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Abstract

Dependent type theory is an expressive programming language. This language

allows to write programs that carry proofs of their properties. This in turn gives

high confidence in such programs, making the software trustworthy. Yet, the trust-

worthiness comes for a price: type inference involves an increasing number of proof

obligations.

Automation of this process becomes necessary for any system with dependent

types that aims to be usable in practice. At the same time, implementation of au-

tomation in a verified manner is prohibitively complex. Sometimes, external solvers

are used to aid the automation. These solvers may be based on classical logic and

may not be themselves verified, thus compromising the guarantees provided by con-

structive nature of type theory. In this thesis, we explore the idea of proof relevant

resolution that allows automation of type inference in type theory in a verifiable and

constructive manner, hence to restore the confidence in programs and the trustwor-

thiness of software.

Technical content of this thesis is threefold. First, we propose a novel frame-

work for proof-relevant resolution. We take two constructive logics, Horn-clause

and hereditary Harrop formulae logics as a starting point. We formulate the stan-

dard big-step operational semantics of these logics. We expose their Curry-Howard

nature by treating formulae of these logics as types and proofs as terms thus de-

veloping a theory of proof-relevant resolution. We develop small-step operational

semantics of proof-relevant resolution and prove it sound with respect to the big-step

operational semantics.

Secondly, we demonstrate our approach on an example of type inference in Log-

ical Framework (LF). We translate a type-inference problem in LF into resolution

in proof-relevant Horn-clause logic. Such resolution provides, besides an answer

substitution to logic variables, a proof term that captures the resolution tree. We

interpret the proof term as a derivation of well-formedness judgement of the ob-

ject in the original problem. This allows for a straightforward implementation of

type checking of the resolved solution since type checking is reduced to verifying the



derivation captured by the proof term. The theoretical development is substantiated

by an implementation.

Finally, we demonstrate that our approach allows to reason about semantic prop-

erties of code. Type class resolution has been well-known to be a proof-relevant frag-

ment of Horn-clause logic, and recently its coinductive extensions were introduced.

In this thesis, we show that all of these extensions amalgamate with the theoretical

framework we introduce. Our novel result here is exposing that the coinductive

extensions are actually based on hereditary Harrop logic, rather than Horn-clause

logic. We establish a number of soundness and completeness results for them. We

also discuss soundness of program transformation that are allowed by proof-relevant

presentation of type class resolution.
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1 Introduction

Qual vaghezza di Lauro? qual di Mirto?

Povera, e nuda vai, Filosofia,

Dice la turba al vil guadagno intesa.

Pochi compagni avrai per l’altra via;

Tanto ti prego più, gentile spirto,

Non lassar la magnanima tua impresa.

— Francesco Petrarca, Sonetto VII.

Dependent type theory is an expressive programming language. This language

allows to write programs that carry proofs of their properties. This in turn gives

high confidence in such programs, making the software trustworthy. Yet, the trust-

worthiness comes for a price. Typing rules raise a number of proof obligations.

Automation of this process, which, for the sake of simplicity, we refer to as

type inference, becomes necessary for any system with dependent types that aims

to be usable in practice. At the same time, implementation of type inference in a

verified manner is prohibitively complex. Sometimes, external solvers are used to

aid it. These solvers may be based on classical logic and may not be themselves

verified, thus compromising the guarantees provided by the constructive nature of

type theory. In this thesis, we explore the idea of proof relevant resolution that

allows both to carry out type inference in a verifiable manner and reason about

semantics, hence to restore the confidence in programs and the trustworthiness of

software.

1



1.1. Constructive Logic and Type Theory

1.1 Constructive Logic and Type Theory

First, we briefly mention the development of thought that leads to the general area

in which lies the subject of this thesis starting with mathematical and philosoph-

ical origins. In the course of the 20th century, a new, normative point of view

on what constitutes acceptable methods and objects of mathematics emerged—

constructivism. This point of view originated as an opposing reaction to the use

of highly abstract proof methods in works of, e.g., Cantor and Dedekind. The

original characterisation of constructivism was the appeal to proof methods that

construct the objects of concern (hence the name). Alternatively, constructivism

can be characterised by insisting on proof methods that compute the objects of con-

cern (Troelstra, 1991). Theorems that state properties of certain objects give us

means to construct, or compute, properties of these objects. Constructivist agenda

in the form of Brouwer’s programme (Brouwer, 1928, 1929) led to development of

intuitionistic logic. Heyting (1934) and Kolmogorov (1932) formalised intuitionistic

logic and developed Brouwer-Heyting-Kolmogorov (BHK) interpretation of intuition-

istic logic—a proof of an implication is interpreted as a construction that transforms

a proof of the implicant into a proof of the conclusion, negation is treated as an ab-

breviation for a construction that from a proposition absurdity follows.

The intuitionistic reading of a proof in BHK interpretation is closely related

to the notion of propositions–as–types (that is propositions being in bijection with

types, cf. Wadler (2015)). Curry (1934) was the first to suggest that a proposition

in implicational form can be understood as a type of functions. Howard (1980)

refined this idea with the observation that proof simplification can be understood

as function evaluation. This is now referred to as Curry-Howard interpretation of

proofs. Since the early 70’s, the idea of types has been a driving force behind

an important part of computer science and propositions–as–types were providing

a tight coupling between constructive mathematics and computer science. Martin-

Löf (1972), directly inspired by Howard’s ideas, introduced the Intuitionistic theory

of types as a precise symbolism for constructive mathematics, and the notion of a

dependent type, a type of objects that depend on proofs. However, he also explicitly

linked constructive mathematics to computer science by regarding his intuitionistic

2



1.2. Trustworthiness of Automation

theory of types as a programming language (Martin-Löf, 1982). In the following two

decades, intuitionistic type theory found applications in interactive theorem provers,

or proof assistants, like Coq (The Coq Development Team, 2019) or Agda (Norell,

2007), or the general purpose programming language Idris (Brady, 2013).

Around the same time as Martin-Löf was working on his theoretical develop-

ments, Milner was utilising the idea of types for a very practical purpose in the form

of the theory of type polymorphism in programming languages (Milner, 1978). He

coined the slogan that “well-typed programs cannot ‘go wrong’”. He connected his

work to Hindley’s principal type schemes in combinatory logic (Hindley, 1969) and

observed that a language that is to be practically useful requires certain amount

of automated reasoning. The resulting Hindley-Milner type inference algorithm for

lambda calculus with parametric polymorphism (Milner, 1978) was used in the ML

programming language and strongly influenced the area of functional programming.

ML’s successors include commercially successful languages like OCaml and Haskell.

The idea that programs should not “go wrong” gave rise to languages with expressive

and powerful type systems. Such type systems allow to precisely encode invariants

of programs in types and specify what it means not to “go wrong”. An example

of languages that originate in Hindley-Milner tradition and feature a powerful type

system are Dependent ML (Xi and Pfenning, 1999) and Dependent Haskell (Weirich

et al., 2017).

1.2 Trustworthiness of Automation

Since the initial steps taken by Milner in the form of automation of type inference for

parametric polymorphism, automated reasoning has found a plethora of applications

in type systems. First-order resolution is an example of automated reasoning that

can be traced to Hindley-Milner type inference. Type inference in simply typed

lambda calculus (λ→) can be expressed as a first-order unification problem. A

general framework for Hindley-Milner type inference HM(X) was developed by

Odersky et al. (1999) and later formulated in terms of logic programming (Sulzmann

and Stuckey, 2008). For example, the rule for term application in λ→

Γ `M : A→ B Γ ` N : A App
Γ `MN : B

3



1.2. Trustworthiness of Automation

gives rise to a type inference problem that can be encoded by the following Horn

clause:

type(Γ, app(M,N), B)← type(Γ,M,A→ B) ∧ type(Γ, N,A)

Given a term E, the query type(Γ, E, T ) infers a type T in a context Γ such that the

typing judgement Γ ` E : T holds. Recently, the idea of inferring types based on

declarative definition of typing relation was brought forth by a relational, embedded

domain specific language (DSL) miniKanren (Hemann et al., 2016). The DSL has

been implemented in a range of functional languages like ML, Rust, Haskell and

many other non-functional languages. As Ahn and Vezzosi (2016) point out, a rela-

tional language is a very convenient device for encoding of type inference problems—

it allows to provide a specification of typing as a relation that directly corresponds

to mathematical formalism. However, automation of type inference in dependently

typed languages represents a more substantial challenge. Most dependently typed

languages incorporate a range of algorithms that automate various aspects of type

inference (cf. Pientka, 2013). One approach is using reflection into underlying ab-

stract syntax tree representation of the language (cf. Slama and Brady, 2017) to

employ automation there. In some cases, the algorithms are similar to first-order

resolution (Gonthier and Mahboubi, 2010), in other cases, e.g. Liquid Haskell (Vazou

et al., 2018) and F*, languages incorporate external Satisfiability Modulo Theory

(SMT) solvers like the Z3 Theorem Prover (de Moura and Bjørner, 2008).

The use of external solvers constitutes a dissent from constructivist ideas that

initiated the interest in expressive type systems. As an example, consider that

an external SMT solver is not verified and a bug may result in a wrong answer1.

Moreover the solver uses classical logic and the computed results need not be valid

intuitionistically2. In either of these two situations, soundness of type inference is

compromised. That is, there are programs that are accepted by the type checker

despite the fact that these programs cannot be shown well typed in the metatheory.

The issue of trustworthiness of a computer system is well-recognised in the com-
1For an example of such issues in real world system see, e.g., the issue tracker of F* language for

unsoudness caused by SMT encoding (https://github.com/FStarLang/FStar/issues?q=label%
3Akind%2Funsoundness+label%3Acomponent%2Fsmtencoding)

2ditto
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1.2. Trustworthiness of Automation

munity (Barendregt and Barendsen, 2002). A general approach, called autarkic or

skeptical, is for such a system to provide a machine checkable witness, a proof term,

of correctness of the result (Appel et al., 2003). Stump (2009) did an early study

of such proof-checking for SMT solvers and autarkic approach is a basis for SMT

solving in, e.g., Coq (Armand et al., 2011). Despite these results, there is no firm

consensus in the community on the rigour of implementation of the language. This

research area still remains very active and presents challenging problems (Schubert

and Urzyczyn, 2018, Vazou et al., 2018). Next we discuss an application of proof

terms in type inference in detail. We refer to the approach that employs proof terms

as proof-relevant.

1.2.1 Type-class resolution

Type classes are used to implement ad-hoc polymorphism and overloading in pro-

gramming languages. The approach originated in Haskell (Hall et al., 1996, Wadler

and Blott, 1989) and has been further developed in dependently typed functional

languages (Devriese and Piessens, 2011, Gonthier et al., 2011) as well as in object-

oriented languages (d. S. Oliveira et al., 2010, Gregor et al., 2006). Type classes

introduce syntax that allows to specify a new class of types, equip it with certain

methods, and provide implementations of these methods for particular types, hence

making these types members of the class, in a compositional way. The implemen-

tations are called instances. We illustrate type class mechanism using Haskell.

Example 1.1 (Farka et al. (2016), Fu et al. (2016), Hall et al. (1996))

It is convenient to define equality for all data structures in a uniform way. In

Haskell, this is achieved by introducing the class Eq:

class Eq a where

eq : : a → a → Bool

and then declaring any necessary instances of the class, e.g. for pairs and integers:

instance (Eq x, Eq y) ⇒ Eq (x, y) where

eq (x1, y1) (x2, y2) = eq x1 x2 && eq y1 y2

instance Eq Int where

5



1.2. Trustworthiness of Automation

eq x y = primitiveIntEq x y

The distinguishing feature is that instances are defined separately from use sites

of methods. Type-class resolution3 is then used to infer a proper composition of

instances, while hiding the technical details. The automated mechanism creates an

internal object, a dictionary, that describes how to compose instances in order to

execute the type class method in the use site.

Example 1.2 (Farka et al. (2016))

For example, it is required that Eq (Int, Int) is a valid instance of type class Eq in

order to type check the following function:

test : : Eq (Int, Int) ⇒ Bool

test = eq (1,2) (1,2)

The function test type checks since a comparison of pairs of integers can be sim-

plified into a comparison of integers using the instance (Eq x, Eq y)⇒ Eq (x , y)

in Example 1.1. Comparisons of integers are than carried out using the instance

Eq Int. In terms of a concrete system, GHC4 (The GHC Team, 2016) output the

following message:

[1 of 1] Compiling Example1_2 ( Example1_2.hs, Example1_2.o )

The initial work (Hall et al., 1996, Jones, 1994, Peyton Jones et al., 1997) on type

classes focused on practical design of the language feature. This work did not make

it explicit that type class resolution resembles SLD-resolution (cf. Lloyd, 1987) that

is known from logic programming although it had been a long-standing folklore (cf.

Farka et al., 2016). Fu and Komendantskaya (2017) extended the connection further:

the constructed dictionary is an instance of a proof term and type-class resolution

can be treated as an employment of proof-relevant Horn-clause resolution.

Example 1.3 (Farka et al. (2016), Fu et al. (2016))

The type class instance declarations in Example 1.1 can be viewed as the following

two Horn clauses that are annotated with atomic symbols κpair and κint:
3Properly, the name should be type class instance resolution as it is instances that are being

resolved. We will follow the common practice and omit the reference to instances.
4The version we use in this thesis is The Glorious Glasgow Haskell Compilation System,

version 8.0.1

6



1.3. Constructive Approach to Automation

κpair : eq(x), eq(y) ⇒ eq(pair(x, y))

κint : ⇒ eq(int)

Then, given the query eq(pair(int, int)) that corresponds to requirement Eq (Int

, Int) in Example 1.2 SLD-resolution terminates successfully with the following

sequence of resolution steps:

eq(pair(int, int))→

by the clause κpair

eq(int), eq(int)→

by the clause κint

eq(int)→

by the clause κint

∅

The proof term κpairκintκint corresponds to a dictionary constructed by the compiler.

It is treated internally as an executable function.

Moreover, the explicit treatment of type-class resolution as Horn-clause resolu-

tion gives a firm basis for semantical analysis. The models of Horn-clause resolution

serve as a semantics of the type-class mechanism.

1.3 Constructive Approach to Automation

A primary goal of this thesis is to establish a simple, conceptual framework for proof-

relevant and constructive automated theorem proving in type inference. This is a

7



1.4. Contributions

truly novel and unique goal; no existing system carries out type inference and term

synthesis in a way that can be formally related to its specification. In most cases,

these systems are not even formally specified (e.g. Agda (The Agda Development

Team, 2019) and Idris (Brady, 2013)). When there is a formal specification of the

system being developed (e.g. Coq (Sozeau et al., 2019)), type inference is linked to

underlying, uncertified code-base and subject to assumptions of soundness of the

meta-theory (cf. Section 5.4).

The automated theorem proving we consider is resolution in extensions of first-

order Horn-clause logic. First order Horn-clause logic has been long understood as

an expressive and constructive language (Dyckhoff and Negri, 2015). It’s expressiv-

ity follows from Glivenko’s theorem (Glivenko, 1929) on double-negation translation

hence it can support classical logic. It has a wide use in program verification (cf. a

survey by Bjørner et al., 2015, Burn et al., 2018, Ong and Wagner, 2019). Miller and

Nadathur (2012) have shown that its semantics extends seamlessly to higher order

terms and to hereditary Harrop formulae in a way that maintains the constructive

nature of the logic. The importance of these extensions is demonstrated by the con-

tinuing work on type classes (Bottu et al., 2017, Fu et al., 2016) and by applications

in coinductive settings (Basold et al., 2018). We thus chose to build our framework

on the higher-order hereditary Harrop logic by its instrumentation with proof terms.

The complementary goal of this thesis is to demonstrate the advantages of such a

framework by its application to examples we described in Section 1.2.1.

1.4 Contributions

The technical contributions in this thesis span several areas.

Proof-relevant resolution This thesis develops a systematic and generic ap-

proach to proof relevant resolution. In particular:

• Throughout this introduction and in Chapter 3, we identify higher-order Horn-

clause (hohc) and hereditary Harrop logics (hohh) as the appropriate languages

for the framework for proof-relevant resolution. In Chapter 3, we instrument

the uniform proof (Miller and Nadathur, 2012) semantics of hohc and hohh

with proof terms.

8



1.4. Contributions

• In Chapter 3, we develop a small-step operational semantics of proof-relevant

hohc and hohh.

• In Chapter 4, we show soundness of the small-step operational semantics w.r.t.

the uniform proof semantics.

Let us point out here that the framework created by the language of the logics and

the small-step operational and the uniform proof semantics is the primary object

of the interest of this thesis. As is customary in the field of logic, it is an object

worth studying in its own right (cf. Agazzi (1981) on methodology of logic and

empirical sciences) and such study has not been carried out in literature yet. We

show applications of the general framework in two settings solely for the purpose

of motivating its practicality but, this being a theoretic thesis in the field of formal

logic and type theory, we do not concern ourselves with particular implementational

details. These are objects of study of empirical science rather then a philosophical

discipline like formal logic and type theory (ibid.) thus we are under no obligation

to bind the framework to any actual implementation of real systems as these are

ephemeral (Leemans et al., 2018) and only of marginal interest. Where any com-

parison to a real system is carried out it should be read as for the purpose of easing

understanding of abstract theory. That being said, the actual applications on which

we carry out our two case studies are the following:

Type inference and term synthesis in dependent type theory.

• In Chapter 5, we present a novel approach to type inference and term synthesis

for a first-order type theory with dependent types that is simpler than existing

methods (e.g. Pientka and Dunfield, 2010).

• In Section 5.2, we prove that generation of goals and logic programs from the

extended language is decidable.

• In Section 5.3, we show that proof-relevant first-order Horn-clause resolution

gives an appropriate inference mechanism for dependently typed languages:

first, it is sound with respect to type checking in LF; secondly, the proof term

construction alongside the resolution trace allows to reconstruct derivations of

well-typedness judgements.

• In Chapter 7, we describe an architecture for a type inference and term syn-

9



1.5. Structure of the Thesis

thesis engine of a dependently typed language that allows self-hosting.

• In Chapter 7, we report on an implementation that uses such architecture and

hence manifests feasibility of the approach.

Type classes The semantical analysis of proof-relevant type class resolution pro-

vides the following contributions:

• In Section 8.2, we establish that type class resolution and its two recent core-

cursive extensions (Fu et al., 2016, Lämmel and Peyton Jones, 2005) are sound

relative to the standard (Herbrand model) semantics of logic programming.

• In Section 8.3, we show that these extensions are indeed corecursive, i.e. that

they are more accurately modelled by the greatest Herbrand model semantics

rather than by the least Herbrand model semantics.

• In Section 8.4, we discuss whether the context update technique given by Fu

et al. (2016) can be reapplied to logic programming and can be re-used in its

corecursive dialects such as CoLP (Simon et al., 2007) and CoALP (Komen-

dantskaya and Johann, 2015) or, even broader, whether it can be incorporated

into program transformation techniques (De Angelis et al., 2015).

1.5 Structure of the Thesis

This chapter provides a general motivation for a proof-relevant, constructive frame-

work for automated theorem proving.

Chapter 2 gives an overview of preliminaries. First, we give a language of Horn-

clause logic that is used throughout the thesis. Secondly, we recall the notion of

Herbrand models for logic programming that is used for semantical analysis of type

classes. Finally, we give a nameless formulation of LF, which is the language that

is subject to type inference and term synthesis in Chapter 5.

Chapter 3 introduces the general framework of proof-relevant resolution. We

give a big-step operational semantics that is based on the uniform proof semantics

and a small-step operational semantics of proof-relevant resolution in Horn-clause

logic. We generalise the language of the framework to hereditary Harrop formulae

and extend the semantics accordingly.

10
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Chapter 4 show soundness of the small-step semantics w.r.t. the big step-

semantics. The result is achieved by introducing a logical relation.

Chapter 5 show an application of our framework to type inference and term

synthesis in nameless LF, a first-order type theory with dependent types.

Chapter 8 carries out a semantical analysis of soundness of proof-relevant type

class resolution. We show soundness and completeness, or the lack of it, for different

notions of inductive and coinductive interpretation of type-class resolution.

Chapter 9 concludes the thesis and discusses related and future work.

1.6 Declaration of Authorship

Chapter 2 contains background information. The definitions and results can be

found in cited literature but the presentation has been adjusted to fit the scope of

this thesis.

The contents of Chapters 3 and 4 are original work of the author. Chapters 5 and

8 are based on joint work with Ekaterina Komendantskaya and Kevin Hammond,

who were the author’s supervisors. Both the type inference and term synthesis

approach (Farka et al., 2018) and the semantical analysis of type class resolution

(Farka et al., 2016) have been published before. An initial exposition of applications

of proof relevant resolution in a single framework that precedes the ideas behind this

thesis has also been published (Farka, 2018).
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2 Preliminaries

In this chapter, we discuss preliminaries that are needed in our development in the

rest of the thesis. First, we introduce term language and Horn-clause logic that is

studied and extended in this thesis. Secondly, we describe Herbrand models as a

simple and convenient tool for the analysis of inductive and coinductive soundness

of type class resolution we carry out in Chapter 8. Next, we describe a nameless

variant of Logical Framework (LF) that is suitable for automated type inference and

term synthesis that we introduce in Chapter 5.

2.1 Term Language

In this section, we introduce the language of terms that is used and extended in

this thesis. The language is based on LF (Harper et al., 1993, Harper and Pfenning,

2005).

2.1.1 Syntax

The syntax of our language features separate terms, types, and kinds. Terms of our

language consist of term constants, variables, abstraction and application and are

classified by types. We let term constants to range over the set C and use identifiers

c, d to denote individual constants. We let variables to range over the set V and

use identifiers x, y for variables in general and identifiers X, Y for variables that

are subject to unification. Types consist of type constants, type application and

formation of dependent type families. Types are classified by kinds. We let type

constants to range over the set A. We use identifiers a, p, and q to denote individual

constants in A unless stated otherwise. Kinds consists of two sorts, o and type, and

formation of kind Πx : A.L that classifies dependent type families. The intended
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2.1. Term Language

meaning of the sorts is to distinguish between types that stand in the position of

formulae—that is the meaning of the sort o—and in the position of types—that

is the meaning of the sort type—in the proof-relevant resolution. Formally, the

language is given as follows.

Definition 2.1 (Syntax)

C 3 c, d term constants

A 3 a, p, q type constants

V 3 x, y,X, Y variables

t 3M,N := c | x | λx : A.N |M N terms

T 3 A,B := a | Πx : A.B | AM types

K 3 L := type | o | Πx : A.L kinds

Terms in t are denoted using identifiersM , N , types in T are denoted using identifiers

A, B and kinds in K are denoted using the identifier L. We use A → B as an

abbreviation for the type Πx : A.B when x does not occur in B and similarly for

kinds.

Example 2.2

Let zero, pair be term constants in C. Let Eq, Pair, int be type constants in A.

Then zero and pairx y are terms and Pair int int and Eqx are types.

In order to state well-formedness of terms, types, and kinds we define signatures

and contexts. We say that variable x is bound in a syntactic object O if there is

a subterm λx : A.t of O. In order to avoid excessive technical details regarding

renaming and freshness, we assume that constants and variable names are always

unique. A variable that is not bound in a syntactic object is free. We define a

function var(−) that acts on syntactic objects and extracts the set of free variables.

We say that a syntactic object is ground if it contains no free variables.

13



2.1. Term Language

Definition 2.3 (Signatures and contexts)

Sgn 3 S := · | S, p : L | S, c : A signatures

Ctx 3 Γ := · | Γ, x : A contexts

Signatures assign types to term constants and kinds to type constants. Contexts

assign types to variables. We use notation S1,S2 for a signature S1, p1 : L1, . . . , Ln

where S2 = p1 : L1, . . . , Ln and similarly for contexts.

Example 2.4

Consider constants in Example 2.2. Then

·, int : type, zero : int, Pair : type, pair : int→ int→ type, eq : o

is a signature. That is, it is an empty signature · extended with a symbol int of

kind type etc. We denote this signature SPair. Similarly,

·, x : int, y : int

is a context.

When the signature is non-empty, e.g. S = ·, int : type, we write S = int :

type. Similarly for contexts.

Substitution

Next we define substitution of a variable with a term.

Definition 2.5 (Substitution)

type[M/x] = type

o[M/x] = o

(Πy : A.L)[M/x] = Πy : A[M/x].L[M/x]
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2.1. Term Language

a[M/x] = a

(Πy : A.B)[M/x] = Πy : A[M/x].B[M/x]

(AN)[M/x] = A[M/x]N [M/x]

c[M/x] = c

y[M/x] = M if x = y

= y otherwise

(AN)[M/x] = (A[M/x]) (N [M/x])

(λy.A : N)[M/x] = λy : A[M/x].N [M/x]

We define a simultaneous substitution on a set of distinct variables x1 to xn:

Definition 2.6

Subst 3 σ, τ, θ ::= {M1/x1, . . . ,Mn/xn} simultaneous substitution

We use σ, τ and θ to denote simultaneous substitutions. A simultaneous substitution

{M1/x1, . . . ,Mn/xn} is called ground if all terms M1, …, Mn are ground. We refer

to a simultaneous substitution as a substitution where there is no risk of confusion.

Since we assume that all variable names are unique, application of simultaneous

substitution to a term is a straightforward extension of Definition 2.5.

Definition 2.7

The application of a simultaneous substitution {M1/x1, . . .Mn/xn} to a term N or

a type A is defined as substituting each variable xi in N or A respectively with the

term Mi.

We denote application of a substitution σ to a term M or to a type A by σM and σA

respectively. A substitution σ is called grounding for a term M if σM is a ground

term, and similarly for a type. A substitution is grounding if it is grounding for
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2.1. Term Language

any term. A simultaneous substitution {M1/x1, . . . ,Mn/xn}, as a syntactic object,

gives rise to a (partial) mapping that, for each i, assigns Mi to xi. We will use the

substitution and the assignment interchangeably.

Definition 2.8

A composition of a substitution σ = {M1/x1, . . .Mn/xn} with a substitution τ =

{N1/y1, . . . , Nm/ym} is defined as

{M1/x1, . . .Mn/xn, σN1/y1, . . . , σNm/ym}

Note that the usual condition on variables x1 to xn being distinct is subsumed by

our implicit assumption of uniqueness of variable names. We denote composition of

substitutions σ and τ by σ◦τ . Composition of substitutions is clearly a substitution.

Example 2.9

Consider constants in Example 2.2. Then σ = {zero/x, pair z z/y} and τ =

{zero/z} are substitutions. The term σ(pairx y) = pair zero (pair z z) is ap-

plication of the substitution σ to the term pairx y. The composition of substi-

tutions τ and σ is the substitution τ ◦ σ = {zero/z, zero/x, pair zero zero/y}.

The substitution τ ◦ σ is grounding for the term pairx y since σ ◦ τ(pairx y) =

pair zero (pair zero zero).

2.1.2 Typing and equality

Well-formedness of syntactic objects is given by the following judgements:

• ` S, for S a well-formed signature,

• S ` Γ, for Γ a well-formed context in a signature S,

• S,Γ ` L : kind, for L a well-formed kind in a signature S and a context Γ,

• S,Γ ` A : L, for A a well-formed type of a kind L in a signature S and a

context Γ, and

• S,Γ ` M : A, for M a well-formed term of a type A in a signature S and a

context Γ.

Definition 2.10

The well-formedness judgements for signatures and contexts are given in Figure 2.1.
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2.1. Term Language

` S

` ·
` S S; · ` L : kind

` S, a : L

` S S; · ` A : type

` S, c : A
S ` Γ

S ` ·
S ` Γ S; Γ ` x : type

S ` Γ, x : type

Figure 2.1: Well-formedness of signatures and contexts

S; Γ `M : A

c : A ∈ S S ` Γ
S; Γ ` c : A

x : A ∈ Γ S ` Γ
S; Γ ` x : A

S; Γ `M : Πx : A.B S; Γ ` N : A

S; Γ `M N : B[N/x]

S; Γ ` A : type Γ, x : A `M : B

S; Γ ` λx : A.M : Πx : A.B

Figure 2.2: Well-formedness of terms

S; Γ ` A : L

p : L ∈ S S ` Γ

S; Γ ` c : L

S; Γ ` A : type S; Γ, A ` B : L

S; Γ ` Πx : A.B : Πx : A.L

S; Γ `M : Πx : A.B S; Γ ` N : A

S; Γ `MN : B[N/x]

Figure 2.3: Well-formedness of types

S; Γ ` A : L

S ` Γ
S; Γ ` type : kind

S ` Γ
S; Γ ` o : kind

S; Γ ` A : type S; Γ, A ` L : kind

S; Γ ` Πx : A.L : kind

Figure 2.4: Well-formedness of kinds
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2.1. Term Language

Well-formedness of terms, types and kinds is given in Figures 2.2, 2.3, and 2.4.

We will also consider well-formedness of simultaneous substitutions that pre-

serves well-formedness of objects under substitution:

Definition 2.11 (Shape of substitution)

A simultaneous substitution {M1/x1, · · · ,Mn/xn} is well-formed in a a signature S

and a context Γ = x1 : A1, . . . , xn : An and of shape Γ′, for a context Γ′, if, for each

i, S; Γ `Mi : Ai.

We use S; Γ ` σ : Γ′ to denote that σ is a well-formed substitution in a signature S

and a context Γ of shape Γ′.

Example 2.12

Consider the signature SPair in Example 2.4. It is easy to show that ·; int :

type, zero : int, Pair : type ` pair : int → int → type. Hence the signa-

ture SPair is well-formed. Similarly, the term pairx y is well-formed in signature

SPair and context x : int, y : int.

Further, there is a notion of definitional equality of terms, types and kinds. The

equality is given by the following judgements:

• S; Γ ` L ≡ L′ : kind for a kind L equal to a kind L′,

• S; Γ ` A ≡ B : L for a type A equal to a type B at a kind L, and

• S; Γ `M ≡ N : A for a term A equal to a term N at a type B.

The notion of equality we consider is the βη-conversion. Since this notion of equality

is standard in literature, we do not provide a definition of the appropriate judgements

(cf. Harper and Pfenning, 2005).

We state some metatheoretic properties of the calculus that are used in the rest

of this chapter. Proofs of these properties for standard LF can be found in the liter-

ature (cf. Harper and Pfenning (2005)). Due to the large number of well-formedness

judgements of LF and due to the fact that these judgements are mutually defined,

proofs of the following properties are rather large and require a substantial develop-

ment of an apparatus of auxiliary lemmata. Our language differs only in presence

of an additional sort o that for the purpose of meta-theoretical properties below

behaves like the sort type and does not change the nature of the proofs. Therefore,

we omit the proofs here as these can be easily recovered from the corresponding
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2.1. Term Language

proofs for LF.

Theorem 2.13

1. (Unicity of Types) If S; Γ ` M : A1 and S; Γ ` M : A2 then S; Γ ` A1 ≡ A2 :

L.

2. (Substitutivity) If S; Γ, x : A ` I and S; Γ `M : A then S; Γ ` I[M/x] where

I is any right side of a judgement that admits substitution.

Proposition 2.14

1. If S1,S2; Γ `M : B and ` S1, c : A,S2 then S1, c : A,S2; Γ `M : B.

2. If S; Γ1,Γ2 `M : B and S ` Γ1, x : A,Γ2 then S; Γ1, x : A,Γ2 `M : B.

Proposition 2.15

1. If S; Γ ` A : L and x 6∈ Γ then S; Γ ` A[M/x] : L.

Judgements of LF, and consequently of our language, admit several properties

that are generally referred to as implicit syntactic validity. For the purpose of this

thesis, we require the following theorem:

Theorem 2.16 (Implicit syntactic validity)

• If S ` Γ then ` S, and

• if S; Γ ` A ≡ B : L then S ` Γ.

Let us note that we set up well-formedness in such a way that we can recover

notions familiar from (typed) logic programming. First, type constants in a signature

that are of kind Πx1 : A1.(· · · (Πxn : An. o) · · · ) where each Ai is of kind type

can be regarded as predicates. Similarly, term constants in the signature can be

regarded as function symbols. Atomic formulae, or atoms then are the expressions

in the syntactic class of types that are well-formed and of kind o. This intuition is

formalised using the following lemma:

Lemma 2.17 (Head positon symbol)
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1. If S; Γ ` A : (Πx1 : A1. . . . (Πxn : An. o) . . . )

then A is equal to ((cNn+1) . . . Nm) and

c is of a kind (ΠA1. . . . (ΠAm. o) . . . ).

2. If S; Γ ` A : (Πx1 : A1. . . . (Πxn : An. type) . . . )

then A is equal to ((cNn+1) . . . Nm) and

c is of a kind (ΠA1. . . . (ΠAm. type) . . . ).

Proof. (Part 1) By induction on the derivation of the judgement.

• Let the derivation be a : L ∈ S S ` Γ
S; Γ ` a : L

. Then the lemma holds trivially.

• Let the derivation be S; Γ ` A : (Πxi+1 : Ai+1.L) S; Γ ` Ni+1 : Ai+1

S; Γ ` ANi+1 : L[Ni+1/xi+1]
.

From the induction assumption A is equal to ((cNn+1) . . . Ni) and c is of

a kind (Πx1 : A1. . . . (Πxi+1 : Ai+1.(. . . . o)) . . . ). Hence ANi+1 is equal to

((cNn+1) . . . Ni)Ni+1 and c is of the required kind.

(Part 2) As in Part 1 mutatis mutandis.

A well-formed type of kind o then corresponds to the intuitive understanding of an

atomic formula, that is a predicate symbol that is applied to a number of terms.

Corollary 2.18

If S; Γ ` A : o then A is of shape ((pN1) . . . Nn) and p is of kind (Πx1 : A1. . . . (Πxn :

An. o) . . . ).

2.2 Horn-Clause Logic

We now move on to definition of expressions that constitute valid programs and

goals. The syntactic classes of clauses and goals are mutually defined as follows:

Definition 2.19 (Syntax of goals and clauses)

D 3 D := A | A⇒ D | ∀X : A.D clauses

G 3 G := A | ∃X : A.G goals
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2.2. Horn-Clause Logic

S; Γ ` D : o

S; Γ ` A : o S; Γ ` D : o

S; Γ ` A⇒ D : o

S; Γ, X : A ` D : o

S; Γ ` ∀X : A.D : o

S; Γ ` G : o

S; Γ, X : A `M : o

S; Γ ` ∃X : A.M : o

Figure 2.5: Well formedness of clauses and goals

The clauses in D are denoted by identifier D and consist of atomic formulae

A, implication ⇒, and universal quantification over a clause. The goals in G are

denoted by identifier G and consist of atomic formulae and existential quantification.

Implication and quantification have the usual meaning. For a clause, an existential

variable is a variable that does not occur in the right-most atomic formula of the

clause. We use notation G ⇐ D for a Horn clause D ⇒ G where such notation

facilitates reading of the clause or a logic program containing such clauses.

Example 2.20

Consider constants in Example 2.2. Then ∀x : int.∀y : int.eqx ⇒ eq y ⇒

eq (pairx y) and eq zero are Horn clauses.

To ensure that clauses and goals indeed consist of atomic formulae in positions

of types we introduce further well-formedness judgements:

• S; Γ ` D : o, for D a well-formed clause in signature S and context Γ, and

• S; Γ ` G : o, for G a well-formed goal in signature S and context Γ.

These are intended to be read as extension of well-formedness of types and terms to

formulae. The judgements are given in Figure 2.5.

Definition 2.21 (Well formed clauses and goals)

A clause D is well formed in S if S; · ` D : o can be derived. A goal G is well

formed in S if S; · ` G : o can be derived.

Our choice of syntax of Horn-clause logic is one of several possible definitions.

Our motivation for choosing this definition is to minimise the number of logical

connectives without compromising expressivity of the system. Thus we omit logical

conjunctions and disjunctions. Reducing the number of logical connectives simplifies
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2.2. Horn-Clause Logic

our exposition of its semantics and reduces the number of cases that are necessary

to consider in the proof of its soundness. However, it is convenient to allow at

least logical conjunctions in goals and Horn clauses to simplify presentation in the

rest of this thesis. Different program transformation methods that preserve logical

equivalence and their impact on size of programs and derivations are studied in

literature (cf. Miller and Nadathur, 2012, Section 2.6.2). For the sake of simplicity,

in the remainder of this thesis we employ the following syntactic abbreviation for

Horn clauses:

⇒ A = A

A1 ∧ · · · ∧ An ⇒ A = A1 ⇒ (A2 ∧ · · · ∧ An ⇒ A)

In such a case, the atom A is called a head of the clause and the atoms A1, …, An

are called a body of the clause. With this notation, we follow the standard practice

and we routinely understand that the clause is implicitly universally quantified.

