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Abstract

The Edinburgh Cancer Centre (ECC) is an institution containing the National Health Service
(NHS) Lothian cancer patient data from multiple resources. These resources are scattered
across different systems and platforms, making it difficult to use the information collected
in a useful way. There is a lack of proxy between the different (sub)systems, and this
thesis presents a series of applications/projects to promote data usage and interoperability.
We develop both front-end and back-end applications to bring together several databases,
such us ChemoCare, Trak, and Oncology database. We create the South East Scotland
Oncology (SESO) Gateway to improve the quality and capability of reporting outcomes
within South East Scotland Oncology databases in real-time using routinely captured and
integrated electronic healthcare data. With SESO Gateway, we focus on cancer pathway data
visualisation for both the personal timeline and the cohort summary for various treatments.
We also carry out a database migration and evaluate several reporting services for the newly
migrated database to accelerate data access. We then perform data analysis for the patient’s
treatment waiting time. By analysing the waiting time and comparing it to the intended
pathway, we can simplify the auditing process of the first stage of patients’ cancer care
journey. Further, we use the patients’ treatment data, recorded toxicity level, and various
observations concerning breast cancer patients to create models to analyse the outcome of
the treatments, mainly chemotherapy. We compare several different techniques applied to
the same data set to predict the toxicity outcome of the treatment. Through analysis and
evaluation of the performance of these techniques, we can determine which method is more
suitable in different situations to assist the oncologists in real-time clinical practice. After
training the models, we create a dashboard as a placeholder for the models. Lastly, we
explore how to define rules for cancer data and use a constraint based approach to fabricate a
large cancer dataset, which will allow us to explore more techniques and further improve
our system capability in the future. With our proposed systems, healthcare professionals can
directly access and analyse patient data to gain further insights regarding the treatment that is
best suited for an individual patient.
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ablation the surgical removal of body tissue.

adjuvant the treatment after the primary treatment.

aramidex aromatase inhibitor approved by the U.S. Food and Drug Administration
(FDA) to treat postmenopausal women diagnosed with hormone-receptor-
positive.

cancer a disease caused by an uncontrolled division of abnormal cells in a part of
the body.

chemotherapy the treatment of disease by the use of chemical substances, especially the
treatment of cancer by cytotoxic and other drugs.

comorbidity the simultaneous presence of two or more diseases or medical conditions in
a patient.

constipation a condition in which there is difficulty in emptying the bowels, usually
associated with hardened faeces.

curative able to cure disease.

diarrhoea a condition in which faeces are discharged from the bowels frequently and
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Exemestane a hormonal therapy drug used to treat breast cancer.
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prostate a gland that produces some of the fluid that carries sperm during ejaculation.

radiotherapy the treatment of disease, especially cancer, using X-rays or similar forms of
radiation.
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Chapter 1

Introduction

1.1 Cancer Overview

Cancer is a chronic disease where cells grow and multiply uncontrollably. If left untreated,
cancer cells spread and invade surrounding tissues and eventually metastases in other parts or
organs of the body. Cancer has become a huge medical problem, one of the primary causes of
mortality in the UK. It is diagnosed each year in more than a hundred people, men or women
alike [166]. Several main methods for treating cancer include surgery, radiotherapy (for
primary tumour), and chemotherapy. For some tumours, such us breast cancer, the ultimate
aim of the treatment has been directed towards defining methods to eradicate the primary
tumour: through surgery. Unfortunately, this method alone does not improve the prognosis
of cancer patients because one of the most important causes of mortality is metastatic spread.
Even though breast cancer surgery can diminish the possibility of recurrences, metastasis
often develops before diagnosis or at the beginning of the treatment. Hence, the prognosis
(i.e. the outcome, chance, or likelihood of recovery from cancer) is unlikely altered by the
primary treatment [166]. It is possible to improve the patient’s prognosis by taking immediate
action based on their condition. Therefore, capturing and monitoring the patient’s condition
have become more significant over the years. One way of monitoring the patient condition
is observing the patient dataset. The Edinburgh Cancer Centre (ECC) is an environment
containing National Health Service Lothian (NHS Lothian) cancer patient data from multiple
resources [95].

Within NHS Lothian, the databases are divided into different categories based on their
function: Direct Clinical Care Databases (DCCD) for recording, observing, and analysing
the direct patient care; and Secondary/Derived Databases (SDD) for auditing and reporting
purposes.
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Table 1.1 ECC Datasources

System/Team Function
PACS Radiology Investigation System (DCCD)
ARIA Verify and record system for XRT linear Accelerators (DCCD)
Trak Patient Administration System (PAS) (DCCD)
ChemoCare Chemotheraphy ePrescribing System (DCCD)
Oncology Database General cancer patients data (DCCD)
Trak Questionnare Ensure timely diagnosis and treatment (SDD)
Trak Module Collect the quality performance indictor dataset (SDD)
Oncology Coding Collect the whole patient pathway (SDD)
Hospital Coding Collect the submission to national cancer registry (SDD)

Table 1.1 shows a brief overview of several DCCD and SDD databases. The system
features the patient pathway at specific points. Hence, there is some transfer of information
within each system (e.g. radiology, chemotherapy). The Edinburgh Cancer Centre (ECC) is
data-rich; however, because of the lack of proxy, as shown in Figure 1.1, the system has no
cohesive view of the patient’s journey through cancer care. To facilitate this functionality,
hospitals usually rely on several teams or manual input.

Fig. 1.1 ECC cancer patient data sources

At the moment, it requires significant time and effort to carry out a manual retrospective
analysis of data held across multiple systems [95]. Motivated by the issues previously
mentioned and the current NHS Lothian’s objectives, such as improving patient care [95],
we aim to improve the process of analysing the data. Jointly employed as staff at the NHS
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Lothian and as an EngD student at the University of St. Andrews, we worked on several
projects to tackle some issues mentioned above.

1.2 Objectives

Our projects are concerned with investigating, designing, developing, and implementing
suitable frameworks, applications, or systems as a proof-of-concept to improve the use of
data within the Edinburgh Cancer Centre (ECC). For four years, we worked on several
different but integrated projects which supported the vision of contributing to better provision
of cancer care in the future. Each project focuses on different objectives, as explained below:

• Patient Data Visualisation

– The main objective of this project is designing a method to accurately visualise the
patient pathway data from the South East Scotland Oncology Database. Initially,
we observe the pathway progression at an individual level (e.g. in the clinic).
Then, we expand the visualisation on a cohort basis to analyse against a set of
metrics, including the time between treatments and the outcome against disease
management protocols.

– The secondary objective of this project is to help us familiarise ourselves with the
different characteristics of cohort data across several different databases within
the ECC.

• Data Migration

– The main objective of this project is to migrate and update one of the primary
databases for the general patient information (i.e. the South East Scotland
(SES) Oncology Database) and use it as a data warehouse which integrates
the overview/summarised of the patients’ records from the other databases, such
as, ChemoCare and Trak.

• Cancer Waiting Time

– Cancer Waiting time (CWT) is the interval between the first referral by the
General Practitioner (GP) to the patient’s first treatment. During CWT, the
optimal delivery of services during this time is crucial as it can provide further
psychological benefits to patients [40]. This project aims to create a representation
of the real pathway experience in accordance with the data compared with the
guidelines initially suggested by the NHS Board. The outcome of this analysis
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can highlight any possible bottlenecks, time, and inconsistent actions suggested
by the CWT guideline, which will also help design the optimal CWT pathway in
the future.

• Toxicity Predictor

– The main objective of this project is to create a dashboard in the form of a re-
porting tool. It enables the clinicians to analyse the outcome of a chemotherapy
treatment based on the cancer regimens, the patient’s condition, and character-
istics. Ultimately, healthcare professionals can use the interpreted result as a
further suggestion for determining and possibly revising the upcoming treatment
of their patients.

• Generating Synthetic Cancer Care Data

– One of the main issues we face when training several systems/models to predict
the outcome of cancer treatments is the acquisition of real data when trying to
use data to train and improve a model/system. This project aims to generate more
data to train models better by using synthetic data that is close to the real data.
With synthetic data, we can continue the process of improving our models as
a proof-of-concept before enough patient data can be obtained in practice. We
explore how to validate the quality of fabricated data with machine learning. We
show how to formulate the rules that capture the essence of the data used in the
toxicity predictor project to fabricate synthetic data.

1.3 Thesis Outline

The remainder of this thesis have the following chapters. Chapter 2 describes the knowl-
edge/general information related to the projects carried out in this thesis.

Chapter 3 to Chapter 8 describe the details of the research projects carried out in the
EngD. All projects are essentially self-contained but given in an order per their role in the
cancer care trajectory, as shown below.

• Visualising the treatment care (Chapter 3).

• Bringing together data from multiple databases together (Chapter 4).

• Identifying potential bottlenecks causing potential delays in the start of cancer treatment
(Chapter 5).
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• Using data to improve treatment in real-time by creating toxicity predictors for
chemotherapy treatments (Chapter 6).

• Combining the visualisation and toxicity predictors (Chapter 7).

• Exploring mechanism to facilitate the acquisition of data to enhance models such as
those for predicting toxicity by fabricating synthetic data (Chapter 8).

Each chapter has its introduction, related work, methodology, implementation, and
summary, depending on what is relevant for the project at hand. Lastly, Chapter 9 contains a
discussion on the result obtained and a reflection on possible future work directions.





Chapter 2

Context

2.1 Introduction

Fig. 2.1 Project Scope

The scope of our project which aims to facilitate the analysis and management of cancer
care is shown in Figure 2.1. Before we analysed the data using state of the art methods, we
familiarised ourselves with the characteristic of some medical data used in the Edinburgh
Cancer Centre (ECC). Hence, our projects started with a proxy server and patient timeline
visualisation implementation.
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We then migrated one of the Oncology Database, previously known as the Designated
Clinical Officer (DCO) Database [84]. Once we familiarised ourselves with the cancer data,
we observed the journey of the cancer patients. We began analysing the cancer waiting time
(CWT), a period before the patients get their first treatment.

We developed a toxicity predictor for the chemotherapy treatment’s outcome. Lastly, to
further facilitate cancer research, we fabricated the cancer dataset used in our projects.

This chapter provides a brief overview of the concepts, frameworks, tools, and libraries
used for all our projects. Any specific notions relevant to an individual project are described
in detail within the chapter for that project.

2.2 Concurrent Programming

All of our projects involve managing, observing, and/or analysing cancer care data. Our
datasets vary in size. Some of the dataset, used for the migration project, has millions of
data. It is necessary to perform several operations concurrently to allow efficient use of
our resources and time (e.g. for the patient timeline visualisation ( Chapter 3), migration (
Chapter 4)).

We created our loading application as a concurrent application to accelerate the extract,
transform, load (ETL) process for our migration project.

A concurrent program is a program which does more than one thing at the same time
instead of processing it sequentially. Concurrency and parallelism are related but not the
same [81]. Concurrency is the capability to handle many tasks during the same time span,
while parallelism is the capability of processing many tasks literally at the same time. The
task in a concurrent application would be sent and processed to separate processors for
true parallelism. There are many types of mechanisms for concurrency. Two of the classic
mechanism are multiprocessing and multithreading. Multiprocessing is the use of more than
one central processing units (CPUs) in a single machine. Multithreading is the ability of the
CPUs to create multiple threads to execute tasks simultaneously. Today, many applications
require concurrency (e.g. for managing GUI while performing the underlying logic, queues
up requests) to deliver their services on time [81].

2.3 Simulation Models

Simulation models are abstractions of a real-world system. When developing a model,
we remove some characteristics from the system we want to simulate to allow essential
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characteristic observations. Though the model does not contain every component of the real-
world system we try to imitate, it can solve some real-world problems safely and efficiently.
Using models to simulate specific cancer care events, for instance, the events from the first
general practitioner (GP) referral to the first treatment, we can comprehend the Cancer
Waiting Time (CWT) process and its possible bottleneck.

In one of our projects (i.e. Chapter 5), we developed a Discrete Event Simulation (DES)
model to compare the guided pathway to the pathway generated from the dataset for CWT
within NHS Lothian.

2.3.1 Discrete Event Simulation

Discrete event simulation (DES) is a method of simulating the behaviour and performance
of a real-life process, facility or system [7]. It represents a real-world event as a series of
instantaneous occurrences. The discrete event system satisfies the following properties: the
state space is a discrete set while the state transition is event-driven [28]. In between these
events, the system is approximated as fixed and unchanging. In other words, we assume that
nothing happens between two consecutive events [9]. The DES can model simple real-world
events such as machine states to a complex system like the human biological ecosystem.
Here are several examples of discrete event systems:

• Dungeon states in a video game as EXPLORED or UNEXPLORED

• A simplified version of human appetite as FULL, HUNGRY, RAVENOUS

With the increasing speed and memory of computers to process high complexity problems,
we can simulate most discrete-event systems with the components shown in Figure 2.2. It
highlights each component interaction. At the start of the simulation, the main program will
invoke the initialisation routine, timing routine, and event scheduler. The event scheduler will
update the system current state. When the system state reaches its final state, the simulation
will be terminated. Otherwise, the simulation will keep on iterating accordingly.
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Fig. 2.2 Discrete event simulation flowchart

2.4 Constraint Programming

One of the main issues we encounter during the machine learning model development is the
lack of relevant data for creating a good model. Real cancer data is difficult to get. Obtaining
more data requires time, as well as resources. In our case, even with access to cancer data,
the machine for accessing the data might not have the appropriate driver, application, or
software to do advanced data analytics.

To tackle these issues, we fabricated the data so we can further explore and develop our
applications. There are several ways to perform data fabrication, including using machine
learning or constraint solvers. However, machine learning models require access to the real-
data to infer some data characteristic for fabricating the data. Access to private information,
such as cancer data is limited. It is also impossible to transfer the data outside the environment.
For this reason, we use other alternatives to generate the dataset (i.e. constraint solver).
Together with IBM Research in Haifa [74], as part of the serums project [77], we developed
a set of rules to create synthetic data. We were able to develop rules to generate fabricated
data without requiring direct access to the data sources by using a constraint solver [4].
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Constraint Programming (CP) is a paradigm/technique for solving constraint satisfaction
problems (CSP). A CSP is a problem that requires its solution to be within some conditions,
known as constraints. A CSP requires a selected value from a finite domain to be assigned
to each variable in the problem [23]. The aim is that all constraints relating variables are
satisfied. Hence, the CP is based on finding feasible solutions rather than finding the optimal
solution (i.e. optimisation) [60]. It focuses on the constraint and variable.

Formally, a CSP is a tuple (X, D, C) [141]:

X = {x1,x2, ...,xn} (2.1)

D = {d1,d2, ...,dn} (2.2)

C = {c1,c2, ...,cm} (2.3)

Where:

• X is the set of variables.

• D is the set of domains (i.e. di is a finite set of potential values for xi).

• C is a set of constraints.

A constraint c is a pair of (S, R):

S = (xi1, ...,xik) (2.4)

R⊆ di1× ...×dik (2.5)

Where:

• S are the variables of C (i.e. scope)

• R are the tuples satisfying C (i.e. relation)

Solving a CSP involves finding a solution for the variables, for example:
x,y,z ∈ {0,1} ,x+ y = z is a CSP, where the variables are x,y,z and the domains are

dx = dy = dz = {0,1}. We have a single constraint: x+ y = z. The solution for this CSP is
((x,y,z),{(0,0,0),(1,0,1),(0,1,1)}).



18 Context

2.5 Machine Learning

One of our projects aims to consider data analysis and use such analysis information to help
the health professional observe the upcoming treatments.

Machine learning (ML) is now a commonly used technique for data observation. The use
of machine learning allows a model to learn from data and infer its properties.

In our context, we used machine learning to create various models to predict the
chemotherapy outcome. This section presents and compares various methods, which we later
explore to create suitable predictors for our chemotherapy dataset.

Machine Learning [8] is a study of algorithms and statistical models to optimise a
performance criterion by learning from example data or past experience. Machine learning
helps users find solutions to many problems in various domains, such as speech and image
recognition, robotics, or even healthcare [44].

It involves training a model to infer data properties or pattern from the training sample
and then use the model to predict outcomes. We train the model with extracted data. Here,
an efficient algorithm is necessary to solve the optimisation problem and store and process
its data. In many applications, the learning/inference algorithm measured by space and time
complexity may be as crucial as its predictive accuracy.

Below are examples of machine learning applications and their uses.

2.5.1 Association rules

Association rule is a rule-based machine learning method that shows the probability of
relationships between the dataset variables. Here, machine learning modules are used to
determine a conditional probability of P(Y|X). Where:

• Y is the events/products/information we want to observe, based on X.

• X is the known events/information.

For example, we want to know the likelihood of a bag of potato crisps bought together
with beer, sweets, and biscuit.

2.5.2 Classification

In machine learning, classification is used to assign a class label to the testing instances
from the predictors’ value. A classifier can be either supervised or unsupervised [146]. One
example of classifier machines is a pattern recognition machine such as optical character
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recognition. Here, the machine learning model is used to recognise character codes from
their image.

2.5.3 Regression

Regression analysis focuses on performing a statistical process of mapping the input to output
in a dataset. It is a supervised learning problem when there is an input X and output Y. For
regression, we determine the mapping function from the input to the output where a model is
assumed to have a set of parameters:

Y = g(X |θ) (2.6)

Where:

• g(.) is the model.

• θ are the model parameters.

g(.) is a regression function. In a classifier, g(.) is the discriminant function. Recom-
mendation system (e.g. movies recommendation system) is an example of regression. Here,
we want to generate a list of ordered items based on the rate which is calculated from the
regression function.

2.5.4 Unsupervised Learning

The goal of the machine here is to learn to produce the correct output given the input.
However, unlike supervised learning, we do not have the desired outputs in the input data
[58].

Here, we want to find the regularities in the input and then group the input accordingly
based on its characteristics. This process is known as clustering. We can use clustering
analysis to get an insight by observing which groups the input fall into when we apply a
clustering algorithm (e.g. k-means, Expectation-Maximisation (EM) clustering) [2].
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2.5.5 Reinforcement Learning

Fig. 2.3 An interaction between an agent and its environment

Reinforcement learning is a branch of machine learning concerned with developing agents to
react with their environment to maximise rewards. It involves learning what to do, how to map
the state into action. Here, the learning system action influences the input. Reinforcement
Learning has four main components as follow [163].

The constant interaction between agents and the environment is an essential component
of the model. As shown in Figure 2.3, the learning system action influences the input.
Reinforcement Learning has four main components as follow.

• Policies determine learning agent behaviour or actions.

• A reward signal defines the goal of the reinforcement learning problem.

• A value-function specifies what is suitable in the long run. The value of a state is the
total amount of expected reward accumulated by an agent, starting from that state.

• A model of an environment, the world in which an agent performs actions.

2.6 Methods

2.6.1 Cox Regression

A Cox proportional hazard model is a statistical technique for survival analysis. In survival
analysis, we are concerned with the time between entry to a study and a subsequent event
(e.g. death) [174]. However, sometimes we may have additional information aside from
duration. With the Cox model, we observe the hazard rate h(t|x) as a function of t and some
covariates x by regressing the covariates (e.g. age, weight) against the duration/time as shown
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in equation 2.7. It is the product of the baseline hazard and the exponential function of the
linear combination of the predictors (i.e. the partial-hazard) [93].

h(t|x)︸ ︷︷ ︸
hazard

=

baseline hazard︷︸︸︷
h0(t) exp

log-partial hazard︷ ︸︸ ︷(
n

∑
i=1

bi(xi− xi)

)
︸ ︷︷ ︸

partial hazard

(2.7)

Where:

• t represents the survival time

• h(t|x) is the hazard function.

• x1...,xn are a set of n covariates.

• The coefficients b1...,bn measure the impact of the covariates.

As the name implies, the Cox proportional hazard assumes independence of survival
times between distinct individuals in the sample, a multiplicative relationship between the
predictors and the hazard, and constant hazard ratio over time [89].

2.6.2 Markov Model

Markov model is a stochastic model to observe a decision problem which involves a risk that
is continuous over time [85]. The simplest form of Markov Model is a Markov chain. The
Markov chain can give us information related to the probabilities of a sequence of random
variables. It makes the prediction solely based on the current state. The Markov model
follows a Markov assumption (i.e. the states before the current state have no impact for
predicting the next state probability).

MarkovAssumption : P(qi = a|q1...,qi−1) = P(qi = a|qi−1) (2.8)

Where:

• q1...,qi−1 are a sequence of state variables.

• a is the transition probability

Formally, a Markov chain consists of the following components [80]:

• a set of N states, Q = q1q2...qN
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• a transition probability matrix A, A = a11a12...an1...ann. Each ai j represents the proba-
bility of moving from state i to state j, ∑

n
j=1 ai j = 1∀i.

• an initial probability distribution over states, π = π1,π2, ...,πN . Some state may have
zero probability, meaning that they cannot be initial states. Also, ∑

n
i=1 πi = 1

2.6.3 Hidden Markov Model

Fig. 2.4 An example of an HMM model. Source: [80]

Hidden Markov Model (HMM) is a statistical Markov Model which has additional hidden
states. HMM allows us to observe the observed and hidden states/events. HMM is widely
used in the Natural Language Processing (NLP) field (e.g. part-of-speech tagging [88]). In
part-of-speech tagging, we want to know the category of words. Here, the input words are
the observed states while the word categories (e.g. subject, adverb) are the hidden states. The
HMM contains the Markov chain with additional components [80]:

• a sequence of T observations, O = o1o2...oT .

• a sequence of observation likelihoods (i.e. emission probability), B = bi(ot). The
emission probability expresses the probability of an observation ot being generated
from a state i.

A first-order Hidden Markov Model has two simplified assumptions as follows:

MarkovAssumption : P(qi = a|q1...,qi−1) = P(qi = a|qi−1) (2.9)

Out put Independence : P(oi|q1...qi, ...,qT ,o1, ...,oi, ...,oT ) = P(oi|qi) (2.10)
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As shown in the equation 2.10, the probability of an output observation oi depends only
on the state that produces the observation qi.

Figure 2.4 shows an example of Hidden Markov Model for the "ice cream task" introduced
by Jason Eisner [47]. The two hidden states (i.e. HOT, COLD) correspond to the hot and
cold weather. The observations (i.e. O = 1,2,3) correspond to the number of ice cream eaten
on a given day.

2.6.4 Random Forest

Ensemble learning is a type of learning which combines the result of many models (e.g.
classifier) to predict an outcome. Two of the most common ensemble learning techniques
are bagging and boosting of the classification tree [92]. Bagging introduces a new model
that is created by aggregating multiple models and averaging their prediction result to yield
a new outcome (i.e. mean for regression or voting for classifier). In classifier, the model
typically collect votes. However, if the classifier returns class probability, we can use the
mean average similar to regression to improve the model predicting capability.

Fig. 2.5 Decision tree classification. Source: [90]

For example, a decision tree can go exceptionally deep to get 100% prediction accuracy.
Figure 2.5 shows an example of a decision tree classifier boundary with 100% prediction
accuracy. By using the boundary inferred from the input data, it can predict the training
dataset category at a cost. The model has a problem with over fitting (i.e. low-bias and
high-variance).

Bagging can reduce the high-variance problem, as shown in Figure 2.6. Although by using
bagging, the model will have better accuracy when predicting the test dataset, performing
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Fig. 2.6 Bagging classification. Source: [90]

bagging alone might not be enough as the trees that compose the new model may have a high
correlation with each other.

Breiman introduced the Random Forest (RF) algorithm by adding a layer of randomness
to the bagging by features selection in 2001 [24]. Random Forest can de-correlate the tress
by choosing the features for each tree’s training dataset. The number of features, m, depends
on the number of predictors, as shown in equation 2.11 [54]. Because of the feature selection,
Random Forest is also called feature bagging.

m =

 f loor
(√

D
)
, f or classi f ication

f loor
(D

3

)
, f or regression

(2.11)

Where D is the number of predictors.
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2.6.5 Artificial Neural Network

Fig. 2.7 Schematic of a single hidden layer, feed-forward neural network.

Neural Network is one of the machine learning techniques inspired by the human brain. A
typical neural network consists of several layers, input layer, hidden layer, and output layer,
combined as a network diagram. Figure 2.7 shows an example of a feed-forward neural
network with one hidden layer. For K-class classification, there are K target measurements
Yk,k = 1, ...,K. Equation 2.12 shows the relation between layers [55].

Zm = σ
(
α0m +αT

m
)
,m = 1, ...,M,

Tk = β0k +β T
k Z,k = 1, ...,K,

fk(X) = gk(T ),k = 1, ...,K
(2.12)

Where α and β are the weights.
There are several different types of activation/transfer function we can choose (e.g.

sigmoid, linear, ReLU[5]). Depending on the activation function, it maps the input values
in between 0 to 1 or -1 to 1, or any other values. It is also common to add a bias unit to
the hidden and output layer. Lastly, it is common for classification Neural Network to use
softmax function, gk, to transform the vector output T into the desired output type. The
softmax function normalises the output of the hidden networks to a probability distribution
over predicted output classes.
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2.6.6 Recurrent Neural Network

Recurrent Neural Network (RNN) is a class of Neural Network that allows the sequence
processing of its input and output. Compare to the feed-forward Neural Network, RNN
offers much flexibility in term of its input and output size [82]. Table 2.1 shows different
applications of RNN based on its input and output size [138]. Even if we do not have the
notion of sequence in the dataset, it is possible to perform sequence processing of fixed input
[67].

