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Abstract
Aim: Some species thrive in human-dominated environments, while others are highly 
sensitive to all human pressures. However, standardized estimates of species' toler-
ances to human pressures are lacking at large spatial extents and taxonomic breadth. 
Here, we quantify the world's bird species' tolerances to human pressures. The associ-
ated precision values can be applied to scientific research and conservation.
Location: Global.
Time Period: 2013–2021.
Major Taxa Studied: 6094 bird species.
Methods: We used binary observation data from eBird and modelled species' occur-
rences as a function of the Human Footprint Index (HFI). With these models, we pre-
dicted how likely each species was to occur under different levels of human pressures. 
Then, we calculated each species' Human Tolerance Index (HTI) as the level of the HFI 
where predicted occurrence probability was reduced to 50% of the maximum species' 
occurrence probability. We used resampling to obtain estimates of uncertainty of the 
Human Tolerance Indices. We also compared tolerances across species with increas-
ing, stable, and decreasing population trends.
Results: We found that 22% of the bird species tolerated the most modified human-
dominated environments, whereas 0.001% of species only occurred in the intact en-
vironments. We also found that HTI varied according to species' population trend 
categories, whereby species with decreasing population trends had a lower tolerance 
than species with increasing or stable population trends.
Main Conclusions: The estimated HTI indicates the potential of species to exist in a 
landscape of intensifying human pressures. It can identify species unable to tolerate 
these environments and inform subsequent conservation efforts. We found evidence 
that species' sensitivity to human-dominated environments may be driving birds' use 
of space. Bird species' tolerances are also linked to their population trends, making the 
tolerances a relevant addition to conservation planning.
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1  |  INTRODUC TION

Most of the terrestrial world has been modified by human actions, 
either through urbanization or through air pollution and climate 
change, which can have impacts on animal and plant populations 
far from human-occupied areas (Sanderson et  al.,  2002; Venter 
et al., 2016). All these changes can lead to myriad effects on ecologi-
cal communities. Habitat loss and fragmentation are a common result 
of intense land use in forms of built infrastructure (e.g. urban areas 
and roads) and agriculture (e.g. crop areas); they influence population 
dynamics, dispersal, and ecological interactions, and thereby the oc-
currences and abundances of wildlife across space and time (Barlow 
et al., 2016; Cazalis et al., 2020; Fahrig, 2017; Gibson et al., 2011; 
Haddad et  al.,  2015; Horváth et  al.,  2019; McKinney,  2006). The 
Human Footprint Index (HFI) summarizes the various facets of 
human pressures by accounting simultaneously for built environ-
ments, human population density, night-time lights, crop lands, 
pasture lands, and accessibility via roads, railways, and navigable 
waterways (Sanderson et al., 2002; Venter et al., 2016). As human 
pressures are globally widespread, most species necessarily occur in 
impacted habitats. Some species even thrive in urban environments 
and depend on humans for resources, such as food or nesting sites 
(McKinney, 2006; Spotswood et al., 2021). Some species have high 
plasticity to survive both with and without intense human pres-
sures (Ducatez et  al., 2018; McKinney, 2006), whereas others are 
highly sensitive to even low levels of human pressure (Şekercioğlu 
et  al.,  2019), particularly during their breeding season. Sensitivity 
and tolerance of species to human pressures have been estimated 
for single and small groups of species (de Jonge et al., 2022; Gnass 
Giese et al., 2015; Guetté et al., 2017; Silva et al., 2016) but rarely 
with a global scope and for an entire, species-rich taxonomic group 
(but see, Cazalis et al., 2021; Neate-Clegg et al., 2023). To effectively 
conserve species, there is an urgent need to design conservation 
measures that are suitable for different species.

Currently, 13.5% of 10,994 recognized extant bird species are 
threatened with global extinction (Lees et al., 2022), which calls for 
effective tools for their conservation in the Anthropocene. A mea-
sure of species' maximum tolerance to human pressures can indi-
cate the potential for species to exist in landscapes with different 
pressures and thereby inform conservation efforts. For the first 
time, we provide indices of species' tolerances to human pressures 
(Human Tolerance Index; HTI), with uncertainty estimates for the 
majority of bird species in each continent. Thus, we contribute to 
the increasingly available functional trait data of species. We also 
provide a means for use of regional species-specific tolerances while 
accounting for the spatial variation and the uncertainty in tolerance 
indices. As opposed to many earlier studies (Ducatez et  al., 2018; 
Guetté et al., 2017; McKinney, 2006), our HTI goes beyond the syn-
anthropy of species that describes species' sensitivity to urban set-
tlements (Guetté et  al.,  2017). Although synanthropy can account 
for a species' ability to tolerate intense anthropogenic disturbances, 
a consistent index is lacking, and urban conditions are only one of 
the facets of human pressures on wildlife. Other facets, such as 

intensive agriculture, need to be included in a summary measure of 
human pressure tolerance of wildlife species. With a global index 
of human pressure tolerance of bird species, it will be possible to 
evaluate how the composition of tolerant and sensitive species is 
changing in ecological communities over time and how this change 
varies spatially in regions with intense human pressures.

