in Falk et al. (2018) and explained in

greater detail in Appendix A.5. We can also derive an approximate expression (see

Appendix E.3) for the annualized gross interest rate:

R
1
25
t ≈

γt − 1 + δt
β̄γt

gNtg
1

1−ν

Dt

ω + (1− ω)πt

 1
25

. (A56)

Given this, we set R
1
25
32 − 1 = 0.064 to match the average (annualized) generational

rates of return from global equity holdings calculated in Appendix A.5. Notice that

this pins down a level of the interest rate so is akin to a normalization. It in no way

influences the observed decline of the interest rate. We can use this expression and

the expression for model-implied variance to determine the parameters of mortality-

adjusted distribution of patience: γ28 = 32.6 and δ28 = 58.8 in the model with ω = 1

and γ28 = 33.6 and δ28 = 60.4 in the model with ω = 0. Given these parameters, we

can use the CDF of the distribution of the discount factors in the adjusted-population,

F̃ , to approximate, for some I, the proportion of the population assigned to each

dynasty i relative to the most patient dynasty I, in the year 2000 (i.e. period t = 28)

by:

ηi28
ηI28

=
N i

28

N I
28

=

1−α−βi(π28(1−ω)+ω)
1−α−βi(πss(1−ω)+ω)

1−α−βI(π28(1−ω)+ω)
1−α−βI(πss(1−ω)+ω)

F̃
(
βi + β̄

2I
; 28
)
− F̃

(
βi − β̄

2I
; 28
)

F̃
(
βI + β̄

2I
; 28
)
− F̃

(
βI − β̄

2I
; 28
) . (A57)

With the above proportions in hand, we can then calculate the t = 0 distribution of

population using equation (A54) with t = 28, and proceed to solve the model.
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D.1 Additional figures

We include additional Figure A3 associated with the ω = 1 model, the equivalent to

Figure 3 in the main text. As is clear, nothing qualitatively changes in terms of the

path of societal patience, the changing population distributions, nor the population

and capital shares of each group of dynasties.

Figure A3: The rise of societal patience (ω = 1)
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βa∈ (0, 0.06) βb∈ (0.06, 0.13) βc∈ (0.13, 0.19)

βd∈ (0.19, 0.26) βe∈ (0.26, 0.32) βf∪ βg∪ βh∈ (0.32, 0.51)

Note: These results are in the model with ω = 1. Panel A) depicts the societal average level
of generational patience over time. Panel B) shows the distribution of levels of patience (the
generational β) at the labelled years over the period 1300-6100. The dashed vertical line is at
β̄. Each panel C)–D) reports the sum of the model output across all dynasties in the group of
dynasties defined in the legend. The results with ω = 0 are given in Figure 3.
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D.2 Robustness of calibration

We examine what share of the decline in interest rates is explained by selection

when we allow the variance of patience to deviate by no more than 10 percentage

points from the variance in the GPS data.34 Our robustness exercise consists of

independently varying one of either δ0 or γ0 in the scaled-beta distribution, f̃t(β),

whilst re-calibrating the other parameter so that the model matches the interest

rate predicted by the ω = 0 model in 1325 (though quantitatively and qualitatively

similar results hold in the corresponding exercises with ω = 1 version of the model).

All other parameters in the calibration are independent of these two parameters

and thus remain unchanged. For a given change in each parameter we plot two

graphs: 1) the proportion of the decline in the interest rate between 1325 and 2000

that can be explained by selection; and 2) the proportion of the variance in patience

observed in the year 2000 (in the GPS data) that can be explained given our parameter

choice. Figure A4 shows the results of the above exercise. Panels A) and B) show the

proportion of year 2000 variance in patience explained by the model when changing

γ0 and δ0 respectively while panels C) and D) show the proportion of the decline

explained by selection when changing γ0 and δ0 respectively. Panels A) and B) point

to a hump-shaped relationship between these parameters and the success of the model

distribution in capturing the variance in the data. Figures C) and D), however, show

that the higher the δ0 and the higher the γ0 the smaller the role of selection. Recall

that in the calibration of the model with ω = 0 we take γ28 = 33.6 (so that γ0 = 5.6)

and δ28 = 60.4 (so that δ0 = 60.4). Figure A4 points to the substantial robustness

in the model to alternative calibration. The model distribution captures more than

90% of the variance in the data so long as γ0 is approximately within (2, 16) and δ0 is

approximately within (30, 158). Despite such variation, the contribution of selection

to explaining the decline in the interest rate remains strong. The predicted role of

selection within both sets of bounds varies from approximately 56%-112%. Thus, for

a large range of parameters determining the key object of the model – the distribution

of patience across individuals in the year 2000 – the model points to an important

role for selection.