When we use a conjunctive goal pM1 · · · Mn ∧ q N1 · · · Nm we understand that the

signature is implicitly extended with a new predicate symbol r of the appropriate

kind. The program is implicitly extended with the following clause:

∀x1. · · · ∀xn.∀y1. · · · .∀ym.(p x1 · · · xn ∧ q y1 · · · ym ⇒ r x1 · · · xn y1 · · · ym)

We then understand the conjunctive goal to stand for rM1 · · · MnN1 · · · Nm.

The properties stated in Proposition 2.14 can be extended to well-formed clauses

and goals.

Proposition 2.22 (Signature wekening)

1. If S1,S2; Γ ` D : o and ` S1, c : A,S2 then S1, c : A,S2; Γ ` D : o.

2. If S; Γ1,Γ2 ` D : o and S ` Γ1, x : A,Γ2 then S; Γ1, x : A,Γ2 ` D : o.

3. If S1,S2; Γ ` G : o and ` S1, c : A,S2 then S1, c : A,S2; Γ ` G : o.

4. If S; Γ1,Γ2 ` G : o and S ` Γ1, x : A,Γ2 then S; Γ1, x : A,Γ2 ` G : o.
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2.3. Models of Logic Programs

Similarly, the property of Proposition 2.15 can be extended to clauses and goals:

Proposition 2.23

1. If S; Γ ` D : o and x 6∈ Γ then S; Γ ` D[M/x] : o.

2. If S; Γ ` G : o and x 6∈ Γ then S; Γ ` G[M/x] : o.

3. If S; Γ ` D : o and x 6∈ Γ then S; Γ ` D[M/x] ≡ D : o.

Finally, we define logic programs as collections of clauses.

Definition 2.24 (Programs)

P 3 P := · | P , D programs

For the purpose of this section, we implicitly assume that programs consists only of

well-formed clauses.

Example 2.25

Returning to Example 1.3 and ignoring the annotating symbols,

Ppair = ·, ∀x : int.∀y : int.eqx⇒ eq y ⇒ eq (pairx y), eq(int)

is a logic program. PPair consists of clauses that are well-formed in signature SPair.

When the program is non-empty, we omit the leading empty program, similarly

to notation for signatures and contexts.

2.3 Models of Logic Programs

In our analysis of soundness of type class resolution in Chapter 8, we make use of

the least and the greatest Herbrand models. The models are defined in the standard

way, that is for the first-order, untyped language.

In this section, we restrict terms of the language that we introduced in the

previous section:

Definition 2.26 (First-order syntax)
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2.3. Models of Logic Programs

t 3M,N := c | x |M N terms

Other syntactic objects of the language remain the same as in the previous section.

Note that the grammar that gives syntax of first-order terms is a sub-grammar of

the grammar that gives terms in the previous section. Hence the the well-formedness

and judgemental equality is preserved. To stay close to the usual presentation of

untyped logic programming, we will also employ implicit quantification. We consider

all free variables in a goal to be bound by an implicit existential quantifier and all

free variables in a definite clause to be bound by an implicit universal quantifier.

We reconstruct the notion of an untyped language by considering only signatures

in Sgn that contain a single type constant α of kind type. We use Σ to denote such

signatures. Term constants in Σ of type (Πx1 : α. . . . (Πxn : α. type) . . . ) represent

function symbols of arity n, and similarly term constants of type (Πx1 : α. . . . (Πxn :

α. o) . . . ) represent predicate symbols of arity n. Note that, for an untyped language,

the order of implicit quantifiers is unimportant. Since the types in context cannot

depend on the previous variables, it is easy to derive admissibility of the structural

rule for swapping. Hence, the implicit quantifiers can be arbitrarily reordered.

Definition 2.27

Given a signature Σ, the Herbrand universe is the set of all ground terms over Σ.

We use UΣ to denote the Herbrand universe over signature Σ.

Definition 2.28

Let UΣ be a Herbrand universe. The Herbrand base is the set of all atoms consisting

of predicate symbols in Σ and ground terms in UΣ.

We use BΣ to denote a Herbrand base over signature Σ.

Example 2.29

The Herbrand universe UΣpair
is the set {int, pair(int, int),

pair(pair(int, int), int), pair(int, pair(int, int)), . . . }.

The Herbrand Base BΣpair
is the set {eq(int), eq(pair(int, int), . . .}.

Recall that, for a set A, 2A donotes the powerset of set A. Usign this notation,
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we introduce the following definition:

Definition 2.30 (Semantic operator)

Let P be a logic program over signature Σ. The mapping TP : 2BΣ → 2BΣ is defined

as follows. Let I be a subset of BΣ.

TP(I) = {A ∈ BΣ | B1 ∧ · · · ∧Bn ⇒ A is a ground instance of a clause in P ,

and {B1, . . . , Bn} ⊆ I}

We call TP the semantic operator. Note that the operator is monotone. The operator

gives inductive and coinductive interpretation to the logic program P .

Definition 2.31 (Least and greatest Herbrand models)

Let P be a logic program.

• The least Herbrand model is the least set MP ∈ BΣ such that

TP(MP) =MP , and

• the greatest Herbrand model is the greatest set M′
P ∈ BΣ such that

TP(M′
P) = M′

P .

That is, the least Herbrand model of P is the least fixed point of TP and the greatest

Herbrand model of P is the greatest fixed point. In general, fixed points of the

semantic operator TP are stable under formation of logical consequences of P and

models of P . By the virtue of TP being monotone and as a consequence of Knaster-

Tarski theorem (Knaster, 1928) fixed points of TP form a complete lattice and both

the greatest fixed point and the least fixed point exist.

Definition 2.32

Let P be a logic program with signature Σ.

TP ↑ 0 = ∅

TP ↑ α =

TP(TP(α− 1)) , α is a successor ordinal

lub{TP ↑ β | β < α} , otherwise
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TP ↓ 0 = BΣ

TP ↓ α =

TP(TP(α− 1)) , α is a successor ordinal

glb{TP ↓ β | β < α} , otherwise

Where lub is the least upper bound of a set and glb is the greatest lower bound of a

set.

We call these operators ordinal powers of TP . Ordinal powers can be used to give

standard characterisation of Herbrand models.

Proposition 2.33 (Characterisation of Herbrand models)

Let P be a logic program. Then MP = TP ↑ ω.

Proof of the proposition can be found in literature (Lloyd, 1987, Theorem 6.5, p.38).

We emphasise that the characterisation of least Herbrand models holds in general.

However, a converse characterisation does not hold.

Example 2.34

Consider a signature consisting of a unary function symbol f , a constant a, a

unary predicate symbol P and a nullary predicate symbol Q. Let P = P (x) ⇒

P (f(x)), P (y) ⇒ Q be a program that consists of two clauses. One of the clauses

contains an existential variable. Then TP ↓ ω = glb{TP ↓ β | β < ω} = {Q}.

However, this set is not a fixed point of TP and there is necessary one more application

of TP . Indeed, TP({Q}) = ∅ is the greatest fixed point of TP , that is, M′
P = TP ↓

(ω + 1).

In general, the corresponding property does not hold for the greatest Herbrand

model construction (Lloyd, 1987, p. 38). However, it does hold when we restrict

Horn-clause logic to a fragment that does not contain existential variables. We

assume the restriction in the remainder of this section. Lloyd (1987) observed that

this restriction implies that the TP operator converges in at most ω steps although

he did not provide a proof. We state and prove the property here.

Proposition 2.35
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Let P be a logic program without existential variables. Then M′
P = TP ↓ ω.

Proof. By contradiction. Consider a program P and the set I = TP ↓ ω. Assume

that TP(I) 6= I. Then there is a ground atom A such that A ∈ I and A 6∈ TP(I).

Consider all clauses in P such that A is an instance of a head of such clause. Since

there are no existential variables each instance of a head uniquely identifies instances

of atoms in the body of the clause and these instances are ground. Call the set of

all such identified instances of atoms in the bodies of the clauses a support S.

Since A 6∈ TP(I) then S 6⊆ I and there is n < ω such that S 6⊆ TP ↓ n. Hence

A 6∈ TP ↓ (n + 1) and A 6∈ TP ↓ ω which is a contradiction and I is a fixed point.

For any fixed point J , J ⊆ BΣ and from monotonicity of TP follows that J ⊆ I.

Hence I is the greatest fixed point.

The above theorem provides a characterisation of greatest Herbrand models for the

class of Horn clauses without existential variables that we consider here.

The validity of a formula in a model is defined as usual.

Definition 2.36

An atomic formula is valid in a model I if and only if for any grounding substitution

σ, we have σF ∈ I. A Horn clause B1 ∧ · · · ∧ Bn ⇒ A is valid in I if for any

substitution σ, if σB1, …, σBn are valid in I then σA is valid in I.

We use the notation P �ind F to denote that a formula F is valid in MP and

P �coind F to denote that a formula F is valid inM′
P .

Lemma 2.37

Let P be a logic program and let σ be a substitution. The following holds:

1. If ( ⇒ A) ∈ P then both P �ind σA and P �coind σA.

2. If, for all i, P �ind σBi and (B1 ∧ · · · ∧Bn ⇒ A) ∈ P then P �ind σA.

3. If, for all i, P �coind σBi and (B1 ∧ · · · ∧Bn ⇒ A) ∈ P then P �coind σA.

Proof. a) Let P be a logic program such that ( ⇒ A) ∈ P . By Definition 2.30

of the semantic operator, for any grounding substitution τ , τA ∈ TP(MP). Since

MP is a fixed point of TP also τA ∈MP and by definition of validity of a formula,

P �ind A and also, for any substitution σ, P �ind σA. Since we do not use the fact

thatMP is the least fixed point the proof of the coinductive case is identical.
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b) Let P , A, B1, …, Bn be as above. Assume, for all i, P �ind Bi whence, for

all i, for any grounding substitution σ, σBi ∈ MP . By Definition 2.30 of semantic

operator, σA ∈ TP(MP). SinceMP is a fixed point also σA ∈MP and P �ind σA.
c) Note that the proof of b) does not make any use of the fact thatMP is the

least fixed point. Therefore use the proofs of b) mutatis mutandis.

Discussion

Let us make a note on some properties of greatest Herbrand models. The proper-

ties will drive our choice of coinductive models in our analysis in Chapter 8. The

literature (Lloyd, 1987) offers two kinds of greatest Herbrand model construction

for logic programs. The greatest Herbrand model of a program P is obtained as the

greatest fixed point of the semantic operator TP on the Herbrand base of P , i.e. on

the set of all finite ground atomic formulae formed in the signature of the program

P . The greatest complete Herbrand model of a program P is obtained as the great-

est fixed point of the semantic operator T ′
P on the complete Herbrand base. The

complete Herbrand base is defined as the set of all finite and infinite ground atomic

formulae formed in the signature of the program P . Usually, greatest complete

Herbrand models are preferred in the literature on coinduction in logic program-

ming (Komendantskaya and Johann, 2015, Lloyd, 1987, Simon et al., 2007). There

are two reasons for such bias: first, T ′
P reaches its greatest fixed point in at most ω

steps due to compactness of the complete Herbrand base. TP does not posses this

property in general as we demonstrated in Example 2.34. However, the prohibition

of existential variables we impose on Horn clauses means that the greatest Herbrand

models regain the same advantage. This is the subject of Proposition 2.35.

2.4 Nameless Logical Framework

Standard expositions of a type theory use variable names. However, variable names

carry a burden when implementing such a type theory. For example, types need

to be checked up to α-equivalence of bound variables and fresh names need to be

introduced in order to expand terms to η-long form. In Chapter 5, we commit to a

version of Logical Framework (LF) (Harper et al., 1993) as our choice of first-order
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dependent type theory that uses de Bruijn indices instead of explicit names; we call

such LF nameless. The use de Bruijn indices allows us to avoid the above problems

when checking the equality of terms and types and when synthesising new terms

and types. In this section, we present syntax and typing judgements of nameless

LF. Our presentation follows Harper and Pfenning (2005) but employs de Bruijn

indices and explicit substitutions (Abadi et al., 1990) instead of names.

2.4.1 Syntax

The LF is a first-order dependent type theory. The syntax is separated into three

levels of objects. There are separate levels of kinds, of types and of terms.

We use natural numbers in N for de Bruijn indices ι, ι1, . . . , and we denote

successor by σ(−). We assume countably infinite disjoint sets C of term constants,

and A of type constants. We denote elements of C by c, c′, etc., and elements of A

by α, β, etc. We define terms, types, and kinds as well as signatures and contexts of

LF.

Definition 2.38

t 3M,N ::= c | N | AM | λA.M terms

T 3 A,B ::= α | AM | ΠA.B types

K 3 L ::= type | ΠA.L kinds

Sgn 3 S ::= · | S, c : A | S, α : L signatures

Ctx 3 Γ ::= · | Γ, A contexts

Terms consist of term constants, de Bruijn indices, function application and function

abstraction. We use identifiers M , N to denote terms in t. Types consists of type

constants, type application, and formation of a dependent type family. We do not
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consider type level abstraction. Note that this does not decrease expressive power of

the calculus (Geuvers and Barendsen, 1999). We use identifiers A, B to denote types

in T . Kinds are a technical device to classify types and include a distinguished kind

type and the kind of dependent type families. We use the identifier L to denote kinds

in K. Signatures store information about types and kinds assigned to term and type

constants respectively. Contexts store information about types of variables. Since

we use de Bruijn indices for variables, variable name is not stored in a context.

We use S for signatures and Γ for contexts. We use parenthesis for the sake of

readability as is standard.

Example 2.39

Let bool and ≡bool be type constants. Let tt, ff, and refl be term constants. Then

Π bool .(Π bool . type) is a kind, Π bool .((≡bool 0)0) is a type, and (λ bool . refl 0) tt

and refl tt are terms.

Also, ·, bool : type, tt : bool, ff : bool,≡bool : Π bool .(Π bool . type) is a

signature and ·, bool is a context.

De Bruijn indices (Abadi et al., 1990) are manipulated using two operations.

Shifting recursively traverses a term, a type, or a kind and increases all indices

greater or equal than ι by one.

Definition 2.40 (Shifting)

Term and type shifting, denoted by (−)↑ι is defined as follows:

c↑ι = c

(λA.M)↑ι = λA↑ι .M ↑σι

(MN)↑ι = (M ↑ι)(N ↑ι)

ι↑0 = σι

0↑σι = 0

σι↑σι′ = σ(ι↑ι′)
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α↑ι = α

(ΠA.B)↑ι = λA↑ι .B ↑σι

(AM)↑ι = (A↑ι)(M ↑ι)

Substitution with a term N and index ι replaces indices that are bound by the ι-th

binder while updating remaining indices. The index ι is increased when traversing

under a binder.

Definition 2.41 (Substitution)

Term and type substitution, denoted by (−)[N/ι] is defined as follows:

c[N/ι] = c

(λA.M)[N/ι] = λA[N/ι].M [N ↑0 /σι]

(M1M2)[N/ι] = (M1[N/ι])(M2[N/ι])

0[N/0] = N

0[N/σι] = 0

σι[N/0] = σι

σι[N/σι′] = σ(ι[N/ι′])

α[N/ι] = α

(ΠA.B)[N/ι] = λA[N/ι].B[(N ↑0)/σι]

(AM)[N/ι] = (A[N/ι])(M [N/ι])

Shifting with a greater index than zero and substitution for other indices than zero

will not be needed in many cases. For the sake of readability we introduce the
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following abbreviations:

Definition 2.42

A↑ def
= A↑0

M ↑ def
= M ↑0

A[N ]
def
= A[N/0]

M [N ]
def
= M [N/0]

We demonstrate shifting and substitution on an example.

Example 2.43

Consider the term (refl 0). Shifting of this term with index zero (refl 0) ↑0 is

the term (refl 1). A substitution of the term tt for variable 0 in this term that is

(refl 0)[tt /0] is the term refl tt.

Well-formedness of objects introduced by Definition 2.38 is stated by a means of

several judgements. In particular, we give equality in nameless LF as algorithmic,

following Harper and Pfenning (2005). In order to do so we define simple kinds,

simple types, simple signatures, and simple contexts.

Definition 2.44

K− 3 κ ::= κ | τ → κ simple kinds

T− 3 τ ::= a | τ → τ simple types

Sgn− 3 S− ::= · | S−, c : τ | S−, a : κ simple signatures

Ctx− 3 ∆ ::= · | ∆, τ simple contexts

32



2.4. Nameless Logical Framework

Algorithmic statement of equality uses simple types and simple kinds rather than

types and kinds as there are no dependencies on terms. We use identifiers κ for

simple kinds, τ for simple types, S− for simple signatures and ∆ for simple contexts.

The erasure from objects to corresponding simple objects, denoted (−)− is defined

as follows:

Definition 2.45 (Erasure)

(type)− = type

(ΠA.L)− = (A)− → (L)−

(α)− = α

(ΠA.B)− = (A)− → (B)−

(AM)− = (A)−

We conclude exposition of syntax of nameless LF with an example of simple

kinds, simple types and simple signatures and contexts.

Example 2.46

Consider constants given in Example 2.39. Then bool→ (bool→ type) is a simple

kind and bool → ≡bool is a simple type. These are results of erasure on kinds and

types given in Example 2.39.

Also, ·, bool : type, tt : bool, ff : bool,≡bool : bool → (bool → type) is a

simple signature and ·; bool is a simple context.

2.4.2 Typing and equality

Typing judgements of nameless LF and equality of objects are defined mutually.

We call these judgements commonly well-formedness judgements. The notion of

equality we consider is weak algorithmic equality (we refer to Harper and Pfenning

(2005) for details).
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S; Γ ` L : kind

S ` Γ ctx K-tyS; Γ ` type : kind

S; Γ ` A : type S; Γ, A ` L : kind
K-Π-introS; Γ ` ΠA.L : kind

Figure 2.6: Well-formedness of nameless kinds

S; Γ ` A : L

S ` Γ ctx α : L ∈ S T-conS; Γ ` α : L

S; Γ ` A : type S; Γ, A ` B : type
T-Π-introS; Γ ` ΠA.B : type

S; Γ ` A : ΠB.L S; Γ `M : B′ S−; Γ− ` B 
 B′ : type−
T-Π-elimS; Γ ` AM : L[M ]

Figure 2.7: Well-formedness of nameless types

The well-formedness of judgements are:

• S; Γ ` L : kind for L a well-formed kind,

• S; Γ ` A : L for A a well-formed type of a kind L,

• S; Γ `M : A for M a well-formed term of a type A,

• S−; ∆ ` A1 
 A2 : κ for A1 and A2 being equal types of a simple kind κ,

• S−; ∆ ` M1 
 M2 : τ for M1 and M2 being equal terms of a simple kind τ ,

and

• M
whr−→M ′ for a term M weak head reduces to term M ′.

Definition 2.47

The well-formedness judgements for kinds, types, and terms are given by inference

rules in Figures 2.6, 2.7, and 2.8.

The judgements defined in the above definition depend on the following two

judgements:

• ` S sig for S well-formed signature, and

• S ` Γ ctx for Γ well-formed context in signature S.

Definition 2.48

The well-formedness of signatures and contexts is given by inference rules in Fig-
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S; Γ `M : A

S ` Γ ctx c : A ∈ S conS; Γ ` c : A

S ` Γ, A ctx zeroS; Γ, A ` 0 : A↑

S; Γ ` ι : A succS; Γ, B ` σι : A↑

S; Γ ` A : type S; Γ, A `M : B
Π-introS; Γ ` λA.M : ΠA.B

S; Γ `M : ΠA.B S; Γ ` N : A′ S−; Γ− ` A
 A′ : type
Π-elimS; Γ `MN : B[N ]

Figure 2.8: Well-formedness of nameless terms

ure 2.9.

Example 2.49

Let S be the signature we introduced in Example 2.39. Then λ bool . refl 0 is a

well-formed term of type Π bool .≡bool 0 in the signature S and an empty context.

We show a part of a derivation of the judgement.

S ` · ctx
bool : type ∈ S
S; · ` bool : type

· · ·
S; ·, bool ` refl

: Π bool .(≡bool 0) 0

· · ·
S; ·, bool ` tt

: bool

S; ·, bool `
bool
 bool : type

S; ·, bool ` refl 0 : (≡bool 0) 0

S; · ` λ bool . refl 0 : Π bool .(≡bool 0) 0

Ellipsis stand for omitted parts of the judgement, which can be constructed in a

straightforward manner.

The above example demonstrates the fact that the well-formedness judgements of

terms, types and kinds, of signatures and contexts, and the equality judgements

are mutually recursively defined. In the next part we discuss judgements defining

equality of objects in nameless LF.

Equality

We consider algorithmic equality as the notion of equality for its convenience in

formalisation in Chapter 5. Equality of terms is informally decided as follows:

• two terms of function type are equal if their η-expansions are equal,
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` S sig

` · sig

` S sig S; · ` L : kind a 6∈ S
` S, a : L sig

` S sig S; · ` A : type c 6∈ S
` S, c : A sig

S ` Γ ctx

` S sig
S ` · ctx

S ` Γ ctx S; Γ ` A : type

` S; Γ, A ctx

Figure 2.9: Well-formedness of signatures and contexts

• two terms of base type are equal if their weak head-normal forms are equal,

and

• two terms of base type in weak head-normal form are equal if their heads are

equal and the corresponding arguments are equal.

This definition of equality required discriminating between objects of function

type and objects of base type. However, information about terms is not necessary

and the equality can be defined using simple types. We proceed with definition of

weak head-reduction.

Definition 2.50

Weak head reduction is given by inference rules in Figure 2.10.

The definition of equality follows the structure we gave in the informal account. The

type-directed phase is given as a judgement called algorithmic equality. It carries

out reduction of either of the terms that are subject to equality judgement, η-

expansion of terms of function type, and reduction to equality of weak head-normal

forms. Equality of weak head-normal forms is given as a judgement called structural

equality.

Definition 2.51

Algorithmic equality of terms and structural equality of terms are defined by inference

rules in Figures 2.11 and 2.12 respectively.
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M
whr−→M ′

(λA.M)N
whr−→M [N ]

M
whr−→M ′

MN
whr−→M ′N ′

Figure 2.10: Weak head reduction of terms

S−; ∆ `M ⇔M ′ : τ

M
whr−→M ′ S−; ∆ `M ′ ⇔ N : τ

S−; ∆ `M ⇔ N : τ

N
whr−→ N ′ S−; ∆ `M ⇔ N ′ : τ

S−; ∆ `M ⇔ N : τ

S−; ∆ `M ↔ N : τ

S−; ∆ `M ⇔ N : τ

S−; ∆, τ1 ` (M ↑) 0⇔ (N ↑) 0 : τ2
S−; ∆ `M ⇔ N : τ1 → τ2

Figure 2.11: Algorithmic equality of terms

The notion of equality of types is simplified due to the fact that we do not con-

sider abstraction on the level of types. The absence of abstraction means there is no

need for weak head reduction on the level of types and equality comprises decom-

posing of function type into equality of types and decomposing of type application

into equality of types and equality of term arguments. We refer to the equality as

weak algorithmic equality.

Definition 2.52

Weak algorithmic equality of types is defined by inference rules in Figure 2.13.

We conclude this section with an example concerning equality.

Example 2.53

Consider the signature S we introduced in Example 2.39. Then the term (λ bool . refl 0) tt

is equal to term refl tt in the simple signature S− and an empty simple context.

The following is a derivation of the equality judgement.
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S−; ∆ `M ↔ N : τ

` S sig
S−; ∆, τ ` 0↔ 0 : τ

S−; ∆ ` ι↔ ι′ : τ

S−; ∆, τ ′ ` σι↔ σι′ : τ

` S sig c : τ ∈ S−

S−; ∆ ` c↔ c : τ

S−; ∆ `M1 ↔ N1 : τ2 → τ1 S−; ∆ `M2 ⇔ N2 : τ2
S−; ∆ `M1M2 ↔ N1N2 : τ1

Figure 2.12: Structural equality of terms

S−; ∆ ` A
 A′ : κ

` S sig α : κ ∈ S−

S−; ∆ ` α
 α : κ

S−; ∆ ` A
 B : τ → κ S−; ∆ `M ⇔ N : τ

S−; ∆ ` AM 
 BN : κ

S−; ∆ ` A1 
 B1 : type S−; ∆, (A1)
− ` (A2 ↑)
 (B2 ↑) : type

S−; ∆ ` (ΠA1.A2)
 (ΠB1.B2) : type

Figure 2.13: Weak algorithmic equality of types
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(λ bool . refl 0) tt

whr−→ refl tt

· · ·
` S sig

refl : ≡bool

∈ S−

S−; · ` refl↔ refl

: bool→ ≡bool

· · ·
` S sig tt : bool ∈ S−

S−; · ` tt↔ tt : bool

S−; · ` refl tt↔ refl tt : ≡bool

S−; · ` refl tt⇔ refl tt : ≡bool

S−; · ` (λ bool . refl 0) tt⇔ refl tt : ≡bool

We omit derivations of well-formedness of the signature for the sake of brevity. This

is denoted by ellipsis.
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3 Proof-Relevant Resolution

In this chapter, we introduce the theory of proof relevant resolution. We develop the

theory in several steps. First, we give big-step (uniform proof-relevant) operational

semantics and a small-step operational semantics of Horn-clause logic. We state

soundness of the small-step semantics relative to the big-step semantics. Then we

introduce the language of hereditary Harrop formulae by extending goals and definite

clauses of Horn-clause logic. We extend the big-step and the small-step semantics

accordingly.

3.1 Horn-Clause Logic

First, we extend the notion of programs compared to Definition 2.24 in Chapter 2.

Programs are collections of clauses that are annotated with atomic proof-term sym-

bols in a set K. We use κ to denote symbols in K.

Definition 3.1 (Programs)

P 3 P := · | P , κ : D programs

We use notation P1,P2 for a program P1, κ1 : D1, . . . , κn : Dn where P2 = ·, κ1 :

D1, . . . , κn : Dn. Intuitively, we assume that programs consists only of well-formed

definite clauses. This formally translates into a well-formedness judgement for pro-

grams.

Definition 3.2

Well-formedness of programs S ` P is given by inference rules in Figure 3.1.

We implicitly assume that all proof-term symbols in a program are unique.
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S ` P

` S
S ` ·

S ` P S; · ` D : o

S ` P , κ : D

Figure 3.1: Well formedness of programs

Example 3.3

Recall Example 1.3. The program

PPair = ·, κpair : ∀x : int.∀y : int.eqx⇒ eq y ⇒ eq (pairx y), κint : eq(int)

is a program . PPair consists of clauses that are well-formed in signature SPair and

is well-formed, or SPair ` PPair.

In the example, we employ convention that names of the clauses are chosen to reflect

their intended meaning, which reflects in the subscript of the name. We will follow

this convention in the rest of the text.

Note that the well-formedness judgement for programs admits implicit syntactic

validity property:

Proposition 3.4

If S ` P then ` S.

Proof. By induction on derivation of the judgement.

Further, the properties of Propositions 2.14 and 2.22 concerning weakening of

signature can be extended to programs.

Proposition 3.5

If S1,S2; Γ ` P and ` S1, c : A,S2 then S1, c : A,S2; Γ ` P.

Proof. By induction on the program using Proposition 2.22, Part 1.

Since programs consists of definite clauses that are well-formed in an empty

context, programs and program clauses are stable under substitution:

Proposition 3.6

1. If S ` P1, κ : D,P2 then S ` P1, κ : D[M/x],P2.
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Proof. By induction on the program using Proposition 2.23.

3.1.1 Big-step operational semantics

Now we come to definition of the big-step semantics. Since our semantics is proof-

relevant, we need to provide a definition of proof terms:

Definition 3.7 (Proof terms)

PT 3 e := κ | e e | 〈M, e〉 proof terms

Proof terms consist of a proof-term symbol in K, an application, and of an existential

witness 〈−,−〉 constructed of a witnessing term M and proof term e. We use the

identifier e to denote proof terms in PT

The semantics we give is essentially the semantics of uniform proofs (Miller and

Nadathur, 2012) that is instrumented with proof terms in the following sense: There

are two judgements, S;P −→ e : G, and S;P e1:D1−→ e : A. These judgements utilise

the idea of “logic-formulae as search”. The first judgement correspond to right-

introduction rules of the logical connective ∃ in sequent calculus for intuitionistic

logic and decomposes the goal that is the subject of the judgement. When the goal

cannot be further decomposed (i.e. it is an atomic formula), a program clause is

selected and the second judgement is used to decompose the selected clause to sub-

goals. The second judgement, called backchaining, corresponds to left-introduction

rules of connectives ⇒ and ∀ and decomposes the selected program clause into sub-

goals. We say that the proof term e1 and the clause D1 annotate the judgement

S;P e1:D1−→ e : G. Conversely, e1 is the annotating proof term and D1 is the an-

notating clause. One can obtain the original uniform proof semantics by erasing

proof terms, that is the judgement S;P −→ e : G becomes S;P −→ G, and the

judgement S;P e1:D1−→ e : G becomes S;P D1−→ G.

Definition 3.8 (Operational semantics, big-step)

The judgements S;P −→ e : G and S;P e1:D1−→ e : A are given in Figures 3.2 and 3.3

respectively.
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S;P −→ e : G

S;P −→ e : G[M/x] S; ∅ `M : A

S;P −→ 〈M, e〉 : ∃x : A.G

Figure 3.2: Right introduction rule

S;P e′:D−→ e : A

S;P e:A−→ e : A

S;P −→ e1 : A1 S;P ee1:D−→ e2 : A2

S;P e:A1⇒D−→ e2 : A2

S;P κ:D−→ e : A κ : D ∈ P
S;P −→ e : A

S;P e:D[M/x]−→ e2 : A2 S; · `M : A1

S;P e:∀x:A1.D−→ e2 : A2

Figure 3.3: Backchaining rules

Let us illustrate the big-step semantics using a simple example. We introduce

a signature that allows us to encode facts about natural numbers. The signature

contains function symbols z and s that denote zero and successor respectively. The

signature further contains a predicate nat that has one argument and denotes that

its argument is a natural number. We discuss several goals that are formed in this

signature and show their big-step resolution derivations.

Example 3.9

Let S be the following signature:

S = a : type, z : a, s : a→ a, nat : a→ o

The constant z and s denote constructors in unary encoding of natural numbers.

Their type a is for the purpose of this example meaning less and is not given any

semantic interpretation. The predicate nat is given an interpretation by the following

program:
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P = κz : nat z,

κs : ∀x : a.nat x⇒ nat (s x)

First, consider a well-formed goal nat z. The goal is resolved with the proof term κz:

S;P κz :nat z−→ κz : nat z κz : nat z ∈ P
S;P −→ κz : nat z

Similarly, a well-formed goal nat (s z) is resolved with the proof term κs κz.

...
S;P −→ κz : nat z S;P κs κz :nat (s z)−→ κs κz : nat (s z)

S;P κs:−−→ κs κz : nat (s z) S; · ` z : a

S;P κs:−−→ κs κz : nat (s z) κs : ∀x : a.nat x ⇒ nat (s x) ∈ P
S;P −→ κs κz : nat (s z)

Note that we omit resolution of the goal nat z as it was given above. We abbreviate

the annotating clause κs : ∀x : a.nat x⇒ nat (s x) to κs : −. Finally, let us consider

a goal ∃x : a.nat (s x) that contains an existentially quantified variable. Using the

previous two derivations, the big-step resolution of the goal, that is a derivation of

judgement S;P −→ e : ∃x : a.nat (s x) is carried out as follows:

...
S;P −→ κs κz : nat (s z)

z : a ∈ S
S; · ` z : a

S;P −→ 〈z, κs κz〉 : ∃x : a.nat (s x)

The proof term e that witnesses resolution of the goal ∃x : a.nat (s x) in signature S

and program P is e = 〈z, κs κz〉.

Let us discuss an example with a program clause that contains a nested uni-

versally quantified variable. In terminology of Miller and Nadathur (2012), in this

particular case this is an “essentially existentially quantified variable”, that is a

universally quantified variable that gets instantiated in the course of resolution.

Example 3.10 (Essentially existential)

Consider a signature S:

S = a : type, p : o, q : a→ o, c : a
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A program P consists of two clauses:

P = κp : ∀x : a.q x⇒ p,

κq : q c

Consider resolution of the goal p in the big-step semantics. A derivation of the

judgement S;P −→ e : p for a proof term e is constructed as follows:

S;P
κq :q c
−→ κq : q c κq : q c ∈ P

S;P −→ κq : q c S;P
κp κq :p−→ κp κq : p

S;P
κp:q c⇒p

−→ κp κq : p S; · ` c : a

S;P
κp:∀x:a.q x⇒p

−→ κp κq : p κp : ∀x : a.q x ⇒ p ∈ P
S;P −→ κp κq : p

Example 3.10 illustrates an essential feature of the big-step semantics. Namely,

instances of unification variables need to be given beforehand and moreover, these

instances need to be terms that are well-formed in an empty context. This effectively

means that goals resolved in the big-step semantics need to be well-formed and

ground. We state this result formally as the following proposition:

Proposition 3.11

1. If S;P −→ e : G and G is well-formed, S;P ` G : o, then e is ground, i.e.,

var(e) = ∅.

2. If S;P e′:D−→ e : A and var(e′) = ∅ and A is well-formed, S;P ` A : o, then e

is ground, i.e., var(e) = ∅.

Proof. By simultaneous structural induction on derivations.

Part 1

• Let the derivation step be S;P −→ e : B[M/x] S; · `M : A

S;P −→ 〈M, e〉 : ∃x : A.B
. Since

S; · `M : A then also var(M) = ∅ and from Part 2 of the proposition follows

that var(e) = ∅. Hence, var(〈M, e〉) = ∅.

• Let the derivation step be S;P κ:D−→ e : A κ : D ∈ P
S;P −→ e : A

. The var(e) = ∅

follows from Part 2 of the proposition and the fact that var(κ) = ∅.

Part 2
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• Let the derivation step be S;P e:A−→ e : A . From the assumption, var(e) = ∅.

• Let the derivation step be S;P −→ e1 : A1 S;P e e1:D−→ e2 : A2

S;P e:A1⇒D−→ e2 : A2

. From

Part 1 of the proposition follows that var(e) = ∅. From this fact and from the

assumption var(e e1) = ∅, using the induction hypothesis, we conclude that

var(e2) = ∅.

• Let the derivation step be S;P e:D[X/M ]−→ e2 : A2 S; · `M : A1

S;P e:∀X:A1.D−→ e2 : A2

. From

Part 1 of the proposition, var(e) = ∅.

Although providing only ground answer substitutions is sufficient from the point

of view of traditional logic programming, it is not sufficient for our intended appli-

cation. In the traditional logic programming domains are considered to be inhabited

(cf. Lloyd, 1987) whereas we seek applications in type theory where empty domains

often play important role. Also, the big-step semantics does not provide a compu-

tational device, it does not provide any insight into how to implement a resolution

engine that adheres to such semantics. We address these shortcomings by introduc-

ing a small-step operational semantics. This semantic will be both more general,

allowing for non-ground answer substitutions, and detailed enough to allow for a

direct implementation.

3.1.2 Small-step operational semantics

Our exposition of the small-step operational semantics of resolution in Horn-clause

logic generalises the original presentation of proof-relevant resolution given by Fu and

Komendantskaya (2017). We incorporate unification into resolution whereas Fu and

Komendantskaya were working only with matching. This introduces new syntactic

forms for existential witnesses and corresponding form in rewriting contexts. Small-

step semantics is expressed in the form of mixed terms and rewriting contexts. In the

small-step semantics, mixed terms, which consist of both proof terms and goals that

have not been resolved yet, allow to express an intermediate state of computation.

Rewriting contexts allow to formally identify a particular goal in the intermediate

state of the computation that is subject to a computation step.
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Definition 3.12 (Mixed terms and rewriting contexts)

MT 3 ê, ê′, ê1, ê2 := κ | G | ê ê | 〈M, ê〉 mixed terms

R 3 C,C ′ := κ | • | e C | 〈M,C〉 rewriting contexts

We use identifiers ê, ê′, ê1, and ê2 for mixed terms in MT and identifiers C and C ′

for rewriting contexts in R. Clearly, every proof term is a mixed term. We extend

substitution to mixed terms.

Definition 3.13

κ[M/x] = κ

G[M/x] = G[M/x]

ê1 ê2[M/x] = (ê1[M/x]) (ê2[M/x])

〈N, ê〉[M/x] = 〈N [M/x], ê[M/x]〉

Rewriting contexts are used in the definition of the small-step semantics as a

device to identify a subterm of a mixed term where the computational step happens.

More precisely, a mixed term that is subject of a judgement of the small-step se-

mantics is decomposed into a rewriting context with a hole • in the position of such

subterm and the subterm itself. We introduce an operation of hole replacement, de-

noted −{−}. Hole replacement replaces a hole in a rewriting context with a mixed

term. Hole replacement allows us manipulating rewriting contexts in definition of

the small-step semantics.