Here, we quantify the HTI of bird species to human pressures 
with bird observation data from eBird complete lists collected 
from 2013 to 2021 (Sullivan et al., 2009) and HFI data from 2013 
(Williams et al., 2020). In addition, we report variation in HTIs across 
continents and species. We hypothesized that there is high inter-
specific variation in the index. However, we expected that most ex-
tant species tolerate human pressures to some extent due to the 
pervasive nature of human influence globally. We also hypothesized 
that Europe has on average more species that are highly tolerant to 
human pressures than Africa and Latin America because of Europe's 
longer history of intense land use and human disturbance. We tested 
the potential link between HTI and population trends of species 
globally. We hypothesized that species with higher human tolerance 
are more likely to have positive population trends because they may 
benefit from the intensified land use, including urbanization, that has 
occurred in recent decades.

2  |  METHODS

2.1  |  Bird data

To link bird species' occurrences to human pressures across the 
world, we used data from eBird (Sullivan et al., 2009), an online com-
munity science platform containing over a billion bird observations 
globally (Appendix S1, Figure S1). We used eBird data as the source 
because it is the largest bird database, both spatially and taxonomi-
cally. In addition, many human pressures, such as urban areas, roads, 
and night lights, are only distinguishable at a fine spatial resolution, 
and eBird data allowed us to spatially link bird observations to these 
fine-resolution environmental characteristics.

We used the eBird data released in 2022 (for continent-specific 
release months, see Appendix S1, Table S1) and used R package ‘auk’ 
(Strimas-Mackey et al., 2018) to filter the data following guidelines 
provided by the eBird team (Johnston et al., 2021; Strimas-Mackey 
et  al., 2020; Sullivan et  al.,  2009). The process was similar to the 
data filtering process described by Cazalis et al.  (2020, 2021). We 
only considered recent observations (01.01.2013–31.12.2021) to 
minimize the effect of possible temporal trends in the human pres-
sure tolerances of bird species. To reduce the computational time 
for the large North American dataset, we selected only observations 
from odd years during the study period (2013, 2015, 2017, 2019, 
and 2021). We also only considered checklists compiled during sta-
tionary counts or transects (distance travelled <8 km and duration 
between 0.5 and 10 h) and complete checklists (for which observ-
ers had reported all species identified). Moreover, we included only 
the checklists from within each bird species' resident and breeding 
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ranges (BirdLife distribution maps; BirdLife International, 2022). To 
link the taxonomies of eBird and BirdLife, we used the taxonomy 
crosswalk from AVONET (Tobias et al., 2022). In addition, similar to 
Santini et al. (2023), we excluded observations outside the principal 
breeding season months for coarse latitudinal bands within conti-
nents (Appendix S1, Table S2) because breeding and resident ranges 
also include habitats used by birds at other times of the year, such 
as during migration (La Sorte et al., 2022; Zuckerberg et al., 2016). 
Breeding-related demographic parameters are also often the most 
important determinants of species' population dynamics, especially 
for smaller, short-lived species, underscoring the relevance of study-
ing pressures during the breeding season (Morrison et al., 2021). We 
determined the latitudinal bands that encompassed all bird species 
within them similarly to Santini et al.  (2023) but increased the res-
olution by using continent-specific latitudinal bands. In addition, we 
considered the breeding season to last year-round in the tropics 
to encompass most bird species that breed at different times and 
generally do not migrate. Use of latitudinal band-specific definitions 
of the breeding season is clearly a simplification, but the method 
provides an estimate of human pressure conditions at the time of 
reproduction for the vast majority of species (Santini et al., 2023). 
Next, we filtered the eBird data to reduce spatial bias by balanc-
ing the number of checklists across 3 × 3 km grid cells within each 
continent. We did this by using R package ‘ebirdst’ (Strimas-Mackey 
et al., 2021) to randomly select one checklist per week per grid cell 
across years. This allowed us to obtain a more uniform distribution 
of observations across space and to avoid strong bias towards easily 
accessible locations that usually attract more people to make bird 
observations and that are often highly human-modified. We used 
this same sample of checklists for the analyses of all species in the 
following steps.

We excluded oceanic species as defined by IUCN Red List 
(IUCN, 2022) from our study due to their incomplete and potentially 
biased overlap with the terrestrial HFI data. We included non-native 
species in our study. We calculated the HTI separately for each 
species within each continent (see Section 2.3) and did not include 
whether the species is native as an additional variable in the analy-
ses. Our study design could reflect that species may have different 
tolerances to human pressures within their native and non-native 
ranges. Understanding the tolerances of non-native species in their 
native and non-native ranges can be particularly useful for studies in 
invasion biology.