34This is a larger than likely range for the variance; the bootstrapped 95% confidence interval for
the variance is [98.6, 101.0%]; the 90% confidence interval is [98.3, 101.4%].
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Figure A4: Varying γ0 and δ0
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Note: Panels A) and B) give the variance in the distribution of patience in the model at the
year 2000, as a share of the corresponding variance in the data. Panels C) and D) report
the proportion of the decline in the interest rate over 1325–2000 that can be explained by the
selection mechanism (difference between heterogenous- and homogenous-agent model). Panels
A) and C) vary γ0 holding δ0 constant; panels B) and D) vary δ0 holding γ0 constant. The
model is that in section 3.2 with imperfect altruism (ω = 0). The dashed lines give us the
range of the selection-explained decline in the interest rate that results from a deviation from
the variance in the data of 10 percentage points.

E Asymptotic results

E.1 General model

The following Lemma is used in the proof of Theorem 2.

Lemma 1. Let f̃t(β) be the continuous probability density function depicting the
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distribution of dynastic discount factors in the mortality-adjusted population at time

t as the number of agents I → ∞. The probability density function of dynastic

discount factors in the mortality-adjusted population at time t+1 will then satisfy the

following relationship:

f̃t+1(β) =
βf̃t(β)

Et(β)
. (A58)

Proof. Suppose that there are I dynasties with discount factors, βi, distributed evenly

along a grid so that β(i; I) = β̄ 2i−1
2I

for i = 1, . . . , I. Notice that the distance between

any two points is simply: ∆(I) ≡ β(i; I) − β(i − 1; I) = β̄
I
. We define the following

function: ν̃t(β(i; I)) ≡ ν̃I
t (β

i) ≡ Ñ i
t

Ñt , where Ñ i
t ≡ 1−α−βi(πss(1−ω)+ω)

1−α−βi(πt(1−ω)+ω)
N i

t and Ñt ≡∑I
i=1 Ñ

i
t , which maps the discount factor of a particular dynasty to the mortality-

adjusted population share of that dynasty i at time t. Notice, that we can think

of this function as a probability mass function of a discrete random variable with

realization, β(i; I), on the domain {β̄ 2i−1
2I

|i = 1, . . . , I}. We wish to characterize the

evolution of the asymptotic function, ν̃t(β(i;I))
∆(I)

, over time as I → ∞ – that is as the

number of dynasties or types becomes infinite.35 For each agent i, we can re-write

equation (A29) as:

Ñ i
t+1 = βiR̃t+1Ñ

i
t . (A59)

Summing these expressions over all agents gives, Ñt+1 = R̃t+1

∑I
j=1 β

jÑ j
t , which can

also be written as:

Ñt+1 = R̃t+1Ñt

I∑
j=1

βj ν̃I
t (β

j). (A60)

Dividing equation (A59) by equation (A60) we obtain:

ν̃I
t+1(β

i) =
βiν̃I

t (β
i)∑I

j=1 β
j ν̃I

t (β
j)
. (A61)

This recursive formulation defines the evolution of the probability mass function over

time. We are interested in the properties of this function as I → ∞. To aid us in this

investigation, notice that the cumulative distribution function of βi in the adjusted

35The idea here is that although our model will be solved numerically, and thus, we will always
need to construct a grid and hence choose a finite number of types, we wish to emphasize that the
choice of the size of the grid will be less and less relevant as long as it is relatively large. Furthermore,
later we will wish to calibrate the model at a particular point in time, and hence it will be useful to
show that a form of stability for the distribution function of types exists over time. This is easier to
do in a continuous setting than a discrete case.
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population at time t for a grid of size I is:

F̃ I
t (β

i) ≡
i∑

j=1

ν̃I
t (β

i). (A62)

