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Introduction

Compared to other disciplines in ecology, the study of 
ecosystem functions harbours a unique suite of challenges. 
In addition to species-specific abundances, studies of 
function require detailed information on organismal traits 
(e.g. size, diet, mobility), as well as the role of species in 
ecosystem-scale processes (e.g. herbivory, predation). 
While this need for additional information can impede 
the pace at which research on function progresses, the 
rewards for integrating this information are clear. This 
is especially true for high-diversity coral reefs, where 
strong biotic interactions can lead to a handful of species 
disproportionally contributing to ecosystem processes. For 
example, studies of coral reef functions have revealed that 
Bolbometopon parrotfish can erode the reef at a rate equal 
to total calcification, with each individual producing over 5 
tonnes of sand per year (Bellwood et al. 2003), and that 60% 
of all fish flesh consumed on reefs may come from ‘unseen’ 
cryptobenthic fishes (Brandl et al. 2019b). Such information 
is critical in our quest to decipher how coral reefs operate 
and, increasingly, to inform coral reef conservation efforts.

We have now entered a critical period for coral reef 
conservation, where the actions we take today will dictate 
the nature of coral reefs tomorrow and for many decades to 
come. Successful coral reef conservation requires that these 
actions are grounded in robust science, in which functional 
studies can play an important role (Kuffner and Toth 2016; 
Bellwood et al. 2019a). Given that we have reached this 
critical juncture, it is prudent to take stock and reflect on 
where we have come from, and where we are going, in 
terms of function-based studies on coral reefs, with specific 
consideration of what this means for the conservation of 
coral reefs in the Anthropocene. We also consider how the 
papers included in this special issue Functional studies on 
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coral reefs: insights from a changing world have changed 
our understanding of coral reef ecosystem functioning.

The evolution of functional studies on coral reefs

There is a long history of research studying functions on 
coral reefs, and observations with functional relevance began 
centuries ago, including observations by Darwin (1842) 
who’s quantitative reasoning on links between coral growth 
and reef production are still relevant today. Nevertheless, 
although studies of coral reef functions are scattered 
throughout most of the history of coral reef ecology, 
systematic and cohesive efforts to understand functions 
have only recently begun to emerge. From the 1700s until 
the 1970s, most reef research was centred on taxonomy 
and basic ecological descriptions of which organisms 
occurred where (e.g. Randall 1955; Goreau 1959; Talbot 
1965). From the 1970s onwards, the increased prevalence 
of SCUBA diving in science underpinned a bourgeoning 
interest in the quantification of marine organisms, with 
increasingly sophisticated analytical approaches facilitating 
a growing interest in documenting abundance patterns, be 
they at biogeographic or population levels (e.g. Sheppard 
1980; Anderson et al. 1981; Williams and Sale 1981; Done 
1982; Alevizon et al. 1985). Documenting spatiotemporal 
variation was in vogue; indeed, reef scientists were 
primarily interested in understanding patterns (e.g. 
community composition), rather than examining processes 
(i.e. functions). The term ‘function’ was largely left to 
functional morphologists who, at this time, were exploring 
the potential for combining morphology and ecology in the 
rapidly expanding field of eco-morphology (Motta 1988; 
Wainwright 1988), or in the delineation of ‘functional 
groups’ of coral reef organisms (Steneck 1983, 1988). At 
this time, the term functional was most commonly used 
when examining how organisms worked, not ecosystems.

As our understanding of coral reef organisms grew, our 
approaches to quantifying where they occur on reefs, and 
why, became increasingly structured. In the 1980s, coral 
work increasingly focused on distribution and abundance 
censuses (quadrats, line intercept methods etc.) (Bak and 
Luckhurst 1980; Done 1982). Moreover, on the Austral-
ian Great Barrier Reef (GBR), the Australian Institute of 
Marine Science was implementing new cross-shelf fish 
survey approaches that captured the different environmen-
tal contexts in which reefs, and their associated communi-
ties, existed—from turbid inshore reefs to clear-water high 
energy offshore reefs (Fig. 1); each with their own character-
istic faunas and associated regimes of ecosystem processes 
such as calcification and erosion (Done 1983; Kleypas et al. 
1999). At this time, the best available fish data were based 
on either mass of fishes per family from explosive samples 

(Williams and Hatcher 1983) or early underwater visual cen-
sus (UVC) methods, e.g. using point censuses (Bohnsack 
and Bannerot 1986) or a Log3 abundance scale (e.g. Russ 
1984a, 1984b). Fish numbers (i.e. abundance) and identities 
were the focus; ecologically informative traits, like body 
size, were often not recorded. Thus, identification and count-
ing were still relatively crude and, indeed, the first full fish 
identification book for the GBR was not published until 1990 
(Randall et al. 1990).

Our understanding of what reef organisms actually did 
was even less refined and there was still no united field of 
‘coral reef functional ecology’. Nevertheless, the process-
focussed foundations for the subdisciplines within this field, 
that would ultimately become major avenues of research, 
had already been laid. This included threads of ecological 
understanding emerging from earlier feeding observations 
and dietary analyses (e.g. Hiatt and Strasburg 1960; Randall 
1967; Jones 1968; Choat 1969; Robertson et  al. 1979). 
Moreover, a basic understanding of system-wide coral 
reef productivity and trophic energy flows was established 
(Odum and Odum 1955), as well as the roles of reef fishes 
in controlling (Randall 1961) and utilizing (Bardach 1959) 
this productivity. There was an early appreciation of the 
central role of corals in reef growth (Goreau 1963; Stoddart 
1969; Chave et al. 1972; Stearn et al. 1977; Chappell 1980). 
Ecological aspects of reef growth and carbonate budgets 
(Smith and Kinsey 1976; Stearn et al. 1977), as well as the 
role of fishes in these processes (Bardach 1961), was also 
already underway.