We transformed both the counts and detections on checklists 
into binary occurrences, which reduced the potential bias related to 
the detection of large numbers of individuals during migration and 
allowed inclusion of eBird observations that do not specify the num-
ber of observed individuals, thus increasing the taxonomic coverage 
of our study. The data for our main analyses consisted of 84,763,985 
binary species observations, structured into 4,429,380 checklists. 
We inferred non-detections of species by their omission from the 
complete checklists. However, we only included a checklist (with 
detection or non-detection) in a species' analysis if it was collected 
within its breeding and resident ranges and within the breeding 

period. We then used all selected checklists within the species' 
breeding and resident ranges.

To link HTI to species' population trends and threat category, we 
obtained data on bird species' population trends and Red List cate-
gories from IUCN Red List (www.​iucn.​org, downloaded 27.04.2023). 
Because global data on quantitative and continuous population 
trends of all bird species are not available, we followed the example 
set by Ceballos et al. (2017) and Finn et al. (2023) and used the cat-
egorical population trend measures of the IUCN Red List (i.e. declin-
ing, stable, or increasing).

2.2  |  Human pressure data

We used the HFI from the year 2013 at a resolution of ~1 km as a meas-
ure of human pressure influence on wildlife (Williams et al., 2020). 
This index is updated and more complete compared to the 1993–
2009 version by Venter et al. (2016). The HFI has been used to ana-
lyse species' responses to human pressures (Barnagaud et al., 2019; 
Cazalis et al., 2020; Di Marco et al., 2018). The HFI includes eight 
variables (built environments, human population density, night-time 
lights, crop lands, pasture lands, and accessibility via roads, railways, 
and navigable waterways), and it ranges from 0 (perfect intactness) 
to 50 (extremely high human pressure; Venter et al., 2016; Williams 
et al., 2020). Values between 0 and 1 are considered to represent 
areas free of mapped anthropogenic disturbance, values between 
1 and 4 are considered to represent areas relatively free of anthro-
pogenic disturbance, and values between 4 and 50 are considered 
to represent areas highly impacted by mapped anthropogenic dis-
turbance (Williams et al., 2020). We assigned each eBird checklist 
a value of the HFI. To do so, we set a 1.5 km radius buffer around 
each eBird checklist and used the function ‘extract’ from R package 
‘raster’ (Hijmans, 2023) to calculate the mean HFI within the buffer. 
We used the 1.5 km radius because such a buffer includes most of 
the bird observations in travelling counts <8 km and because the 
eBird team uses such a buffer in their Status and Trends work, allow-
ing meaningful comparisons between this and earlier studies (Fink 
et al., 2022). There is good agreement and strong correlations among 
the different published Human Footprint Indices, which makes the 
selected measure highly suitable for our study (Kennedy et al., 2019; 
Mu et al., 2022). The HFI values across checklists covered the full ex-
tent of possible values, but the distribution was not uniform across 
or within continents (Appendix S2, Figure S1).

2.3  |  Hierarchical organization of data

Human pressures are context-dependent and may vary due to fac-
tors related to administrative boundaries. For example, the influ-
ence of a road on species is likely different in different parts of the 
world because the road type and traffic intensity can differ greatly. 
Therefore, we considered the measure of human pressures (here, 
the HFI) within geographically consistent areas of continents and 
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quantified the HTIs of all birds that were observed within the focal 
continent during their breeding season and within their breeding or 
resident range. That means that some bird species occurring on mul-
tiple continents were assigned multiple HTIs, one for each continent 
in which they occurred. We considered six continents (Africa, Asia, 
Europe, Latin America, North America, and Oceania) when quan-
tifying HTIs (for lists of countries included in each continent, see 
Appendix S4). Calculating tolerance for each species in each conti-
nent where the species occurs allows comparisons of intraspecific 
variation in human pressure tolerance across continents and link-
ing such variation to functional traits or other properties, such as 
whether species are native. Moreover, it enables high-resolution 
studies within continents.

2.4  |  Calculating species-specific human 
tolerance indices

To estimate HTI, we conducted separate analyses for each species 
in each continent. In preparation, we performed several further 
data manipulation steps to aid statistical inference and estimate the 
uncertainty. We repeated the modelling and predictions 50 times 
for each species within each continent to estimate uncertainty. For 
each model, we randomly sampled 75% of the checklists within the 
species' breeding and resident range after the spatial subsampling 
described above. Then, we divided eBird checklists into categories 
based on their HFI values and sampled each category according to 
assigned target numbers of detections and non-detections to both 
maintain the relationship with the HFI and balance classes across the 
range of the HFI (for details, see Appendix S1, Section S1).