This also means that ν̃I
t (β

i) = F̃ I
t (β

i) − F̃ I
t (β

i−1) = P̃ I
t (β

i−1 < β ≤ βi), where the

right-hand side represents the probability that the random variable β in takes on a

value on the semi-closed interval (βi−1, βi]. Given the above, notice that (A61) can

be re-written as:

ν̃I
t+1(β

i)

∆i(I)
=

βi ν̃
I
t (β

i)

∆i(I)∑I
j=1 β

jP̃ I
t (β

i−1 < β ≤ βi)
. (A63)

Taking the limit of both sides of the above as I → ∞ we obtain the following expres-

sion:

f̃t+1(β) =
βf̃t(β)

Ef̃ ,t(β)
, (A64)

where f̃t is the continuous probability density function corresponding to the discrete

mass function ν̃I
t
36 and Ef̃ ,t(β) ≡

∫ 1

0
uf̃t(u)du = limI→∞

∑I
j=1 β

jP̃ I
t (β

j < β ≤ βj+1),

is simply the mean of the corresponding continuous random variable.

E.1.1 Theorem 2.

The functional equation (A58) in the above Lemma describes the evolution of the

distribution of the limit function of discount factors in the mortality-adjusted popu-

lation over time. It is easy to show that a time invariant solution f̃(β) of the above

does not exist. Instead, we are interested in a solution that takes the following form

f̃t(β) ≡ f̃(β;θt), where θt is a vector of potentially time varying parameters of the

distribution f̃ . In other words, we are looking for a solution to the above that remains

of a fixed type, with only its parameters changing. The following Theorem proposes

one such candidate solution for the extended model.

Theorem 2. If I → ∞ and dynastic discount factors within the mortality-

adjusted population are distributed according to a scaled beta distribution on (0, β̄)

with shape parameters γt̄ and δt̄ for some period t̄, then dynastic discount factors will

36To see this, notice that limI→∞
ν̃t(β(i+1;I))

∆(I) = limI→∞
F̃t(β(i+1;I))−F̃t(β(i;I))

β(i+1;I)−β(i;I) =

limI→∞
F̃t(β(i;I)+∆(I))−F̃t(β(i;I))

∆(I) = F ′
t (β(i+ 1; I))
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also be distributed according to a scaled beta distribution in the mortality-adjusted

population in period t̄+1 on (0, β̄) with shape parameters γt̄+1 = γt̄+1 and δt̄+1 = δt̄.

Proof. Consider the scaled beta distribution defined on (0, β̄) with probability density

function f̃ is given by:

f̃t(β;θt) ≡ f̃(β; γt, δt) =
(β̄ − β)δt−1βγt−1

β̄δt+γt−1B(γt, δt)
, (A65)

where B(γt, δt) is the beta function. The mean of this distribution is given by:

Ef̃ ,t(β; γt, δt) = β̄
γt

γt + δt
. (A66)

Using the result of Lemma 1 and equations (A65)-(A66), we can write the PDF of

discount factors at time t+ 1 as:

f̃t+1(β; γt, δt) =
βf̃t(β)

Ef̃ ,t(β)

=
β(β̄ − β)δt−1βγt−1

β̄ γt
γt+δt

β̄δt+γt−1B(γt, δt)
(A67)

= f̃(β; γt+1, δt+1)

where, γt+1 = 1 + γt and δt+1 = δt. The third equality follows from a beta function

identity that B(1+x, y) = x
x+y

B(x, y). Thus, one solution to the functional equation

(A58) is the beta distribution with parameters given by γt+1 = 1+γt and δt+1 = δt.

E.1.2 Theorem 3

The following theorem establishes a relationship between the distribution of discount

factors in the mortality-adjusted and the unadjusted populations.