Table 2.1 Different type of RNN

Nodes Info

• One-to-one

• Tx = Ty = 1

• e.g. Traditional Neural Network

• T is timestep of the input/output

• One-to-many

• Tx = 1,Ty > 1

• e.g. Music generation
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• Many-to-one

• Tx > 1,Ty = 1

• e.g. Sentiment classification

• Many-to-many

• Tx = Ty

• e.g. Name entity recognition

• Many-to-many

• Tx ̸= Ty

• e.g. Machine translation
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At every timestep, the RNN updates its state by applying the recurrent formula to a
sequence of vector x, as shown in equation 6.2 [138].

a<t> = g1(Waaa<t−1>+Waxx<t>+ba),

y<t> = g2(Wyaa<t>+by)
(2.13)

Where:

• Wax,Waa,Wya,ba,by coefficients that are shared temporally

• g1,g2 are the activation function.

Similar to the feed-forward neural network, there are many kind activation functions (e.g.
sigmoid, Tanh, RELU).

Long Short Term Memory (LSTM)

Fig. 2.8 An example of LSTM cell. Source: [97]

The LSTM is a type of recurrent neural network with the capability of learning long-term
dependency. It is specifically designed to tackle the vanishing gradient problem with RNN
[152] (i.e. the problem relates to the recurring weight). Over time, the weight of the RNN
network may explode or vanish. When we update the RNN state, we multiply the weight
multiple times. The multiplication may cause an issue. For example, when we multiply
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something by a small number, the value decreases very quickly and vanishes over time. The
LSTM solves this problem by introducing several other variables and gates as shown in
Figure 2.8.

Fig. 2.9 LSTM cell control gate. Source: [97]

The LSTM cell is more complex than the vanilla RNN. With the additional gate ( e.g.
control gate (C)), LSTM can remove or add cell information to the state. The overall
improvement comes from their additive interaction as it updates the gradient flow of a
network as shown in Figure 2.9. Currently, there are many types of research regarding the
recurring function of the LSTM [66]. Along with its variants (e.g. GRU, LSTM cell performs
much better and more widely used compared to the vanilla RNN [82].

2.7 Summary

This chapter introduces some key concepts and model used for some of the different projects
that make up this thesis. Further details on specifics libraries are given in the appendix.





Chapter 3

Patient Timeline Visualisation

3.1 Introduction

Data is a vital asset in many organisations but is often too fragmented and crude to be useful.
We gain more insight from the information it contains by integrating data from a variety of
sources. Understanding, analysing and building models from complex data has the potential
to improve decision making. This is the case for many domains and is particularly so in our
healthcare domain when aiming to improve cancer care.

Data integration is the process of combining/aggregating data from different sources to
provide meaningful and valuable information to the end-users. There are several ways to
perform data integration [70], such as building an enterprise warehouse and creating a proxy
server. In the case of the former, it corresponds to creating a centralised database that holds
all the business information of an organisation and makes it accessible across the company.
By contrast, in the case of the latter, it corresponds to creating an application which acts
as a proxy to provide the data to the end-users directly from various sources/servers. Both
approaches can be used for heterogeneous data as well. When data is provided in different
formats, it is the responsibility of the database or proxy to make sense of the heterogeneous
nature of the data.

In this chapter, we describe the work carried out to provide a proxy between the different
(sub)systems within the ECC. The developed South East Scotland Oncology (SESO) Gateway
can be seen as one of the analytical solutions for improving the quality and capability of real-
time outcomes reporting within South East Scotland using routinely captured and integrated
electronic healthcare data. The users, which for this system are going to be mainly the
clinical oncologists, can view the pathway progress at an individual level: that is, during
the clinic and when deciding whether the treatment should be continued for a particular
patient. Alternatively, users can also focus on a cohort view to analyse a treatment against
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a set of metrics, such as time between treatment, cancer screening procedures to follow a
particular pathway, the outcome against disease management protocols, and so on. Hence,
clinicians can use cohort information to better target the care of a new patient with similar
characteristics.

The ultimate goal of this project is to investigate ways to engage more personnel within
the NHS Lothian to use their data more thoroughly. In this project, we have primary and
secondary objectives as the main driver of developing the SESO Gateway. The objectives are
as follows.

• Primary: Design a method to accurately visualise patient pathway data from the
South East Scotland Oncology Database (Oncology DB). A user can view the pathway
progress at an individual level, for example, in-clinic, as well as a cohort basis with
respect to a set of metrics (e.g. the time between treatment, treatment’s pathway, the
outcome against disease management protocols).

• Secondary: Assess transferability and extensibility of the approach by applying the
same method to a dataset that includes ChemoCare data to evaluate the effect of the
use of drugs, time on treatment, and relative dose intensity within the time between
lines of therapy (duration of disease control).

3.2 Related Work

SESO Gateway extends earlier work from the University of Edinburgh to discover predictors
of the chemotherapy toxicity in breast cancer patients from the ChemoCare data extraction
[179]. The data was extracted, transformed, and processed using multivariate logistic
regression, as shown in Figure 3.1.
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Fig. 3.1 An example of ChemoCare data observation

The study aimed to identify the toxicity rate from commonly used anti-cancer regimens
for the NHS Lothian patient populations and finding the baseline patient characteristics for
predicting the excess toxicity. Figure 3.1 shows that it is possible to profile the pattern of
cancer patients, which helps in predicting the side effects of the chemotherapy regimen, such
as toxicity by using regression technique against several patient’s characteristics.

The use of data visualisation helps the users to understand the concept and underlying
patterns of some data sources. The data visualisation amplifies the benefits of health infor-
matics databases and networks by dramatically expanding the capacity of patients, clinicians,
and public health policy-makers to make better decisions [154]. As a result, the use of the
multivariate application is becoming more widely adopted in many fields, such as healthcare.
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It is widely recognised that integration with existing healthcare systems may help healthcare
professionals make decisions and improve the treatment of their patients.

Several existing visualisation tools have inspired the making of SESO Gateway (e.g.
LifeLine [128]). LifeLine is a visualisation tool to enhance navigation and analysis of patient
records. It provides a general visualisation environment for personal histories. The LifeLine
prototype was developed in 1997 as a research project between IBM Research and the
University of Maryland. The basis for modelling the record was a newly operational clinical
information system at Kaiser Permanente Colorado.

3.3 Requirements

The SESO Gateway has both functional and non-functional requirements to guide us in
developing the application.

Fig. 3.2 The SESO Gateway features

Figure 3.2 shows a use case illustrating the functional requirements for the SESO Gateway.
The list of requirements is detailed below. Some of the functionalities are related as shown
through the include and extend relationships between use cases.

• Functional requirements

– Users should be able to view the individual’s event-timeline.

– Users should be able to get detail information about each event in the timeline.
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– Users should be able to view the cohort summary for various kind of treatment.

– Users should be able to search/filter for the summary of patient’s cohort.

• Non-functional requirements

– The system is designed for the NHS Lothian. In the future, the system should be
compatible to be deployed in the NHS Lothian Network.

– The primary users of the system are the Western General Hospital (WGH) Edin-
burgh Cancer Centre oncologists and other users working in the field of Cancer
treatment within NHS Lothian (e.g. managers, audit team) which consists of no
more than 100 personnel within the NHS Lothian.

3.4 Data Analysis

3.4.1 Data Source

The Oncology DB was established in 1974. The database was written in Common Business-
Oriented Language (COBOL) [33]. In 1979, a significant rewrite of the software took
place to remove all system bugs. The database was written using Statistical Analysis System
(SAS)[145] in 1992 . However, the restricted SAS licence eventually rendered this impossible.
As there were still several aspects of the system which were rendered unsatisfactory, another
consultant was employed in 1996 to refine the structure of the database [95].

With the increasing number of staff relying on using the system (users) at the same time,
it became a necessity to work with multiple resources. Attempts to set up a multi-user input
process using SAS failed, consequently NHS Lothian decided to rewrite the system using
Microsoft Access [111] instead.

Although Microsoft Access facilitates access from multiple systems, several issues
emerged as the user base grew. In particular, since all users should have write-read access to
the database, the Oncology DB becomes less secure. Also, the Microsoft Access database
does not scale well to many simultaneous users at once. When a user accesses the database
in the shared folder, a lock file is created, which prevents other users from accessing the
database. Hence, in 2018 the NHS Lothian started another migration project to migrate the
Oncology DB into a Microsoft Structured Query Language (MSSQL) Server.

For our project, we created another database during the development of SESO Gateway
to keep our development independent from the ongoing migration work. We performed a
simple migration from the Microsoft Access .mdb file into SQLite [158] database which
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has the same core properties as the MSSQL server, as both SQLite and MSSQL server are
relational database management systems (RDBMSs) [68].

One of the benefits of using SQLite is that it allows us to focus on the design of the
data visualisation rather than the connection between the application to the Database. As an
embedded SQL database engine, SQLite does not require a separate server process.

The process of migrating into a SQLite format is straightforward. We created a python
script to access the Microsoft Access .mdb file and convert it into a SQLite format.

3.4.2 Data Cleansing

During development, we created several batches of patient data. Each batch contains 10,000
patient’s data extracted from the Oncology DB. Each patient has several events (i.e. around
10 - 15 events, including diagnosis, hormone therapy, surgeries). First, we perform data
cleansing. In this process, we fix some incorrectly formatted data (e.g. Community Health
Index (CHI) as varchar instead of integer), impute some missing fields, and remove the
duplication of data. We exclude data containing null values on several fields (e.g. the Cause
of Death (COD), type of cancer, cancer’s site). After filtering the null values, we remove
duplicated data by using aggregation in our SQL’s query. We obtain a distinct value for those
duplicated data by grouping the patient based on specific fields (i.e. first seen date, episode,
site, method, duration).

3.5 Implementation

The SESO Gateway project is a multiple-domain project as shown in Table 3.1.

Table 3.1 SESO Gateway project scope

Domain Computer Science Data Analysis Graphic Design
Process Acquire, Parsing Filter, Analysis Represent, Refine

The scope of the project includes:

• Designing a solution for delivering patient data visualisation from various databases in
the NHS Lothian.

• Creating sandbox databases for the project.

• Creating the SESO Gateway modules (i.e. Front-end, Back-end).

• Integrating various sandbox databases.
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The scope of the project does not include:

• Using the real databases for the application. During the project development, the
developer does not have any access to the migrated Oncology DB as well as the
ChemoCare server.

• Deploying the application within NHS Lothian network.

• Integrating security into the application.

3.5.1 System Design

The SESO Gateway has various components that allows user to enter, query, and search for a
specific patient’s timeline or a cohort summary visualisation. The software architecture is
designed to combine all data and its modifications from integrated databases which consist
of various treatments data. The system includes several sub-components: the front-end, the
back-end, and mock databases. This architecture enhances flexibility since it provides more
opportunities for replacing entities (at either end) depending on the NHS Lothian needs.

Front-End

The system front-end/presentation layer is a web-client developed using the AngularJS 1.x
framework [10]. The AngularJS framework increases the modularity of the SESO Gateway.

We only considered frameworks written in JavaScript because JavaScript is one the most
common languages used to develop client side applications. Hence, we compared two of the
most popular frameworks during the development, AngularJS and React [176]. AngularJS is
a full framework with libraries, architectural design, and various web-client tools. React, on
the other hand, is a small view library that is needed while making a web client [176]. We
choosed AngularJS because it provides more compact tools than React. This allows us to
focus more on the data analysis part. By combining the AngularJS Two-Way data binding
feature, and the Model View Controller (MVC) architectural pattern, AngularJS provides a
separation of concerns between the User Interface (UI) and the business logic. The SESO
Gateway front-end serves several pages, as in the following. In this section, we show the list
of website page schematic/wireframes in the SESO Gateway.

Homepage wireframe The homepage consists of three main components (i.e. navigation
bar, header, and the body containing the general information about SESO Gateway). The
header includes the name of the application and a login button. Ultimately, we want to
integrate this application with the credentials used within the NHS Lothian. The body



38 Patient Timeline Visualisation

Fig. 3.3 SESO Gateway homepage wireframe

contains the general information about the SESO Gateway and a navigation bar containing
the links to the other application pages as shown below.

• Home navigates the users back to the homepage.

• Patient Timeline navigates the users to the event-timeline page. It allows the users to
observe the events for a specific patient based on the patient identification number and
Community Health Index (CHI) (i.e. for integrating the timeline with the information
obtained from the ChemoCare data extractions).

• Chemotherapy navigates the users into a page showing the cohort summary for
chemotherapy treatments in the Western General Hospital (WGH).

• Hormone navigates the users into a page showing the cohort summary for hormone
therapy treatments in the WGH.

• Surgical navigates the users into the summary page about the surgical procedures
extracted from the Oncology DB.

• Help navigates the users to the help page.
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Fig. 3.4 SESO Gateway individual timeline wireframe

Individual timeline wireframe With the AngularJS framework, we can implement an
Single Page Application (SPA) for the SESO Gateway. An SPA is a web application which
allows a one-time load of an HTML page and dynamically updates the page as the user
interacts with the application [76]. The AngularJS framework allows us only to modify the
body of our application if there is no significant change to the other components (i.e. the
header and the navigation bar), the wireframes only show the body of the webpage unless
specified otherwise. Figure 3.4 shows the SESO Gateway individual timeline wireframe. It
has two main pages. The first page is a welcome page for the event-timeline. It consists of
two main components, the search input, and the general information. If a user enters the
patient’s identification number and clicks the search button, it navigates the user to the second
page. This page consists of three components (i.e. the patient profile, the event timeline,
and the event detail). Once the application loads the patient data, both patient’s profile and
event-timeline sections will be updated. The users can look at the detail of each event by
clicking on the span object located in the event timeline component. The timeline has a
button to integrate the data taken from the ChemoCare data extractions.
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Fig. 3.5 SESO Gateway surgical wireframe

Surgical wireframe The surgical page has two components: the filter selector and the
charts section. A user needs to specify the time period before observing the cohort summary.
This action filters the patient’s summary based on the selected time. The application uses
a default time (i.e. previous ten years from the current year) if no period is selected. Once
loaded, a few charts appear below the filter selector. Figure 3.5 shows various information
about the surgeries performed based on the data from Oncology DB. In the later section, we
further discuss the method to obtain the information for populating the charts.

Fig. 3.6 SESO Gateway radiotherapy wireframe
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Radiotherapy wireframe Similar to the surgical page, the radiotherapy page has two
components (i.e. the time selector filter and the charts section) as shown in Figure 3.6. Once
the filter is selected, the user can obtain the cohort summary extracted from the Oncology
DB. The charts section then visualises the data for the radiotherapy treatments performed in
Western General Hospital (WGH).

Fig. 3.7 SESO Gateway chemotherapy wireframe

Chemotherapy wireframe We include both Oncology DB and ChemoCare data extraction
as our sources for the chemotherapy cohort summary. In comparison to the Radiotherapy
page, the Chemotherapy page provides more comprehensive filters such as, time, site, stage,
and chemotherapy materials. Each of the filters has a default value but the chemotherapy
material. The users are required to select the material from the list of materials extracted
from Oncology DB Chemotherapy material lookup table (i.e. ChemoMaterialLUT).

The Chemotherapy page consists of two tab components. The first tab shows the summary
obtained from the Oncology DB while the second tab shows the cohort summary from the
ChemoCare data extractions. The list of charts containing the overview of the chemotherapy,
as shown in Figure 3.7.
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Fig. 3.8 SESO Gateway hormone therapy wireframe

Hormone therapy wireframe The hormone therapy page is similar to the Chemotherapy
section page (i.e. it has two main components). It has several filters, such as the time-period,
site, stage, and hormone materials. Other than hormone materials, every other filter has a
default value. Once the data is fully loaded from the Oncology DB, the chart section will be
updated accordingly.

Back-End

This section focuses on the design of the SESO Gateway backend. We developed SESO
Gateway as a proxy application. It is a Representational state transfer (REST) API [102]
service that has several endpoints. We use the REST API as the proxy between the user
interface and the data sources to mimic the application developed within the NHS Lothian
used for accessing the data from the Oncology DB. We develop the REST API services as a
Django application.

We use Django for our web application because Django provides a toolkit of components
that our web application needs. In this project, we want to focus more on designing a
method to visualise the patients’ pathway. Because Django encourages rapid development
and pragmatic design, it accelerates the development of an application from its concept to
completion. Another main advantage of using Django is its portability. Python runs on
most platforms (e.g. Windows, MAC, Linux) and Django can run wherever python works.
Therefore, all development and production environment can be easily supported [41].

As mentioned in the previous section about the lack of real databases access, we need
to have a mock database for our data sources. We use SQLite as the database engine for
our mock database. SQLite is a compact RDBMS used in programming and designed for
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managing data. It uses the SQL (i.e. with some extension) language for the retrieval of data
which allows us to update the SESO Gateway application in the future once the SQL Server
Oncology DB is up and running.

3.5.2 Software Architecture

We created a Django application which architecture is shown in Figure 3.9 to solve the
primary objective mentioned in the previous section.

Fig. 3.9 SESO Gateway architecture

The SESO Gateway consists of three main components, the user interface (i.e. web-
client), the software integration (i.e. the REST API services), and the databases (e.g. the
Oncology DB and ChemoCare data extraction), as shown in Figure 3.9. This separation
contributes to the modularity of the system, which allows us to change each module for the
future changes that may happen in the NHS infrastructure.

Front-end

The web client has two main functionalities. First, it shows the event timeline for a certain
patient during their treatments in the NHS Lothian. Second, the web client allows the user
to observe patterns for various treatments by using cohort summaries. We implement the
Model View Controller (MVC) pattern for the SESO Gateway web client. It allows the
SESO Gateway separates the development of the Graphical User Interface (GUI) with the
business logic or the data model. We separate each functionality in different modules. These
modules are being integrated into a root module called Apps. In this module, we registered
the built-in AngularJS (e.g. ngRoute, ngResources) modules as well as the custom modules
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that we created (e.g. event-timeline, group-detail). It contains the main controller for the
SESO Gateway client. With the main controller, we generate a SPA by only updating specific
divisions of the client. We register several urls that can be accessed by the users in the Apps.

Fig. 3.10 SESO Gateway individual timeline with dummy data

Individual Timeline In this section, we discuss the architecture for our individual timeline
components to create the page as shown in Figure 3.10. We separate the modules for the
individual timeline and cohort/group summaries. With this separation, we have loosely
coupled components. Therefore, when we need to change the behaviour of the individual
timeline, we do not need to update any components in the group summaries. Figure 3.11
shows the whole functionality of the individual timeline.
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Fig. 3.11 SESO Gateway individual timeline use case

The individual timeline has several components (i.e. angularJS templates, angularJS
modules, and several angularJS custom directives) for implementing the features shown in
Figure 3.11.

Below is the complete list of components we have for the individual timeline:

• AngularJS-templates

– event-timeline.html

– event-detail.html

• AngularJS custom module: event-timeline module. This module has a scope object
which control the items in the timeline and two main functions:

– getTimeline() allows us to retrieve the information from REST API services about
the events for a specific patient. It modifies the response to be compatible with
the vis-timeline directive by creating a vis.js dataset and uses it for the timeline
input.

– integrateChemocare() integrates the patient information from the ChemoCare
data extractions to the existing timeline.

• AngularJS-directives

– vis-timeline directive creates the DOM for the timeline by using vis.js library. The
vis.js is a dynamic, browser based visualisation library. The library is designed to
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be easy to use, handle large amounts of dynamic data manipulation. This library
consists of the several components, such as DataSet and Timeline [172]. The
input object for this directive is a vis.js dataset object which is updated in the
event-timeline module’s controller.

Figure 3.12 shows the detail of interactions between individual-timeline components
mentioned before.

Fig. 3.12 SESO Gateway individual timeline sequence diagram

Cohort/Group Summary In this section, we discuss the architecture for the group/cohort
summary. There are several modules based on the type of treatments (e.g. radiotherapy,
hormone therapy, chemotherapy) registered in the SESO Gateway for the cohort summary.
Those modules have a similar structure. For each treatment, we have a module which contains
methods to allow the users to apply several filters and then fetch the data from REST API.
Once the data is fetched, we use a third party library, Angular-NvD3, for the data visualisation.
Figure 3.13 shows the sequence diagram for general group summary module.
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Fig. 3.13 SESO Gateway individual timeline sequence diagram

In general, each of the cohort module has several components as listed:

• AngularJS-templates

– module-detail.html

• AngularJS custom module. The module contains the method (i.e. filterPatient) to fetch
the data from the SESO Gateway’s RESI API. Here, we perform several HTTP requests
to our API for each chart registered in the module. We perform separate asynchronous
requests to accelerate the time we need for updating the charts. With the asynchronous
requests, we make the browser more responsive by not blocking the client. Therefore,
all the requests can be performed simultaneously. This module has several objects
saved in the angular-scope as the filter (e.g. time-period, stage, site). The list of items
mentioned in those filters is downloaded from the Oncology DB lookup tables.

• AngularJS directives: Angular-nvD3 is an AngularJS directive for NVD3, a re-usable
dynamic charting library (based on D3.js library). The D3.js built on the open web-
standards. It is written in JavaScript and allows seamless binding of the data to HTML,
SVG, CSS, etc. The building blocks of the NVD3 library is shown in Figure 3.14.
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Fig. 3.14 NVD3 building blocks

The SESO Gateway contains several charts. We specify the type of charts in the
Angular-scope object and update the responses acquired from SESO Gateway’s REST-
API into appropriate Angular-nvD3 [11] input formats.

Fig. 3.15 SESO Gateway patient’s stage proportion

Figure 3.15 shows one example of the charts generated by the library. The library also
supports the other charts such as bar chart and pie chart as shown in Figure 3.16.
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Fig. 3.16 SESO Gateway Sugical page

Back-End

The SESO Gateway backend is a Django application. It has several modules which were
isolated based on the data sources (i.e. the Oncology DB and the ChemoCare data extraction).
These two applications are patient and chemocare. The patient application handles the REST
API request for the Oncology DB, while the chemocare, as the name suggested, handles the
request for the ChemoCare data extraction. We use a third party library, the Django REST
framework [43], to help us rapidly create a browsable Web API for the SESO Gateway.

A typical Django application consists of a script for various environment settings (i.e.
setting.py) and several modules for its subapplications. The subapplications are registered in
the setting.py together with the other third party libraries.

Each subapplication has a router, a model, and an api package. In the router, we have
several functions to connect this application to appropriate databases. Before we set up the
application, we define the databases in the setting.py. An example is shown below:

DATABASES = {
"chemocare": {

"ENGINE": "django.db.backends.sqlite3",
"NAME": os.path.join(BASE_DIR, "chemoCare.sqlite3"),

},
"patient": {
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"ENGINE": "django.db.backends.sqlite3",
"NAME": os.path.join(BASE_DIR, "sampleData.sqlite3"),

},
}

The Django framework supports several database engines. If we change the database in
the future, we need to update the setting.py accordingly.

The classes in the model module contain the essential fields and behaviours of the data in
our mock databases. With the help of Django database access API, we generate the model for
the SESO Gateway. Each class in the model represents a table in the database. In our model’s
class meta we set the managed property into False because we only allow read functionality
for our DB.

The api package is the core of our Django RESTful API application. it includes several
modules, such as, query, view, urls, and utilities.

We list the queries we used to get the correct result for both the individual-timeline and
cohort result in the query module. In the next section, we explain one of the queries we use
for the SESO Gateway.

The view contains the API-methods for responding the request from the client. Each
method has different parameters associated with a specific SQL statement. One example is
chemocareAppointment method. This method returns the patient’s list of appointments/events
based on the ChemoCare extraction. It takes the CHI number as a parameter.

In this method, we combine the parameter and query to get the result. Each query will
have the bracket (i.e. {}) sign. The bracket will be replaced with an appropriate value taken
from the parameters, as shown below:

• request: http://localhost:8000/api/chemocare/timeline/appointment/?chi=xxxx

• query:

select [index] as id,
[Type.of.Therapy] as tot,
[Intention] as intention,
[Regime.Course.1] as regime_course,
[Appointment.Date] as start

from ChemoData
where CHI = {}

• combined query:
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select [index] as id,
[Type.of.Therapy] as tot,
[Intention] as intention,
[Regime.Course.1] as regime_course,
[Appointment.Date] as start

from ChemoData
where CHI = 0001

The other methods for our RESTful API service follow the same principal.

Oncology DB Query As previously mentioned, we have a dedicated module to keep the
SQL-statement to fetch the data from the server. All the SQL statements/queries we use in
the SESO Gateway only consist of the select statement to avoid any changes in the databases.

Some queries contain grouping, case, and more SQL-commands other than the simple
select-from. An example of the queries is shown below.

surgicalQueries["count"] = """
Select

Surgical.’index’,
case

when suoper in (’381’) then ’Lumpectomy’
when suoper in (’382’, ’383’, ’384’, ’385’) then ’Mastectomy’

end as method,
strftime(’%Y’, SUDATE) yr,
count(*) count

from Surgical
where

yr in {}
and
susite = ’1749’

group by method, yr
"""

With the query shown above, we tally the proportion of breast cancer surgical procedures
(i.e. mastectomy or lumpectomy [160]) based on the method for a particular time. Here we
do not differentiate the stage of the treatment. The other query handles the separation for us.
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3.6 Analysis

In this section, we analyse the quality of the SESO Gateway. We assess the quality of our
software based on the successful delivery of the requirement through various methods.