In each of the 50 resampling replicates, we quantified three mea-
sures of the HTI of each bird species in each continent (Peak HTI, 
Conservative HTI, and Maximum HTI) on the basis of species' occur-
rences across the range of HFI values (Figure 1). To do this, we mod-
elled and predicted species' occurrences as a function of the HFI in 
each continent. We did this because a species may not be observed 
throughout the human pressure gradient due to either their actual 
human pressure tolerance or bias in observations towards certain 
parts of the HFI gradient. We used generalized additive models 
(GAMs) to model the relationship between the HFI and occurrence 
of each species on checklists. These models allow non-parametric 
relationships and thus high flexibility in the occurrence probability—
HFI relationships compared to linear relationships. However, we also 
wanted to remove the possibility of unrealistically complex relation-
ships, so we used R package ‘scam’ (Pya, 2021; R Core Team, 2022) 
to constrain the possible relationship shapes to be unimodal with 
monotonic increase and decrease on each side of a peak (bs = ‘cv’). 
We used the shape-constrained GAMs to allow non-linear relation-
ships between species' occurrences and the HFI because most spe-
cies are assumed to have a trait optimum, or an optimal HFI value, 
rather than a simple positive or negative linear relationship with the 
HFI. We considered the binary occurrence on a checklist as the re-
sponse variable.

We included as the main predictor in the models the HFI within 
the 1.5 km radius buffer of each checklist with maximum smooth-
ing degrees of freedom set to k = 9. We also included the following 
variables as predictors in the models: latitude, longitude, survey pro-
tocol (stationary, travelling), survey duration (min), survey distance 
travelled (km), continuous survey year, and number of observers. 
We did not include these variables as splines due to model run-time 
limitations. In addition, we included the time of the day of the sur-
vey as a cyclic spline (bs = ‘cc’) with maximum smoothing degrees of 
freedom set to k = 9. These additional predictor variables allowed us 
to account for the observation process in the model fitting, mitigat-
ing the effects of heterogeneous detectability. We used a binomial 
error distribution for the binary occurrence data response. After the 
model fitting, we excluded species that had >10 missing resampling 
replicates to ensure reliable HTI estimation. Species may lack resam-
pling replicates due to failed model convergence or detections that 
are not well distributed throughout the HFI continuum. This process 
yielded 6094 of the roughly 11,000 bird species across continents 
and 7317 species-continent combinations. In the results, we aver-
aged values within species across continents when the species oc-
curred on multiple continents.

On the basis of the model fit, we predicted how likely each spe-
cies was to occur across the full gradient of the HFI. We did this by 
setting the other predictor variables as fixed (for exact values, see 
Appendix S1, Section S1) and using the GAM model fit to predict 
occurrences across the full range (0–50) of HFI values. From these 
predictions, we obtained the predicted occurrence probabilities 
across the range of HFI values and calculated the following val-
ues for each species within each continent: (1) Peak Occurrence 
Human Tolerance Index (Peak HTI), the level of the HFI with max-
imum occurrence probability; (2) Conservative Human Tolerance 
Index (Conservative HTI), the level of the HFI above the majority 
tolerance where predicted occurrence probability is 50% of the 
maximum predicted occurrence probability; and (3) Maximum 
Human Tolerance Index (Maximum HTI), the level of the HFI 
where predicted occurrence probability is 10% of the maximum 
predicted occurrence probability (Figure 1). We calculated these 
HTIs as the mean of each metric across the 50 resampling repli-
cates. We quantified these three indices rather than a simple mean 
tolerance because the mean does not indicate as clearly the po-
tential (upper limit of tolerance) of the species to adapt to greater 
human pressures in the future. That is, two species can have a 
similar tolerance mean, but one can have a narrower range of tol-
erance, so it is more sensitive to human pressures. For example, 
urban birds have wider environmental tolerance than their rural 
relatives (Bonier et  al.,  2007). The Conservative and Maximum 
HTIs show the species' upper limits of tolerance to human distur-
bance, which is critical in understanding the potential impact of 
any intensification or expansion of human pressures. In addition to 
the HTI estimates, we calculated the associated 80% confidence 
intervals for each of the three metrics on the basis of the 50 boot-
strap resampling replicates. We chose 80% intervals to optimize 
computational requirements of the model fitting analysis step, as 
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fewer bootstrap resampling replicates are required for a robust 
estimate of the uncertainty. We calculated the confidence inter-
vals to allow future applications to account for uncertainty when 
using the species' tolerances.

We compared Conservative HTI values of bird species among 
IUCN Red List population trend and threat categories with one-way 
ANOVA. We excluded the Data-Deficient category of threat be-
cause only two bird species were in that category. We confirmed the 
robustness of the results of the above models to any phylogenetic 
correlation between the studied species. To do so, we ran a sensi-
tivity analysis on the potential effect of phylogenetic relations to 
the Conservative HTI ~ population trend category and Conservative 
HTI ~ threat category relationships with function phylANOVA from 
the R package ‘phytools’ (Revell, 2012). We obtained 100 phyloge-
netic trees from birdtree.org (Ericson All Species trees with 9993 
OTUs each; Jetz et al., 2012). We then randomly selected 10 of the 
trees and repeated the phylANOVA test 10 times. We averaged 
the modelled results across the trees to obtain an average phylo-
genetic effect of the modelled relationships. For each phylANOVA, 
we also tested whether the pairwise differences were significant 
and applied a Bonferroni correction to the p-values. As another 
sensitivity analysis, for a subset of 155 European bird species (see 

Appendix S2, Table S7 for the full species list) with available con-
tinuous population trend estimates (Brlík et al., 2021), we fitted a 
linear regression model with the Conservative HTI as the response 
and continuous per-year population trend estimate for years 2012–
2021 as the predictor variable.