Building on this pioneering work, the study of processes 
operating on coral reefs rapidly expanded in the late 
1980s and into the 1990s. The field of reef fish research 
shifted from documenting communities to understanding 
where they came from, through population biology and 
recruitment-oriented work. A focus on the ‘black-box’ of 
the pelagic realm (e.g. Doherty and Williams 1988; Sale 
2004) developed into work on population connectivity, 
especially pertaining to marine protected areas (Jones et al. 
2009; Harrison et al. 2020), while benthic studies showed 
an increased interest in settlement, growth, and demography 
(e.g. Hughes et al. 1999; Pratchett et al. 2015). Other major 
advances included the direct measurement of reef processes, 
like herbivory and benthic productivity (e.g. Hatcher and 
Larkum 1983; Steneck 1983; Hay 1984; Carpenter 1986; 
Russ 1987; Klumpp and McKinnon 1989). These early 
findings were so fundamental to our understanding of 
herbivory that today we are still drawing on the lessons 
learnt during this period (see Tebbett et al. 2023b in this 
special issue for an overview). Discoveries also expanded 
beyond the reef benthos, with increased attention to off-reef 
habitats such as seagrasses and mangroves and, perhaps most 
importantly, the pelagic realm. Pioneering work by Hamner 
et al. (1988) shaped our understanding of planktivory on 
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reefs, with recent studies (e.g. Leray et al. 2019 and Gahan 
et al. 2023 in this special issue) expanding our insights into 
the nutritional value of key planktonic groups for fishes. 
This period also saw a major expansion in our understanding 
of reef growth, primarily through coring, in both the Indo-
Pacific and Western Atlantic (Adey 1978; Scoffin and Dixon 

1983), as well as the role of key bioeroding organisms in 
these processes (Hutchings 1986; Scoffin 1992; Bak 1994; 
Bellwood 1995). Indeed, researchers were already focusing 
on understanding the interaction between reef growth and 
global climate change/sea level rise (Buddemeier and Smith 
1988), with this field expanding in the twenty-first century as 

Fig. 1   ‘Coral reefs’ come in a variety of forms, all of which are 
embedded within their own environmental context. a Tropical, high 
coral cover reef system (Linnett Reef, Great Barrier Reef [GBR], 
2021), b low coral cover, high turf cover reef system (Lizard Island, 
GBR, 2021 post disturbance by cyclones and bleaching events), c 
high-energy, high crustose coralline algae cover reef system (Yonge 

Reef, GBR, 2021), d turbid, nearshore reef system (Bowen, GBR, 
2019), e low diversity, subtropical reef system (Flinders Reef, South 
East Queensland, Australia, 2020), and f high macroalgal cover, low 
coral cover reef system (Turtle Group, GBR, 2021) (Photographs: SB 
Tebbett)
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the effects of climate change intensified (Perry et al. 2018; 
Kench et al. 2022; Toth et al. 2023).

Consequently, by the late 1980s, for both fishes and cor-
als, many of the methods that would lay the foundations for 
studies of coral reef functions, as we know them today, were 
already in place. However, a unified and cohesive under-
standing of reef functions was still lacking, and it was not 
until the mid-1990s that the broader concept of reef ‘eco-
system function’, was more formally expressed (see Done 
et al. 1996). Unfortunately, in many areas, this pioneering 
research on coral reef ecosystem functions was not immedi-
ately followed up. This may be, in part, due to the changes 
that began rapidly unfolding on the world’s coral reefs. The 
halcyon days of interest-based science on coral reefs ended 
in 1998 with the first global coral bleaching event (Fig. 2). 
The 1998 event triggered a great deal of concern, monitor-
ing, and funding (Goreau et al. 2000; Obura et al. 2019), but 
not necessarily new ideas of what to measure or how. Indeed, 
such was the parlous state of reef function studies that it was 
not until 2019 that the term ‘function’ was defined (Bell-
wood et al. 2019b) and clarified (Brandl et al. 2019a), and 
only in 2022 was the related concept of ‘functional traits’ 
similarly clarified (Streit and Bellwood 2023). In the mean-
time, we continued to quantify coral reef declines at increas-
ingly large spatial scales, especially in terms of ‘coral cover’ 
(e.g. Gardner et al. 2003; De’ath et al. 2012; Hughes et al. 
2017b; Tebbett et al. 2023c) (Fig. 2). To this day, monitor-
ing is largely based on fish counts (often of a select group of 
fishes in a select set of reef habitats; Bellwood et al. 2020) 
and coral cover data (in groups separated by growth mor-
phology); all on relatively short transects (e.g. 30–50 m).

The current special issue explores the growing diversity 
of methods for quantifying reef functions, including video-
based methods (Collins et al. 2023; Magneville et al. 2023), 
or the integration of remote-sensing (Lutzenkirchen et al. 
2024); two areas in which information on reef functions has 
benefited greatly from technological advances (e.g. DiFiore 
et al. 2019; Madin et al. 2019; Schiettekatte et al. 2022b). 
Nevertheless, with ongoing global bleaching events, it has 
become increasingly clear that reefs are in serious danger 
(Hughes et al. 2017a; Sully et al. 2019) and that, despite 
many advances, we still have little idea of: (i) how reefs 
function and (ii) what the implications of coral bleaching 
are for critical reef processes. What is missing is a clear, 
quantitative, understanding of reef processes, i.e. ecosystem 
functions, and their respective importance across reef types 
and environmental conditions. Currently, we are left with 
rapidly transforming ecosystems, largely non-transformed 
scientific methods, and little idea of which ecosystem func-
tions (processes) are still operating, needed, or manageable 
(Bellwood et al. 2019a). To focus research and to address 
these shortcomings, it may pay to re-examine the three key 

questions: (i) what do we want to protect on coral reefs? (ii) 
why? and (iii) how can this be achieved?