3.6.1 Software Testing

One way to assess the application is working as expected is to perform a series of software
testing. The tests are group by the level and purpose of the tests themselves. For SESO
Gateway, we perform three groups of tests (i.e. the unit, integration, and performance testing)

Unit Testing

Our unit tests are performed on the developed module to clarify if the method performs as
expected in a set of condition. The SESO Gateway unit tests are grouped in a module called
test. Here, we want to check the correctness of the model generated by Django and the query
we use to get the data. In addition to that, we perform the unit test for the utility methods.

Utilities method test The utilities module has several functions used in the patient and
ChemoCare module. We use these functions to get the parameters from the request, define the
HTTP responses, and convert the query result into a Python dictionary. To test this module,
we create a DummyRequest class. We mock the dummyRequest object and verify the method
against that mock object, as shown below:

def test_get_valid_year(self):
request = DummyRequest()
request.query_params["years"] = ’2016,2017’
years = getValidYear(request)
self.assertEqual(years, ’("2016","2017")’)

Because the method only consumes a particular attribute of the object, we do not need to
mock the other attributes of the request object itself. Shown in the example, we only need
the query parameters for the getValidYear method. Python’s Duck typing, "If it walks like a
duck and it quacks like a duck, then it must be a duck." [132], allows us to create a simple
mock request object.

For the converter method, we test this method with the queries we use for getting the data
from the databases. In the next section, we discuss the query tests.



3.6 Analysis 53

Model tests Before we perform the query tests, we run the model tests. These tests are
used to check whether Django has correctly generated the database model for us. In this test,
we first create a mock database, populate the mock database with mock data, retrieve the data
using Django model and assert it. We repeat this process for all tables in the SESO Gateway.

Query tests The query tests require a mock database similar to the model tests. In the
query tests, we use the executeQueryReturnDict method. This method is the converter we
mentioned in the previous section. For every query, we perform several sequence tasks.

The sequence is as follow:

• We create a mock database with mock data in the setUpClass method.

...
@classmethod
def setUpClass(cls):

datetime(1998, 4, 15, 0, 0, 0)
# Create the Object for Chemodata
# REGIME A
Chemodata.objects.create(

index=1,
chi="001",
intention="Palliative",
regime_course_1="A",
type_of_therapy="CHEMO",
appointment_date=datetime(2017, 1, 1, 0, 0, 0)

)
...

• We get the query from the query module and format it accordingly. Next, we create a
connection to the mock database.

...
def test_mean_cycle_no(self):

query = chemoInfoQueries["mean_cycle_no"]
.format("’Palliative’", "(’2017’, ’2016’)", "’CHEMO’")

cursor = connections[’chemocare’].cursor()
...
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• Lastly, we use the converter method to change the result into dictionary object, and
then we perform an assertion.

...
queryResult = executeQueryReturnDict(cursor, query)

self.assertIsNotNone(queryResult)
self.assertEqual(queryResult, [

{’no_of_patients’: 1, ’regime_course’: ’B’, ’mean_avg_cycle’: 2.0},
{’no_of_patients’: 1, ’regime_course’: ’A’, ’mean_avg_cycle’: 3.0}

])
...

We repeat the same procedure for the queries we use in the SESO Gateway. Within this
tests, we perform the test for the Model generated.

Integration Testing

The SESO Gateway integration testing combines several modules within the application and
tests those modules as a group. The integration testing takes the modules that have previously
tested in the unit testing. The integration testing module is part of the tests module. Our
integration testing focus on testing the pathway from the first time the client makes a request,
retrieve the correct data from the databases, and return the correct response to that request.

To perform the integration test, we perform several tasks:

• Prepare the mock database for the test. This step is similar to the action we perform in
the unit testing.

• Create a request object. Unlike the request we use for our unit testing, the request here
is a full request object with all the request attributes like headers or body.

• Test the request object to the method corresponding to the request URL and then assert
the response returned.

The tasks are repeated for the other kind of requests.

Performance Testing

In the SESO Gateway requirements, we have around 100 users. Hence, we assume that they
will be a time when all of the users access the application simultaneously. Based on the
assumption, we need to perform a performance test to observe the robustness of our system.
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One of the issue of go-live is the performance (e.g. latency, bottleneck). The performance
test can simulate the situation where many users try to access our application simultaneously.
We use Gatling-tool [56] to perform the performance test.

Gatling is a highly capable load testing tool. It has the support for HTTP-Protocol. The
Gatling-tool is asynchronous as long as its underlying protocol can be implemented in a
non-blocking way. The Gatling-tool allows us to do the load-testing of the SESO Gateway’s
HTTP Server by creating hundred of virtual users.

To perform the performance test, we have several steps as shown below. All of the
performance tests are written in Scala [147].

• Build and run the server. We create a separate virtual environment to perform the
performance tests without polluting the local environment.

• Create the requests for the test and then set the number of users. We create 100 virtual
users for the individual event tests as shown below.

trait SESOSimulation extends Simulation {
val SESO_ENDPOINT = System.getProperty("seosEndpoint")
def defaultHttpConfig = http

.baseURL(SESO_ENDPOINT)

.acceptHeader("text/html,application/json")

.acceptLanguageHeader("en-US,en;q=0.5")

.acceptEncodingHeader("gzip, deflate")

.warmUp(SESO_ENDPOINT)
}

class IndividualTimeline extends SESOSimulation {
val users = scenario("Request timeline for a certain patient")

.exec(http("retrieve the Individual Events")
.get("api/patient/individual-event/?dco=XXXXXX")
.check(status.is(200)))

.pause(8)

.exec(http("retrieve the Individual Events from ChemoCare")
.get("api/chemocare/timeline/appointment/?chi=XXXXXXX")
.check(status.is(200)))

.pause(8)

.exec(http("retrieve the CHI number from DCO-NO")
.get("api/patient/get-chi/?dco=XXXXXX")
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.check(status.is(200)))

setUp(
users.inject(

atOnceUsers(100)
)

).protocols(defaultHttpConfig)
}

• Run the performance test and observe the result.

Test Result

At the beginning, we run both unit test and integration test before we run the server for
performing the load-testing (i.e. performance-test). Figure 3.17 shows the coverage of our
unit and integration testing. We manage to get a high-coverage (around 90% coverage) to
test the correctness of our modules.

Fig. 3.17 SESO Gateway unit and integration tests coverage

The SESO Gateway can handle 150 simultaneous requests from the user. However, this
is only applicable to the mock server. Our mock server consists of 10,000 user data. We do
not have the resource for testing the SESO Gateway against millions of patient data. The
result will be highly dependable from the server we access and the place where we run our
application.
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3.6.2 Case Study: Feedback and commentary

In this section, we present a case study which we conducted during the development phase of
our software. Most of the staff involved in the demo were oncologists and manager from the
WGH. During the development process, we conducted several presentations and demos for
the SESO Gateway and several volunteers from the ECC tested the application. This process
allowed us to evolve the SESO Gateway application to be more usable for the users (i.e. the
onclogists and ECC staffs).

Based on the their feedback, we expanded the SESO Gateway accordingly. During the
early development of the SESO Gateway, this application only focused on the individual
timeline. At its first stage, the SESO Gateway’s timeline was not as user-friendly. We
updated the timeline by adding group functionality, better colour coded after a demo with an
oncologist. The user asked the developer to change the colour of the individual timeline, and
suggest adding groups for different kind of events (e.g. Diagnosis, Surgical) to improve the
clarity of the information as displayed in Figure 3.18.

Fig. 3.18 SESO Gateway event timeline

After developing the timeline, we expanded our application to provide information on
patient cohorts. Overall, the feedback was very positive. We also got further feedback about
the features that can be implemented in future work.

For instance, having more filters for the cohort functions based on the patient’s oncol-
ogist will be very beneficial for the oncologists. In addition, the ability to implement the
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functionality for generating the list of patients used in the cohort graph can ease the auditing
process in ECC.

From our user feedback, we are aware of more functionality for SESO Gateway in
the future. Hence, it is a good idea to conduct a closed beta trial of the software before
we developed the full application. It allows us to analyse the requirements during the
development progress, which minimise the need for changing the architecture for the SESO
Gateway.

3.7 Summary

In this section, we discuss the solutions we provide for the requirements as well as problems
arisen during the development of the SESO Gateway. NHS Lothian has huge amount of
patients data stored in several different formats. Our developed proxy application allows easy
access without the need to migrate all the data or change the data format.

3.7.1 Delivery of the key requirements

In the previous section, we present both functional and non-functional requirements. These
requirements contain various staff’s needs within the ECC, NHS Lothian. In this section, we
discuss the solution and issues related to the requirements.

Functional Requirements

The functional requirements for our project derive from our primary objectives: providing the
tool for patient data visualisation both for the individual event as well as the cohort summary.

• The user should be able to view the individual timeline. To satisfy this requirement,
the SESO Gateway serves a page dedicated to individual patient’s event-timeline for
the user. The option Timeline in the dashboard’s navigation bar redirect the user to
the individual-timeline page. This requirement is the first feature implemented in the
SESO Gateway project. During the development of the SESO Gateway, we perform
several updates to the presentation of our timeline.

• A user should be able to get detail information about each event in the timeline.

Some issues in implementing this requirement are related to the relevant data shown in
the event-detail component and the need to modify the library we use for creating the
timeline (i.e. vis.js). After the timeline is attached to the html-body section, we need
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to re-compile each event so that it will trigger a GET request once it is clicked by the
user. The event detail is shown under the event-timeline component.

• A user should be able to view the cohort summary for various kinds of treat-
ments. The SESO Gateway has several pages dedicated to cohort-summary visualisa-
tion. This requirement is the hardest requirement to implement. We update the cohort
summary component every time we get a new data extraction from the NHS Lothian.
The problems of providing the cohort summary arise for several aspects:

– What cohort information is relevant.

– Which filters need to be implemented.

During development, we followed an iterative approached to determine the chart we
want to show in the SESO Gateway. We first developed various charts based on the
data given to us. We then conducted a demo to expected end-users. Based on their
feedback, we updated both the charts and filters. Our solution considered the cohort
summaries for surgical, hormone-therapy, radiotherapy, chemotherapy treatments in
separate pages.

• A user should be able to search for certain groups of patients. This requirement is
highly related to the previous requirement about cohort summary visualisation. We
implement the search functionality by adding a filter in the cohort-summary page.

Non-functional requirements

In this section, we discuss the problems and solutions related to the non-functional require-
ments previously mentioned.

• The system should be compatible to be deployed in the NHS Lothian Network.
This requirement is quite difficult to be fulfilled. At the start of the project, we are
not fully aware of the structure of the NHS Network. However, we need to develop
an application that can be independent of such consideration. One of our solutions
is to create an application with different sub-applications. With the structure of our
project, we can take any component and change it accordingly without the need to
modify the other components. For example, we can change the REST API service
modules without changing the web-client. With this approach, we can integrate the
SESO Gateway easily and deployed it in the NHS Lothian’s network in the future.

• The system should be able to be used by 100 users simultaneously. To test whether
our application can handle many requests at the same time, we performed performance



60 Patient Timeline Visualisation

testing. This testing allows us to see how many connections died and how long it takes
to serve the requested page. Based on performance testing, 90% of the requests are
successfully serviced. The only concern with this is the number of data used for testing
our application. We only verified the application for 10,000 patients records in our
database. The result may be significantly different if we are required to connect to
various data sources. Once we connect SESO Gateway to real databases with million
of patient’s records we need to update the system architecture for scalability in the
future. However, this is not part of our current project scope.

3.7.2 Scalability

Although the scope of the project does not include scalability, in this section we discuss one
of the possible ways to scale the SESO Gateway. Scaling can be done in two different ways:
vertical scaling (i.e. scale-up) and horizontal scaling (i.e. scale-out) [21]. Vertical scaling
includes the process of adding more power to the SESO Gateway server. However, vertical
scaling comes with some limitations. Vertical scaling has a limit because it is impractical to
add unlimited CPU and memory to a single server. Furthermore, vertical scaling does not
have a failover: if the server goes down, the system goes down with it completely. If we
need to scale the SESO Gateway, horizontal scaling is more desirable (e.g. by adding load
balancer, server duplications) because of the limit of vertical scaling.

Fig. 3.19 SESO Gateway updated system architecture

Figure 3.19 shows one example of SESO Gateway’s architecture with horizontal scaling.
Several notable components of the system are listed below.

• Load balancer, the load balancer will evenly distribute the traffic from the clients.
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• Cache, a cache is a temporary storage that allows access of frequently as data more
efficient.

• Message queues and the designated workers allow asynchronous communication
between clients and the producer to solve the bottleneck issue of performing several
tasks from many users at the same time.

3.7.3 Contribution

At the moment this thesis is written, the NHS Lothian is still in the process of appraising
the reporting service for the new MSSQL Oncology DB. SESO Gateway is considered as a
potential in-house reporting service application for the migrated oncology DB.





Chapter 4

Migration

4.1 Introduction

In our first project, presented in chapter 3, we familiarised ourselves with the cancer data
in the Edinburgh Cancer Centre (ECC) by developing a data visualisation tool referred to
as SESO Gateway. After we developed the SESO Gateway, we were tasked to migrate the
database that we used on the first project to a new more scalable database. In this section, we
describes the extraction, transformation, loading (ETL) process of data migration.

4.2 Legacy Database

As mentioned previously, The Oncology database was established in 1974. Bill Shearer wrote
it with design guidance from Bill Duncan and Gill Kerr (members of NHS Lothian team at
that time). The database was written in Common Business Oriented Language (COBOL). In
1979, a significant rewrite of the software took place to remove severe bugs. The process
resulted in the loss of a small amount of data. In 1992, NHS employed a consultant to rewrite
the database using Statistical Analysis System (SAS) [39]. However, the restricted SAS
licence eventually rendered this impossible. As there were still several unsatisfactory aspects
of the system combined with the increasing workload, it became a necessity to work with
multiple resources [84]. Attempts to set up a multi-user input process using the legacy system
failed, therefore NHS Lothian rewrote the system using Microsoft Access (MS Access)
[114].
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4.3 Motivation

Although MS Access facilitates the access from multiple systems, further issues emerged as
the user base grew. As more and more users have write and read access to the database, the
Access database (DB) becomes less secure. Furthermore, the database did not scale well to
the use of many simultaneous users. When a user access the database in a shared folder, a
lock file is created which prevent other users from accessing the database at the same time.
Hence, a new robust and more scalable database is needed for recording the cancer patient
data within National Health Service (NHS) Lothian.

4.4 Database Migration

Data migration is the process of transferring data from one system to another. A typical data
migration includes the step of extraction, transformation, and loading (ETL) [13]. The process
requires converting data into a new format that can be output from the old database and
input into the new database. It is a multi phase process, which usually includes assessment,
database schema conversion, data migration, functional, and validation testing. Unlike the
traditional sequence, we perform the extraction, loading, and then the transformation because
of the decision by the ECC to copy the whole legacy database without changing any field
structure into the new data warehouse. The result of the migration includes both the new
tables containing the patient information and the old legacy oncology database tables.

4.4.1 Extraction of Data

The extraction process involves the extraction of the data from the sources [13]. The source
can be in the format of flat files, other source systems like the Relational Database Man-
agement System (RDBMS) or NoSQL. During the extraction, the desired data is identified
and extracted from the source. For the Oncology DB, the source is the latest .mdb file (i.e.
SESOncData.mdb). The .mdb file is a database file used by Microsoft Access. With pyodbc
and pandas libraries, we use a Python script to perform the data extraction. Here, the script
reads the .mdb file and converts it into both SQLite file and .sql format. The extraction
process is straightforward as we copy all the data without making any field selection. The
list of tables we need to extract are:

• Maindata; contains the diagnosis and demographics of the patients.

• Ablation; contains the ablation treatment of the patients.
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• Chemotherapy; contains the chemotherapy treatments of the patients.

• Follow-Up; contains the follow up treatments or appointment of the patients.

• Hormone; contains the hormone therapy treatments given to the patients.

• Implants; contains the implants therapies given to the patients.

• Neutrons; contains the neutrons therapies given to the patients.

• Intracav; contains the data for intracavity radiation therapy.

• Radiotherapy; contains the data regarding patients’ radiotherapy.

• Surgical; contains the data regarding patients surgeries.

• Unsealed; contains the data regarding the unsealed therapy.

• Morbidity; contains the outcome of treatments regarding the patients’ morbidity.

• NewMets; contains the outcome of treatments regarding the new metastases.

• NewNode; contains the outcome of treatments regarding the cancer nodes.

• NewPrimary; contains the outcome of treatments regarding the patients’ primary
cancer.

The data extraction step generates the flat files for the loading step.

4.4.2 Data Transformation

Data transformation is the process of converting data from one format or structure into the
target format. We use Transact-SQL (TSQL) [168] scripts to transform the legacy data into
the appropriate table.

All the new table transformations and new columns for each table in the new database
are determined by the NHS party. Here, we only perform the first normal form (1NF)
transformation (i.e. each attribute of a table must only have a single value) for specific tables
requested by the NHS. Normalisation is performed to avoid duplication for the Demographics
table.

We get the data for the Demographics table from theMaindata table in the legacy database.
This Maindata contains information regarding the patient’s demographics and diagnosis. As
requested by the NHS Lothian, each patient can only have one data in the Demographics
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tables. By aggregating the Maindata table based on several attributes such as CHI and taking
the other information to put into the Demographics table from the latest diagnosis data in the
Maindata table.

The data transformation aims to improve the quality of the data. As previously mentioned
in the legacy database, the Maindata table is the source of both patients’ demographics and
diagnoses. Most of the patient’s demographics (e.g. name, date of birth, ethnicity) remain
the same throughout the cancer care. We separate the Maindata table into Diagnoses and
Demographics tables to avoid repeated information regarding the patients’ demographics.
We also perform other transformation and describe a list of notable transformation in the
following.

DemograhicId as patient identifiers

We generated DemographicId to internally identify the patients instead of using the Commu-
nity Health Index (CHI) fields like in the legacy database. The CHI is a unique 10-character
numeric identifier, allocated to each patient on first time the patients uses an NHS services
and are registered with the system. Even though CHI is the standard practice for patient
identification in Scotland, the current formula for CHI is not reliable enough to avoid pa-
tients sharing the same CHI. The current CHI number consists of the six-digit Date of Birth
(DDMMYY) followed by a three-digit sequence number and a check digit. The ninth digit is
always even for females and odd for males [156]. Hence, CHI only relies on three-digits to
make the it unique for every patient as the patients can share the same gender and date of
birth [19].

Date of death discrepancies

In the Maindata table, we have two fields which contain the information about the date of
death (i.e. DATDEATH and DOD) for each patient. However, there are patients with different
DATDEATH and DOD in their diagnosis data. For these patients, NHS board agreed to
migrate the DATDEATH instead of DOD. We use DOD if the DATDEATH value is null.

The latest information of the patient demographics selection

When we separate the Maindata table into both Demographics and Diagnosis tables, we
only migrate the latest demographics information of the patients. In the Demographics table,
one patient can only have one row of data. To identify the latest demographics, we use the
PRIMARY field instead of the DiagnosisDate or first seen date (FSDate) because it is possible
to have a null value in those fields. Previously, each time a patient undergoes treatment, the
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record is saved under a different PRIMARY. The PRIMARY is then incremented by one for
the next diagnosis data. Hence, the PRIMARY field can be used to identify the latest event of
the patients in the Maindata table.

Fields Conversion

Several fields in various tables (e.g. Maindata, Surgical, Radiotherapy) such as Site, Histol-
ogy, Grade, and PerfStat need to be converted. During the migration, we were provided the
mapping table and the list of fields that need to be converted.

Data Separation

The Maindata table contains various information such as patients’ diagnosis, follow-up
summaries, and previous primaries (i.e. primary cancer before the patients are diagnosed). For
the new Oncology database, we separate this information into several tables (i.e. Diagnoses,
FollowUpSummaries, PreviousPrimaries). Once separated, we use the DemographicId as
the foreign key in the Diagnoses table to integrate it with the Demographics table. Many
of the tables in the legacy database (e.g. Surgical, Radiotherapy) or the new tables (e.g.
PreviousPrimaries) ties to diagnosis data instead of only to the patients’ demographic. For
these tables, we use both DemographicId and DiagnosisId as the foreign key. We use
DiagnosisId as the index in the Diagnoses table.

Previous Primaries Duplication

The previous primary, if applicable, gives the information regarding the primary cancer
found before the diagnosis of the patients. Each patient may have up to four previous
primaries and hence also have several diagnoses. During the User Acceptance Test (UAT),
we found duplication for the previous primaries. To address this, we grouped the data based
on several fields in the Maindata table such as the PreviousPrimaryDate, Site, TNM_T,
TNM_N, TNM_M, and Treatment to avoid duplication and only migrate data which contains
unique combination of the fields mentioned. We note that cancer staging, indicated by tumour
node and metastasis (TNM), is a method used to specify the stage of cancer. TNM refers to
the extent of a patient’s cancer, such as the size of cancer cells, the spreading of cancer and
the development of secondary malignant cancer at a distance from a primary site of cancer.
The above fields in the database give us some information regarding the state of cancer, for
example: PreviousPrimaryDate indicates the date when the previous primary cancer was
diagnosed; Site indicates the location of the primary cancer; TNM_T indicates the tumour;
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TNM_N indicates the node; TNM_M indicates metastasis, and Treatment indicates the name
of chosen treatment for the cancer (e.g., hormone therapy, chemotherapy, etc).

Episode duplication

Some tables in the legacy databases, such as Surgical and Radiotherapy, use the Episode
field as the event identification for the patients. However, in the legacy database, this field
is not populated correctly, and many of the patients have duplicate episodes. During the
transformation, we update all episodes based on the date (e.g. Surgical Date, SUDATE). We
order the data based on the date and assign a new value to the Episode field by using the
following syntax:

row_number() over(
partition by Diagnoses.DiagnosisID
order by surgicalLegacy.SUDATE

) Episode

The data is partitioned by the DiagnosisId because the data in the Surgical table is tied to the
diagnosis. We perform this conversion for the other tables as well to guarantee consistency
across all tables.

4.4.3 Data Loading

Data loading is the process of copying the dataset from source files into a database. We
created a Java application for the loading step. We use 50 threads for loading all the legacy
data into the target DB. Here, we use the ExecutorService framework provided by the
Java Development Kit (JDK). The ExecutorSevice simplifies the execution of tasks in the
asynchronous mode because it automatically provides a pool of threads and API our loading
tasks. Each thread loads around 75000 rows of data. The input of our Java application is the
flat files extracted from the data extraction step. As previously mentioned, the flat files are
.sql files. The .sql files contain the table creation and insertion queries.

4.4.4 Execution

We create Gradle tasks to perform both transformation and loading. A Gradle task is a proce-
dure which a build performs. Tasks range from compiling some classes, generating Javadoc,
publishing some achieves to repositories, or any custom procedures such as transformation
and loading [64]. Below is the list of the tasks for the migration.



4.5 Issues 69

• runTableCreation. The runTableCreation task creates the table in the target databases.
It will drop the existing table if tables with the same name exist in the database.

• runLoading. The runLoading task loads all the legacy data into the legacy tables in the
target database.

• runTransformation. The runTransformation task performs the transformation of the
legacy tables into the target tables.

By using Gradle, we can streamline the migration process.

4.4.5 Data Validation

After finishing the transformation phase of the migration, we run the validation scripts (i.e.
written in T-SQL) to validate the migration process. Each validation scripts has a set of tests.
We test several aspects/properties of the newly transformed data against the legacy tables in
the MSSQL DB as shown below:

• Diagnosis count is correct

• Unique demographic count is correct

• Diagnosis links to the correct demographic data

• Sub-tables (e.g. Surgeries, SACTs, FollowUps, HormoneAblation, HormoneAdminis-
tered) link to the correct diagnosis data

• All sub-tables have valid value for the new dropdowns

• All expected data fields are populated in the new system

Once we complete the validation step, we manually check for a random selection of
patients (i.e. around 10 to 20 patients) to see if those patients data has been correctly migrated.

4.5 Issues

Several issues here emerged during the development process associated with the migration.
We describe the issues we encountered below. Even though most issues were resolved, it
highlighted the problem in the legacy system, such as indexing and data type.
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4.5.1 Driver installation

Only a 32-bit Microsoft Access driver was installed in the machine used for the migration
process while all other applications are 64-bit programs. One significant difference between
32-bit and 64-bit architecture is the width of a pointer, or how much memory a process can
address. It is impossible to pass an address that is 64 bits wide when the driver assumes it
can only be 32 bits wide. Hence, the driver and the applications were not compatible. Due
to the lack of administrative privilege, the developer could not install the correct driver (i.e.
64-bit Microsoft Access driver). To solve the issue, we re-installed Python 32-bit instead of
64-bit to access the legacy database and then created a Python script and Java application
instead of using the SQL Server Migration Assistant (SSMA) for Access directly [112].

4.5.2 Invalid UHPI and CHI

During the User Acceptance Test (UAT) migration, we found several patients (i.e. 27 patients)
with invalid Unique Hospital Patient Number (UHPI) and CHI. For these patients, their UHPI
or CHI digit exceeds the maximum length (i.e. ten digits) of the CHI/UHPI format. For these
patients, the NHS team decided to manually update their patients CHI and UHPI. We note
the impracticality of the solution.

4.5.3 Invalid date

There are several data in the legacy DB with invalid dates on several date fields. Typos are
the most common causes for the invalid date (e.g. a patient was born in the year of 105 AD).
After locating all instances with invalid date, the NHS team manually fixed that by checking
the paper records accordingly.