3  |  RESULTS

We modelled and predicted HTIs for 6094 bird species (Figures 2 
and S2; Appendix  S2), which we included in the final dataset 
(Appendix S3) with the numbers of missing resampling replicates 
as an additional variable. All 50 resampling replicates were com-
pleted for 5090 species. The models could not be fitted for all 
resampling replicates for all species due to insufficient data. On 
average, species had a Peak HTI of 13.7 (SD = 14.1), whereas the 
Conservative HTI and Maximum HTI were at 29.1 (SD = 13.5) 
and 37.7 (SD = 11.6), respectively (Figure  3). These averages 
correspond to HFI values of highly impacted areas (Williams 
et al., 2020). The mean 80% confidence interval widths across all 
species were less than two units of the HFI for all HTIs (CI widths: 
Peak HTI = 1.43; Conservative HTI = 1.00; Maximum HTI = 0.76). 

F I G U R E  1 Schematic illustration of the quantification of bird species' tolerances to human pressures globally. The circles within a box in 
the left panel illustrate the spatial hierarchy in the bird occurrences across the gradient of human pressures. Hypothetical bird species are 
illustrated with silhouettes. The lower row illustrates the modelling and prediction steps of the analyses; the observed occurrences of each 
bird species across observed human pressures (coloured bars) are used as the basis for the prediction of occurrence probability across the 
full gradient of human pressures (grey lines). The panel on the right illustrates the predicted relationship between the occurrence probability 
and human pressure that was then used to calculate three Human Tolerance Indices (HTIs) for an example species (represented with a large 
silhouette). The three HTIs are shown as green stars and coloured dashed lines on the graph (see legend). These modelling and prediction 
steps were repeated 50 times for each species to calculate mean HTIs and 80% confidence intervals for each species.
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We also found that the three HTIs were strongly positively cor-
related (Pearson rPeak–Conservative = 0.81; rPeak–Maximum = 0.58; 
rConservative–Maximum = 0.89; Appendix S2, Figure S9). For simplicity, 
from here onward, we present results for Conservative HTI in the 
main text and for Peak and Maximum HTI in the supplementary 
material (Appendix  S2). Conservative HTI showcases the poten-
tial upper limit of species' tolerances to human pressures in the 
future while maintaining a large variation in values to allow across-
species comparisons.

Many species were able to tolerate extremely high levels of 
human pressures (here, HFI >40). Roughly 22% (1336 of the 6094 
species) tolerated such intense human pressures when tolerances 
were quantified as Conservative HTI. For example, an urbanized com-
mon swift (Apus apus) tolerated the most extreme values of human 
pressures within its breeding range (Figure 4). Of the 6094 species, 
830 (13.6%) occurred in more than one continent, also outside their 
native ranges. On average, these species had a Conservative HTI of 
35.5, higher than that of all the species. For example, both within its 
native range in Eurasia and non-native range in North America, com-
mon starling had a Conservative HTI of 50. Similarly, within its native 
range in Asia and non-native range in Europe, rose-ringed parakeet 
had a Conservative HTI of 49.5 and 50, respectively.

Within each continent, we looked at the proportion of species 
that occurred in highly modified environments (HFI > 40). Europe 
had a higher percentage of highly human-tolerant species, 42%, than 
North America (36%), Oceania (32%), Asia (32%), Africa (24%), and 
Latin America (19%). On the other end of the spectrum, we assessed 

the species that were strongly associated with intact areas for their 
breeding (here, HFI < 4; Williams et al., 2020). Seven (~0.001%) of the 
6094 species had a low Conservative HTI and were associated with 
intact areas. The species with the lowest estimated Conservative 
HTI of 2.57, broad-billed sapayoa (Sapayoa aenigma), occurs in humid 
forests in Colombia, Ecuador, and Panama.