What do we want to protect on reefs and why?

There is no simple, single answer to the questions: what 
do we want to protect on coral reefs and why? Answers are 
invariably context dependent (cf. Bellwood et al. 2019b), 
with people valuing coral reefs for a plethora of different 
services in different parts of the world (Lau et al. 2019; 
Woodhead et al. 2019). However, arguably one of the most 
ubiquitous features of coral reefs that we want to protect is 
their physical structure (Hoegh-Guldberg et al. 2019; Perry 
and Alvarez-Filip 2019), which is tied to nearly every key 
service that we derive from reefs, including their capacity to 
(a) protect coastal communities from hydrodynamic activity 
(Ferrario et al. 2014), (b) enhance fisheries productivity 
(Rogers et al. 2018), and (c) support tourist/recreational 
activities (Santavy et al. 2021), including the organismal 
biodiversity for which reefs are renowned (Siqueira et al. 
2023). Indeed, the importance of focusing on this goal was 
recently expressed by Kuffner and Toth (2016) when they 
stated: “A better understanding of the processes that control 
the long-term resilience of reefs as geomorphic structures, 
not just as ecological communities, may help optimize 
management activities aimed at increasing both reef 
longevity and the delivery of critical ecosystem services”.

Importantly, to protect the physical structure of reefs, we 
know that reef growth via carbonate deposition/production 
needs to match or exceed erosion. This may not always 
require sustained vertical accretion (e.g. Toth et al. 2018, 
2022), but in the wake of climate change and sea-level rise, 
sufficient accretion will be needed to accommodate future 
sea-level changes (Kennedy et al. 2013; Kench et al. 2022). 
We thus have a near-universal key function of interest—reef 
growth (accretion). With this clear focus at hand, functional 
studies offer a rare opportunity to critically evaluate 
whether our conservation priorities match natural ecological 
processes and our increasingly prevalent response to climate 
change: reef restoration.

The vast majority of reef restoration approaches have a 
single target: to increase coral cover (Hughes et al. 2023). 
This appears to be a logical goal, the presumed rationale 
being that: (a) corals have suffered the greatest impact from 
global warming, and (b) corals provide critical ecosystem 
functions. Most importantly, the latter includes both the 
promotion of reef growth/accretion and ancillary functions, 
such as maintaining fish populations, increasing fisheries 
productivity, increasing reef complexity for the thousands of 
associated reef creatures, and, finally, looking attractive to 
humans (Pratchett et al. 2014b; Rogers et al. 2018). Despite 
its instinctive appeal, it is important to evaluate whether 
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this focus on corals is based on ecological evidence or our 
intuition. If it transpires that reef functions (e.g. reef growth 
or the creation of 3D habitat) are not directly dependent 
on the corals that are being targeted for restoration, then 
can current practices of restoring corals be justified in a 
functional context (at least from the perspective of reef 
growth)?

It is undoubtedly true that a large proportion of the 
carbonate in reef cores comes from corals (Montaggioni 
2005; Gischler 2014; Webster et al. 2018; Toth et al. 2019) 
and that corals are one of the dominant calcifiers on coral 
reefs (Perry et  al. 2018; Perry and Alvarez-Filip 2019; 
Cornwall et al. 2021). It thus appears logical that the loss of 
corals would result in diminished reef growth and eventually 

Fig. 2   Coral cover dynamics on Anthropocene coral reefs. a Tem-
poral variation in coral cover on the world’s coral reefs (blue line) 
and atmospheric carbon dioxide concentration (grey line) from the 
onset of the first global bleaching event (1998) to the end of the most 
recent global bleaching event (2015–2017). Global coral bleach-
ing events during this period are shown as red bars (Skirving et  al. 
2019). b Temporal variation in coral cover (blue line) on Australia’s 
Great Barrier Reef (GBR) and crown-of-thorns starfish (CoTS) den-
sities (orange line) on the GBR. c A corallivorous butterflyfish and 
two yellow damselfishes, interacting with a bleached Acropora coral 
at Lizard Island during the 2016 bleaching event (photograph: RP 
Streit), and d two corallivorous CoTS feeding on an Acropora coral 
(white areas are feeding scars) (photograph: A Hoggett). These two 
corallivorous organisms have fundamentally different reputations; one 
will make it onto postcards (the butterflyfish in c), while the other is 

the subject of a multi-million dollar culling program (the CoTS in d). 
Coral cover data in a were sourced from a dataset compiled in Teb-
bett et al. (2023c) (see this reference for original data sources and rel-
evant citations) and are based on 15,668 mean site level coral cover 
datapoints (collected using point-intercept or photo-quadrat transect 
methods) from reef crest and slope habitats at depths < 15  m. The 
atmospheric CO2 concentration data in a were sourced from Keel-
ing et  al. (2001, 2023) and were based on in  situ air measurements 
from the Mauna Loa Observatory, Hawaii. Coral cover data in b 
were based on photo transects and were sourced from AIMS (2015a), 
while CoTS density data were based on manta tows and sourced from 
AIMS (2015b). All lines in a and b were fitted using gam smoothers 
for visualisation purposes in ggplot2 (Wickham 2016) in the software 
R (version 4.2.2; R Core Team 2022)



	 Coral Reefs

1 3

the loss of reef structures. And, indeed, this may well be 
the case in many regions, including the East Pacific, where, 
for example, the loss of corals, reduced coral growth, and 
exceptionally high urchin-based bioerosion have been 
associated with the disappearance of reef structures (Cortés 
1997; Manzello et al. 2017; Glynn et al. 2018; Enochs et al. 
2021). However, the relationship between coral abundance, 
diversity, or growth rates and reef accretion may not be 
linear and in extreme cases, may not be present at all.