4.5.4 Invalid drop-down value

After migration, we also found several fields with unknown values. In other words, The
values of the fields are not recorded in the look-up table. The unknown value causes an error
in the database front-end. Some of the fields are listed as follow:

• Site. There are several fields across different tables with the issue: MainData.SITE,
MainData.SITEMET1, MainData.SITEMET2, MainData.SITEMET3, NewMets.METSITE,
NewPrimary.NPSITE, Radiotherapy.EXTSITE, Surgical.SUSITE, Ablation.ORGAN,
Surgical.SUSITE. The incomplete mapping table for the legacy site to the International
Classification of Diseases for Oncology Topography (ICD03T) and leading ’0’ or ’00’
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before each site in the legacy DB (e.g. 0040) cause the Site field to be populated
with an unknown value (UNK). We remove the leading 00 for the site and update the
mapping table to transform this field correctly.

• Grade. During the migration user acceptance test (UAT), we observe that the grade
field is incorrectly transformed because of using the wrong mapping table. There is
an unknown value (i.e. 9) found in the Diagnosis table. We resolved this issue by
updating the mapping table.

• Cause of death. There are some unknown values (i.e. which are not found in the map-
ping table from the legacy look-up table into the International Statistical Classification
of Diseases and Related Health Problems 10 (ICD-10) format for the cause of death of
the patients.

4.6 Reporting Service

After the database was successfully migrated, we developed a system for generating a
comprehensive report for the dataset known as reporting service. The system aims to help
the healthcare professional or auditing team to make an effective business decision using the
data from the new Oncology database. There are multiple reporting service systems, such as
PowerBI [129], Tableau [164], R Shiny [133]) available in the market which we evaluated
first. With the evaluation, we informed the NHS board about all the available options to
help them decide a suitable system for the new database. We evaluated the system based on
the cost, setup, accessibility, maintenance, usability, and the lifetime of the product. The
evaluation result is as follow.

4.6.1 In-House Visualisation Tool Integration

Overview

It is possible to develop our own custom in-house reporting pages by embedding an appli-
cation to the Oncology database client that was developed by NHS team and was written
in ASP.NET [14]. The application would be developed using JavaScript libraries based on
the visualisation tool developed in the previous project, SESO Gateway (i.e. described in
Chapter 3). This option would require the involvement of future developers to continue to
build and support these reports as web pages that are integrated into the Oncology database.
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Cost

Free, except for the developer time. The hosting cost is part of hosting the oncology database.

Setup

The report can be set up as part of the oncology database web pages and require no further
hardware or software setup.

Accessibility

The application will be available on the internet within the NHS Lothian network through a
reporting area on the Oncology Database using a web browser such as Internet Explorer or
Firefox.

Maintenance

A developer would be required to make changes or build new reports as required in the future.

Usability

The reports should have a straightforward interface. The usability can be enhanced by
choosing to go with the technology which is familiar to the NHS staffs.

The lifetime of product

It depends on the lifetime of the database web page technology for the client and any
JavaScript libraries for generating the reports. This would have to be considered as part of
general system maintenance.

4.6.2 SQL Server Reporting Service (SSRS)

Overview

SSRS is a Microsoft reporting tool that comes with SQL Server [159]. As we use SQL
Server for the Oncology database, we can have this functionality for free with the database.
Furthermore, the NHS eHealth [46] widely uses SSRS for their reporting and it would be
straightforward for the eHealth team to set this up and running with it. We can get all the
necessary reporting that we need by using SSRS.
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Cost

• Software: free.

• Hardware and eHealth setup costs: there may be some minor costs involved in getting
eHealth to set up SSRS as it is not installed by default on the SQL Server.

Setup

eHealth needs to set up a report server so that reports can be uploaded and viewed.

Accessibility

Available on the internet within NHS Network through a reporting website that is maintained
separately from the oncology database.

Maintenance

A developer or someone with SSRS knowledge can maintain the reporting service.

Usability

The reports can have a straightforward interface. There is a range of graphs and reporting
tools available, but they are not as modern/complete as the PowerBI reporting tools [129, 134]
described next.

The lifetime of product

It depends on the lifetime support of the SSRS for the SQL Server.

4.6.3 PowerBI

Overview

PowerBI [129, 134] is a Microsoft reporting tool and their latest reporting service. Reports
are hosted either for free on the Microsoft Cloud or viewed entirely through the desktop tool
[129]. Alternatively, the reports can be hosted using a local server at a cost. A desktop tool is
required to build the reports and upload them to the report server.
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Cost

At the time we perform the analysis for the reporting service, the PowerBI Desktop Edition
was free if the reports were uploaded to the Microsoft Cloud or managed through the desktop
software. PowerBI Premium is available to host reports on a local server by purchasing its
licence.

Setup

The NHS has a clear policy that disallows the use of cloud storage services in order to prevent
identifiable data leaving the trusted environment of the NHS Lothian network. For this
reason, the appraisal of the reporting service could not make use of available solutions such
as PowerBI cloud services, and all the reports had to be stored locally in the NHS network.
For a solution based on cloud services to be practical, the eHealth needs to acquire a local
PowerBI server within the NHS Lothian network.

Accessibility

If the reports are uploaded to the Microsoft cloud, the reports can be accessed anywhere using
the internet. Otherwise, the access will only be available from within the NHS Network.

Maintenance

A developer or someone with PowerBI knowledge can maintain the reporting service.

Usability

The reports will have an interactive dashboard for showing the data visualisation. PowerBI
provides a wide range of reporting options. It has a complete/extensive reporting functionality
similar to the Tableau reporting tool [27] which we describe next.

The lifetime of product

It depends on the support provided by Microsoft. As one of Microsoft’s newest reporting
tool [129], it may have more lifetime advantage than the SSRS.
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4.6.4 Stimulsoft

Overview

Stimulsoft [162] is a reporting tool for ASP.NET that ChemoCare used for their earlier
reports. ChemoCare is a chemotherapy electronic prescribing system used by NHS Lothian.
However, ChemoCare’s new reports are all now custom-built in-house and no longer use
Stimulsoft.

Cost

Stimulsoft is available as a reporting service option and can be hosted on a local server by
purchasing its licence (e.g. single or team license).

Setup

A developer can install the reporting service as part of the database. It can be set and
maintained as an integral part of the database web pages, which was developed with ASP.NET.

Accessibility

The reporting service is accessible within the NHS Network.

Maintenance

A developer will be required to maintain the reporting service, and it would be maintained as
part of the database web pages.

Usability

Due to the lack of an available license, we were not able to try building a report with this
framework. Hence, we cannot determine the exact usability for Stimulsoft.

The lifetime of product

It depends on the lifetime of the Stimulsoft service and its ASP.NET support.
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4.6.5 Tableau

Overview

Tableau is third-party software tool for interactive data visualisation and reporting [116].
NHS Lothian has a license for a Tableau Server to host reports on the NHS Lothian network.
A license is required for Tableau Desktop so developers can build the reports and upload
them to the report server. Regular users that view reports do not pay a fee. They can either
view reports through a browser over the network or have Tableau Reader installed for free
on their computers.

Cost

A license is required for developers to build reports.

Setup

The NHS Lothian Analytical Services team have offered to order Tableau Desktop on our
behalf if the board would like to use Tableau. Any setup will be done in association with
Analytical services.

Accessibility

The reporting service is accessible across the NHS Lothian Network, and computers with
Tableau Reader installed. Tableau Reader is a desktop application that used to open and
interact with data visualisations built in Tableau Desktop [164].

Maintenance

A developer with knowledge of how to build Tableau reports will be required to maintain the
reports. Furthermore, the Tableau Desktop software is needed to maintain reports.

Usability

Through our initial tests, both Tableau and PowerBI report generation learning curve are not
as steep as for the other options. Both options have complete/extensive reporting capability.
Figure 4.1 shows an example of data visualisation developed with Tableau desktop.
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Fig. 4.1 Patients’ diagnosis with Tableau

Figure 4.1 shows an example of the data that can be observed and visualise from the
Oncology DB with the Tableau reporting service. Tableau eases the development of data
visualisation with its built in chart and filter. Tableau supports different charts, such as line,
bubble, bar chart as well as the geographical location.

The lifetime of product

It depends on the lifetime of the Tableau software and the Tableau server license.

4.6.6 Shiny

Overview

Shiny/R Shiny is a third-party reporting software that uses R to create reports for deployment
on an R Shiny server [133]. To develop a reporting service with Shiny, knowledge of R is
required along with knowledge of the Shiny app or library to build a user interface for the
report. The reports would be deployed on a local R Shiny server or to the cloud.

Cost

Shiny Server open source is free while the pro edition requires a licence and fee.
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Setup

We need eHealth assistance to set up, support and maintain either the free or pro edition of
shiny-server to host reports locally. Shiny Server, Shiny Server Pro and RStudio Connect
require a local Linux server to run. For the free open source version, we would need eHealth’s
permission.

Accessibility

The reporting service will be accessible across the NHS Lothian Network if a local server is
used.

Maintenance

A developer with knowledge of R and the Shiny API can develop and maintain the reports.

Usability

We have not tested developing reports with R shiny. However, with R integration, it can use
R statistical libraries. Hence, it is possible to generate interactive and comprehensive reports
with R Shiny [100].

The lifetime of product

It depends on the lifetime of the R Shiny software.

4.7 Summary and Contribution

We managed to migrate the Oncology legacy database to the production SQL Server database.
The NHS Lothian manager responsible for overseeing the migration task, has confirmed
via email in March 2020 that the new database has gone live in the production server from
March 2020. Edinburgh Cancer Centre uses the SQL database as a data warehouse. The
SQL Server provides more robust, secure, and scalable database than the Microsoft Access
databases. Further, the database has an integration to both ChemoCare and Trak using stored
procedures developed by the NHS Lothian team.
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Cancer Waiting Time (CWT)

5.1 Introduction

For some variation of cancer, such as lung cancer, early diagnosis and treatment can be
decisive in saving a patient’s life. This project looks into the time period between diagnosis
and the start of treatment. From what the current recommendation at the ECC and what the
data tell us, patients with chronic cancer have to undergo a series of treatments to attempt the
eradication of the disease [178].

Before starting a treatment plan that has been agreed by board members consultants,
there is a period of waiting, which according to recommendation usually ranges from 14 to
62 days [121]. This period of waiting before the decision to treat the patients is known as
cancer waiting time (CWT).

Figure 5.1 shows the cancer waiting time pathway for lung cancer. Within the CWT
period, patients are referred by their general practitioner (GP) and then undergo several tests.
During the next 14 to 28 days, the patient will have further tests. Once the board agrees
on the first treatment, the decision is made within 28 to 62 days. Usually, the waiting time
should not exceed 62 days. However, when looking at data, there are many cases when it
does happen. This is particularly problematic for lung cancer for it has a poor prognosis:
over half of people diagnosed with lung cancer die within one year of diagnosis and around
17.8% within the 5-year survival [178].



80 Cancer Waiting Time (CWT)

Fig. 5.1 Lung cancer NHS Lothian pathway guideline. Source: [120]

With the aim to achieve the best patient outcome, the intention is to decrease the waiting
time from the suspicion of cancer and GP Referral to the first treatment. In this project,
we analyse a given CWT dataset through simulation and compare the ‘actual’ pathway
derived from data with the NHS Boards, Our analysis can detect and highlight bottlenecks
and transition times that exhibit high variability across patients. These insights provide
quantitative evidence that might be used to design and revise follow-up interventions. For
example, insight gained from simulation can lead to new policies to reduce the variability
of specific identified transition times and hence may lead to overall improvements in CWT
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and reduction in the cumulative delays. In addition, this will assist in the redesign of a more
optimal pathway with improved patient outcomes.

5.2 Related Work

Discrete Event Simulation (DES) has been widely use in many sectors [18] including
healthcare [7]. DES is particularly useful to understand the complex process and identify
tasks/steps that are resource-intensive, take more time, and so on. Through simulation, we
can measure how simple changes can affect the overall performance of a process. DES
allows health professionals to assess the efficiency of the existing healthcare delivery system.
In healthcare, it has many applications ranging from forecasting the impact of changes in
patient flow [79], examining the resource needed and available within a hospital [20], to
observing the improvement of patient experience in an emergency department [3]. DES is
particularly beneficial for our CWT project because it make it possible to investigate the
complex relationships between various model variables (e.g. rate of arrivals, rate of service,
etc). This information allows us to consider the management/system alternatives that can
be used to reconfigure existing systems, to improve system performance, and to plan new
systems, without altering the present system [79]. In a comparable context to our own project,
a DES model has also been developed in the field of radiation therapy to reduce patient
waiting time and improve the waiting time within the treatment process [17] by treating all
lung cancer care steps from the first GP referral to the first treatment as a series of events, we
can simulate the pathway with DES. This enables us to improve the understanding of the
treatment process, complexities, the patient flow and any existing bottlenecks for the CWT
pathway process.

5.3 Data Characteristic

To analyse the correctness of the CWT pathway guideline from Figure 5.1, we use a dataset
for lung cancer from three different hospitals within the Lothian. The dataset contains 642
lung cancer patients from 2016 to 2019.

The dataset contains information regarding the outpatient and inpatient treatments, and
patients’ orders. It contains the information related to the type of the event (e.g. services for
the outpatients, order_item for orders), the event start date, event execution date, event finish
date. The dataset also contains other information as shown in Table 5.1:

Table 5.1 CWT dataset
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Column Info
SOURCE The type of event (Inpatient, Outpatient,

Orders)
CRN Case Reference Number
CHI Patient Identifier Number
DATE_OF_RECEIPT GP Referral date
DATE_OF_FIRST_TREATMENT The date of the first treatment
CANCER_TYPE_SPECIALITY Speciality associated to the type of cancer,

such as lung cancer and urology
TRAK_ADMISSION_DATE The admission date (for inpatient cases)
TRAK_ADMISSION_DATE The discharge date (for inpatient cases)
START_DATE The event start date (inpatient)
END_DATE The event end date (inpatient)
SPECIALITY The department in charge of the event
APPOINTMENT_DATE The appointment date (for Outpatient

cases)
UNIQUE_APPOINTMENT_ID The Unique ID for the Appointment
APPOINTMENT_TYPE The type of the appointment (New patient,

Return patient)
SERVICE The event type (for Outpatients)
ORDER_STATUS The status of the order
EXECUTION_DATE The execution date (for ORDERS)
FINISH_DATE_OF_THE_ORDER The end date/finish date of orders’ event
ORDER_START_DATE The start date of the order
ORDER_DATE The start date of the order being processed
UPDATE_DATE The date of order being updated
ORDER_CATEGORY The category of the orders
ORDER_ITEM The type of order
MODE The type of the first treatment given to the

patients
QUESTIONNAIRE_HOSPITAL The hospital location
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5.4 Data Analysis and Query Development

On this project, we aimed to help the health professionals analysing lung cancer waiting time
data. After several discussion with the health professionals, we used the dataset to observe
the events shown below. Below is the list of analysis we performed for creating the NHS
Lothian DES.

• Calculate the waiting time and the number of patients between the first referral to the
definitive multidisciplinary meeting (MDM). MDM is one of the first events before
the patient’s treatment. In this meeting, the oncologists, consultants, and the other
healthcare professionals determine whether a patient needs further care. The definitive
MDM is the last MDM before the patients’ treatments (e.g. radiotherapy, surgery).

• Calculate the number of patients in each group of tests requested (i.e. CT Scan, CT
Biopsy, PET, Bronch/EBUS, Surgical staging/Biopsy).

• Calculate the time from the first outpatient (OP) appointment to the definitive multidis-
ciplinary meeting (MDM).

• Calculate the number of patients who have more than one outpatient (OP) appointment
before the definitive MDM.

• Calculate the waiting time between Triage to the first OP appointment.

• Calculate the waiting time for these tests: CT Scan, PET Scan, CT Biopsy, grouped by
the type of first treatment given to the patients.

To calculate the requested observations, we designed the SQL queries to get the informa-
tion directly from the temporary table we can access in the Trak Oracle database. The design
of these queries is similar to each other. First, we categorise the event based on the service
for the outpatient and order_item for orders. There are more than 1000 different services and
order_items. However, there is no list to categorise these events. Together with the health
professionals, we created a new categorisation list. For some services/order_items, we use
keywords (e.g. CT Scan, PET Scan). Once we get the list of the services/order_items (event),
we perform a manual check. For the other events without a reliable keyword, we choose the
event that was performed to a significant number of patients (i.e. more than 50).

Once we categorise the service, we calculate the elapsed days between the categorised
events and the DATE_OF_RECEIPT, i.e. if the value is null, we use the first treatment date
instead. With the elapsed days, we determine the first or last events (i.e. the definitive MDM
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is the MDM which has the highest elapsed days). Hence, we can calculate the waiting time
and the number of patients between various events, as shown in the following query.

WITH TEMP AS (
SELECT

source,
CHI,
SERVICE,
APPOINTMENT_DATE,
FLOOR(APPOINTMENT_DATE - DATE_OF_RECEIPT) AS ELAPSED_DAYS,
"MODE" AS "MODE",

FROM CWT_PATHWAYS
WHERE DATE_OF_FIRST_TREATMENT IS NOT NULL

AND DATE_OF_RECEIPT IS NOT NULL
AND SERVICE IN (

’Discussion - MDM - Lung’,
’FGEB - MDM - SJH’,
...
’TWM - MDM - Lung’

)
ORDER BY CRN, ELAPSED_DAYS

)
SELECT

QUESTIONNAIRE_HOSPITAL,
"MODE",
FLOOR(AVG(WAITING_TIME)) AS AVERAGE_WAITING_TIME,
COUNT(*) AS TOTAL_PATIENTS

FROM (
SELECT

CHI,
-- THE LATEST MDM (definitive MDM)
MAX(ELAPSED_DAYS) WAITING_TIME,
QUESTIONNAIRE_HOSPITAL,
"MODE"

FROM TEMP
GROUP BY CHI, QUESTIONNAIRE_HOSPITAL, "MODE"

)
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GROUP BY QUESTIONNAIRE_HOSPITAL, "MODE";

5.5 Simulation

After analysing the dataset, we simulate the cancer waiting time (CWT) by creating a
discrete event simulation (DES). DES has been an effective tool to simulate a wide variety
of healthcare issues [180]. Our goals are to compare the pathway in the guideline and the
real data. By knowing the difference between the two, we can then investigate and perform
optimisation for the process of cancer waiting time within NHS Lothian.

To generate our model, we follow these following steps:

• We define the problem. Here, we want to simulate the pathway from the first referral
of the patient by their general practitioner (GP) (i.e. the first time the patient were
seen in the hospital) until the moment the patient receives the treatment. The time
elapsed between these two events is defined as cancer waiting time. We are interested
in finding the event/occasion when the elapsed days exceeds 62 days (the maximum
days for cancer waiting time according to the guideline).

• From the guideline, we model the process flow of the system.

• We determine the composition of the system (e.g. patients, MDM team) and assign
them to the appropriate part of the model (e.g. state, resources).

• Once all the components have been defined, we choose the performance metric for our
simulation. During this process, we identify several assumptions for our model.

• After the requirement, process flow, and component have been define, we indicate the
model’s characteristics and probability distribution (e.g. the rate of incoming patients).

• Once the variable is set, we build the conceptual model and do the iterative process to
improve the model.
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Fig. 5.2 Simplified lung cancer pathway

Before we simulate the CWT, we simplify the pathway shown in Figure 5.1. For our
model, we choose several events during the CWT based on the number of event occurrences
and categorised them.

• First appointment (First OP), such as Triage, Cancer Outpatient appointment.

• CT Scan (i.e. primary test before further tests)

• Most common further tests (i.e. CT Biopsy and PET Scan)

• MDM

After choosing and categorising the events, we update the current pathway. Figure 5.2
shows the pathway with the chosen events from the list above. Next, we compare our
simplified pathway with the pathway captured from the dataset. From the dataset, we find
that cancer waiting time does not strictly follow the pathway from the guideline. The pathway
is an iterative process, as shown in Figure 5.3. From our observation, any event can happen in
any particular orders, and any tests, appointments, and discussion can happen several times.
Because we want to simulate the pathway-based the dataset, we create a DES model based
on the pathway in Figure 5.3.
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Fig. 5.3 Observed lung cancer pathway

To model the CWT, we focus on determining the system states and the process flow as
the other components are correctly handled by the Salabim framework we use to model our
system. The process flow is shown in Figure 5.3. Table 5.2 shows the state and the distribution
for each state/activity. The states/activities are First OP, MDM, CT Scan, CT Biopsy, PET
Scan. In addition to the events shown in Figure 5.4, we add queues to simulate the transitions
process where the patients do not undergo any tests, appointments, or discussion as shown in
Figure 5.4.
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Fig. 5.4 Lung cancer pathway DES

Table 5.2 Cancer Waiting Time States

States Timing/parameters
Patient Arrival Interval time: Generalised Extreme value distribution
First OP Service time: constant (1 day).
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CT Scan Service time: Generalised Extreme value distribution
CT Biopsy Service time: Weibull distribution
PET Scan Service time: Generalised extreme value distribution
MDM Service time: constant (1 day).

As described in the previous section, our dataset contains no information regarding the
number of resources (i.e. staff availability or the number of machines). However, we still
want to incorporate the resources to our activity, so we simulate the alternatives of having
more health care professional and machine to the overall patient waiting time. We calculate
the number of resources by observing the maximum number of services and orders (i.e. for
the tests) that can happen in any days from our dataset. Figure 5.5 shows the number of
services for the selected events. Though these numbers may not be an accurate representation
of the number of resources, we can use the figure as a starting point before we obtain the
knowledge (e.g. from an interview, survey or another dataset) regarding the resources number
and their availability and capacity.

Fig. 5.5 Number of services for the CWT events

To determine the distributions for the states and queues’ waiting time, we use the
Kolmogorov-Smirnov test (kstest). The kstest compares the two sample statistical distri-
butions. It is a non-parametric test which does not require the data to follow the normal
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distribution. When we compare the possible distributions (e.g. normal, exponential) to
the dataset, we get the D statistic and p value. The D statistic is the maximum absolute
difference between two distribution functions. By comparing the D statistic and p value for
each distribution (i.e. minimum value), we can determine the best possible distribution for
the data. The procedure is shown below.

Algorithm 1: get_best_Distribution
Input: data
Result: best_distribution, parameters
distributions← list of distributions

dist_results← []

for dist in distributions do
parameters← dist.fit(data)

D, p← kstest(data, dist, parameters)

dist_results.append((dist, D, p, parameters))

end

best_distribution, parameters← best(dist_results)

As for decisions, we calculate the number of transitions from each state. For each state,
we set different probability/weight for determining the next state (e.g. more than 50% of the
patients will undergo First OP after GP Referral, 49% of patients get their first treatment
after MDM)

5.6 Validation

(a) Real patients’ waiting time distribution (b) Simulated patients’ waiting time distribution

Fig. 5.6 Patients’ waiting time distribution
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Figure 5.6 shows the waiting time distribution for both real data and simulation. Because
the waiting time is not normally distributed, we use Kolmogorov–Smirnov (KS) test to
compare both dataset distributions [177]. The result is as follow:

• KS-statistic = 0.06984

• p-value = 0.152

We know that If the KS statistic is small or the p-value is high, then we cannot reject the
hypothesis that the distributions of the two samples are the same. From the result, the p-value
is high (more than 5% level of significance). Hence, we cannot reject that the distributions
of the two samples are the same. Furthermore, the result of the descriptive statistic for
both datasets shown in Table 5.3 supports the close correspondence between the simulated
and observed outcome. Therefore, our model can provide reasonable approximation and
observation of the expected system behaviour.

Table 5.3 Patients’ waiting time descriptive statistic

Info Real Simulated
mean 64.417 65.871
std 37.672 39.035
25% percentile 38 37
50% percentile 61 56
75% percentile 82 84

5.7 Summary

Table 5.4 CWT simulated scenarios

Scenarios mean waiting time <62%
(95% CI)

50% increase service capacity for First OP 67.057 (59.78, 74.32) 56
limit waiting transition time after First OP (5 days) 63.985 (56.718, 71.253) 60

50% increase service capacity for MDM 59.85 (53.89, 65.82) 62
limit waiting transition time after MDM (5 days) 49.45 (44.143, 54.76) 74

50% increase service capacity for CT Scan 63.911 (56.97, 70.85) 59
decrease CT Scan service time (max 5 days) 64.44 (55.75, 73.133) 59
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limit waiting transition time after CT Scan (5 days) 64.300 (57.61, 70.98) 58
50% increase service capacity for CT Biopsy 65.97 (59.12, 72.81) 53

decrease CT Biopsy service time (max 5 days) 69.56 (58.72, 80.4) 51
limit waiting transition time after CT Biopsy (5 days) 65.811 (58.11, 73.512) 54

50% increase service capacity for PET Scan 65.80 (54.37, 77.38) 53
decrease PET Scan service time (max 5 days) 65.03 (53.027, 77.052) 53

limit waiting transition time after PET Scan (5 days) 65.80 (54.37, 77.28) 53

We create the DES to simulate different scenarios/alternative for the lung CWT process.
Table 5.4 shows several different scenarios and its simulation’s result.

From the scenarios, we know that increasing the service capacity for MDM and decreasing
the transition time after MDM can significantly improve the percentage of patients getting
the first treatment before 62 days. The result is as expected because almost all patients will
undergo MDM before getting their first treatment. We also conclude that most delays are
caused by the transition time instead of the service time/availability of resources (i.e. from
the First OP and MDM). Adding more resources (by increasing the service capacity) for CT
Scan, PET Scan or CT Biopsy has less impact on the overall patients waiting time.