The Conservative HTI differed significantly among population 
trend categories (one-way ANOVA: F = 163.7, df = 3, p < 0.001; 
Figure 5a). Pairwise comparisons showed that all population trend 
categories differed significantly from each other: increasing spe-
cies had the highest HTI and decreasing the lowest (Bonferroni-
corrected p < 0.01). Conservative HTI differed significantly among 
Red List threat categories (one-way ANOVA: F = 23.1, df = 4, 
p < 0.001; Figure 5b). Pairwise comparisons showed that species in 
the Least Concern category had a significantly higher Conservative 
HTI than species in the Near-Threatened and Vulnerable categories 
(Bonferroni-corrected p < 0.001), but other categories did not sig-
nificantly differ from each other. For exact pairwise p-values, see 
Tables S3 and S4 in Appendix S2. The phylogenetic effect on the 
HTI ~ population trend category and HTI ~ threat category was con-
sistent and significant (phylANOVA for population trend category: 
F = 162.14, p < 0.001; phylANOVA for threat category: F = 22.76, 
p = 0.003; Appendix S2, Tables S5 and S6). In the second sensitivity 
analysis with continuous population trend estimates, we found that 
species with higher tolerance had significantly larger positive popu-
lation trend slope estimates (R2 = 0.04, F = 7.45, df = 153, p = 0.007).

The Conservative HTI of threatened species varied from very 
low values to the maximum. For example, the endangered fern-
wren (Oreoscopus gutturalis) had a low Conservative HTI of 3.33, 
whereas the vulnerable Javan myna (Acridotheres javanicus) had 
a high Conservative HTI of 50. Similarly, the Conservative HTI of 
non-threatened species varied greatly. For example, two species of 
least concern, broad-billed sapayoa (Sapayoa aenigma) and common 
redpoll (Acanthis flammea), represented the opposite ends of the 
Conservative HTI spectrum at 2.57 and 50, respectively. However, 
all four example species are reported to have a decreasing popula-
tion trend.

4  |  DISCUSSION

We quantified human pressure tolerances of over 6000 bird species 
on six continents and provided the tolerance values and uncertainty 
estimates. We found that bird species' tolerances to human pres-
sures were high across continents regardless of the tolerance metric. 
Even species' peak occurrences were, on average, observed at loca-
tions with high HFI values, corresponding to intermediate and highly 
impacted areas. Consequently, high tolerances are inevitable in the 
Anthropocene as most species necessarily occur in areas under 
strong human pressures, which cover 58% of the terrestrial world 
(Williams et al., 2020). Our results also show that HTI is associated 
with bird species' population trends and IUCN threat categories.

F I G U R E  2 Estimated Conservative HTIs (black dots) with 
confidence intervals (green error bars) for all 6094 bird species 
globally. Species were ordered by HTI values. For those species 
with different tolerance values on different continents, we 
averaged the tolerances and lower and upper confidence interval 
limits across continents (N = 830).
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4.1  |  Spatial variation in human tolerance indices

Bird species' tolerances to human pressures varied across continents, 
such that larger proportions of species in Europe and North America 
than Latin America and Africa tended to tolerate highly modified 
environments (HFI > 40 of the maximum 50). The variation across 
continents can arise from two sources: variation in individual spe-
cies' tolerances or in the ecological conditions caused by the human 
pressures (measured here with the HFI). Indeed, much larger pro-
portions of Europe and North America are modified and on average 
have higher HFI values than other continents (Williams et al., 2020). 
Without studying the past distributions and more detailed ecology 
of each species, we cannot determine whether the high average 

tolerances in the highly human-modified continents stem from disap-
pearance of sensitive species or adaptation of species.

4.2  |  Species-specific variation in human 
tolerance indices

Few species (~0.001% of 6094) had a low Conservative HTI and 
were associated with intact areas. The low percentage is likely due 
to the fact that the most comprehensive data are associated with 
abundant and broad-ranged species and from areas that are uni-
formly under strong human pressures. The data for rare species or 
species with small distribution ranges are likely scarce, and such 

F I G U R E  3 Distribution of Human 
Tolerance Indices (HTI; ranging from 
tolerance to perfect intactness [0] 
to extremely high human pressure 
[50]) across bird species measured as 
Conservative HTI. Panels illustrate 
Conservative HTI for (a) Africa, (b) Asia, 
(c) Europe, (d) Latin America, (e) North 
America, and (f) Oceania, respectively. The 
vertical lines illustrate the median HTIs 
across all species within the continent. 
Note the different scales on the y-axes.
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species have a higher chance of being excluded from the analy-
ses. Moreover, the low number of species occurring only in intact 
areas and with low Conservative HTI values may be because areas 

with very low human influence are limited, and largely biased to-
wards high latitudes (e.g. boreal zone) where species richness is 
lowest (Riggio et al., 2020). Perhaps the only exception to this is 