Theorem 3. If I → ∞ and dynastic discount factors are distributed according

to f̃(β), within the mortality-adjusted population, then dynastic discount factors will

be distributed according to the following distribution in the un-adjusted population:

ft(β) =
1−α−β(πt(1−ω)+ω)
1−α−β(πss(1−ω)+ω)

Ef̃t

(
1−α−β(πt(1−ω)+ω)
1−α−β(πss(1−ω)+ω)

) f̃t(β).
Proof. Suppose that there are I dynasties with discount factors, βi, distributed evenly

along a grid so that β(i; I) = β̄ 2i−1
2I

for i = 1, · · · , I. Notice that the distance between
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any two points is simply: ∆(I) ≡ β(i + 1; I) − β(i; I) = β̄
I
. We define the following

two functions. First, ν̃t(β(i; I)) ≡ ν̃I
t (β

i) ≡ Ñ i
t

Ñt where Ñ i
t ≡ 1−α−βi(πss(1−ω)+ω)

1−α−βi(πt(1−ω)+ω)
N i

t

and Ñt ≡ ∑I
i=1 Ñ

i
t which maps the discount factor of a particular dynasty to the

adjusted population of that dynasty i at time t. Second, νt(β(i; I)) ≡ νI
t (β

i) ≡ N i
t

Nt ,

which maps the discount factor of a particular dynasty to the fraction of the total

population of that dynasty i at time t. Notice, that we can think of these functions

as probability mass functions of discrete random variables with realizations, β(i; I),

on the domain {2i−1
2I

|i = 1, · · · , I}. We wish to characterize the evolution of the

asymptotic functions, ν̃t(β(i;I))
∆(I)

and νt(β(i;I))
∆(I)

, over time as I → ∞ - that is as the

number of dynasties or types becomes infinite. We first derive a relationship between

these two distributions. Since ν̃I
t (β

i) ≡ Ñ i
t

Ñt
=

1−α−βi(πss(1−ω)+ω)

1−α−βi(πt(1−ω)+ω)
N i

t∑I
j=1

1−α−βj(πss(1−ω)+ω)

1−α−βj(πt(1−ω)+ω)
Nj

t

, we can re-write

this expression to obtain the total population in dynasty i as:

N i
t =

(
I∑

j=1

1− α− βj(πss(1− ω) + ω)

1− α− βj(πt(1− ω) + ω)
N j

t

)
1− α− βi(πt(1− ω) + ω)

1− α− βi(πss(1− ω) + ω)
ν̃I
t (β

i).

(A68)

Summing the above over all i and simplifying we obtain the following expression for

total population at time t:

Nt =

(
I∑

j=1

1− α− βj(πss(1− ω) + ω)

1− α− βj(πt(1− ω) + ω)
N j

t

)(
I∑

i=1

1− α− βi(πt(1− ω) + ω)

1− α− βi(πss(1− ω) + ω)
ν̃I
t (β

i)

)
.

(A69)

Taking the ratio of these two expressions we obtain an expression for the proportion

of workers in each dynasty:

νI
t (β

i) ≡ N i
t

Nt

=

1−α−βi(πt(1−ω)+ω)
1−α−βi(πss(1−ω)+ω)

ν̃I
t (β

i)∑I
i=1

1−α−βi(πt(1−ω)+ω)
1−α−βi(πss(1−ω)+ω)

ν̃I
t (β

i)
. (A70)

Dividing both sides by ∆i(I) and taking the limit of the above as I → ∞ the above

becomes:

ft(β) =

1−α−β(πt(1−ω)+ω)
1−α−β(πss(1−ω)+ω)

Ef̃t

(
1−α−β(πt(1−ω)+ω)
1−α−β(πss(1−ω)+ω)

) f̃t(β), (A71)

where ft and f̃t are the continuous probability density functions corresponding to the

discrete mass functions νI
t and ν̃I

t respectively and Ef̃t
(β) is the mean of the latter
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corresponding continuous variable.

E.2 Model with ω = 1

The following Theorem proposes a candidate solution for the distribution of discount

factors in the model of section 3.1. Note that since this version of the model is nested

in the general model of section 3.2 (with ω = 1), the proof follows from the proofs

for the general model presented above.

Theorem 1. Within the baseline model with ω = 1, if I → ∞ and dynastic

discount factors within the population are distributed according to a scaled beta dis-

tribution on (0, β̄) with shape parameters γt̄ and δt̄ for some period t̄, then dynastic

discount factors will also be distributed according to a scaled beta distribution in period

t̄+ 1 on (0, β̄) with shape parameters γt̄+1 = γt̄ + 1 and δt̄+1 = δt̄.