As shown in Table 5.4, the probability of MDM or First OP as the next state is higher
compare to the likelihood for the tests (i.e. CT Scan, PET Scan, CT Biopsy). Even though
we can simulate the lung CWT events, our model has many limitations. First, we do not
consider the other services (e.g. MRI, Head CT, Pulmonary function tests) by merging all
of the other services into queue transition after the states. During the simulation run, the
result of simulation may contain several outliers compare to the dataset as shown in Figure
5.6 because the distribution function that we use (e.g. exponential, gen-extreme) to get the
service distribution. Also, the number of resources for our model is based on estimations.
In the future, we can improve the simulation by incorporating more services and update
the resource number and service time with the information given by the hospital (e.g. by
interview or another dataset extraction). We can improve the simulation by adding more
characteristics, such as adding the type of the first treatment of the patients. This may improve
the simulation accuracy because the average waiting time is vary based on the patient’s first
treatment, as shown in Table 5.4.

With the use of the DES model, we can evaluate every aspect of the CWT procedure
without allocating real resources. Hence, the evaluation will not disturb the current healthcare
services given in the NHS Lothian. Furthermore, new policies and different CWT procedures
or new methods can be simulated, analyzed, observed in a short period of time.
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All in all, even with the model limitation, we can highlight the bottleneck process and give
a close observation regarding the alternatives scenarios for the lung CWT. The bottlenecks of
the lung CWT are the MDM state and the MDM transition. Once we add the others services,
fine-tune the service time and resources number, the DES can help to provide insight and
second opinion to improve the overall cancer care for the lung CWT.

5.7.1 Contribution

The NHS Lothian requested the SQL scripts used for analysing the data for cancer waiting
time. At the moment of writing this thesis, the SQL scripts for analysing the CWT data
extraction are used to help with the audit process in Edinburgh Cancer Centre (ECC).





Chapter 6

Toxicity Predictor

6.1 Introduction

Chemotherapy is one of the primary treatments used for treating cancer patients and new
anti-cancer drugs because the chemotherapy treatments are constantly being developed and
researched [123]. However, chemotherapy treatments can cause unpleasant and very serious
side effects [30]. The side effects of chemotherapy depend on the type of drugs, dosage,
length of treatment as well as the patients characteristics. The ECC at NHS Lothian has
collected information on side effects that patients have experienced from the chemotherapy
treatments over the year. However, because of the lack of tools for analysing the data,
clinicians do not use the full potential of the collected observations. By having a reporting
tool for existing data, clinicians can further analyse the treatments given to the patients, and
adopt them to suit individual patients leading to better outcomes.

The main objective of this project is to develop and train a machine/deep learning model
for enabling clinicians to predict the toxicity outcome for patients based on their characteris-
tics. For this project, we train, evaluate, and compare several different techniques, including
a Markov model (MM), a Hidden Markov model (HMM), a Random Forest (RF) and a Re-
current Neural Network (RNN), to predict the outcome (the toxicity level) of chemotherapy
treatments for breast cancer patients. We believe that finding the correlations and patterns
between patients and their treatments is essential to improve the overall healthcare system
offered by the NHS Lothian.
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6.2 Related Work

In the past, some healthcare providers have used multivariate programs to help diagnose
and characterise cancer, such as prostate cancer. In addition to helping predicting patient
diagnosis, some programs can be used to forecast the prognosis of the patients as well
[72]. Similarly, there has been a lot of ongoing research to develop multivariate systems
aiming at designing personalised cancer treatments for patients by corporate institutions (e.g.
Google [61], IBM Watson[98], Microsoft Research[130], NHS[175]) and academic research.
Such studies use several different techniques, such as random forest [119], Bayesian logistic
regression [99], and support vector machine classifier [31] to predict cancer diagnosis and/or
prognostic. In addition to using machine learning, we also adopt and explore other techniques
commonly used in Natural Language Processing (NLP) such as Hidden Markov Models
(HMM) [80] and Recurrent Neural Networks (RNN) [65] because our data extraction consists
of sequence data. We believe that exploring different techniques more widely used in NLP
can be beneficial in our context since our data contains sequences as well (for all different
events associated with the treatments).

HMM is a sequence model for part-of-speech tagging. A sequence model is one whose
job is to assign a label or class to each unit in a sequence, thus mapping a sequence of
observations to a sequence of labels. Given a sequence of units (words, letters, morphemes,
sentences, and so on), a HMM computes the probability distribution over possible sequences
of labels and chooses the best label sequence [80]. We believe that exploring different
techniques more widely used in NLP can be beneficial in our context since our data contains
sequences as well (for all different events associated with treatment).

RNN is one of an enhancement to a neural network algorithm because RNN add another
time dimension to the input dataset. RNN consists of several layers of ANNs, which allows
us to process sequence data for which the input can be longer than one sequence [65].

6.3 Methodology

In this project, we followed the iterative steps as shown below to create the model [16].

• Decide the target outcomes. Before training the models, we define the problem/outcome
(i.e. label/target answer) of our models. Here, we want to predict the patient’s toxicity
after each chemotherapy treatment.

• Collect the labelled data. Labelled data is data for which the target answer is already
discovered. To train the model the dataset must contain two main elements:
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– The target answer. Here, we use toxicity scale based on the Chemotherapy Risk
Assessment Scale for High-Age Patients (CRASH) score [48]. For our dataset,
we have 0 toxicity categorised as low toxicity and 4 as high toxicity.

– Variables/features. The features/variables are used to identify patterns for predict-
ing the target answer.

• Analyse the data. We analyse the dataset to determine the data characteristic and
correlation between the variables/features and target before feeding the labelled data
into the model. High correlation implies that there is a relationship between the variable
and the target class. We want to include variables with high correlation because they
are the ones with higher predictive power (signal), and leave out variables with low
correlation because they are likely irrelevant.

• Features Processing. The feature processing step includes transforming the variables
further to make them more relevant for the model. Including relevant features helps
to improve prediction. It is common to include all features in the model training
and then gradually exclude the irrelevant features because it is not always possible to
know the features with predictive influence in advance. Below are examples of feature
processing:

– Replace missing/invalid data with more meaningful values.

– Perform non-linear transformation, such as binding the numeric variables to
categories.

– Define the domain-specific features and the variable-specific features

• Split the data into training and evaluation data. To train the model, we spilt the
data into a training and an evaluation subset. Our splitting ratio is 70-80% for training
and 20-30% for evaluation. As the name suggests, we then use the training data to
train and the evaluation data to evaluate the predictive quality of the trained model.

• Model Training. The model will learn from the training data and update its character-
istics. The model can be used to get the predictions on new data for which we do not
know the target answer.

• Evaluate Model Accuracy. For our predictors, we use accuracy, precision, recall and
f1-score as the metrics to measure the predictive accuracy of the model.

• Improve the model accuracy. We perform some iterative steps to improve the model
accuracy as shown below.
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– Add/decrease the variables/features used to train the model.

– Tune the model parameter that is, we consider some alternative values for the
training parameters

– Increase the percentage of data used for training.

6.4 Data Analysis

6.4.1 Data Characteristics

To develop our machine learning model, we use a data extraction from Edinburgh Cancer
Centre with information on treatment cycles, recorded side effects (here, toxicity level), and
various observations concerning breast cancer patients for three years (from 2014 to 2016).

The extraction has data for 51661 treatments of which 13030 are of breast cancer treat-
ments. There are 933 unique patients, and some patients have two or three different treat-
ments/regimes during the time period. Each regime has several cycles ranging from one to
more than 50 cycles (e.g. 85).

Table 6.1 The treatments’ intentions

Intention Total patients
Adjuvant 620
Neo-Adjuvant 427
Palliative 483
Curative 17

Table 6.1 shows the number of patients for different intentions. We exclude the Curative
treatment because we did not have enough data for training our model.

Along with the general patients’ characteristics extraction, we receive the toxicity level
and measurement of the patients in separate flat files.

We combine the data by connecting the treatment appointment date with the date when the
toxicity and other measurements (i.e. weight, height, surface area) were obtained. We ignore
patient data with no toxicity information. After we perform data cleansing, we have 2752
instances (i.e. 213 patients) for the Palliative treatment, 1855 instances (i.e. 382 patients) for
the Adjuvant treatment, and 1209 instances (i.e. 205 patients) for the Neo-adjuvant treatment.

Table 6.2 shows the pre-processing steps for the chemotherapy data.

Table 6.2 Preprocessing steps of chemotherapy data
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Task Detail
Merge the dataset We merge the ChemoCare treatment and toxicity

data using the Last Toxicity Date as the foreign
key.

Select the relevant variables CHI, weight, height, intention, regime, cycle,
performance status, nausea, vomiting, diarrhoea,
constipation, oral mucositis, oesophagitis, neu-
rotoxicity, hand/foot, skin, hypersensitivity, fa-
tigue

Filter the dataset We only use breast cancer data
Derive several variables We derive the patients’ age from CHI and BMI

from weight and height. We calculate the pa-
tients’ toxicity from these following fields: nau-
sea, vomiting, diarrhoea, constipation, oral mu-
cositis, oesophagitis, neurotoxicity, hand/foot,
skin, hypersensitivity, fatigue.

Clean We perform the data-cleansing (e.g. remove
duplicates, delete the dataset without toxicity,
perform regression imputation for the missing
performance status)

Separate the dataset We divide the dataset into three different sets
based on the intention.

6.4.2 Feature Analysis

Before we input the data into the models, we order the data by the cycles to make sequences.
The cycle field determines the number of treatments the patients undergo treatment for a
particular regimen. We determine the target answer (i.e. toxicity) and predictors. Once
we categorise the fields, we check the relation between each predictor in the dataset to the
toxicity outcome. Fig. 6.1 shows that at the beginning of the treatment, most of the patients
have low toxicity which is to be expected.



100 Toxicity Predictor

Fig. 6.1 Patients’ proportion against low toxicity

For our models, we first include all the variables in the dataset and gradually decrease it
until we were left with age, BMI, regime, cycle, toxicity and performance status. Next, we
calculate the Pearson correlation [69] between the selected predictors to the target answers
(i.e. for the adjuvant intention), as shown in Figure 6.2. We want to include variables with
high correlation because these features are assumed to be the ones with higher predictive
power [16].

Fig. 6.2 Adjuvant therapies fields’ correlation map
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Finally, we perform data cleaning. We replace some of the missing/invalid data in our
predictors. We use the mean average for fields like age or body mass index (BMI) while
we use regression imputation for the performance status (PS). To avoid the class imbalance
problem, when some regime has more data than the others, we create a new dataset by
duplicating some of the data. We perform this only for the RF model training because, unlike
for the other models used (HMM and RNN), our RF model is not dependent on the previous
observation. For example, we have 141 patients treated with FEC (D) while only 80 patients
treated with PACLITAX. Here, we then copy some of the data from the PACLITAX to match
the number of patients treated with FEC (D).

6.5 Predictor Models

Based on the Markov assumption, our first assumption for creating the toxicity predictor is
that the toxicity of the patients depends on the previous toxicities and treatments. Hence,
we compare different techniques that incorporate prior toxicity to the calculation. Table 6.3
shows several brief comparisons of the models that we develop for this project. Finally, we
also analyse the technique/ statistical model (i.e. survival analysis) that is widely used in the
medical domain.

Table 6.3 Models Comparison

Model Brief Overview State-memories
Markov Model (MM) A statistical model no state memory
Hidden Markov Model
(HMM)

A statistical markov model one state memory

Random Forest (RF) An ensemble learning one state memory
Recurrent Neural Net-
work (RNN)

A sequential Artificial Neural Net-
work (ANN)

all states

6.6 Statistical Models

6.6.1 Survival Analysis

We perform survival analysis on the chemotherapy dataset. Survival analysis is used to
analyse the expected duration of time until one or more events happen (e.g. failure time,
survival time, event time). By performing survival analysis, we want to investigate the effect



102 Toxicity Predictor

of several variables at the time a specified event takes to happen (i.e. Cox regression for
survival analysis).

Before performing the Cox regression and survival analysis, we determine the failure
time event and the time unit for our observation. We use day as our time unit and high
toxicity occurrence as the failure event because we want to know the time until the patient
reaches high toxicity during their cancer care. We censor the patient that has never reached
high toxicity outcome during their treatment. High toxicity outcome is the condition when
the toxicity outcome of the patient reaches level 2. Here, we set the high toxicity when the
patients’ toxicity level reach level 2 because we do not have enough data where the patients’
toxicity reach level 3. For our observation, we want to see the hazard ratio and the survival
comparison for the intention fields.

Fig. 6.3 Kaplan-Meier survival analysis

Once we determine the failure condition, we perform the Kaplan-Meier estimator for
several intentions. The Kaplan-Meier estimator can be used without knowing whether the
hazard is proportional. Figure 6.3 shows the result of the survival analysis for all intentions
with the Kaplan-Meier estimator.

After plotting the patient survival rate with the KM fitter, we calculate and compare the
cumulative hazard using the Nelson-Allen fitter as shown in Figure 6.4. We know from Figure
6.4 the hazard rate between the Neo-Adjuvant and Adjuvant intention is not proportional.
However, if we compare each intention to the Palliative intention, the intentions’ hazard rate
is proportional. Hence, we can perform the COX regression and use the Palliative intention



6.6 Statistical Models 103

Fig. 6.4 Cumulative hazard function

as the control variables. The result of our COX regression fitter is shown in Table 6.4. In the
COX proportional hazard model, a higher hazard means more at risk of the event occurring.
Based on the result from the Table 6.4, we know that both Adjuvant and Neo-Adjuvant
treatments have much higher toxicity outcome than the Palliative treatment.

Table 6.4 Intentions hazard ratio

Intention Hazard ratio Lower 95% CI Upper 95% CI p
Adjuvant 3.51 3.08 3.99 <0.005
Neo-Adjuvant 4.13 3.52 4.84 <0.005

6.6.2 Markov Model (MM)

A Markov model is a stochastic model with the assumption that a future state only depends
on the current state [80].

Based on the toxicity in the data extractions, we create a discrete time Markov chain
shown in Fig. 6.5 where the states represent the different levels of toxicity (e.g. T0 corresponds
to no toxicity, and T3 is very high toxicity) and transitions reflect the treatment effects over
time. We omit the transition probability values in the figure but show them separately in
Table 6.5.

Table 6.5 The transition probability for all adjuvant treatment regimes

T0 T1 T2 T3
T0 0.062 0.50 0.41 0.03
T1 0.04 0.63 0.31 0.02
T2 0.01 0.44 0.52 0.03
T3 0 0.32 0.64 0.04

Table 6.5 denotes the transition probability matrix for Fig. 6.5. From our data extraction,
we calculate both the transition probability matrix and the initial probability distribution.

We have three different Markov models for each Intention (i.e. Adjuvant, Neo-adjuvant,
Palliative). We have the model for all regimes, individual regimes, and the patient’s body
mass index (BMI).
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Fig. 6.5 The diagram representing the Markov chain for patients’ toxicity outcome

6.7 Machine Learning and Deep Learning Models

From our survival and hazard ratio analysis we perform and describe in the previous section,
we know that the Palliative treatment has the least hazard in accordance with the patients’
toxicity. Hence, We decide to create several different models based on their intention so we
can compare the other predictors variables, such as age, regimen, cycles.

6.7.1 Hidden Markov Model (HMM)

In other domain, such as Natural Language Processing (NLP), Hidden Markov Model (HMM)
is used as a sequence classifier. A sequence classifier or labeller is a model whose job is to
assign label class to each unit in the sequence. Our HMM has an observed Markov model.
An observed Markov model is an extension of a finite automata. It is a weighted automaton
in which the input sequence uniquely determines which states the automaton will go through.
On top of the observed Markov chain, HMM has hidden events (i.e. the patients’ toxicities).
We use the previous-current, current-next treatments’ state and toxicity result to deduct and
assign the label to the sequence. For this project, we want to infer/predict the toxicity level
based on the patient’s characteristics. Table 6.6 specifies the components of our HMM.

Table 6.6 The HMM components for predicting the toxicity outcome

Component Description
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States The toxicity level of the patients (i.e. T0,
T1, T2, T3)

Transition probabilities The transition from one toxicity level to
another toxicity level (e.g. from T0 to T1,
from T1 to T3, etc).

Observations The observed events obtained from the
data extraction (i.e. cycle, age, BMI,
regime). We categorise the value of each
observation to simplify the process of
training our HMM. For example, 1-2-3-1
denotes the observation for an overweight
patient who gets the FEC-D (D) in their
first cycle and is aged less than 50 years
old.

Emission Probabilities Each member represents the probability of
the observations generated from the toxic-
ity state.

To predict the toxicity from the sequence of the patients’ events, and as is usual for
HMM, we use the Viterbi algorithm. The Viterbi algorithm is a dynamic programming
algorithm used for finding the most likely sequence of hidden states (aka path). We analyse
the observation from left to right (i.e. first cycle to the last cycle) to fill out the trellis as
shown in Figure 6.6. Each cell of the trellis vt( j) represents the probability that HMM in
state j after seeing the first t observation and passing through the most probable (maximum
probability) state sequence q1,q2, ...,qt−1, given the automaton λ [80]. Formally, each cell
probability is calculated, as shown below:

vt( j) = maxq1,q2,...,qt−1P(q1,q2, ...,qt−1,o1,o2, ...,qt−1,qt = j|λ ) (6.1)
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Fig. 6.6 The viterbi calculation for the toxicity predictor

Table 6.7 The transition probability for all adjuvant treatment regimes

Observed events Toxicity Outcome
1-2-3-2/1-2-3-2/2-2-3-2 T0/T1/T1
1-2-3-4/1-2-3-4/2-2-3-4 T3/T3/T2
1-2-3-4/1-2-3-4/2-2-3-4/2-2-3-4 T3/T3/T2/T2

Figure 6.6 shows the calculation for computing the best part through the hidden state
for our toxicity predictor. Here, qt denotes the hidden state (i.e. patients’ toxicity) and ot

indicates the observed state (i.e. the chemotherapy treatment). After calculating the most
probable state, we can determine the toxicity of the patients. Table 6.7 shows an example of
using HMM to predict the toxicity outcome for patients.
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6.7.2 Random Forest (RF)

Random forest (RF) is an ensemble of decision trees for solving classification problems.
The random forest classifier uses several features to predict the outcome [15]. For our RF
model, we use the following features: age, BMI, cycle, Regime, previous performance status,
previous toxicity level to predict the toxicity outcome of the treatment. To simulate one state
of memory, we retain the information regarding the patient previous performance status
and the previous toxicity. We do not include the information regarding the previous regime
because there are no regime changes for every patient in our prepared dataset. For this project,
we have not considered the protocol treatments (i.e. where the patients are given several
different regimes that belong to one protocol simultaneously as a follow-up treatment). We
created three RF models for each treatment intention (i.e. adjuvant, neo-adjuvant, palliative),
and categorised most of the features (except age) for training our model. After we created
our first RF model, we manipulate the hyperparameters to get a better prediction result. By
using one of the functions that are provided by the machine learning library, GridSearchCV,
we streamline the process of performing an exhaustive search over specified parameters for
our models [15]. These hyperparameters are number of estimators, minimum sample leafs,
minimum sample splits, and the maximum depth of each tree.

Fig. 6.7 The feature importance in Neo-adjuvant treatments

Lastly, we observe the feature importance of each field. We get an estimate of the
importance of a feature by computing the average depth at which it appears across all trees
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in the forest [15]. The RF libraries we used for this work allowed us to compute the feature
importance automatically for every feature after training. Figure 6.7 shows the graph of the
feature importance for the fields used to predict the toxicity outcome.

6.7.3 Recurrent Neural Network (RNN)

One of the main functionality of the RNN is to perform forecasting. Forecasting means to
predict the next values of time series. Here, we consider toxicity predictor as one of the
forecasting problems. We want to predict the next toxicity based on previous treatments
and toxicity. Ideally, we want to predict several next treatment outcomes. However, for the
first milestone, we only predict the next toxicity. Similarly, we have three models for each
intentions.

The RNN models take several inputs and produce one output for each input based on the
treatment cycle. During the training, we use similar features from the RF models. Compare
to the other machine learning algorithm, the RNN models preserve states across time steps
(in other words, has memory cells) [15]. For all models, we use the long short-term memory
(LSTM) [65] units.

Here, instead of using a simple RNN cells, we use the LSTM cells to avoid the vanishing
gradient problem. For example, Equation 6.2 shows the output calculation of a predictor.
The output prediction is a composite function depending on the value of x1,x2, ...,xT . Here,
we can see that x1 is nested deeply in the equation. By using only the simple RNN cells, the
RNN model is vulnerable because the longer the sequence T, the more its gradient vanishes.

y(T ) = σ(W T
0 σ(W T

xhxT +W T
hhσ(W T

hhxT−1 +σ(...x1))) (6.2)

where T,x,y,h are the time sequences, input, output, and hidden layers. parameters.

6.8 Model Evaluation

For the MM, we observe the general pattern of the treatment outcome for each cycle and
then compare it with the outcome distribution obtained from the data extraction. Fig. 6.8
shows both datasets plotted together. The dashed line represents the value obtained from the
Markov chain. From that we get the steady-state probability after 5/6 cycles. The distribution
obtained from the MM resembles the distribution obtained from the real data.

Once we train the model, we calculate the accuracy of the dataset. However, we also
calculate the other metric to measure the performance of our models. We measure the
performance of our classifier models by using several metrics (i.e. precision, recall, accuracy,
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(a) Distributions for Adjuvant treatments (b) Distributions for Palliative treatments

Fig. 6.8 The Distributions for Chemotherapy treatments

and f1-score) after performing the cross-validation test [15]. This allows us to observe
the model with its false positives and false negative result. The precision measures the
correctly identified positive cases from all the predicted positive cases. In our cases, correctly
categorised the result of the treatment as high/low toxicity. The recall measures the correctly
identified positive cases from all actual positive cases. Then, we used F1-score as a metric
that combines both precision and recall. This set of metrics allows a better measurement than
using accuracy alone.

Table 6.8 Model test result (mean-std)

Model Regime Accuracy Precision Recall F1-score
RF Adjuvant 0.81(+/-0.11) T0:0.55(+/-0.50) 0.92(+/-0.32) 0.65(+/-0.46)

T1:0.85(+/-0.15) 0.83(+/-0.09) 0.84(+/- 0.09)
T2:0.82(+/-0.09) 0.78(+/-0.20) 0.80(+/-0.13)
T3:0.57(+/-0.52) 0.83(+/-0.67) 0.67(+/-0.55)

Neo-Adj 0.72(+/-0.09) T0:0.53(+/-0.80) 0.60(+/-0.88) 0.52(+/-0.74)
T1:0.77(+/-0.11) 0.80(+/-0.08) 0.79(+/-0.07)
T2:0.63(+/-0.16) 0.61(+/-0.22) 0.62(+/-0.17)
T3:0.33(+/-0.77) 0.23(+/-0.61) 0.23(+/-0.49)

Palliative 0.78(+/-0.08) T0:0.43(+/-0.23) 1.00(+/-0.00) 0.60(+/-0.24)
T1:0.96(+/-0.03) 0.73(+/-0.09) 0.83(+/-0.06)
T2:0.56(+/-0.17) 0.88(+/-0.10) 0.68(+/-0.15)
T3:0.55(+/-0.81) 0.70(+/-0.92) 0.61(+/-0.83)

RNN Adjuvant 0.85(+/-0.09) T0:0.70(+/-0.22) 0.96(+/-0.08) 0.80(+/-0.15)
T1:0.87(+/-0.11) 0.86(+/-0.14) 0.86(+/-0.10)
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T2:0.94(+/-0.10) 0.79(+/-0.16) 0.85(+/-0.11)
T3:0.85(+/-0.64) 0.72(+/-0.63) 0.77(+/-0.61)

Neo-Adj 0.81(+/-0.09) T0:0.58(+/-0.35) 0.82(+/-0.25) 0.67(+/-0.31)
T1:0.84(+/-0.10) 0.84(+/-0.11) 0.84(+/-0.09)
T2:0.85(+/-0.17) 0.77(+/-0.12) 0.81(+/-0.13)
T3:0.95(+/-0.30) 0.78(+/-0.47) 0.82(+/-0.34)

Palliative 0.85(+/-0.09) T0:0.67(+/-0.94) 0.24(+/-0.44) 0.33(+/-0.57)
T1:0.85(+/-0.12) 0.94(+/-0.05) 0.89(+/-0.07)
T2:0.83(+/-0.17) 0.75(+/-0.20) 0.79(+/-0.15)
T3:0.53(+/-0.96) 0.56(+/-0.99) 0.54(+/-0.97)

HMM(c*) Adjuvant 0.53(+/-0.00) NA NA NA
HMM(m*) 0.70(+/-0.00) NA NA NA
HMM(c*) Neo-Adj 0.62(+/-0.00) NA NA NA
HMM(m*) 0.70(+/-0.00) NA NA NA
HMM(c*) Palliative 0.4(+/-0.00) NA NA NA
HMM(m*) 0.72(+/-0.00) NA NA NA
*c=corner

*m=middle

We do not perform the cross-validation for the HMM because the performance measured
with the splitting train-test method is much lower compared to the RF or RNN models. Table
6.8 shows the result of the evaluation for all classifier models.