Indeed, recent research suggests that coral growth rates 
and coral diversity may be largely unrelated to reef growth, 
at least across geological timescales. For example, reefs in 
the Atlantic have just 7% of the coral species richness found 
in the Indo-Pacific (and have just two fast-growing Acropora 
species) (Roff 2021). They have also had 6000 years less 
time with high sea-levels in which to grow (Gischler 2010). 
Thus, in theory, Indo-Pacific reefs should be 500–1000 m 
wider than their Caribbean counterparts; yet the widths 
of Caribbean and Indo-Pacific reefs are almost identical 
(Lutzenkirchen et al. 2023). This suggests that horizontal 
shallow water reef area and coral diversity are not inherently 
correlated; instead, reef size appears to be constrained by 
hydrodynamics, not coral species richness nor sea-level 
stability (Lutzenkirchen et al. 2023; also see Adey 1978; 
Montaggioni 2005).

A similar pattern has been documented when looking at 
reef growth through vertical accretion. In the Caribbean, 
vertical reef accretion was not found to be affected by 
significant coral extinction events (i.e. a 50% loss of species; 
Johnson et  al. 2008). Similarly, on Indo-Pacific reefs, 
vertical accretion appears to be independent of the growth 
rates of the local dominant framework-building coral species 
(Roff 2020). Indeed, it is widely accepted in geological 
contexts that coral growth rates and diversity are not directly 
correlated with the onset or extent of reef development or 
growth (Pandolfi and Kiessling 2014; Pomar et al. 2017). 
The lack of a clear relationship between coral diversity 
and reef growth also means that, if the goal of restoration 
activities is to enhance reef growth, then selecting the key 
coral species is likely to be extraordinarily difficult on high-
diversity Indo-Pacific reefs (cf. Madin et al. 2023).

If coral diversity and coral growth rates are poorly 
correlated with reef accretion, perhaps coral abundances 
are a better indicator? Today, and for the last few thousand 
years, Caribbean reef accretion has depended largely on just 
two Acropora species; with recent losses raising concerns 
over the functional persistence of these structures (Toth et al. 
2018, 2022). However, the disconnects between coral growth 
and reef growth may also manifest over shorter timescales 
and incorporate local coral abundances. Today, global 
mean coral cover is only approximately 25% (Tebbett et al. 
2023c), yet even then some Indo-Pacific corals, especially 
branching Acropora, may contribute little to the consolidated 

reef matrix and net accretion processes in critical habitats, 
such as on the high-energy reef crest. For example, Morais 
et  al. (2022) found that the vast majority of Acropora 
colonies disappeared completely within five years, with no 
detectable contribution to net in-situ accretion. Presumably, 
these corals contribute primarily to reef growth in lower 
energy habitats via production of sediment and rubble that 
contribute to infilling (with corals invariably constituting 
the dominant component of cores, and being the major 
source of carbonate, in such habitats). Indeed, detailed 
quantification of reef growth over ecological timescales has 
revealed that accretion can continue despite coral loss, with 
the contribution of crustose coralline algae to this process 
being particularly notable (Kench et al. 2022).

Unfortunately, to date, virtually all contemporary reef 
growth/reef budget studies have focused on the generally 
high coral cover reef slope (especially ecological studies) or 
the down-current reef flat habitat (especially coring studies) 
where dead coral skeletons often accumulate, with far less 
attention given to reef growth in the reef crest habitat; the 
primary place where the reef breaks the waves (see Kench 
et al. 2022 for an overview). Indeed, comparisons between 
reef habitats raise the possibility that there may be two 
functionally distinct types of reef growth: ‘reef growth’ 
version 1 sensu lato, i.e. growth of the total reef structure, 
especially in terms of backreef progradation—as detected by 
most cores and which is indeed coral dominated versus ‘reef 
growth’ version 2 sensu stricto, i.e. in terms of the formation 
of the structure that breaks waves and allows the backreef to 
exist. The latter type of growth may depend to a substantial 
extent on crustose coralline algae and encrusting corals, 
and results in the actual presence of a reef based on the 
definition provided by Hopley and Smithers (2008): “Coral 
reefs are biogenic limestone structures built by corals and 
other carbonate-producing organisms in shallow tropical 
and subtropical marine settings, where they grow upwards 
or towards sea level as landforms able to resist wave action” 
(for other definitions see Kleypas et al. 2001). Beyond the 
reef structure that breaks the waves, reef growth sensu lato 
as defined above (version 1), is largely infilling and widening 
(notably the substantial amount of carbonate produced by 
corals appears to be key in these reef-building processes). 
The study by Kench et al. (2022) appears to be one of the 
first ecological studies to comprehensively quantify growth 
on the critical wave-breaking reef crest, though this study is 
restricted to one location at small spatial and temporal scales 
(1 m2 over 2 years). Additional studies of reef growth in the 
most exposed reef habitats are clearly needed.