Proof. The baseline model is simply a special case of the extended model with ω =

1. Theorem 3 above thus implies that the distribution of discount factors in the

mortality-adjusted and the un-adjusted populations are the same. That is, if I → ∞,

ω = 1, dynastic discount factors are distributed according to the probability density

function f̃(β) within the mortality-adjusted population and the probability density

function f(β) in the un-adjusted population then according to Theorem 3 f̃(β) =

f(β). Given this, the proof of the current theorem follows directly from Theorem

2 which is identical to this theorem but refers to the mortality-adjusted population

distribution which by the above argument is identical to the un-adjusted population

in the baseline case.

E.3 Asymptotic expression for the rate of interest

This section derives the approximate expressions for the interest rate (16) and (18)

used in the main body of the paper. We show derivations for the extended model,

but note that when ω = 1, the extended model and the its approximations collapse to

those of the baseline model. Suppose that there are I dynasties with discount factors,

βi, distributed evenly along a grid so that β(i; I) = β̄ 2i−1
2I

for i = 1, · · · , I. Notice

that the distance between any two points is simply: ∆(I) ≡ β(i+ 1; I)− β(i; I) = β̄
I
.
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From the de-trended first order condition (A34) of the extended model, we can write:

Rt+1 =
c̃it+1/c̃

i
t

βi

gNt+1g
1

1−ν

Dt+1

ω + (1− ω)πt+1

=

(
κ̃I
t+1(β

i)/∆(I)

κ̃I
t (β

i)/∆(I)

)
c̃t+1

c̃t

βi

gNt+1g
1

1−ν

Dt+1

ω + (1− ω)πt+1

(A72)

where κ̃I
t (β

i) ≡ c̃it/c̃t and Rt+1 ≡ (1 − δ + rt+1). In addition we can use equations

(A48), (A53) and (A54) to write:

c̃it
c̃t

=

βi

1−α−βi(ω+(1−ω)πss)
Ñ i

t∑I
j=1

βj

1−α−βj(ω+(1−ω)πss)
Ñ j

t

, (A73)

where, as before, Ñ i
t ≡ 1−α−βi(πss(1−ω)+ω)

1−α−βi(πt(1−ω)+ω)
N i

t is the mortality-adjusted population.

Finally, equation (A73) can be written as:

κ̃I
t (β

i)

∆(I)
=

βi

1−α−βi(ω+(1−ω)πss)

ν̃It (β
i)

∆(I)∑I
j=1

βj

1−α−βj(ω+(1−ω)πss)
ν̃I
t (β

j)
, (A74)

where, as before, we define the following function: ν̃t(β(i; I)) ≡ ν̃I
t (β

i) ≡ Ñ i
t

Ñt and Ñt ≡∑I
i=1 Ñ

i
t , which maps the discount factor of a particular dynasty to the mortality-

adjusted population share of that dynasty i at time t. Taking the limit of both sides

of the above as I → ∞ we obtain the following expression:

f̃ct(β) =

β
1−α−β(ω+(1−ω)πss)

f̃t(β)

Ef̃t
( β
1−α−β(ω+(1−ω)πss)

)
, (A75)

where f̃t and f̃ct are the continuous probability density function corresponding to the

discrete mass functions ν̃I
t and κ̃I

t . Note also that using the relationship between

f̃t+1(β) and f̃t(β) in equation (A58) as well as equation (A75) we can write the

following expression:

f̃ct+1(β)

f̃ct(β)
= β

Ef̃t

(
β

1−α−β(ω+(1−ω)πss)

)
Ef̃t

(
β2

1−α−β(ω+(1−ω)πss)

) (A76)

Finally, taking the limit of both sides of (A72) as I → ∞ and substituting the
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expression from equation (A76) we obtain:

Rt+1 =
Ef̃t

(
β

1−α−β(ω+(1−ω)πss)

)
Ef̃t

(
β2

1−α−β(ω+(1−ω)πss)

) gNt+1g
1

1−ν

Dt+1

(ω + (1− ω)πt)

c̃t+1

c̃t
(A77)

Note that over time the growth rate of aggregate consumption converges to 1. In

particular for high enough t the approximation c̃t+1

c̃t
≈ 1 holds. Consequently, for

high enough t this expression becomes:

Rt+1 ≈
Ef̃t

(
β

1−α−β(ω+(1−ω)πss)