We need more data to train the corner cases (i.e. initial and end of the treatments)
for the HMM models. The accuracy for the corner cases is significantly lower than the
middle/transition case because the dataset has more transition cases than the initial or end
cases. Similarly, we can see the same characteristic for the F1-score for each treatment
outcome. The T1 and T2 have higher F1-score compared to the extreme case, T0 and T3
because our datasets have more data with T1/T2 as its outcome. The RNN models outperform
the RF models because, unlike RF, the RNN has LSTM units which allow the model to
consider all the observations since the first treatment. Since our datasets are given as a time
series, the previous treatments may affect the result of the current treatment. Hence, the
RNN has an advantage compared to the RF that only considers the current state and limited
information about the previous treatment result.
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6.9 Summary

With our classifiers, we can predict the toxicity outcome of the chemotherapy treatments
with around 0.8 - 0.85 accuracy. We observe that the RNN model performed better than
all other models because it considers all the patients’ treatments. Both RF and HMM have
limited observation (one previous state). However, RF has an advantage because it does
not differentiate between corner cases (the first and end of treatment) and the middle cases.
Furthermore, the datasets for our RF models have a less class-imbalance problem than HMM.
In comparison to the MM, the classifiers are more tailored for an individual patient. The
MM shows the general pattern of the treatment while the classifiers can help predict the
toxicity outcome of the patient. Both the MM and the classifiers are a complement to each
other. Although our models have high performance, we can still improve their accuracy
further if we have more data regarding the cancer characteristics or patients’ comorbidity.
In our datasets, the information regarding the state of cancer is limited. We lack the crucial
information, such as tumour site, node and metastasis (TNM), ER status, HER2 status [175],
about breast cancer in our data. Without this information, we cannot reliably recommend
which regimes are better for different patients because we need both combinations of the
toxicity outcome and cancer TNM to evaluate the treatment performance. For instance, some
treatments might inhibit the growth of cancer better even though it may give higher toxicity
to the patients in the short term. We believe that once we get and re-train the model with the
new data extractions that contain more cancer characteristic and patients’ comorbidities, our
classifiers and MM distribution can be helpful to the physician as a second opinion to decide
which regime is suitable for an individual patient.





Chapter 7

Patient Timeline Visualisation and
Toxicity Predictor Integration

7.1 Introduction

As previously mentioned, our overall objective is to improve the delivery of healthcare within
ECC at the NHS Lothian by mean of cancer data utilisation. After we train our machine
learning models (Chapter 6), we integrate the models into our previously developed patient
timeline visualisation (recall our SESO Gateway project on chapter 3) . Integrating these
projects can be seen as adding new features to the original SESO Gateway. The reporting tool
allows for more personalised treatment for the patients. This will enable the clinical team
to act more quickly when complications arise. It can reduce the overall complications and
likelihood of hospitalisation as a consequence. It may increase patients’ well-being and the
patients will likely feel more involved in their treatment plans. In this section, we describe
the use case, implementation, evaluation, and summary of the integrated system.

7.2 Frameworks

Deployed AI platforms ship with bulky system architectures which present bottlenecks
and a high risk of failure. A serverless deployment can mitigate these factors and provide
a cost-effective, automatically scalable (up or down) and elastic real-time on-demand AI
solution [32]. Serverless deployment allows us to focus more on business logic without
thinking about how we are serving our application. This is a good alternative to serve our
predictors. However, due to the policies within ECC at NHS Lothian regarding the limitation
of using the cloud, we refrain from such solutions.
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Fig. 7.1 Distributed Task Queue Architecture. Source: [161]

One of the solutions is to process our predictor’s workload on the server asynchronously.
Hence, we use a distributed task queue because it allows us to offload the work to another
process asynchronously.

We use a third party library, Celery [29]) to implement a distributed task queue in our
application (i.e. SESO Gateway). Celery streamlines the implement of tasks queue for many
workers. As celery takes care of the application for us, we avoid reinventing the wheel as well
as allowing us to focus further on developing the predictors and data visualisation module.

The architecture of a distributed task queue with Celery is shown in Fig. 7.1. The input
data are messages sent from the client containing a special tag. The input data will be
collected up to a predefined count of input data in the buffer. The collected data package will
be sent to the host system, which only contains distribution components of Celery and the
pre-processing application. However, the host will not transform the data. Instead, it will
be passed into Redis. Redis, which acts as both message broker and a database, manages
the Celery’s workers on several nodes. These worker nodes transform/process the data
accordingly based on the functions/procedures which are defined in the application. If all
sub-tasks are done, the result can be passed to the result-interface or stored in a database
[161].

7.3 Use Case

We integrate the first project and the toxicity predictor by developing a dashboard. The
application can help oncologists observe, monitor, and analyse the condition of their patients
over time. Together with the oncologists from the Western General Hospital (WGH), we
describe the scenario of the users of the system as follows.

Emma is a 38 years old patient in the WGH who has been diagnosed with breast cancer.
To prevent the spreading of the tumour, she undergoes breast surgery. After her surgery,
chemotherapy treatment is given as a follow-up to her surgery. She is now dismissed and only
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visits the hospital for her chemotherapy appointments. To ensure her recovery (i.e. by being
able to determine the correct given dose for her treatment), a treatment plan and regimen have
been established (this will be over several months with treatment in the hospital every three
weeks). Emma also has comorbidity. As any cancer patient on chemotherapy, she might
have higher toxicity levels as a result, but it is crucial to guarantee that the scale does not go
above level two. Based on the Chemotherapy Risk Assessment Scale for High-Age Patients
(CRASH) score [48], toxicity levels range from 0 (no toxicity) to 5 (very high toxicity).

Via a user-friendly web application, Emma can provide information on symptoms daily
throughout her treatment. Severe reported symptoms can be picked up by the clinical team
and acted upon asap.

The conditions that are being monitored and provided by the patients are nausea, vom-
iting, diarrhoea, constipation, oral mucositis, oesophagitis, neurotoxicity, hand/foot, skin,
hypersensitivity, and fatigue. With these conditions, the oncologist can determine the level of
toxicity a patient may have.

The information Emma provided, data about patient characteristics, cancer information
hospitalisation data, and information about comorbidities are combined. This combined data
will help clinicians adapt treatments better to Emma as an individual patient which results in
controlled toxicity levels and improved health outcomes. It uses data from several patients
treated over the years with comparable characteristics.

If during a treatment there are signs that toxicity levels are high or that the condition of
Emma is deteriorating, one of the members of the clinical team (e.g. oncologist, specialist
consultant, nurse, GP) notes in the irregularities in Emma’s data and contact Emma to
intervene.

During a phone call, a decision is made for the GP/nurse to visit Emma at home and
provide some additional medication to alleviate symptoms. Admission to hospital is not
necessary. As scheduled, Emma comes to WGH for the next chemotherapy treatment. This
procedure is iterative until the end of the chemotherapy treatment.

Overall, Emma can have more personalised treatment. If a complication arises, the
clinical team can act more quickly. Furthermore, Emma well-being increases as she gets
more involved in her treatment plans.

7.4 Implementation

In Chapter 6, we described several models developed to predict the toxicity outcome of
chemotherapy treatments. We initially choose the Kaplan-Meier (KM) survival analysis,
Markov Model (MM), and Random Forest (RF) models. We add the Markov model for
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showing both the general condition and transition of a cohort of patients. We choose the
cohort based on the intention and treatment regimen. As mentioned before, the RF performs
better than the Hidden Markov Model (HMM), especially in predicting the toxicity outcome
during the patients’ treatments [155]. Although the Recurrent Neural Network (RNN) model
performed better than the Random Forest model - mainly because of its capability to integrate
all the previous treatments for predicting the treatment result - it is prone to over-fitting. This
is due to the size of our dataset, as we presently do not have enough data to train the RNN
models optimally [153].

For showing the capabilities of integrating machine learning modules with a patient
timeline, the accuracy of our models and/or the quality of the data used is of no consequence.
Our prototypical solutions reinforce the capabilities offered for improved cancer care, and if
the data in the future improves, so does the benefits of our integrated dashboard solutions.

7.4.1 Front-End

We add several modules to both the front-end and back-end for integrating the toxicity
predictor to the SESO Gateway. We explain the process as follow.

We create a new component to integrate the toxicity predictor the SESO Gateway. The
component handles the feature to show the analytic result. In the component, there are several
graphs to show the result of the toxicity prediction of the patient. Specifically, we use a line
chart for the KM and MM models. For the RF, we use a bar chart. Figure 7.2 shows the
charts in the component once rendered.

We add several services (i.e. toxicity, treatment) to manage the treatment data. Both
services have the URLs to request the patient/toxicity data. Similar to the patient timeline
visualisation, we then save the current patient’s treatments in the services. The other service
we add is the patient’s analyser (i.e. patientAnalyser) service. This service handles the
communication between the client and server when a user requests a treatment analysis.

Figure 7.3 shows the overall process for requesting and performing the toxicity prediction
in the Front-End.

When a user requests a treatment analysis, the client performs a POST request containing
the treatment detail in the body.

Once the server receives the request, it registers the request into a queue and response
the request with a response id. The response id is used to retrieve the result of the treatment
analysis once the server has finished analysing/processing the request. Later, the client
performs a GET request to retrieve the treatment analysis result with the response id as its
query parameter. To avoid server timeout due to possible heavy processing of the model to
predict the result of the treatment, the client keeps on requesting periodically until it receives
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a response from the server. Once the client has obtained the treatment analysis result, it
re-renders the component to display the analytic result.

7.4.2 Back-End

When integrating the predictors into the SESO Gateway, we create a new endpoint to facilitate
the request that will be made by the user. For this, we add two django applications for the
analytical function, ml_predictor for our machine learning predictors and survival_analysis
for the Kaplan-Meier estimator and Markov Model (MM).

In both applications, we have a Predictor class. The Predictor class consists of functions
to load the machine learning/regression models, run the predictor, and convert the predictor
output into an appropriate format that will be consumed by the client. Here, we serialised
machine learning models. The serialised model is integrated into the newly added applica-
tions. During the start-up of the server, we de-serialise the machine learning model so that
we can call the fit function when analysing the treatment.

Because the model analysis might take a longer time than a simple data retrieval from the
database, we update the components of the SESO Gateway back-end. The integrated system
has an asynchronous and periodic task handler as well as an internal database, which consists
of the message broker and asynchronous requests’ result storage, as shown in Figure 7.4.
We then tag several of the Predictor’s functions as celery tasks. We use a third party python
library (i.e. Celery and Redis) to implement the asynchronous request handler.

When a client requests to analyse a treatment, the request is processed asynchronously
by the asynchronous task handler as it might require a longer time to be processed (i.e. in
comparison with requesting the patient’s medical history). The handler puts the request in
the tasks queue and tags it with a unique task id. The task id is later given to the user/ client
as the response of the POST request. Once the SESO Gateway finishes predicting the result
of the upcoming treatment, the outcome of the prediction is saved in the result storage which
can be retrieved by the client via a GET request with the task id as the query parameter if the
task is complete.

Below are the examples for both the POST and GET request:

• POST request url: http://.../api/upcoming-treatment/

• POST request body:

{
"age": 77,
"height": 1.47,
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"weight": 53.0,
"sa":1.45,
"intention":"Adjuvant",
"regime":"PACLITAX WKLY",
"totalCycles": 5,
"totalDurations": 100,
"previousToxicity": 2,
"startDate": "14-03-2020"
}

• GET request url: http://.../api/upcoming-treatment/?id=72bb707c-60d6-43f6-b1ac

7.5 Evaluation

To evaluate the SESO Gateway, we conducted different kinds of testing, organised by the
level and purpose of the tests themselves. For the SESO Gateway, this included unit-testing,
integration-testing and performance-testing.

Our unit tests are performed on the developed module to clarify if the method performs
as expected in a set of conditions. Here, we focus on the unit testing for the Predictor class.
To test the Predictor class, we create several mock objects to simulate the machine learning
model.

For the SESO Gateway integration testing, we combine several modules within the
application and test those modules as a group. The integration testing takes the modules that
have been tested previously in the unit testing. We use the integration testing to simulate
the process of the user/client requesting to analyse the upcoming treatment. Our integration
testing focuses on examining the pathway from the first time the client makes a request for
analysing the chemotherapy treatments and returning the right response for that request (i.e.
response id and treatment outcome). Below are the coverage result of the unit and integration
testing.

Name Stmts Miss Cover
--------------------------------------------------------------
...
ml_predictor/__init__.py 0 0 100%
ml_predictor/api.py 57 18 68%
ml_predictor/apps.py 3 3 0%
ml_predictor/migrations/0001_initial.py 6 0 100%
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ml_predictor/migrations/__init__.py 0 0 100%
ml_predictor/mock_models.py 23 0 100%
ml_predictor/models.py 6 0 100%
ml_predictor/rf_models.py 160 38 76%
ml_predictor/tests.py 126 13 90%
ml_predictor/urls.py 3 0 100%
...
...
...
survival_analysis/__init__.py 0 0 100%
survival_analysis/api.py 23 2 91%
survival_analysis/apps.py 3 3 0%
survival_analysis/migrations/__init__.py 0 0 100%
survival_analysis/models.py 1 0 100%
survival_analysis/tests.py 15 0 100%
survival_analysis/urls.py 3 0 100%
...
...
--------------------------------------------------------------
...

For the testing, we estimate that between 0 to 150 users will access the application
at the same time. Similar to the tests we previously conduct for the patients’ timeline
visualisation, we assume that there could be a time when all users try to access the application
simultaneously. Based on this assumption, we need to perform a performance test to observe
the robustness of our system.

One issue of go-live is performance, such as latency from highly sensitive and slow
responses. The performance test allows us to simulate a situation where many users try to
access our application at the same time. We use a third party library (i.e. Gatling-tool [56])
to perform such a performance test.

There is no standard default regarding connection timeout. The timeout is set depending
on the expected complexity of the query/process. Unfortunately, we failed to observe or
analyses the time for our machine to perform prediction. In the future, we would like to
evaluate this and added a timeout for our request. When a timeout is triggered, we can report
an error, set a retry policy for our application. Hence, for our performance testing, we use
the default/assumed timeout provided by our performance testing framework.
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Here, we perform the load testing for the our new API for the toxicity predictors. We
deploy five celery workers for the load testing and perform simultaneous request for 300
users. Figure 7.5 shows the performance tests result.

The SESO Gateway is capable of handling 300 simultaneous requests from the user, as
requested by the customer with less than 5% failure requests. We also test the api for the
survival analysis. Here, we do not make the function to perform the survival analysis as
a celery task. Because analysing the data to get the patient survival rate for the requested
cohort is heavy, most of the requests took a longer time to be responded as shown in Figure
7.6.

However, there is no reason why it cannot process more requests. Similar to the patient
timeline visualisation, the result of performance testing will be highly dependant on the
server we access and the environment where we deploy our application.

7.6 Summary

Our primary goal is designing a method to accurately visualise the patient pathway data from
the South-East Scotland Oncology Database. The users can view the pathway progress at
an individual level (for example in clinic) as well as a cohort basis to analyse a treatment
pathway against a set of metrics (e.g. time between treatment, following a particular pathway,
outcome against disease management protocols). With SESO Gateway, we have a system
which enhances observations for cancer patients in South East Scotland by incorporating a
data visualisation tool with additional capabilities to analyse the upcoming treatments. The
integration to the new database enables users to effectively see connections and patterns
between patient treatments and their condition, in real-time. Finding these correlations
among the data is necessary for improving the healthcare systems for ECC.
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Fig. 7.2 Rendered model charts
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Fig. 7.3 Sequence diagram for treatment analyses

Fig. 7.4 SESO Gateway system architecture
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Fig. 7.5 Predictors performance test result (with celery)

Fig. 7.6 Predictors performance test result (without celery)





Chapter 8

Generating Synthetic Cancer Data

8.1 Introduction

Data is essential for machine learning, and to improve the accuracy of most machine learning
models we need considerable amounts of data. Even though we have access to extractions
from the National Health Service (NHS) Lothian database [95] for our projects, it is not
easy to use them for developing accurate and reliable prediction models such as required for
the toxicity prediction project of Chapter 6 and shown in [155]. In this chapter, we explore
a different approach and use synthetic data to generate a large data set to train our model
further and develop a proof-of-concept (POC) solution for our problem of predicting the
toxicity of patients undergoing chemotherapy treatments. Furthermore, we discuss overall
benefits to the use of synthetic data.

In general, one possible benefit of synthetic or fabricated data1, is that its use may
minimise the costs associated to data acquisition. To obtain more data in medical research, it
is often necessary to conduct expensive and time consuming clinical trials. In addition, when
looking at creating models for specific contexts, datasets may be too small to enable the
creation of meaningful machine learning models. By using fabricated data, we can quickly
generate more data with similar characteristics without additional cost. The use of fabricated
data allows developers to continue improving their model without the need for a real/sensitive
dataset, and could potentially already provide considerable insights. Once we collect enough
real data, we can then retrain the model using the actual dataset. Nonetheless the use of
synthetic data for these purposes require trust in how such data is generated. We elaborate on
this later in the Chapter.

1Here, we use both terms interchangeably to mean the same thing.
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Most of our projects, as described in earlier chapters, we used small datasets with less
than 1000 patients. Models trained on small datasets are more likely going to exhibit very
specific patters for that particular dataset which results in high variance. When using these
particular dataset, our predictions are too dependent on the particular patients characteristics
in our dataset, which would cause overfit to the data.

In addition, this often results in overfitting problems. One of the solutions for this
problem is to extract more routinely collected clinical data. However, this solution has
several challenges of its own, such as privacy concerns. Some patient data can be easily
identifiable, is therefore sensitive, and might require further anonymisation to secure the
process. Furthermore, data governance constrains the use of unconsented data and it is hence
essential to check whether this applies, in other words, if some of the data might not have
been consented by the data owner (the patient).

A different way to access healthcare data within NHS Lothian is through their data safe-
haven [144]. A data safe-haven is a proxy between researchers/industrial partners with the
data providers and data owners. It allows data to be shared in a secure way while maintaining
the rules enforced by the governing board as shown in Figure 8.1. In other words, data
owners and providers interact with the safe-havens directly, a process which is overseen by
the governing body (this interaction is depicted as arrows on the right hand side). On the
other side, researchers and industrial partners use the safe-haven, but do not need to know
the details on data provenance and ownership. This approach is widely used in healthcare
studies across the UK to ensure a process is followed before NHS data is used for research,
and restrict what can be done, where and how.

Fig. 8.1 Relations between stakeholders in a safe-haven context



8.2 Related Work 127

In the context of the Edinburgh Cancer Centre, a safe-haven provides a secure network
which allow access to a daily updated anonymous medical dataset (i.e. including national
datasets through specialised local datasets) and is supported by trained NHS staff. Even
though the general benefits of safe-havens are well understood, there are regional differences
in how they operate and what can be done and used within a safe-haven for analysing data.
In particular, the NHS Lothian safe-haven currently has limited support for the capability
to analyse a dataset using state-of-the-art machine learning and/or deep learning techniques
effectively, and are only equipped with limited statistical tools. One possible justification
for this is that most medical researchers will use R and statistical packages, whereas data
scientists with a computer science background would favour python and other environments.

Once we can generate the dataset quickly by fabricating the dataset, it allows the rapid
development of extensive scale application for testing purpose. By having a large scale
dataset, we can improve the model to resist over-fitting (e.g. by having more well-balanced
dataset). Furthermore, the use of synthetic data allows us to simulate outlier events, such as
rare diseases condition.

The challenges lie in the generation of fabricated data itself. We use IBM’s Data Fabrica-
tion Platform (DFP) for doing so. The DFP works by providing a model, given as a set of
rules, which describes the characteristics of the real data. Every solution to the model, in a
constraint satisfactory sense, corresponds to a valid data instance. Running the DFP in search
of valid solutions that satisfy all rules, we can generate as many data instances as required.
Further detail will be given in section 8.4.

8.2 Related Work

There are several methods for generating fabricated data to solve the issues of using a real
dataset and data availability. One of the techniques involves the use of existing dataset and
imputing (i.e. assign (a value) to something by statistic inference) the values for the desired
field. Rubin [142] proposed the idea of using multiple imputations for all the data-point
in the datasets to generate a partial or full synthetic dataset. In statistics, imputation is the
process of replacing missing data with substituted values. Given enough data and iterations,
it is possible to generate a set of a synthetic dataset for specific purposes.

With the rise of machine learning in data mining fields, Rieter et al. [25, 136] extended
the idea of using multiple imputers by using several machine learning models to generate the
data synthetically. At the moment, there are many data synthesisers available with machine
learning models, such as linear regression, random forest, decision tree, neural networks [37]
as their backbone to generate either full or partial synthetic dataset.
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However, there are caveats when using machine learning models to generate the dataset.
First, we need to have a sufficient amount of data to have the machine infer the pattern in
the dataset. Secondly, several machine learning frameworks for synthesising datasets cannot
capture the notion of sequences in the dataset accurately. This dataset has several rows of
data that tightly correlated. The machine learning techniques mentioned above (e.g. Random
Forest, Decision tree) have no memory of the previous event. Therefore, to fabricate our
dataset, we must use a solver because the chemotherapy treatment that we observe has a
time-varying element.

8.3 Data Structure

Our source for performing the data fabrication is the dataset of the cancer patients within
Lothian from 2014 to 2016. The data was extracted from the Scottish cancer registry
(i.e. SMR06, SMR01, Chalson), National Records of Scotland (i.e. Data on Deaths),
Oncology DCO database (i.e. Demographics, Diagnosis, Surgery), and ChemoCare (i.e.
chemocare_general and chemocare_toxicity) as shown in Table 8.1.

Table 8.1 Source table brief overview

Table Description
Standardised Mortality
Ratio(SMR) 01[26]

General/Acute impatient and daycase.

SMR06 [26] Information on Scottish residents when they are
diagnosed with malignant or benign tumour.

Charlson Information on patient’s comorbidity [169] (i.e.
the existence of one or more additional condi-
tions coexisting with the primary disease) and
their Charlson index [140].

Deaths Data [118] Patient’s death data
Demographics Patient’s demographics (e.g. date of birth, gen-

der, ethnicity)
Diagnosis General information regarding the patient’s main

diagnosis (e.g. stage, site)
Surgery General information regarding cancer patient’s

surgery within ECC, NHS Lothian
General General information regarding chemotherapy

treatments
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Toxicity General information regarding the patient’s con-
ditions (or side effects) prior/after the chemother-
apy treatments.

Fig. 8.2 The simplified pathway for cancer patients

Each patient may be given a series of different treatments, also known as treatment
pathway, as shown in Figure 8.2. New patients, before every treatment, undergo several
different sets of tests (e.g. MRI, CT SCAN) to determine the type of cancer and the first
treatment to be given. The period before the treatment is given/chosen is called Cancer
Waiting Times (CWT) [121]. There are several types of primary and follow-up treatments.
However, for our first milestone, we only consider surgeries and chemotherapy treatments.
The chemotherapy given within the NHS Lothian has general patterns that need to be taking
into account when determining the rules. The patterns are as follow:

• A patient can only be treated with one intention (i.e. the purpose of the treatment, such
as prolong the patients’ live, cure cancer) at a time (e.g. adjuvant).

• After a specific time has passed, in the case of cancer relapsed, the patient might be
given other treatment with different intentions (e.g. Palliative or Curative).

• Each intention has several different regimes

• Each regimen has several different drugs.

• The treatment may last for several weeks or months that is given in cycles. Hence,
each regimen may have more than one cycles.

• A patient may be given several regimes at time.

• Some regimes may belong to one protocol, as shown in figure 8.3.
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Table 8.2 shows how chemotherapy treatment is represented in the dataset.

Fig. 8.3 Chemotherapy treatment protocol

Table 8.2 Chemotherapy treatment data representation

Chi Appointment
Date

Intention Regime Drug Cycle

patient1 1/12/2019 Adjuvant FED drug1 1
patient1 1/12/2019 Adjuvant FED drug2 1
patient1 7/12/2019 Adjuvant FED drug1 2
patient1 7/12/2019 Adjuvant FED drug1 2
patient1 13/12/2019 Adjuvant FED drug1 3
patient1 13/12/2019 Adjuvant FED drug1 3

8.4 IBM’s Data Fabrication Platform

We use IBM’s Data Fabrication Platform (DFP) to generate the fabricated data. We chose
to work with the IBM tool for fabricating our database, because the tool allows us to
combine both information coming from domain knowledge (not necessarily apparent in
a given data extraction) and the result of statistical inferences from the dataset. This is
a powerful feature that enables us to create potentially more realistic data. IBM’s Data
Fabrication Platform (DFP) is a web-based central platform that provides a consistent and
organisational-wide methodology (rule-guided fabrication) for generating high-quality data
for testing, development, and training. Fabrication of synthetic data consists of two stages -
data modelling and data generation [77].

In rule guided fabrication, the database logic can extracted automatically and is augmented
by application logic and testing logic modelled by the user. The application logic and the
testing logic can be modelled using rules that the platform provides, but the users can also
add new rules. The DFP has a fabrication engine embedded with CSP solver. The fabrication
engine generates data by following user-defined rules. As the user, we define the rules, type
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of data, the volume of data, the relationships among different columns in databases. The rule
types include:

• Constraint rules: domains, mathematical functions, arithmetical relations, string rela-
tions, regulator expressions.

• Knowledge-based rules: chosen from existing data sources.

• Analytic rules: value and pattern distributions, smart classifications.

• Transformation rules: constraints describing relations between targets and sources, can
be bundled to transform tuples.

• Programmatic rules: user-defined code/script functions that generate target values.

Once the user has defined the data sources and rules, the solution builds the fabrication
task, maintaining the referential integrity of data based on database constraints or applied
constraints. Here, the constraint is solved by the solver and the solution is used to construct
the fabricated data [4]. The output can have multiple different formats/extensions. Figure 8.4
shows the flow of data fabrication with the IBM’s Data Fabrication Platform.