Definition 3.14 (Hole replacement)
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κ{ê} = κ

•{ê} = ê

(ê1C){ê} = ê1 (C{ê})

〈M,C〉{ê} = 〈M,C{ê}〉

A result of hole replacement with a mixed term in a rewriting context is a mixed

term. We say that a mixed term ê′ identifies a rewriting context C in a mixed term

ê if C{ê′} = ê. Conversely, ê′ is the identifying mixed term for C. We state the

following property about identification of rewriting contexts:

Proposition 3.15

If C1{G} = C2{ê} then there is a unique C ′ such that ê = C ′[G].

Proof. By induction on C1 and C2. The compatible cases are:

• C1 = • and C2 = •. Then ê = G and C ′ = •.

• C1 = ê′C ′
1 and C2 = •. Then ê = ê′ C ′

1{G} and C ′ = ê C1.

• C1 = ê′C ′
1 and C2 = ê′C ′

2. Then C ′
1{G} = C ′

2{ê} and from induction hypoth-

esis there is unique C ′ such that ê = C ′{G}.

• C1 = 〈M,C ′
1〉 and C2 = 〈M,C2〉. Then C ′

1{G} = C ′
2{ê} and from induction

hypothesis there is unique C ′ such that ê = C ′{G}.

We proceed with definition of the actual small-step semantics. Similarly to the

big-step semantics, the small-step semantics is defined using two judgements,

• S;P ` Γ | ê Γ′ | ê′, and

• S;P ` Γ | ê ê′′:D Γ′ | ê′.

The first judgement corresponds to right-introduction rules of logical connectives

and proceeds on mixed terms in shapes of goals. The other judgement, which we

again call backchaining, is annotated with a proof term and a definite clause and

corresponds to left-introduction rules of logical connectives. Goals and atomic goals

identify rewriting contexts in the sense we introduced above. This also motivates

our statement of Proposition 3.15.
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S;P ` Γ | ê Γ′ | ê′

S;P ` Γ | C{A} κ:D Γ′ | ê
S;P ` Γ | C{A} Γ′ | ê

S;P ` Γ, Y : A | C{〈Y,G[Y/x]〉} Γ′ | ê
S;P ` Γ | C{∃x : A.G} Γ′ : A | ê′

Figure 3.4: Right introduction rules, small-step

S;P ` Γ | ê ê′′:D Γ′ | ê′

S; Γ ` σ : Γ′ S; Γ′ ` σA ≡ σA′ : o

S;P ` Γ | C{A} ê:A′
 Γ′ | σ(C{ê})

S;P ` Γ | C{A} ê1 A1:D Γ′ | ê

S;P ` Γ | C{A} ê1:A1⇒D Γ′ | ê

S;P ` Γ, Y : A1 | C{A2}
ê1:D[Y/x] Γ′ | ê

S;P ` Γ | C{A2}
ê1:∀x:A1.D Γ′ | ê

Figure 3.5: Backchaining rules, small-step

Definition 3.16 (Operational semantics, small-step)

The judgements S;P ` Γ | ê Γ′ | ê′, and S;P ` Γ | ê ê′′:D Γ′ | ê′ are given by

inference rules in Figures 3.4 and 3.5.

Note that P is not changed by the inference rules. However, it will change later

when we extend the logic. Thus we keep P explicit to maintain the same shape of

judgements throughout the thesis.

Let us now show how the goal in Example 3.9 resolves in the small-step seman-

tics. Note that we do not provide a proper derivation in small-step semantics as it is

rather lengthy but indicate only rewriting of the identified goals in the course of com-

putation. We superscript the identified goals with the annotating mixed term and

the annotating definite clause, that is we will write, e.g., Γ | C{Ae:A}  Γ | C{e}

for
S; Γ ` {} : Γ S; Γ ` {}A ≡ {}A : o

S;P ` Γ | C{A} e:A Γ | C{e}
. Occasionally, when several resolu-

tions steps are straightforward, we will omit them and write Γ | ê  ∗ Γ′ | ê′ for

Γ | ê Γ1 | ê1  . . . Γn | ên  Γ′ | ê′ in order to simplify presentation.

Example 3.17
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Resolving the goal ∃x : a.nat (s x) in S and P:

· | ∃x : a.nat (s x) Z : a | 〈Z, nat (sZ)〉 

Z : a | 〈Z, (nat (sZ))κs:∀x:a.nat x⇒nat (s x)〉 

Z : a, Y : a | 〈Z, (nat (sZ))κs:nat Y⇒nat (s Y )〉 

Z : a, Y : a | 〈Z, (nat (sZ))κs (nat Y ):nat (s Y )〉 

Z : a | 〈Z, κs (natZ)〉 

Z : a | 〈Z, κs (natZ)
κz :nat z〉 

· | 〈z, κsκz〉

Similarly, the goal in Example 3.10 can be resolved using the small-step semantics

as well.

Example 3.18

Consider signature S and program P in Example 3.10. The goal p is resolved in

small-step semantics with proof term κpκq:

· | p · | pκp:(∀x:a,q x)⇒p  X : a | pκp:q X⇒p  X : a | pκp(q X):p  X : a | κp(q X) 

X : a | κp(q X)κq :q c  · | κp κq

However, assume that we include a new clause, κq′ : ∀y : a.q y. The following is a

valid small-step resolution:

· | p · | pκp:(∀x:a,q x)⇒p  X : a | pκp:q X⇒p  X : a | pκp(q X):p  X : a | κp(q X) 

X : a | κp(q X)κq′ :∀y:a.q y  X : a, Y : a | κp(q X)κq′ :q Y  X : a | κp κq′

That is, the goal is not resolved in an empty context but in a context that consists

of a single variable X.
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We have introduced the big-step and the small-step semantics of proof-relevant

resolution. Before we move to a discussion of soundness of the small-step semantics,

we state a lemma that will be required in the following development.

Lemma 3.19 (Subderivations)

1. If S;P ` Γ | C{ê} Γ′ | ê′ then there is a mixed term ê′′ and a substitution

θ such that ê′ = (θC){ê′′} and S;P ` Γ | ê Γ | ê′′

2. If S;P ` Γ | C{ê} ê1:D1 Γ′ | ê′ then there is a mixed term ê′′ and a substitution

θ such that ê′ = (θC){ê′′} and S;P ` Γ | ê ê1:D1 Γ | ê′′

Proof. By simultaneous structural induction on the derivation and the rewriting

context.

Part 1 The compatible cases are:

• Let the derivation be of the shape S;P ` Γ | C1{A}
κ:D Γ′ | ê′

S;P ` Γ | C1{A} Γ′ | ê′
and the

rewriting context of the shape C = eC2. By Proposition 3.15, there is a

unique C ′ such that ê = C ′{A}. By the induction assumption, there is a

mixed term ê′′, a substitution θ such that ê′ = θ(eC2{C ′{A}}){ê′′}, and

a derivation of S;P ` Γ | C ′{A} κ:D Γ′ | ê′′. Then there is a derivation
S;P ` Γ | C ′{A} κ:D Γ′ | ê′′

S;P ` Γ | C ′{A} Γ′ | ê′′
.

We use Proposition 3.15 in the rest of the proof implicitly.

• Let the derivation be S;P ` Γ, Y : A | eC1{〈Y,G[Y/x]〉} Γ′ | ê′

S;P ` Γ | eC1{∃x : A.G} Γ′ | ê′
. By the

induction assumption, there is a mixed term ê′′, a substitution θ such that

ê′ = θ(eC2{C ′{A}}){ê′′}, and a derivation of

S;P ` Γ, Y : A | C ′{〈Y,G[Y/x]〉} Γ′ | ê′′. Then there is a derivation
S;P ` Γ, Y : A | C ′{〈Y,G[Y/x]〉} Γ′ | ê′′

S;P ` Γ | C ′{∃x : A.G} Γ′ | ê′′
.

• Let the derivation be of the shape S;P ` Γ | 〈M,C1〉{A}
κ:D Γ′ | ê′

S;P ` Γ | 〈M,C1〉{A} Γ′ | ê′
By the

induction assumption, there is a mixed term ê′′, a substitution θ such that

ê′ = θ(〈M,C2〉{C ′{A}}){ê′′}, and a derivation of S;P ` Γ | C ′{A} Γ′ | ê′′.

Then there is a derivation S;P ` Γ | C ′{A} κ:D Γ′ | ê′′

S;P ` Γ | C ′{A} Γ′ | ê′′
.

• Let the derivation be S;P ` Γ, Y : A | 〈M,C1〉{〈Y,G[Y/x]〉} Γ′ | ê′

S;P ` Γ | 〈M,C1〉{∃x : A.G} Γ′ | ê′
. By

the induction assumption, there is a mixed term ê′′, a substitution θ such that
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ê′ = θ(〈M,C2〉{C ′{A}}){ê′′}, and a derivation of

S;P ` Γ, Y : A | C ′{〈Y,G[Y/x]〉} Γ′ | ê′′. Then there is a derivation
S;P ` Γ, Y : A | C ′{〈Y,G[Y/x]〉} Γ′ | ê′′

S;P ` Γ | C ′{∃x : A.G} Γ′ | ê′′
.

Part 2 The compatible cases are:

• Let the derivation be of the shape
S; Γ ` θ : Γ′ S; Γ′ ` θA ≡ θA′ : o

S;P ` Γ | C{A} ê:A′
 Γ′ | θC{ê}

and

the rewriting context of the shape C = •. Then ê′′ = ê and S;P ` Γ |

A
ê:A′
 Γ | ê.

• Let the derivation be of the shape S;P ` Γ | •{A} ê1 A′:D Γ′ | ê

S;P ` Γ | •{A} ê1:A′⇒D Γ′ | ê
. Then

ê′′ = ê and S;P ` Γ | A ê:A′
 Γ′ | ê.

• Let the derivation be of the shape S;P ` Γ, Y : A1 | •{A}
ê1:D[Y/x] Γ′ | ê

S;P ` Γ | •{A} ê1:∀x:A1.D Γ′ | ê
.

Then ê′′ = ê and S;P ` Γ | A ê1:∀x:A1.D Γ′ | ê.

• Let the derivation be of the shape
S; Γ ` θ : Γ′ S; Γ′ ` θA ≡ θA′ : o

S;P ` Γ | eC1{A}
ê′:A′
 Γ | ê′

. By

the induction assumption, there is a mixed term ê′′ and a substitution θ such

that ê′ = θ(eC2{C ′{A}}){ê′′}, and S; Γ ` θ′A ≡ θ′A′ : o. Then there is a

derivation S; Γ ` θ′ : Γ′ S; Γ′ ` θ′A ≡ θ′A′ : o

S;P ` Γ | C ′{A} Γ′ | ê′′
.

• Let the derivation be of the shape S;P ` Γ | eC1{A}
ê1 A′:D Γ′ | ê

S;P ` Γ | eC1{A}
ê1:A′⇒D Γ′ | ê

. By

the induction assumption, there is a mixed term ê′′, a substitution θ such that

ê′ = θ(eC2{C ′{A}}){ê′′}, and a derivation of S;P ` Γ | C ′{A} ê1 A′:D Γ′ | ê′′.

Then there is a derivation S;P ` Γ | C ′{A} ê1 A′:D Γ′ | ê′′

S;P ` Γ | C ′{A} ê1:A′⇒D Γ′ | ê
.

• Let the derivation be S;P ` Γ, Y : A1 | eC1{A}
ê1:D[Y/x] Γ′ | ê

S;P ` Γ | eC1{A}
ê1:∀xA1.D Γ′ | ê

. By the in-

duction assumption, there is a mixed term ê′′, a substitution θ such that ê′ =

θ(eC2{C ′{A}}){ê′′}, and a derivation of S;P ` Γ, Y : A1 | eC1{A}
ê1:D[Y/x] Γ′ |

ê. Then there is a derivation S;P ` Γ, Y : A1 | eC1{A}
ê1:D[Y/x] Γ′ | ê

S;P ` Γ | eC1{A}
ê1:∀xA1.D Γ′ | ê

.

• Let the derivation be of the shape
S; Γ ` θ′ : Γ′ S; Γ′ ` θ′A ≡ θ′A′ : o

S;P ` Γ | 〈M,C1〉{A}
ê′:A′
 Γ | ê′

.

By the induction assumption, there is a mixed term ê′′ and a substitution θ

such that ê′ = θ(〈M,C2〉{C ′{A}}){ê′′}, and S; Γ ` θ′A ≡ θ′A′ : o. Then there

is a derivation S; Γ ` θ′ : Γ′ S; Γ′ ` θ′A ≡ θ′A′ : o

S;P ` Γ | C ′{A} Γ′ | ê′′
.
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• Let the derivation be of the shape S;P ` Γ | 〈M,C1〉{A}
ê1 A′:D Γ′ | ê

S;P ` Γ | 〈M,C1〉{A}
ê1:A′⇒D Γ′ | ê

. By

the induction assumption, there is a mixed term ê′′, a substitution θ such that

ê′ = θ(〈M,C2〉{C ′{A}}){ê′′}, and a derivation of S;P ` Γ | C ′{A} ê1 A′:D Γ′ |

ê′′. Then there is a derivation S;P ` Γ | C ′{A} ê1 A′:D Γ′ | ê′′

S;P ` Γ | C ′{A} ê1:A′⇒D Γ′ | ê
.

• Let the derivation be S;P ` Γ, Y : A1 | 〈M,C1〉{A}
ê1:D[Y/x] Γ′ | ê

S;P ` Γ | 〈M,C1〉{A}
ê1:∀xA1.D Γ′ | ê

. By the

induction assumption, there is a mixed term ê′′, a substitution θ such that

ê′ = θ(〈M,C2〉{C ′{A}}){ê′′}, and a derivation of

S;P ` Γ, Y : A1 | 〈M,C1〉{A}
ê1:D[Y/x] Γ′ | ê. Then there is a derivation

S;P ` Γ, Y : A1 | 〈M,C1〉{A}
ê1:D[Y/x] Γ′ | ê

S;P ` Γ | eC1{A}
ê1:∀xA1.D Γ′ | ê

.

The above lemma allows us to obtain small-step derivations for identifying mixed

terms. We refer to the property stated by the lemma as subderivation property.

This property will play an important role in the proof of soundness of the small-

step semantics as it allows us to proceed by induction on derivations of small-step

judgements. Finally, we state the soundness property of the small-step semantics.

Theorem 3.20 (Soundness)

If S;P ` · | G · | e then S;P −→ e : G.

In the following section, we introduce an extension of Horn-clause logic. The

soundness of the small-step semantics of proof-relevant resolution in Horn-clause

logic is a special case of a more general statement in the following section. Moreover,

a proof of the statement requires a significant development that is carried out in the

next chapter. Hence, we omit the proof here.

3.2 Logic of Hereditary Harrop Formulae

In this section we present the language of hereditary Harrop formulae. The language

is obtained by extending the syntax of definite clauses and goals of Horn-clause

logic (Definition 2.19 in Chapter 2). The extended syntax is given in the following

definition.
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S; Γ ` G : o

S; Γ ` D : o S; Γ ` G : o

S; Γ ` D ⇒ G : o

S; Γ, X : A `M : o

S; Γ ` ∀X : A.M : o

Figure 3.6: Well formedness of goals

Definition 3.21 (Syntax of goals and clauses)

D 3 D := A | G⇒ D | ∀x : A.D clauses

G 3 G := A | ∃x : A.G | D ⇒ G | ∀x : A.G goals

Since we see hereditary Harrop formulae as an extension of Horn clauses we maintain

the convention that the clauses in D are denoted by the identifier D and the goals in

G are denoted by the identifierG. Clauses consist of atomic formulae, implication⇒,

and universal quantification ∀ over a clause as in in the case of Horn-clause syntax.

However, a goal instead of an atom is allowed on the left side of an implication.

Goals consists of atomic formulae and existential quantification, as in the case of

Horn clauses, and implication and universal quantification over a goal. In contrast

with Horn clauses this definition allows nesting of implications in clauses and goals.

To ensure that clauses and goals indeed consists of atomic formulae in positions

of types we extend well-formedness judgements. However, since the syntactic con-

structs of clauses are the same as in the case of Horn clauses we only need to extend

well-formedness judgement S; Γ ` G : o of goals.

Definition 3.22

The judgement S; Γ ` G : o is given by inference rules in Figure 3.6.

We list only inference rules for the new syntactic constructs. Other inference rules

are the same as in Figure 2.5.

The structure of programs stays the same, with respect to the extended definition
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3.2. Logic of Hereditary Harrop Formulae

S;P −→ e : G

S;P , κ : D −→ e : G

S;P , κ : D −→ λκ.e : D ⇒ G

S, c : A;P −→ e[c/x] : G[c/x]

S;P −→ e : ∀x : A.G

Figure 3.7: Right introduction rules

of clauses in D. The well-formedness judgement S ` P remains the same up to the

extended definition of clauses in D and the judgement S; Γ ` D : o.

The presence of nested implications that is allowed by the extended syntax of

definite clauses requires an extension of the syntax of proof terms:

Definition 3.23 (Proof terms)

PT 3 e := κ | e e | 〈M, e〉 | λκ.e proof terms

We extend proof terms with abstraction over atomic proof-term symbols in K.

3.2.1 Big-step operational semantics

We extend big-step operational semantics of proof relevant resolution for Horn-

clause logic that we introduced in Section 3.1.1 to the language of hereditary Harrop

formulae.

Definition 3.24 (Operational semantics, big-step)

The judgements S;P −→ e : G and S;P e′:D−→ e : G for logic of hereditary Harrop

formulae are given by inference rules in figures 3.2, 3.3, and 3.7.

There are no new backchaining inference rules with respect to Horn-clause logic as

the syntactic forms of definite clauses remain the same. New right-introduction rules

that correspond to new syntactic forms of goals are listed in Figure 3.7. Note that

the program is no longer static in the course of resolution but gets extended with new

clauses in the case of a goal in an implicational form. This justifies having program

as a parameter of the judgement and, since we aim to treat different fragments

uniformly, to keep it as a part of the judgement even in the previous section.
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3.2. Logic of Hereditary Harrop Formulae

We proceed with a demonstration of the use of hereditary Harrop formulae. We

further develop our running example that utilises encoding of natural numbers.

Example 3.25

Let S be the following signature:

S = a : type, z : a, s : a→ a, even : a→ o, odd : a→ o

The predicates even and odd are given interpretation by the following program:

P = κz :odd(z),

κe :∀x : a.odd x⇒ even (s x)

κo :∀x : a.even x⇒ odd (s x)

We can resolve atomic goals similar to Example 3.9 but we can also resolve hypothet-

ical goals in implicational form. For example, the goal ∀x : a.even x⇒ even (s (s x))

is resolved as follows:

S, c : a;P, κx : even c
κx:even c−→ κx : even c κx : even c ∈ P, κx : even c

S, c : a;P, κx : even c −→ κx : even c

...
S, c : a;P, κx : even c −→ κx : even c S, c : a;P, κx : even c

κo κx:odd (s c)−→ κo κx : odd (s c)

S, c : a;P, κx : even c
κo:even c⇒odd (s c)−→ κo κx : odd (s c)

S, c : a;P, κx : even c
κo:∀x:a.even x⇒odd (s x)−→ κo κx : odd (s c) κo : _ ∈ P

S, c : a;P, κx : even c −→ κo κx : odd (s c)

... S, c : a;P, κx : even c
κe (κoκx):even (s (s c))−→ κe (κo κx) : even (s (s c))

S, c : a;P, κx : even c
κe:odd (s c)⇒even (s (s c))−→ κe (κo κx) : even (s (s c)) S; · ` s (s c) : a

S, c : a;P, κx : even c
κe:∀x:a.odd x⇒even (s x)−→ κe (κo κx) : even (s (s c))

...

S, c : a;P, κx : even c
κe:∀x:a.odd x⇒even (s x)−→ κe (κo κx) : even (s (s c)) κe : ∀x : a.odd x ⇒ even (s x) ∈ P

S, c : a;P, κx : even c −→ κe (κo κx) : even (s (s c))

S, c : a;P −→ λκx.κe (κo κx) : even c ⇒ even (s (s c))

S;P −→ λκx.κe(κoκx) : ∀x : a.even x ⇒ even (s (s x))

We separate the derivation into four partial derivations that compose in the obvious

way. We abbreviate the clause ∀x : a.even x⇒ odd (s x) by _ and we use κ : D ∈ P

instead κ : D ∈ P , κx : even c where the clause D is in P.
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3.2. Logic of Hereditary Harrop Formulae

3.2.2 Small-step operational semantics

In this section, we extend small-step operational semantics to the language of hered-

itary Harrop formulae. First, we need to adjust the definition of mixed terms and

rewriting contexts to accommodate for new syntactic constructs.

Definition 3.26 (Mixed terms and rewriting contexts)

MT 3 ê := κ | G | ê ê | 〈M, ê〉 | λκ.ê mixed terms

R 3 C := • | ê C | 〈M,C〉 | λκ.C rewriting contexts

We keep using the identifier ê for mixed terms. Extended contexts posses a property

that corresponds to Proposition 3.15.

Proposition 3.27

Let C1 and C2 be rewriting contexts, G a goal and ê a mixed term. If C1{G} = C2{ê}

then there is a unique C ′ such that ê = C ′[G].

Proof. By induction on C1 and C2. The new compatible cases w.r.t. the proof of

Proposition 3.15 are:

• C1 = λκ.C ′
1 and C2 = •. Then ê = λκ.C ′

1{G} and C ′ = λκ.C1.

• C1 = λκC ′
1 and C2 = λκ.C ′

2. Then C ′
1{G} = C ′

2{ê} and from induction

hypothesis there is unique C ′ such that ê = C ′{G}.

The small-step semantics is, as was the case with the big-step semantics, given

by extending right-introduction rules. Since we do not extend syntax of clauses, the

backchaining judgement does not change.

Definition 3.28 (Operational semantics, small-step)

The judgements S;P ` Γ | ê Γ′ | ê′, and S;P ` Γ | ê ê′′:D Γ′ | ê′ are given by

inference rules in Figures 3.4, 3.5, and 3.8.

The small-step semantics posses subderivation property (Lemma 3.19).
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3.2. Logic of Hereditary Harrop Formulae

S;P ` Γ | ê Γ′ | ê′

S;P , κ : D ` Γ | C{λκ.G} Γ′ | ê
S;P ` Γ | C{D ⇒ G} Γ′ | ê

S, c : A;P ` Γ | C{G[c/x]} Γ′ | ê
S;P ` Γ | C{∀x : A.G} Γ′ | ê

Figure 3.8: Right introduction rules, small-step

Lemma 3.29 (Subderivations)

1. If S;P ` Γ | C{ê} Γ′ | ê′ then there is a mixed term ê′′ and a substitution

θ such that ê′ = (θC){ê′′} and S;P ` Γ | ê Γ | ê′′

2. If S;P ` Γ | C{ê} ê1:D1 Γ′ | ê′ then there is a mixed term ê′′ and a substitution

θ such that ê′ = (θC){ê′′} and S;P ` Γ | ê ê1:D1 Γ | ê′′

Proof. By simultaneous structural induction on the derivation and the rewriting

context. We list only new cases w.r.t. Lemma 3.19.

Part 1

• Let the derivation be S;P , κ′ : D ` Γ | λκ.C1{λκ′.G} Γ′ | ê′

S;P ` Γ | λκ.C1{D ⇒ G} Γ′ | ê′
. By the

induction assumption, there is a mixed term ê′′, a substitution θ such that

ê′ = θ(λκ.C2{C ′{A}}){ê′′}, and a derivation of S;P ` Γ | C ′{D ⇒ G} Γ′ |

ê′′. Then there is a derivation S;P , κ : D ` Γ | C ′{λκ.G} Γ′ | ê′′

S;P ` Γ | C ′{D ⇒ G} Γ′ | ê′′
.

• Let the derivation be S;P ` Γ, x : A | λκ.C1{G} Γ′ | ê′

S;P ` Γ | λκ.C1{∀x : A.G} Γ′ | ê′
. By the induc-

tion assumption, there is a mixed term ê′′, a substitution θ such that ê′ =

θ(λκ.C2{C ′{A}}){ê′′}, and a derivation of S;P ` Γ, x : A | C ′{G} Γ′ | ê′′.

Then there is a derivation S;P , κ : D ` Γ, x : A | C ′{G} Γ′ | ê′′

S;P ` Γ | C ′{∀x : A.G} Γ′ | ê′′
.

Part 2

• Let the derivation be of the shape
S; Γ ` θ′ : Γ′ S; Γ′ ` θ′A ≡ θ′A′ : o

S;P ` Γ | λκ.C1{A}
ê′:A′
 Γ′ | ê′

.

By the induction assumption, there is a mixed term ê′′ and a substitution θ

such that ê′ = θ(λκ.C2{C ′{A}}){ê′′}, and S; Γ ` θ′A ≡ θ′A′ : o. Then there

is a derivation S; Γ ` θ′ : Γ′ S; Γ′ ` θ′A ≡ θ′A′ : o

S;P ` Γ | C ′{A} Γ′ | ê′′
.

• Let the derivation be of the shape S;P , κ : D ` Γ | eR1{A}
ê1 A′:D Γ′ | ê

S;P ` Γ | λκ.R1{A}
ê1:A′⇒D Γ′ | ê

. By

the induction assumption, there is a mixed term ê′′, a substitution θ such that
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3.2. Logic of Hereditary Harrop Formulae

ê′ = θ(eC2{C ′{A}}){ê′′}, and a derivation of S;P ` Γ | R′{A} ê1 A′:D Γ′ | ê′′.

Then there is a derivation S;P ` Γ | R′{A} ê1 A′:D Γ′ | ê′′

S;P ` Γ | R′{A} ê1:A′⇒D Γ′ | ê
.

The example we used for illustration of the big-step semantics can also be re-

solved in small-step semantics.

Example 3.30

Consider the signature S and the program P from Example 3.25. The goal ∀x :

a.even x⇒ even (s (s x)) is resolved in small steps to a proof term λκx.κe (κoκx):

· | ∀x : a.even x⇒ even (s (s x)) · | even c⇒ even (s (s c)) 

· | λκx.even (s (s c)) · | λκx.even (s (s c))κe:∀x:a.odd x⇒even (s x)  

X : a | λκx.even (s (s c))κe:oddX⇒even (sX)  

X : a | λκx.even (s (s c))κe(oddX):even (sX)  

· | λκx.κe (odd (s c)) · | λκx.κe (odd (s c))
κo:∀x:a.even x⇒odd (s x)  

Y : a | λκx.κe(odd (s c))
κo:evenY⇒odd (s Y )  · | λκx.κe (κo (even c)) 

· | λκx.κe (κo (even c)κx:even c) · | λκx.κe (κo κx)

We conclude this section by statement of soundness of the small-step semantics.

However, as we saw in Example 3.18, small-step semantics does not necessarily

produce judgements with empty context on the right of  . We can relax this

condition and allow an arbitrary context Γ′. It is then necessary to transform goals

of the big-step semantics. In order to do so, we introduce a notion of universal

quantification with a variable context.

Definition 3.31

∀Ctx · .G = G

∀Ctx(Γ, x : A).G = ∀CtxΓ.(∀x : A.G)
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We call this transformation a generalisation of a goal with a context. Finally, we

state the soundness property for small-step semantics of proof-relevant resolution in

the logic of hereditary Harrop formulae using generalisation.

Theorem 3.32 (Generalised soundness)

If S;P ` · | G Γ | e then S;P −→ e : ∀CtxΓ.G

Our proof of the theorem requires further technical development. In particular,

we need to develop a notion of logical relation for mixed terms. Logical relation

will allow us to reason on intermediate subderivations of the big-step and the small-

step semantics by structural induction and to guarantee that such subderivations

are well-formed. We devote the following chapter to development of the logical

relation and a proof of the above statement will constitute the main result of the

next chapter.

3.3 Related Work

The big-step semantics we present in this chapter is based on the semantics of uni-

form proofs (Miller et al., 1991) and λProlog (Miller and Nadathur, 2012). However,

unlike our work, the work of Miller et al. is carried out using only simple types, which

limits expressive power of the resulting calculus. The case for dependent types in

logic programming and proof search has been strongly advocated in Elf and Twelf

programming languages (Pfenning, 1991, Pfenning and Schürmann, 1999, Xi and

Pfenning, 1999). The work on Elf and Twelf is based on LF as is our work. How-

ever, there are three important differences:

• The treatment of resolution in Elf and Twelf does not utilise proof terms as

we do. We present a case for proof terms in Chapter 5 where we show how

to use proof terms as certificates when goal-directed search is embedded in a

verifiable way into another system.

• Elf and Twelf languages are carried out directly in the syntax of LF. We distin-

guish between sorts type of types and o of formulae. This separation captures

distinct fragments of syntax that are the term language of LF, and Horn-clause

and hereditary Harrop logics that are defined atop of this term language. Logic

formulae in these logics are then types with the sort o in head position as we
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discussed previously (Lemma 2.17). Well-formedness judgements for these two

fragments do not interact and it is possible to replace the term language with-

out changing the semantics of resolution. This is demonstrated in Chapter 5

where we encode an external language using de Bruijn indices. The encoding

effectively means that we do not need presence of binders in the term lan-

guage. Hence the term language can be seen as a proper restriction of LF. A

concrete advantage then is that first-order unification suffices for the purpose

of the small-step resolution in Chapter 5.

• The distinction between sorts type and o has one further advantage. Predi-

cates in our logic (that is types with head symbol o) can represent constructs

not captured by the term language and proof relevant resolution can be used

as a means of program transformation (or elaboration). We discuss this ad-

vantage on an example of type classes in Chapter 8.

Finally, let us comment on proof-theoretic aspects of logics that we discussed in

this chapter. We study resolution in the logic of hereditary Harrop formulae. This

logic is a constructive fragment of classical logic. The study of the relation between

intuitionistic and classical provability goes back to Glivenko (1929). Orevkov (1968)

presented several so called Glivenko classes of sequents in classical logics. These

classes of sequents are conservative over intuitionistic or minimal logic. Recently,

Negri (2016) generalised Orevkov’s results using proof-theory. Proof-theoretic treat-

ment of such results is at the basis of uniform proofs— the relation between prov-

ability in classical, intuitionistic and minimal logic for uniform proofs was studied,

among others by Miller et al. (1991) and Ritter et al. (2000a). A motivation for such

study was applications to proof-search in intuitionistic logics and to type-theoretic

analysis of search spaces in classical and intuitionistic logics (Ritter et al., 2000b).

This work is also to the best of our knowledge the origin of the notion of proof term

in the sense we use it.
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4 Soundness

To prove soundness of the small-step operational semantics, we introduce a more

structured relation that we call a logical relation. We then prove the fundamental

theorem that the small-step operational semantics embeds into the logical relation.

Further, we show that we can escape from the logical relation to the big-step opera-

tional semantics if the judgement of the logical relation is formed for a proper proof

term and a goal. Soundness of the small-step operational semantics then follows as

a corollary. Relations between definitions and statements that are subject of this

chapter are displayed in Figure 4.1.

4.1 Logical Relation

The logical relation exposes the structure of the big-step operational semantics while

keeping track of free variables. Similarly to the big-step semantics, there are two

judgements,

• S;P ; Γ −→C ê : ê′, and

• S;P ; Γ ê′:D−→C ê : A.

Inference rules of these judgements reflect the inference rules of judgements of the

big-step operational semantics, S;P −→ e : G and S;P e′:D−→ e : A respectively. Un-

like the big-step operational semantics, the judgements of the logical relation are

equipped with context that keeps track of free variables. The logical relation is more

general and proceeds on mixed terms rather than proof terms.

Besides the above two judgements we introduce one more, auxiliary judgement:

• S;P ; Γ −→C ê : D

This judgement makes explicit the invariant that the proof term and the clause

that annotate the back-chaining judgement of the big-step operational semantics
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4.1. Logical Relation

S;P; Γ
ê1:D−→C ê : ê′

S;P; Γ −→C ê : D

S;P; Γ −→C ê : ê′

S;P; Γ
ê1:D−→C ê : ê′

S;P; Γ −→C ê : D

Stability (4.5)

Substitutivity (4.6)

Weakening of S (4.3)

Weakening of P (4.4)

Lifting lemma (4.7)

Gen. lemma (4.14)

Lifting lemma (4.7)

S;P ` Γ | ê Γ′ | ê′

S;P ` Γ | ê ê1:D Γ′ | ê′

S;P −→ e : G

S;P e1:D−→ e : A

Fundamental thm (4.12)

Escape lemma (4.11)

Figure 4.1: Outline of the proof of soundness. In the dashed boxes are the small-step
(Definition 3.28) and big-step (Definition 3.8) semantics, the dashed circle delineates the
logical relation (Definition 4.1)

.

are well-formed. Notice that, in big-step operational semantics, when a clause is

chosen for backchaining as annotating, it follows from well-formedness of programs

that the clause is well-formed. Every back-chaining steps then transforms a well-

formed annotating clause into a well-formed. However, neither of the judgements is

able to state this formally, since the annotating clause is a definite clause, whereas

the judgements of big-step semantics are stated for goals. Hence we introduce the

auxiliary judgement for definite clauses to overcome this deficiency.

Definition 4.1 (Logical relation)

The judgement S;P ; Γ −→C ê : ê′, the judgement S;P ; Γ ê1:D−→C ê : A, and the judge-

ment S;P ; Γ −→C ê : D are given by inference rules in Figures 4.2, 4.3, and 4.4.

If we can form a judgement of logical relation for mixed terms ê and ê′, we say that

the mixed terms are logically related.

Similarly to the well-formedness judgements of the underlying term language,

the logical relation possesses syntactic validity:

Proposition 4.2
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S;P ; Γ −→C ê : ê′

S;P ; Γ ê′:D−→C ê : A S;P ; Γ −→C ê′ : D

S;P ; Γ −→C ê : A

S;P ; Γ −→C ê : G[M/x] S; Γ `M : A

S;P ; Γ −→C 〈M, ê〉 : ∃x : A.G

S;P , κ : D; Γ −→C ê : G

S;P ; Γ −→C λκ.ê : D ⇒ G

S, c : A;P ; Γ −→C ê[c/x] : G[c/x]

S;P ; Γ −→C ê : ∀x : A.G

S ` P S ` Γ
S;P ; Γ −→C A : A

S;P ; Γ −→C ê1 : ê2 S; Γ′ ` θ : Γ

S;P ; Γ −→C (θê) ê1 : ê ê2

S;P ; Γ −→C ê1 : ê2 S; Γ′ ` θ : Γ

S;P ; Γ −→C 〈θM, ê1〉 : 〈M, ê2〉

S;P ; Γ −→C ê1 : ê2
S;P ; Γ −→C λκ.ê1 : λκ.ê2

Figure 4.2: Logical relation, judgement S;P ; Γ −→C ê : ê′

S;P ; Γ ê1:D−→C ê : A

S;P ; Γ ê:A−→C ê : A

S;P ; Γ −→C ê1 : A1 S;P ; Γ ê ê1:D−→C ê2 : A2

S;P ; Γ ê:A1⇒D−→C ê2 : A2

S;P ; Γ ê:D[M/x]−→C ê2 : A2 S; Γ `M : A1

S;P ; Γ ê:∀x:A1.D−→C ê2 : A2

Figure 4.3: Logical relation, judgement S;P ; Γ ê1:D−→C ê : A
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S;P ; Γ −→C ê : D

S ` P κ : D ∈ P S ` Γ
S;P ; Γ −→C κ : D

S;P ; Γ −→C ê : A⇒ D S;P ; Γ −→C ê′ : A

S;P ; Γ −→C ê ê′ : D

S;P ; Γ −→C ê : ∀x : A.D S; Γ `M : A

S;P ; Γ −→C ê : D[M/x]

Figure 4.4: Logical relation, judgement S;P ; Γ −→C ê : D

• If S;P ; Γ −→C ê : ê′ then S ` P.

• If S;P ; Γ ê1:D−→C ê : ê′ then S ` P.

• If S;P ; Γ −→C ê : D then S ` P.

Proof. By simultaneous induction on derivations of the assumptions using implicit

syntactic validity (Theorem 2.13).

Further, judgements of the logical relation can be weakened with a new constant

assuming that the new constant and its type or kind maintains well-formedness of

the signature:

Lemma 4.3 (Weakening of signature)

Let S1, S2 be arbitrary signatures and c a constant.

1. If S1,S2;P ; Γ −→C e : G and ` S1, c : A,S2 then S1, c : A,S2;P ; Γ −→C e : G.

2. If S1,S2;P ; Γ
e1:D−→C e : G and ` S1, c : A,S2 then

S1, c : A,S2;P ; Γ
e1:D−→C e : G.

3. If S1,S2;P ; Γ −→C e : D and ` S1, c : A,S2 then S1, c : A,S2;P ; Γ −→C e : D.

Proof. By simultaneous structural induction on derivations of the first assumptions

using Propositions 3.5 and 2.14 and syntactic validity of the logical relation (Propo-

sition 4.2).

Similarly, judgements of the logical relation can be weakened with a new program

clause as long as this clause maintains well-formedness of the program.