This evidence inevitably raises the question: are corals 
always necessary for reef growth (especially vertical growth 
at the reef crest)? The answer is: probably not. However, 
reefs built by non-coral organisms are likely to be function-
ally different, even though they can deliver the key function 
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of reef construction. In this respect, there is growing recog-
nition within coral reef geology and ecology that crustose 
coralline algae may be critical for reef growth and carbonate 
production (e.g. Rasser and Riegl 2002; Nash et al. 2013; 
Vargas-Ángel et  al. 2015; Weiss and Martindale 2017; 
Teichert et al. 2020; Cornwall et al. 2023; Raja et al. 2023), 
following recognition of this important association decades 
earlier (e.g. Goreau 1963; Womersley and Bailey 1969; 
Adey and Macintyre 1973; Littler and Littler 1984). Indeed, 
some physically complex biogenic tropical reefs function 
with virtually no corals, such as the Atol das Rocas in Bra-
zil (Gherardi and Bosence 2001). Similarly, coralline algae 
also dominate framework construction in various other sce-
narios, including in the formation of the critical algal ridge/
rim habitat, which breaks the waves in high-energy settings 
(Adey 1975; Littler and Doty 1975; Bosence 1983; Rees 
et al. 2005). These reef structures constructed by coralline 
algae may offer a glimpse into potential benthic configura-
tions in the Anthropocene, if non-coral calcifiers are not as 
sensitive as corals to climate change (note the response of 
CCA to future climate change conditions have been varied 
[see Cornwall et al. 2019, 2022 for reviews on this topic]). 
Therefore, it could be that, under some circumstances, some 
of the functions of corals on coral reefs can be sustained 
independent of coral diversity (e.g. long-term reef crest 
development) and perhaps also independent of coral compo-
sition or abundance (e.g. short-term carbonate production). 
From a functional perspective, this opens the possibility of a 
conceptual shift from ‘coral reefs’ to ‘reefs with corals’ (also 
see Womersley and Bailey 1969; Kleypas et al. 1999). As 
continued anthropogenic impacts decimate coral populations 
on reefs this conceptual shift may become more apparent.

Ultimately, this also means, that if the goal of coral 
restoration is to maintain reef growth, then our method of 
doing this (increasing the cover of ‘weedy’ corals in the 
Indo-Pacific; i.e. fast growing, highly fecund, rapidly recruit-
ing, and highly competitive Acropora) may not be the most 
appropriate strategy (cf. Madin et al. 2023); especially if 
we take this action before we stop the main driver of coral 
declines (i.e. climate change [Hughes et al. 2023]). Even 
in the Caribbean/Western Atlantic, where benthic systems 
operate in fundamentally different ways to the Indo-Pacific 
(Roff and Mumby 2012; Tebbett et al. 2023c), and where 
two Acropora species can be easily identified as the main 
contributors to the carbonate framework, care is needed. 
Even if A. palmata and A. cervicornis can be reared, trans-
planted, and kept alive through successive bleaching events 
and disease outbreaks, they may not adequately perform the 
processes required for consolidation and reef accretion in 
monocultures. Indeed, an inherently coral-centric perspec-
tive (perhaps guided by their high vulnerability) may have 

left us with only a partial understanding of the impacts of 
climate change and its implications for coral reefs.

The key problem is that a reef with corals is likely to be 
functional, but adding corals may not always guarantee reef 
health or growth. Accepting that the coral contributions to 
reef growth may be negligible is challenging, as is the fact 
that many reefs are not dominated by corals (Vroom 2011; 
Tebbett et al. 2023d). But this changing mindset may be 
essential if we are to accurately and responsibly evaluate 
our actions to preserve reefs into the future; simply adding 
corals, while an attractive and intuitive solution, may not be 
enough or the best approach. Viewing reefs as the outcome 
of collective calcification of a range of organisms, including 
algae, with scleractinian corals offering a boost under the 
right circumstances, offers a new perspective on what we 
may need to do to preserve and sustain reefs (cf. Adey 
1998). While there may be strong socioeconomic incentives 
for coral restoration (Hein et al. 2019), if we are primarily 
interested in maintaining coral reef accretion and structure, 
restoration efforts that raise and outplant colonies of corals 
that are highly susceptible to marine heatwaves, and have 
limited contributions to in-situ accretion, are likely to be an 
extraordinarily expensive and ultimately futile undertaking 
(Hughes et al. 2023).

It should be acknowledged that restoration practitioners 
may focus on restoring corals as an indirect approach 
to sustain or restore other reef functions, such as the 
productivity of fish communities. However, such indirect 
approaches invariably rely on the existence of strong links 
between fishes and coral cover, which can be context-
dependent and weaker than often assumed (e.g. Wismer 
et al. 2019a, 2019b; Muruga et al. 2024). Indeed, reef fish 
productivity appears to be more closely related to structural 
complexity, rather than coral cover (e.g. Rogers et al. 2018; 
Morais and Bellwood 2019; Hamilton et al. 2022). Given 
that the structure provided by many fast-growing corals 
is likely to be relatively short-lived (due to the sensitivity 
of such corals to disturbance [Loya et al. 2001; Hughes 
et al. 2017b] and the fact that their skeletons rapidly erode 
after death [Morais et al. 2022]), then restoring these fast-
growing corals may prove to be a relatively inefficient way 
of restoring reef functions such as fish productivity. Clearly 
there is a need to better understand the roles that corals and 
structural complexity play in supporting fish populations, 
especially in respect to separating co-occurrence from more 
causal, functional, interdependence.

How do we currently manage reef functions?