Fig. 8.4 Data fabrication flow. Source:[77]
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Our task here is to define the chemocare rules used for the data fabrication flow. We first
define the tables and columns we want to populate. We then specify the rules for each column.
Some rules can be applied to several different columns or tables. With those rules, the IBM
solver populates the tables while making sure that the Constraint Satisfactory Problem (CSP)
defined by the rule is solved and satisfied.

8.5 Methodology

Motivated by those above, we use an IBM’s DFP to tackle both issues. We specify the
problem (i.e. fabricate data generation) by providing the constraints of the variables with
domains, here the data fields and values. After we construct the constraints, the solver finds
solutions by constraint propagation and search. By having the rules which capture the pattern
of the real dataset, we can fabricate data despite the limitations like the availability of the
data and the sequence nature of the chemotherapy treatment.

Here, each field associates with a constraint that follows several syntaxes specific to
the solver. The syntaxes can express some conditions, such as unique, bounded, constant,
and random values. We can also represent the dependencies between each field, including
mathematical equations (e.g. a = b + c), order relationships (e.g. such as equal, less than,
greater than), and other Boolean conditions. Lastly, we can express weighted/probability,
normal, and random distribution to determine the value of our fields.Table 8.3 shows some of
the common syntaxes and theirs descriptions.
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Table 8.3 IBM Solver syntaxes

Syntax Description
randomBool returns true N times out of 100. N is the param-

eter.
randomNumber returns a uniform random value in the range

[0,N-1]. N is the first parameter.
randomCover satisfies all the coverage model (second param-

eter) to the first parameter. If using within
database fabrication, the coverage model may
point to column of another table.

randomWeightedNumber randomly returns the value using weights speci-
fied in the parameters.

normalDistributionValue returns the value according to the mean and vari-
ance. The value is rounded to the closest repre-
sented value.

allDiff satifies that all the arithmetic expressions (speci-
fied by the last parameter) get different value.

table returns a boolean value if the table has no return
value. If the table returns a value, the returned
format is according to the return value.

monotonic satisfies that all arithmetic expressions have se-
quential monotonic values. The last parameter
defines the different between two elements.
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Fig. 8.5 Rules generation flowchart

Figure 8.5 shows the flowchart for defining the rule. We use both descriptive statistics
and the knowledge from the oncologist to determine the rules for our dataset. Once we define
the rules, we then generate the fabricated data using the solver and perform data validation.
It is an iterative process, repeating until the result of the validation is satisfying. The syntax
below shows the combination of both. The first part is the knowledge part (i.e. if cancer
has metastasised into site C34.9, we set the pulmonary_flag as 1). If there is no value in
the metastasis, we use weight distribution to set the value of pulmonary_flag. We infer the
weight distribution from the data extraction.

general.pulmonary_flag = (
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// Knowledge:
(general.metastasis1 == ’C34.9’ || general.metastasis2 == ’C34.9’
|| general.metastasis3 == ’C34.9’) ? 1 :
// From extraction:
randomWeightedValue(general.pulmonary_flag,

1200? 0,
120 ? 1

)
)

8.6 Rule Design

This section explains the method of formulating the rule for several different columns. 2.
These methods can be applied to the other columns that are not specified here (i.e. shown in
appendix)

When designing the rules, we start from the patients’ general information (e.g. patients’
demographics, diagnosis) rather than the patients’ chemotherapy treatments. In Scotland,
each patient has a unique identifier (i.e. Community Health Index (CHI)) [156].

Fig. 8.6 CHI components

Figure 8.6 shows the component of the CHI. The current CHI number consists of the
six-digit Date of Birth (DDMMYY) followed by a three-digit sequence number and a check
digit. The ninth digit is always even for females and odd for males. To generate the proper
CHI for each patient, we create several rules. The first rule specifies the uniqueness of the
field:

allDiff(from(general), general.chi)

2All the rules we used for creating the synthetic data is available in the following link:
https://github.com/agasvina/DataFabrication/blob/main/serums.xml
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As previously mentioned, allDiff specifies that the CHI needs to be unique. Next, We
create new fields/objects (D7, D8,D9,D10) to construct the CHI as shown below.

general.chi = concat(
dateToString(general.DOB, DMy),
intToString(general.D7),
intToString(general.D8),
intToString(general.D9),
intToString(general.D10)

)

D7-8-10 follows specific constraint (e.g. 0 <= general.D7 <= 9). D9 is use to indicate
gender (i.e. randomBool(99) ? general.D9 = 0,2,4,6,8 : general.D9 = 1,3,5,7,9)

The tool allows the use of equality-inequality relation for various data types, such as date.
The rule below shows how we can manipulate the important events’ date for the patients, for
example, patients’ incident date.

We specify the first incident date (i.e. the date when the patient is diagnosed) to occur
approximately between 2014 and 2016 by using the equality-inequality relation:

currentDate-(6*365)<general.incidence_date<= currentDate-(4*365)

To generate a string with some characteristics, such as postcode, the solver allows the use
of regex.

Some rules are consists of simple mathematical equation. Here, we use summation to
populate the Charlson Comorbidity index.

general.charlson_score =
general.cong_heart_fail_flag +
general.dementia_flag +
general.pulmonary_flag +
general.con_tiss_disease_rheum_flag +
general.diabetes_flag +
general.para_hemiplegia_flag +
general.renal_flag +
general.liver_flag +
general.AIDS_HIV_flag +
general.cancer_flag
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Some other features include assigning value to a column based on a constant field or
other column. We assign a constant into field like site (i.e. general.site = s’C50.9’). The
C50.9 indicates breast cancer.

There are fields for which values influence the values of other fields (e.g. metastasis1-2-3).
For these fields, we use implications to capture this condition.

(general.metastasis1 is Null -->> general.metastasis2 is Null)
->> general.metastasis3 is Null

To populate some fields, such as age or weight, we determine if we can use the normal
distribution and add another correlation between several fields. First, we manually observe
the pattern by using charts as shown in Figure 8.7.

Fig. 8.7 BMI, Age-Intention distribution

For the BMI, we use the probability distribution to determine the BMI category (e.g.
underweight, normal, overweight) and then we use the normal distribution to populate the
exact BMI value for the patients for each category. As for age, we perform Shapiro-Wilk
[151] test to test the normality of the patients’ age (i.e. W = 0.976, and p_value < 0.01). The
result indicates that the distribution slightly differs from the normal distribution. For our first
milestone we use the normal distribution for age because the p_value is less than 0.05 and W
is close to 1. The syntaxes for both fields are shown below. In the next iteration, we plan to
add relation between age, bmi, intention and other fields as shown in Figure 8.7.
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Some patients may have more than one admissions during their cancer care. Here, we
create a new table for the patient admission and then we use the CHI as a reference/ foreign
key to the general table. To fabricate this, we use the following steps. First, we specify the
admission rate to fabricate the admission data. The rule is as follow:

numOf(from(smr01s), smr01s.chi = general.chi) =
randomWeightedNumber(

500 ? 1,
300 ? 2,
200 ? 0,

)

With this rule, 50% of patients have one admission, 30% have two admissions and 20%
patients have no admissions. Because the admission date is time based (sequential), we
create another helper field, elapsed_days. The admission date depends on both incidence
date and elapsed_days.

smr01s.admission_date = (smr01s.incidence_date + smr01s.elapsed_days)

The elapsed_date has a monotonic increasing value based on the patients’ CHI as follow:

monotonic(from(smr01s), per(smr01s.chi), smr01s.elapsed_days,
{normalDistributionNumber(110.4, 17.2)}, randomNumber(14,100))

The first value for patients’ elapsed_days is populated using a normal distribution with
110.4 as the mean and 17.2 as the variance. The next instance of elapsed_days increases by a
random number between 14 to 100 days. Because the admission date is calculated by adding
the elapsed_days into incidence_date, its value is sequentially increasing as well. With this,
we can fabricate the patient admission event.

The next dataset we fabricate is the patients’ chemotherapy treatments. As described in
the previous section, the main challenge of fabricating this dataset is capturing the relation
between data that belong to the same patient. Briefly, a patient may have more than one
intention, and each intention may have more than one regime. Each regime has more than
one cycle and so on.

To capture this relation, we create five helper tables (i.e. patients, intentions, regimes,
cycles, and drugs). There are similarities between these helper tables. We create patients
as the reference point. We create intentions to model the condition where each patient may
have one or more intentions. Similarly, regimes is created to model the condition where each
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intention may have one or more regimes (i.e. cycles and drugs have the same purpose). Each
helper table have foreign keys to each other (e.g. patient_id, intention_id).

The foreign keys are as shown in Table 8.4.
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Table 8.4 Helper tables’ foreign key

Table 1 Table 2 Foreign key
general patients CHI
patients intentions patient_id
intentions regimes intention_id
regimes cycles regime_id
cycles drugs cycle_id

The patients table has the patient demographic information during the treatment, with
values assumed to be relatively constant, such as CHI, height, hospital, tumour_group. The
patients table acts as the proxy to the general (i.e. CHI is used as the foreign key). The
ratio between the data in the patients and general table is set to one. We also have the
first_intention field in this table, used as the reference for populating the intention value. We
use randomWeightedValue to populate this field. By counting the number of each intention
occurring in the first cycle, we can get the weight value. The rule for the first_intention is
shown below:

patients.first_intention = randomWeightedNumber(
350? s’Adjuvant’,
200? s’Palliative’,
180? s’Neo-Adjuvant’,
15? s’Durable Remission’,
5? s’Curative’

)

The ratio between the patients and intentions tables are determined by the first_intention
because some intentions may or may not have follow up treatments. We specify the inten-
tions.ratio rule as follow:

numOf(from(intentions),
intentions.patient_id = patients.patient_id)= (

intentions.first_intention == ’Adjuvant’ ?
randomWeightedNumber(

15? 2: 1
),

intentions.first_intention == ’Durable Remission’ ? 1,
intentions.first_intention == ’Neo-adjuvant’ ?
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randomWeightedNumber(
60? 2: 1

),
intentions.first_intention == ’Palliative’ ? 1,
intentions.first_intention == ’Curative’ ? 1,

)

The first_intention field determines the value of the next instance of intention. Similar
to the patients, we have a field first_regime. The value of this field depends on inten-
tions.intention and has the same function like the field first_intention (i.e. this method is
repeated to capture the sequence behaviour for cycles and drugs).

To populate the treatment appointment date we use a similar rule (i.e. for the patients’
admission) as mentioned before. We have the appointment_date field in intentions to populate
the first appointment_date for each intention. In the intentions table we then set the elapsed
days of based on the regime ratio, cycle ratio and regime interval days to prevent the overlap
between appointment date for each regime.

In the regimes, we have another elapsed_day field to determine the date of the first regime.
The starting date for the regime.elapsed_day is taken from the regime.init_appointment_date.
The regime.init_appointment_date equals to intention.appointment_date. The rule for the
regime.elapsed_day is as shown below:

monotonic (from (regimes), per(regime.intention_id),
regime.elapsed_days,

(cycle_ratio * regime_interval_days),
{regime.init_appointment_date},

)

Unlike intentions and regimes, we have the value of cycles’ ratio in the regimes because we
need to know the number of cycles for determining the correct elapsed days between regime.

Lastly, to populate several fields like the toxicities outcome, regimes, and performance
status, we integrate a simple Markov model into the rules (i.e. the value of the current
fields depends only on its previous value). We use the previous value because we see a
relatively high correlation (i.e. based on the Pearson standard of correlation [148]) between
the previous value and the current value compare to the other fields. Table 8.5 shows an
example of the calculated correlation between performance_status (ps) and other fields (i.e.
previous_performance_status (pps), cycle, age, weight, intentions).
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Table 8.5 Performance Status correlation

intention cycle pps ps age weight
intention 1 0.38 0.11 0.04 0.18 -0.16
cycle 0.38 1 0.05 -0.01 0.01 -0.08
pps 0.11 0.05 1 0.45 0.16 0.02
ps 0.04 -0.01 0.45 1 0.14 0.01
age 0.18 0.16 0.16 0.14 1 -0.02
weight -0.16 -0.08 0.02 0.01 -0.02 1

8.7 Validation

Before we use the fabricated data to train the models and developed our systems, we need
to determine the quality of the data as well as making sure that the generated data is a
good representation of the real data. We use machine learning to evaluate the quality of the
generated dataset. Machine learning provides a useful approach to verify the quality of the
data. It enables us to find issues in the fabrication that is not obvious and easily spotted
during the manual validation process. Furthermore, the results of this validation are used as
feedback to improve and update the rule we use to generate the synthetic data.

8.7.1 Baseline Training Set

We take the initial real medical dataset to describe in the previous section and randomly label
half of the dataset as real and half as fabricated. This dataset is used for calculating baselines
measurements for determining the quality of the fabrication data. Because all the data for
the baseline training is real, the tagging procedure produces a dataset that should have no
exact distinguishing features between real and fabricated data. Hence, the machine learning
should not be able to distinguish between real and fabricated data (i.e. The accuracy result
should be 50% which is close to random guess). We also run the baseline training several
times. For each run, we add more data than the previous one. We train the machine with a
different number of data to observe the impact of the amount of data our machine learning
performance. Table 8.6 shows the result of our baseline training for the diagnosis table.
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Table 8.6 Baseline training accuracy result for Demographics table

Total data Gini entropy AdaBoost
500 0.64 0.62 0.61
1000 0.56 0.55 0.54
2500 0.56 0.50 0.51
5000 0.52 0.51 0.53
10000 0.52 0.51 0.51
15000 0.51 0.52 0.51

Table 8.7 Individual table validation result

Table Gini Entropy AdaBoost Random Forest
Demographics 0.53 0.52 0.52 0.57
Diagnosis 0.53 0.52 0.52 0.58
smr01s 0.48 0.48 0.49 0.45
smr06s 0.42 0.42 0.46 0.39

8.7.2 Validation Result

To improve the quality of our data fabrication (i.e. 50% accuracy), we go through several
iteration processes. We have several different models to validate the generated fabricated
data (i.e. decision tree and AdaBoost classifier). When we use the decision tree classifier
model, the model generates a tree from the input fields. From this tree, we can determine
which field has the highest feature importance. By observing the nodes, we can determine the
significant features and update the rule to improve the quality of our fabricated data. Figure
8.8 shows an example of the nodes.



144 Generating Synthetic Cancer Data

Fig. 8.8 Example of validation nodes

Here, feature 5 (i.e. feature 5 represents the metastasis1) is very significant. It is the first
node in the trees, and a value greater than 4.5 indicates the data is fabricated (or real). So
this value alone is enough to isolate 22 samples as completely fabricated (or real). Hence,
by tracing through the graph, we can see which combinations of features lead to isolating
groups of samples.

Due to the limitations of the validation tool when the thesis is written, we only perform
the validation for the general dataset. The ChemoCare dataset has a time-sequential relation
between each patient due to the cancer regimens.

We perform two different validations for the first iteration based on the number of data
in both the real dataset and fabricated dataset. First, we use all data from both data sources.
Because the number of data produced by the solver differs from the number of the real data,
we select random data from the real data to match the total number of the fabricated data to
avoid data-skewness. Here, we only use the data from 2014 to 2016. We then use all dataset
from both data sources to perform the validation as we specify the number of data generated
from the solver.

Table 8.8 shows the result of the validation for the first iteration.
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Table 8.8 First iteration validation

Table Gini Entropy AdaBoost
Demographics
All 0.80 0.80 0.83
Selected 0.77 0.77 0.83
Diagnosis
All 0.90 0.90 0.91
Selected 0.89 0.89 0.92
smr01s
All 0.98 0.98 0.97
Selected 0.98 0.98 0.98
smr06s
All 0.98 0.98 0.97
Selected 0.98 0.98 0.98
charlson
All 0.99 0.99 1
Selected 0.98 0.98 0.99

Our validators perform well classifying the Charlson dataset. This is due to the knowledge
we added to the rule (i.e. mainly the Cancer flag). All the patients in the dataset has Cancer
flag equal to one. With this field alone, the machine can easily differentiate the dataset.
Because the validation tool cannot integrate additional knowledge, for the second iteration
onward, we do not include Charlson table.

We notice another issue of the validators. Several sensitive fields like general practitioners
(GPs) and patients name can be easily used to differentiate between real and fabricated data.
At the same time, we do not want to use real names as our knowledge-based to populate the
fabricated data. An example is as follow.

Table 8.9 A mock example of general practitioners from the real data

GP name No. of patients
Sobeck 60
Nightshade 40
Miller 40
Skywalker 40
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Table 8.10 A mock example of general practitioners from the fabricated data

GP name No. of patients
Valjean 60
Baggins 40
Kelmeckis 40
Potter 40

When we input the data shown in Table 8.9 and 8.10, the validator shows 100% accuracy
and disregarded the value from the other fields due to the characteristic of a decision tree.
The most significant field alone can be used to separate the dataset, and the validator will
disregard the other fields. During the writing of this thesis, we ignore these fields and use
another knowledge base dictionary for the name generation.

The result of the first iteration shows that the ML algorithm does not take into account if
the input data is unbalanced/skewed. In the first generation, we have more real data than the
fabricated data. When the input data is skewed, the machine has a tendency to have better
accuracy, as shown in the all condition. For example, suppose we have 100 fabricated data
and ten real data. If we only select ten fabricated data and ten real data as an input, all data
pattern/weight ratio from the specified rules are not included. Here, the machine can easily
distinguish fabricated data from real data. Similarly, if we use all 100 fabricated data and ten
real data, even without learning, the machine can easily say all data is fabricated while still
having high accuracy.

After the first iteration, we decide to re-select the real data sources and purposely generate
fabricated data as much as the real data for the next iteration. By doing this, the amount of
data fabricated by the solver is equal to the data source. Hence, we do not need to select
random data for the validation. We want to make sure that the proportion of value for several
fields is correctly defined in the updated rule.

Based on the result of the validation from the first iteration, we update several rules. We
re-evaluate the correction between each field and update the rule accordingly. Here, we use
the Pearson correlation. For several fields like the stage, we simplify the value by using a
helper fields (i.e. 1,2,3,4 instead of 1A,1B,...1C) to easily calculate the correlation to the
other fields.
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Table 8.11 Second iteration validation

Table Gini Entropy AdaBoost
Demographics 0.59 0.60 0.58
Diagnosis 0.90 0.90 0.92
smr01s 0.80 0.82 0.72
smr06s 0.87 0.88 0.71

The main purpose of the first iteration is to test and familiarise ourselves with the solver.
We observe that all the generated data has the correct data types. We test all the data types
that we can generate on the first iteration. Because there no issue with the data types, from
the second iteration onward, we then gradually add more fields to be fabricated, as shown in
Table 8.15.

There are several issues we have on the second iteration. Because of the different ratio
between demographics and smr06s datasets, we separate the smr06s table and set the ratio
with the following rule:

numOf(from(smr06s),smr06s.chi = general.chi) = randomWeightedNumber(
3811 ? 0,
1034 ? 1

)

From the rule above, more than half of the patients’ will not have data in the smr06s table.
Unfortunately, the solver does not support 0 value inside the numOf syntax. Hence, on the
second iteration, the smr06s table has incorrect CHI. It becomes a separate entity without
any connection to the general table.

We also have several issues with the character generation for several fields (i.e. mari-
tal_status, ethnic_group). Typos cause this. When we receive the result from IBM, those
fields have characters we do not specify, like #NAME. Hence, we exclude those fields from
the validation.

From the result of the second validation, we observe significant accuracy differences
between the decision tree classifier and AdaBoost classifier models for both smr01s and
smr06s tables. This might be caused by overfitting in the decision tree classifiers. Since there
are no limits on the tree size during the process of data validation, the runs generate very
large trees.

Before performing the third iteration, we test the validator by altering the percentage of
training and testing dataset. From the plots shown both in Figure 8.9 and 8.10, the accuracy
of the decision tree models fluctuates faster than the AdaBoost model. Unlike the decision
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tree, the AdaBoost classifiers’ accuracy converge to some value and do not have an issue
with overfitting.

Fig. 8.9 Demographics accuracy

Fig. 8.10 Smr01s accuracy

We update the validators by limiting the amount of the tree generated by the decision tree
classifiers and then re-perform the validation for both the first and second iteration, as shown
in both Table 8.12 and 8.13. The validators still capture the issues with the fabricated dataset,
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and there are less significant differences between the decision tree classifier models and the
AdaBoost classifier models.

Table 8.12 First iteration re-validation

Table Gini Entropy AdaBoost Random Forest
Demographics
All 0.82 0.82 0.83 0.82
Selected 0.81 0.81 0.83 0.83
Diagnosis
All 0.91 0.91 0.92 0.93
Selected 0.90 0.90 0.90 0.90
smr01s
All 1 0.99 0.99 1
Selected 0.98 0.97 0.99 0.99
smr06s
All 0.94 0.94 0.95 0.95
Selected 0.93 0.93 0.95 0.94
charlson
All 0.99 0.99 0.99 1
Selected 0.98 0.99 0.99 0.99

Table 8.13 Second iteration re-validation

Table Gini Entropy AdaBoost Random Forest
Demographics 0.62 0.63 0.59 0.63
Diagnosis 0.93 0.93 0.93 0.92
smr01s 0.78 0.78 0.73 0.78
smr06s 0.77 0.76 0.71 0.80

Overall, we see improvement by updating the rule based on the validation result. On the
third iteration, we perform the same procedure: updating some rules and adding more fields,
as shown in Table 8.15.

After we update the rule and fix several issues from the second data fabrication iteration,
we generate another synthetic data and perform another validation, as shown in Table 8.14.
Here, we observe a slight improvement in the Demographics table after we update the
Histology weight distribution. As for the Demographics, we do not see much improvement
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because we keep on adding more fields for each iteration. The last field we add to the
Demographics is the patient date of death.

Table 8.14 Third iteration validation

Table Gini Entropy AdaBoost Random Forest
Demographics 0.63 0.63 0.60 0.63
Diagnosis 0.60 0.59 0.58 0.68
smr01s 0.72 0.72 0.72 0.74
smr06s 0.85 0.83 0.80 0.86

We see further improvement in the quality of our data fabrication on the third iteration (i.e.
the accuracy of the validation result keep decreasing). We can improve the data fabrication
by adding more complexity and relation between each field. Here, we also ask the feedback
of healthcare professional from Edinburgh Cancer Centre. They immediately notice the
invalid postcode from our dataset because we use regex to generate UK postcode. We can
use the knowledge table to avoid the issue with postcodes. However, we refrain from doing
to avoid using real sensitive data. In the future, we might generate real postcode into our
fabricated dataset if we want to observe how location affects the patients’ condition. As
for the clinical validity, according to one of the oncologists, generally, the data looks ok.
However, In smr06s table, we have a lot of high T and high N and more metastasis than
they would usually expect. There is an implausible discrepancy between size and T stage.
To fix this, we need to add more knowledge to the rules in the smr06s table. However, by
integrating more knowledge (e.g. from American Joint Committee on Cancer (AJCC) for
cancer staging), it may decrease the quality of fabricated data according to the validators due
to the limitation of the validators and the invalid data in our data sources.

Table 8.15 List of validated fields

Table Column 1st 2nd 3rd
Demographics chi ✓ ✓ ✓

Date of birth ✓ ✓ ✓

name ✓

postcode ✓ ✓ ✓

age ✓ ✓ ✓

gender ✓ ✓ ✓

civil st. ✓ ✓

religion ✓ ✓
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hospital ✓ ✓

date of death ✓

Diagnosis chi ✓ ✓ ✓

primary ✓ ✓ ✓

first seen date ✓ ✓ ✓

age ✓ ✓ ✓

site ✓ ✓ ✓

side ✓ ✓ ✓

histology ✓ ✓ ✓

stage ✓ ✓

tnm (t) ✓ ✓

tnm (n) ✓ ✓

tnm (m) ✓ ✓

performance status ✓

metastasis site ✓ ✓ ✓

SMR01s chi ✓ ✓ ✓

marital status ✓ ✓

ethnic group ✓ ✓

waiting list type ✓ ✓

admission date ✓ ✓ ✓

discharge date ✓ ✓ ✓

main condition ✓ ✓ ✓

other condition ✓ ✓ ✓

main operation ✓ ✓ ✓

SMR06s chi ✓ ✓

incidence date ✓ ✓ ✓

er status ✓ ✓ ✓

her2 status ✓ ✓ ✓

stage clinical t ✓ ✓ ✓

stage clinical n ✓ ✓ ✓

stage clinical m ✓ ✓ ✓

number positive ✓ ✓

tumour size ✓ ✓

Charlson chi ✓

postcode ✓

simd ✓



152 Generating Synthetic Cancer Data

incidence date ✓

heart fail flag ✓

dementia flag ✓

pulmonary flag ✓

con tis flag ✓

diabetes flag ✓

para hemiplegia flag ✓

renal flag ✓

liver flag ✓

aids hiv flag ✓

cancer flag ✓

Charlson score ✓

8.8 Summary

We managed to validate the data for the patient’s diagnosis as shown in the previous section.
Unfortunately, due to COVID-19, we had no access to the ChemoCare dataset. For the
chemotherapy dataset, we only generated the data without doing the comparison between the
real and fabricated dataset.