Lemma 4.4 (Weakening of program)
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• If S;P1,P2; Γ −→C ê : ê′ and S ` P1, κ : D,P2 then

S;P1, κ : D,P2; Γ −→C ê : ê′.

• If S;P1,P2; Γ
ê1:D−→C ê : ê′ and S ` P1, κ : D,P2 then

S;P1, κ : D,P2; Γ
ê1:D−→C ê : ê′.

• If S;P1,P2; Γ −→C ê : D and S ` P1, κ : D,P2 then

S;P1, κ : D,P2; Γ −→C ê : D.

Proof. By simultaneous structural induction on derivations of the first assumptions

using syntactic validity of the logical relation (Proposition 4.2), syntactic validity

of programs (Proposition 3.4) and implicit syntactic validity (Theorem 2.16, Part

1).

The logical relation is stable under substitution over a program, i.e. substitut-

ing a term over a derivation of a well-formed judgement provides a well-formed

judgement.

Proposition 4.5 (Stability)

1. If S;P1, κ : D1,P2; Γ −→C e : G then S;P1, κ : D1[M/x],P2; Γ −→C e : G.

2. If S;P1, κ : D1,P2; Γ, x : A
e1:D−→C e : G then

S;P1, κ : D1[M/x],P2; Γ
e1:D−→C e : G.

3. If S;P1, κ : D1,P2; Γ, x : A −→C e : D then

S;P1, κ : D1[M/x],P2; Γ −→C e : D.

Proof. By simultaneous structural induction on derivations of the assumptions using

Proposition 3.6.

The logical relation possesses substitutivity property.

Lemma 4.6 (Substitutivity)

1. If S;P ; Γ, x : A −→C e : G and S; Γ `M : A then

S;P ; Γ −→C e[M/x] : G[M/x].

2. If S;P ; Γ, x : A
e1:D−→C e : G and S; Γ `M : A then S;P ; Γ e1[M/x]:D[M/x]−→C e : G.

3. If S;P ; Γ, x : A −→C e : D and S; Γ `M : A then

S;P ; Γ −→C e[M/x] : D[M/x].
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Proof. By simultaneous structural induction on derivations of the first assumptions

using stability of the logical relation (Proposition 4.5), Proposition 3.6, weakening

of the logical relation (Lemma 4.3) and substitutivity of terms (Theorem 2.13).

Our proof of the fundamental theorem depends on the fact that it is possible to

transform judgements of the logical relation in a way that corresponds to propagation

of inference rules. We call this transformation lifting:

Lemma 4.7 (Lifting)

Let S; Γ′ ` θ : Γ.

1. If S;P ; Γ κ:D−→C ê : A then S;P ; Γ −→C (θC){ê} : C{A}.

2. If S;P ; Γ −→C ê : G and S; Γ `M : A then

S;P ; Γ −→C (θC){〈M, ê〉} : C{∃x : A.G}.

3. If S;P , κ : D; Γ −→C ê : G then S;P ; Γ −→C (θC){λκ.ê} : C{D → G}.

4. If S;P ; Γ −→C ê : G then S;P ; Γ −→C (θC){ê} : C{∀x : A.G}.

Proof. The proof of each part of the lemma proceeds by induction on the rewriting

context C. Base cases for C = • follow as the appropriate inference rules. Remaining

cases for C = ê ê′, C = 〈M, ê〉, and C = λκ.ê follow by the appropriate inference

rule and the induction assumption.

The first part of the above lemma states that a derivation of logical relation for

an atomic goal that is annotated with atomic proof-term symbol can be lifted to a

derivation where the atomic goal of derivation and the proof term are ambiented by

an arbitrary rewriting context and by a well-formed instance thereof. The remaining

three parts of the lemma state that, for the three inductive syntactic constructs of

the rewriting contexts, a derivation of logical derivation for a certain goal and a proof

term can be embedded into the inductive syntactic construct of rewriting context

and ambiented by an arbitrary rewriting context and a well-formed instance thereof.

We prove lifting also for the judgement S;P ; Γ ê1:D−→C ê : ê′:

Lemma 4.8

Let S; Γ′ ` θ : Γ.

1. If S; Γ ` σA ≡ σA′ : o, and S;P ; Γ −→C ê′ : D′ then

S;P ; Γ ê′:A′
−→C C{ê′} : C{A}.
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2. If S;P ; Γ −→C ê1 : A1 and S;P ; Γ ê ê1:D−→C ê : ê′ then S;P ; Γ ê:A1⇒D−→C ê : ê′.

3. If S;P ; Γ ê1:D[M/x]−→C ê : ê′ and S; Γ `M : A then S;P ; Γ ê1:∀x:A.D−→C ê : ê′.

4. If S;P ; Γ ê1:D[M/x]−→C ê : ê′, and S; Γ `M : A then

S;P ; Γ ê1:∀x:A.D−→C (θC){ê} : C{ê′}.

Proof. The proofs of parts 1. and 4. of the lemma proceed by induction on rewriting

context C. Base cases for C = • follow as the appropriate inference rules. Remaining

cases for C = ê ê′, C = 〈M, ê〉, and C = λκ.ê follow by the appropriate inference

rule and the induction assumption. Part 4. uses part 3. in the base case.

The proofs of parts 2. and 3. of the lemma proceed by induction on the mixed

term ê. Base cases for ê = G follow as the appropriate inference rules. Remaining

cases for C = ê ê′, C = 〈M, ê〉, and C = λκ.ê follow by the appropriate inference

rule and the induction assumption.

This lemma is the exact counterpart of the Lifting lemma (4.7) for the annotated

judgement. Again, each part of the lemma works on one syntactic case of, in this

case, definite clauses and states that the appropriate inference rule can be propagate

from leafs of a derivation tree.

The proof of soundness depends on the fact that we can escape the logical relation

if it is established for a proper proof term (i.e. not a mixed term). Before showing

the appropriate lemma, we state an auxiliary property:

Proposition 4.9

Let e ∈ PT be a proof term. If S;P ; Γ ê1:D1−→C e : A then ê1 is a proof term, i.e.

ê1 ∈ PT.

Proof. By structural induction on derivation of the judgement.

• Let the case be S;P ; Γ e:A−→C e : A . Then e ∈ PT follows from assumptions.

• Let the case be S;P ; Γ −→C ê1 : A1 S;P ; Γ ê ê1:D−→C e2 : A2

S;P ; Γ ê:A1⇒D−→C e2 : A2

. From the in-

duction hypothesis, ê ê1 ∈ PT. Hence ê ∈ PT.

• Let the case be S;P ; Γ ê:D[M/x]−→C e2 : A2 S;P `M : A1

S;P ; Γ ê:∀x:A1.D−→C e2 : A2

. Then ê ∈ PT

follows from the induction hypothesis.
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Finally, we make use of the following lemma that allows us to lift an annotated

judgement of the logical relation to a judgement without annotation assuming that

the judgement is formed for a proper proof term, an atomic goal, and that the

annotating proof term and clause are well-formed.

Lemma 4.10

Let e ∈ PT be a proof term. If S;P ; Γ e1:D−→C e : A and S;P ; Γ −→C e1 : D then

S;P ; Γ −→C e : A.

Proof. By structural induction on the assumption using Proposition 4.9 and substi-

tutivity of the logical relation (Lemma 4.6).

4.2 Fundamental Escape

In this section, we state and prove two main properties that are necessary for estab-

lishing soundness of the small-step operational semantics. The escape lemma allows

us to escape from a judgement of logical relation for a proof term and a goal to a

judgement of the big-step operational semantics. The fundamental theorem allows

us to establish that two mixed terms are logically related if there is a derivation of

the small-step operational semantics for them.

We follow the order in which we introduced operational semantics and we state

the escape lemma first:

Lemma 4.11 (Escape)

Let e ∈ PT and e1 ∈ PT be proof terms.

1. If S;P ; · −→C e : G then S;P −→ e : G.

2. If S;P ; · e1:D1−→C e : G and S;P ; · −→C e1 : D1 then S;P e1:D1−→ e : G.

Proof. By simultaneous structural induction on derivations of S;P ; · −→C e : G

and S;P ; · e1:D1−→C e : G. We make implicit use of Proposition 4.9.

Part 1 The compatible cases are:

• Let the derivation be S;P ; ·
e1:D−→C e : A

S;P ; · −→C e : A
. From Part 2 of the lemma it follows

that S;P e1:D−→ e : A. Using Lemma 4.10 it follows that S;P −→ e : A.

• Let the derivation be S;P ; · −→C e : G[M/x] S; · `M : A

S;P ; Γ −→C 〈M, e〉 : ∃x : A.G
. From the

induction hypothesis it follows that S;P −→ e : G[M/X]. Hence we form the
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inference S;P −→ e : G[M/X] S; · `M : A

S;P −→ 〈M, e〉 : ∃X : A.G
.

• Let the derivation be S;P , κ : D; Γ −→C e : G

S;P ; Γ −→C λκ.e : D ⇒ G
. From the induction hy-

pothesis it follows that S;P , κ : D −→ e : G. Hence we form the inference
S;P , κ : D −→ e : G

S;P , κ : D −→ λκ.e : D ⇒ G
.

• Let the derivation be S, c : A;P ; · −→C e[c/x] : G[c/x]

S;P ; · −→C e : ∀x : A.G
. From the induction

hypothesis it follows that S, c : A;P −→ (λκ.e)[c/x] : G[c/x]. We form the

inference S, c : A;P −→ (λκ.e)[c/x] : G[c/x]

S;P −→ λκ.e : ∀x : A.G
using the fact that substitution

for proof terms and for mixed terms is defined in a uniform way.

Part 2

• Let the derivation be S;P ; · e:A−→C κ : A . Then S;P e:A−→ e : A .

• Let the derivation be S;P ; · −→C e1 : A1 S;P ; · e e1:D−→C κ : A2

S;P ; · e:A1⇒D−→C κ : A2

. By Part

2 of the lemma and from the assumption S;P ; · −→C e1 : A1 it follows that

S;P −→ e1 : A1. By induction hypothesis S;P (λκ.e) e1:D−→ κ : A2. Thus we

form the inference S;P −→ e1 : A1 S;P (λκ.e) e1:D−→ κ : A2

S;P λκ.e:A1⇒D−→ κ : A2

.

• Let the derivation be S;P ; ·
e1:D[M/x]−→C e2 e

′
2 : A2 S; · `M : A1

S;P ; · κ1:∀x:A1.D−→C e2 e
′
2 : A2

. Using sub-

stitutivity of logical relation (Lemma 4.6) to obtain the induction hypothesis,

it follows that S;P e1:D[M/x]−→ e2 e
′
2 : A2. Thus we form the required inference

S;P e1:D[M/x]−→ e2 e
′
2 : A2 S; · `M : A1

S;P e1:∀x:A1.D−→ e2 e
′
2 : A2

.

Finally, we establish that two mixed terms are logically related if there is a

derivation of small-step operational semantics that takes one mixed term to the

other.

Theorem 4.12 (Fundamental)

Let S; Γ ` G : o.

1. If S;P ` Γ | ê Γ′ | ê′ then S;P ; Γ′ −→C ê′ : ê.

2. If S;P ` Γ | ê ê1:D Γ′ | ê′, and S;P ; Γ −→C ê1 : D : then S;P ; Γ′ ê1:D−→C ê′ : ê.

Proof. By simultaneous structural induction on derivations of the judgements.

Part 1
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• Let the derivation be S;P ` Γ | A κ:D Γ′ | ê
S;P ` Γ | A Γ′ | ê

. Using Part 2 of the lemma

we have S;P ; Γ′ κ:D−→C ê : A. From implicit syntactic validity (Proposition 4.2)

and from lifting (Lemma 4.7) thus follows S;P ; Γ′ −→C ê : A.

• Let the derivation be S;P ` Γ, x : A | C{〈x, ê〉} Γ′ | ê′

S;P ` Γ | C{∃x : A.G} Γ′ | ê′
. By Lemma 3.29,

we obtain S;P ` Γ, x : A | ê Γ′ | ê′′ and ê′ = C ′{〈M, ê′′〉}. By induction

hypothesis we have S;P ; Γ′ −→C ê′′ : ê. Thus using lifting (Lemma 4.7), it

follows that S;P ; Γ′ −→C ê′ : C{∃x : A.G}.

• Let the derivation be S;P , κ : D ` Γ | C{λκ.ê} Γ′ | ê′

S;P ` Γ | C{D ⇒ ê} Γ′ | ê′
. By Lemma 3.29,

we obtain S;P ` Γ | λκ.ê Γ′ | ê′′ and ê′ = C ′{λκ.ê′′}. By induction hy-

pothesis we have S;P ; Γ′ −→C ê′′ : λκ.ê. Thus, it follows from lifting (Lemma

4.7) that S;P ; Γ′ −→C ê′ : C{D ⇒ ê}.

• Let the derivation be S;P , κ : D ` Γ | C{ê} Γ′ | ê′

S;P ` Γ | C{∀x : A.ê} Γ′ | ê′
. By Lemma 3.29

and the induction hypothesis, S;P ` Γ | ê Γ′ | ê′′ and also ê′ = C ′{ê′′}.

Thus, using lifting (Lemma 4.7) we have S;P ; Γ′ −→C C ′{ê′′} : C{∀x : A.ê}.

Part 2

• Let the derivation be
S; Γ′ ` σA = σA′ : o S ` P
S;P ` Γ | A′ ê:A Γ′ | ê

. Then the desired

judgement S;P ; Γ′ ê:A−→C ê : A′ follows from lifting (Lemma 4.8) straightfor-

wardly.

• Let the derivation be S;P ` Γ | C{A} ê A1:D Γ′ | ê′

S;P ` Γ | C{A} ê:A1⇒D Γ′ | ê′
. By Lemma 3.29 and

the induction hypothesis we obtain S;P ` Γ | A ê:A1⇒D Γ′ | ê′′ and ê′ =

C ′{ê′′}. Using the induction hypothesis and the implicit syntactic validity of

program for logical relation (Proposition 4.2), we obtain S;P ; Γ′ κ:D−→C ê′′ : A.

Hence, by lifting (Lemma 4.7) we obtain S;P ; Γ′ −→C ê′ : C{A}.

• Let the derivation be S;P ` Γ, x : A1 | C{A}
ê:D Γ′ | ê′

S;P ` Γ | C{A} ê:∀x:A1.D Γ′ | ê′
. By Lemma 3.29,

we obtain S;P ` Γ | A ê:D Γ′ | ê′′ and ê′ = C ′{ê′′}. By induction hypoth-

esis we have S;P ; Γ′ ê:D−→C ê′′ : A. Hence, by lifting (Lemma 4.7), we obtain

S;P ; Γ′ −→C ê′ : C{A}.
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4.3 Soundness of Small-Step Operational Semantics

In this brief section, we bring the previous results together and prove soundness of

the small-step operational semantics of proof-relevant resolution w.r.t. the big-step

operational semantics. We also introduce a further lemma that allows us to prove

(a strengthening of) the generalised soundness (Theorem 3.32).

First, soundness follows from the Escape Lemma and the Fundamental Theorem

straightforwardly:

Corollary 4.13 (Soundness)

If S;P ` Γ | G · | e then S;P −→ e : G.

However, recall that in Chapter 3 we stated soundness in a more general way,

using generalisation of a goal with a context. Using results of the previous section,

we state and prove the following lemma about generalisation of goals and the logical

relation:

Lemma 4.14 (Generalisation)

1. If S;P ; (Γ, x : A) −→C ê : G then S;P ; Γ −→C ê : ∀x : A.G.

2. If S;P ; Γ −→C ê : G then S;P ; · −→C ê : ∀Γ.G.

Proof. Part 1 Follows from substitutivity of the logical relation (Lemma 4.6) and

weakening of signatures (Lemma 4.3).

Part 2 By induction on the context. The base case is by definition of generali-

sation, the inductive case follows from Part 1.

Finally, we state and prove the generalised soundness of the small-step opera-

tional semantics:

Corollary 4.15 (Generalised soundness)

If S;P ` Γ | G Γ′ | e then S;P −→ e : ∀Γ′.G.

Proof. Follows from the Fundamental Theorem (4.12) by generalisation (Lemma

4.14) and Escape Lemma (4.11).
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Let us conclude this chapter by recovering the notion of an answer substitution.

Note that we can collect the substitutions that are computed in the initial sequent

of the small-step resolution and compose the collected substitutions along the small

resolution steps. Then, for a judgement S;P ` Γ | G Γ′ | e, the composed

substitution σ is a mapping from variables in context Γ to terms that are well-

formed in context Γ′ and since the partial substitutions are well formed also σ is

well formed, i.e. S; Γ ` σ : Γ′.

4.4 Related Work

The proof of soundness in this chapter is carried out using a logical relation. The

proof technique was originally introduced by Tait (1967) and used for proving strong

normalisation of the simply typed lambda calculus. Initial application of logical

relations include the proofs of strong normalisation for System F (Girard, 1972) and

strong normalisation of Calculus of Constructions (Geuvers, 1994).

Logical relations have wide applications in programming languages research be-

sides proofs of strong normalisation. Generally, these applications fall in two broad

categories: type safety (Birkedal and Harper, 1999) and equivalence of programs

(Dreyer et al., 2009, Pitts, 2000). Our use of logical relation that is relating two

mixed terms is inspired by the use of logical relation for reasoning about program

equivalence. A work that is relevant to our development in particular is the use of

logical relations for mechanisations of metatheory of LF (Cave and Pientka, 2018,

Urban et al., 2011). Logical relations has been also successfully applied to higher or-

der type theory (Abel et al., 2018). These results provide a promising starting point

for both mechanisations of results in this chapter and for extending these results

beyond a first order type theory.
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5 Type Inference and Term Synthe-

sis

In this chapter, we demonstrate a use of proof-relevant resolution for the purpose of

type inference and term synthesis in type theory. We make use of nameless LF as

the language that is subject to type inference and term synthesis. The approach we

present in this section consist of a preprocessing phase from nameless LF to a logic

program and a proof-relevant resolution phase in the Horn-clause logic of the pro-

gram. Then, solutions provided by the resolution phase are interpreted in nameless

LF. In this chapter, we first explain the system by means of a detailed example, then

we present formal description and discuss decidability of the preprocessing phase and

soundness of the interpreted solutions.

5.1 Example by Resolution

In this section, we give a detailed example that combines preprocessing in a verified

manner with the use of proof terms as a medium for communication with an external

automated prover. We describe an algorithm that reduces type inference and term

synthesis in type theory with dependent types to resolution in proof-relevant Horn-

clause logic. In our description, we rely on an abstract syntax that closely resembles

existing functional programming languages with dependent types. We will call it

the surface language.

Example 5.1

In the surface language, we define maybeA, an option type over a fixed type A, indexed
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by a Boolean:
data maybeA (a : A) : bool→ type where

nothing : maybeA ff

just : A→ maybeA tt

Here, nothing and just are the two constructors of the maybe type. The type is

indexed by ff when the nothing constructor is used, and by tt when the just

constructor is used (ff and tt are constructors of bool). A function fromJust

extracts the value from the just constructor:

fromJust : maybeA tt→ A

fromJust (just x) = x

Note that the value tt appears within the type maybeA tt→ A of this function (the

type depends on the value), allowing for a more precise function definition that omits

the redundant case when the constructor of the type maybeA is nothing. The chal-

lenge for the type checker is to determine that the missing case fromJust nothing

above definition is contradictory (rather than being omitted by mistake). Indeed, the

type of nothing is maybeA ff. However, the function specifies its argument to be of

type maybeA tt.

To type check functions in the surface language, the compiler translates them

into terms in a type-theoretic calculus of nameless LF. We call this calculus the

internal language of the compiler.

The number of objects of the internal language that are required to elaborate

even a simple example such as Example 5.1 is rather large.

Example 5.2

One possible choice of objects to encode the definition of fromJust is given by the

signature in Figure 5.1. Recall that we use A→ B as an abbreviation for Π(a : A).B

where a does not occur free in B.

Our choice of objects in the above example is straightforward; constructors of ob-

jects, that is constructors of types and constructors of terms, are translated directly.

75



5.1. Example by Resolution

A : type
bool : type
ff tt : bool

(≡bool) : bool → bool → type
refl : Π( b:bool). b ≡bool b
elim≡bool: tt ≡bool ff → A

maybe A : bool → type
nothing : maybe A ff
just : A → maybe A tt
elimmaybeA : Π( b:bool).maybe A b

→ ( b ≡bool ff → A)
→ ( b ≡bool tt → A → A)
→ A

Figure 5.1: Signature for encoding fromJust

Eliminators, which occur in the surface language as patter matching, are translates

to elimination principles.

For the sake of comparison, we develop our example also in two existing systems that

are based in constructive type theoey, namely Agda1 and (The Agda Development

Team, 2019) Coq2 (The Coq Development Team, 2019). The respective versions of

the signature can be found in Figures 5.2 and 5.3.

The final goal of type checking of a function in the surface language is to obtain an

encoding in the internal language. It is important to note that surface language does

not contain all the information required by the type theory of the internal language

and that this information needs to be inferred, preferably by an automated tool and

without any human intervention.

Example 5.3

The function fromJust is encoded into a term in the signature in Figure 5.1 as

follows:

tfromJust := λ ( m:maybe A tt).elimmaybeA tt m

(λ (w:tt≡boolff).elim≡bool w)

(λ (w:tt≡booltt).λ (x:A).x)

The missing case for nothing must be accounted for (cf. the line (λ (w:tt≡boolff

1The version we use is Agda version 2.6.0.1
2The version we use is The Coq Proof Assistant, version 8.10

76



5.1. Example by Resolution

data bool : Set where
ff tt : bool

data _=bool_ : bool → bool → Set where
refl : (b : bool) → b �bool b

elim=bool : tt �bool ff → A
elim=bool ()

data maybeA : bool → Set where
nothing : maybeA ff
just : A → maybeA tt

elimmaybeA : (b : bool) → maybeA b→
(b =bool ff → A)→
(b =bool tt → A → A)→
A

elimmaybeA .ff nothing z s = z (refl ff)
elimmaybeA .tt (just x) z s = s (refl tt) x

Figure 5.2: Signature for encoding fromJust in Agda

).elim≡boolw) above).

We allow for explicit working with the information that is missing in the surface

language by extending the internal language with term level metavariables, denoted

by ?a, and type level metavariables, denoted by ?A. These stand for the parts of a

term in the internal language that are not yet known.

Example 5.4

Using metavariables, the term that directly corresponds to fromJust is:

tfromJust := λ ( m:maybe A tt).elimmaybeA ?a m

(λ ( w: ?A ). ?b )

(λ ( w: ?B ).λ ( x:A).x)

The missing information comprises the two types ?A and ?B and the term ?b for

the constructor nothing. Obtaining types ?A, ?B amounts to type inference (in the

internal language, as opposed to checking in the surface language), whereas obtaining

the term ?b amounts to term synthesis.

Note that existing systems are not in general able to process this example. For

example, in Agda this term is given as:
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Parameter (A : Type).

Inductive bool : Type := tt | ff.

Inductive eqbool : bool → bool → Type
:= refl : ∀ b, eqbool b b.

Lemma elimeqbool : eqbool tt ff → A.
Proof.

intros H;remember tt;remember ff.
generalize Heqb Heqb0;destruct H;subst b.
congruence.

Qed.

Inductive maybeA : bool → Type
:= nothing : maybeA ff
| just : A → maybeA tt.

Lemma elimmyabeA : ∀ (b : bool), maybeA b
→ (eqbool b ff → A)
→ (eqbool b tt → A → A)
→ A.

Proof.
intros b mb;destruct mb.
- intros Hz _;exact (Hz (refl ff)).
- intros _ Hs;exact (Hs (refl tt) a).

Qed.

Figure 5.3: Signature for encoding fromJust in Coq
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25: tfromJust = λ (m : maybeA tt) → elimmaybeA _ m

26: (λ (w : _) → _)

27: (λ (w : _) →� (x : A) → x)

The syntax is very close to the term tfromjust in our internal language the difference

being that metavariables are denoted by an underscore (_) Agda signals that it cannot

infer the missing information for the constructor nothing by the following message:

Checking FromJust (./FromJust.agda).

Unsolved metas at the following locations:

./FromJust.agda:26,16-17

In Coq, the situation is similar. The term tfromJust is encoded as follows:

32: Definition tfromjust := fun (m : maybeA tt) ⇒ elimmaybeA _ m

33: (fun (w : _) ⇒ _)

34: (fun (w : _) ⇒ (fun (x : A) ⇒ x)).

Again, the metavariables are denoted by underscores. In this case, the message

produced by Coq looks as follows:

File "./FromJust.v", line 33, characters 49-50:

Error: Cannot infer this placeholder of type "A" in environment:

m : maybeA tt

w : eqbool tt ff

Coq signals the same issua as Agda here. It is unable to infer the term for handling

the case of nothing constructor.

In this thesis, we use the notion refinement to refer to the combined problem of

type inference and term synthesis. We make use of proof-relevant Horn-clause logic

to solve refinement problems. We translate refinement problems into the syntax of

logic programs. The refinement algorithm that we propose takes a signature and a

term with metavariables in the extended internal language to a logic program and

a goal in proof-relevant Horn-clause logic.

Example 5.5

Consider the inference rule Π-t-Elim in LF. This inference rule generalises the

inference rule App that we used to motivate Horn clauses in type inference in the
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Introduction (Chapter 1).

Γ `M : Πx : A.B Γ ` N : A
Π-t-Elim

Γ `MN : B[N/x]

When type checking the term tfromJust an application of elimmaybeA tt m to the term

λ(w : ?A).?b in the context m : maybeA tt needs to be type checked. This amounts to

providing a derivation of the typing judgement that contains the following instance

of the rule Π-t-Elim:

m : maybeA tt ` elimmaybeA tt m

: (tt≡bool ff→ A)→ · · · → A m : maybeA tt ` λ(w : ?A).?b : ?A → ?B
m : maybeA tt ` (elimmaybeA tt m) (λ(w : ?A).?b) : (tt≡bool tt→ A→ A)→ A

For the above inference step to be a valid instance of the inference rule Π-t-Elim,

it is necessary that (tt≡bool ff) = ?A and A = ?B. This is reflected in the goal:

((tt≡bool ff) = ?A) ∧ (A = ?B) ∧G(elimmaybeA tt m) ∧Gλ(w:?A).?b) (II)

The additional goals G(elimmaybeA tt m) and Gλ(w:?A).?b are recursively generated for

the terms elimmaybeA tt m and λ(w : ?A).?b, respectively.

The unifiers that are computed by proof-relevant resolution give an assignment

of types to type-level metavariables. At the same time, the computed proof terms

are interpreted as an assignment of terms to term-level metavariables.

Example 5.6

Assuming the term λ(w : ?A).?b is of type (tt≡bool ff) → A, type checking places

restrictions on the term ?b:

m : maybeA tt ` tt≡bool ff : type m : maybeA tt, w : tt≡bool ff ` ?b : A

m : maybeA tt ` λ(w : tt≡bool ff).?b : tt≡bool ff→ A

That is, ?b needs to be a well-typed term of type A in a context consisting of m and

w. When resolving the computed goal, ?b will be bound to a proof term that we use

to extract the required term.

Our translation will turn this constant into a clause in the generated logic pro-
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5.1. Example by Resolution

gram. Additionally, our translation will include clauses that describe inference rules

of the type theory of the internal language.

Example 5.7

Recall that in the signature there is a constant elim≡bool
of type tt ≡bool ff → A.

There will be a clause that corresponds to the inference rule for elimination of a

Π type as well:

κelim≡bool
: term elim≡bool

(Πx : tt≡bool ff .A) ?Γ ⇐

κelim : term ?M ?N ?B ?Γ ⇐ term ?M (Πx : ?A.?B′) ?Γ

∧ term ?N ?A ?Γ ∧ ?B′ [?N/x] ≡ ?B

In these clauses, ?M , ?N , ?A, ?B, ?B′ and ?Γ are logic variables, i.e. variables of the

Horn-clause logic.

By an abuse of notation, we use the same symbols for metavariables of the inter-

nal language and logic variables in the logic programs generated by the refinement

algorithm. We also use the same notation for objects of the internal language and

terms of the logic programs. This is possible since we assume that the internal lan-

guage is represented using de Bruijn indices for variables. Finally, in order to avoid

unnecessary syntactic clutter, in this chapter we omit explicit quantifiers. We as-

sume that clauses are implicitly universally quantified and that goals are implicitly

existentially quantified.

Example 5.8

The presence of w : tt≡bool ff in the context allows us to use the clause elim≡bool

to resolve the goal term (?M ?N)A [m : maybeA tt, w : tt≡bool ff]. The implicit
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quantification of variables ?M and ?N is made explicit by the context ?M : t, ?N : t

?M : t, ?N : t | term (?M ?N)A [m : maybeA, w : tt≡bool ff] 

?M : t, ?N : t | (term (?M ?N)A [m : maybeA, w : tt≡bool ff])
κelim:_  ∗

?M : t, ?N : t, ?A : T , ?B : T | κelim (term ?M (Πx : ?A.A) [. . . ]∧

term ?N ?A [. . . , w : tt≡bool ff] ∧ A[?N/x] ≡ ?B) 

?M : t, ?N : t, ?A : T , ?B : T | κelim ((term ?M (Πx : ?A.A) [. . . ])
κelim≡bool

:_∧

term ?N ?A [. . . , w : tt≡bool ff] ∧ A[?N/x] ≡ ?B) ∗

?N : t, ?B : T | κelim κelim≡bool
(term ?N tt≡bool ff [. . . , w : tt≡bool ff]∧

A[?N/x] ≡ ?B) 

?N : t, ?B : T | κelim κelim≡bool
((term ?N tt≡bool ff [. . . , w : tt≡bool ff])

κprogw

∧ A[?N/x] ≡ ?B) ∗

?B : T | κelim κelim≡bool
κprojw (A[w/x] ≡ ?B)

κsubstA  ∗

· | κelim κelim≡bool
κprojw κsubstA

The resolution here is a trace of the small-step semantics we introduced in Chapter 3

up to certain lenience we allow ourselves with treatment of variable names, the

variable w in particular. A clause κprojw is used to project the variable w from the

context. Such lenience allows us to avoid excessive technical detail and to postpone

further discussion of the exact shape of the clauses until the next section since it

depends on the de Bruijn representation of variables. We omit clause bodies, denoted

by an underscore, as we did in previous chapters.

For the moment, we are just interested in the computed proof term:

κelim κelim≡bool
κprojwκsubstA
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Note that by resolving goal II in Example 5.5, we obtain a substitution θ

that assigns the type A to the logic variable ?B, i.e. θ(?B) = A. At the same

time, the proof term computed by the derivation in Example 5.8 is interpreted as

a solution (elim≡bool
w) for the term-level metavariable ?b. However, the proof

term can be used to reconstruct the derivation of well-typedness of the judgement

m : maybeA tt, w : tt≡bool ff ` elim≡bool
w : A as well. In general, a substitution

is interpreted as a solution to a type-level metavariable and a proof term as a solu-

tion to a term-level metavariable. The remaining solution for ?A is computed using

similar methodology, and we omit the details here.

5.2 Refinement in Nameless LF

In this section, we present a translation of a refinement problem into Horn-clause

logic with explicit proof terms. First, we extend the language of nameless LF with

metavariables, which allows us to capture incomplete terms. Next, we give a calculus

for transformation of an incomplete term to a goal and a program.

5.2.1 Refinement problem

We capture missing information in nameless LF terms by metavariables. We assume

infinitely countable disjoint sets ?B and ?V that stand for omitted types and terms

and we call elements of these sets type-level and term-level metavariables respec-

tively. We use identifiers ?a, ?b, etc. to denote elements of ?V and identifiers ?A, ?B,

etc. to denote elements of ?B. The extended syntax is defined as follows:

Definition 5.9 (Extended nameless LF)

We define extended nameless types, terms and contexts as follows:

t 3M,N := · · · | ?a terms

T 3 A,B := · · · | ?A types

Ctx 3 Γ := · · · | Γ, ?a : A contexts

The ellipsis in the definition are to be understood as the appropriate syntactic
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constructs of Definition 2.38 in Chapter 2. Note that we do not define an extended

signature. We assume that the signature is always fixed and does not contain any

metavariables. This does not pose any problem since well-typedness of signature

does not depend on the term that is being refined.

We use mtvar(−) and mvar(−) to denote the sets of type-level and term-level

metavariables respectively. The well-formedness judgements of the nameless LF

remain the same as in Chapter 2 but now they are seen as defined on a subset

of extended objects. These are the ground extended objects, as we show by the

following lemma:

Lemma 5.10

Let L be an extended nameless kind, A an extended nameless type and M an extended

nameless term. Let S be a signature and Γ a context.

• If S; Γ ` L : kind then mvar(L) = ∅ and mtvar(L) = ∅,

• if S; Γ ` A : L then mvar(A) = ∅ and mtvar(A) = ∅, and

• if S; Γ `M : A then mvar(M) = ∅ and mtvar(M) = ∅.

Proof. By induction on the derivation of judgements.

A refinement problem is defined as a term in the extended syntax. A signature and

a context of the term are kept implicit.

Example 5.11 (Refinement problem)

Taking our leading example, the term M ′ given by (elimmaybeA tt 0)(λ?A.?b) is a

refinement problem. The appropriate context is Γ1 = ·, maybeA tt. The signature

in Figure 5.1 is adjusted to a nameless signature S.

A refinement of a term is a pair of assignments (ρ,R) such that ρ : ?V → t is an

assignment of (extended) terms to term-level metavariables and R : ?B → T is an

assignment of (extended) types to type-level metavariables. We define application

of refinement (ρ,R)(−) to terms, types and kinds by induction on definition of the

syntactic object.

Definition 5.12 (Refinement application)

Let ρ : ?V → t be an assignment of terms and R : ?B → T be an assignment of types.

Application of the refinement (ρ,R) to kinds, types and terms is defined by:
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(ρ,R)(type) = type

(ρ,R)(ΠA.L) = Π(ρ,R)(A).(ρ,R)(L)

(ρ,R)(α) = α

(ρ,R)(?A) = R(?A)

(ρ,R)(ΠA.B) = Π(ρ,R)(A).(ρ,R)(B)

(ρ,R)(AN) = (ρ,R)(A)(ρ,R)(N)

(ρ,R)(c) = c

(ρ,R)(ι) = ι

(ρ,R)(?a) = ρ(?a)

(ρ,R)(λx : A.M) = λx : (ρ,R)(A).(ρ,R)(M)

(ρ,R)(MN) = (ρ,R)(M)(ρ,R)(N)

A solution to a refinement problem t is a refinement (ρ,R) such that (ρ,R)(t) is a

well-formed term of nameless LF. That is, by Lemma 5.10, (ρ,R)(t) does not contain

neither term-level nor type-level metavariables.

5.2.2 From a refinement problem to a logic program

In this section, we explain how a term with metavariables is transformed into a goal,

and a signature into a logic program. At the end of the section we state that, for a

refinement problem, either a goal and a program exist or else the problem cannot be

refined to a well-formed term. Our representation of nameless LF in the language

of proof-relevant Horn-clause logic that we introduced in Chapter 3 requires that

there are constants in the signature of the logic that encode judgements of nameless

LF. In particular, we require:
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• constant > for a trivially satisfied formula,

• constants for encoding sorts of nameless LF,

• constants for encoding de Bruijn indices,

• function symbols for encoding abstraction, application, Π type and kind for-

mation and a designated kind that classifies types,

• the predicates eqat and eqst denote algorithmic and structural equality respec-

tively of terms of a certain simple type in a context,

• the predicates eqT and eqK denote equality of terms of a certain simple kind,

and equality of kinds in a context respectively.

• the predicates term and type denote, respectively, that a term or a type is

well-formed in a context,

• predicates A↑ ≡ A′ to denote that a type A′ is the result of shifting of A; and

we use A[M ] ≡ A′ to denote that A′ is the result of substitution of A with M ,

and

• predicate whr to denote weak head reduction of terms and predicate proj to

denote that a variable is present in a context (or a projection of a variable

from a context).

In order to avoid unnecessary syntactic clutter we keep the same syntax for Π

types, abstraction and application in the internal language and in the logic. Hence,

we can define the signature that contains the necessary symbols as follows:

Definition 5.13

Sempty = > : o, N : type, 0 : N, σ : N, t : type, T : type, K : type,− t− : t→ t→ t,

λ− .− : T → t→ t,− T− : T → T → T,ΠT − .− : T → T → T,

typeK : K,ΠK − .− : T → T → T,

Ctx : type,−,Ctx− : Ctx→ T → Ctx,

eqat : t→ t→ Ctx→ o, eqst : t→ t→ Ctx→ o,

eqT : T → T → Ctx→ o, eqK : K → K → Ctx→ o,

term : t→ T → Ctx→ o, type : T → K → Ctx→ o,
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−↑ ≡ − : t→ t→ o,−[−] ≡ − : t→ t→ t→ o

whr : t→ t→ o, proj : t→ T → Ctx→ o

The type N is the type of de Bruijn indices. We use dashes −f− to denote that the

function symbol f is used in infix notation. Formally, we define different symbols,

e.g., − t− and− T− for application of terms and types respectively. In the rest of this

chapter, we will drop the subscript where the notation is unambiguous. Since the

signature of nameless LF is fixed, we keep it implicit in the encoded representation.