)
Ef̃t

(
β2

1−α−β(ω+(1−ω)πss)

) gNt+1g
1

1−ν

Dt+1

(ω + (1− ω)πt+1)
. (A78)

Given our assumption that f̃t is the PDF of the scaled-beta distribution with shape

parameters γt and δt we can solve for the expectation expressions in the above. Then

for high enough t we can write the gross interest rate as:

Rt+1 ≈

 γt + δt
β̄(1 + γt)

gNt+1g
1

1−ν

Dt+1

(ω + (1− ω)πt+1)

 . (A79)

Next, notice that the mean of beta is given by:

Ef,t(β) =
β̄γt

γt + δt

(1− δt)ω + (δt + γt)
(
πt

1+γt
γt+δt

− πss

)
(1− ω)

(1− δt)ω + (δt + γt−1)
(
πt

1+γt−1

γt−1+δt
− πss

)
(1− ω)

≈ β̄γt
γt + δt

, (A80)

where the final relationship holds exactly if ω = 1 or approximately if either πt ≈ πss

or if δt or γt are large enough. Furthermore, since 1+γt
γt+δt

≈ γt
γt+δt

for high enough δt or

γt, we can approximate the gross interest in (A79) rate as:

Rt+1 ≈
gNt+1g

1
1−ν

Dt+1

Et(β)(ω + (1− ω)πt+1)
.

This expression is equation (18) in the paper and, with ω = 1, it is equation (16).
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F Mutation

The model introduced in section 3 showed how natural selection favored more patient

dynasties and drove the observed fall in the interest rate. For simplicity, we abstracted

from an important part of the evolutionary process – mutation. In biology, a mutation

is “an alteration in the genetic material of a cell of a living organism that is more or

less permanent and that can be transmitted to the cell’s (...) descendants” (Griffiths,

2020). In our model setting, such ‘mutation’ is a reduced form way to consider the

implications of imperfect transmission of preferences in general. Mutation is one of

the fundamental forces of evolution since it helps contribute to the variability of traits

within populations. As mutations occur, the process of natural selection determines

which of these will thrive and which will die out by selecting the most advantageous

mutations for the given environment. In this section we introduce mutation into

our model and examine the role it has on the process of natural selection and the

economy. Specifically, we allow for the possibility that a proportion of some dynasty

exogenously, unexpectedly and permanently experiences a mutation in its discount

factor from one period to the next.

Our experiment can also be interpreted without reference to genetics. What we

refer to as a ‘mutation’ may be thought of as forms of imperfect transmission, i.e.,

changes in the discount factor brought about by parental decisions or peer influence

through education or parental investment (i.e., different forms of imitation and social-

ization) that can also be horizontal or oblique channels of transference (Jablonka and

Lamb, 2005). They could also be interpreted as immigration, invasion or colonization,

where a small number of outsiders arrive with different discount factors that differ

from those of the existing population.37 As such, this section can also be interpreted

as examining the effects of a new variant of dynasty no-matter its source.

Setup We consider the version of the model with imperfect altruism (ω = 0). For

simplicity we assume that productivity growth and survival probability are at their

constant, steady-state values throughout. We model a mutation as an unanticipated

shock to an agent’s discount factor. Instead of attempting to match the rate at

37In this case, the comparison is not exact, as migration would additionally increase the size
of the population while in our mutations the population remains fixed. Since only a very small
number of agents are assumed to mutate, the results are quantitatively and qualitatively almost
indistinguishable from a migration story.
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which mutations occur in nature (something which would be difficult to calibrate)

we instead consider the consequences of different types of one-off mutations. We

assume mutations occur at only one point in time. Each mutation counterfactual

involves an unexpected but permanent change in discount factor for 1% of agents

belonging to the dynasty with that period’s median discount factor. These mutants

then form a new dynasty, retaining their net capital per capita from the previous

period.38 Mutations can be divided into two categories based on the impact they

have on an agent’s ‘fitness’ or reproductive success: deleterious and advantageous

mutations. We introduce different mutations in the year 2025; the median dynasty

in that period has β = 0.291 and 1% of that dynasty comprises around 0.4% of the

aggregate population.