Though the use of synthetic data can solve several issues that emerge during the develop-
ment of the system, it is not a perfect replacement as it comes with its caveats. For one, we
know the model might have the same biases with the dataset, such as a mismatch between
the way the machine learns and the way doctors works and treat the patients. Fabricated data
can excel our machine/system development (e.g. scaling, exploration of various techniques,
and over-fitting test). We still need to perform several iterations and adjustment to both rules
and validators. With the generated data, we can continue to develop our systems and then
re-train and re-adjust the system once we obtain enough real data.

8.8.1 Coronavirus Remark

Due to data access issues during COVID-19 [34], we were not able to conduct further
comparisons between the real and fabricated data. Initially, we would like to extract more
ChemoCare data extraction and update the rule further. Next, we would like to retrain the
model developed in chapter 4 with both fabricated and real data. We would like to both real
dataset and fabricated to validate the models. With this, we can have more observations
regarding the quality of our fabricated dataset.



Chapter 9

Conclusion and Future Work

We developed several different projects with the shared goal to contribute to facilitating better
analysis and management of cancer data within NHS Lothian. We used various techniques
from within computer science, software engineering and artificial intelligence to show how
they can contribute in a novel way to improve cancer care. This EngD tackled projects
for patient timeline visualisation, cohort based visualisation, database migration, analysing
cancer waiting time, toxicity predictor and investigated the generation of fabricated data.
Throughout this project, we used software engineering techniques, as well as simulation,
machine learning and constraint based programming.

First, we created the patient timeline visualisation. We then performed database migration
and then working on cancer waiting time. The cancer waiting time project covers the analysis
of the data during the first phase of cancer treatment. We managed to identify the bottleneck
of the process. By using the DES model, we can test various scenarios.

Next, we integrated our projects. We first integrated our timeline visualisation with
the toxicity predictor. In the future, we would like to add more features to the integrated
dashboard as well as using the newly migrated database. We observe some features that can
be improved and implemented. The features are derived from various user feedback as well
as the project scope itself. The details are as follows.

• Add more cohort summaries and filters The SESO Gateway will keep expanding as
we get new data extractions. According to the user feedback, we should implement
additional cohort summaries that we have not considered before (e.g. BMI proportion,
adding a filter based on the oncologists in charge of the treatment, adding the func-
tionality to get the list of patients). In doing so, we need to make sure that it is also
integrated well with the previous features that have been implemented.
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• Integrating security to the application It is necessary to adequately protect our
application because of the type of data used as an input. We need to implement proper
data protection (i.e., this should be similar to the security procedures implemented
within NHS) before deploying the SESO Gateway to the network. These added security
protections can prevent cyberattacks by ensuring patient data is protected to prevent
fraud.

Several security aspects that we can consider are listed below [77].

– use JWT tokens or similar technology to allow signature when we securely
transmit information between parties.

– use blockchain as a robust digital ledger to log the activity of the users.

– use data encryption and decryption.

• Use a real database and deploy the application to the network Once the DCO
migration finished, we can update our application by changing its data sources. We
need to update the SQL-Statement used to retrieve the data and obtain permission from
the NHS to access the migrated database. If the NHS also provides the API, we need
to update the web-client and update the client requests accordingly.

One of our objectives was to be able to give a second opinion regarding the upcoming
treatments. Here, we can achieve this by improving our toxicity predictor. By using synthetic
data, we can further develop our predictor and explore more advanced techniques as a proof
of concept.

Lastly, more access to data is essential for improving our systems further. Our last
project specified rules to capture cancer data and hence be able to generate a large amount of
synthetic data, and be able to strengthen machine learnings models for further insights. We
believe that synthetic data can help us explore more varied techniques for better analysis and
hence contribute to improving our integrated system.

In the future, we can expand our range of techniques for different kinds of cancer
treatments (e.g. radiotherapy) as well as different types of cancer. By integrating several
projects, it is possible to have a digital solution to observe and analyse the whole patient
cancer care journey. If implemented and adapted, these solutions can improve the overall
cancer care within the ECC at NHS Lothian.
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9.1 Contributions

During our EngD programme, we have contributed expertise and capacity to the Cancer In-
formation Team specifically on the development of the South East Scotland Cancer Database
upgrade and migration of legacy data onto the new platform (Chapter 4). Further, the Ed-
inburgh Cancer Information Team has developed an understanding of how an industrial
placement of a software engineering student can promote innovative design in our data
infrastructure solutions (Chapter 3 and Chapter 7). Lastly, we have developed prototype
software solutions that will provide a strong basis for further development of the innovative
use of data for improved patient care within NHS Lothian (Chapter 5, Chapter 6, and Chapter
8).
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Appendix A

Architecture and Design Pattern

A.1 Representational state transfer (REST) API

Fig. A.1 A Web API interaction. Source: [102]

Representational State Transfer (REST) architectural style, a hybrid style derived from
several network-based architectural styles [50] (e.g. data-flow styles, replication styles) [49],
can be applied to the design application program interface (API) for web services. Web
services are web servers that support the need for a site or any other client application. The
client will use the API to communicate with web services. Figure A.1 shows an interaction
between a client and a server via web API. A web API with REST architectural style is called
REST API. The REST API is an API which utilises HTTP request (e.g. GET, PUT, POST,
DELETE [51]) to read, update, write, and delete data. It is more preferred than the Simple
Object Access Protocol (SOAP) communications because of network traffic, higher latency
and delay caused by SOAP. As REST API leverages less bandwidth than SOAP, it is more
suitable for internet uses [115].

A.2 Model-View-Controller

Model-View-Controller (MVC) is a design pattern that processes the data model, presentation
information and control information separately. The model represents the data and does not
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depend on the controller or the view. The view displays the model data while the controller
processes the user’s interaction and comprises the application’s user interface [91]. Because
of this separation, it allows the application to be more modular. With MVC, the application
can be constructed and maintained with different interfaces, such as multiple languages, or
different sets of user permissions.

Fig. A.2 An example of an MVC application. Source: [117]

Figure A.2 shows an example of MVC for a simple shopping list application. The model
specifies what data the list items should contain (e.g. item, price). The view defines the
application GUI. The controller handles the logic for the user’s interactions, for example,
adding or removing an item in the shopping list.

The MVC pattern is most common for web application development. In the early days
of the web, MVC architecture was commonly implemented on the server-side. However,
today, more of the logic is pushed to the client with the advent of client-side data stores, and
Http requests allowing partial page updates as required. Web frameworks such as AngularJS
implement an MVC architecture [117].



Appendix B

Statistical Tools

B.1 Weibull Distribution

Weibull distribution is a member of extreme value distribution [86]. It is a continuous
probability distribution and widely used in reliability engineering due to its versatility. The
general expression of Weibull density function (i.e. for a random variable X) is given by
the three-parameter Weibull distribution expression, as shown in equation B.1, is noted as
X ∼We(a,b,c) for short [137].

fX (x|a,b,c) = c
b

(
x−a

b

)c−1

e−(
x−a

b )
c

,x≥ a (B.1)

Where:

fX ≥ 0, x≥ 0or a,−∞ < a <+∞, b > 0, c > 0 (B.2)

and:

• a is the location parameter.

• b is the scale parameter.

• c is the shape parameter, also known as the Weibull slope

Different value of parameters can create mark effects on the behaviour of the distribution,
as shown in Figure B.1, B.2, B.3.
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Fig. B.1 Weibull densities with differing value of the location parameter

Fig. B.2 Weibull densities with differing value of the scale parameter
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Fig. B.3 Weibull densities with differing value of the shape parameter

B.2 Generalized Extreme Value Distribution

The Generalized extreme value (GEV) [57] distribution is a family of continuous probability
distribution developed within the field of extreme value theory. The extreme value theory
allows inferences about the probability of very rare or extreme events. The GEV unites the
Gumbel (Type I), Fréchet (Type II), and Weibull (Type III) extreme value distributions.

Fig. B.4 An example of GEV random sample [105]
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Figure B.4 shows an example of a random sample with GEV distribution. The GEV has
the following probability density function (PDF) as follow [86, 104, 105],

f (x) =

 1
σ

e−(1+kz)−
1
k (1+ kz)−1− 1

k k ̸= 0
1
σ

e(−z−e−z) k = 0
(B.3)

where z = (x−µ)
σ

, and k, σ , µ are the shape, scale, and location parameters.
The scale must be positive while the shape and location can take on any real value. The

range of definition of the GEV distribution depends on k:

range =

(1+ kz)> 0 k ̸= 0

−∞ < x <+∞ k = 0
(B.4)

B.3 Kaplan-Meier Estimator

The Kaplan-Meier (KM) [45] survival estimator is a tool for analysing censored data. For ex-
ample, we want to examine the survival rate between two different treatments (e.g. comparing
radiation therapy treatment (A) versus radiation plus chemotherapy treatment (B)).

Fig. B.5 An example of Kaplan-Meier estimated survival curve. Source: [45]

By using the KM curve, we can compare the survival probability of the population. Here,
as shown in Figure B.5, treatment B is significantly better as it has significantly higher
surviving proportion than treatment A. The KM estimate simplifies the survival analysis
computation despite all these difficulties associated with subjects or situations. The curve can
be easily calculated and being totally non-parametric. Because it requires few assumptions,
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it can be inefficient compare to the parametric estimators of survival analysis (e.g. less
precision) [113]. It is also difficult to compare the hazard rate of the variables, even in the
absence of statistical noise. Despite its limitation, the KM is still widely used. The appeal of
this estimator is the ease of usage, faster calculation, and its few assumption requirements
[59].

B.4 Nelson-Allen Estimator

Fig. B.6 Cumulative hazard function of global regimes. Source: [94]

The Nelson-Aalen estimator was initially introduced by Nelson (1972) and later on rediscov-
ered by Aalen (1978) who derived the estimator using modern counting process techniques
[126]. It is a non-parametric estimator of the cumulative hazard rate function for censored
or incomplete data. The cumulative hazard is used (e.g. in survival theory) to estimate
the increasing number of the expected event (e.g. death, failure event). The KA estimator
does not work well enough to observe the hazard function. Hence, the NA estimator is an
alternative estimator to the KM estimator if we want to calculate the hazard function of
variables [139]. To calculate the NA non-parametric cumulative hazard function with the
equation, as shown below [94].

Ĥ(t) = ∑
ti≤t

di

ni
(B.5)
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With the equation B.5, it is possible to calculate the hazard function over time. Figure B.6
shows an example of the NA estimate cumulative hazard. It is possible to identify whether
the hazard of several variables are proportional by observing the NA curve.

B.5 Shapiro-Wilk Test

The Shapiro-Wilk test [151] is a test of normality. It tests whether a random sample derives
from a normal distribution by calculating the W statistic. The null hypothesis of this test,
H0,is as follow: the sample drawn from the normally-distributed population, while equation
B.6 shows the formula for calculating W [35].

W =
(∑n

i=1 aixi)
2

∑
n
i=1 (xi− x)2 (B.6)

Here, xi are the ordered sample values and ai are constants generated from the means,
variances and covariances of the order statistics of a sample of size n from a normal distri-
bution. If the distribution is normal, both the denominator and nominator of the equation
value is an estimate of σ2. Hence, if H0 true, W should be equal to 1. The small differences
between the values of denominator and nominator are evidence of departure from normality.

B.6 Kolmogorov–Smirnov Test

The Kolmogorov-Smirnov Test is a non-parametric test to check the difference between two
sample distribution or to compare a sample to an expected statistical distribution [96]. Being
a non-parametric test, it does not require the data to follow a normal distribution.

Consider two different observation X1,X2, ...,Xn assumed to come from distribution P.
The Kolmogorov-Smirnov test hypotheses are as follow [103]:

• H0: the samples follow a specified distribution P

• H1: the samples do not follow a specified distribution P

We get the Kolmogorov-Smirnov statistic (D) by calculating the maximum distance
between the empirical distribution function of the data (Fobs(x)), with the cumulative dis-
tribution function associated with the null hypothesis (Fexp(x)) as shown in equation B.7
[101].

Dn = max
x
|Fexp(x)−Fobs(x)| (B.7)
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Figure B.7 illustrates the method to calculate Kolmogorov-Smirnov statistic. The green
lines show the absolute distance between the expected and observed distribution function.

Fig. B.7 Kolmogorov-Smirnov statistic. Source: [101]

We then compare the maximum Kolmogorov-Smirnov statistic to the critical value (Dn,a)
based on the information from Figure B.8. If the D value is less than the Dn,a, we do not
reject the null hypothesis.
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Fig. B.8 Kolmogorov-Smirnov critical values. Source: [103]



Appendix C

Databases

C.1 Microsoft SQL Server

Microsoft SQL Server is a relational database management system developed by Microsoft.
The latest version, as per March 2020 (i.e. Microsoft SQL Server 2019) is built on a database
engine that supports On-Line Transaction Processing Benchmark (TPC-E) and Decision
Support Benchmark (TCP-H). Furthermore, the use of Storage Class Memory (SCM) and in-
memory database operations improve the transaction processing rate. It allows near-real-time
data analysis/manipulation without having to move the transaction data to another temporary
data warehouse for reporting or other purposes [62].

C.1.1 Transact-SQL (T-SQL)

is a set of programming extensions from Sybase and Microsoft that add several features to
the Structured Query Language (SQL), including transaction control, exception and error
handling, row processing and declared variables [167]. Instead of using vanilla SQL, we
use T-SQL to interact with the Microsoft SQL Server database. The T-SQL are designed to
extend SQL’s abilities while being able to integrate well with SQL. Several features such as
local variables and string/data processing are added.

C.2 Microsoft Access

Microsoft Access [111] is a database management system from Microsoft. It is a member
of the Microsoft office suite. It is designed to create databases and organise reports locally.
Microsoft Access can import or link directly to data stored in other applications and databases
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(e.g. Microsoft Azure SQL, SQL Server). Currently, Microsoft Access is only available on
Window PC.

C.3 SQLite

SQLite [158] is an open-source C-language library that implements a SQL database engine.
The library provides a relational database management system (RDBMS) with several other
features as follow [87].

• Serverless, the SQLite does not require a separate server or system to operate. The
library can directly access the storage file.

• Cross-Platform.

• The library allows safe access from multiple processor or threads as the SQLite
transactions are fully ACID (atomicity, consistency, isolation, durability)-compliant.

• SQLite support most of the query language features found in the SQL-92.

C.4 Redis

Redis [135] is an open source (BSD licensed), in-memory data structure store, used as a
database, cache and message broker. Redis supports various data structures (e.g. strings,
hashes, lists, sets, sorted sets with range queries). A message broker is software that
enables systems to communicate with each other and exchange information. It mediates
communication among applications by translating messages between formal messaging
protocols. This allows interdependent services to directly interact with one another, even if
the services were implemented on different platforms [75].



Appendix D

Framework

D.1 AngularJS

Angular is a google-maintained app-design framework and development platform for creating
a single page application (SPA) using HTML and TypeScript[10]. A single page application
is a web application with components that can be updated/replaced independently without
refreshing/reloading the entire page [76]. The SPA client-server request-response cycle
allows a flexible way of dealing with data (e.g. using JSON). Figure D.1 shows the difference
between traditional and SPA response-request cycle.
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Fig. D.1 Client-server request-response cycle. Source: [76]

With its Model-View-Controler (MVC), sometimes refer as Model-View-Whatever
(MV*), architectural pattern, Angular provides a separation of concerns between the user
interface and business logic [53]. Furthermore, as shown in Figure D.2, the two way data
binding features allows data to get simultaneously updated whenever there is a change in the
Views.

Fig. D.2 Two ways data binding [12]
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D.2 Bootstrap

Bootstrap [22] is an open-source framework for developing the graphical user interface
(GUI) of websites with HTML, CSS, and JavaScript. It was developed due to the demand
for front-end toolset standardisation on Twitter [157]. Bootstrap streamlines the process
of prototyping and building websites with its provided features such as Sass variables and
mixins, responsive grid system, extensive prebuilt components, and various plugins built on
jQuery [22].

D.3 Django

Django [41] is a high-level Python Web framework. It loosely implements the Model-View-
Controller (MVC) pattern [6].

• The Django model is responsible for managing data and core business logic.

• The Django view displays the data to the user. It provides a template language for the
developer for this purpose.

• The Django controller accepts users’ input and performs the tasks/logic specific to the
Django app.

A typical Django project is shown below [42].

mysite/
manage.py
mysite/
__init__.py
settings.py
urls.py
wsgi.py
app1/

apps.py
model.py
urls.py
views.py
...

app2/
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The Django project, as shown above, has a root directory (i.e. mysite). Inside the root
directory, manage.py allows the interaction (e.g. run server, create a new app) to the Django
projects via command-line. The inner folder mysite is the Python package of the project. It
has setting.py containing the project configuration. The urls.py in this directory acts as the
table of content of the Django site while wsgi.py is an entry-point for Web Server Gateway
Interface (WSGI)-compatible web servers to serve the project. It is possible to have other
types of configurations. A Django project may have multiple apps. Here we have app1, app2.
The app has python sources to manage the display, data, business logic and URL specific to
the app.

D.4 Gatling

Gatling [56] is an open-source load testing framework based on Scala, Akka, and Netty.
Gatling comes with the support of the HTTP protocol that streamlines the process of load
testing any HTTP server. The Gatling’s load-testing consists of:

• A large number of users simulation by generating request on HTTP protocol or other
types of protocol.

• All requests’ response time aggregation.

• Response-request data analysing and report generation.

Gatling has its Domain Specific Language (DSL) for creating the test scenarios and is
designed for continuous load testing, which can be integrated with the development pipeline.
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Libraries and Toolkit

E.1 NumPy

Numerical Python (NumPy) [109] is one of the most common python libraries for numerical
computing in python. The NumPy arrays (e.g. ndarray) [173] have become the standard
representation for numerical data and data exchange for performing statistical analysis with
python. The NumPy library has several features that help with scientific computing, as shown
below [109, 122].

• Multidimensional array objects.

• Mathematical functions for processing entire data arrays without having to write loops.

• Functions to perform linear algebra, random number generation, and Fourier transform
capabilities.

• A C-API for connecting NumPy with libraries written in C, C++, or FORTRAN.

Functions to perform linear algebra, random number generation, and Fourier transform
capabilities. A C-API for connecting NumPy with libraries written in C, C++, or FORTRAN

E.2 pandas

pandas [124] is a python open sources data analysis and manipulation library. Panda provides
a data structure placeholder for statistical datasets in the tabular format (i.e. DataFrame).
This data structure has flexibility for its size, which is one of the important features when
assembling a collection of data [110]. pandas library allows the modifications of many
different kinds of data, such as [124]:
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• Tabular data with heterogeneously-typed columns, as in an SQL table or Excel spread-
sheet

• Ordered and un-ordered (not necessarily fixed-frequency) time series data.

• Arbitrary matrix data (homogeneously typed or heterogeneous) with row and column
labels.

• Any other form of observational/statistical data sets. The data doesn’t need to be
labelled at all to be placed into a pandas data structure.

pandas also has functions to streamline (e.g. read_sql, read_csv) the process of data loading
from various sources. It has several built-in functionalities to perform various data manip-
ulation and plotting (e.g. merging, concatenation, histogram plotting) [109]. Furthermore,
pandas allows seamless/continuous integration with many python libraries for statistical
analysis, such as scipy, scikit-learn.

E.3 SciPy

SciPy is a python-based open-source scientific computing library. It contains a collection of
numerical algorithms and domain-specific toolboxes (e.g. for signal processing, optimisation
statistics) [150]. It aims to provide complete coverage for mathematical analysis in linear
algebra. The SciPy library provides statistical tools that one expects to find in a statistics
textbook, such as probability distributions, hypothesis tests, frequency statistics, correlation
functions [171].

E.4 scikit-learn

scikit-learn is a python module integrating extensive state-of-the-art machine learning algo-
rithms for supervised and unsupervised learning [125]. This package provides a high-level
API for predictive data analysis to non-specialists. The scikit-learn is built on NumPy, Scipy,
Matplotlib and emphasis on ease of use, performance, documentation, and API consistency
[125, 149].

E.5 Matplotlib

Matplotlib [107] is a python library for creating static, animated, and interactive visualisation.
Although it was previously emulating the MATLAB [106] graphics commands, it does not
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require MATLAB [73]. As a python library, it can be used in a pythonic, object-oriented way.
Similarly, the Matplotlib uses NumPy to improve the performance for plotting large array.

E.6 Lifelines

lifelines [128] is a python library for performing survival analysis. It built on top of pandas.
Previously, when performing survival analysis, it is common for data scientists to shuffle
between two different programming languages (e.g. perform the analysis in R and deploy
the application in python) [38]. As a python library with extensive capacity for performing
various survival analysis techniques (e.g. Kaplan-Meier estimator, COX regression), it eases
the process of deployment in the python production system as well as allows the integration
with other python libraries.

E.7 Keras

Keras [83] is a high-level neural network python library which capable of running on the
top of TensorFlow. It was developed with a motivation to enable fast neural network experi-
mentation. Keras supports convolutional networks, recurrent networks and the combinations
of the two. The API can run seamlessly on central processing unit (CPU) and graphics
processing unit (GPU).

E.8 Tensorflow

TensorFlow [165] is an open-source platform for machine learning. It offers multiple levels of
abstraction (e.g. the users can build and train models by using the high-level Keras API [83]).
A TensorFlow computation is described by a set of nodes that construct a directed graph.
The graph represents a data flow computation. The users typically build a computational
graph using one of the supported front-end languages (i.e. C++, Python) [1]. This helps the
clients to represents some machine learning algorithm (e.g. Neural Network) in their native
representation.

E.9 Django REST Framework

Django REST Framework (DRF) [43] is a python toolkit for building web API. It streamlines
the process of writing REST API. The DRF provides a browsable web interface as well as
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integrated authentication mechanisms (i.e. to control the REST services access). It integrate
well with an authentication mechanism, such as OAuth2, HTTP Signature, HTTP digest
authentication, and JSON Web Token Authentication [143]. The DRF supports serialisation
for both Object Relational Mapping (ORM) and non-ORM data sources.

E.10 Celery

Celery [29] is a task queue package which provides the realisation of the asynchronous
computational workload. Task queues are used as a mechanism to distribute work across
threads and machines. The input of task queues is a unit called task which is monitor by
Celery’s workers. The worker is triggered by the information contained in the messages
explicitly specified as a celery task. Celery used a storage solution (i.e. message broker) to
handle the upcoming task queues. The message broker is used to store messages from the
celery queue and storage once the system finishes executing the message. Celery can run on
a single machine, multiple machines, or even across data centres.

E.11 pickle

pickle [127] is a python object serialisation module. It implements binary protocols for
serialising and de-serialising (i.e. "pickling" and "unpickling") a Python object structure.
During the serialisation process, the Python object hierarchy is converted into a byte stream
and vice versa. The data format used by pickle is Python-specific. It imposes no restriction
compared to the standard external procedure for record data/information such as JSON.

E.12 Salabim

Salabim [170] is an open-source object-oriented developed for discrete event simulation of
complex control in logistics and production environments. It follows the methodology of
process description as demonstrated in Simula and later in Prosim, Must and Tomas. As
a python package, it allows the use of other powerful python libraries (e.g. for statistical
processing, presentation, machine learning). It also has an integrated animation engine which
eases the manual observation of process flow for the user (here, the healthcare professionals).
Because of these reasons, we use Salabim for simulating lung cancer waiting time.



E.13 pyodbc 189

E.13 pyodbc

pyodbc [131] is an open-source Python module for accessing the Open Database Connectivity
(ODBC) databases. It implements the Python Database API v2.0 specification. The pyodbc
can establish a connection to many databases (e.g. Microsoft Access, SQLite, Microsoft SQL
Server). The pyodbc module provides a connect function to the database specified in the
connection string. Before using the pyodbc module to read/write to the database, the client
needs to have an appropriate driver to establish the connection (e.g. Microsoft Access Driver
(*.mdb), Microsoft Access Driver (*.mdb, *.accdb) for Microsoft Access).

E.14 JDBC

Java Database Connectivity (JDBC) [52] is the industry standard for database-independent
connectivity between the Java programming language and SQL databases and other tabular
data sources, such as spreadsheets or flat files. It is part of the Java Standard Edition library.
The JDBC provides a call-level API for SQL-based database access [78]. It uses JDBC
drivers (e.g. JDBC-ODBC bridge driver, native driver, network protocol driver) to establish
the connection. The JDBC API simplifies the process of sending SQL statements to relational
database systems as it supports almost all dialects of SQL. The JDBC API allows applications
to virtually access any data sources and runs on any platform with a Java Virtual Machine.

E.15 vis.js

vis.js [172] is a JavaScript dynamic, browser-based visualisation library. It designs to allow
the manipulation of and interaction with the data in the web-client. The library has several
components with different functionalities such as timeline creation (i.e. Timeline), 2D/3D
graphs generation (i.e. Graph2d, Graph3d).

E.16 Data-Driven-Documents (D3)

Data-Driven-Documents (D3.js) [36] is a JavaScript library for manipulating documents
based on data. The D3.js enables data visualisation and interaction using HTML, Scalable
Vector Graphics (SVG), and Cascading Style Sheets (CSS). It combines visualisation com-
ponent and data-driven approach to Document Object Model (DOM) manipulation. The
library provides features similar to jQuery [108] (i.e. a popular JavaScript library to perform
HTML DOM tree traversal and manipulation). It extends them to allow extensive DOM
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modification. With the extensions, it will enable the creation of visuals based on the structure
of data instead of only being a framework for low-level DOM manipulation [71].

E.17 Gradle

Gradle is a general purpose build management system. Gradle supports the automatic
download and configuration of dependencies or other libraries from online repositories (e.g.,
Maven, Ivy) [63]. It allows reusing the artifacts of existing build systems.
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