We define a calculus with two kinds of judgements, one for transforming re-

finement problems into goals and the other for transforming signatures into logic

programs. These judgements are defined mutually in a similar way to the well-

formedness judgements of nameless LF in Figures 2.7 and 2.8. We use S; Γ;M `

(G | A) to denote the transformation of a term M in a signature S and a context

Γ to a goal G. The judgement also synthesises a type A of the term M . Similarly,

S; Γ;A ` (G | L) denotes a transformation of a type A in S and Γ to a goal G while

synthesising a kind L.

Definition 5.14

The judgements S; Γ;M ` (G | A) and S; Γ;A ` (G | L) are given by inference rules

in Figures 7.4 and 7.3. Metavariables that do not occur among assumptions have

an implicit freshness condition.

The inference judgement for a logic program generation is denoted by S `Prog P

where S is a signature and P is a generated logic program. A generated logic

program contains clauses that represent inference rules of type theory and clauses

that are generated from a signature S. The clauses that represent inference rules of

LF are the same for all programs and Definition 5.15 gives a minimal program Pe

that contains only these clauses.

Definition 5.15

Let Pe be a program with clauses that represent inference rules for well-formedness
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S; Γ;M ` (G | A)

c : A ∈ S r-conS; Γ; c ` (> | A)

r-t-metaS; Γ; ?a ` (?a : term ?a′ ?A Γ | ?A)

r-zeroS; Γ, A; 0 ` (A↑ ≡ ?A | ?A)

S; Γ; ι ` (G | A) r-succS; Γ, B;σι ` (G ∧ (A↑ ≡ ?A) | ?A)

S; Γ;A ` (GA | L) S; Γ, A;M ` (GM | B)
r-λ-introS; Γ;λA.M ` (GA ∧GM ∧ (eqK L type Γ) | ΠA.B)

S; Γ;M ` (GM | A) S; Γ;N ` (GN | A2) r-λ-elimS; Γ;MN ` (GM ∧GN ∧ (eqT A (ΠA2.?B) type Γ)

∧(?B[N ] ≡ ?B′) | ?B′)

Figure 5.4: Refinement of terms

S; Γ;A ` (G | L)

a : L ∈ S r-tconS; Γ; a ` (> | L)

r-T-metaS; Γ; ?A ` (type ?A ?L Γ | ?L)

S; Γ;A ` (GA | L1) S; Γ, A;B ` (GB | L2) r-Π-introS; Γ; ΠA.B ` (GA ∧GB ∧ (eqK L1 type Γ) ∧ (eqK L2 type Γ) | type)

S; Γ;A ` (GA | L) S; Γ;M ` (GM | B)
r-Π-elimS; Γ;AM ` (GA ∧GM ∧ (eqK L (ΠB.?L) Γ) ∧ (?L[M ] ≡ ?L′) | ?L′)

Figure 5.5: Refinement of types
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of terms and types:

κtrue : > ⇐

κ0 : proj 0 ?A (?Γ, ?A′)⇐ (?A′ ↑ ≡ ?A)

κσ : proj (σ ?ι) ?A (?Γ, ?B)⇐ proj ?ι ?A′ ?Γ ∧ (?A′ ↑ ≡ ?A)

κproj : term ?ι ?A ?Γ ⇐ proj ?ι ?A ?Γ

κT-elim : type (?A ?M) ?L ?Γ ⇐ type ?A (Π?A1 .?L′) ?Γ ∧ term ?M ?A2 ?Γ∧

eqT ?A1 ?A2 type ?Γ ∧ (?L′ [?M ] ≡ ?L)

κT-intro : type (Π?A.?B) type ?Γ ⇐ type ?A type ?Γ ∧ type ?B type (?Γ, ?B)

κt-elim : term (?M ?N) ?B ?Γ ⇐ term ?M (Π?A1 .?B′) ?Γ ∧ term ?N ?A2 ?Γ∧

eqT ?A1 ?A2 , type, ?Γ ∧ (?B′ [?N ] ≡ ?B)

κt-intro : term (λ?A.?M)(Π?A.?B)?Γ ⇐ type ?A type ?Γ ∧ term ?M ?B ?Γ)

Further, there are clauses that represent weak algorithmic equality of types, algorith-

mic and structural equality of terms, and weak head reduction of terms:

κeqTintro : eqT (Π?A1 .?A2 (Π?B1 .?B2) type ?Γ ⇐ eqT ?A1 ?B1 type ?Γ)∧

eqT ?A2 ?B2 type (?Γ, ?A1)

κeqTelim : eqT (?A ?M) (?B ?N) ?L ?Γ ⇐ eqT ?A ?B (Π?C .?L) ?Γ ∧ eqat ?M ?N ?C ?Γ

κeqtzero : eqst 0Γ 0Γ, ?A (?Γ, ?A)⇐

κeqtsucc : eqst (σ ?ιΓ) (σ ?ι′Γ) ?A (?Γ, ?B)⇐ eqst ?ιΓ ?ι′Γ ?A ?Γ

κeqtrefl : eqst ?a ?a ?A ?Γ ⇐

κeqtelim : eqst (?M1 ?M2) (?N1 ?N2)?B ?Γ ⇐ eqst ?M1 ?N1 (Π?A.?B)?Γ ∧ eqat ?M2 ?N2 ?B ?Γ
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κeqtwhrl : eqat ?M ?N ?A ?Γ ⇐ whr ?M ?M ′ ∧ eqt ?M ′ ?N ?A ?Γ

κeqtwhrr : eqat ?M ?N ?A ?Γ ⇐ whr?N ?N ′ ∧ eqat ?M ?N ′ ?A ?Γ

κeqtstr : eqat ?M ?N ?A ?Γ ⇐ eqst ?M ?N ?A ?Γ

κeqtexp : eqat ?M ?N (Π?A.?B) ?Γ ⇐ (?M ↑ ≡ ?M ′) ∧ (?N ↑ ?N ′)∧

eqat (?M ′ 0) (?N ′ 0) ?B (?Γ, ?A)

κwhrs : whr (λ?A.?M) ?N ?M ′ ⇐ ?M [?N/0] ≡ ?M ′

κwhrh : whr (?M ?N) (?M ′ ?N)⇐ whr ?M ?M ′

Finally, there are clauses that represent shifting and substitution on terms and types:

κshiftTtintro : (Π?A.?M)↑ι ≡ (Π?A′ .?M ′)⇐ ?A ↑ι ≡ ?A′ ∧ ?M ↑σι ≡ ?M ′

κshiftTtintro : (λ?A.?M)↑ι ≡ (λ?A′ .?M ′)⇐ ?A ↑ι ≡ ?A′ ∧ ?M ↑σι ≡ ?M ′

κshifttelim : (?M?N)↑ι ≡ (?M ′?N ′)⇐ ?M ↑ι ≡ ?M ′ ∧ ?N ↑ι ≡ ?N ′

κshifttgt : ι↑0 ≡ σι⇐

κshifttpred : 0↑σι ≡ 0⇐

κshifttstep : σι↑σι′ ≡ σι′′ ⇐ ι↑ι′ ≡ ι′′

κsubstTintro : (Π?A.?M)[?N/ι] ≡ (Π?A′ .?M ′)⇐ (?A[?N/ι] ≡ ?A′) ∧ (?N ↑0 ≡ ?′N)

∧ ?M [?′N/σι] ≡ ?M ′

κsubstintro : (λ?A.?M)[N/ι] ≡ (λ?A′ .?M ′)⇐ (?A[ι/?A′ ] ≡) ∧ (?N ↑0 ≡ ?′N)

∧ ?M [?′N/σι] ≡ ?M ′

κsubsttelim : (?M1?M2)[?N/ι] ≡ (?M ′
1
?M ′

2
)⇐ ?M1 [?N/ι] ≡ ?M ′

1
∧ ?M2 [?N/ι] ≡ ?M ′

2
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S `Prog P

· `Prog Pe

S `Prog P
S, c : A `Prog P , κc : term cA ?Γ ←, κshiftc : (c↑0 ≡ c)←,

κsubstc : c[?M/0] ≡ c←, κeqsc : eq
s(c, c, A, ?Γ)←

S `Prog P
S, a : L `Prog P , κshiftα : (α↑0 ≡ α)←, κsubstα : α[?M/0] ≡ α←,

κeqT : eqT ααL ?Γ ←, κeqaα : eqa ?N ?Mα ?Γ ← eqs ?M N α Γ

Figure 5.6: Refinement of signatures

κsubstz : 0[?N/0] ≡ ?N ⇐

κsubsts : 0[?N/σι] ≡ 0⇐

κsubstgt : σι[?N/0] ≡ σι⇐

κsubstpred : σι[?N/σι
′] ≡ σι′′ ⇐ ι[?N/ι

′] ≡ ι′′

The clauses in Definition 5.15 correspond to judgements in Figures 2.7–2.9 and

Figure 2.10. They are direct translations of the inference rules of nameless LF in

these figures; however this sentence is not to be read as a definition but solely to

facilitate understanding the resolution process. It is not necessary to anyhow verify

correctness of this step since the translation will be carried out on a resolved trace

in reverse and the original inference rules will be used. The judgement S `Prog P

extends Pe with a clause for each type and term constant in S and initialises shifting

and substitution with term and type-level constants as constant under the operation.

Definition 5.16 (Refinement program)

The judgement S `Prog P is given by the inference rules of Figure 5.6.

The Figure 5.6 gives definition of signature refinement. The refinement judgement

of a signature into a program concludes our transformation of refinement problem

into a goal and a program.

Theorem 5.17 (Decidability of goal construction)

Let M be a refinement problem in a well-formed signature S and a well-formed
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context Γ such that a solution (ρ,R) exists. Then inference rules in Figures 7.4 and

7.3 construct the goal G and the extended type A such that S; Γ;M ` (G | A).

Proof. By induction on the derivation of the well-formedness judgement of (ρ,R)(M).

The next example illustrates the construction of a refinement goal.

Example 5.18 (From an extended nameless term to a goal)

Let us take the refinement problem M ′ = (elimmaybeA tt 0)(λ?A.?b) and the implicit

context and signature from Example 5.11. By Theorem 5.17 we can generate G such

that the judgement S; Γ1;M
′ ` (G | ?B7) holds:

G = > ∧> ∧ eqT (Π bool .(Π(maybeA 0T ).(Π(Π(2T ≡bool ff).A).(Π(Π(3T ≡bool tt).

(ΠA.A)).A))))(Π bool .?B1) (Π type .?L1) Γ1 ∧ (?B1 [tt /0T ] ≡ ?B2) ∧ >∧

eqT ?B2 (Π(maybeA tt).?B3) (Π type .?L2)Γ1 ∧ (?B3 [0Γ/0T ] ≡ ?B4)∧

type ?A ?L3 Γ1 ∧ term ?b ?A1 (Γ1, ?A) ∧ eqK ?L3 type Γ1 ∧ (?A1 [0T/0Γ] ≡ ?B5)∧

eqT ?B4 (Π(Π?A.?B5).?B6 ,Πtype.?L5) Γ ∧ (?B6 [(λ?A.?b)/0T ] ≡ ?B7)

That is, the type of M ′ will be computed as a substitution for logic variable ?B7 and

resolving the goal in small steps also computes assignments to ?A and ?b.

Proposition 5.19 (Decidability of program construction)

Let S be a signature. Then inference rules in Figure 5.6 construct the program P

such that S `Prog P.

We develop our running example further to illustrate the proposition:

Example 5.20 (From a signature to a program)

The signature S contains the constant elim≡bool
hence the generated program contains

the clause:

κelim≡bool
: term elim≡bool

(Π tt≡bool ff .A) type ?Γ ⇐
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The following clauses come from the program Pe and represent inference rules of

the internal language:

κ0 : term 0 ?A (?Γ, ?A′) ⇐ ?A′ ↑ ≡ ?A

κelim : term (?a?b) ?B ?Γ ⇐ term ?a (Π?A.?B′) ?Γ ∧ term ?b ?A ?Γ∧

eqT ?B ?B′ type ?Γ ∧ (?B′ [?b] ≡ ?B)

Example 5.18 shows unresolved meta-variables in the goal, and Example 5.20 gives a

program against which to resolve the goal. Now the proof-relevant resolution comes

into play; the exact explanation of how is subject of the following section.

5.3 Proof-Relevant Resolution and Soundness

As we have shown in Example 5.8, we utilise a proof-relevant resolution we described

in Chapter 3 as the inference engine for solving refinement problems. However, for

the purpose of this chapter we extend the syntax of goals in such a way as to allow

us identify subterms of the computed proof term that correspond to atomic goals.

This will allow us to refer to these subterms for the purpose of interpretation of

proof terms as well-formedness judgements of the internal language. We assume

an infinite set ∆ of proof term identifiers. We use identifiers δ, δ1 etc. to denote

identifiers in ∆. We alter definition of goals such that an atomic goal is assigned

with an identifier in ∆.

Definition 5.21

G 3 G := δ : A | . . . goals

In the course of resolution, when an atomic subgoal δ : A is resolved with a subterm

e of the proof term, we use δ to refer to e and we say that δ is bound to e. We

omit δ in notation of goals where this identifier is not used later for referring to the

computed subterm.

Assume that G and P are a goal and a program that originate from a refinement
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problem M in signature S. An answer substitution for G computed by P provides

a solution to the type-level metavariables in M . Similarly the computed assignment

of proof terms to proof variables provides a solution to the term-level metavariables

in M .

We continue with our running example, building upon Examples 5.11–5.20.

Example 5.22 (Proof-relevant Resolution Trace)

The resolution trace of our example is rather long, and we show only a fragment.

Suppose that in several small steps, denoted by ∗, the goal G given in Example 5.18

resolves as follows:

· | G ∗ · | δb : term(?b, A, (Γ1, tt≡bool ff)

The computed substitution assigns (Π(Π(tt≡bool tt).(ΠA.A)).A to the logic vari-

able ?B7, which occurs in G. We now show the trace for the remaining goal

?b : term(?b, A, tt≡bool ff : Γ1). Given the clauses of Example 5.20, a resolu-

tion trace that computes a proof term that is bound to identifier δb can be given as

follows:

?a : t | term ?a A (Γ1, tt≡bool ff) 

?a : t | (term ?a A (Γ1, tt≡bool ff))
κelim:_  

?a1
: t, ?a2

: t, ?a′
2
: t, ?A : T , ?B′ : T | κelim (term (?a1

?a2
) (Π?A.?B′) (Γ1, tt≡bool ff)∧

term ?a′
2
?A Γ1 ∧ eqT ?B4

?B′ type (Γ1, tt≡bool ff)) 

?a1
: t, ?a2

: t, ?a′
2
: t, ?A : T , ?B′ : T | κelim ((term (?a1

?a2
) (Π?A.?B′) (Γ1, tt≡bool ff))

κelim≡bool∧

term ?a′
2
?A Γ1 ∧ eqT ?B4

?B′ type (Γ1, tt≡bool ff)) 

?a′
2
: t | κelim κelim≡bool

((term ?a′
2
(tt≡bool ff) (Γ1, tt≡bool ff)∧

eqT (tt≡bool ff) (tt≡bool ff) type (Γ1, tt≡bool ff))) 

?a′
2
: t | κelim κelim≡bool

(((term ?a′
2
(tt≡bool ff) (Γ1, tt≡bool ff))

κ0∧
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eqT (tt≡bool ff) (tt≡bool ff) type (Γ1, tt≡bool ff))) 

· | κelim κelim≡bool
κ0

(eqT (tt≡bool ff) (tt≡bool ff) type (Γ1, tt≡bool ff)) ∗

· | κelim κelim≡bool
κ0 δeqT

Above, we omit writing full derivation of the last goal but denote the result as δeqT .

The assignment to the logic variable ?A is A and the subterm of the computed proof

term that is bound to δb is κelimκelim≡bool
κ0δeqT where the subterm δeqT is a witness

of the appropriate type equality.

Since we have used types and terms of nameless LF to define our atomic formulae,

the computed substitution can be used directly. The interpretation of the computed

assignment of proof terms depends on assignment of atomic proof term symbols in

the program Pe. We define a mapping that gives the intended interpretation:

Definition 5.23 (Interpretation of proof terms)

We define interpretation of proof terms p−q : PT→ T as follows:

95



5.3. Proof-Relevant Resolution and Soundness

pκσδδιδ
′q = σpδιq

pκprojδιq = pδιq

pκT-elimδMδNδδ
′q = pδMqpδNq

pκT-introδAδδBq = ΠpδAq.pδBq

pκt-elimδAδMδδ′q = pδAqpδMq

pκt-introδAδδMδ′q = λpδAq.
−−−→pδMq

pκ0q = 0

pκcq = c

pκaq = a.

We extend p−q to assignments of identifiers to subterms of a proof term that

are bound by the identifiers. We use peq to denote this assignment.

Example 5.24

In Example 5.22, the computed proof term bound to δb is interpreted as follows:

pκelimκelim≡bool
κ0δeqT q = elim≡bool

0

Hence, the original problem is refined to elimmaybeA tt 0 (λA. elim≡bool
0) while the

computed type is ((tt≡bool tt)→ A→ A)→ A .

Finally, the above interpretation allows us to state the soundness of our system:

Theorem 5.25 (Soundness of interpretation)

Let M be a term in the extended syntax with signature S. Let P and GM be a

program and a goal such that S, · ` (GM |A) and S `Prog P respectively. Let ρ, R

be a substitution and a proof term assignment for proof term e computed by proof-

relevant resolution such that S;P ` · | GM  · | e. Then if there is a solution for a
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well-formed term, then there are solutions (ρ′, R′) and (ρ′′, R′′) such that (ρ′, R′)M

is a well-formed term and

(ρ′′, R′′)((ρ, pRq)M) = (ρ′, R′)M

Proof. Generalise the statement of the theorem for an arbitrary well-formed context

Γ. By simultaneous induction on derivation of the well-formedness judgement of

(ρ′, R′)M and derivation of S;P ` · | G · | e. The theorem follows from the

generalisation.

Theorem 5.25 guarantees that the refinement computed in Examples 5.18–5.24

is well typed in the internal language. That is, there is a derivation of the following

judgement:

S; ·, maybeA tt ` elimmaybeA tt 0 (λ tt≡bool ff . elim≡bool
0)

: ((tt≡bool tt)→ A→ A)→ A

We omit the actual derivation of the judgement. However, note that it can be

easily reconstructed in a similar way as the intended interpretation of proof terms

is computed in Definition 5.23. For example, in case of our running example, the

subterm δeqT of the proof term gives derivation of the definitional equality that is

necessary to verify application of elim≡bool
to index 0.

5.4 Related Work

Although we specifically work with LF (Harper et al., 1993, Harper and Pfenning,

2005), our work relates in general to type inference in typed λ-calculi. A standard

approach to type inference in the simply typed lambda calculus is the HM(X) al-

gorithm (Odersky et al., 1999). Essentially, this algorithm traverses the abstract

syntax tree and generates constraints in a specific constraint domain X. Then, a

solver for X is employed. Stuckey and Sulzmann (2002) presented the type infer-

ence algorithm HM(X) in terms of constraint logic programming (Sulzmann and

Stuckey, 2008). Another modification of the constraint solving approach to HM
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type inference is the inference algorithm OutsideIn(X) by (Vytiniotis et al., 2011),

which has been used for type inference in the Glasgow Haskell Compiler (GHC).

Ideas underlying our work originate in the work of Stuckey and Sulzmann (2002)

on HM(X) type inference as (constraint) logic programming. There are two key

differences. First, in our work we consider dependent types, which makes our able

to reason about properties types that depend on values as was demonstrated on the

example of function fromJust. Other approaches, such as that of Sulzmann and

Stuckey do not give a motivation for the shape of generated logic goals and pro-

grams that we discussed on page 91. Second, we make explicit that atomic formulae

represent judgements of the type theory and that the program originates on one

hand from inference rules of the type theory and on the other from a signature of a

term. We believe that a clear identification of this interpretation of generated goals

and programs makes it feasible to adjust the refinement calculus for different type

theories.

Type inference in type theory with dependent types is an undecidable problem

(Dowek, 1993). However, a relaxation thereof, type refinement, is common in ex-

isting languages based in type theory with dependent types. A bi-directional type

inference algorithm that first synthesises type of a term and then checks the syn-

thesized type against the prescribed one and that depends on constraint solving has

been implemented for the Agda interactive prover (Norell, 2007). More recent work

by Asperti et al. (2012) on type inference in type theory for the Matita theorem

prover also employs a bi-directional approach. However, this algorithm is based

on rewriting rather than constraint solving. A similar approach to refinement has

been taken by Brady (2013) in the dependently typed programming language Idris.

Pientka (2013) presented a type reconstruction algorithm for LF and Beluga.

Currently (cf. Pientka, 2013) implemented systems like Coq (The Coq Devel-

opment Team, 2019) or Agda (The Agda Development Team, 2019) make use of a

bidirectional approach to type checking. That is, there are separate type checking

and type synthesis phases. The key difference between these systems and our own

work is that we do not explicitly discuss bidirectionality. In existing literature, this

aspect of type inference and term synthesis is conjectured to have the following

effect: “Combining this [lack of explicit bidirectionality] with a clear identification
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of atomic formulae with judgements, and Horn clauses with inference rules, in our

opinion, makes the presentation significantly more accessible”. (Farka et al., 2018)

However, bidirectionality in our system is still implicitly present, albeit postponed

to the resolution phase. As future work, we intend to analyse structural resolution

(Fu and Komendantskaya, 2017) for the generated goals. We intend to show that

the matching steps in the resolution correspond to type checking in the bidirectional

approach whereas resolution steps by unification correspond to type synthesis.

Finally, let us conclude this section with comparison of formal aspects of our

approach to the state-of-art existing systems. Type inference and term synthesis as

discussed in this section is mechanically obtained from a specification of a type sys-

tem in the form of typing judgements. To the best of our knowledge such approach

does not exist in the literature yet. However, the importance of such treatment of

type inference and term synthesis can be clearly argued based on the work currently

being carried out for languages as Coq and Agda. The main relevant project is

MetaCoq (Anand et al., 2018, Sozeau et al., 2019). The project aims to provide

certified metaprogram facilities for Coq. A necessary precondition is providing a

formal specification of the language, that is in the case of Coq the Polymorphic Cal-

culus of Cumulative Inductive Constructions (PCUIC) and the elaboration of the

surface language to it. Similarly to our example of the function fromJust, authors

need to recover missing information in the process of elaboration (which they call

reification) of the reflected (meta-level) syntax. However, unlike in our work, the

authors solve the issue by lifting Coq’s type inference algorithm to meta-level and

do not tight the type inference to the specification of the language.

A work that provides basis for certified development of theorem provers and

functional programing languages (Sozeau et al., 2020). Building of MetaCoq,

Sozeau et al. present “the first implementation of a type checker for the kernel of

Coq, which is proven correct in Coq with respect to its formal specification”. They

as well need to carry out certain amount of type inference. However, the amount

is limited by the fact that they work only with a kernel of Coq (PCUIC, or in our

terms the internal language), i.e. a limited internal language that has already been

elaborated, and by the fact that they assume that the metatheory is sound and hence

the language is strongly normalising (and, as a result, typechecking is decidable).
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In Agda, there is work being currently done on type-save mataprograming, al-

beit it is in less mature state than in Coq. Cockx (2017) has introduced type-safe

rewriting rules, a type of reflection that is restricted to equality. Due to the restric-

tion, there is no need for type inference and term synthesis. We conjecture that for

full-scale metaprograming it will be necessary as is the case with Coq.
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6 Further Examples

In this chapter, we provide two additional case studies to illustrate our approach

to the problem of type inference and term synthesis. The examples are carefully

chosen to illustrate the main concepts while not hiding them in excessive burden of

administrative technicalities of type theory; these examples are the theory of boolean

equality and a generalisation of the example fromJust we used in Chapter 5 to

length-indexed vectors. We explain the motivation for the choice of each particular

example further in the text.

6.1 Theory of Boolean Equality

Our first example in this chapter is the theory of boolean equality.

Example 6.1

Consider a definition of datatype Bool, a Boolean type with constructors true and

false:
data bool : type where

true : bool

false : bool

Let us define equality ≡bool for this type as follows:

data ≡bool : bool→ bool→ type where

refl : Π(b : bool).b ≡bool b

Here, refl is the usual constructor asserting reflexivity of equality. The type is
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bool : type
ff tt : bool

(≡bool) : bool → bool → type
refl : Π( b:bool). b ≡bool b
elim≡bool: tt ≡bool ff → A

Figure 6.1: Signature Sbool for encoding boolean theory of equality

indexed by two boolean values that are subject to equality.

Let us briefly comment on benefits of the choice of this particular example. First,

the object level here is booleans. Such object level induces simply typed function

space; we will discuss functions like identity and conjunction shortly. Simply typed

function space makes reasoning on objects significantly easier and formal derivations

shorter as it liberates us from providing type equality derivations thus makes the

presentation more accessible. Yet the introduction of booleans equality ≡bool pro-

vides an expressive medium to demonstrate strengths of our type inference and term

synthesis approach on type level by investigating properties of boolean functions like

commutativity or idempotence.

Similar to the example of fromJust (Example 5.1) in Chapter 5 we will work on

an internal representation of the above data types.

Example 6.2

A choice of objects to encode definitions of Example 6.1 is given by the signature

Sbool in Figure 6.1.

First, we introduce functions that we will use when developing our examples.

Since our approach is concerned with both type inference and term synthesis, we can

use it to synthesizes these functions. We begin with synthesizing boolean functions

of one argument. There is only one caveat we need to address. The internal language

as we described it does not possess type ascriptions for arbitrary subterms, the only

type ascription is in the prescriptive typing of the variable that is subject to lambda

abstraction. We overcome this limitation by the usual solution; we simulate a type

ascription on term M by passing it as a argument to an identity function over the

desired type thus constraining its type.
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Example 6.3

A term in the extended language that corresponds to unary boolean functions is given

as follows:

f := (λ (bool → bool) . 0 ) ?a

Now we can refine the term f and signature in Figure 6.1 using the refinement

calculus of Chapter 5.

Example 6.4

Let us take the refinement problem f = (λ bool .0)?a an empty context and the

signature Sbool By Theorem 5.17 in Chapter 5 we can construct a goal G such that

the judgement S; ·; f ` (G | ?A) holds:

G = > ∧> ∧ (eqK type type ·) ∧ (eqK type type ·) ∧ (Π bool . bool)↑ ≡ ?T1∧

(eqK type type ·) ∧ δa : term ?a ?A · ∧(eqT (Π(Π bool . bool).?T1) (Π?A.?T7 ·)∧

?T7 [?a] ≡ ?T6

By Theorem 5.19 (Decidability of program construction) we can also construct a

program P such that S ` P. Recall that the constructed program consists of generic

parts that capture inference rules of the ambient type theory and which we thoroughly

discussed in Chapter 5. The remainder of program clauses captures constants of the

signature; we list some of these in Figure 6.2. We do not give a full account of the

program as it is rather lengthy and straightforward.

Now, we put the term synthesis to its first test, to enumeration of boolean

function of one argument.

Example 6.5

Observe that, in several small steps, the goal G resolves with program Pbool as

follows:

· | G ∗ · | · · · ∧ δa : term ?a (Π bool . bool) · ∧ . . .

Indeed, it holds for the subgoals that:
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κaxType : eqK type type ·

κaxTCon : type bool type ·

κaxShiftC : bool↑T2 ≡ bool

κaxSubstC : bool[T1/T3] ≡ bool

κaxEqTCon : eqT bool bool type ·

κaxCon- tt : term tt bool ·

κaxShiftC : tt↑T2 ≡ tt

κaxSubstC : tt[T3/T4] ≡ tt

κaxEqCon : eqt tt tt bool ·

κaxCon- ff : term ff bool ·

κaxShiftC : ff↑T4 ≡ ff

κaxSubstC : ff[T5/T6] ≡ ff

κaxEqCon : eqt ff ff bool ·

κaxCon- elimbool : term elimbool (Π bool .(Π(Π(0≡bool ff). bool).(Π(1≡bool tt). bool))) ·

κaxShiftC : elimbool ↑T6 ≡ elimbool

κaxSubstC : elimbool[T7/T8] ≡ elimbool

κaxEqCon- elimbool : eqt elimbool (Π bool .(Π(Π(0≡bool ff). bool).(Π(1≡bool tt). bool)))

(Π bool .(Π(Π(0≡bool ff). bool).(Π(1≡bool tt). bool))) ·

κaxTCon-≡bool
: type ≡bool (Π bool .(Π bool . type))·

κaxShiftC : ≡bool ↑T9 ≡ ≡bool

κaxSubstC : ≡bool[T8/T10] ≡ ≡bool

κaxEqTCon : eqT ≡bool ≡bool (Π bool .(Π bool . type ))·)

κaxCon- refl : term refl (Π bool .0≡bool 0)·)

Figure 6.2: Excerpt of of program constructed from Sbool

104



6.1. Theory of Boolean Equality

· | > κtrue

· | (eqK type type ·) κaxType

· | (Π bool . bool)↑ ≡ ?T1  κshiftTintro κaxShiftC κaxShiftC with ?T1 = Π bool . bool

·(eqT (Π(Π bool . bool).?T1) (Π?A.?T7 ·) ∗ κT−intro (κT-intro (κbool)(κbool))(κbool)

with A = Π bool . bool and ?T7 = ?T1 = Π bool . bool

· | (Π bool . bool)[?a] ≡ ?T6  ∗ κsubstTintro κaxSubstC κaxSubstC with ?T6 = Π bool . bool

Hence we have the goal G′ = δa : term ?a (Π bool . bool) · with type A = Π bool . bool.

One of the possible resolution traces is the following:

· | δa : (term ?a (Π bool . bool) ·)κt-intro:_  

· | δa : κt-intro (type bool type ·)κaxType:_ (term ?a′ bool (·, bool)) 

· | δa : κt-intro κaxType (term ?a′ bool (·, bool))κproj :_  

· | δa : κt-intro κaxType (κproj (proj ?a′ bool (·, bool))κ0:_) 

· | δa : κt-intro κaxType (κproj (κ0(eqT bool bool (·, bool))κaxTCon:_)) 

· | δa : κt-intro κaxType (κproj (κ0 κaxTCon))

The interpretation of the resolved proof term κt-intro κaxType (κproj (κ0 κaxTCon)) is

λ bool .0, that is an identity function. In the third step, instead of using the clause

κproj we could have backchained using either clause κtt or κff which provides resolved

proof terms κt-intro κaxType (κtt) and κt-intro κaxType (κff) respectively. These in turn

are interpreted as constant true function and constant false function.

We can easily obtain similar derivations for binary boolean functions. However,

the resolution will become proportionally larger. Instead, we move on discussion how

105



6.1. Theory of Boolean Equality

proof-relevant resolution approach to type inference and term synthesis helps us with

reasoning about these functions. Before we do that, recall that our treatment of the

internal language does not provide any mechanism to actually define a function. This

is not an issue as the functions can be inlined. For convenience, we use identifiers

id and and for boolean identity and conjunction respectively, which are given as

id = λ bool .0

and = λ bool .λ bool . elimbool 0 (elimbool 1 tt ff) (elimbool 1 ff tt)

in the properties bellow. These should be seen as syntactically replaced with their

definiens.

Finally, we show that properties of boolean functions can be established.

Example 6.6 (Identity)

Consider boolean function id. Then the type

Π bool .(id 0)≡bool 0

expresses that id is identity. Using ascription of a metavariable ?r with the above

type we can resolve the resulting goal to obtain a proof of the property. Assume that

G is the goal constructed for ascripted metavariable. Following the exposition in the

previous example, after resolving the administrative goals that are introduced by the

ambient ascription, we reach the following small-step judgement:

· | G ∗ · | δr : term ?r (Π bool .(id 0)≡bool 0) ·

Consider the following resolution trace:
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· | δr : (term ?r (Π bool .(id 0)≡bool 0)) ·)κt-intro:_  

· | δr : κt-intro (type bool type ·)κaxTCon:_ (term ?r′ ((id 0)≡bool 0)) (·, bool)) 

· | δr : κt-intro κaxTCon (term ?r′ ((id 0)≡bool 0)) (·, bool))κt-elim:_  

· | δr : κt-intro κaxTCon (term ?t1 (Π?T2 .?T1) (·, bool)) (term ?t2 (?T2) (·, bool))

(eqT ?T2 (id 0≡bool 0) (·, bool))κeqTelim:_  ∗

· | δr : κt-intro κaxTCon (term ?t1 (Π bool .0≡bool 0) (·, bool)) (term 0 (bool) (·, bool))κproj:_

(κeqTelim (κeqTelim . . . (κeqtwhrl . . .) κeqtrefl)κeqtrefl) ∗

· | δr : κt-intro κaxTCon (term ?t1 (Π bool .0≡bool 0) (·, bool))κ≡bool -refl:_ (κproj κ0)

(κeqTelim (κeqTelim . . . (κeqtwhrl . . .) κeqtrefl)κeqtrefl) ∗

· | δr : κt-intro κaxTCon κ≡bool -refl (κproj κz) (κeqTelim (κeqTelim . . . (κeqtwhrl . . .) κeqtrefl)κeqtrefl)

We have resolved a proof that id is identity in our boolean theory of equality that is,

after interpretation of the proof term that is bound to proof variable δr, of the form

λ bool . refl 0.

In the resolution, we aggregated some steps and omitted some details of the

equality of particular types as well as the synthesis of projection 0 from the con-

text. These are denoted by ellipsis in the proof term bound to δr. Note that

these are straightforward and can be resolved easily in the way that was described

in the examples in Chapter 5. The proof in the previous example is η-equal to

the constructor of reflexivity. Such shape is an artifact of how the resolution pro-

ceeded; it first unfolded the dependent type of the proof thus bringing the bound

variable to scope. Subsequently, it introduced elimination and reduced type equal-

ity obligations. Reducing type equality obligation normalises the type in goal

term ?t1 (Π bool .(id 0)≡bool 0)(·, bool) to term ?t1 (Π bool .0≡bool 0)(·, bool). At

that point, the term can by synthesised ad the refl.

Example 6.7 (Commutativity of conjunction)

Consider boolean function and. Then the type
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Π bool .Π bool .(0 and 1)≡bool(1 and 0)

expresses the commutativity of boolean conjunction. Using ascription of a metavari-

able ?r we can resolve this goal to obtain a proof of the property. Assume that G

is the goal constructed for ascripted metavariable. As was the case in the previous

example, we reach the following small-step statement judgement:

· | G ∗ · | δr : term ?r (Π bool .Π bool .(0 and 1)≡bool(1 and 0)) ·

We are not going to burden the reader with carrying the actual resolution. Using

a back-of-an-envelope computation we can see that the depth of the term and is

about twice the depth of the term id and the size of the corresponding properties

grows also about twice. That produces small-step resolution that is about eight

times the size that is was in the case of idempotence. We are only going to provide

hight level summary of how the proof proceeds and pinpoint the single new resolution

step with respect to the Example 6.6.

We can consider a resolution trace that proceeds similar to the Example 6.6. It

first decomposes the dependent types to bring the bound variables into scope and

then normalises the type under scrutiny.

Example 6.8

Consider small-step resolution trace of the goal

δr : term ?r (Π bool .Π bool .(0 and 1)≡bool(1 and 0)) ·

that first decomposes all dependent type introductions in the head position of the goal.

Next, it carries case analysis on the variable that were brought into scope introducing

the constructor elimbool:

· | δr : term ?r (Π bool .Π bool .(0 and 1)≡bool(1 and 0)) ∗

· | δr : κt-intro κaxType (κt-intro κaxType (term?r′ ((0 and 1)≡bool(1 and 0)) (·, bool, bool))κelimbool
:_

Then again, the resulting goals for each of the branches of the case analysis

elimbool require introducing administrative application in order to normalise the
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types under scrutiny. The final proof term of the above resolution is as follows:

δr : κt-intro κaxType (κt-intro κaxType (κt-elim (κt-elim (κt-elim κelimbool (κproj κ0) δ3)

(κt-intro κaxType (κt-elim κelimbool (κproj (κs κ0))

(κt-intro κaxType (κt-elim κrefl (κproj κ0) δ5))

(κt-intro κaxType (κt-elim κelim≡bool
(κproj κ0) δ6)) ) δ4) δ2)

(κt-intro κaxType (κt-elim κelimbool (κproj (κs κ0))

(κt-intro κaxType (κt-elim κrefl (κproj κ0) δ7))

(κt-intro κaxType (κt-elim κelim≡bool
(κproj κ0) δ8)) ) δ4) δ1))

The interpretation of the proof term bound to variable δr is as follows:

λ bool .λ bool . elimbool 0

((λ bool . elim≡bool
1 (λ bool . refl 0) (λ bool . elim≡bool

0)) 1)

((λ bool . elim≡bool
1 (λ bool . elim≡bool

0) (λ bool . refl 0)) 1)

6.2 Length-indexed list

The other example we present in this chapter is length-indexed list, which is usually

albeit somewhat imprecisely referred to also as a vector. This example can be seen

as a generalisation of the example concerning the function fromJust we discussed

in Chapter 5. Let us begin with some definition:

Example 6.9

In the surface language, we define vectA, a type of lists over a fixed type A indexed

109



6.2. Length-indexed list

by a their length:

data vectA : nat→ type where

empty : vectA z

cons : A→ vectA n→ vectA (s n)

Here, empty and const are two constructors of the vect type. The type is indexed

by natural numbers nat denoting its length. Note that nat is a datatype that rep-

resent unary encoding of natural numbers with constructors z representing 0 and s

representing successor.