To date, a coral-centric view of coral reefs has largely 
shaped our approaches to managing functions, both directly 
and indirectly. Historically, we have aimed to secure 
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‘healthy’ high-coral cover reefs by managing the behaviour 
of local human populations (e.g. fishing activities). Certain 
functional groups of fishes were identified as critical to 
maintaining resilient reefs with high coral cover, such as 
herbivorous parrotfishes, that are thought to control the 
growth of competitive algae (Bellwood et al. 2004; Hughes 
et al. 2007; Graham et al. 2013). To maintain these fishes 
on reefs, we implemented actions that managed human 
behaviour (such as establishing no-take marine protected 
areas [MPAs]), in the belief that this would conserve these 
fishes and ultimately the ecosystem benefits they delivered 
(Hughes et al. 2007; Mumby and Steneck 2008). However, 
the links from management action to the ultimate goal of 
ecosystem resilience and functioning appear to have been 
too indirect and multifaceted to deliver easily discernible, 
consistent, ecosystem-scale benefits (reviewed in Bruno 
et al. 2019). This became especially evident in the wake of 
climate change and associated marine heatwaves, which do 
not respond to MPA boundaries delineated on paper (Jones 
et al. 2004; Hughes et al. 2017b; Bates et al. 2019; Graham 
et al. 2020).

The overarching goal of preserving coral cover on reefs 
has also spawned some of the largest scale and most well-
funded attempts to directly manage a coral reef ecosystem 
function: reducing coral consumption by the corallivorous 
crown-of-thorns starfish (CoTS) in the Indo-Pacific (Fig. 2d) 
(Great Barrier Reef Marine Park Authority 2020). By 2018 
over 1 million CoTS had been killed on the GBR (Pratchett 
et al. 2019), with the Australian Government investing ~ $70 
million US in direct funding to the culling program between 
2012 and 2022 (Pratchett and Cumming 2019), with an 
additional ~ $109 million US recently awarded (David and 
Bathgate 2022). The GBR program is, however, dwarfed 
by the most extensive culling effort undertaken to date in 
Japan, where ~ 13 million CoTS were removed from reefs 
in southern Japan in the 1970s and 1980s (Yamaguchi 
1986). The cost of this activity was over 600 million yen 
in 1970; which is equivalent to more than $2.5 billion 
US today [Pratchett and Cumming 2019]). Despite the 
popularity of these interventions, an important conundrum 
has remained unresolved for decades (e.g. Kenchington and 
Kelleher 1992): are these active management interventions 
ecologically justifiable?

The conundrum of CoTS control revolves around the 
fact that these animals are a native species, in their natural 
habitat, expressing natural behaviour, and they are part of 
the biodiversity for which coral reefs are renowned. On the 
GBR, CoTS have been present for 1000 s of years (Fabricius 
and Fabricius 1992), with regular outbreaks occurring since 
at least the early-mid 1900s (Moran et al. 1992; Pratchett 
et al. 2014a). Indeed, CoTS have probably been interacting 
with coral reefs, and delivering the function of coral 
consumption, for 10 million years (Hall et al. 2017; Yuasa 

et al. 2021). Yet, because of their capacity to eat corals, 
CoTS have been labelled a pest (Hall et al. 2017) (with the 
Merriam-Webster dictionary defining a pest as: “a plant or 
animal detrimental to humans or human concerns [such 
as agriculture or livestock production]”). This pejorative 
view of CoTS is reinforced by the belief that outbreaks are 
caused by, or exacerbated by, anthropogenic activities. In 
this respect, in 1992 the first chairman and chief executive 
officer of the Great Barrier Reef Marine Park Authority 
(GBRMPA), Graeme Kelleher, noted: “The Authority’s 
policy on controlling COTS is not to interfere on a large 
scale unless it can be shown that outbreaks are caused or 
exacerbated by human activity” (Kelleher 1992). Although it 
was clearly considered fundamental for science to establish 
if anthropogenic activities caused or exacerbated CoTS 
outbreaks before decisions were made to actively regulate 
population densities, we are still far from a conclusive 
answer (Pratchett et al. 2017, 2021). Indeed, after reviewing 
30 years of research and > 1200 research articles, Pratchett 
et  al. (2017) concluded that the question “Why [CoTS] 
outbreaks occur and whether they are natural or unnatural 
phenomena?” was largely unresolved. Nevertheless, despite 
a lack of clear scientific evidence that humans have modified 
CoTS outbreaks, the decision to systematically cull CoTS 
populations has already been made (discussed in Pratchett 
et al. 2017).

But, what does the mass killing of CoTS mean from a 
functional perspective? At face value the outcomes appear 
obvious: a decrease in coral consuming starfishes will 
yield higher coral cover (Plagányi et al. 2020; Westcott 
et al. 2020; Castro‐Sanguino et al. 2023). However, if we 
consider that CoTS are a natural component of many coral 
reefs, we can dive deeper and ask: could coral consumption 
by CoTS be an important function on reefs? In answering 
this question, the argument could be made that CoTS 
preferentially target fast growing, competitively dominant, 
‘weedy’ corals (albeit often moving onto other coral species 
once they have exhausted the supply of their preferred prey) 
(De’ath and Moran 1998; Pratchett et al. 2009; Pratchett 
2010; Kayal et al. 2012; Keesing et al. 2019). It has even 
been suggested (by Porter 1972) that such consumption of 
highly competitive, fast-growing corals may release slower-
growing species from overgrowth and shading and increase 
long-term benthic diversity (note Pratchett 2010 found 
overall coral diversity declined during a moderate outbreak 
of CoTS). In this respect, it is interesting to note that over 
evolutionary timescales, the fast-growing Acroporidae 
has been associated with the greatest rates of extinction in 
non-acroporid corals (Siqueira et al. 2022). Moreover, by 
consuming fast-growing corals, CoTS: (a) release benthic 
space for increased benthic productivity, which is critical in 
coral reef food webs (Russ and St. John 1988; Klumpp and 
McKinnon 1989; Hatcher 1990), (b) provide the preferred 
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habitat for many reef crustacea, dead coral (Kramer et al. 
2014; Fraser et al. 2021), and (c) free up space for other 
critical benthic coverings, such as crustose coralline algae 
(Adey 1998; Cornwall et al. 2023).