Deleterious mutations First, agents from the median dynasty can mutate to lower

levels of patience. In the biological literature these types of mutations are known as

‘deleterious’ since the mutants have lower fitness than before: agents mutating to a

lower level of patience will have fewer children over their lifetime than agents from

that same dynasty who did not mutate. The aggregate effects of these deleterious

mutations are short-lived and quantitatively small. Figure A5 reports the effect on

interest rates of three separate mutations of the 2025 median dynasty to three different

levels of lower patience. It also shows the proportion of mutants in the population

after the shock. Notice that the mutations – even that to very low levels of patience

– have practically no effect on interest rates. Furthermore, selective pressure works

against the low-patience mutants. Agents with lower patience will choose to have

fewer children and their share will quickly diminish in the population: the lower the

mutant’s discount factor, the faster they will disappear.

Advantageous mutations Second, agents from the 2025 median dynasty can mu-

tate to higher levels of patience. These mutations are knows as ‘advantageous’ in the

biological literature as they increase the fitness of the dynasty: agents mutating to

38For tractability, we allow mutations only on our grid of discount factors. Thus, after mutation
there will be two dynasties with the same discount factor, but potentially different capital stocks.
The assumption that mutants take their capital with them is quantitatively unimportant – we could
otherwise assume that mutated agents are ‘shunned’ by their dynasties and start life with no capital
or that mutants are favoured children gifted with above average capital stocks. In both extremes
the quantitative results are almost indistinguishable as agents quickly adjust their capital holdings
according to their time preference.
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Figure A5: Deleterious mutations in 2025
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No mutation β̌ = 0.213 β̌ = 0.136 β̌ = 0.058

Note: Figures report the simulation output with an unexpected mutation in the year 2025 (dashed
line). Each line is a different mutation counterfactual. A mutation causes 1% of the dynasty
with the median level (β = 0.291) of patience in 2025 to wake up in 2025 with the level of
patience β̌ denoted in the Figure legend. Panel A) reports the aggregate interest rate; panel B)
reports the population share of the mutant as a percentage of the aggregate population.

this higher level of patience will have more children over their lifetime than agents

from the same dynasty who remain un-mutated. Advantageous mutations can have

large and very long-lasting effects. Figure A6 shows the effects on interest rates of

a mutation to successively higher discount factors as well as the share of mutants in

the population. Notice that a mutation to a discount factor that is 2/3 higher than

the median – 0.485 – pushes interest rates forward in the evolutionary process by

thousands of years. Since at the time of the mutation, so few agents belong to this

higher patience type that a 1% mutation of the median dynasty to this higher level

of patience is an enormous shock. The economy is suddenly inhabited by a relatively

large proportion of the agents who are very patient. These agents quickly amass all

the capital in the economy and begin to have large numbers of children which dom-

inate the population. This process would have happened without the mutation, but

it would have lasted hundreds if not thousands of years more. With mutation the

process lasts less than 500 years.

Mutations to particularly high (but not the maximum) levels of patience give rise

to some especially interesting dynamics. Agents mutated in this manner can come

to dominate the population for significant periods of time (see for example Figure
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Figure A6: Advantageous mutations in 2025
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Note: Figures report the simulation output with an unexpected mutation in the year 2025 (dashed
line). Each line is a different mutation counterfactual. A mutation causes 1% of the dynasty
with the median level (β = 0.291) of patience in 2025 to wake up in 2025 with the level of
patience β̌ denoted in the Figure legend. Panel A) reports the aggregate interest rate; panel B)
reports the population share of the mutant as a percentage of the aggregate population.

A6), where mutants with discount factor 0.485 practically dominate the population

for three thousand years or so before beginning to lose their dominance to dynasties

with higher betas still. The effects of these types of mutations look initially like a

shift to a new steady state where mutated agents seem to dominate the population

forever and interest rates reflect that mutant dynasty’s domination for many genera-

tions. However, since these are not the most patient agents in the population, their

domination is not permanent and a transition eventually takes place to agents with

even higher patience levels. This results in multiple oscillations of the interest rate

with results first ‘converging’ to an intermediate steady-state-like phase and then only

slowly shifting to the true steady state where the most patient agent dominates.

G Model with fixed aggregate capital

In the model of section 3 we allowed capital to be produced using retained output.