A function headVect extracts the head of a non-empty list:

headVect : (n : nat)→ vectA (s n)→ A

fromJust (cons x) = x

Similar to the function fromJust in Chapter 5, the length s x appears within the

type (n : nat) → vectA (s n) → A of the function headVect, allowing for a more

precise function definition that omits the redundant case when the constructor of the

type vectA (s n) is empty.

This example is a generalisation of the example fromJust from the previous

chapter in the sense that values of the type maybeA can be viewed as lists of length

zero or one. Then, the function fromJust corresponds to a restriction of the function

headVect.

Example 6.10

A choice of objects to encode definition of headVect in the internal language is given

by the signature in Figure 6.3. Recall that we use A → B as an abbreviation for

Π(a : A).B where a does not occur free in B.

Note that the definition of datatype maybeA was non-inductive with an index over

a non-inductive types wheres now the definition of the datatype vectA n is recur-

sive, with an index over a recursive type. This increases the number of elements in

the signature which enlarges the search space of type inference and term synthesis.
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A : type
nat : type
z : nat
s : nat → nat

(≡nat) : nat → nat → type
refl : Π(n:nat).n ≡nat n
elim≡nat : Π(n:nat).(s n) ≡nat n → A

vect A : nat → type
empty : vect A z
cons : Π(n:nat).A → vect A n → maybe A (s n)
elimvectA: Π(n:nat).vect A n

→ (n ≡nat z → A)
→ (Π(m : nat). n ≡nat s m→ A → vect A m→ A)
→ A

Figure 6.3: Signature for encoding headVect

However, more importantly, the inductive-inductive structure of the definitions sig-

nificantly increases the size of the typing derivations and hence the resolution traces.

Since these there are no new concepts to illustrate atop those already discussed in

Chapter 5 and this chapter, we will restrain ourselves to a high-level description of

the example and avoid carrying out the actual resolution.

Example 6.11

The function headVect is encoded as follows:

theadVect := λ(n : nat) . λ ( m:vect A (s n)).elimvectA (s n) m

(λ (w:(s n) ≡nat z). ?a)

(λ (m:nat).(λ (w: s n≡nat m).λ(x:A).λ(a : vect A m) . x))

Note that the missing case for empty must be accounted for. Using Theorem 5.17,

the above definition gives raise the goal in Figure 6.4.

We will not carry out small-step resolution of the goal here since, as we afore-

mentioned, it does note bring any insight into our approach to proof-relevant type

inference and term synthesis above the already discussed examples. The size of

the goal alone suggest that the resolution trace will be enormous to a human and

it should be contained to a type inference engine that is intend to carry out such

laborious and tedious tasks as producing such trace.
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> ∧> ∧> ∧ nat↑0 ≡ ?T1 ∧ eqT (Πnat.nat) (Π?T1 .?T5 ) type (·, nat) ∧ ?T5 [0/0] ≡ ?T4∧

eqK (Πnat. type)(Π?T4 .?T9 )(·, nat) ∧ ?T9 [(s 0)/0] ≡ ?T8 ∧ > ∧ > ∧ nat↑0 ≡ ?T11∧

?T11
↑0 ≡ ?T13

∧ eqT (Π nat.nat) (Π?T13
.?T17

) type (·, nat, vectA (s 0)) ∧ ?T17
[(s 0)/0] ≡ ?T16

∧

eqT (Πnat (Π (vectA 0) (Π(Π((≡nat 1) z)A) (Π(Πnat.(Π((≡nat 3)(s 0)).(Π(vectA 1).

(ΠA.A)))).A)))) (Π?T16
.?T21

) type (·, nat, vectA (s 0)) ∧ ?T21 [(s 1)/0] ≡ ?T20 ∧ > ∧ >∧

nat↑0 ≡ ?T23 ∧ ?T23 ↑
0 ≡ ?T25 ∧ eqT (Πnat.nat) (Π?T25 .?T29 ) type (·, nat, vectA (s 0))∧

?T29 [1/0] ≡ ?T28 ∧ eqK(Πnat.(Πnat. type)) (Π?T28 .?T33 ) (·, nat, vectA (s 0))∧

?T33
[(s 1)/0] ≡ ?T32

∧ > ∧ eqK?T32
(Πnat.?T37

)(·, nat, vectA (s 0)) ∧ ?T37
[z/0] ≡ ?T36

∧

δh : term ?h ?T39
(·, nat, vectA (s 0), (s 1)≡natz)∧

eqK ?T36 type (·, nat, vectA (s 0)) ∧ eqT ?T20 (Π(Π((≡nat (s 1)) z).?T39 ).?T43 ) type

(·, nat, vectA (s 0)) ∧ ?T43 [(λ((≡nat (s 1)) z) ?h)/0] ≡ ?T42 ∧ > ∧ > ∧ nat↑0 ≡ ?T45∧

?T45 ↑
0 ≡ ?T47 ∧ ?T47 ↑

0 ≡ ?T49∧

eqK (Πnat.(Πnat. type)) (Π?T49
.?T53

) (·, nat, vectA (s 0), nat) ∧ ?T53
[2/0] ≡ ?T52

∧ >∧

nat↑0 ≡ ?T55
∧ eqT y (Πnat.nat) (Π?T55

.?T59
) type (·, nat, vectA (s 0), (s 1)≡natz, nat)∧

?T59
[0/0] ≡ ?T58

∧ eqK ?T52
(Π?T58

.?T63
) (·, nat, vectA (s 0), (s 1)≡natz, nat)∧

?T63 [(s 0)/0] ≡ ?T62 ∧ > ∧ > ∧ nat↑0 ≡ ?T65 ∧ ?T65 ↑
0 ≡ ?T67 ∧ ?T67 ↑

0 ≡ ?T69∧

eqK (Πnat. type)(Π?T69 .?T73 )(·, nat, vectA (s 0), (s 1)≡natz, nat, 2≡nat(s 0), A) ∧ ?T73 [2/0] ≡ ?T72∧

A↑0 ≡ ?T75 ∧ ?T75 ↑
0 ≡ ?T77 ∧ eqK ?T72 type(·, nat, vectA (s 0), (s 1)≡natz, nat, 2≡nat(s 0), A)∧

eqK type type(·, nat, vectA (s 0), (s 1)≡natz, nat, 2≡nat(s 0)) ∧ eqK ?T62
type

(·, nat, vectA (s 0), (s 1)≡natz, nat) ∧ eqK type type (·, nat, vectA (s 0), (s 1)≡natz)∧

eqT y ?T42 (Π(Πnat.(Π((≡nat2)(s 0)).(ΠA.(Π(vectA 2).?T77 )))).?T81 ) type (·, nat, vectA (s 0), (s 1)≡natz)∧

?T81
[(λnat.(λ((≡nat 2) (s 0)) (λA.(λ(vectA 2).1))))/0] ≡ ?T80

∧ eqK ?T8
type (·, nat) ∧ eqK type type ·

Figure 6.4: Goal constructed for function theadVect
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6.3 Discussion

We conclude this chapter by pointing out one observation regarding the resolution.

The comparison for equality in LF is formulated by structural induction on simple

types. It is well-understood that this forces normalisation to βη-long forms (Harper

and Pfenning, 2005) and corresponding growth in size. This carries over to term

synthesis in our approach, and moreover, since we do not normalise subterms in

the synthesis process but the normalisation happens only on top-most level in the

course of synthesis, forces that the synthesized term is hereditarily βη-long, its every

subterm is βη-long as well.

The same problem manifests also in more expressive type systems and already

in the case of type-checking. For example, the formalisation of decidability of type

equality (dubbed type conversion) for Agda by Abel et al. (2018) forces βη-long

forms as well. Sozeau et al. (2020) criticise this behaviour in their formalisation of

type checker and code extractor for Coq as too wasteful for practical purposes and

offer an alternative solution in the formal development they carry out. However, it

remains a question of future work whether their solution can be adapted also for the

purpose of type inference and term synthesis.
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7.1 Introduction

A common objection against the need of having a verified implementation of the re-

finement engine builds upon Appel’s approach (Appel et al., 2003) to proof-carrying

code—only a kernel that handles type checking is verified while any refinement is

handled by a non-verified code. Final type checking by the verified kernel ensures

that refinement provides well-formed code. While the approach keeps implementa-

tion of such a tool tractable it also has several drawbacks. Among other things, it

leads to duplication of code as some functionality is implemented twice, first time

in the kernel and second time in the non-verified code. These issues were discussed

in a greater detail by Guidi et al. (2019). But more importantly, this leads to a

practice when such compiler is the de facto specification of the language—there is

no formal specification of the language and even if there were the refinement is not

verified to adhere to the specification. Only the kernel is.

In Chapter 5, we proposed a new, two-stage approach to refinement. Recall

that in this approach, a refinement problem consist of a signature S and a term M

with metavariables that stand for omitted types and terms (proof obligations). The

signature S is translated to a logic program P using refinement calculus and the term

M to a goal G while synthesising a type A of M . Then, proof-relevant resolution is

employed and the goal G is resolved by the program P while computing an answer

substitution θ and a proof term e. The answer substitution θ provides a solution to

the refinement problem, that is as a refined term θM and its type θA. The computed

proof term e is interpreted as a derivation D = (e, ·)der
θA of well-formedness judgement

S; · ` θM : θA, that is well-formedness of the solution to the refinement problem.

Verification of well-formedness of the refined term then proceeds by straightforward
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7.1. Introduction

S

M

P

G

e, θ

θM : θA

D
S;·`θM :θA

S ` P

Thm. 7.9

S; ·;M ` (G | A)

Thm. 7.8

proof-relevant
resolution

θ(−)

Def. 7.11

(−, ·)der
−

Def. 7.12

Figure 7.1: Refinement by proof-relevant resolution

induction on the derivation of the well-formedness judgement. A schematic diagram

is listed in Figure 7.1. In this chapter, we describe an architecture of a refinement

engine that is based on the approach, and its particular implementation slepice.

First, a refinement problem is parsed resulting in a pair of inductive objects,

abstract syntax representations of a signature and a term. Then, a translation

of the signature and the term into a logic program and a goal is formulated as a

decidability of the refinement calculus; the calculus is decidable in the sense that

either a program and a goal can be constructed or the term is ill-typed. The proof

is constructive and proceeds by induction on the structure of the abstract syntax

representation of the term. The proof is used to either obtain a program and a goal,

if these exist, or to reject ill-typed terms.

The reason that the translation can proceed by simple induction is that all

parts that either require a complicated argument, like decidability of equality, or

that are in general undecidable, like terms to be substituted for metavariables, are

postponed in a form of goals. A resolution engine is used to resolve the goal with the

generated program. Guidi et al. (2019) investigate a similar approach with λ-Prolog

that is solely based in resolution and argue that resolution is suitable to provide an

implementation of type checker and elaborator that is comparable to the state-of-

art tools. However, their approach does not give a verified implementation. Unlike

Guidi et al., we employ proof-relevant resolution. Proof-relevant resolution provides

a proof-term that captures a successful resolution of the generated goal. We state a

property, that the refined term, that is obtained from an interpretation of the proof

term, is well-formed. The proof proceeds by induction on well-formedness derivation

that is obtained from the proof-term as well. Proof of the property constitutes a

procedure that obtains the refined term.

Finally, formal specification of LF and the refinement calculus gives a basis
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for the implementation. Data definitions as well as definitions of well-formedness

judgements in the type theory are obtained from the formal specification. One can

see the refinement as a rudimentary form of elaboration. The refinement calculus

then constitutes a formal semantics of the surface language. Further, the generated

logic program has in fact two parts; there is a fixed part that is the same for each

generated logic program and that constitutes inference rules of the type theory, and

there is the part that is given by a particular signature. The static part is directly

obtained from the specification as well.

In this chapter, we give an account of a system that implements a proof of concept

of a refinement engine using the architecture we just described. The implementation

can be found online1. We use existing tools to instantiate different parts of the

described architecture to obtain a verified implementation of type theory in type

theory. Namely, we use the Ott tool (Sewell et al., 2010) to specify the grammar, the

typing judgement, and the refinement calculus. Ott is also used to generate parser of

the source language from the grammar. We use Coq to formally state decidability of

the refinement calculus and the interpretation. We use ELPI (Dunchev et al., 2015)

to mimic proof-relevant resolution. We discuss a particular way how we do this and

why is it possible in Section 7.5. Finally, we need to admit that our implementation

falls somewhat short of the ideal architecture that is fully hosted by a dependently

typed language. The Coq theorem prover does not execute the code directly but

uses extraction to OCaml. The definitions and parser generated by Ott are not

generated as Coq code but as OCaml code. The ELPI code is interfaced via OCaml

as well. To our defence, the amount of OCaml code necessary is fairly small and

deals exclusively with interfacing of the components and interaction with the user.

7.2 Specification

In Section 5.2, we describe LF (Harper and Pfenning, 2005) that is extended with

term- and type-level metavariables, the well-typed fragment of the extended lan-

guage, and the target logic. The strong point of our approach and the implementa-

tion is that the description is carried out as a formal specification and that definitions
1http://github.com/frantisekfarka/slepice
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7.2. Specification

in a theorem prover (Coq in our case) and in executable code (OCaml in our case)

are generated from the specification. This approach forces a correspondence between

formal specification of the language and the implementation. We use Ott tool to

formalise the specification. Note that, beside any theorem prover or executable code,

a human-readable description is obtained from the formal specification as well2.

For technical reasons the we explain bellow, we need to extend the syntax of

terms and types with a countable ordered set of metavariables ?T . We denote the

order on ?T by ≺. The actual definition of syntax in our implementation is the

following:

Definition 7.1 (Extended LF)

The syntax of extended terms, extended types, and extended kinds as well as

extended signatures and extended contexts is:

t 3 M,N ::= · · · | ?T extended terms

T 3 A,B ::= · · · | ?T extended types

The ellipsis in the definition are to be understood as the appropriate syntactic

constructs of Definition 5.9 in Chapter 5. An excerpt of Ott source that formalises

extended types and terms as well the generated Coq code is listed in Figure 7.2. Note

that the formalisation specifies syntax sugar for parenthesis that is not reflected in

the Coq definition. In the actual implementation, there are also some decorations

that allows us to extract a parser and a pretty printer. We omit the decorations

here for the sake of readability.

We also give syntactic objects of LF proper as a fragment of the extended lan-

guage. The formalisation is carried out as a subgrammar of the extended language.

The actual representation in the generated theorem prover code is by predicates

over extended objects.
2cf. the generated documentation doc/slepice.pdf in the implementation
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7.3. Refinement calculus

metavar
I, i ::= {{com de Bruijn indices }}

grammar
eTy , eA , eB :: 'eTy_' ::=

{{ com extended types }}
| tcon :: :: tcon
| Pi eTy1 . eTy2 :: :: pi_intro
| eTy ete :: :: pi_elim
| ( eTy ) :: S :: paren
| lvar :: :: mvar
| tvar :: :: tvar

ete , eM , eN :: 'ete_' ::=
{{ com extended terms }}

| con :: :: con
| ix :: :: ix
| \ eTy . ete :: :: pi_intro
| ete1 ete2 :: :: pi_elim
| ( ete ) :: S :: paren
| lvar :: :: mvar
| tvar :: :: tvar

Definition I : Set := nat.

Inductive eTy : Set :=
(*r extended types *)

| ety_tcon (a:tcon)
| ety_pi_intro (eA:eTy) (eB:eTy)
| ety_pi_elim (eA:eTy) (eM:ete)
| ety_mvar (mA:lvar)
| ety_tvar (mT:tvar)
with ete : Set :=

(*r extended terms *)
| ete_con (c:con)
| ete_i (i:I)
| ete_pi_intro (eA:eTy) (eM:ete)
| ete_pi_elim (eM:ete) (eN:ete)
| ete_mvar (mA:lvar)
| ete_tvar (mT:tvar)

Figure 7.2: Ott formalisation of terms and types (left) and the extracted Coq defi-
nition (right)

7.3 Refinement calculus

In Chapter 5, we set up the refinement calculus. The refinement calculus formalises

the semantics of type inference and term synthesis in the extended language. It

can be seen as a rudimentary form of elaboration of a surface language into a core

language.

In our presentation, we separate logic variables. There are logic variables that

correspond to type and term metavariables in ?V and ?B respectively. Inference rules

of the refinement calculus are posed such that free logic variables are implicitly as-

sumed to be fresh. In the implementation we need to handle freshness explicitly.

In order to do this, we introduce technical metavariables ?T as described in Defini-

tion 7.1. These are logical variables that are introduced as fresh in a derivation of

the refinement judgement. From now on, we do not make the distinction between

metavariables and the corresponding logic variables and refer to these logic variables

as to metavariables in the context of the target logic. We identify metavariables in

?T with natural numbers in N and we make use of the linear order on natural num-

bers. Assumptions in the inference rules are linearly ordered and as a fresh variable
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7.3. Refinement calculus

is taken the least metavariable that is greater than all technical variables on the left.

Formally, we state a freshness judgement, ?′T
#?′′T

?T . The intended meaning of the

judgement is that, given a technical variable ?′T , a technical variable ?T is fresh and

a variable ?′′T is the new bound.

Definition 7.2 (Freshness)

Let ?T , ?′T , and ?′′T be technical variables. The freshness judgement ?′T
#?′′T

?T is

defined as follows:

ι#σιι

We introduce an abbreviation for repeated freshness judgements:

?′T
#?′′′T

?T1 , ?T2

def
= ?′T

#?′′T
?T1 ∧ ?′′T

#?′′′T
?T2

Finally, we give a specification of the refinement judgement of Chapter 5 ex-

tended with explicit freshness. Thee mutually defined judgements are extended

with indicies of lowest and greatest technical variable that is bound in the deriva-

tion: S; Γ;A ?T `?′T (G | L) for refinement of types, and S; Γ;M ?T `?′T (G | A) for

refinement of terms. As in the case of the plain refinement judgement, the argu-

ments on the left hand side of the dash, that is a signature S, an extended context

Γ, an extended type A or an extended term M , and a technical variable ?T , are seen

as inputs. The arguments on the right hand side, that is a technical variable ?′T , a

goal G, and an extended kind L or an extended type A are seen as outputs. The

judgements are defined in Figures 7.3 and 7.4.

We show decidability of the term and type refinement judgements in the next

section and this also justifies our identification of arguments of the judgement as

inputs and outputs. A goal that is produced by refinement translation is solved by

a logic program. The program is obtained from a signature. We define judgement

S ?T `?′T P . A signature S and a technical variable ?T are seen as inputs and the

technical variable ?′T and a program P are seen as outputs. The judgement is defined

in Figure 7.5.

We use the formal specification of refinement judgements in Figures 7.3, 7.4,
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7.3. Refinement calculus

S; Γ;A ?T `?′T (G | L)

a : L ∈ S r-tconS; Γ; a ?T `?T (> | L)

?′T
#?′′T

?T
r-T-metaS; Γ; ?A ?′T

`?′′T (type ?A ?T Γ | ?T )

S; Γ;A ?′T
`?′′T (GA | L1) S; Γ, A;B ?′′T

`?′′′T (GB | L2)
r-Π-introS; Γ; ΠA.B ?′T

`?′′′T (GA ∧GB ∧ eqK L1 type Γ ∧ eqK L2 type Γ | type)

S; Γ;A ?′T
`?′′T (GA | L) S; Γ;M ?′′T

`?′′′T (GM | B) ?′T
#?′′T

?T1 , ?T2 r-Π-elimS; Γ;AM ?′T
`?′′T (GA ∧GM ∧ eqK L (ΠB ?T1) Γ) ∧ (?T1 [M ] ≡ ?T2) | ?T2

Figure 7.3: Refinement of types, explicit freshness

S; Γ;M ?T `?′T (G | A)

c : A ∈ S r-conS; Γ; c ?T `?T (> | A)

?′T
#?′′T

?T r-t-metaS; Γ; ?a ?′T
`?′′T (?a : term ?a′ ?T Γ | ?T )

?′T
#?′′T

?T r-zeroS; Γ, A; 0 ?′T
`?′′T (A↑ ≡ ?T | ?T )

S; Γ; ι ?′T
`?′′T (G | A) ?′′T

#?′′′T
?T r-succS; Γ, B;σι ?′T

`?′′′T (G ∧ (A↑ ≡ ?T ) | ?T )

S; Γ;A ?′T
`?′′T (GA | L) S; Γ, A;M ?′′T

`?′′′T (GM | B)
r-λ-introS; Γ;λA.M ?′T

`?′′′T (GA ∧GM ∧ eqK L type Γ) | ΠA.B)

S; Γ;M ?T `?′T (GM | A) S; Γ;N ?′T
`?′′T (GN | A2) ?′′T

#?′′′T
?T1 , ?T2 r-λ-elimS; Γ;MN?T ` ?′′′T (GM ∧GN ∧ eqT A (ΠA2.?T1) type Γ

∧(?T1 [N ] ≡ ??T2 ) | ??T2 )

Figure 7.4: Refinement of terms, explicit freshness

120



7.3. Refinement calculus

S ?T `?′T P

· ?T `?T Pe

S ?T `?′T P ?′T
#?′′T

?TΓ
, ?Tι

S, c : A ?′T
`?′′T P κc : term cA ?TΓ

←, κc↑ : (c↑c ≡ ?Tι)←

S ?T `?′T P ?′T
#?′′T

?Tι

S, a : L ?T `?′′T κa↑ : (a↑a ≡ ?Tι)←

Figure 7.5: Refinement of signatures, explicit freshness

defn
sgn ; ectx ; eTy ; tvar |- TTGoal ; eK ; tvar' :: :: goaltype ::'g_Ty_'
by

a : L in S
-------------------------------- :: rtcon
S ; eG ; a ; tvar |- true ; L ; tvar

...

defn
sgn ; ectx ; ete ; tvar |- TTGoal ; eTy ; tvar' :: :: goalterm ::'g_te_'
by

c : A in S
--------------------------------------- :: rcon
S ; eG ; c ; tvar1 |- true ; A ; tvar1

Figure 7.6: Ott - Definition of refinement (excerpt)

and 7.5 to obtain definitions on Coq that are used for stating the decidability results.

We illustrate the Ott source and the extracted definitions on an excerpt of Coq code

in Figures 7.6 and 7.7. Namely, these are definitions of the two judgements and the

inference rules r-tcon and r-con.

The definitions in executable OCaml code are extracted directly from the speci-

fication since we extract parser of the input language from the specification as well.

Coq definitions are then explicitly mapped to extracted OCaml definitions during

Coq code extraction.
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(* defns Jrefin *)
Inductive r_goaltype

: esgn -> ectx -> eTy -> tvar -> goal -> eK -> tvar -> Prop :=
(* defn goaltype *)

| r_g_Ty_tcon : forall (Sgn:esgn) (eG:ectx) (a:tcon) (t:tvar) (L:eK),
(boundTCon a L Sgn ) ->

r_goaltype Sgn eG (ety_tcon a) t (goal_at at_true) L t
...

with r_goalterm :
esgn -> ectx -> ete -> tvar -> goal -> eTy -> tvar -> Prop :=
(* defn goalterm *)

| r_g_te_con : forall (Sgn:esgn) (eG:ectx) (c:con) (t:tvar) (A:eTy),
is_Ty_of_eTy A ->
(boundCon c A Sgn ) ->

r_goalterm Sgn eG (ete_con c) t (goal_at ttat_true) A t
...

Figure 7.7: Coq - Extracted definition of refinement (excerpt)

7.4 Decidability of Refinement

In this section we give and overview of statements that are formally proven in Coq

and that constitute the proof of decidability of the refinement calculus. The for-

malised proofs serve, after code extraction, as functions that perform the generation

of goals and programs.

The first intermediate result we need to prove in our formalisation is that equality

of syntactic objects of the extended language is decidable.

Proposition 7.3

1. Let A, B be extended types. Then either A = B or A = B is impossible.

2. Let M , N be extended terms. Then either M = N or M = N is impossible.

3. Let L, L′ be extended kinds. Then either L = L′ or L = L′ is impossible.

Proof. Parts 1 and 2 proceed by mutual induction on the type and the term. Part

3 proceeds by induction using part 1.

In Coq, the corresponding lemmata are given as follows:

Lemma eq_eTy_dec : forall A B : eTy, {A = B} + {A <> B}

with eq_ete_dec : forall M N : ete, {M = N} + {M <> N}.
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7.4. Decidability of Refinement

Lemma eq_eK : forall K L : eK, {K = L} + {K <> L}.

We also need to show that whether a type of a certain kind or a term constant of a

certain type is bound in a signature is decidable.

Lemma 7.4

• Let S− be a simple signature, and c a term constant. Then either there is a

simple type τ such that c : τ ∈ S− or, for all τ , c : τ ∈ S− is impossible.

• Let S− be a simple signature, and α a type constant. Then either there is a

simple kind κ such that α : κ ∈ S− or, for all κ, α : κ ∈ S− is impossible.

Proof. By induction on signature using decidability of equality of terms and types

(Proposition 7.3).

The Coq definitions are given as follows:

Lemma boundsCon_dec:

forall (sS :ssgn) (c : con),

{ tau | boundsCon c tau sS } +

{ forall tau, ~boundsCon c tau sS }.

Lemma boundsnTCon_dec:

forall (sS : snsgn) (a : tcon),

{kappa | boundsnTCon a kappa sS} +

{forall kappa , ~ boundsnTCon a kappa sS}.

Now we could state Theorem 5.17 (Decidability of goal construction) from Chap-

ter 5 that the refinement judgement for terms and types is decidable. However, there

is a caveat. The refinement judgements for terms and for types are mutually defined

and hence the extracted Coq definitions are mutually defined as well as we demon-

strate in Figure 7.7. A proof by naive induction fails as Coq cannot establish that

recursive calls are structurally smaller. We devise a mutually recursive inductive

types that we call structure of extended types and extended terms and a mapping

from extended types and extended terms to the respective structure.
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7.4. Decidability of Refinement

Definition 7.5

The syntax of structure of extended types and structure of extended terms is:

ST 3 sA ::= · | ΠST .ST | STSt structure of extended types

St 3 sM ::= · | ΠST .St | StSt structure of extended terms

Definition 7.6

We define mappings (−)s : T → ST and (−)s : t→ St by

(α)s = ·

(ΠA.B)s = Π(A)s.(B)s

(AM)s = (A)s(M)s

(?A)
s = ·

(?T )
s = ·

(c)s = ·

(ΠA.M)s = Π(A)s.(M)s

(MN)s = (M)s(N)s

(?M)s = ·

(?T )
s = ·

Note that by an abuse of notation we do not distinguish between the names of

the mapping from types and the mapping from terms. The more general statement

of decidability of refinement is stated using the structure.

Theorem 7.7 (Decidability of Refinement)

• Let sM be a structure, S a signature, Γ an extended context, and M an extended

term. If (M)s = sM then either there is a goal G and an extended type A such

that S; Γ;M ` (G | A) or, for any goal G and any type A, S; Γ;M ` (G | A)

is impossible.

• Let sA be a structure, S a signature, Γ an extended context, and A an extended

type. If (A)s = sA then either there is a goal G and a kind L such that

S; Γ;A ` (G | L) or, for any goal G and any kind L, S; Γ;A ` (Γ | L) is

impossible.

Proof. By mutual induction on structure of the term sM and structure of the type
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sA using Proposition 7.3 and Lemma 7.4.

Again, we provide the actual Coq definitions:

Fixpoint goalterm_dec_str (mM : mte) (Sig : sgn) (G : ectx)

(M : ete) (v : lnvar) :

struct_ete M = mM ->

{GA : _ | r_goalterm (map castSig Sig) G M v (fst GA) (fst (snd GA)) (snd (snd GA))} +

{(forall GA,

~

r_goalterm (map castSig Sig) G M (fst (fst GA)) (snd (fst GA))

(fst (snd GA)) (snd (snd GA)))}

with goaltype_dec_str (mA : mTy) (Sig : sgn) (G : ectx)

(A : eTy) (v : lnvar) :

struct_eTy A = mA ->

{GA : _ | r_goaltype (map castSig Sig) G A v (fst GA) (fst (snd GA)) (snd (snd GA))} +

{(forall GA,

~

r_goaltype (map castSig Sig) G A (fst (fst GA)) (snd (fst GA))

(fst (snd GA)) (snd (snd GA)))}.

The intended statement of the refinement theorem for terms and types then follows

as a corollary.

Corollary 7.8 (Goal construction)

• Let S be a signature, Γ an extended context, and M an extended term. Either

there is a goal G and an extended type A such that S; Γ;M ` (G | A) or, for

any goal G and any type A, S; Γ;M ` (G | A) is impossible.

• Let S be a signature, Γ an extended context, and A an extended type. Either

there is a goal G and an extended kind L such that S; Γ;A ` (G | L) or, for

any goal G and any kind L, S; Γ;A ` (G | L) is impossible.

The statement in Coq is given as follows:

Lemma goalterm_dec :

forall (Sig : sgn)

(G : ectx)

(M : ete)
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(v : tvar),

{GoA : (tvar * TTGoal * (eTy * tvar)) |

r_goalterm (map castSig Sig) G M v

(fst GoA)

(fst (snd GoA))

(snd (snd GoA))} +

{(forall GoA : (tvar * TTGoal * (eTy * tvar)) ,

~

r_goalterm (map castSig Sig) G M

(fst (fst GoA))

(snd (fst GoA))

(fst (snd GoA))

(snd (snd GoA)))}

with goaltype_dec :

forall (Sig : sgn)

(G : ectx)

(A : eTy)

(v : lnvar),

{GoL : (tvar * TTGoal * (eK * tvar)) |

r_goaltype (map castSig Sig) G A v

(fst GoL)

(fst (snd GoL))

(snd (snd GoL))} +

{(forall GoL,

~

r_goaltype (map castSig Sig) G A

(fst (fst GoL))

(snd (fst GoL))

(fst (snd GoL))

(snd (snd GoL)))}.

Note that the variables GoA and GoL stand for pairs of goals and extended types and

terms respectively that are accompanied by lower and upper bounds on technical

variables (tvar).

Similarly, we state a decidability result for refinement of signatures that will

allow us to obtain programs that resolve goals generated from extended types and

terms.
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7.4. Decidability of Refinement

(** val goalterm_dec_str :
ste -> sgn -> ectx -> ete -> lvar -> (goal*(eTy*tvar)) sumor **)

(** val goaltype_dec_str :
sTy -> sgn -> ectx -> eTy -> lvar -> (goal*(eK*tvar)) sumor **)

(** val goalterm_dec :
sgn -> ectx -> ete -> lvar -> (goal*(eTy*tvar)) sumor **)

(** val goaltype_dec :
sTy -> sgn -> ectx -> eTy -> lvar -> (goal*(eK*tvar)) sumor **)

(** val progsig_dec : sgn -> lvar -> (prog*tvar) sumor **)

Figure 7.8: Extracted OCaml translation

Theorem 7.9 (Refinement of Signature)

Let S be a signature. Either there is a program P such that S ` P or, for any P ,

S ` P is impossible.

Proof. By induction on signature S.

The statement in Coq is given as follows:

Fixpoint progsig_dec (Sig : sgn) (v : tvar) :

{Pv : _ | r_prog (map castSig Sig) v (fst Pv) (snd Pv)} +

{(forall Pv, ~ r_prog (map castSig Sig) (fst Pv) (fst (snd Pv)) (snd (snd Pv)))}.

Formalisation of proofs of the above theorems provides a procedures that take terms

and types and generate goals and that take signature and generate program. OCaml

signatures of the extracted code that correspond to the above theorems are listed

in Figure 7.8. Signatures Sgn are extracted as the type sgn, extended contexts

Ctx as ectx. Structure of extended types ST is extracted as sTy, extended types T

as eTy, similarly for terms and kinds. Type level metavariables ?B and term level

metavariables ?V are extracted as lvar and technical metavariables as tvar, goals

G and programs P as goal and prog respectively.

We conclude this section with an example of a goal generate by the extracted

code.

Example 7.10

Recall function fromJust in Example 5.1. The goal generated by the extracted

implementation for function fromJust is dispayed in Figure 7.9.

Note that the goal is represented in a particular way that is appropriate for our

realisation of proof-relevat resulution, which we describe in the following section.
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pr _ ( trueP) , pr _ ( trueP) ,
pr _ ( eq_K (piK 'Bool (piK 'Bool typeK)) (piK 'Bool T_3) empty) ,
pr _ ( substK T_3 'tt (z) T_2) ,
pr _ ( trueP) ,
pr _ ( eq_K T_2 (piK 'Bool T_7) empty) ,
pr _ ( substK T_7 'ff (z) T_6) , pr _ ( trueP) ,
pr _ ( shiftTy 'A (z) T_9) ,
pr _ ( eq_K typeK typeK

(cons empty (apTy (apTy 'EqBool 'tt) 'ff))) ,
pr PoM_0 ( termP M_0 T_11

(cons empty (apTy (apTy 'EqBool 'tt) 'ff))) ,
pr _ ( eq_Ty (piTy 'A T_9) (piTy T_11 T_15) typeK

(cons empty (apTy (apTy 'EqBool 'tt) 'ff))) ,
pr _ ( substTy T_15 M_0 (z) T_14) ,
pr _ ( eq_K T_6 typeK empty)

Figure 7.9: Goal for function fromJust

Namely, binding of a goal G to a proof-term variable δ id denoted by pr κ G. When

a goal is not bound to a variable this is denoted by pr _ G. Goals are represented as

abstract syntax trees in the obvious way, e.g., trueP is the trivially true predicate,

eq_K denotes equality of kinds, subst_K L M ι L′ denotes substitution on kinds

L[M/ι] ≡ L′ and so on.

7.5 Proof-Relevant Resolution

In this section we describe our realisation of proof-relevant resolution and interpre-

tation of answer substitutions and computed proof terms. As a resolution engine in

our implementation we resort to ELPI Dunchev et al. (2015). Although ELPI is not

proof-relevant resolution engine, it is sufficient for our purposes. In this work we are

not interested in finer details of the resolution mechanism (cf. Farka et al. (2018), Fu

and Komendantskaya (2017)) and we can obtain sound results by a simple syntactic

transformation. In this paper, we omit details of the transformation and focus on

interpretation of the computed assignment to type and term level metavariables and

on interpretation of computed proof terms. In the following, we assume that the

proof relevant resolution for a generated goal G and a program P either computes

an answer substitution θ and, for each atomic subgoal, a proof-term e or fails.

First, we extend application of computed substitution to extended types and
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extended terms in the usual way.

Definition 7.11

We define application of a substitution θ by

θ(α) = α

θ(ΠA.B) = Πθ(A).θ(B)

θ(AM) = θ(A).θ(M)

θ(?A) = θ(?A)

θ(?T ) = ?T

θ(c) = c

θ(ι) = ι

θ(λA.M) = λθ(A).θ(M)

θ(MN) = θ(M).θ(N)

θ(?M) = θ(?M)

θ(?T ) = ?T

Proof terms are computed for atomic (sub-)goals. We define an interpretation of

proof terms that construct a derivation of a well-formedness judgement from such a

proof term. We use S;G ` I to jointly refer to the judgements of LF in the usual

way.