F I G U R E  4 Examples of modelled Human Tolerance Indices for common swift (Apus apus), Eurasian capercaillie (Tetrao urogallus), and 
Eurasian spoonbill (Platalea leucorodia) in Europe. The upper panels illustrate the predicted relationships from one resampling replicate 
model between species' occurrence probabilities and the HFI when other variables were held constant. The green stars illustrate the three 
HTIs calculated from these predicted relationships. In the lower panels, the grey background map illustrates the spatial variation in human 
pressures across Europe, measured as the HFI (0 = perfectly intact, 50 = extremely high human pressure). The coloured transparent polygons 
represent the breeding or resident ranges of the three species.
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F I G U R E  5 Conservative HTI of the world's bird species across continents depending on (a) the IUCN population trend category and 
(b) the IUCN Red List category. The boxplots illustrate the median and the first and third quartiles, and the whiskers show the largest and 
smallest values no further than 1.5*inter-quartile ranges from these quartiles, respectively. For species with different tolerance values in 
different continents (N = 830), we averaged the tolerances across continents. We excluded the Unknown population trend category (N = 323 
species) from the visualization. Red List categories: CR, critically endangered; EN, endangered; LC, least concern; NT, near-threatened; VU; 
vulnerable. We excluded the DD (Data-Deficient) category because it included only two observations.
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the Amazon, where large areas of low human pressures and high 
numbers of species exist. The species with HTI < 10 are most nu-
merous in South America, although the sampling effort is not as 
high as in many other continents (Figure 3). This suggests that the 
distribution of Conservative HTI values across the ~6000 bird 
species may be driven more by the spatial distribution of human 
pressures than sampling bias.

We found non-random variation in bird species tolerances to 
human pressures across categories of IUCN population trend and 
Red List threat status. This implies that species with high and low 
tolerances to human pressures are characterized by different popu-
lation attributes. Tolerances were strongly linked to species' popu-
lation trends, such that the species with low tolerance had declining 
populations. This means that populations are affected by direct 
human pressures, such as land use changes, although population 
trends also could be driven by global drivers such as climate change. 
For instance, in Europe, climate change does not explain the coloni-
zations and extinctions of species well, which suggests that other 
drivers, including habitat quality, play a role (Howard et al., 2023). 
The tolerances were also linked to species' threat status, such that 
species of least concern had higher tolerances than near-threatened 
and vulnerable species. However, the tolerances of the most threat-
ened species (endangered and critically endangered) did not differ 
from those of the less threatened species. This is likely due to the 
low number of species in the highest threat categories for which we 
could estimate tolerances.

The observed increase in tolerance of threatened species 
(Appendix  S2, Figure S9) may have ecological relevance in the 
form of extinction debt (Hanski & Ovaskainen,  2002). When 
using the maximum and the conservative human tolerance indi-
ces, one should be aware of the uncertainty stemming from the 
current extinction debt experienced by species in poor-quality 
habitats. Species may persist in lower quality and highly modi-
fied habitats but become extinct in the near future without quick 
adaptation to increasing human pressures. Therefore, the toler-
ance values may not accurately represent their future potential 
to tolerate intensifying human pressures. Our analyses partly 
account for the potential extinction debt given that the HFI is 
from 2013 and the eBird data from later years. Accordingly, if 
the environment was already degraded in 2013, the tolerances 
reflect birds that persisted in the degraded environment at least 
for some years. It is also possible that a species may have started 
to become more urbanized, but the process is not yet complete, 
and the species' current range does not fully represent its poten-
tial to tolerate intensifying human pressures. Our results make 
it possible to identify those threatened species that are tolerant 
to human pressures, which supports the approach of conserving 
them also in the highly modified environments. The link between 
human pressure tolerance and population trend was stronger 
than the link between human pressure and Red List threat status, 
likely because more species are declining than are threatened 
(Finn et al., 2023).

4.3  |  Limitations and future research opportunities

Although our quantification of species' tolerances to human pres-
sures is unprecedented at both spatial and taxonomic levels, further 
attempts to understand the underlying mechanisms are needed. 
Most importantly, future studies and conservation planning could 
investigate species' tolerances to specific human pressure variables 
(Mu et  al., 2022) to gain a more detailed understanding of which 
human pressures each species can tolerate. For example, linear in-
frastructures such as roads may affect some species more strongly 
than others via anthropogenic sound and direct mortality, but this 
likely depends on species' ecological traits, such as diet (Cooke, 
Balmford, Donald, et al., 2020; de Jonge et al., 2022). Similarly, the 
HFI we used does not fully capture (but likely is a proxy for) other 
sources of human pressure, such as air pollution, anthropogenic 
sound, and climate change. Anthropogenic sound and air pollution, 
and to a lesser extent climate change, may be strongly associated at 
local to regional extents with human activities. HFI captures well the 
direct human pressures (especially those driven by land use) but not 
necessarily the indirect pressures, such as air pollution or climate 
change (which is also caused partly by air pollution).

We acknowledge that bird species' detectability in different 
vegetation types may affect the quantified tolerances to human 
pressures. However, we believe that the magnitude of variation in 
detectability is small relative to the variation in occurrences depend-
ing on the HFI (Anderson et al., 2015; Cooke, Balmford, Johnston, 
et al., 2020; Johnston et al., 2014). This is partially because most val-
ues of the HFI encompass a range of vegetation and land use types 
that likely influence bird detectability in different ways. For example, 
intact vegetation types with low HFI values include forest, wetland, 
and shrubland; and locations with high HFI could be urban or under 
intense agriculture.