Below, we present a minimal version of the model where we fix aggregate capital to

K̄, which we might consider to be something more akin to land. We set ω = 1 for

simplicity. Each household of type i now solves the following utility maximization
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problem in each period t:

U i
t (k

i
t) = max

cit,n
i
c,t,x

i
t

α log(cit) + (1− α) log(ni
t+1) + βiU i

t+1(k
i
t+1) (A81)

s.t. cit + qtn
i
c,t + ptx

i
t ≤ wt + rtk

i
t, ni

t+1 = πt + ni
c,t, ki

t+1 =
ki
t + xi

t

ni
t+1

.

In this version of the model, there is no capital depreciation, xi
t is the quantity of

capital to accumulate or decumulate via trading with other households, and the price

of purchasing capital stock is given by pt.

Aggregation to time-zero dynastic planners is as in the section 3 model. The firm

problem and market clearing is also the same, except that now we impose,

I∑
i=1

Ki
t = Kt = K̄,

As in the model with reproducible capital, the time-varying parameters Dt, πt and

qt are not important for the extent to which selection matters for the decline of the

interest rate. We thus keep Dt and πt constant. Given this, the model does not

exhibit trend growth and so we can also normalize the cost of children, qt to one.

The solution method follows as before and, as in the general model, as the number

of dynasties becomes large and assuming specific distributional forms on patience we

can obtain the following simple approximation for the gross interest rate:

Rt+1 ≈
1

Et(β)
. (A82)

The calibration procedure is the same as before, though we have different values

for some parameters (and note that ν is now a land elasticity). Calibrated parameters

are reported in Table A7.

We report results for the model in Figure A7. The model with heterogenous agents

can account for a nine percentage point drop in interest rates, while the decline in

the homogenous agent model is less than two percentage points. The decline in

the homogenous agent model occurs due to a (counterfactually) slowing growth rate

that arises because of convergence dynamics. Specifically, as population increases,

consumption grows but it does so at a decreasing rate as the economy approaches

its steady state capital-labour ratio. By equation (1), this slowing growth rate of
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Table A7: Model parameters
Parameter(s) Value Target/Description/Source
Dt 1 Normalization
qt 1 Normalization
N0 0.370 Aggregate population, 1300, The Maddi-

son Project (2013)
K̄ 11.722 Aggregate population, 2000, The Maddi-

son Project (2013)
ν 0.190 Land share, Caselli (2005)
πt 0.667 Adult life expectancy of 75
I 10,000 Number of types

{βi}Ii=1

{
β̄(2i−1)

2I

}I

i=1
Subdivide domain into grid

α 0.427 Consumption share (see Appendix)
β̄ 0.573 Max. (generational) discount factor
{γ28, δ28} {32.089, 53.531} Standard deviation of discount factors

(Andersen et al., 2008; Falk et al., 2018)
and long run rate of return (see Appendix){

N i
0

N0

}I

i=1
See paper Andersen et al. (2008) & Falk et al. (2018){

Ki
0

K0

}I

i=1
See paper Consistency (see paper)

consumption depresses the real rate, even with a fixed β. As is clear, selection plays

the same role as in the model with endogenous capital. Compared to Figure 5, the

results on the contribution of selection in panel C) are similar. In the ‘Selection Only’

version of the model with endogenous capital (Table 2), the results capture 86% of the

decline in interest rates between 1325 and 2000. In the model with fixed aggregate

capital, the decline in the results is 7.69p.p., which is 114% of that observed in the

data.
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Figure A7: Selection and the interest rate (fixed capital)
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Note: Data is the Schmelzing (2020) global real interest rate; we report the 25-yearly median
interest rate beginning in 1325 (since the Schmelzing real ‘Global R’ series begins in 1314). We
report the model interest rates in annualized terms. The data and model outputs are normalized
to zero in the year 1325. We report outputs with fixed aggregate capital and with ω = 1. Panel
A) reports results with heterogenous agents whose distribution of patience is calibrated at the
year 2000. Results in panel B) are based on a homogeneous-agent set-up where there is only
one dynasty calibrated to match the average patience in the year 2000 in the heterogenous-
agent model. Panel C) is the contribution of selection, defined as the difference between the
heterogenous- and homogenous-agent model results.
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