Definition 7.12

Let S be a signature, G a context, S;G ` I a judgement, and e a proof term. The

interpretation of the proof term (e,G)der
I is defined as follows:
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(κα e,G)der
α:L =

(e)der
G α : L ∈ S

T-conS;G ` α : L

(κT-Π-intro e1 e2, G)der
ΠA.B:type =

(e1, G)der
A:type (e2, G,A)der

B:type
T-Π-introS;G ` ΠA.B : type

(κT-Π-elim e1 e2 e3, G)der
AM :L[M ] =

(e1, G)der
A:ΠB1:L

(e2, G)der
M :B2

(e3, G)der
B1=B2:type

S;G ` AM : L[M ]

(κc e,G)der
c:A =

(e)der
G c : A ∈ S

conS;G ` c : A

(κ0 e,G)der
0:A↑ =

(e)der
G,A zeroS;G ` 0 : A↑

(κσ e,G)der
σι:A↑ =

(e,G)der
ι:A succS;G ` σι : A↑

(κΠ-intro e1 e2, G)der
λA.M :ΠA.B =

(e1, G)der
A:type (e2, G,A)der

M :B
Π-introS;G ` λA.M : ΠA.B

(κΠ-elim e1 e2 e3, G)der
AM :B[M ] =

(e1, G)der
A:ΠB1:L

(e2, G)der
M :B2

(e3, G)der
B1=B2:type

S;G `MN : B[N ]

The above definition lists only cases of proof-terms with head symbols that corre-

spond to well-formedness of types (Figure 2.3) and well-formedness of terms (2.2)

in Chapter 2. We omit remaining cases for well-formedness of contexts, and equal-

ity judgements for the sake of brevity. These cases are straightforward and can be

found in the formalisation and the generated documentation.

In Lemma 7.4, we have already proven that whether a type constant is bound in

a signature as a particular kind, that is whether α : L ∈ S is decidable. We extend

this result to decidability of all judgements involved in Definition 7.12. Hence we

can verify whether proof-relevant resolution produces well-formed types and terms

by manifesting a derivation of the well-formedness judgement.

Theorem 7.13

• Let e be a proof term, S a signature, G a context, M , N terms, and A a type.

Then either (e)der
M=N :A is well-formed or (e)der

M=N :A is impossible.

• Let e be a proof term, S a signature, G a context, A, B types, and L a kind.

Then either (e)der
A=B:L is well-formed or (e)der

A=B:L is impossible.
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Proof. • By induction on e using part 2.

• By induction on e using part 1.

Theorem 7.14

Let e be a proof term, θ a substitution of metavariables, S a signature, M an extended

term, and A an extended type.

Then either (e)der
θM :θA is well-formed or (e)der

θM :θA is impossible.

Proof. By induction using Lemma 7.4 and Theorem 7.13.

This theorem concludes our exposition of the interpretation of proof terms that

are computed by proof-relevant resolution. When the formalised proof is extracted

into OCaml it provides a procedure for verification of solution computed by proof-

relevant resolution and hence manifests soundness of the system.

We conclude the presentation of our realisation of proof-relevant resolution by

demonstrating how a concreate example is resolved.

Example 7.15

Recall the function fromJust (Example 5.1) and the generated goal we discussed

in Example 7.10 (Figure 7.9). A part of generated signature is displayed in Figure

7.10. The result of running ELPI on the generated goal with the generated signature

as a program is displayed in Figure 7.11.

Note that the generated signature is encoded in a format that is suitable for ELPI.

The notation pr κ G : −B denotes a Horn Clause κ : G⇒ B with a body B. The

rest of the syntax is the same as we desribed when discussing Example 7.10.

7.6 Discussion

We have formalised type inference and term synthesis in LF. The description of

metatheory is carried out in Ott tool. The description is used for generating defi-

nitions in executable code, a parser of the input language, and definitions for Coq

theorem prover. A problem of type inference and term synthesis,i.e. a refinement

problem, is translated to a goal and to a program in a proof-relevant Horn-clause
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pr (axTCon 'A ) ( typeP 'A typeK empty ).
pr (axShiftC ) ( shiftTy 'A T_2 'A ).
pr (axSubstC ) ( substTy 'A T_1 T_3 'A ).
pr (axEqTCon ) ( eq_Ty 'A 'A typeK empty ).
pr (axTCon 'Bool ) ( typeP 'Bool typeK empty ).
pr (axShiftC ) ( shiftTy 'Bool T_3 'Bool ).
pr (axSubstC ) ( substTy 'Bool T_2 T_4 'Bool ).
pr (axEqTCon ) ( eq_Ty 'Bool 'Bool typeK empty ).

...

pr (axCon 'elimMaybeA ) ( termP 'elimMaybeA
(piTy 'Bool (piTy (apTy 'MaybeA (z)) (piTy (piTy (apTy (
apTy 'EqBool (s(z))) 'ff) 'A) (piTy (piTy (apTy
(apTy 'EqBool (s(s(z)))) 'tt) (piTy 'A 'A)) 'A)))) empty ).

pr (axShiftC ) ( shiftte 'elimMaybeA T_17 'elimMaybeA ).
pr (axSubstC ) ( substte 'elimMaybeA T_18 T_19 'elimMaybeA ).
pr (axEqCon ) ( eq_te 'elimMaybeA 'elimMaybeA (piTy 'Bool
(piTy (apTy 'MaybeA (z)) (piTy (piTy (apTy
(apTy 'EqBool (s(z))) 'ff) 'A)

(piTy (piTy (apTy (apTy 'EqBool (s(s(z)))) 'tt)
(piTy 'A 'A)) 'A)))) empty ).

Figure 7.10: Generated signature of fromJust, excerpt
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Typechecking time: 0.120

Success:
T_12 = piTy (piTy (apTy (apTy 'EqBool 'tt) 'ff) 'A)

(piTy (piTy (apTy (apTy 'EqBool 'tt) 'tt) (piTy 'A 'A)) 'A)
T_13 = piTy (piTy (apTy (apTy 'EqBool 'tt) 'ff) 'A)

(piTy (piTy (apTy (apTy 'EqBool 'tt) 'tt) (piTy 'A 'A)) 'A)
T_16 = piK 'Bool typeK
T_17 = piK 'Bool typeK
T_2 = typeK
T_20 = typeK
T_21 = typeK
T_23 = apTy (apTy 'EqBool 'tt) 'ff
T_26 = 'A
T_27 = 'A
T_3 = typeK
T_30 = piTy (piTy (apTy (apTy 'EqBool 'tt) 'tt) (piTy 'A 'A)) 'A
T_31 = piTy (piTy (apTy (apTy 'EqBool 'tt) 'tt) (piTy 'A 'A)) 'A
T_34 = piK 'Bool typeK
T_35 = piK 'Bool typeK
T_38 = typeK
T_39 = typeK
T_41 = 'A
T_44 = 'A
T_45 = 'A
T_6 = piTy (apTy 'MaybeA 'tt)

(piTy (piTy (apTy (apTy 'EqBool 'tt) 'ff) 'A)
(piTy (piTy (apTy (apTy 'EqBool 'tt) 'tt) (piTy 'A 'A)) 'A))

T_7 = piTy (apTy 'MaybeA z)
(piTy (piTy (apTy (apTy 'EqBool (s z)) 'ff) 'A)

(piTy (piTy (apTy (apTy 'EqBool (s (s z))) 'tt) (piTy 'A 'A)) 'A))
T_9 = apTy 'MaybeA 'tt

Time: 0.003

Constraints:

State:
{{ }}

Figure 7.11: Output of ELPI for fromJust
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logic. We prove decidability of such translation in Coq. The translation in the imple-

mentation is obtained from the proof via code extraction into OCaml. We employ

ELPI to carry out proof-relevant resolution of the obtained goal. The resolution

produces an answer substitution and a proof-term that manifests well-formedness of

the solution. We give interpretation of the computed proof term and show that the

interpretation, if defined, produces well-formed derivations of the intended judge-

ments. Formalisation of the proof in Coq provides, via code extraction, an OCaml

implementation for verification of computed solution.

Although our implementation is not fully carried out in a dependently typed

language, that is Coq in our case, the amount of OCaml code that is necessary

is very small. Such code is necessary only for interfacing different components of

the system, that is the generated parser, the implementation extracted from Coq

formalisation, and the ELPI engine, and for interaction with user. The portion of

hand-written OCaml code is very small and we believe this makes our approach

superior to current implementations of dependently typed languages. We believe

that the architecture we just introduced can serve as viable basis both for obtaining

reference implementations from formal specifications of a programming languages

and, with properly optimised resolution phase, as a basis for a type inference engine.
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In this chapter we demonstrate a use of proof-relevant resolution for the purpose of

semantical analysis of programming languages. Our use case is type class resolution.

The extant literature with the exception of our previous work (Farka et al., 2016)

lacks to the best of our knowledge any formal, model theoretic treatment of typeclass

resolution. To fill this gap, we report here on model theoretic properties of typeclass

resolution, in particular we discuss soundness and completeness of inductive and

coinductive models. In order to bind our work to the state of art in the literature

we commit to the canonical choice and use the Haskell programming language, the

language where type classes originated (Wadler and Blott, 1989), as the medium to

carry out the presentation.

Type class resolution is commonly understood to correspond to first-order Horn-

clause resolution (Lloyd, 1987). Recently, several corecursive extensions to type

classes have been proposed (Fu and Komendantskaya, 2017, Fu et al., 2016, Läm-

mel and Peyton Jones, 2005). These extensions iterativelly expanded the class of

correcursive type class declarations that were accepted as well-formed. The corecur-

sive type-class resolution calculus of Fu and Komendantskaya (2017) falls outside of

Horn-clause logic as it in fact uses implicational shape of goals to handle coinduc-

tive assumptions. Hence, in this chapter we employ both Horn-clause logic and the

logic of hereditary Harrop formulae to capture type-class resolution. We expose, in

a compositional manner, the calculus of type class resolution and, as its extensions,

two calculi of corecursive type class resolution. We show that type class resolution

is inductively sound with respect to least Herbrand models; that the corecursive ex-

tensions are coinductively sound with respect to greatest Herbrand models of logic

programs; and that the corecursive extensions are inductively unsound. Further, we

establish incompleteness results for fragments of the proof system.
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8.1 Type Class Mechanism

In this section we summarise the type class mechanism. Recall our running example

that we used in the Introduction.

Example 8.1 (Farka et al. (2016), Fu et al. (2016), Hall et al. (1996))

The the class Eq and its instances for pairs and integers are defined as follows:

class Eq a where

eq : : a → a → Bool

instance (Eq x, Eq y) ⇒ Eq (x, y) where

eq (x1, y1) (x2, y2) = eq x1 x2 && eq y1 y2

instance Eq Int where

eq x y = primitiveIntEq x y

In the Introduction, we observed that the instance declarations resemble Horn

clauses in the following logic program:

Example 8.2 (Fu et al. (2016))

κpair : eqx ∧ eq y ⇒ eq (pairx y)

κint : ⇒ eq int

Resolving type class instance for type ( Int , Int) then resembles SLD resolution

of the goal pair(int, int). Despite the apparent similarity of type class syntax and

type class resolution to Horn clauses and SLD resolution they are not, however,

identical. Type class and instance declarations are subject to certain restrictions.

At the syntactic level, type class instance declarations correspond to a restricted

form of Horn clauses, namely ones that do not overlap (i.e. whose heads do not

unify); and that do not contain existential variables (viz. Definition 2.19). At

the algorithmic level type class resolution corresponds to SLD resolution in which

unification is restricted to term-matching; assuming there is a clause
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B1 ∧ . . . ∧Bn ⇒ A′

then a goal A′ can be resolved with this clause only if A can be matched against

A′, i.e. if a substitution σ exists such that A = σA′. In comparison, SLD resolution

incorporates unifiers, as well as matchers, i.e. it also proceeds to resolve the above

goal and clause in all the cases where σA = σA′ holds. Let us note at this point

that, similar to the previous chapter, we understand that all program clauses are

implicitly universally quantified.

In literature, there restrictions are known as Paterson Conditions (Sulzmann

et al., 2007). We include a formulation of Paterson Conditions on instance declara-

tions as restrictions of Horn-clause programs for the purpose of referring to particular

restrictions in the remainder of this chapter:

Definition 8.3 (Instance restrictions)

A logic program P = D1, . . . , Dn adheres to Paterson Conditions if

1. for all i 6= j, Di does not unify with Dj, and

2. for all i, Di does not contain existential variables.

These restrictions guarantee that type class inference computes the principal (most

general) type. Restrictions 1 and 2 of Definition 8.3 amount to deterministic infer-

ence by resolution, in which only one derivation is possible for every goal. Note that

our characterisation of greatest Herbrand models (Proposition 2.35) employed the

restriction 2. Restriction of SLD resolution to term matching means that no substi-

tution is applied to a goal during inference, i.e. we prove the goal in an implicitly

universally quantified form. In order to account for this restriction, we treat any

variables in type class goals as Skolem constants in the calculus of proof-relevant

resolution, i.e. as fresh constant symbols of the appropriate type. Such treatment

allows us to stay within the model theory of Horn-clause logic we defined in Chap-

ter 2.

It is a standard result that (as with SLD resolution) type class resolution is in-

ductively sound, i.e. that it is sound relative to the least Herbrand models of logic

programs (Lloyd, 1987). Moreover, in Section 8.2 we establish that it is also univer-

sally inductively sound, i.e. that if a formula A is proved by type class resolution,
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every ground instance of A is in the least Herbrand model of the given program.

In contrast to SLD resolution, however, type class resolution is inductively incom-

plete, i.e. it is incomplete relative to least Herbrand models, even for the class of

Horn clauses that is subject to restrictions 1 and 2 of Definition 8.3. For example,

given a clause ⇒ q(f(x)) and a goal q(x), SLD resolution is able to find a proof (by

instantiating x with f(x)), but type class resolution fails.

Lämmel and Peyton Jones (2005) have suggested an extension to type class

resolution that accounts for some non-terminating cases of type class resolution.

Example 8.4 (Farka et al. (2016), Fu et al. (2016))

Consider the following mutually defined data structures that represent lists of odd

and even length:

data OddList a = OCons a (EvenList a)

data EvenList a = Nil | ECons a (OddList a)

The lists give rise to the following instance declarations for the Eq class:

instance (Eq a, Eq (EvenList a)) ⇒ Eq (OddList a) where

eq (OCons x xs) (OCons y ys) = eq x y && eq xs ys

instance (Eq a, Eq (OddList a)) ⇒ Eq (EvenList a) where

eq Nil Nil = True

eq (ECons x xs) (ECons y ys) = eq x y && eq xs ys

eq _ _ = False

The following function triggers type class resolution in the Haskell compiler with

goal eq (evenList int):

test : : Eq (EvenList Int) ⇒ Bool

test = eq Nil Nil

For some data structures, resolving a type class instance that is necessary to type-

check a function leads to a cycle. The goal that represents the type class instance is

simplified, possibly in several steps, using instance declarations into subgoals such

that one of the subgoals is identical with the original goal.

Example 8.5 (Logic program PEvenOdd, Farka et al. (2016))

Consider the Horn-clause representation of the type class instance declarations in
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Example 8.4:

κoddList : eqx ∧ eq (evenListx) ⇒ eq (oddListx)

κevenList : eqx ∧ eq (oddListx) ⇒ eq (evenListx)

κint : ⇒ eq int

A non-terminating small-step resolution trace is given by:

· | eq (evenList int) · | (eq (evenList int))κevenList:_  ∗

· | eq int ∧ eq (oddList int) · | (eq int)κint:_ ∧ eq (oddList int) ∗

· | eq (oddList int) · | (eq (oddList int))κoddList:_  ∗

· | eq int ∧ eq (evenList int) · | (eq int)κint:_ ∧ eq (evenList int) ∗

· | eq (evenList int) . . .

The goal eq (evenList int) is simplified using the clause κevenList to goals eq int

and eq (oddList int). The first of these is discarded using the clause κint. Res-

olution continues using the clauses κoddList and κint, resulting in the original goal

eq (evenList int). It is easy to see that such process could continue infinitely and

that this goal constitutes a cycle (underlined above).

As suggested by Lämmel and Peyton Jones (2005), the GHC compiler can ter-

minate an infinite inference process as soon as it detects all cycles. Moreover, it can

also construct the corresponding proof term in a form of a recursive function.

Example 8.6 (Fu et al. (2016))

The infinite resolution trace in Example 8.5 is captured by a proof term

να.κevenListκint(κoddListκintα)

where ν is a fixed point operator that binds the variable α, which will be formally
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defined below. The intuitive reading of such proof term is that an infinite proof of

the goal eq (evenList int) exists, and that its shape is fully specified by the recursive

function given by the term above.

Indeed, GHC can carry out the above instance resolution. The only caveat is

that the constraint necessary to specify instances for recursively defined lists of even

and odd lenght does not fall within the fragment of the language that is accepted by

GHC without any language extensions. When we attempt to compile the above code

without any such extension, the compilation fails with the following message:

[2 of 2] Compiling EvenOdd ( EvenOdd.hs, EvenOdd.o )

EvenOdd.hs:9:10: error:

• Non type-variable argument in the constraint: Eq' (EvenList a)

(Use FlexibleContexts to permit this)

• In the context: (Eq' a, Eq' (EvenList a))

While checking an instance declaration

In the instance declaration for ‘Eq' (OddList a)’

EvenOdd.hs:12:10: error:

• Non type-variable argument in the constraint: Eq' (OddList a)

(Use FlexibleContexts to permit this)

• In the context: (Eq' a, Eq' (OddList a))

While checking an instance declaration

In the instance declaration for ‘Eq' (EvenList a)’

The FlexibleContexts language extension indeed allows us to provide richer

instance constraints. However, even when we allow this extension GHC does not

accept the two instances and fails with the following message:

EvenOdd.hs:10:10: error:

• The constraint ‘Eq' (EvenList a)’

is no smaller than the instance head

(Use UndecidableInstances to permit this)

• In the instance declaration for ‘Eq' (OddList a)’
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EvenOdd.hs:13:10: error:

• The constraint ‘Eq' (OddList a)’

is no smaller than the instance head

(Use UndecidableInstances to permit this)

• In the instance declaration for ‘Eq' (EvenList a)’

This message signals that the compiler does not see that the typeclass constrain

size will decrease through the resolution as there are instances with bodies that con-

tain goals that are not smaller than their heads. In turn this means it cannot

(syntactically) guarantee that instance resolution is terminating. But this is to be

expected, since we are working with infinite structures and, as we describe, the only

way we can non-terminating resolution is by detecting cycles.

Let us note that with UndecidableInstances language extension, the example

is process by GHC successfully. The UndecidableInstances extension supersedes

FlexibleContexts extension and therefore it alone suffices.

We say that the proof is given by corecursive type class resolution. Corecursive type

class resolution is not inductively sound. However, as we prove in Section 8.3, it is

(universally) coinductively sound, i.e. it is sound relative to the greatest Herbrand

models.

Example 8.7

The formula eq (evenList int) is not in the least Herbrand model of the logic pro-

gram PEvenOdd in Example 8.5 but it is in the greatest Herbrand model of the program.

Similarly to the inductive case, corecursive type class resolution is coinductively

incomplete. Consider the clause κinf : px ⇒ p (fx). This clause may be given an

interpretation by the greatest (complete) Herbrand models. However, corecursive

type class resolution does not yield infinite proofs.

Unfortunately, the simple method of cycle detection does not work for all non-

terminating programs. In some cases, type class resolution does not terminate but

does not exhibit cycles either. We illustrate this behaviour using an example that

originates in work of Fu et al. (2016), the adaptation is by Farka et al. (2016).
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Example 8.8 (Farka et al. (2016))

Consider a data structure Bush and its corresponding instance for type class Eq:

data Bush a = Nil

| Cons a (Bush (Bush a))

instance Eq a, Eq (Bush (Bush a)) ⇒ Eq (Bush a) where

eq Nil Nil = True

eq (Cons x xs) (Cons y ys) = eq x y && eq xs ys

Horn-clause presentation of type class declarations for data structure Bush is given

by the program PBush:

κbush : eqx ∧ eq (bush (bushx))⇒ eq (bushx)

κint : ⇒ eq int

The derivation below shows that no cycles arise when we resolve the goal eq (bush int)

against the program PBush:

· | eq (bush int) · | (eq (bush int))κbush: _  ∗ · | eq int ∧ eq (bush (bush int)) 

· | (eq int)κint: _ ∧ eq (bush (bush int)) ∗ · | eq (bush (bush int)) 

· | (eq (bush (bush int)))κbush: _  ∗ · | eq int ∧ eq (bush (bush (bush int)) 

· | (eq int)κint: _ ∧ eq (bush (bush (bush int)) ∗

· | eq (bush (bush (bush int)) . . .

Note that the above lack of cycles in the derivation can be on the intuitive level

understood as a consequence of nesting of the bush constructors.

Example 8.9

We can easily observe the behaviour in the previous example in the current version

of GHC. Assuming that we allow UndecidableInstances for the same reasons that
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we discussed in the case of lists of even and odd length in Example 8.5, we can

instruct GHC to attempt to resolve instances for the following function:

test : : Eq (EvenList Int) ⇒ Bool

test = eq Nil Nil

However in this case, unlike in the case of lists in the previous example, the

resolution fails:

[2 of 2] Compiling Bush ( Bush.hs, Bush.o )

Bush.hs:14:8: error:

• Reduction stack overflow; size = 9

When simplifying the following type:

Eq'

(Bush

(Bush

(Bush

(Bush

(Bush (Bush (Bush (Bush (Bush Integer)))))))))

Use -freduction-depth=0 to disable this check

(any upper bound you could choose might fail unpredictably with

minor updates to GHC, so disabling the check is recommended if

you're sure that type checking should terminate)

• In the expression: eq' Nil (Nil :: Bush Integer)

In an equation for ‘test’: test = eq' Nil (Nil :: Bush Integer)

GHC limits the size of reduction stack and in our example we set the reduction size

to 8, which is smaller than is the default value. However, the observed behaviour

concords the formal derivation we sketched above.

Fu et al. (2016) have recently introduced an extension to corecursive type class

resolution that allows implicative goals to be proved by corecursion and uses the

recursive proof term construction. Implicative goals require that we extend the

language we use for representing logic programs in the way we describe in the very

next three sentences. The shape of these goals is always that of Horn clauses, as
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will be stated formally by the inference rule Lam below. We could define a proper

syntactic class to exactly capture these extended goals but we will opt out for the

syntax of the logic of hereditary Harrop formulae we introduced in Section 3.2 of

Chapter 3. Consecutively, proof terms then contain λ-abstraction. However, in

order to study corecursive resolution, we need to extend the syntax of proof terms

to allow for recursive proof terms.

Definition 8.10 (Recursive proof terms)

PT 3 e := · · · | νκ.e proof terms

Proof terms are extended with a new syntactic construct, ν abstraction, that repre-

sents recursion. The ellipsis in the definition are to be understood as the appropriate

syntactic constructs of Definition 3.23 in Chapter 3. In this chapter, we refer to re-

cursive proof terms as proof terms. We keep the use of the identifier e for proof

terms. We further use identifiers α, β for proof-term symbols that are subject to

ν abstraction. A proof term e is in guarded head normal form (denoted gHNF(e)),

if e = λα.κ e where α and e denote (possibly empty) sequences of abstraction

λα1. . . . .λαn and proof term applications (e1 (. . . (em) . . .)) respectively where n and

m are known from the context or are unimportant.

Restriction 1 of Definition 8.3 requires that Horn clauses in a logic program do

not overlap, i.e. heads of the Horn clauses in the program do not unify. However,

an auxiliary goal in an implicative shape may be proven in the course of corecursive

type class resolution and added to the program. Such formula may overlap with

other clauses in the program—only Horn clauses in the original program, that is

Horn clauses that originate as type class instances, are subject to restriction 1.

Example 8.11

In the program in Example 8.8 the Horn formula eqx ⇒ eq (bushx) can be (coin-

ductively) proven with the recursive proof term κbush′ = να.λβ.κ2β(α(αβ)). If we

add this Horn clause to the program PBush we obtain a proof of eq (bush int) by

applying κbush′ to κint.

In the case of implicative queries it is even more challenging to understand
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whether the obtained proof is indeed sound: whether inductively, coinductively or

in any other sense. In Section 8.4, we establish coinductive soundness for proofs of

such implicative queries relative to the greatest Herbrand models of logic programs.

Namely, we determine that proofs that are obtained by extending the proof con-

text with coinductively proven Horn clauses are coinductively sound but inductively

unsound. This result completes our study of the semantic properties of corecursive

type class resolution. Sections 8.2 and 8.4 summarise our arguments concerning the

inductive and coinductive incompleteness of corecursive type class resolution.

In the following sections, we will gradually introduce inference rules for proof-

relevant corecursive resolution that was given in Fu et al. (2016) as admissible1 in

the calculus we exposed in Chapter 3 in the inductive case and as a proper extension

of the calculus in the coinductive case. We start with its inductive fragment, i.e. the

fragment that is sound relative to the least Herbrand models, and then in subsequent

sections consider its two coinductive extensions (which are both sound with respect

to the greatest Herbrand models).

8.2 Inductive Type Class Resolution

In this section, we describe the inductive fragment of the calculus for the extended

type class resolution that was introduced by Fu et al. (2016). We show that inference

rules of this calculus are admissible in the framework of Chapter 3. We reconstruct

the standard theorem of universal inductive soundness for the resolution rule. We

consider an extended version of type class resolution, working also with implicative

goals rather than working just with atomic formulae. We show that the resulting

proof system is inductively sound, but coinductively unsound; we also show that it is

incomplete. Based on these results, we discuss the program transformation methods

that arise.

The proof systems that are considered in this section are:

• The proof system Lp-m that takes the usual modus ponens rule of logic pro-

gramming (Lloyd, 1987) and restricts it to matching.

• The proof system Lp-m + Lam that extends the above system with a rule for
1A rule of inference R is admissible in a formal system F if it does not expand the theory of F ,

that is T (F ) = T (F ∪ {R}).

145



8.2. Inductive Type Class Resolution

function abstraction.

8.2.1 Proof system Lp-m

First, we give semantics of type class resolution using the syntax of proof-relevant

Horn-clause resolution.

Definition 8.12 (Type class resolution)

Let P be a program, A, B1 to Bn atoms, σ a substitution, and e, e1 to en proof

terms. The calculus of type class resolution is given by the following single rule:

P −→ e1 : σB1 · · · P −→ en : σBn (e : B1 ∧ · · · ∧Bn ⇒ A) ∈ P
P −→ e e1 . . . en : σA

(Lp-m)

If, for a given atomic formula A, a given proof term e, and a given program P ,

P −→ e : A is derived using the Lp-m rule we say that A is entailed by P and that

the proof term e witnesses this entailment. The signature S of the logic program P

does not play a role in the inference rule and we keep it implicit. We will do so for

signatures in the rest of this chapter.

Example 8.13

Recall the logic program PPair in Example 1.3, which encodes type-class resolution

for pairs of integers. The inference steps for resolution of the goal eq (pair int int)

correspond to the following derivation tree in the calculus of Definition 8.12.

κint : eq int ∈ PPair

PPair −→ κint : eq int

κint : eq int ∈ PPair

PPair −→ κint : eq int κint : eq int ∈ PPair

PPair −→ κpairκintκint : eq (pair int int))

Derivations of type class resolution can be reproduced in the semantics of Horn-

clause logic we gave in Section 3.1:

Proposition 8.14

The inference rule Lp-m is admissible in big-step operational semantics of Horn-

clause logic (Definition 3.8 in Chapter 3).

Proof. By induction on length of the body of the clause B1 ∧ . . . ∧Bn ⇒ A.
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Moreover, proof terms that are entailed in the big-step semantics of Horn-clause logic

can be regarded as derivations in the system Lp-m as can be observed by inspecting

the proof of Proposition 8.14. That is, the system given by the inference rule Lp-

m corresponds to the proof-relevant big-step operational semantics of Horn-clause

resolution we gave in Section 3.1. For the purpose of discussion of soundness of the

system Lp-m we understand that the judgement of big-step operational semantics

is restricted to Horn-clause logic.

Inductive soundness of system Lp-m

The entailment in Example 8.13 is inductively sound, i.e. it is sound with respect

to the least Herbrand model of PPair.

Theorem 8.15

Let P be a program, e a proof term, and A an atom. Let P −→ e : A hold. Then

P �ind A.

Proof. By structural induction on the derivation of the entailment.

Base case: Let the derivation be

κ : A ∈ P
P −→ κ : σA

for an atomic formula A, a proof term symbol κ, and a substitution σ. From

Lemma 2.37 part a) follows that P �ind σA′.

Inductive case: Let the last step in the derivation of the entailment be

P −→ e1 : σB1 . . . P −→ en : σBn κ : B1 ∧ · · · ∧Bn ⇒ A ∈ P
P −→ κ e1 . . . en : σA′

for atomic formulae A, B1, …, Bn, a proof term symbol κ, a substitution σ and proof

term e1, …, en. From the induction assumption, for i ∈ {1, . . . , n}, P �ind σBi and

by the Lemma 2.37 part b), P �ind σA.

This is a standard result that can be found in literature (Lloyd, 1987). We include

a proof since the rule Lp-m also plays a crucial role in the coinductive fragment

of type class resolution, as will be discussed in Sections 8.3 and 8.4. We believe

that it is illustrative to compare structure of this proof with and the proofs of the

appropriate lemmata in those sections.
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8.2.2 Proof system Lp-m + Lam

A natural extension of the proof system Lp-m is the extension with a rule that

allows us to prove implicative goals.

Definition 8.16

Let P be a program, A, B1 to Bn atoms, e a proof term and β1 to βn proof variables.

The calculus of extended type class resolution is given by rule Lp-m and the following

rule:
P , (β1 : ⇒ B1), . . . , (βn : ⇒ Bn) −→ e : A

P −→ λβ1, . . . , βn.e : B1 ∧ · · · ∧Bn ⇒ A
(Lam)

We illustrate the use of the Lam rule by an example.

Example 8.17

Let P = (κ1 : A ⇒ B), (κ2 : B ⇒ C). Both the least and the greatest Herbrand

model of P are empty. Equally, no formulae can be derived from the program by the

Lp-m rule. However, we can derive A⇒ C by using a combination of the Lam and

Lp-m rules:

α : A ∈ P, (α : ⇒ A)

P, (α : ⇒ A) −→ α : A

P, (α : ⇒ A) −→ κ1 α : B

P, (α : ⇒ A) −→ κ2 (κ1 α) : C LamP −→ λα.κ2 (κ1 α) : A⇒ C

When there is no label on the right-hand side of an inference step, inference proceeds

by Lp-m rule. We follow this convention throughout the rest of this chapter.

Again, the we relate the proof system to the big-step semantics:

Proposition 8.18

The inference rule Lam is admissible in big-step operational semantics of the logic

of hereditary Harrop formulae.

Proof. By induction on the number of clauses β1 : ⇒ B1, …, βn : ⇒ Bn using

proposition 8.14 and the fact the semantics of the logic of hereditary Harrop formulae

is given as an extension of the semantics of Horn-clause logic.

By inspecting the proof we can observe that, similarly to the system Lp-m,

derivations of the big-step semantics can be regarded as derivations in the system
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Lp-m+Lam. Thus the system Lp-m+Lam corresponds to a fragment of the logic of

hereditary Harrop formulae. In this fragment, programs consists of Horn clauses and

goals are those of Horn-clause logic and goals in the shape of universally quantified

Horn clauses.

Inductive soundness of system Lp-m + Lam

We show that the calculus comprising the rules Lp-m and Lam is (universally)

inductively sound.

Lemma 8.19

Let P be a logic program, let A, B1 to Bn be atomic formulae and let κ1 to κn be

proof-term symbols. If P , (κ1 : ⇒ B1), . . . , (κn : ⇒ Bn) �ind A then P �ind
B1 ∧ · · · ∧Bn ⇒ A.

In the plain tongue, the lemma states that the inference rule Lam can be carried

out as an operation on semantic validity in model.

Proof. Assume that P , (κ1 : ⇒ B1), . . . , (κn : ⇒ Bn) �ind A. From Definition

2.30 there is the least n such that for any grounding substitution τ , (τ ◦ σ)A ∈

TP ,(κ1: ⇒B1),...,(κn: ⇒Bn) ↑ n. Consider any substitution σ and suppose that for

all i, P �ind σBi. From the definition of validity for any grounding τ for all i,

(τ ◦ σ)Bi ∈ MP hence there is the least m such that (τ ◦ σ)Bi ∈ TP ↑ m. From

the assumption, for any grounding substitution τ also (τ ◦ σ)A ∈ TP ↑ (n+m) and

P �ind σA. Hence P �ind B1 ∧ · · · ∧Bn ⇒ A.

Theorem 8.20

Let P be a logic program, G a formula, and e a proof term. Let S;P −→ e : G be

derived using the rules Lp-m and Lam. Then P �ind G.

Proof. By structural induction on the derivation tree.

Base case: Let the derivation be

κ : A ∈ P
P −→ κ : σA

for an atomic formula A, a constant symbol κ, and a substitution σ. From the

Lemma 2.37 part a) follows that P �ind σA.
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Inductive case, subcase Lp-m: Let the last step in the derivation tree be by the

rule Lp-m thus of the form

P −→ e1 : σB1 . . . P −→ en : σBn (κ : B1 ∧ . . . Bn∧ ⇒ A) ∈ P
S;P −→ κ e1 . . . en : σA

for atomic formulae A, B1, …, Bn, a proof-term symbol κ, a substitution σ and proof

term e1, …, en. From the induction assumption, for i ∈ {1, . . . , n}, P �ind σBi and

by the Lemma 2.37 part b), P �ind σA.
Subcase Lam: Let the last step of the derivation be by the rule Lam thus of the

form

P , (β1 : ⇒ B1), . . . , (βn : ⇒ Bn) −→ e : A

P −→ λβ1, . . . , βn.e : B1 ∧ · · · ∧Bn ⇒ A

for atomic formulae A, B1, …, Bn, proof term e, and variables b1, …, bn. From

the induction assumption, P , (β1 : ⇒ B1), . . . , (βn : ⇒ Bn) � A and from the

Lemma 8.19 also P �ind A.

Inductive completeness of system Lp-m + Lam

Let us comment on completeness of the calculus of Lp-m and the calculus of Lp-

m and Lam. In principle, one can consider two different variants of completeness

results for Lp-m + Lam. Recalling the standard results of Lloyd (1987), the first

formulation is:

Definition 8.21 (Inductive completeness à la Lloyd)

If a ground atomic formula A is in MP , then P −→ e : A is in the Lp-m + Lam

proof system.

Such a result can be found in (Lloyd, 1987, pp. 47-49) and follows by straightforward

induction on the construction of MP . The proof is based solely on the properties

of the rule Lp-m and on the properties of the semantic operator TP that is used to

construct the least Herbrand models.

An alternative formulation of the completeness result, this time involving im-

plicative formulae and hence the rule Lam in the proof, is:

Definition 8.22 (Inductive completeness w.r.t. a model)

If MP �ind G then there is a derivation of P −→ e : G in the Lp-m + Lam proof

system.
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However, neither of the systems Lp-m or Lp-m + Lam is complete in the sense of

Definition 8.22. We illustrate this by a means of an example. First, we consider the

proof system consisting solely of the rule Lp-m.

Example 8.23

Let Σ be a signature consisting of a unary predicate symbol A, a unary function

symbol f and a constant function symbol g. Let P be the following program:

κ1 : ⇒ A (f x)

κ2 : ⇒ A g

The least Herbrand model of P is MP = {A g,A (f g), A f(f g), . . . }. Therefore,

P �ind A x. However, neither κ1 nor κ2 matches A x. Thus there is no way to

construct a proof term e satisfying:

· · · Lp-mP −→ e : A x

We demonstrate the incompleteness of the proof system Lp-m + Lam through the

following example:

Example 8.24

Let Σ be a signature consisting of the unary predicate symbols A and B, and a constant

function symbol f. Consider a program P given as follows:

κ1 : ⇒ A f

κ2 : ⇒ B f

The least Herbrand model is MP = {A f,B f}. Therefore P �ind B x ⇒ A x.

However, any proof of B x⇒ A x needs to show that:

· · ·
P, α : ⇒ B x −→ e : A x

LamP −→ λα.e : B x⇒ A x

where e is a proof term. This proof will not succeed since no axiom or hypothesis

matches Ax.
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At this point, we remind there reader that unification is not allowed since the

standard formulation of type class resolution as discussed in this chapter does not

allow it.

Program transformation methods

The main purpose of introducing the rule Lam in literature was to increase expres-

sivity of the proof system. In particular, obtaining an entailment P −→ e : H of a

Horn clause H enables the program P to be extended with Horn clause e : H, which

can be used in further proofs. We show that transforming (the standard, untyped)

logic programs in this way is inductively sound.

Theorem 8.25

Let P be a logic program, and let P −→ e : G for a formula G by the Lp-m and

Lam rules. Given a formula G′, P �ind G′ iff P , G �ind G′.

Proof. By the Theorem 8.15, P �ind G. Therefore,MP is a model of G andMP =

MP ,G. Hence P �ind G′ iff P , G �ind G′.

Note, however, that the above theorem is not as trivial as it looks, in particular,

it does not hold coinductively, i.e. if we replace �ind with �coind in the statement

above. Consider the following example.

Example 8.26

Recall that · stands for the empty program. Using the Lam rule, one can prove the

sequent · −→ λα.α : A⇒ A:

α : ⇒ A −→ α : A Lam· −→ λα.α : A⇒ A

The greatest Herbrand models of the extended program ·, A ⇒ A then contains all

ground instances of A and hence ·, A⇒ A �coind A. However, clearly · 6�coind A.