We are currently entering a period in which fast growing 
corals, especially Acropora, are likely to be subjected to 
unstable boom-and-bust dynamics (Wilson et  al. 2019; 
Pratchett et al. 2020; Morais et al. 2021). Indeed, while 
many fast-growing corals are highly vulnerable to heat 
stress, their comparatively high growth rates may ultimately 
(and counterintuitively) bestow an ecological advantage. 
Specifically, by heating the planet, we may artificially 
increase the competitive advantage of fast-growing corals 
(e.g. Acropora) in some contexts, with such corals being 
some of the few that can ‘recover’ during the much shorter 
‘recovery windows’ between the large disturbance events 
that coral reefs now experience (Hughes et al. 2018; Lough 
et  al. 2018; Morais et  al. 2023). Could it be that CoTS 
moderate the instability of these boom-and-bust periods via 
coral consumption akin to the important role fires play in 
some Australian native forests (as noted by Kenchington and 
Kelleher 1992)? Are we in effect, actively preventing the 
establishment of diverse, resilient reefs by culling Acropora 
consuming CoTS? Alternatively, could large fluctuations 
in CoTS densities, combined with their variable effects on 
coral assemblages, add to instability in Acropora abundance 
and overall coral cover? Answering these critical ecological 
questions is essential if we wish to understand how unstable, 
disturbed, coral reefs function, and the roles of CoTS therein.

In a nutshell, CoTS may perform a key function on 
coral reefs. Ecological evidence (or rather the lack thereof) 
warrants, at the very least, further investigation into their 
true functional role, despite the current established view 
that CoTS are detrimental to reef functioning because they 
decrease live coral cover. Could it be that across the Indo-
Pacific we have spent the equivalent of billions of dollars 
trying to prevent a natural and functionally important 
process? In this context, the prescience of Graeme Kelleher’s 
call for caution (in the same article as above) is striking: 
“there is the possibility that our massive interference in 
what might be a natural element of the Great Barrier Reef 
system could have major unforeseen ecological effects” and 
that the “conclusion is that the risks from adopting a policy 
of massive destruction of crown-of-thorns starfish are very 
significant and that the only potential benefits may turn 
out to be costs in the long run” (Kelleher 1992). Changing 
priorities of the management agency, GBRMPA, have since 
overturned these initial considerations (cf. Morrison 2017).

Currently it is unclear if CoTS do, or do not, perform a 
key function on reefs. Nevertheless, we have already labelled 
these organisms as pests, a defamatory characterization 
that is facilitated by their toxic spines, hostile appearance, 
and the religious overtones of their common name. Such 

value-laden terms can cloud scientific judgement (Johns and 
DellaSala 2017; Morton 2017) and may mean that we do not 
approach the study of CoTS with an open mind, nor entertain 
the possibility of them performing a key function on reefs. 
These subconscious biases can be critical in shaping how 
we study coral reefs and, as scientists, we must be aware 
of their potential to shape our decisions of what to study 
and why (Bellwood et al. 2020). Our perceptions of the 
parrotfish Bolbometopon muricatum, relative to CoTS may 
be indicative of such potential biases.

After CoTS, B. muricatum are arguably the single largest 
predator of corals on Indo-Pacific reefs (when present in 
their original, natural, densities; Bellwood et al. 2003, 2012; 
McCauley et al. 2014). In contrast to CoTS, they actively 
reduce the coral reef framework and net storage of calcium 
carbonate. B. muricatum can erode the reef at a rate of 5.69 
tonnes per individual per year, with intact parrotfish popula-
tions capable of consuming the reef at a rate that matches 
local accretion; thereby maintaining a dynamic carbonate 
balance (Bellwood et al. 2003) (Fig. 3). Yet, despite con-
suming a vast quantity of coral and reef structure each year, 
B. muricatum are widely considered to perform important, 
beneficial, ecosystem functions on reefs via the removal of 
carbonate and the production of sand (Bellwood et al. 2004; 
Perry et al. 2015; Morgan and Kench 2016; Thomson et al. 
2021).

However, during the mid-1900s B. muricatum were so 
heavily fished on most reefs across the Indo-Pacific that there 
are now few reefs left that support natural densities of these 
parrotfish (Bellwood et al. 2012). Thus, across an entire 
ocean basin, we have directly modified the critical process 
of bioerosion—few reefs across the Indo-Pacific experience 
the high levels of bioerosion that they evolved under (Fig. 3). 
In response, the overharvesting of B. muricatum is widely 
viewed as a key conservation issue, with a growing push 
for better management strategies to conserve the individuals 
that remain (Donaldson and Dulvy 2004; Comeros-Raynal 
et al. 2012; Hamilton et al. 2016, 2019; Friedlander et al. 
2023). The contrast between a ‘conservation priority’ 
(B. muricatum) and a ‘pest’ (CoTS), that both deliver, 
fundamentally, a similar ecosystem function (in terms of 
coral mortality), is remarkable.

Ultimately, there is no doubt that coral loss is a concerning 
trend that is reshaping the world’s reefs (Fig. 2) and that 
human activity is the fundamental driver of these trends. 
Scientists and managers alike recognize the critical need to 
halt and reverse the decline of coral reefs (De’ath et al. 2012; 
Bellwood et al. 2019a; Bruno et al. 2019). The only problem 
is that we may be making questionable decisions and for the 
wrong reasons, especially if our decision-making process 
is grounded not on robust scientific evidence but is instead 
shaped by aesthetic, sentimental, economic, or political 
values. Indeed, it seems startling to think that during an era 
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of the twenty-first century, when humanity’s effort to put 
a person on the moon is becoming a distant memory, our 
greatest achievement in directly managing an ecosystem 
function on coral reefs is the mass killing of a naturally 
occurring echinoderm. Will such approaches hold up to 
scrutiny when future generations ask us why we managed 
coral reefs the way we did?