As more eBird observation data accumulate quickly, the toler-
ance quantification could be repeated in the future. It is likely that 
the taxonomic coverage will increase in the future repetition be-
cause some species will exceed the occurrence threshold set in our 
study. When more abundance data accumulate, it will be possible to 
repeat the tolerance quantification with abundance data, giving a 
more detailed picture of the gradual response of species to human 
pressures. Poor-quality habitats (with a high HFI) may only support 
a small number of individuals, whereas high-quality habitats (with a 
low HFI) may support most of the individuals, but both areas could 
have a similar number of recorded occurrences of the species. A 
potential solution is to assess the local tolerances across a species' 
range against its population trends (when available) or abundances 
in those same parts of the range.

Species' migratory behaviour may also affect the quantification 
of the tolerances as the human pressure tolerance of migratory spe-
cies may include some data that are outside the species' breeding 
season. We could not consider the species-specific breeding sea-
son months due to lack of systematic knowledge but used region-
specific breeding months to filter the eBird observations. During 
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migration, species may use suboptimal habitats that do not repre-
sent their actual tolerance to human pressures during their breeding 
(La Sorte et al., 2022; Newton, 2008; Zuckerberg et al., 2016). We 
mitigated the effect of this on our results by spatial and temporal 
filtering, which means that observations outside the species' actual 
breeding season are still likely to be close in time to its breeding 
season and within its known breeding range.

We used eBird data from COVID-19 lockdown years, among all 
years used, but we do not believe COVID-19 lockdowns introduced a 
significant bias in the eBird observations in our data as we strived to 
obtain observations from the full range of human pressure environ-
ments in the models. We did not use eBird data from North America 
in 2020 due to the filtering procedure (see Section 2), which likely 
mitigated any effects of bird behaviour changes during lockdowns. 
Moreover, the differences in pre-COVID-19 and during-COVID-19 
eBird data were negligible (Hochachka et  al.,  2021). However, 
COVID-19 lockdowns may have affected bird behaviour, such that 
some species may have used more human-modified areas due to a 
lower degree of direct disturbance by humans (Gordo et al., 2021; 
Sanderfoot et  al.,  2022; Schrimpf et  al.,  2021; Warrington 
et al., 2022).

4.4  |  Applications of human tolerance indices

We envision that the quantified HTIs of the world's birds can be 
applied to both ecological and evolutionary research and con-
servation. We recommend using maximum and conservative 
tolerances when predicting future species' distributions under in-
tensifying human pressures as they best describe species' poten-
tial to respond to the pressures. Peak HTI values are best suited 
to understanding the contemporary situation and to assessing 
the human pressure optima of the species. Further studies on the 
characteristics of bird species with high and low tolerances to 
human pressures could link the tolerance indices to species' traits, 
such as generation lengths (Bird et al., 2020), diet and habitat spe-
cialization (Wilman et  al., 2014), or temperature niche (Devictor 
et al., 2008). Given that increasing contact between wildlife and 
humans, especially in urban environments, increases the risk of 
spreading wildlife diseases, the HTI could be used as an additional 
tool to predict species potential as pathogen vectors in the fu-
ture. To understand community-level changes in the composition 
of human pressure-tolerant and pressure-sensitive species, HTIs 
can be applied to calculate community-weighted means of the 
tolerances over time and space. Suitable, independent, and spa-
tially extensive data on bird occurrences already exist in Europe 
(Keller et al., 2020) and North America (Meehan et al., 2019; Sauer 
et al., 2017).

Our approach for quantifying species' standardized tolerances 
to human pressures could be applied to taxa other than birds at 
different spatial scales, and for different pressures. Data on spe-
cies occurrences at high spatial resolution are accumulating rap-
idly at regional and national levels (e.g. the Global Biodiversity 

Information Facility, Fink et  al., 2022), which allows the applica-
tion of our methods and the accompanying code for management 
and conservation purposes. For species-based conservation of 
other taxonomic groups, for example, camera trap occurrences of 
a threatened mammal species could be used to quantify its occur-
rence probabilities across the HFI gradient to assess the maximum 
tolerance to human pressures within the remaining range. For area-
based conservation, HTIs could be used to identify areas where 
species with high human pressure tolerance and humans can co-
exist. For example, there is a global target of protecting 30% of 
terrestrial Earth, but likely not all of that can be strictly protected 
(CBD/COP/15/L.25; CBD, 2022). HTIs of bird species could be used 
to identify candidate species and areas for protection that tolerate 
some levels of human pressures. The data also allow identification 
of priority areas for low human tolerance species, where human 
access could be restricted, at least during sensitive periods (e.g. 
breeding). In practice, this could guide the expansion of the current 
network of protected areas, and especially the identification of 
sensitive areas where strict nature reserves (IUCN protected area 
category Ia) might need to be designated.
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