Example 8.26 concludes our discussion of program transformation methods in

the inductive case.
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8.3 Coinductive Type Class Resolution

Resolution using the Lp-m rule may not terminate as demonstrated by Example

8.5 in Section 8.2. Lämmel and Peyton Jones (2005) observed that in such cases

there may be a cycle in the inference that can be detected. Such treatment of

cycles amounts to coinductive reasoning and results in building a corecursive proof

term—i.e. a (co-)recursive dictionary in Haskell terminology.

The proof systems that are considered in this section are:

• The proof system Lp-m + Nu’ that extends the proof system Lp-m from the

previous section with a rule that allows correcursive proofs over atomic goals.

• The proof system Lp-m + Nu that extends the proof system Lp-m + Lam

from the previous section with a rule that allows correcursive over both atomic

and implicative goals.

8.3.1 Proof system Lp-m + Nu’

A (restricted) proof system that captures treatment of type classes such as in Ex-

ample 8.5 is given in the following definition.

Definition 8.27 (Corecursive type class resolution)

Let P be a program, A an atom, e a proof term, and α a proof-term variable. The

calculus of corecursive type class resolution consists of the inference rule Lp-m and

the following inference rule:

P , (α : ⇒ A) −→ e : Aif gHNF(e) P −→ να.e : A
(Nu’)

The side condition of Nu’ requires the proof term to be in guarded head normal

form (as Defined on page 144). Since, in this section, we are working with a calculus

consisting of the rules Lp-m and Nu’, there is no way to introduce a λ-abstraction

into a proof term. Therefore, in this section, we restrict ourselves to guarded head

normal form terms of the form κ e.

Example 8.28

Recall the program PEvenOdd in Example 8.5. The originally non-terminating resolu-
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tion trace for the query eq (evenList int) is resolved using the Nu’ rule as follows:

κint : eq int ∈
PEvenOdd

PEvenOdd

−→ κint : eq int

κint : eq int ∈
PEvenOdd

PEvenOdd

−→ κint : eq int

α : ⇒ eq (evenList int) ∈
PEvenOdd,

α : ⇒ eq (evenList int)

PEvenOdd,

α : ⇒ eq (evenList int)

−→ α : eq (evenList int)

PEvenOdd, α : ⇒ eq (evenList int)

−→ κoddListκintα : eq (oddList int)

PEvenOdd, α : ⇒ eq (evenList int)

−→ κevenListκint(κoddListκintα) : eq (evenList int) Nu’PEvenOdd −→ να.κevenListκint(κoddListκintα) : eq (evenList int)

Recall that when the index is omitted the inference proceeds by the Lp-m rule.

Coinductive soundness of system Lp-m + Nu’

We can now discuss the coinductive soundness of the Nu’ rule, i.e. its soundness rel-

ative to the greatest Herbrand models. We note that, not surprisingly (cf. Sangiorgi,

2009), the rule Nu’ is inductively unsound.

Example 8.29

Consider a program P consisting of just one clause κ : A⇒ A. The rule Nu’ allows

us to entail A:

(α : ⇒ A) ∈ P , (α : ⇒ A)

P , (α : ⇒ A) −→ α : A (κ : A⇒ A) ∈ P , (α : ⇒ A)

P , (α : ⇒ A) −→ κα : A
Nu’P −→ να.κα : A

However, the least Herbrand model MP 8 = ∅ of the program does not contain (any

ground instance of) A.

This example also shows that the system Lp-m + Nu is a proper extension of

the semantics of Horn-clause logic. We can see the system as a coinductive big-step

operational semantics of Horn-clause logic.

Similarly, the formula eq (oddList int) proven in Example 8.28 is not inductively

sound, either. Thus, the coinductive fragment of the extended corecursive resolution

is only coinductively sound. When proving the coinductive soundness of the Nu’

rule, we carefully choose the proof method by which we proceed. Inductive soundness

of the Lp-m rule was proven by induction on the derivation tree and the construction

of the least Herbrand models by iterations of TP . Here, we give an analogous result,
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where coinductive soundness is proven by induction on the iterations of the semantic

operator TP . In order for induction to be applicable in our proof, we must ensure

that the construction of the greatest Herbrand model is completed within ω steps

of iteration of TP . This is exactly the statement of Proposition 2.35 on page 26

since we consider only Horn clauses without existential variables, The essence of the

coinductive soundness of Nu’ is captured by the following lemma:

Lemma 8.30

Let P be a logic program, let σ be a substitution, and let A, B1, …, Bn be atomic

formulae. If, ∀i ∈ {1, . . . , n}, P , ( ⇒ σA) �coind σBi and (B1 ∧ · · · ∧Bn ⇒ A) ∈ P

then P �coind σA.

Proof. Consider construction of the greatest Herbrand model for the program P and

proceed by induction with hypothesis: for all n, for any grounding substitution τ ,

(τ ◦ σ)A ∈ TP ↓ n. By Definition of TP , TP ↓ 0 is the Herbrand base BΣ and, for

any grounding τ , (τ ◦ σ)A ∈ BΣ.

Assume that, for any grounding τ , (τ ◦ σ)A ∈ TP ↓ n. The set TP ↓ n is by

definition of the operator TP the same as the set TP ,( ⇒σA) and from the assumptions

of the lemma and monotonicity of TP also, for all i, for any grounding substitution

τ , (τ ◦ σ)Bi ∈ TP ↓ n. Since B1 ∧ · · · ∧ Bn ⇒ A ∈ P also (τ ◦ σ)A ∈ TP ↓ (n + 1).

From induction follows that the same will be true for all subsequent iterations of TP
and all instances of σA will be in TP ↓ ω and, by Proposition 2.35 in M′

P . Hence

P �coind σA

Finally, Theorem 8.31 states universal coinductive soundness of the corecursive

type class resolution:

Theorem 8.31

Let P be a logic program and G a formula. Let there be a derivation of S;P −→ e : G

by the rules Lp-m and Nu’. Then P �coind G.

Proof. By structural induction on the derivation tree.

Base case: Let the derivation be in one step. Then it is by the rule Lp-m and

of the form

(κ : ⇒ A) ∈ P
Lp-mP −→ κ : σA
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for an atomic formula A, a constant symbol κ, and a substitution σ. By Lemma 2.37

c), P �coind σA.
Inductive case, subcase Lp-m: Let the last step be by the rule Lp-m and of the

form

P −→ e1 : σB1 · · · P −→ en : σBn (κ : B1 ∧ · · · ∧Bn ⇒ A) ∈ P
S;P −→ κ e1 . . . en : σA

for an atomic formulae A, B1, to Bn, a constant symbol κ, a substitution σ and

proof term e1, …, en. By the induction assumption, for i ∈ {1, . . . , n}, P �coind Bi

and by Lemma 2.37 d), P �coind σA.
Subcase Nu’: Let the last step be by the rule Nu’ and of the form

P , (α : ⇒ A) −→ e : A
Nu’P −→ να.e : A

for an atomic formula A, a proof-term variable α and a proof term e in the guarded

head normal form. W.l.o.g. let e = κe1 . . . en. Therefore there is an inference step

of the form

P −→ e1 : σB
′
1 . . . P −→ en : σB′

n (κ : B′
1 ∧ · · · ∧B′

n ⇒ A′) ∈ P

P −→ κ e1 . . . en : σA′

for σA′ = A. By the induction assumption, for all i, P , (α : ⇒ A) � Bi. By

Lemma 8.30, P �coind A.

8.3.2 Choice of coinductive models

Perhaps the most unusual feature of the semantics given in this chapter is the use of

the greatest Herbrand models rather than the greatest complete Herbrand models.

The latter is more common in the literature on coinduction in logic programming

(Johann et al., 2015, Lloyd, 1987, Simon et al., 2007). The greatest complete Her-

brand models are obtained as the greatest fixed point of the semantic operator T ′
P

on the complete Herbrand base, i.e. the set of all finite and infinite ground atomic

formulae formed by the signature of the given program. This construction is pre-

ferred in the literature for two reasons. First, T ′
P reaches its greatest fixed point in

at most ω steps, whereas TP may take more than ω steps in the general case. This

is due to compactness of the complete Herbrand base. Moreover, greatest complete

Herbrand models give a more natural characterisation for some programs:
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Example 8.32

Consider a program PInf given by a single clause κinf : px⇒ p (fx). The greatest

Herbrand model of that program is empty, i.e. MPInf = ∅. However, its great-

est complete Herbrand model M′
PInf

= {p (f (f (...))} contains the infinite formula

p (f (f (...)).

Restrictions of Definition 8.3, imposed by type class resolution, mean that the

greatest Herbrand models regain those same advantages as complete Herbrand mod-

els. It was noticed by Lloyd (1987) that restriction 2 on page 137 implies that the

semantic operator converges in at most ω steps. Restriction 1 on the same page and

the resolution by matching imply that proofs by type class resolution have a univer-

sal interpretation, i.e. that they hold for all finite instances of goals. Therefore, we

never need to talk about programs for which only one infinite instance of a goal is

valid. To cohere with the fact that the discussed restrictions are distinguishing fea-

tures of type class resolution, we prove all our soundness results relative to greatest

Herbrand models. Extensions to complete Herbrand models hold trivially and we

omit their explicit formulation.

8.4 Extended Coinductive Type Class Resolution

The class of problems that can be resolved by coinductive type class resolution is

limited to problems where a coinductive hypothesis is in atomic form. Fu et al.

(2016) extended coinductive type class resolution with implicative reasoning and

adjusted the rule Nu’ such that this restriction of coinductive type class resolution

is relaxed.

8.4.1 Proof system Lp-m + Lam + Nu

Definition 8.33 (Extended corecursive type class resolution)

Let P be a program, A, B1 to Bn atoms, e a proof term, and α a proof-term variable.

The calculus of extended corecursive type class resolution consists of the inference

rules Lp-m, Lam and the following inference rule:

P , (α : B1 ∧ · · · ∧Bn ⇒ A) −→ e : B1 ∧ · · · ∧Bn ⇒ Aif gHNF(e) P −→ να.e : B1 ∧ · · · ∧Bn ⇒ A
(Nu)
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The side condition of the Nu rule requires the proof term to be in guarded head

normal form. However, unlike corecursive type class resolution, extended corecursive

type class resolution also uses the Lam rule and a guarded head normal term is not

restricted as in the previous section but is in a general form λα.κ e for a possibly

non-empty sequence of proof-term variables α. First, let us note that extended

corecursive type class resolution indeed extends the calculus of Section 8.3:

Proposition 8.34

The inference rule Nu’ is admissible in the extended corecursive type class resolution.

Proof. Let P be a program, let A be an atomic formula and let S;P , (α : ⇒

A) −→ e : A where e is in gHNF. Then by the Lam rule S;P , (α : ⇒ A) −→ λβ.e : ⇒

A where β is an empty sequence of variables. Therefore S;P , (α : ⇒ A) −→ e : ⇒

A. Since e is in guarded head normal form by the Nu rule also S;P −→ να.e : A.

Furthermore, this is a proper extension. The Nu rule allows queries to be entailed

that were beyond the scope of corecursive type class resolution (i.e. the proof system

Lp-m + Nu’).

Example 8.35

Recall Example 8.8 where no cycles arise for query eq (bush int) and thus the query

cannot be resolved by corecursive type class resolution. Using the extended query the

calculus is resolved as follows:

κint : eq int

∈ PBush

PBush −→
κint : eq int

(β : ⇒ eqx)

∈ PBush,α,β

PBush,α,β −→
β : eqx

(β : ⇒ eqx)

∈ PBush,α,β

PBush,α,β −→
β : eqx

α : eqx⇒
eq (bushx)

∈ Pbush,α,β

PBush,α,β −→
αβ : eq (bushx)

PBush,α,β −→ α (αβ)

: eq (bush (bushx))

κbush : eqx∧
eq (bush (bushx))

⇒ eq (bushx)

∈ PBush,α,β

PBush,α,β −→ κ2 β (α (αβ)) : eq (bushx)
LamPBush,α −→ λβ.κbushβ(α(αβ)) : eqx⇒ eq (bushx)
NuPBush −→ να.λβ.κbushβ(α(αβ)) : eqx⇒ eq (bushx)

PBush −→ (να.λβ.κbushβ(α(αβ)))κint : eq (bush int)
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In the derivation, we use Pβ to abbreviate the program P extended with the clause

β : ⇒ eqx and Pα to abbreviate the program P extended with the clause α : eqx⇒

eq (bushx).

Coinductive soundness of system Lp-m + Lam + Nu

Before proceeding with the proof of soundness of extended type class resolution we

need to show two intermediate lemmata. The first lemma states that inference by

the Nu rule preserves coinductive soundness:

Lemma 8.36

Let P be a logic program, let σ be a substitution, and let A, B1, …, Bn, C1, …, Cm

be atomic formulae. If, for all i, P , B1, . . . , Bn, (B1∧· · ·∧Bn ⇒ σA) �coind σCi and

(C1, . . . , Cm ⇒ A) ∈ P then P �coind B1 ∧ · · · ∧Bn ⇒ σA.

Proof. Consider the construction of the greatest Herbrand model of the program P

and proceed by induction with hypothesis: for all n, B1 ∧ · · · ∧Bn ⇒ σA is valid in

TP ↓ n. The base case is the same as in the proof of Lemma 8.30.

Assume that, for a grounding substitution τ , for all i, τBi ∈ TP ↓ n. Then also

(τ ◦ σ)A ∈ TP ↓ n. For the definition of the semantic operator, it follows from the

monotonicity of the operator itself, and from the assumptions made by the lemma

that (τ ◦ σ)Ci ∈ TP ↓ n. Since C1, . . . , Cn ⇒ A ∈ P also (τ ◦ σ)A ∈ TP ↓ (n+ 1). If

the assumption does not hold then from the monotonicity of TP it follows that, for

all i, τBi 6∈ TP ↓ (n + 1). Therefore, B1 ∧ · · · ∧ Bn ⇒ σA is valid in TP ↓ (n + 1).

From induction we conclude that the same holds for TP ↓ ω and from Proposition

2.35 forM′
P . Hence whenever, for a substitution τ , all instances of τB1 to τBn are

in the greatest Herbrand model then also all instances of (τ ◦σ)A are in the greatest

Herbrand model. Hence P �coind B1 ∧ · · · ∧Bn ⇒ σA.

The other lemma that we need in order to prove coinductive soundness of extended

type class resolution states that inference using Lam preserves coinductive sound-

ness, i.e. we need to show the coinductive counterpart to Lemma 8.19:

Lemma 8.37

Let P be a logic program and A, B1, …, Bn atomic formulae. If P , ( ⇒ B1), . . . ( ⇒

Bn) �coind A then P �coind B1 ∧ · · · ∧Bn ⇒ A.

159



8.4. Extended Coinductive Type Class Resolution

Proof. Assume that, for an arbitrary substitution σ, for all i, σBi is valid in M′
P .

Then, for any grounding substitution τ , from the definition of the semantic operator

and from the assumption of the lemma it follows that (τ ◦ σ)A ∈ M′
P . Therefore,

σA is valid inM′
P . The substitution σ is chosen arbitrary whence, for any σ, if, for

all i, σBi are valid in P then also σA is valid in P . From the definition of validity

it follows that P �coind B1 ∧ · · · ∧Bn ⇒ A.

Now, the universal coinductive soundness of extended corecursive type class resolu-

tion follows straightforwardly:

Theorem 8.38

Let P be a logic program, and let be S;P −→ e : G for a formula G by the Lp-m,

Lam, and Nu rules. Then P �coind G.

Proof. By structural induction on the derivation tree.

Base case: Let the derivation be in one step. Then it is by the rule Lp-m and

of the form

(κ : ⇒ A) ∈ P
Lp-mP −→ κ : σA

for an atomic formula A, a constant symbol κ, and a substitution σ. By Lemma 2.37

c), P �coind σA.
Inductive case, subcase Lp-m: Let the last step be by the rule Lp-m and of the

form

P −→ e1 : σB1 · · · P −→ en : σBn (κ : B1 ∧ · · · ∧Bn ⇒ A) ∈ P
Lp-mP −→ κ e1 . . . en : σA

for an atomic formulae A, B1, …, Bn a constant symbol κ, a substitution σ and proof

terms e1, …, en. By the induction assumption, for i ∈ {1, . . . , n}, P �coind Bi and

by Lemma 2.37 d), P �coind σA.
Subcase Lam: Let the last step of the derivation be by the rule Lam. Then it is

of the form

P , (β1 : ⇒ B1), . . . , (βn : ⇒ Bn) −→ e : A
LamP −→ λβ1, . . . , βn.e : B1 ∧ · · · ∧Bn ⇒ A
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for atomic formulae A, B1 to Bn, a proof term e, and variables b1, …, bn. By

the induction assumption, P , (β1 : ⇒ B1), . . . , (βn : ⇒ Bn) �coind A and by

Lemma 8.37 also P �coind B1 ∧ · · · ∧Bn ⇒ A.

Subcase Nu: Let the last step be by the rule Nu and of the form

P , (α : B1 ∧ · · · ∧Bn ⇒ A) −→ e : B1 ∧ · · · ∧Bn ⇒ A
NuP −→ να.e : B1 ∧ · · · ∧Bn ⇒ A

for atomic formulae A, B1 to Bn, a variable α and a proof term e in the guarded

head normal form. W.l.o.g. let e = λβ1 . . . βn.κ e1 . . . em. Therefore there is infer-

ence step of the form

P, (β1 : ⇒ B1),

. . . , (βn : ⇒ Bn),

(α : B1 ∧ · · · ∧Bn ⇒ A)

−→ e1 : σC ′
1 . . .

P, (β1 : ⇒ B1),

. . . , (βn : ⇒ Bn),

(α : B1 ∧ · · · ∧Bn ⇒ A)

−→ em : σC ′
m κ : C ′

1 ∧ · · · ∧ C ′
m ⇒ A′

Lp-mP, (β1 : ⇒ B1), . . . , (βn : ⇒ Bn), (α : B1 ∧ · · · ∧Bn ⇒ A) −→ κ e1 . . . en : σA′

for σA′ = A. By the induction assumption, for all i, P , (β1 : B1), . . . , (βn : Bn), (α :

B1 ∧ · · · ∧Bn ⇒ A) � Ci. By Lemma 8.36, P �coind B1 ∧ · · · ∧Bn ⇒ A.

Note that we discussed the correspondence of the system Lp-m + Lam to the

big step semantics of the logic of hereditary Harrop formulae. We also discussed

that the system Lp-m + Nu’ can be seen as the coinductive counterpart of the

semantics of Horn clauses. In the same light we can see the system Lp-m + Lam

+ Nu’ as a coinductive big-step operational semantics of the logic of hereditary

Harrop formulae.

Coinductive incompleteness of system Lp-m + Lam + Nu

In Section 8.2, we considered two ways of stating inductive completeness of type

class resolution. We state the corresponding result for the coinductive case here.

As both the notions of completeness are shown not to hold we discuss them in the

reversed order than the inductive completeness, first the more general case and then

the more restricted one:

Definition 8.39 (Coinductive Completeness w.r.t. a model)

If M′
P �coind G then S;P −→ e : G in the Lp-m + Lam + Nu proof system.
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Recall programs in Examples 8.23 and 8.24 that we used to show incompleteness in

the inductive case. We demonstrated that, in general, there are formulae that are

valid inMP but do not have a proof in P . The same two examples will serve our

purpose here.

Example 8.40

The greatest Herbrand model of the program P in Example 8.23 is M′
P = MP =

{A g,A (f g), A (f (f g)), . . . }. Therefore, for an atomic formula Ax, P �coind A x.

However, it is impossible to construct a proof of

...
P −→ e : A x

The rules Lp-m and Lam are not applicable for the same reasons as in the

inductive case. The rule Nu results in assumption of the inference rule being the

same as the conclusion since A x is an atom and not a Horn clause with a non-empty

body and the proof state does not change.

A similar argument can be carried out for the Example 8.24 by observing the

inductive structure of a proof when we notice that the rule Nu does not instantiate

the clause that is being proven. The notion of completeness for valid formulae fails

similar to the inductive case.

Moreover, a more restricted formulation in the traditional style of Lloyd (1987)

does not improve the situation:

Definition 8.41 (Coinductive Completeness à la Lloyd)

If a ground atomic formula G is in M′
P , then P −→ e : G in the Lp-m + Lam +

Nu proof system.

Such a result does not hold, since there exist logic programs that define corecur-

sive schemes that cannot be captured in this proof system. We demonstrate this on

an example that was already used in literature (Fu et al., 2016) and we analyse its

model.

Example 8.42

Let Σ be a signature with a binary predicate symbol D, a unary function symbol s

and a constant function symbol z. Consider a program P with the signature Σ given

by the following axiom environment:
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κ1 : D x (s y)⇒ D (s x) y

κ2 : D (s x) z⇒ D z x

Let us denote a term (s (s (. . . (s x) . . . ))) where the symbol s is applied i-times as

(si x). By observing the construction of M′
P we can see that, for all i, if D z (si x)

then D (si x) z ∈ M′
P and also D z (si−1 x) ∈ M′

P . Therefore D z z ∈ M′
P .

However, there is no proof of D z z since any number of proof steps resulting from

the use of Lp-m generates yet another ground premise that is different from all

previous premises. Consequently, the proof cannot be closed by Nu. Also, no lemma

that would allow for a proof can be formulated; an example of such a lemma would

be the above D z (si x) ⇒ D z (si−1 x). This is a higher order formula and cannot

be expressed in the first order Horn-clause logic we consider in this Chapter.

8.4.2 Program transformation methods

We conclude this section with a discussion of program transformation with Horn

clauses that are entailed by the rules Lam and Nu. From the fact that the Nu’

rule is inductively unsound, it is clear that using program transformation techniques

based on the lemmata that were proved by the Lam and Nu rules would also be

inductively unsound. However, a more interesting result is that adding such program

clauses will not change the coinductive soundness of the initial program:

Theorem 8.43

Let P be a logic program, let G be a formula and let e be a proof term such that

gHNF(e). Let S;P −→ e : G by the Lp-m, Lam and Nu rules. Given a formula

G′, P �coind G′ iff (P , G) �coind G′.

Proof. By the Theorem 8.38, P �coind G. Therefore, M′
P is a model of G and

M′
P =M′

P,G. Hence P �coind G′ iff P , G �coind G′.

The above result is possible thanks to the guarded head normal form condition, since

it is then impossible to use a clause A⇒ A that was derived from an empty context

by the rule Lam. It is also impossible to make such a derivation within the proof
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term e itself and then derive A by the Nu rule from A ⇒ A. The resulting proof

term will fail to satisfy the guarded head normal form condition that is required

by Nu. Since this condition guards against any such cases, we can be sure that

this program transformation method is coinductively sound and hence that it is safe

to use with any coinductive dialect of logic programming, e.g. with CoLP (Simon

et al., 2007).

Example 8.44

Recall the Example 8.26 and the fact that, for any atomic formula A:

· −→ λα.α : A⇒ A

Assume a program P consisting of a single formula κ : A⇒ B. Both the least and

the greatest Herbrand model of this program are empty. However, adding the formula

A ⇒ A to the program results in the greatest Herbrand model M′
κ:A⇒B = {A,B}.

Thus, M′
κ:A⇒B 6=M′

κ:A⇒B,λα.α:A⇒A.

The Example 8.44 demonstrates that extending a program with a formula A⇒ A

is not a coinductively sound transformation. However, calculus consisting of rules

Lp-m and Lam as can be observed inductively sound by inspecting the proof of

Theorem 8.38—rules of the calculus do not allow unguarded use of such Horn clauses

in further entailment. In fact, rules of the calculus do not allow any use of such

clauses in further entailment at all. On the other hand, both corecursive type class

resolution and its extended version need to impose guardedness conditions on the

proof term in order to ensure that any use of a Horn clause that was previously

entailed is guarded in order to avoid unsound derivations. The side conditions of

the rules Nu’ and Nu requiring the proof term to be in the head normal form are

exactly these conditions.

8.5 Related Work

The standard approach to type inference for type classes, corresponding to type class

resolution as studied in this chapter was described by Stuckey and Sulzmann (2005).

Type class resolution was further studied by Lämmel and Peyton Jones (2005) who
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described what we here call corecursive type class resolution. The description of the

extended calculus of Section 8.4 was first presented by Fu et al. (2016). In general,

there is a rich body of work that focuses on allowing for infinite data structures

in logic programming. Logic programming with rational trees (Colmerauer, 1984,

Jaffar and Stuckey, 1986) was studied from both an operational semantics and a

declarative semantics point of view. Simon et al. (2007) introduced co-logic pro-

gramming (co-LP) that also allows for terms that are rational infinite trees and

hence that have infinite proofs. However, corecursive resolution, as studied in this

paper, is more expressive than co-LP: while also allowing infinite proofs, and closing

of coinductive hypotheses is less constrained in our approach.

We raised a question whether the context update technique given in Fu et al.

(2016) can be reapplied to logic programming and can be re-used in its corecursive

dialects such as CoLP Simon et al. (2007) and CoALP Komendantskaya and Johann

(2015) or, even broader, whether it can be incorporated into program transformation

techniques (De Angelis et al., 2015). The answer to the question is less straightfor-

ward. The way the implicative coinductive lemmata are used in proofs alongside all

other Horn clauses in Fu et al. (2016) indeed resembles a program transformation

method when considered from the logic programming point of view. In reality, how-

ever, different fragments of the calculus given in Fu et al. (2016) allow proofs for

Horn clauses which, when added to the initial program, may lead to inductively or

coinductively unsound extensions. We analysed this situation and highlight which

program transformation methods can be soundly borrowed from existing work on

corecursive resolution.

The formulation of corecursive type class resolution we used was given by Fu et al.

(2016) and Fu and Komendantskaya (2017). They extended Howard’s simply-typed

λ-calculus (Howard, 1980) with a resolution rule and a ν-rule. The resulting calculus

is general and accounts for all previously suggested kinds of type class resolution.

We embedded the general framework into the calculus of proof-relevant resolution

we gave in Chapter 3 in the inductive case. We have shown that the coinductive

case of type class resolution is a proper extension of our calculus.

Finally, let us emphasize that our work (Farka et al., 2016) that is at the basis of

the material discussed in this chapter was the first to provide analysis of type class
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inference in terms of formal specification. Such treatment of type class resolution

was not present in the literature. Since then, formalisation of type class resolution

has been also carried out as a part of the MetaCoq project Sozeau et al. (2019)

for the Coq language.
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Die Herren wollen leben und zwar von der Philosophie leben:

[…] trotz dem povera e nuda vai filosofia des Petrarka, es darauf

gewagt.

— Arthur Schopenhauer, Die Welt als Wille und Vorstellung

Dependent type theory is an expressive programming language for writing veri-

fied programs. Technical obligations of the type theory require a level of automation

of proof obligations for any system with dependent types that aims to be usable in

practice. In this thesis, we developed a simple, conceptual framework for such au-

tomation that is based in proof-relevant, constructive resolution in Horn-clause logic

and its extension, the logic of hereditary Harrop formulae. We demonstrated appli-

cability of our framework using two case studies. First, we used our framework for

a syntactical manipulation of a programming language in the form of type inference

and term synthesis. Secondly, we used our framework in a semantical analysis by

employing it for the purpose of a study of soundness and completeness, or rather a

lack thereof, of the type class construct. The use of the framework in both syntac-

tical and semantical applications shows its generality.

In this chapter, we briefly conclude on the framework and on each of the appli-

cations. Next, we discuss some directions of future work.

9.1 Conclusions

9.1.1 Proof-relevant resolution

We introduced the language of our resolution framework and the corresponding se-

mantics in two steps. First, we introduced the Horn-clause logic. Secondly, we
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extended Horn clauses to obtain the logic of hereditary Harrop formulae. In parallel

to the language, we gave a big-step operational semantics and a small-step opera-

tional semantics of proof-relevant resolution. The big-step semantics was obtained

by instrumenting the standard semantics of resolution in logic programming, the

uniform proofs semantics, with proof terms. The small-step operational semantics

has not been presented in literature before. We showed that the small-step semantics

is sound w.r.t. the big-step semantics. The small-step semantics involves reasoning

about free variables and thus allows for a richer class of sequents than the big-step

semantics. Thus, we employed a logical relation and carried out the proof of sound-

ness in two steps. we showed embedding of the small-step semantics into the logical

relation and we showed escape from the logical relation to the big-step semantics.

The introduction of our framework in two, compositional steps has a practical

motivation. In our case studies, we demonstrated that some applications allow to

use the simpler, Horn-clause fragment. This was the case with type-inference and

term-synthesis in LF. In the case study of type-class resolution we illustrated how

increased requirements on the proof strength of the system force the use of a richer

logic, moving form Horn clauses to hereditary Harrop formulae.

9.1.2 Type inference and term synthesis

Programming in languages with dependent types such as Agda, Coq or Idris is a

complex task. The usability of such languages critically depends on the amount of

automation that is provided to a programmer. Current automation is implemen-

tation dependent and hard to understand. This complicates the reuse of existing

approaches in the development of tools for new languages or sharing between the

existing implementations.

We presented a description of type inference and term synthesis in LF, first order

dependent type theory that is significantly simpler than the existing approaches.

We showed a translation of an incomplete term with metavariables to - goal and

a program in Horn-clause logic by a syntactic traversal of the term. The inference

is then performed by proof-relevant resolution. Moreover, the generated goal and

program have a straightforward interpretation as judgements of type theory and

inference rules and hence are easier to understand and to work with.
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9.1.3 Type class resolution

In our syntactical analysis of type class resolution we addressed three research ques-

tions. First, we provided a uniform analysis of type class resolution in both inductive

and coinductive settings and proved it sound relative to (standard) least and great-

est Herbrand models. Secondly, we demonstrated, through several examples, that

coinductive resolution is indeed coinductive—that is, it is not sound relative to least

Herbrand models. Thirdly, we showed completeness relative to least Herbrand mod-

els in the inductive case and a lack thereof relative to greatest Herbrand models in

the coinductive case. Finally, we asserted that the methods listed in this thesis can

be reapplied to coinductive dialects of logic programming via soundness preserving

program transformations.

A feature of our analysis is the choice of greatest Herbrand models instead of

greatest complete models for coinductive analysis that is allowed by properties of

type class resolution. We discussed how constrains that are laid upon type class

instances allow such choice.

9.2 Future Work

9.2.1 Foundations of proof search

The underlying mechanism of proof search in our work, the uniform proofs, orig-

inates, via Curry-Howard isomorphism, in sequent calculus for Horn-clause and

hereditary Harrop formulae logics. There are several other well-behaved classes

of sequents (cf. Negri, 2016) with the advantage that sequents in these classes can

be identified syntactically. A Curry-Howard interpretation of these classes has yet

not been given and such interpretation is of interest as it allows embedding of

search based automation into verified programs. Further, Orevkov (2006) identified

complexity characteristics of sequents in these classes that separate the logic into

polynomially decidable subclasses. Application of Orevkov’s results to proof-relevant

search methodology would allow optimisation of the search in form of decomposition

of the search space of the algorithm into subspaces of polynomial size. Since these

classes of sequents are identified syntactically, this approach provides a promising
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basis for efficient proof search.

9.2.2 Elaboration of programming languages

A natural extension of our work on type inference and term synthesis in LF encom-

passes extending the language with more language constructs. To some extent, we

already did this in our description of type class resolution. The proof-relevant treat-

ment of type class resolution and the resulting proof term, or dictionary, represents

a rudimentary form of elaboration. Combining the two systems is straightforward

and results in a first order language with dependent types and type classes. A sys-

tem that is to address realistic languages needs to support elaboration of features

like Σ (record) types or a module system, and higher order term language. The

former, namely Σ types, can be already supported in our framework by extending

the internal language. A module system can be incorporated using an appropri-

ate representation (cf. Miller and Nadathur, 2012). Higher-order elaboration was

explored by de Moura et al. (2015) in the Lean theorem prover. We believe that

refinement for higher order type theory can be presented in a similar way using our

framework.

9.2.3 Coinductive semantics

Coinductive semantics in general admits potentially infinite data structures, e.g.

streams. The framework in this thesis allows for proof-search in coinductive set-

tings and provides coinductive proof terms. We believe that our framework can

be effectively applied in the formal treatment of concurrent and distributed pro-

grams. A promising application of this technique is session types for concurrency

and distribution (e.g. Castro et al., 2019). Further, coinductive reasoning admits

mutual interleaving of inductive and coinductive structures. We would like to inves-

tigate proof-relevant inductive-coinductive reasoning for modelling of interleaving

sequential and concurrent computation, and local and distributed computation us-

ing dependently typed languages.

The use of proof-relevant methods in dependently typed languages promises

to maintain close correspondence between transformations of syntax and language

semantics. Recently, Altenkirch and Kaposi (2017) carried out a (partially) for-
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malised proof of normalisation for dependent type theory using a proof-relevant

logical predicate, a merge of presheaf model1 with logical relation. Moreover, the

terms are presented as well-formed, using inductive-inductive types. We believe

that the methodology of our framework can be successfully applied to proof search

in the theory of the said logical predicate while obtaining proof terms witnessing

well-formed terms.

1A presheaf is a contravariant set-valued functor. Type theoretic contexts, resp. their set
valuations, can be seen as presheefs that form a category under substitutions taken as morphisms.
This category then models given type theory.
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(−)−, see erasure

TP ↓ α, 26

TP ↑ α, 26

TP , see semantic operator

βη-conversion, 18

∀CtxΓ.G, see generalisation

C{ê}, 48

S;P −→ e : G, 42

S;P ; Γ ê′:D−→C ê : A, 62

S;P ; Γ −→C ê : ê′, 62

S;P ` Γ | ê Γ′ | ê′, 49

e, see proof term

−↑ι, see shifting

S; Γ ` A : L, 16, 34

S; Γ ` A ≡ B : L, 18

S; Γ ` L : kind, 16, 34

S; Γ ` L ≡ L′ : kind, 18

S; Γ `M : A, 16, 34

S; Γ `M ≡ N : A, 18

S; Γ ` D : o, 21

S; Γ ` G : o, 21

S ` P , see well-formedness, of programs

−[−/ι], see substitution

−[−/−], see substitution, of mixed terms

answer substitution, 73

atom, see formula, atomic

backchaining, 42, 48

base

complete Herbrand, 28

Herbrand, 24

Brouwer’s programme, 2

Brouwer-Heyting-Kolmogorov interpreta-

tion, 2

clause, 20, 54

annotating, 42

body, 22

head, 22

well-formed, see well-formedness, of

clauses

with conjunction, 22

context, 14

nameless, 29

nameless extended, 83

simple, 32

Curry-Howard interpretation, 2

de Bruijn indices, 29

definite clause, see clause

dependent type, 2

dictionary, 6
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equality

algorithmic, 36

definitional of kinds, 18

definitional of terms, 18

definitional of types, 18

structural, 36

weak algorithmic, 37

erasure, 33

Escape lemma, 69

formula

atomic, 19

valid, see validity

Fundamental theorem, 70

generalisation, 60

goal, 20, 54

conjunctive, 22

well-formed, see well-formedness, of

goals

ground, 13

guarded head normal form, 144

hole replacement, 47, 48

instance restrictions, 137

intuitionistic logic, 2

Intuitionistic theory of types, 2

kind, 12

simple, 32

language

first-order, untyped, 24

internal, 75

surface, 74

LF, 12

nameless, 29

lifting, 67

Logical Framework, see LF

logical relation, 62

logically related, see logical relation

matcher, 137

mixed term, 47, 57

identifying, 48

model

greatest complete Herbrand, 28

greatest Herbrand, 25

least Herbrand, 25

operational semantics

big-step, 42, 55

small-step, 49, 57

program, 23, 40

well-formed, see well-formedness, of

programs

proof term, 5, 42, 55

annotating, 42

proof-relevant, 5

propositions–as–types, 2

quantification

implicit, 24

reduction

weak head-, 36

refinement, 79, 84

refinement problem, 79, 84

resolution
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proof-relevant Horn-clause, 6

rewriting context, 47, 57

semantic operator, 25

semantics, see operational semantics

shifting, 30

signature, 14

nameless, 29

simple, 32

substitution, 15, 31

application, 15

composition, 16

grounding, 15

of mixed terms, 47

simultaneous, 15

term, 12

first-order, 24

nameless, 29

nameless extended, 83

term constant, 29

type, 12

nameless, 29

nameless extended, 83

simple, 32

type class, 5, 136

type class instance, 5, 136

type class method, 5

type class resolution, 6, 146

corecursive, 153

extended, 148

extended corecursive, 158

type constant, 12, 29

type inference, 1

unifier, 137

universe

Herbrand, 24

validity, 27

implicit syntactic, 19

variable, 12

bound, 13

existential, 21

free, 13

well-formedness

of clauses, 21

of goals, 21

of kinds, 16, 34

of programs, 40

of terms, 16, 34

of types, 16, 34
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