Future outlook and conclusions

Considering reefs from a functional perspective may change 
our perceptions, including the way we perceive both corals 
and their predators. Going forward, studies that have an 
objective focus on ecosystem functions will be critical in 
developing and appraising our decision-making processes 

when it comes to reef conservation. In this respect, a first 
step may be to carefully consider if our coral-centric view 
of the world’s coral reefs is justified and if corals will be the 
best indicators for coral reef conservation in the future. It 
has been repeatedly noted that many reefs are not typically 
dominated by corals (based on 2D planar extent) (e.g. 
Vroom 2011; Bruno et al. 2014; Tebbett et al. 2023d), but 
instead are, in the words of Adey (1998), “algal structured 
and mediated ecosystems”. Such algae, including crustose 
coralline algae and turfs, are typically the most abundant 
component of reefs now, and are likely to be even more so 
into the future (Agostini et al. 2021; Cornwall et al. 2023; 
Tebbett et  al. 2023c, 2023d). Some algae play pivotal 
functional roles on reefs, including a key role in facilitating 
reef growth (Kench et al. 2022; Cornwall et al. 2023) and in 
shaping the settlement of reef organisms (Evans et al. 2020; 

Fig. 3   Bioerosion by the excavating parrotfish Bolbometopon muri-
catum. A The spatial distribution of mean bioerosion by B. murica-
tum at 35 coral reef locations within their natural range (denoted by 
the grey area) based on the capacity of each individual B. muricatum 
to erode 5.69 tonnes of carbonate per year (Bellwood et al. 2003). B 
B. muricatum bioerosion rates compared to coastal human population 
densities from within a 100 km radius buffer. C B. muricatum (pho-

tograph: JP Krajewski). B. muricatum abundance data were sourced 
from the publicly available Reef Life Survey dataset (Edgar and Stu-
art-Smith 2014; Edgar et  al. 2020). Only locations with 20 or more 
transects at shallow depths (< 15 m) were included. Coastal popula-
tion data were sourced from Center for International Earth Science 
Information Network–CIESIN–Columbia University (2018)
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Ricardo et al. 2021; Doll et al. 2023). However, despite their 
prevalence, and the fact that they are central to how coral 
reefs operate, such algae have been largely overlooked in 
coral reef science, conservation, and restoration endeavours 
(especially relative to corals). Ultimately, in our efforts to 
date, we may have focused on studying a vulnerable and 
conspicuous subset of the reef’s inhabitants, in a subset 
of places, with the high likelihood that this has shaped 
our perceptions of how coral reefs operate (Bellwood 
et  al. 2020). Realigning our efforts to understand other 
functionally important, yet largely overlooked, components 
of coral reefs may hold the key to helping us navigate reefs 
through a changing world.

Beyond realigning scientific efforts, the second major 
step consists of fully appreciating the markedly different 
contexts in which coral reefs exist (Fig. 1) and ensuring 
the different biases we may have with regards to reefs in 
different contexts do not cloud our judgement (cf. Bellwood 
et al. 2019b). Indeed, it is becoming increasingly clear that 
lessons learnt about how reefs function in one context or 
location, may not translate to reefs in different contexts (Roff 
and Mumby 2012; Brandl et al. 2019a; Tebbett et al. 2023c). 
This means there is no ‘one size fits all’ approach to reef 
management, with the goals of any management strategy 
dependent on how the specific ecosystem in question 
functions given the social and environmental context 
within which it exists (Bellwood et al. 2019a; Williams 
et al. 2019). Moreover, examining coral reefs in extreme 
and marginal contexts can yield key insights into how reefs 
operate outside typical domains, and may yield functionally 
informative insights that question widely held perceptions 
(although this is invariably dependent on how analogous 
marginal/extreme reefs are to disturbed coral reefs) (Burt 
et al. 2020; Schoepf et al. 2023; Tebbett et al. 2023a). For 
example, the Galápagos  Islands are renowned for their 
unique, endemic diversity. In this special issue, however, 
Tebbett et al. (2024) showed that the largely overlooked 
surgeonfish Prionurus laticlavius in the Eastern Galápagos 
Islands disproportionally contributed to the productivity of 
herbivorous fish assemblages, underpinning productivity 
that was more than threefold higher compared to typical, 
high-diversity reef systems. Importantly, such intriguing 
results are not out of the ordinary, with functional studies 
on coral reefs having a long history of revealing fascinating 
and unexpected insights into how these ecosystems operate 
across a variety of contexts (e.g. Bellwood et al. 2006; 
McWilliam et al. 2018; Brandl et al. 2019b; Tebbett et al. 
2020; Schiettekatte et al. 2022a).

Overall, this special issue has built on the work of 
pioneering reef researchers (e.g. Odum and Odum 1955; 
Bardach 1961; Randall 1961; Smith and Kinsey 1976; 
Hamner et al. 1988) and helped showcase the potential 
for functional studies to contribute to our understanding 

of coral reefs. Studies of reef functions, grounded in 
empirical data, and at appropriate scales, will be pivotal in 
critically appraising our perceptions and approaches to reef 
science, management, conservation, and governance in the 
Anthropocene. Ultimately, robust, independent, scientific 
investigation will be key in helping us navigate reefs through 
the current coral reef crisis.
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